blob: 3a35a954e4c00dd75dc1fbc1789b98b6afc25bf2 [file] [log] [blame]
Jia Liu31d157a2012-02-18 12:03:15 +00001//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000016#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000017#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000018#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
Dan Gohmand68a0762009-01-05 17:59:02 +000020#include "llvm/DerivedTypes.h"
Owen Anderson0a5372e2009-07-13 04:09:18 +000021#include "llvm/LLVMContext.h"
Owen Anderson718cb662007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Dan Gohman62c939d2008-12-03 05:21:24 +000023#include "llvm/CodeGen/MachineConstantPool.h"
Hans Wennborgf0234fc2012-06-01 16:27:21 +000024#include "llvm/CodeGen/MachineDominators.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000025#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000027#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000028#include "llvm/CodeGen/LiveVariables.h"
Craig Topper79aa3412012-03-17 18:46:09 +000029#include "llvm/MC/MCAsmInfo.h"
Chris Lattneree9eb412010-04-26 23:37:21 +000030#include "llvm/MC/MCInst.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000031#include "llvm/Support/CommandLine.h"
David Greene5b901322010-01-05 01:29:29 +000032#include "llvm/Support/Debug.h"
Torok Edwinab7c09b2009-07-08 18:01:40 +000033#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
Evan Cheng0488db92007-09-25 01:57:46 +000035#include "llvm/Target/TargetOptions.h"
David Greeneb87bc952009-11-12 20:55:29 +000036#include <limits>
37
Evan Cheng4db3cff2011-07-01 17:57:27 +000038#define GET_INSTRINFO_CTOR
Evan Cheng22fee2d2011-06-28 20:07:07 +000039#include "X86GenInstrInfo.inc"
40
Brian Gaeked0fde302003-11-11 22:41:34 +000041using namespace llvm;
42
Chris Lattner705e07f2009-08-23 03:41:05 +000043static cl::opt<bool>
44NoFusing("disable-spill-fusing",
45 cl::desc("Disable fusing of spill code into instructions"));
46static cl::opt<bool>
47PrintFailedFusing("print-failed-fuse-candidates",
48 cl::desc("Print instructions that the allocator wants to"
49 " fuse, but the X86 backend currently can't"),
50 cl::Hidden);
51static cl::opt<bool>
52ReMatPICStubLoad("remat-pic-stub-load",
53 cl::desc("Re-materialize load from stub in PIC mode"),
54 cl::init(false), cl::Hidden);
Owen Anderson43dbe052008-01-07 01:35:02 +000055
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +000056enum {
57 // Select which memory operand is being unfolded.
Craig Topper3ed920f2012-06-23 08:01:18 +000058 // (stored in bits 0 - 3)
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +000059 TB_INDEX_0 = 0,
60 TB_INDEX_1 = 1,
61 TB_INDEX_2 = 2,
Elena Demikhovsky177cf1e2012-05-31 09:20:20 +000062 TB_INDEX_3 = 3,
Craig Topper3ed920f2012-06-23 08:01:18 +000063 TB_INDEX_MASK = 0xf,
64
65 // Do not insert the reverse map (MemOp -> RegOp) into the table.
66 // This may be needed because there is a many -> one mapping.
67 TB_NO_REVERSE = 1 << 4,
68
69 // Do not insert the forward map (RegOp -> MemOp) into the table.
70 // This is needed for Native Client, which prohibits branch
71 // instructions from using a memory operand.
72 TB_NO_FORWARD = 1 << 5,
73
74 TB_FOLDED_LOAD = 1 << 6,
75 TB_FOLDED_STORE = 1 << 7,
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +000076
77 // Minimum alignment required for load/store.
78 // Used for RegOp->MemOp conversion.
79 // (stored in bits 8 - 15)
80 TB_ALIGN_SHIFT = 8,
81 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
82 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
83 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
Craig Topper3ed920f2012-06-23 08:01:18 +000084 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +000085};
86
Craig Topper72051bf2012-03-09 07:45:21 +000087struct X86OpTblEntry {
88 uint16_t RegOp;
89 uint16_t MemOp;
Craig Topper3ed920f2012-06-23 08:01:18 +000090 uint16_t Flags;
Craig Topper72051bf2012-03-09 07:45:21 +000091};
92
Evan Chengaa3c1412006-05-30 21:45:53 +000093X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Evan Cheng4db3cff2011-07-01 17:57:27 +000094 : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
95 ? X86::ADJCALLSTACKDOWN64
96 : X86::ADJCALLSTACKDOWN32),
97 (tm.getSubtarget<X86Subtarget>().is64Bit()
98 ? X86::ADJCALLSTACKUP64
99 : X86::ADJCALLSTACKUP32)),
Evan Cheng25ab6902006-09-08 06:48:29 +0000100 TM(tm), RI(tm, *this) {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000101
Craig Topper72051bf2012-03-09 07:45:21 +0000102 static const X86OpTblEntry OpTbl2Addr[] = {
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000103 { X86::ADC32ri, X86::ADC32mi, 0 },
104 { X86::ADC32ri8, X86::ADC32mi8, 0 },
105 { X86::ADC32rr, X86::ADC32mr, 0 },
106 { X86::ADC64ri32, X86::ADC64mi32, 0 },
107 { X86::ADC64ri8, X86::ADC64mi8, 0 },
108 { X86::ADC64rr, X86::ADC64mr, 0 },
109 { X86::ADD16ri, X86::ADD16mi, 0 },
110 { X86::ADD16ri8, X86::ADD16mi8, 0 },
111 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
112 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
113 { X86::ADD16rr, X86::ADD16mr, 0 },
114 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
115 { X86::ADD32ri, X86::ADD32mi, 0 },
116 { X86::ADD32ri8, X86::ADD32mi8, 0 },
117 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
118 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
119 { X86::ADD32rr, X86::ADD32mr, 0 },
120 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
121 { X86::ADD64ri32, X86::ADD64mi32, 0 },
122 { X86::ADD64ri8, X86::ADD64mi8, 0 },
123 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
124 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
125 { X86::ADD64rr, X86::ADD64mr, 0 },
126 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
127 { X86::ADD8ri, X86::ADD8mi, 0 },
128 { X86::ADD8rr, X86::ADD8mr, 0 },
129 { X86::AND16ri, X86::AND16mi, 0 },
130 { X86::AND16ri8, X86::AND16mi8, 0 },
131 { X86::AND16rr, X86::AND16mr, 0 },
132 { X86::AND32ri, X86::AND32mi, 0 },
133 { X86::AND32ri8, X86::AND32mi8, 0 },
134 { X86::AND32rr, X86::AND32mr, 0 },
135 { X86::AND64ri32, X86::AND64mi32, 0 },
136 { X86::AND64ri8, X86::AND64mi8, 0 },
137 { X86::AND64rr, X86::AND64mr, 0 },
138 { X86::AND8ri, X86::AND8mi, 0 },
139 { X86::AND8rr, X86::AND8mr, 0 },
140 { X86::DEC16r, X86::DEC16m, 0 },
141 { X86::DEC32r, X86::DEC32m, 0 },
142 { X86::DEC64_16r, X86::DEC64_16m, 0 },
143 { X86::DEC64_32r, X86::DEC64_32m, 0 },
144 { X86::DEC64r, X86::DEC64m, 0 },
145 { X86::DEC8r, X86::DEC8m, 0 },
146 { X86::INC16r, X86::INC16m, 0 },
147 { X86::INC32r, X86::INC32m, 0 },
148 { X86::INC64_16r, X86::INC64_16m, 0 },
149 { X86::INC64_32r, X86::INC64_32m, 0 },
150 { X86::INC64r, X86::INC64m, 0 },
151 { X86::INC8r, X86::INC8m, 0 },
152 { X86::NEG16r, X86::NEG16m, 0 },
153 { X86::NEG32r, X86::NEG32m, 0 },
154 { X86::NEG64r, X86::NEG64m, 0 },
155 { X86::NEG8r, X86::NEG8m, 0 },
156 { X86::NOT16r, X86::NOT16m, 0 },
157 { X86::NOT32r, X86::NOT32m, 0 },
158 { X86::NOT64r, X86::NOT64m, 0 },
159 { X86::NOT8r, X86::NOT8m, 0 },
160 { X86::OR16ri, X86::OR16mi, 0 },
161 { X86::OR16ri8, X86::OR16mi8, 0 },
162 { X86::OR16rr, X86::OR16mr, 0 },
163 { X86::OR32ri, X86::OR32mi, 0 },
164 { X86::OR32ri8, X86::OR32mi8, 0 },
165 { X86::OR32rr, X86::OR32mr, 0 },
166 { X86::OR64ri32, X86::OR64mi32, 0 },
167 { X86::OR64ri8, X86::OR64mi8, 0 },
168 { X86::OR64rr, X86::OR64mr, 0 },
169 { X86::OR8ri, X86::OR8mi, 0 },
170 { X86::OR8rr, X86::OR8mr, 0 },
171 { X86::ROL16r1, X86::ROL16m1, 0 },
172 { X86::ROL16rCL, X86::ROL16mCL, 0 },
173 { X86::ROL16ri, X86::ROL16mi, 0 },
174 { X86::ROL32r1, X86::ROL32m1, 0 },
175 { X86::ROL32rCL, X86::ROL32mCL, 0 },
176 { X86::ROL32ri, X86::ROL32mi, 0 },
177 { X86::ROL64r1, X86::ROL64m1, 0 },
178 { X86::ROL64rCL, X86::ROL64mCL, 0 },
179 { X86::ROL64ri, X86::ROL64mi, 0 },
180 { X86::ROL8r1, X86::ROL8m1, 0 },
181 { X86::ROL8rCL, X86::ROL8mCL, 0 },
182 { X86::ROL8ri, X86::ROL8mi, 0 },
183 { X86::ROR16r1, X86::ROR16m1, 0 },
184 { X86::ROR16rCL, X86::ROR16mCL, 0 },
185 { X86::ROR16ri, X86::ROR16mi, 0 },
186 { X86::ROR32r1, X86::ROR32m1, 0 },
187 { X86::ROR32rCL, X86::ROR32mCL, 0 },
188 { X86::ROR32ri, X86::ROR32mi, 0 },
189 { X86::ROR64r1, X86::ROR64m1, 0 },
190 { X86::ROR64rCL, X86::ROR64mCL, 0 },
191 { X86::ROR64ri, X86::ROR64mi, 0 },
192 { X86::ROR8r1, X86::ROR8m1, 0 },
193 { X86::ROR8rCL, X86::ROR8mCL, 0 },
194 { X86::ROR8ri, X86::ROR8mi, 0 },
195 { X86::SAR16r1, X86::SAR16m1, 0 },
196 { X86::SAR16rCL, X86::SAR16mCL, 0 },
197 { X86::SAR16ri, X86::SAR16mi, 0 },
198 { X86::SAR32r1, X86::SAR32m1, 0 },
199 { X86::SAR32rCL, X86::SAR32mCL, 0 },
200 { X86::SAR32ri, X86::SAR32mi, 0 },
201 { X86::SAR64r1, X86::SAR64m1, 0 },
202 { X86::SAR64rCL, X86::SAR64mCL, 0 },
203 { X86::SAR64ri, X86::SAR64mi, 0 },
204 { X86::SAR8r1, X86::SAR8m1, 0 },
205 { X86::SAR8rCL, X86::SAR8mCL, 0 },
206 { X86::SAR8ri, X86::SAR8mi, 0 },
207 { X86::SBB32ri, X86::SBB32mi, 0 },
208 { X86::SBB32ri8, X86::SBB32mi8, 0 },
209 { X86::SBB32rr, X86::SBB32mr, 0 },
210 { X86::SBB64ri32, X86::SBB64mi32, 0 },
211 { X86::SBB64ri8, X86::SBB64mi8, 0 },
212 { X86::SBB64rr, X86::SBB64mr, 0 },
213 { X86::SHL16rCL, X86::SHL16mCL, 0 },
214 { X86::SHL16ri, X86::SHL16mi, 0 },
215 { X86::SHL32rCL, X86::SHL32mCL, 0 },
216 { X86::SHL32ri, X86::SHL32mi, 0 },
217 { X86::SHL64rCL, X86::SHL64mCL, 0 },
218 { X86::SHL64ri, X86::SHL64mi, 0 },
219 { X86::SHL8rCL, X86::SHL8mCL, 0 },
220 { X86::SHL8ri, X86::SHL8mi, 0 },
221 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
222 { X86::SHLD16rri8, X86::SHLD16mri8, 0 },
223 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
224 { X86::SHLD32rri8, X86::SHLD32mri8, 0 },
225 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
226 { X86::SHLD64rri8, X86::SHLD64mri8, 0 },
227 { X86::SHR16r1, X86::SHR16m1, 0 },
228 { X86::SHR16rCL, X86::SHR16mCL, 0 },
229 { X86::SHR16ri, X86::SHR16mi, 0 },
230 { X86::SHR32r1, X86::SHR32m1, 0 },
231 { X86::SHR32rCL, X86::SHR32mCL, 0 },
232 { X86::SHR32ri, X86::SHR32mi, 0 },
233 { X86::SHR64r1, X86::SHR64m1, 0 },
234 { X86::SHR64rCL, X86::SHR64mCL, 0 },
235 { X86::SHR64ri, X86::SHR64mi, 0 },
236 { X86::SHR8r1, X86::SHR8m1, 0 },
237 { X86::SHR8rCL, X86::SHR8mCL, 0 },
238 { X86::SHR8ri, X86::SHR8mi, 0 },
239 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
240 { X86::SHRD16rri8, X86::SHRD16mri8, 0 },
241 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
242 { X86::SHRD32rri8, X86::SHRD32mri8, 0 },
243 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
244 { X86::SHRD64rri8, X86::SHRD64mri8, 0 },
245 { X86::SUB16ri, X86::SUB16mi, 0 },
246 { X86::SUB16ri8, X86::SUB16mi8, 0 },
247 { X86::SUB16rr, X86::SUB16mr, 0 },
248 { X86::SUB32ri, X86::SUB32mi, 0 },
249 { X86::SUB32ri8, X86::SUB32mi8, 0 },
250 { X86::SUB32rr, X86::SUB32mr, 0 },
251 { X86::SUB64ri32, X86::SUB64mi32, 0 },
252 { X86::SUB64ri8, X86::SUB64mi8, 0 },
253 { X86::SUB64rr, X86::SUB64mr, 0 },
254 { X86::SUB8ri, X86::SUB8mi, 0 },
255 { X86::SUB8rr, X86::SUB8mr, 0 },
256 { X86::XOR16ri, X86::XOR16mi, 0 },
257 { X86::XOR16ri8, X86::XOR16mi8, 0 },
258 { X86::XOR16rr, X86::XOR16mr, 0 },
259 { X86::XOR32ri, X86::XOR32mi, 0 },
260 { X86::XOR32ri8, X86::XOR32mi8, 0 },
261 { X86::XOR32rr, X86::XOR32mr, 0 },
262 { X86::XOR64ri32, X86::XOR64mi32, 0 },
263 { X86::XOR64ri8, X86::XOR64mi8, 0 },
264 { X86::XOR64rr, X86::XOR64mr, 0 },
265 { X86::XOR8ri, X86::XOR8mi, 0 },
266 { X86::XOR8rr, X86::XOR8mr, 0 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000267 };
268
269 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
Craig Topper72051bf2012-03-09 07:45:21 +0000270 unsigned RegOp = OpTbl2Addr[i].RegOp;
271 unsigned MemOp = OpTbl2Addr[i].MemOp;
272 unsigned Flags = OpTbl2Addr[i].Flags;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000273 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
274 RegOp, MemOp,
275 // Index 0, folded load and store, no alignment requirement.
276 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
Owen Anderson43dbe052008-01-07 01:35:02 +0000277 }
278
Craig Topper72051bf2012-03-09 07:45:21 +0000279 static const X86OpTblEntry OpTbl0[] = {
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000280 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
281 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
282 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
283 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
284 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000285 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
286 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
287 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
288 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
289 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
290 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
291 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
292 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
293 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
294 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
295 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
296 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
297 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
298 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
299 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
300 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
301 { X86::FsMOVAPDrr, X86::MOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE },
302 { X86::FsMOVAPSrr, X86::MOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000303 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
304 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
305 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
306 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
307 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
308 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
309 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
310 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
311 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
312 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
313 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
314 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
315 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
316 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
317 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
318 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
319 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
320 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
321 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
322 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
323 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
324 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000325 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
326 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
327 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
328 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
329 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
330 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000331 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
332 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
333 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
334 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
335 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
336 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
337 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
338 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
339 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
340 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
341 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
342 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
343 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
344 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
345 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
346 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
347 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
348 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
349 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
350 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
351 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
352 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
353 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
354 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
355 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000356 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
357 // AVX 128-bit versions of foldable instructions
358 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
359 { X86::FsVMOVAPDrr, X86::VMOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE },
360 { X86::FsVMOVAPSrr, X86::VMOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE },
Craig Topper446626d2012-01-14 18:14:53 +0000361 { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000362 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
363 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
364 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
365 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
366 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
367 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
368 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
369 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
370 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
371 // AVX 256-bit foldable instructions
Craig Topper446626d2012-01-14 18:14:53 +0000372 { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000373 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
374 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
375 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
376 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
377 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE }
Owen Anderson43dbe052008-01-07 01:35:02 +0000378 };
379
380 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
Craig Topper72051bf2012-03-09 07:45:21 +0000381 unsigned RegOp = OpTbl0[i].RegOp;
382 unsigned MemOp = OpTbl0[i].MemOp;
383 unsigned Flags = OpTbl0[i].Flags;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000384 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
385 RegOp, MemOp, TB_INDEX_0 | Flags);
Owen Anderson43dbe052008-01-07 01:35:02 +0000386 }
387
Craig Topper72051bf2012-03-09 07:45:21 +0000388 static const X86OpTblEntry OpTbl1[] = {
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000389 { X86::CMP16rr, X86::CMP16rm, 0 },
390 { X86::CMP32rr, X86::CMP32rm, 0 },
391 { X86::CMP64rr, X86::CMP64rm, 0 },
392 { X86::CMP8rr, X86::CMP8rm, 0 },
393 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
394 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
395 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
396 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
397 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
398 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
399 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
400 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
401 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
402 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
403 { X86::FsMOVAPDrr, X86::MOVSDrm, TB_NO_REVERSE },
404 { X86::FsMOVAPSrr, X86::MOVSSrm, TB_NO_REVERSE },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000405 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
406 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
407 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
408 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
409 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
410 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
411 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
412 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000413 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
414 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
Craig Topper8e58b3e2012-06-15 07:02:58 +0000415 { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 },
416 { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000417 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
418 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
419 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
420 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
421 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
422 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
423 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
424 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000425 { X86::MOV16rr, X86::MOV16rm, 0 },
426 { X86::MOV32rr, X86::MOV32rm, 0 },
427 { X86::MOV64rr, X86::MOV64rm, 0 },
428 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
429 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
430 { X86::MOV8rr, X86::MOV8rm, 0 },
431 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
432 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000433 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
434 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
435 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
436 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000437 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
438 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
439 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
440 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
441 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
442 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
443 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
444 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
445 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
446 { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000447 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
448 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
449 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
450 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
451 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
452 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
453 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
454 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
455 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
456 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
Craig Topperdcce2442011-11-14 08:07:55 +0000457 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
458 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
459 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000460 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
461 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
462 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
463 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
464 { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 },
465 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
466 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 },
467 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
468 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
469 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
470 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, TB_ALIGN_16 },
471 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
472 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, TB_ALIGN_16 },
473 { X86::SQRTSDr, X86::SQRTSDm, 0 },
474 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
475 { X86::SQRTSSr, X86::SQRTSSm, 0 },
476 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
477 { X86::TEST16rr, X86::TEST16rm, 0 },
478 { X86::TEST32rr, X86::TEST32rm, 0 },
479 { X86::TEST64rr, X86::TEST64rm, 0 },
480 { X86::TEST8rr, X86::TEST8rm, 0 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000481 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000482 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
483 { X86::UCOMISSrr, X86::UCOMISSrm, 0 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000484 // AVX 128-bit versions of foldable instructions
485 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
486 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000487 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
488 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
Craig Topper8e58b3e2012-06-15 07:02:58 +0000489 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
490 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
Pete Cooper312091e2012-06-14 22:12:58 +0000491 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
Craig Topper8e58b3e2012-06-15 07:02:58 +0000492 { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 },
493 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
494 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
495 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
496 { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 },
497 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
498 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
499 { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 },
500 { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000501 { X86::FsVMOVAPDrr, X86::VMOVSDrm, TB_NO_REVERSE },
502 { X86::FsVMOVAPSrr, X86::VMOVSSrm, TB_NO_REVERSE },
503 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
504 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
505 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
506 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
507 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
508 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
509 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
510 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
511 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 },
512 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 },
513 { X86::VMOVUPDrr, X86::VMOVUPDrm, TB_ALIGN_16 },
514 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
515 { X86::VMOVZDI2PDIrr, X86::VMOVZDI2PDIrm, 0 },
516 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
517 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000518 { X86::VPABSBrr128, X86::VPABSBrm128, TB_ALIGN_16 },
519 { X86::VPABSDrr128, X86::VPABSDrm128, TB_ALIGN_16 },
520 { X86::VPABSWrr128, X86::VPABSWrm128, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000521 { X86::VPERMILPDri, X86::VPERMILPDmi, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000522 { X86::VPERMILPSri, X86::VPERMILPSmi, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000523 { X86::VPSHUFDri, X86::VPSHUFDmi, TB_ALIGN_16 },
524 { X86::VPSHUFHWri, X86::VPSHUFHWmi, TB_ALIGN_16 },
525 { X86::VPSHUFLWri, X86::VPSHUFLWmi, TB_ALIGN_16 },
526 { X86::VRCPPSr, X86::VRCPPSm, TB_ALIGN_16 },
527 { X86::VRCPPSr_Int, X86::VRCPPSm_Int, TB_ALIGN_16 },
528 { X86::VRSQRTPSr, X86::VRSQRTPSm, TB_ALIGN_16 },
529 { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, TB_ALIGN_16 },
530 { X86::VSQRTPDr, X86::VSQRTPDm, TB_ALIGN_16 },
531 { X86::VSQRTPDr_Int, X86::VSQRTPDm_Int, TB_ALIGN_16 },
532 { X86::VSQRTPSr, X86::VSQRTPSm, TB_ALIGN_16 },
533 { X86::VSQRTPSr_Int, X86::VSQRTPSm_Int, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000534 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000535 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
Nadav Rotemaec9f382012-07-15 12:26:30 +0000536 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE },
537
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000538 // AVX 256-bit foldable instructions
539 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
540 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
Craig Topper40385c82012-01-19 08:50:38 +0000541 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000542 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
Craig Topperdcce2442011-11-14 08:07:55 +0000543 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
Craig Topper40385c82012-01-19 08:50:38 +0000544 { X86::VPERMILPDYri, X86::VPERMILPDYmi, TB_ALIGN_32 },
545 { X86::VPERMILPSYri, X86::VPERMILPSYmi, TB_ALIGN_32 },
Nadav Rotemaec9f382012-07-15 12:26:30 +0000546
Craig Topperdcce2442011-11-14 08:07:55 +0000547 // AVX2 foldable instructions
Craig Topper40385c82012-01-19 08:50:38 +0000548 { X86::VPABSBrr256, X86::VPABSBrm256, TB_ALIGN_32 },
549 { X86::VPABSDrr256, X86::VPABSDrm256, TB_ALIGN_32 },
550 { X86::VPABSWrr256, X86::VPABSWrm256, TB_ALIGN_32 },
551 { X86::VPSHUFDYri, X86::VPSHUFDYmi, TB_ALIGN_32 },
552 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, TB_ALIGN_32 },
553 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, TB_ALIGN_32 },
554 { X86::VRCPPSYr, X86::VRCPPSYm, TB_ALIGN_32 },
555 { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, TB_ALIGN_32 },
556 { X86::VRSQRTPSYr, X86::VRSQRTPSYm, TB_ALIGN_32 },
557 { X86::VRSQRTPSYr_Int, X86::VRSQRTPSYm_Int, TB_ALIGN_32 },
558 { X86::VSQRTPDYr, X86::VSQRTPDYm, TB_ALIGN_32 },
559 { X86::VSQRTPDYr_Int, X86::VSQRTPDYm_Int, TB_ALIGN_32 },
560 { X86::VSQRTPSYr, X86::VSQRTPSYm, TB_ALIGN_32 },
561 { X86::VSQRTPSYr_Int, X86::VSQRTPSYm_Int, TB_ALIGN_32 },
Nadav Rotemaec9f382012-07-15 12:26:30 +0000562 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
563 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
Owen Anderson43dbe052008-01-07 01:35:02 +0000564 };
565
566 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
Craig Topper72051bf2012-03-09 07:45:21 +0000567 unsigned RegOp = OpTbl1[i].RegOp;
568 unsigned MemOp = OpTbl1[i].MemOp;
569 unsigned Flags = OpTbl1[i].Flags;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000570 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
571 RegOp, MemOp,
572 // Index 1, folded load
573 Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
Owen Anderson43dbe052008-01-07 01:35:02 +0000574 }
575
Craig Topper72051bf2012-03-09 07:45:21 +0000576 static const X86OpTblEntry OpTbl2[] = {
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000577 { X86::ADC32rr, X86::ADC32rm, 0 },
578 { X86::ADC64rr, X86::ADC64rm, 0 },
579 { X86::ADD16rr, X86::ADD16rm, 0 },
580 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
581 { X86::ADD32rr, X86::ADD32rm, 0 },
582 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
583 { X86::ADD64rr, X86::ADD64rm, 0 },
584 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
585 { X86::ADD8rr, X86::ADD8rm, 0 },
586 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
587 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
588 { X86::ADDSDrr, X86::ADDSDrm, 0 },
589 { X86::ADDSSrr, X86::ADDSSrm, 0 },
590 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
591 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
592 { X86::AND16rr, X86::AND16rm, 0 },
593 { X86::AND32rr, X86::AND32rm, 0 },
594 { X86::AND64rr, X86::AND64rm, 0 },
595 { X86::AND8rr, X86::AND8rm, 0 },
596 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
597 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
598 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
599 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000600 { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 },
601 { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 },
602 { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 },
603 { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000604 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
605 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
606 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
607 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
608 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
609 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
610 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
611 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
612 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
613 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
614 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
615 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
616 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
617 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
618 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
619 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
620 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
621 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
622 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
623 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
624 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
625 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
626 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
627 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
628 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
629 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
630 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
631 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
632 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
633 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
634 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
635 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
636 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
637 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
638 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
639 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
640 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
641 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
642 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
643 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
644 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
645 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
646 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
647 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
648 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
649 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
650 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
651 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
652 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
653 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
654 { X86::CMPSDrr, X86::CMPSDrm, 0 },
655 { X86::CMPSSrr, X86::CMPSSrm, 0 },
656 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
657 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
658 { X86::DIVSDrr, X86::DIVSDrm, 0 },
659 { X86::DIVSSrr, X86::DIVSSrm, 0 },
660 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
661 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
662 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
663 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
664 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
665 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
666 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
667 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
668 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
669 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
670 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
671 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
672 { X86::IMUL16rr, X86::IMUL16rm, 0 },
673 { X86::IMUL32rr, X86::IMUL32rm, 0 },
674 { X86::IMUL64rr, X86::IMUL64rm, 0 },
675 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
676 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
Manman Renc586d262012-08-13 18:29:41 +0000677 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
678 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
679 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
680 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
681 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
682 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000683 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
684 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, TB_ALIGN_16 },
685 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
686 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, TB_ALIGN_16 },
687 { X86::MAXSDrr, X86::MAXSDrm, 0 },
688 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
689 { X86::MAXSSrr, X86::MAXSSrm, 0 },
690 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
691 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
692 { X86::MINPDrr_Int, X86::MINPDrm_Int, TB_ALIGN_16 },
693 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
694 { X86::MINPSrr_Int, X86::MINPSrm_Int, TB_ALIGN_16 },
695 { X86::MINSDrr, X86::MINSDrm, 0 },
696 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
697 { X86::MINSSrr, X86::MINSSrm, 0 },
698 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
Craig Topperdcce2442011-11-14 08:07:55 +0000699 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000700 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
701 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
702 { X86::MULSDrr, X86::MULSDrm, 0 },
703 { X86::MULSSrr, X86::MULSSrm, 0 },
704 { X86::OR16rr, X86::OR16rm, 0 },
705 { X86::OR32rr, X86::OR32rm, 0 },
706 { X86::OR64rr, X86::OR64rm, 0 },
707 { X86::OR8rr, X86::OR8rm, 0 },
708 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
709 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
710 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
711 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000712 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000713 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
714 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
715 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
716 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
717 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
718 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000719 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
720 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000721 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000722 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000723 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
724 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
725 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
726 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000727 { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000728 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
729 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000730 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000731 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
732 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
733 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000734 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000735 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
Craig Topper4bb3f342012-01-25 05:37:32 +0000736 { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 },
737 { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000738 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
Craig Topper4bb3f342012-01-25 05:37:32 +0000739 { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000740 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
Craig Topper4bb3f342012-01-25 05:37:32 +0000741 { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000742 { X86::PINSRWrri, X86::PINSRWrmi, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000743 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000744 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
745 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
746 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
747 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
748 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
749 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000750 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000751 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
752 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
753 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
754 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
755 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
756 { X86::PORrr, X86::PORrm, TB_ALIGN_16 },
757 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
Craig Topper969ba282012-01-25 06:43:11 +0000758 { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 },
759 { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 },
760 { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 },
761 { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000762 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
763 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
764 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
765 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
766 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
767 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
768 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
769 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
770 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
771 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
772 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
773 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
774 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
775 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
776 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
777 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
778 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
779 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
780 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
781 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
782 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
783 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
784 { X86::SBB32rr, X86::SBB32rm, 0 },
785 { X86::SBB64rr, X86::SBB64rm, 0 },
786 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
787 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
788 { X86::SUB16rr, X86::SUB16rm, 0 },
789 { X86::SUB32rr, X86::SUB32rm, 0 },
790 { X86::SUB64rr, X86::SUB64rm, 0 },
791 { X86::SUB8rr, X86::SUB8rm, 0 },
792 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
793 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
794 { X86::SUBSDrr, X86::SUBSDrm, 0 },
795 { X86::SUBSSrr, X86::SUBSSrm, 0 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000796 // FIXME: TEST*rr -> swapped operand of TEST*mr.
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000797 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
798 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
799 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
800 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
801 { X86::XOR16rr, X86::XOR16rm, 0 },
802 { X86::XOR32rr, X86::XOR32rm, 0 },
803 { X86::XOR64rr, X86::XOR64rm, 0 },
804 { X86::XOR8rr, X86::XOR8rm, 0 },
805 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000806 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
807 // AVX 128-bit versions of foldable instructions
808 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
809 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
810 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
811 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
812 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
813 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
814 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
815 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
816 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
817 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
818 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
819 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
Craig Topper13d89c72012-06-25 06:16:00 +0000820 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000821 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, TB_ALIGN_16 },
822 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
823 { X86::VSQRTSDr, X86::VSQRTSDm, 0 },
824 { X86::VSQRTSSr, X86::VSQRTSSm, 0 },
825 { X86::VADDPDrr, X86::VADDPDrm, TB_ALIGN_16 },
826 { X86::VADDPSrr, X86::VADDPSrm, TB_ALIGN_16 },
827 { X86::VADDSDrr, X86::VADDSDrm, 0 },
828 { X86::VADDSSrr, X86::VADDSSrm, 0 },
829 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, TB_ALIGN_16 },
830 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, TB_ALIGN_16 },
831 { X86::VANDNPDrr, X86::VANDNPDrm, TB_ALIGN_16 },
832 { X86::VANDNPSrr, X86::VANDNPSrm, TB_ALIGN_16 },
833 { X86::VANDPDrr, X86::VANDPDrm, TB_ALIGN_16 },
834 { X86::VANDPSrr, X86::VANDPSrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000835 { X86::VBLENDPDrri, X86::VBLENDPDrmi, TB_ALIGN_16 },
836 { X86::VBLENDPSrri, X86::VBLENDPSrmi, TB_ALIGN_16 },
837 { X86::VBLENDVPDrr, X86::VBLENDVPDrm, TB_ALIGN_16 },
838 { X86::VBLENDVPSrr, X86::VBLENDVPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000839 { X86::VCMPPDrri, X86::VCMPPDrmi, TB_ALIGN_16 },
840 { X86::VCMPPSrri, X86::VCMPPSrmi, TB_ALIGN_16 },
841 { X86::VCMPSDrr, X86::VCMPSDrm, 0 },
842 { X86::VCMPSSrr, X86::VCMPSSrm, 0 },
843 { X86::VDIVPDrr, X86::VDIVPDrm, TB_ALIGN_16 },
844 { X86::VDIVPSrr, X86::VDIVPSrm, TB_ALIGN_16 },
845 { X86::VDIVSDrr, X86::VDIVSDrm, 0 },
846 { X86::VDIVSSrr, X86::VDIVSSrm, 0 },
847 { X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 },
848 { X86::VFsANDNPSrr, X86::VFsANDNPSrm, TB_ALIGN_16 },
849 { X86::VFsANDPDrr, X86::VFsANDPDrm, TB_ALIGN_16 },
850 { X86::VFsANDPSrr, X86::VFsANDPSrm, TB_ALIGN_16 },
851 { X86::VFsORPDrr, X86::VFsORPDrm, TB_ALIGN_16 },
852 { X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 },
853 { X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 },
854 { X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 },
855 { X86::VHADDPDrr, X86::VHADDPDrm, TB_ALIGN_16 },
856 { X86::VHADDPSrr, X86::VHADDPSrm, TB_ALIGN_16 },
857 { X86::VHSUBPDrr, X86::VHSUBPDrm, TB_ALIGN_16 },
858 { X86::VHSUBPSrr, X86::VHSUBPSrm, TB_ALIGN_16 },
859 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
860 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
861 { X86::VMAXPDrr, X86::VMAXPDrm, TB_ALIGN_16 },
862 { X86::VMAXPDrr_Int, X86::VMAXPDrm_Int, TB_ALIGN_16 },
863 { X86::VMAXPSrr, X86::VMAXPSrm, TB_ALIGN_16 },
864 { X86::VMAXPSrr_Int, X86::VMAXPSrm_Int, TB_ALIGN_16 },
865 { X86::VMAXSDrr, X86::VMAXSDrm, 0 },
866 { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 },
867 { X86::VMAXSSrr, X86::VMAXSSrm, 0 },
868 { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 },
869 { X86::VMINPDrr, X86::VMINPDrm, TB_ALIGN_16 },
870 { X86::VMINPDrr_Int, X86::VMINPDrm_Int, TB_ALIGN_16 },
871 { X86::VMINPSrr, X86::VMINPSrm, TB_ALIGN_16 },
872 { X86::VMINPSrr_Int, X86::VMINPSrm_Int, TB_ALIGN_16 },
873 { X86::VMINSDrr, X86::VMINSDrm, 0 },
874 { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 },
875 { X86::VMINSSrr, X86::VMINSSrm, 0 },
876 { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 },
Craig Topperdcce2442011-11-14 08:07:55 +0000877 { X86::VMPSADBWrri, X86::VMPSADBWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000878 { X86::VMULPDrr, X86::VMULPDrm, TB_ALIGN_16 },
879 { X86::VMULPSrr, X86::VMULPSrm, TB_ALIGN_16 },
880 { X86::VMULSDrr, X86::VMULSDrm, 0 },
881 { X86::VMULSSrr, X86::VMULSSrm, 0 },
882 { X86::VORPDrr, X86::VORPDrm, TB_ALIGN_16 },
883 { X86::VORPSrr, X86::VORPSrm, TB_ALIGN_16 },
884 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, TB_ALIGN_16 },
885 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000886 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000887 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, TB_ALIGN_16 },
888 { X86::VPADDBrr, X86::VPADDBrm, TB_ALIGN_16 },
889 { X86::VPADDDrr, X86::VPADDDrm, TB_ALIGN_16 },
890 { X86::VPADDQrr, X86::VPADDQrm, TB_ALIGN_16 },
891 { X86::VPADDSBrr, X86::VPADDSBrm, TB_ALIGN_16 },
892 { X86::VPADDSWrr, X86::VPADDSWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000893 { X86::VPADDUSBrr, X86::VPADDUSBrm, TB_ALIGN_16 },
894 { X86::VPADDUSWrr, X86::VPADDUSWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000895 { X86::VPADDWrr, X86::VPADDWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000896 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000897 { X86::VPANDNrr, X86::VPANDNrm, TB_ALIGN_16 },
898 { X86::VPANDrr, X86::VPANDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000899 { X86::VPAVGBrr, X86::VPAVGBrm, TB_ALIGN_16 },
900 { X86::VPAVGWrr, X86::VPAVGWrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000901 { X86::VPBLENDWrri, X86::VPBLENDWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000902 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, TB_ALIGN_16 },
903 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000904 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000905 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, TB_ALIGN_16 },
906 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, TB_ALIGN_16 },
907 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000908 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000909 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, TB_ALIGN_16 },
Craig Topper4bb3f342012-01-25 05:37:32 +0000910 { X86::VPHADDDrr, X86::VPHADDDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000911 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, TB_ALIGN_16 },
Craig Topper4bb3f342012-01-25 05:37:32 +0000912 { X86::VPHADDWrr, X86::VPHADDWrm, TB_ALIGN_16 },
913 { X86::VPHSUBDrr, X86::VPHSUBDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000914 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, TB_ALIGN_16 },
Craig Topper4bb3f342012-01-25 05:37:32 +0000915 { X86::VPHSUBWrr, X86::VPHSUBWrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000916 { X86::VPERMILPDrr, X86::VPERMILPDrm, TB_ALIGN_16 },
917 { X86::VPERMILPSrr, X86::VPERMILPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000918 { X86::VPINSRWrri, X86::VPINSRWrmi, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000919 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000920 { X86::VPMADDWDrr, X86::VPMADDWDrm, TB_ALIGN_16 },
921 { X86::VPMAXSWrr, X86::VPMAXSWrm, TB_ALIGN_16 },
922 { X86::VPMAXUBrr, X86::VPMAXUBrm, TB_ALIGN_16 },
923 { X86::VPMINSWrr, X86::VPMINSWrm, TB_ALIGN_16 },
924 { X86::VPMINUBrr, X86::VPMINUBrm, TB_ALIGN_16 },
925 { X86::VPMULDQrr, X86::VPMULDQrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000926 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000927 { X86::VPMULHUWrr, X86::VPMULHUWrm, TB_ALIGN_16 },
928 { X86::VPMULHWrr, X86::VPMULHWrm, TB_ALIGN_16 },
929 { X86::VPMULLDrr, X86::VPMULLDrm, TB_ALIGN_16 },
930 { X86::VPMULLWrr, X86::VPMULLWrm, TB_ALIGN_16 },
931 { X86::VPMULUDQrr, X86::VPMULUDQrm, TB_ALIGN_16 },
932 { X86::VPORrr, X86::VPORrm, TB_ALIGN_16 },
933 { X86::VPSADBWrr, X86::VPSADBWrm, TB_ALIGN_16 },
Craig Topper969ba282012-01-25 06:43:11 +0000934 { X86::VPSHUFBrr, X86::VPSHUFBrm, TB_ALIGN_16 },
935 { X86::VPSIGNBrr, X86::VPSIGNBrm, TB_ALIGN_16 },
936 { X86::VPSIGNWrr, X86::VPSIGNWrm, TB_ALIGN_16 },
937 { X86::VPSIGNDrr, X86::VPSIGNDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000938 { X86::VPSLLDrr, X86::VPSLLDrm, TB_ALIGN_16 },
939 { X86::VPSLLQrr, X86::VPSLLQrm, TB_ALIGN_16 },
940 { X86::VPSLLWrr, X86::VPSLLWrm, TB_ALIGN_16 },
941 { X86::VPSRADrr, X86::VPSRADrm, TB_ALIGN_16 },
942 { X86::VPSRAWrr, X86::VPSRAWrm, TB_ALIGN_16 },
943 { X86::VPSRLDrr, X86::VPSRLDrm, TB_ALIGN_16 },
944 { X86::VPSRLQrr, X86::VPSRLQrm, TB_ALIGN_16 },
945 { X86::VPSRLWrr, X86::VPSRLWrm, TB_ALIGN_16 },
946 { X86::VPSUBBrr, X86::VPSUBBrm, TB_ALIGN_16 },
947 { X86::VPSUBDrr, X86::VPSUBDrm, TB_ALIGN_16 },
948 { X86::VPSUBSBrr, X86::VPSUBSBrm, TB_ALIGN_16 },
949 { X86::VPSUBSWrr, X86::VPSUBSWrm, TB_ALIGN_16 },
950 { X86::VPSUBWrr, X86::VPSUBWrm, TB_ALIGN_16 },
951 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, TB_ALIGN_16 },
952 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, TB_ALIGN_16 },
953 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, TB_ALIGN_16 },
954 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, TB_ALIGN_16 },
955 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, TB_ALIGN_16 },
956 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, TB_ALIGN_16 },
957 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, TB_ALIGN_16 },
958 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, TB_ALIGN_16 },
959 { X86::VPXORrr, X86::VPXORrm, TB_ALIGN_16 },
960 { X86::VSHUFPDrri, X86::VSHUFPDrmi, TB_ALIGN_16 },
961 { X86::VSHUFPSrri, X86::VSHUFPSrmi, TB_ALIGN_16 },
962 { X86::VSUBPDrr, X86::VSUBPDrm, TB_ALIGN_16 },
963 { X86::VSUBPSrr, X86::VSUBPSrm, TB_ALIGN_16 },
964 { X86::VSUBSDrr, X86::VSUBSDrm, 0 },
965 { X86::VSUBSSrr, X86::VSUBSSrm, 0 },
966 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, TB_ALIGN_16 },
967 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, TB_ALIGN_16 },
968 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, TB_ALIGN_16 },
969 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, TB_ALIGN_16 },
970 { X86::VXORPDrr, X86::VXORPDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000971 { X86::VXORPSrr, X86::VXORPSrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +0000972 // AVX 256-bit foldable instructions
973 { X86::VADDPDYrr, X86::VADDPDYrm, TB_ALIGN_32 },
974 { X86::VADDPSYrr, X86::VADDPSYrm, TB_ALIGN_32 },
975 { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, TB_ALIGN_32 },
976 { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, TB_ALIGN_32 },
977 { X86::VANDNPDYrr, X86::VANDNPDYrm, TB_ALIGN_32 },
978 { X86::VANDNPSYrr, X86::VANDNPSYrm, TB_ALIGN_32 },
979 { X86::VANDPDYrr, X86::VANDPDYrm, TB_ALIGN_32 },
980 { X86::VANDPSYrr, X86::VANDPSYrm, TB_ALIGN_32 },
981 { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, TB_ALIGN_32 },
982 { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, TB_ALIGN_32 },
983 { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, TB_ALIGN_32 },
984 { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, TB_ALIGN_32 },
985 { X86::VCMPPDYrri, X86::VCMPPDYrmi, TB_ALIGN_32 },
986 { X86::VCMPPSYrri, X86::VCMPPSYrmi, TB_ALIGN_32 },
987 { X86::VDIVPDYrr, X86::VDIVPDYrm, TB_ALIGN_32 },
988 { X86::VDIVPSYrr, X86::VDIVPSYrm, TB_ALIGN_32 },
989 { X86::VHADDPDYrr, X86::VHADDPDYrm, TB_ALIGN_32 },
990 { X86::VHADDPSYrr, X86::VHADDPSYrm, TB_ALIGN_32 },
991 { X86::VHSUBPDYrr, X86::VHSUBPDYrm, TB_ALIGN_32 },
992 { X86::VHSUBPSYrr, X86::VHSUBPSYrm, TB_ALIGN_32 },
993 { X86::VINSERTF128rr, X86::VINSERTF128rm, TB_ALIGN_32 },
994 { X86::VMAXPDYrr, X86::VMAXPDYrm, TB_ALIGN_32 },
995 { X86::VMAXPDYrr_Int, X86::VMAXPDYrm_Int, TB_ALIGN_32 },
996 { X86::VMAXPSYrr, X86::VMAXPSYrm, TB_ALIGN_32 },
997 { X86::VMAXPSYrr_Int, X86::VMAXPSYrm_Int, TB_ALIGN_32 },
998 { X86::VMINPDYrr, X86::VMINPDYrm, TB_ALIGN_32 },
999 { X86::VMINPDYrr_Int, X86::VMINPDYrm_Int, TB_ALIGN_32 },
1000 { X86::VMINPSYrr, X86::VMINPSYrm, TB_ALIGN_32 },
1001 { X86::VMINPSYrr_Int, X86::VMINPSYrm_Int, TB_ALIGN_32 },
1002 { X86::VMULPDYrr, X86::VMULPDYrm, TB_ALIGN_32 },
1003 { X86::VMULPSYrr, X86::VMULPSYrm, TB_ALIGN_32 },
1004 { X86::VORPDYrr, X86::VORPDYrm, TB_ALIGN_32 },
1005 { X86::VORPSYrr, X86::VORPSYrm, TB_ALIGN_32 },
1006 { X86::VPERM2F128rr, X86::VPERM2F128rm, TB_ALIGN_32 },
1007 { X86::VPERMILPDYrr, X86::VPERMILPDYrm, TB_ALIGN_32 },
1008 { X86::VPERMILPSYrr, X86::VPERMILPSYrm, TB_ALIGN_32 },
1009 { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, TB_ALIGN_32 },
1010 { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, TB_ALIGN_32 },
1011 { X86::VSUBPDYrr, X86::VSUBPDYrm, TB_ALIGN_32 },
1012 { X86::VSUBPSYrr, X86::VSUBPSYrm, TB_ALIGN_32 },
1013 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, TB_ALIGN_32 },
1014 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, TB_ALIGN_32 },
1015 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, TB_ALIGN_32 },
1016 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, TB_ALIGN_32 },
1017 { X86::VXORPDYrr, X86::VXORPDYrm, TB_ALIGN_32 },
1018 { X86::VXORPSYrr, X86::VXORPSYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001019 // AVX2 foldable instructions
Craig Topper446626d2012-01-14 18:14:53 +00001020 { X86::VINSERTI128rr, X86::VINSERTI128rm, TB_ALIGN_16 },
1021 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, TB_ALIGN_32 },
1022 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, TB_ALIGN_32 },
1023 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, TB_ALIGN_32 },
1024 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, TB_ALIGN_32 },
1025 { X86::VPADDBYrr, X86::VPADDBYrm, TB_ALIGN_32 },
1026 { X86::VPADDDYrr, X86::VPADDDYrm, TB_ALIGN_32 },
1027 { X86::VPADDQYrr, X86::VPADDQYrm, TB_ALIGN_32 },
1028 { X86::VPADDSBYrr, X86::VPADDSBYrm, TB_ALIGN_32 },
1029 { X86::VPADDSWYrr, X86::VPADDSWYrm, TB_ALIGN_32 },
1030 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, TB_ALIGN_32 },
1031 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, TB_ALIGN_32 },
1032 { X86::VPADDWYrr, X86::VPADDWYrm, TB_ALIGN_32 },
1033 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, TB_ALIGN_32 },
1034 { X86::VPANDNYrr, X86::VPANDNYrm, TB_ALIGN_32 },
1035 { X86::VPANDYrr, X86::VPANDYrm, TB_ALIGN_32 },
1036 { X86::VPAVGBYrr, X86::VPAVGBYrm, TB_ALIGN_32 },
1037 { X86::VPAVGWYrr, X86::VPAVGWYrm, TB_ALIGN_32 },
1038 { X86::VPBLENDDrri, X86::VPBLENDDrmi, TB_ALIGN_32 },
1039 { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, TB_ALIGN_32 },
1040 { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, TB_ALIGN_32 },
1041 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, TB_ALIGN_32 },
1042 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, TB_ALIGN_32 },
1043 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, TB_ALIGN_32 },
1044 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, TB_ALIGN_32 },
1045 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, TB_ALIGN_32 },
1046 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, TB_ALIGN_32 },
1047 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, TB_ALIGN_32 },
1048 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, TB_ALIGN_32 },
1049 { X86::VPERM2I128rr, X86::VPERM2I128rm, TB_ALIGN_32 },
Craig Topper40385c82012-01-19 08:50:38 +00001050 { X86::VPERMDYrr, X86::VPERMDYrm, TB_ALIGN_32 },
Elena Demikhovsky73c504a2012-04-15 11:18:59 +00001051 { X86::VPERMPDYri, X86::VPERMPDYmi, TB_ALIGN_32 },
Craig Topper40385c82012-01-19 08:50:38 +00001052 { X86::VPERMPSYrr, X86::VPERMPSYrm, TB_ALIGN_32 },
Elena Demikhovsky73c504a2012-04-15 11:18:59 +00001053 { X86::VPERMQYri, X86::VPERMQYmi, TB_ALIGN_32 },
Craig Topper4bb3f342012-01-25 05:37:32 +00001054 { X86::VPHADDDYrr, X86::VPHADDDYrm, TB_ALIGN_32 },
Craig Topper446626d2012-01-14 18:14:53 +00001055 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, TB_ALIGN_32 },
Craig Topper4bb3f342012-01-25 05:37:32 +00001056 { X86::VPHADDWYrr, X86::VPHADDWYrm, TB_ALIGN_32 },
1057 { X86::VPHSUBDYrr, X86::VPHSUBDYrm, TB_ALIGN_32 },
Craig Topper446626d2012-01-14 18:14:53 +00001058 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, TB_ALIGN_32 },
Craig Topper4bb3f342012-01-25 05:37:32 +00001059 { X86::VPHSUBWYrr, X86::VPHSUBWYrm, TB_ALIGN_32 },
Craig Topper446626d2012-01-14 18:14:53 +00001060 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, TB_ALIGN_32 },
1061 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, TB_ALIGN_32 },
1062 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, TB_ALIGN_32 },
1063 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, TB_ALIGN_32 },
1064 { X86::VPMINSWYrr, X86::VPMINSWYrm, TB_ALIGN_32 },
1065 { X86::VPMINUBYrr, X86::VPMINUBYrm, TB_ALIGN_32 },
1066 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, TB_ALIGN_32 },
1067 { X86::VPMULDQYrr, X86::VPMULDQYrm, TB_ALIGN_32 },
1068 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, TB_ALIGN_32 },
1069 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, TB_ALIGN_32 },
1070 { X86::VPMULHWYrr, X86::VPMULHWYrm, TB_ALIGN_32 },
1071 { X86::VPMULLDYrr, X86::VPMULLDYrm, TB_ALIGN_32 },
1072 { X86::VPMULLWYrr, X86::VPMULLWYrm, TB_ALIGN_32 },
1073 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, TB_ALIGN_32 },
1074 { X86::VPORYrr, X86::VPORYrm, TB_ALIGN_32 },
1075 { X86::VPSADBWYrr, X86::VPSADBWYrm, TB_ALIGN_32 },
Craig Topper969ba282012-01-25 06:43:11 +00001076 { X86::VPSHUFBYrr, X86::VPSHUFBYrm, TB_ALIGN_32 },
1077 { X86::VPSIGNBYrr, X86::VPSIGNBYrm, TB_ALIGN_32 },
1078 { X86::VPSIGNWYrr, X86::VPSIGNWYrm, TB_ALIGN_32 },
1079 { X86::VPSIGNDYrr, X86::VPSIGNDYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001080 { X86::VPSLLDYrr, X86::VPSLLDYrm, TB_ALIGN_16 },
1081 { X86::VPSLLQYrr, X86::VPSLLQYrm, TB_ALIGN_16 },
1082 { X86::VPSLLWYrr, X86::VPSLLWYrm, TB_ALIGN_16 },
1083 { X86::VPSLLVDrr, X86::VPSLLVDrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +00001084 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001085 { X86::VPSLLVQrr, X86::VPSLLVQrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +00001086 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001087 { X86::VPSRADYrr, X86::VPSRADYrm, TB_ALIGN_16 },
1088 { X86::VPSRAWYrr, X86::VPSRAWYrm, TB_ALIGN_16 },
1089 { X86::VPSRAVDrr, X86::VPSRAVDrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +00001090 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001091 { X86::VPSRLDYrr, X86::VPSRLDYrm, TB_ALIGN_16 },
1092 { X86::VPSRLQYrr, X86::VPSRLQYrm, TB_ALIGN_16 },
1093 { X86::VPSRLWYrr, X86::VPSRLWYrm, TB_ALIGN_16 },
1094 { X86::VPSRLVDrr, X86::VPSRLVDrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +00001095 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001096 { X86::VPSRLVQrr, X86::VPSRLVQrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +00001097 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, TB_ALIGN_32 },
1098 { X86::VPSUBBYrr, X86::VPSUBBYrm, TB_ALIGN_32 },
1099 { X86::VPSUBDYrr, X86::VPSUBDYrm, TB_ALIGN_32 },
1100 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, TB_ALIGN_32 },
1101 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, TB_ALIGN_32 },
1102 { X86::VPSUBWYrr, X86::VPSUBWYrm, TB_ALIGN_32 },
1103 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, TB_ALIGN_32 },
1104 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, TB_ALIGN_32 },
Craig Topperdcce2442011-11-14 08:07:55 +00001105 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, TB_ALIGN_16 },
Craig Topper446626d2012-01-14 18:14:53 +00001106 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, TB_ALIGN_32 },
1107 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, TB_ALIGN_32 },
1108 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, TB_ALIGN_32 },
1109 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, TB_ALIGN_32 },
1110 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, TB_ALIGN_32 },
1111 { X86::VPXORYrr, X86::VPXORYrm, TB_ALIGN_32 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00001112 // FIXME: add AVX 256-bit foldable instructions
Owen Anderson43dbe052008-01-07 01:35:02 +00001113 };
1114
1115 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
Craig Topper72051bf2012-03-09 07:45:21 +00001116 unsigned RegOp = OpTbl2[i].RegOp;
1117 unsigned MemOp = OpTbl2[i].MemOp;
1118 unsigned Flags = OpTbl2[i].Flags;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00001119 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1120 RegOp, MemOp,
1121 // Index 2, folded load
1122 Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
Owen Anderson43dbe052008-01-07 01:35:02 +00001123 }
Elena Demikhovsky177cf1e2012-05-31 09:20:20 +00001124
1125 static const X86OpTblEntry OpTbl3[] = {
1126 // FMA foldable instructions
Craig Toppercaea5e22012-06-04 07:46:16 +00001127 { X86::VFMADDSSr231r, X86::VFMADDSSr231m, 0 },
1128 { X86::VFMADDSDr231r, X86::VFMADDSDr231m, 0 },
1129 { X86::VFMADDSSr132r, X86::VFMADDSSr132m, 0 },
1130 { X86::VFMADDSDr132r, X86::VFMADDSDr132m, 0 },
1131 { X86::VFMADDSSr213r, X86::VFMADDSSr213m, 0 },
1132 { X86::VFMADDSDr213r, X86::VFMADDSDr213m, 0 },
Elena Demikhovsky1503aba2012-08-01 12:06:00 +00001133 { X86::VFMADDSSr213r_Int, X86::VFMADDSSr213m_Int, 0 },
1134 { X86::VFMADDSDr213r_Int, X86::VFMADDSDr213m_Int, 0 },
Elena Demikhovsky177cf1e2012-05-31 09:20:20 +00001135
Craig Toppercaea5e22012-06-04 07:46:16 +00001136 { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_16 },
1137 { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_16 },
1138 { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_16 },
1139 { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_16 },
1140 { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_16 },
1141 { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_16 },
1142 { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_32 },
1143 { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_32 },
1144 { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_32 },
1145 { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_32 },
1146 { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_32 },
1147 { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_32 },
Elena Demikhovsky177cf1e2012-05-31 09:20:20 +00001148
Craig Toppercaea5e22012-06-04 07:46:16 +00001149 { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, 0 },
1150 { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, 0 },
1151 { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, 0 },
1152 { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, 0 },
1153 { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, 0 },
1154 { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, 0 },
Elena Demikhovsky1503aba2012-08-01 12:06:00 +00001155 { X86::VFNMADDSSr213r_Int, X86::VFNMADDSSr213m_Int, 0 },
1156 { X86::VFNMADDSDr213r_Int, X86::VFNMADDSDr213m_Int, 0 },
Elena Demikhovsky177cf1e2012-05-31 09:20:20 +00001157
Craig Toppercaea5e22012-06-04 07:46:16 +00001158 { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_16 },
1159 { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_16 },
1160 { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_16 },
1161 { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_16 },
1162 { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_16 },
1163 { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_16 },
1164 { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_32 },
1165 { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_32 },
1166 { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_32 },
1167 { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_32 },
1168 { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_32 },
1169 { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_32 },
Elena Demikhovsky177cf1e2012-05-31 09:20:20 +00001170
Craig Toppercaea5e22012-06-04 07:46:16 +00001171 { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, 0 },
1172 { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, 0 },
1173 { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, 0 },
1174 { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, 0 },
1175 { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, 0 },
1176 { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, 0 },
Elena Demikhovsky1503aba2012-08-01 12:06:00 +00001177 { X86::VFMSUBSSr213r_Int, X86::VFMSUBSSr213m_Int, 0 },
1178 { X86::VFMSUBSDr213r_Int, X86::VFMSUBSDr213m_Int, 0 },
Elena Demikhovsky177cf1e2012-05-31 09:20:20 +00001179
Craig Toppercaea5e22012-06-04 07:46:16 +00001180 { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_16 },
1181 { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_16 },
1182 { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_16 },
1183 { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_16 },
1184 { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_16 },
1185 { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_16 },
1186 { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_32 },
1187 { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_32 },
1188 { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_32 },
1189 { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_32 },
1190 { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_32 },
1191 { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_32 },
Elena Demikhovsky177cf1e2012-05-31 09:20:20 +00001192
Craig Toppercaea5e22012-06-04 07:46:16 +00001193 { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, 0 },
1194 { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, 0 },
1195 { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, 0 },
1196 { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, 0 },
1197 { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, 0 },
1198 { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, 0 },
Elena Demikhovsky1503aba2012-08-01 12:06:00 +00001199 { X86::VFNMSUBSSr213r_Int, X86::VFNMSUBSSr213m_Int, 0 },
1200 { X86::VFNMSUBSDr213r_Int, X86::VFNMSUBSDr213m_Int, 0 },
Craig Topper78fc72d2012-06-01 05:48:39 +00001201
Craig Toppercaea5e22012-06-04 07:46:16 +00001202 { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_16 },
1203 { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_16 },
1204 { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_16 },
1205 { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_16 },
1206 { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_16 },
1207 { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_16 },
1208 { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_32 },
1209 { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_32 },
1210 { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_32 },
1211 { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_32 },
1212 { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_32 },
1213 { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_32 },
Craig Topperfc5ab242012-06-04 07:08:21 +00001214
Craig Toppercaea5e22012-06-04 07:46:16 +00001215 { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_16 },
1216 { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_16 },
1217 { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_16 },
1218 { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_16 },
1219 { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_16 },
1220 { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_16 },
1221 { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_32 },
1222 { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_32 },
1223 { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_32 },
1224 { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_32 },
1225 { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_32 },
1226 { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_32 },
Craig Topperfc5ab242012-06-04 07:08:21 +00001227
Craig Toppercaea5e22012-06-04 07:46:16 +00001228 { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_16 },
1229 { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_16 },
1230 { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_16 },
1231 { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_16 },
1232 { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_16 },
1233 { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_16 },
1234 { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_32 },
1235 { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_32 },
1236 { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_32 },
1237 { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_32 },
1238 { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_32 },
1239 { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_32 },
Elena Demikhovsky177cf1e2012-05-31 09:20:20 +00001240 };
1241
1242 for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
1243 unsigned RegOp = OpTbl3[i].RegOp;
1244 unsigned MemOp = OpTbl3[i].MemOp;
1245 unsigned Flags = OpTbl3[i].Flags;
1246 AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1247 RegOp, MemOp,
1248 // Index 3, folded load
1249 Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1250 }
1251
Chris Lattner72614082002-10-25 22:55:53 +00001252}
1253
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00001254void
1255X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1256 MemOp2RegOpTableType &M2RTable,
1257 unsigned RegOp, unsigned MemOp, unsigned Flags) {
1258 if ((Flags & TB_NO_FORWARD) == 0) {
1259 assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1260 R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1261 }
1262 if ((Flags & TB_NO_REVERSE) == 0) {
1263 assert(!M2RTable.count(MemOp) &&
1264 "Duplicated entries in unfolding maps?");
1265 M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1266 }
1267}
1268
Evan Chenga5a81d72010-01-12 00:09:37 +00001269bool
Evan Cheng7da9ecf2010-01-13 00:30:23 +00001270X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1271 unsigned &SrcReg, unsigned &DstReg,
1272 unsigned &SubIdx) const {
Evan Chenga5a81d72010-01-12 00:09:37 +00001273 switch (MI.getOpcode()) {
1274 default: break;
1275 case X86::MOVSX16rr8:
1276 case X86::MOVZX16rr8:
1277 case X86::MOVSX32rr8:
1278 case X86::MOVZX32rr8:
1279 case X86::MOVSX64rr8:
1280 case X86::MOVZX64rr8:
Evan Cheng57d1d932010-01-13 08:01:32 +00001281 if (!TM.getSubtarget<X86Subtarget>().is64Bit())
1282 // It's not always legal to reference the low 8-bit of the larger
1283 // register in 32-bit mode.
1284 return false;
Evan Chenga5a81d72010-01-12 00:09:37 +00001285 case X86::MOVSX32rr16:
1286 case X86::MOVZX32rr16:
1287 case X86::MOVSX64rr16:
1288 case X86::MOVZX64rr16:
1289 case X86::MOVSX64rr32:
1290 case X86::MOVZX64rr32: {
1291 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
1292 // Be conservative.
1293 return false;
Evan Chenga5a81d72010-01-12 00:09:37 +00001294 SrcReg = MI.getOperand(1).getReg();
1295 DstReg = MI.getOperand(0).getReg();
Evan Chenga5a81d72010-01-12 00:09:37 +00001296 switch (MI.getOpcode()) {
1297 default:
1298 llvm_unreachable(0);
Evan Chenga5a81d72010-01-12 00:09:37 +00001299 case X86::MOVSX16rr8:
1300 case X86::MOVZX16rr8:
1301 case X86::MOVSX32rr8:
1302 case X86::MOVZX32rr8:
1303 case X86::MOVSX64rr8:
1304 case X86::MOVZX64rr8:
Jakob Stoklund Olesen22c0e972010-05-25 17:04:16 +00001305 SubIdx = X86::sub_8bit;
Evan Chenga5a81d72010-01-12 00:09:37 +00001306 break;
1307 case X86::MOVSX32rr16:
1308 case X86::MOVZX32rr16:
1309 case X86::MOVSX64rr16:
1310 case X86::MOVZX64rr16:
Jakob Stoklund Olesen22c0e972010-05-25 17:04:16 +00001311 SubIdx = X86::sub_16bit;
Evan Chenga5a81d72010-01-12 00:09:37 +00001312 break;
1313 case X86::MOVSX64rr32:
1314 case X86::MOVZX64rr32:
Jakob Stoklund Olesen22c0e972010-05-25 17:04:16 +00001315 SubIdx = X86::sub_32bit;
Evan Chenga5a81d72010-01-12 00:09:37 +00001316 break;
1317 }
Evan Cheng7da9ecf2010-01-13 00:30:23 +00001318 return true;
Evan Chenga5a81d72010-01-12 00:09:37 +00001319 }
1320 }
Evan Cheng7da9ecf2010-01-13 00:30:23 +00001321 return false;
Evan Chenga5a81d72010-01-12 00:09:37 +00001322}
1323
David Greeneb87bc952009-11-12 20:55:29 +00001324/// isFrameOperand - Return true and the FrameIndex if the specified
1325/// operand and follow operands form a reference to the stack frame.
1326bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
1327 int &FrameIndex) const {
1328 if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
1329 MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
1330 MI->getOperand(Op+1).getImm() == 1 &&
1331 MI->getOperand(Op+2).getReg() == 0 &&
1332 MI->getOperand(Op+3).getImm() == 0) {
1333 FrameIndex = MI->getOperand(Op).getIndex();
1334 return true;
1335 }
1336 return false;
1337}
1338
David Greenedda39782009-11-13 00:29:53 +00001339static bool isFrameLoadOpcode(int Opcode) {
1340 switch (Opcode) {
David Blaikie4d6ccb52012-01-20 21:51:11 +00001341 default:
1342 return false;
Chris Lattner40839602006-02-02 20:12:32 +00001343 case X86::MOV8rm:
1344 case X86::MOV16rm:
1345 case X86::MOV32rm:
Evan Cheng25ab6902006-09-08 06:48:29 +00001346 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +00001347 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +00001348 case X86::MOVSSrm:
1349 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +00001350 case X86::MOVAPSrm:
1351 case X86::MOVAPDrm:
Dan Gohman54462742009-01-09 02:40:34 +00001352 case X86::MOVDQArm:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00001353 case X86::VMOVSSrm:
1354 case X86::VMOVSDrm:
1355 case X86::VMOVAPSrm:
1356 case X86::VMOVAPDrm:
1357 case X86::VMOVDQArm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00001358 case X86::VMOVAPSYrm:
1359 case X86::VMOVAPDYrm:
1360 case X86::VMOVDQAYrm:
Bill Wendling823efee2007-04-03 06:00:37 +00001361 case X86::MMX_MOVD64rm:
1362 case X86::MMX_MOVQ64rm:
David Greenedda39782009-11-13 00:29:53 +00001363 return true;
David Greenedda39782009-11-13 00:29:53 +00001364 }
David Greenedda39782009-11-13 00:29:53 +00001365}
1366
1367static bool isFrameStoreOpcode(int Opcode) {
1368 switch (Opcode) {
1369 default: break;
1370 case X86::MOV8mr:
1371 case X86::MOV16mr:
1372 case X86::MOV32mr:
1373 case X86::MOV64mr:
1374 case X86::ST_FpP64m:
1375 case X86::MOVSSmr:
1376 case X86::MOVSDmr:
1377 case X86::MOVAPSmr:
1378 case X86::MOVAPDmr:
1379 case X86::MOVDQAmr:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00001380 case X86::VMOVSSmr:
1381 case X86::VMOVSDmr:
1382 case X86::VMOVAPSmr:
1383 case X86::VMOVAPDmr:
1384 case X86::VMOVDQAmr:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00001385 case X86::VMOVAPSYmr:
1386 case X86::VMOVAPDYmr:
1387 case X86::VMOVDQAYmr:
David Greenedda39782009-11-13 00:29:53 +00001388 case X86::MMX_MOVD64mr:
1389 case X86::MMX_MOVQ64mr:
1390 case X86::MMX_MOVNTQmr:
1391 return true;
1392 }
1393 return false;
1394}
1395
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001396unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
David Greenedda39782009-11-13 00:29:53 +00001397 int &FrameIndex) const {
1398 if (isFrameLoadOpcode(MI->getOpcode()))
Jakob Stoklund Olesen81c7b192010-07-27 04:17:01 +00001399 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
Chris Lattner40839602006-02-02 20:12:32 +00001400 return MI->getOperand(0).getReg();
David Greenedda39782009-11-13 00:29:53 +00001401 return 0;
1402}
1403
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001404unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
David Greenedda39782009-11-13 00:29:53 +00001405 int &FrameIndex) const {
1406 if (isFrameLoadOpcode(MI->getOpcode())) {
1407 unsigned Reg;
1408 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
1409 return Reg;
David Greeneb87bc952009-11-12 20:55:29 +00001410 // Check for post-frame index elimination operations
David Greene29dbf502009-12-04 22:38:46 +00001411 const MachineMemOperand *Dummy;
1412 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
Chris Lattner40839602006-02-02 20:12:32 +00001413 }
1414 return 0;
1415}
1416
Dan Gohmancbad42c2008-11-18 19:49:32 +00001417unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Chris Lattner40839602006-02-02 20:12:32 +00001418 int &FrameIndex) const {
David Greenedda39782009-11-13 00:29:53 +00001419 if (isFrameStoreOpcode(MI->getOpcode()))
Jakob Stoklund Olesen81c7b192010-07-27 04:17:01 +00001420 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
1421 isFrameOperand(MI, 0, FrameIndex))
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00001422 return MI->getOperand(X86::AddrNumOperands).getReg();
David Greenedda39782009-11-13 00:29:53 +00001423 return 0;
1424}
1425
1426unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1427 int &FrameIndex) const {
1428 if (isFrameStoreOpcode(MI->getOpcode())) {
1429 unsigned Reg;
1430 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
1431 return Reg;
David Greeneb87bc952009-11-12 20:55:29 +00001432 // Check for post-frame index elimination operations
David Greene29dbf502009-12-04 22:38:46 +00001433 const MachineMemOperand *Dummy;
1434 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
Chris Lattner40839602006-02-02 20:12:32 +00001435 }
1436 return 0;
1437}
1438
Evan Chenge3d8dbf2008-03-27 01:45:11 +00001439/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
1440/// X86::MOVPC32r.
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001441static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Jakob Stoklund Olesen130e6032012-08-08 00:40:47 +00001442 // Don't waste compile time scanning use-def chains of physregs.
1443 if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
1444 return false;
Evan Chenge3d8dbf2008-03-27 01:45:11 +00001445 bool isPICBase = false;
1446 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1447 E = MRI.def_end(); I != E; ++I) {
1448 MachineInstr *DefMI = I.getOperand().getParent();
1449 if (DefMI->getOpcode() != X86::MOVPC32r)
1450 return false;
1451 assert(!isPICBase && "More than one PIC base?");
1452 isPICBase = true;
1453 }
1454 return isPICBase;
1455}
Evan Cheng9d15abe2008-03-31 07:54:19 +00001456
Bill Wendling9f8fea32008-05-12 20:54:26 +00001457bool
Dan Gohman3731bc02009-10-10 00:34:18 +00001458X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
1459 AliasAnalysis *AA) const {
Dan Gohmanc101e952007-06-14 20:50:44 +00001460 switch (MI->getOpcode()) {
1461 default: break;
Evan Chenge771ebd2008-03-27 01:41:09 +00001462 case X86::MOV8rm:
1463 case X86::MOV16rm:
Evan Chenge771ebd2008-03-27 01:41:09 +00001464 case X86::MOV32rm:
Evan Chenge771ebd2008-03-27 01:41:09 +00001465 case X86::MOV64rm:
1466 case X86::LD_Fp64m:
1467 case X86::MOVSSrm:
1468 case X86::MOVSDrm:
1469 case X86::MOVAPSrm:
Evan Cheng600c0432009-11-16 21:56:03 +00001470 case X86::MOVUPSrm:
Evan Chenge771ebd2008-03-27 01:41:09 +00001471 case X86::MOVAPDrm:
Dan Gohman54462742009-01-09 02:40:34 +00001472 case X86::MOVDQArm:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00001473 case X86::VMOVSSrm:
1474 case X86::VMOVSDrm:
1475 case X86::VMOVAPSrm:
1476 case X86::VMOVUPSrm:
1477 case X86::VMOVAPDrm:
1478 case X86::VMOVDQArm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00001479 case X86::VMOVAPSYrm:
1480 case X86::VMOVUPSYrm:
1481 case X86::VMOVAPDYrm:
1482 case X86::VMOVDQAYrm:
Evan Chenge771ebd2008-03-27 01:41:09 +00001483 case X86::MMX_MOVD64rm:
Evan Chengd15ac2f2009-11-17 09:51:18 +00001484 case X86::MMX_MOVQ64rm:
Bruno Cardoso Lopes0e59a042011-09-03 00:46:45 +00001485 case X86::FsVMOVAPSrm:
1486 case X86::FsVMOVAPDrm:
Evan Chengd15ac2f2009-11-17 09:51:18 +00001487 case X86::FsMOVAPSrm:
1488 case X86::FsMOVAPDrm: {
Evan Chenge771ebd2008-03-27 01:41:09 +00001489 // Loads from constant pools are trivially rematerializable.
Dan Gohmand735b802008-10-03 15:45:36 +00001490 if (MI->getOperand(1).isReg() &&
1491 MI->getOperand(2).isImm() &&
1492 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Dan Gohman3731bc02009-10-10 00:34:18 +00001493 MI->isInvariantLoad(AA)) {
Evan Chenge771ebd2008-03-27 01:41:09 +00001494 unsigned BaseReg = MI->getOperand(1).getReg();
Chris Lattner18c59872009-06-27 04:16:01 +00001495 if (BaseReg == 0 || BaseReg == X86::RIP)
Evan Chenge771ebd2008-03-27 01:41:09 +00001496 return true;
1497 // Allow re-materialization of PIC load.
Dan Gohmand735b802008-10-03 15:45:36 +00001498 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengffe2eb02008-04-01 23:26:12 +00001499 return false;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001500 const MachineFunction &MF = *MI->getParent()->getParent();
1501 const MachineRegisterInfo &MRI = MF.getRegInfo();
Jakob Stoklund Olesen130e6032012-08-08 00:40:47 +00001502 return regIsPICBase(BaseReg, MRI);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001503 }
Evan Chenge771ebd2008-03-27 01:41:09 +00001504 return false;
Evan Chengd8850a52008-02-22 09:25:47 +00001505 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001506
Evan Chenge771ebd2008-03-27 01:41:09 +00001507 case X86::LEA32r:
1508 case X86::LEA64r: {
Dan Gohmand735b802008-10-03 15:45:36 +00001509 if (MI->getOperand(2).isImm() &&
1510 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1511 !MI->getOperand(4).isReg()) {
Evan Chenge771ebd2008-03-27 01:41:09 +00001512 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmand735b802008-10-03 15:45:36 +00001513 if (!MI->getOperand(1).isReg())
Dan Gohman83ccd142008-09-26 21:30:20 +00001514 return true;
Evan Chenge771ebd2008-03-27 01:41:09 +00001515 unsigned BaseReg = MI->getOperand(1).getReg();
1516 if (BaseReg == 0)
1517 return true;
1518 // Allow re-materialization of lea PICBase + x.
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001519 const MachineFunction &MF = *MI->getParent()->getParent();
1520 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chenge3d8dbf2008-03-27 01:45:11 +00001521 return regIsPICBase(BaseReg, MRI);
Evan Chenge771ebd2008-03-27 01:41:09 +00001522 }
1523 return false;
1524 }
Dan Gohmanc101e952007-06-14 20:50:44 +00001525 }
Evan Chenge771ebd2008-03-27 01:41:09 +00001526
Dan Gohmand45eddd2007-06-26 00:48:07 +00001527 // All other instructions marked M_REMATERIALIZABLE are always trivially
1528 // rematerializable.
1529 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +00001530}
1531
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001532/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
1533/// would clobber the EFLAGS condition register. Note the result may be
1534/// conservative. If it cannot definitely determine the safety after visiting
Dan Gohman1b1764b2009-10-14 00:08:59 +00001535/// a few instructions in each direction it assumes it's not safe.
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001536static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
1537 MachineBasicBlock::iterator I) {
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001538 MachineBasicBlock::iterator E = MBB.end();
1539
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001540 // For compile time consideration, if we are not able to determine the
Dan Gohman1b1764b2009-10-14 00:08:59 +00001541 // safety after visiting 4 instructions in each direction, we will assume
1542 // it's not safe.
1543 MachineBasicBlock::iterator Iter = I;
Jakob Stoklund Olesenb8e052e2011-09-02 23:52:52 +00001544 for (unsigned i = 0; Iter != E && i < 4; ++i) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001545 bool SeenDef = false;
Dan Gohman1b1764b2009-10-14 00:08:59 +00001546 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1547 MachineOperand &MO = Iter->getOperand(j);
Jakob Stoklund Olesen450b3852012-02-09 00:17:22 +00001548 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1549 SeenDef = true;
Dan Gohmand735b802008-10-03 15:45:36 +00001550 if (!MO.isReg())
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001551 continue;
1552 if (MO.getReg() == X86::EFLAGS) {
1553 if (MO.isUse())
1554 return false;
1555 SeenDef = true;
1556 }
1557 }
1558
1559 if (SeenDef)
1560 // This instruction defines EFLAGS, no need to look any further.
1561 return true;
Dan Gohman1b1764b2009-10-14 00:08:59 +00001562 ++Iter;
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001563 // Skip over DBG_VALUE.
1564 while (Iter != E && Iter->isDebugValue())
1565 ++Iter;
Jakob Stoklund Olesenb8e052e2011-09-02 23:52:52 +00001566 }
Dan Gohman3afda6e2008-10-21 03:24:31 +00001567
Jakob Stoklund Olesenb8e052e2011-09-02 23:52:52 +00001568 // It is safe to clobber EFLAGS at the end of a block of no successor has it
1569 // live in.
1570 if (Iter == E) {
1571 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
1572 SE = MBB.succ_end(); SI != SE; ++SI)
1573 if ((*SI)->isLiveIn(X86::EFLAGS))
1574 return false;
1575 return true;
Dan Gohman1b1764b2009-10-14 00:08:59 +00001576 }
1577
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001578 MachineBasicBlock::iterator B = MBB.begin();
Dan Gohman1b1764b2009-10-14 00:08:59 +00001579 Iter = I;
1580 for (unsigned i = 0; i < 4; ++i) {
1581 // If we make it to the beginning of the block, it's safe to clobber
1582 // EFLAGS iff EFLAGS is not live-in.
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001583 if (Iter == B)
Dan Gohman1b1764b2009-10-14 00:08:59 +00001584 return !MBB.isLiveIn(X86::EFLAGS);
1585
1586 --Iter;
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001587 // Skip over DBG_VALUE.
1588 while (Iter != B && Iter->isDebugValue())
1589 --Iter;
1590
Dan Gohman1b1764b2009-10-14 00:08:59 +00001591 bool SawKill = false;
1592 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1593 MachineOperand &MO = Iter->getOperand(j);
Jakob Stoklund Olesen450b3852012-02-09 00:17:22 +00001594 // A register mask may clobber EFLAGS, but we should still look for a
1595 // live EFLAGS def.
1596 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1597 SawKill = true;
Dan Gohman1b1764b2009-10-14 00:08:59 +00001598 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1599 if (MO.isDef()) return MO.isDead();
1600 if (MO.isKill()) SawKill = true;
1601 }
1602 }
1603
1604 if (SawKill)
1605 // This instruction kills EFLAGS and doesn't redefine it, so
1606 // there's no need to look further.
Dan Gohman3afda6e2008-10-21 03:24:31 +00001607 return true;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001608 }
1609
1610 // Conservative answer.
1611 return false;
1612}
1613
Evan Chengca1267c2008-03-31 20:40:39 +00001614void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1615 MachineBasicBlock::iterator I,
Evan Cheng37844532009-07-16 09:20:10 +00001616 unsigned DestReg, unsigned SubIdx,
Evan Chengd57cdd52009-11-14 02:55:43 +00001617 const MachineInstr *Orig,
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +00001618 const TargetRegisterInfo &TRI) const {
Dan Gohman0d881042010-05-07 01:28:10 +00001619 DebugLoc DL = Orig->getDebugLoc();
Bill Wendlingfbef3102009-02-11 21:51:19 +00001620
Evan Chengca1267c2008-03-31 20:40:39 +00001621 // MOV32r0 etc. are implemented with xor which clobbers condition code.
1622 // Re-materialize them as movri instructions to avoid side effects.
Evan Cheng37844532009-07-16 09:20:10 +00001623 bool Clone = true;
1624 unsigned Opc = Orig->getOpcode();
1625 switch (Opc) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001626 default: break;
Evan Chengca1267c2008-03-31 20:40:39 +00001627 case X86::MOV8r0:
Dan Gohmanf1b4d262010-01-12 04:42:54 +00001628 case X86::MOV16r0:
1629 case X86::MOV32r0:
1630 case X86::MOV64r0: {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001631 if (!isSafeToClobberEFLAGS(MBB, I)) {
Evan Cheng37844532009-07-16 09:20:10 +00001632 switch (Opc) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001633 default: break;
1634 case X86::MOV8r0: Opc = X86::MOV8ri; break;
Dan Gohmanf1b4d262010-01-12 04:42:54 +00001635 case X86::MOV16r0: Opc = X86::MOV16ri; break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001636 case X86::MOV32r0: Opc = X86::MOV32ri; break;
Dan Gohman6fe0df22010-02-26 16:49:27 +00001637 case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001638 }
Evan Cheng37844532009-07-16 09:20:10 +00001639 Clone = false;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001640 }
Evan Chengca1267c2008-03-31 20:40:39 +00001641 break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001642 }
1643 }
1644
Evan Cheng37844532009-07-16 09:20:10 +00001645 if (Clone) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001646 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Chengca1267c2008-03-31 20:40:39 +00001647 MBB.insert(I, MI);
Evan Cheng37844532009-07-16 09:20:10 +00001648 } else {
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +00001649 BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
Evan Chengca1267c2008-03-31 20:40:39 +00001650 }
Evan Cheng03eb3882008-04-16 23:44:44 +00001651
Evan Cheng37844532009-07-16 09:20:10 +00001652 MachineInstr *NewMI = prior(I);
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +00001653 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
Evan Chengca1267c2008-03-31 20:40:39 +00001654}
1655
Evan Cheng3f411c72007-10-05 08:04:01 +00001656/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1657/// is not marked dead.
1658static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +00001659 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1660 MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001661 if (MO.isReg() && MO.isDef() &&
Evan Cheng3f411c72007-10-05 08:04:01 +00001662 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1663 return true;
1664 }
1665 }
1666 return false;
1667}
1668
Evan Chengdd99f3a2009-12-12 20:03:14 +00001669/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
Evan Cheng656e5142009-12-11 06:01:48 +00001670/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1671/// to a 32-bit superregister and then truncating back down to a 16-bit
1672/// subregister.
1673MachineInstr *
1674X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1675 MachineFunction::iterator &MFI,
1676 MachineBasicBlock::iterator &MBBI,
1677 LiveVariables *LV) const {
1678 MachineInstr *MI = MBBI;
1679 unsigned Dest = MI->getOperand(0).getReg();
1680 unsigned Src = MI->getOperand(1).getReg();
1681 bool isDead = MI->getOperand(0).isDead();
1682 bool isKill = MI->getOperand(1).isKill();
1683
1684 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1685 ? X86::LEA64_32r : X86::LEA32r;
1686 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001687 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Evan Cheng656e5142009-12-11 06:01:48 +00001688 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001689
Evan Cheng656e5142009-12-11 06:01:48 +00001690 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001691 // well be shifting and then extracting the lower 16-bits.
Evan Chengdd99f3a2009-12-12 20:03:14 +00001692 // This has the potential to cause partial register stall. e.g.
Evan Cheng04ab19c2009-12-12 18:55:26 +00001693 // movw (%rbp,%rcx,2), %dx
1694 // leal -65(%rdx), %esi
Evan Chengdd99f3a2009-12-12 20:03:14 +00001695 // But testing has shown this *does* help performance in 64-bit mode (at
1696 // least on modern x86 machines).
Evan Cheng656e5142009-12-11 06:01:48 +00001697 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1698 MachineInstr *InsMI =
Jakob Stoklund Olesen5c00e072010-07-08 16:40:15 +00001699 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1700 .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1701 .addReg(Src, getKillRegState(isKill));
Evan Cheng656e5142009-12-11 06:01:48 +00001702
1703 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1704 get(Opc), leaOutReg);
1705 switch (MIOpc) {
1706 default:
1707 llvm_unreachable(0);
Evan Cheng656e5142009-12-11 06:01:48 +00001708 case X86::SHL16ri: {
1709 unsigned ShAmt = MI->getOperand(2).getImm();
1710 MIB.addReg(0).addImm(1 << ShAmt)
Chris Lattner599b5312010-07-08 23:46:44 +00001711 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
Evan Cheng656e5142009-12-11 06:01:48 +00001712 break;
1713 }
1714 case X86::INC16r:
1715 case X86::INC64_16r:
Chris Lattner599b5312010-07-08 23:46:44 +00001716 addRegOffset(MIB, leaInReg, true, 1);
Evan Cheng656e5142009-12-11 06:01:48 +00001717 break;
1718 case X86::DEC16r:
1719 case X86::DEC64_16r:
Chris Lattner599b5312010-07-08 23:46:44 +00001720 addRegOffset(MIB, leaInReg, true, -1);
Evan Cheng656e5142009-12-11 06:01:48 +00001721 break;
1722 case X86::ADD16ri:
1723 case X86::ADD16ri8:
Chris Lattner15df55d2010-10-08 03:57:25 +00001724 case X86::ADD16ri_DB:
1725 case X86::ADD16ri8_DB:
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001726 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
Evan Cheng656e5142009-12-11 06:01:48 +00001727 break;
Chris Lattner99ae6652010-10-08 03:54:52 +00001728 case X86::ADD16rr:
1729 case X86::ADD16rr_DB: {
Evan Cheng656e5142009-12-11 06:01:48 +00001730 unsigned Src2 = MI->getOperand(2).getReg();
1731 bool isKill2 = MI->getOperand(2).isKill();
1732 unsigned leaInReg2 = 0;
1733 MachineInstr *InsMI2 = 0;
1734 if (Src == Src2) {
1735 // ADD16rr %reg1028<kill>, %reg1028
1736 // just a single insert_subreg.
1737 addRegReg(MIB, leaInReg, true, leaInReg, false);
1738 } else {
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001739 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Evan Cheng656e5142009-12-11 06:01:48 +00001740 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001741 // well be shifting and then extracting the lower 16-bits.
Evan Chengddfd1372011-12-14 02:11:42 +00001742 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
Evan Cheng656e5142009-12-11 06:01:48 +00001743 InsMI2 =
Evan Chengddfd1372011-12-14 02:11:42 +00001744 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
Jakob Stoklund Olesen5c00e072010-07-08 16:40:15 +00001745 .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1746 .addReg(Src2, getKillRegState(isKill2));
Evan Cheng656e5142009-12-11 06:01:48 +00001747 addRegReg(MIB, leaInReg, true, leaInReg2, true);
1748 }
1749 if (LV && isKill2 && InsMI2)
1750 LV->replaceKillInstruction(Src2, MI, InsMI2);
1751 break;
1752 }
1753 }
1754
1755 MachineInstr *NewMI = MIB;
1756 MachineInstr *ExtMI =
Jakob Stoklund Olesen0bc25f42010-07-08 16:40:22 +00001757 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
Evan Cheng656e5142009-12-11 06:01:48 +00001758 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Jakob Stoklund Olesen0bc25f42010-07-08 16:40:22 +00001759 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
Evan Cheng656e5142009-12-11 06:01:48 +00001760
1761 if (LV) {
1762 // Update live variables
1763 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1764 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1765 if (isKill)
1766 LV->replaceKillInstruction(Src, MI, InsMI);
1767 if (isDead)
1768 LV->replaceKillInstruction(Dest, MI, ExtMI);
1769 }
1770
1771 return ExtMI;
1772}
1773
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001774/// convertToThreeAddress - This method must be implemented by targets that
1775/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1776/// may be able to convert a two-address instruction into a true
1777/// three-address instruction on demand. This allows the X86 target (for
1778/// example) to convert ADD and SHL instructions into LEA instructions if they
1779/// would require register copies due to two-addressness.
1780///
1781/// This method returns a null pointer if the transformation cannot be
1782/// performed, otherwise it returns the new instruction.
1783///
Evan Cheng258ff672006-12-01 21:52:41 +00001784MachineInstr *
1785X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1786 MachineBasicBlock::iterator &MBBI,
Owen Andersonf660c172008-07-02 23:41:07 +00001787 LiveVariables *LV) const {
Evan Cheng258ff672006-12-01 21:52:41 +00001788 MachineInstr *MI = MBBI;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001789 MachineFunction &MF = *MI->getParent()->getParent();
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001790 // All instructions input are two-addr instructions. Get the known operands.
1791 unsigned Dest = MI->getOperand(0).getReg();
1792 unsigned Src = MI->getOperand(1).getReg();
Evan Cheng9f1c8312008-07-03 09:09:37 +00001793 bool isDead = MI->getOperand(0).isDead();
1794 bool isKill = MI->getOperand(1).isKill();
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001795
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001796 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +00001797 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001798 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Chengdd99f3a2009-12-12 20:03:14 +00001799 // 16-bit LEA is also slow on Core2.
Evan Cheng258ff672006-12-01 21:52:41 +00001800 bool DisableLEA16 = true;
Evan Chengdd99f3a2009-12-12 20:03:14 +00001801 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng258ff672006-12-01 21:52:41 +00001802
Evan Cheng559dc462007-10-05 20:34:26 +00001803 unsigned MIOpc = MI->getOpcode();
1804 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +00001805 case X86::SHUFPSrri: {
1806 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001807 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001808
Evan Chengaa3c1412006-05-30 21:45:53 +00001809 unsigned B = MI->getOperand(1).getReg();
1810 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001811 if (B != C) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001812 unsigned A = MI->getOperand(0).getReg();
1813 unsigned M = MI->getOperand(3).getImm();
Bill Wendlingfbef3102009-02-11 21:51:19 +00001814 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
Bill Wendling587daed2009-05-13 21:33:08 +00001815 .addReg(A, RegState::Define | getDeadRegState(isDead))
1816 .addReg(B, getKillRegState(isKill)).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001817 break;
1818 }
Craig Topper05189702012-01-13 09:21:41 +00001819 case X86::SHUFPDrri: {
1820 assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
1821 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1822
1823 unsigned B = MI->getOperand(1).getReg();
1824 unsigned C = MI->getOperand(2).getReg();
1825 if (B != C) return 0;
1826 unsigned A = MI->getOperand(0).getReg();
1827 unsigned M = MI->getOperand(3).getImm();
1828
1829 // Convert to PSHUFD mask.
1830 M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
1831
1832 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1833 .addReg(A, RegState::Define | getDeadRegState(isDead))
1834 .addReg(B, getKillRegState(isKill)).addImm(M);
1835 break;
1836 }
Chris Lattner995f5502007-03-28 18:12:31 +00001837 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001838 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +00001839 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1840 // the flags produced by a shift yet, so this is safe.
Chris Lattner995f5502007-03-28 18:12:31 +00001841 unsigned ShAmt = MI->getOperand(2).getImm();
1842 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001843
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001844 // LEA can't handle RSP.
1845 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1846 !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
1847 return 0;
1848
Bill Wendlingfbef3102009-02-11 21:51:19 +00001849 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling587daed2009-05-13 21:33:08 +00001850 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1851 .addReg(0).addImm(1 << ShAmt)
1852 .addReg(Src, getKillRegState(isKill))
Chris Lattner599b5312010-07-08 23:46:44 +00001853 .addImm(0).addReg(0);
Chris Lattner995f5502007-03-28 18:12:31 +00001854 break;
1855 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001856 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001857 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001858 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1859 // the flags produced by a shift yet, so this is safe.
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001860 unsigned ShAmt = MI->getOperand(2).getImm();
1861 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001862
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001863 // LEA can't handle ESP.
1864 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1865 !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
1866 return 0;
1867
Evan Chengdd99f3a2009-12-12 20:03:14 +00001868 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Bill Wendlingfbef3102009-02-11 21:51:19 +00001869 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001870 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001871 .addReg(0).addImm(1 << ShAmt)
Chris Lattner599b5312010-07-08 23:46:44 +00001872 .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001873 break;
1874 }
1875 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001876 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +00001877 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1878 // the flags produced by a shift yet, so this is safe.
Evan Cheng61d9c862007-09-06 00:14:41 +00001879 unsigned ShAmt = MI->getOperand(2).getImm();
1880 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001881
Evan Cheng656e5142009-12-11 06:01:48 +00001882 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001883 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng656e5142009-12-11 06:01:48 +00001884 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1885 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1886 .addReg(0).addImm(1 << ShAmt)
1887 .addReg(Src, getKillRegState(isKill))
Chris Lattner599b5312010-07-08 23:46:44 +00001888 .addImm(0).addReg(0);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001889 break;
Evan Chengccba76b2006-05-30 20:26:50 +00001890 }
Evan Cheng559dc462007-10-05 20:34:26 +00001891 default: {
1892 // The following opcodes also sets the condition code register(s). Only
1893 // convert them to equivalent lea if the condition code register def's
1894 // are dead!
1895 if (hasLiveCondCodeDef(MI))
1896 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +00001897
Evan Cheng559dc462007-10-05 20:34:26 +00001898 switch (MIOpc) {
1899 default: return 0;
1900 case X86::INC64r:
Dan Gohmancca29832009-01-06 23:34:46 +00001901 case X86::INC32r:
1902 case X86::INC64_32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001903 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001904 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1905 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Craig Topperc9099502012-04-20 06:31:50 +00001906 const TargetRegisterClass *RC = MIOpc == X86::INC64r ?
1907 (const TargetRegisterClass*)&X86::GR64_NOSPRegClass :
1908 (const TargetRegisterClass*)&X86::GR32_NOSPRegClass;
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001909
1910 // LEA can't handle RSP.
1911 if (TargetRegisterInfo::isVirtualRegister(Src) &&
Craig Topperc9099502012-04-20 06:31:50 +00001912 !MF.getRegInfo().constrainRegClass(Src, RC))
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001913 return 0;
1914
Chris Lattner599b5312010-07-08 23:46:44 +00001915 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001916 .addReg(Dest, RegState::Define |
1917 getDeadRegState(isDead)),
Rafael Espindola094fad32009-04-08 21:14:34 +00001918 Src, isKill, 1);
Evan Cheng559dc462007-10-05 20:34:26 +00001919 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001920 }
Evan Cheng559dc462007-10-05 20:34:26 +00001921 case X86::INC16r:
1922 case X86::INC64_16r:
Evan Cheng656e5142009-12-11 06:01:48 +00001923 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001924 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng559dc462007-10-05 20:34:26 +00001925 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Bill Wendlingfbef3102009-02-11 21:51:19 +00001926 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling587daed2009-05-13 21:33:08 +00001927 .addReg(Dest, RegState::Define |
1928 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001929 Src, isKill, 1);
Evan Cheng559dc462007-10-05 20:34:26 +00001930 break;
1931 case X86::DEC64r:
Dan Gohmancca29832009-01-06 23:34:46 +00001932 case X86::DEC32r:
1933 case X86::DEC64_32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001934 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001935 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1936 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Craig Topperc9099502012-04-20 06:31:50 +00001937 const TargetRegisterClass *RC = MIOpc == X86::DEC64r ?
1938 (const TargetRegisterClass*)&X86::GR64_NOSPRegClass :
1939 (const TargetRegisterClass*)&X86::GR32_NOSPRegClass;
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001940 // LEA can't handle RSP.
1941 if (TargetRegisterInfo::isVirtualRegister(Src) &&
Craig Topperc9099502012-04-20 06:31:50 +00001942 !MF.getRegInfo().constrainRegClass(Src, RC))
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001943 return 0;
1944
Chris Lattner599b5312010-07-08 23:46:44 +00001945 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001946 .addReg(Dest, RegState::Define |
1947 getDeadRegState(isDead)),
Rafael Espindola094fad32009-04-08 21:14:34 +00001948 Src, isKill, -1);
Evan Cheng559dc462007-10-05 20:34:26 +00001949 break;
1950 }
1951 case X86::DEC16r:
1952 case X86::DEC64_16r:
Evan Cheng656e5142009-12-11 06:01:48 +00001953 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001954 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng559dc462007-10-05 20:34:26 +00001955 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Bill Wendlingfbef3102009-02-11 21:51:19 +00001956 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling587daed2009-05-13 21:33:08 +00001957 .addReg(Dest, RegState::Define |
1958 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001959 Src, isKill, -1);
Evan Cheng559dc462007-10-05 20:34:26 +00001960 break;
1961 case X86::ADD64rr:
Chris Lattner99ae6652010-10-08 03:54:52 +00001962 case X86::ADD64rr_DB:
1963 case X86::ADD32rr:
1964 case X86::ADD32rr_DB: {
Evan Cheng559dc462007-10-05 20:34:26 +00001965 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner99ae6652010-10-08 03:54:52 +00001966 unsigned Opc;
Craig Topper44d23822012-02-22 05:59:10 +00001967 const TargetRegisterClass *RC;
Chris Lattner99ae6652010-10-08 03:54:52 +00001968 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
1969 Opc = X86::LEA64r;
Craig Topperc9099502012-04-20 06:31:50 +00001970 RC = &X86::GR64_NOSPRegClass;
Chris Lattner99ae6652010-10-08 03:54:52 +00001971 } else {
1972 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Craig Topperc9099502012-04-20 06:31:50 +00001973 RC = &X86::GR32_NOSPRegClass;
Chris Lattner99ae6652010-10-08 03:54:52 +00001974 }
1975
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001976
Evan Cheng9f1c8312008-07-03 09:09:37 +00001977 unsigned Src2 = MI->getOperand(2).getReg();
1978 bool isKill2 = MI->getOperand(2).isKill();
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001979
1980 // LEA can't handle RSP.
1981 if (TargetRegisterInfo::isVirtualRegister(Src2) &&
Chris Lattner99ae6652010-10-08 03:54:52 +00001982 !MF.getRegInfo().constrainRegClass(Src2, RC))
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001983 return 0;
1984
Bill Wendlingfbef3102009-02-11 21:51:19 +00001985 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001986 .addReg(Dest, RegState::Define |
1987 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001988 Src, isKill, Src2, isKill2);
Nadav Rotemd93ea882012-07-16 10:52:25 +00001989
1990 // Preserve undefness of the operands.
1991 bool isUndef = MI->getOperand(1).isUndef();
1992 bool isUndef2 = MI->getOperand(2).isUndef();
1993 NewMI->getOperand(1).setIsUndef(isUndef);
1994 NewMI->getOperand(3).setIsUndef(isUndef2);
1995
Evan Cheng9f1c8312008-07-03 09:09:37 +00001996 if (LV && isKill2)
1997 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng559dc462007-10-05 20:34:26 +00001998 break;
1999 }
Chris Lattner99ae6652010-10-08 03:54:52 +00002000 case X86::ADD16rr:
2001 case X86::ADD16rr_DB: {
Evan Cheng656e5142009-12-11 06:01:48 +00002002 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00002003 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng559dc462007-10-05 20:34:26 +00002004 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Cheng9f1c8312008-07-03 09:09:37 +00002005 unsigned Src2 = MI->getOperand(2).getReg();
2006 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendlingfbef3102009-02-11 21:51:19 +00002007 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling587daed2009-05-13 21:33:08 +00002008 .addReg(Dest, RegState::Define |
2009 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00002010 Src, isKill, Src2, isKill2);
2011 if (LV && isKill2)
2012 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng559dc462007-10-05 20:34:26 +00002013 break;
Evan Cheng9f1c8312008-07-03 09:09:37 +00002014 }
Evan Cheng559dc462007-10-05 20:34:26 +00002015 case X86::ADD64ri32:
2016 case X86::ADD64ri8:
Chris Lattner15df55d2010-10-08 03:57:25 +00002017 case X86::ADD64ri32_DB:
2018 case X86::ADD64ri8_DB:
Evan Cheng559dc462007-10-05 20:34:26 +00002019 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner599b5312010-07-08 23:46:44 +00002020 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Evan Cheng656e5142009-12-11 06:01:48 +00002021 .addReg(Dest, RegState::Define |
2022 getDeadRegState(isDead)),
2023 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00002024 break;
2025 case X86::ADD32ri:
Chris Lattner15df55d2010-10-08 03:57:25 +00002026 case X86::ADD32ri8:
2027 case X86::ADD32ri_DB:
2028 case X86::ADD32ri8_DB: {
Evan Cheng559dc462007-10-05 20:34:26 +00002029 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Cheng656e5142009-12-11 06:01:48 +00002030 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner599b5312010-07-08 23:46:44 +00002031 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Cheng656e5142009-12-11 06:01:48 +00002032 .addReg(Dest, RegState::Define |
2033 getDeadRegState(isDead)),
Rafael Espindola094fad32009-04-08 21:14:34 +00002034 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00002035 break;
2036 }
Evan Cheng656e5142009-12-11 06:01:48 +00002037 case X86::ADD16ri:
2038 case X86::ADD16ri8:
Chris Lattner15df55d2010-10-08 03:57:25 +00002039 case X86::ADD16ri_DB:
2040 case X86::ADD16ri8_DB:
Evan Cheng656e5142009-12-11 06:01:48 +00002041 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00002042 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng656e5142009-12-11 06:01:48 +00002043 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner599b5312010-07-08 23:46:44 +00002044 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Cheng656e5142009-12-11 06:01:48 +00002045 .addReg(Dest, RegState::Define |
2046 getDeadRegState(isDead)),
2047 Src, isKill, MI->getOperand(2).getImm());
2048 break;
Evan Cheng559dc462007-10-05 20:34:26 +00002049 }
2050 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00002051 }
2052
Evan Cheng15246732008-02-07 08:29:53 +00002053 if (!NewMI) return 0;
2054
Evan Cheng9f1c8312008-07-03 09:09:37 +00002055 if (LV) { // Update live variables
2056 if (isKill)
2057 LV->replaceKillInstruction(Src, MI, NewMI);
2058 if (isDead)
2059 LV->replaceKillInstruction(Dest, MI, NewMI);
2060 }
2061
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002062 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00002063 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00002064}
2065
Chris Lattner41e431b2005-01-19 07:11:01 +00002066/// commuteInstruction - We have a few instructions that must be hacked on to
2067/// commute them.
2068///
Evan Cheng58dcb0e2008-06-16 07:33:11 +00002069MachineInstr *
2070X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Chris Lattner41e431b2005-01-19 07:11:01 +00002071 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00002072 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2073 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00002074 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00002075 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2076 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2077 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00002078 unsigned Opc;
2079 unsigned Size;
2080 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00002081 default: llvm_unreachable("Unreachable!");
Chris Lattner0df53d22005-01-19 07:31:24 +00002082 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2083 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2084 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2085 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00002086 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2087 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00002088 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00002089 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman74feef22008-10-17 01:23:35 +00002090 if (NewMI) {
2091 MachineFunction &MF = *MI->getParent()->getParent();
2092 MI = MF.CloneMachineInstr(MI);
2093 NewMI = false;
Evan Chenga4d16a12008-02-13 02:46:49 +00002094 }
Dan Gohman74feef22008-10-17 01:23:35 +00002095 MI->setDesc(get(Opc));
2096 MI->getOperand(3).setImm(Size-Amt);
2097 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Chris Lattner41e431b2005-01-19 07:11:01 +00002098 }
Craig Toppercba48d82012-08-21 07:32:16 +00002099 case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
2100 case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
2101 case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
2102 case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
2103 case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
2104 case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr:
2105 case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
2106 case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
2107 case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
2108 case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
2109 case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
2110 case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
2111 case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
2112 case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
2113 case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
2114 case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
2115 unsigned Opc;
Evan Cheng7ad42d92007-10-05 23:13:21 +00002116 switch (MI->getOpcode()) {
Craig Toppercba48d82012-08-21 07:32:16 +00002117 default: llvm_unreachable("Unreachable!");
Evan Cheng7ad42d92007-10-05 23:13:21 +00002118 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
2119 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
2120 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
2121 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
2122 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
2123 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
2124 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
2125 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
2126 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
2127 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
2128 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
2129 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
Chris Lattner25cbf502010-10-05 23:00:14 +00002130 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
2131 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
2132 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
2133 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
2134 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
2135 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00002136 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
2137 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
2138 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
2139 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
2140 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
2141 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
2142 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
2143 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
2144 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
2145 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
2146 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
2147 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
2148 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
2149 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
Mon P Wang0bd07fc2009-04-18 05:16:01 +00002150 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00002151 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
2152 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
2153 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
2154 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
2155 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
Mon P Wang0bd07fc2009-04-18 05:16:01 +00002156 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00002157 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
2158 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
2159 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman305fceb2009-01-07 00:35:10 +00002160 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
2161 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
Mon P Wang0bd07fc2009-04-18 05:16:01 +00002162 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
Dan Gohman305fceb2009-01-07 00:35:10 +00002163 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
2164 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
2165 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00002166 }
Dan Gohman74feef22008-10-17 01:23:35 +00002167 if (NewMI) {
2168 MachineFunction &MF = *MI->getParent()->getParent();
2169 MI = MF.CloneMachineInstr(MI);
2170 NewMI = false;
2171 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00002172 MI->setDesc(get(Opc));
Evan Cheng7ad42d92007-10-05 23:13:21 +00002173 // Fallthrough intended.
2174 }
Chris Lattner41e431b2005-01-19 07:11:01 +00002175 default:
Evan Cheng58dcb0e2008-06-16 07:33:11 +00002176 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Chris Lattner41e431b2005-01-19 07:11:01 +00002177 }
2178}
2179
Manman Ren62093642012-07-09 18:57:12 +00002180static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
Chris Lattner7fbe9722006-10-20 17:42:20 +00002181 switch (BrOpc) {
2182 default: return X86::COND_INVALID;
Chris Lattnerbd13fb62010-02-11 19:25:55 +00002183 case X86::JE_4: return X86::COND_E;
2184 case X86::JNE_4: return X86::COND_NE;
2185 case X86::JL_4: return X86::COND_L;
2186 case X86::JLE_4: return X86::COND_LE;
2187 case X86::JG_4: return X86::COND_G;
2188 case X86::JGE_4: return X86::COND_GE;
2189 case X86::JB_4: return X86::COND_B;
2190 case X86::JBE_4: return X86::COND_BE;
2191 case X86::JA_4: return X86::COND_A;
2192 case X86::JAE_4: return X86::COND_AE;
2193 case X86::JS_4: return X86::COND_S;
2194 case X86::JNS_4: return X86::COND_NS;
2195 case X86::JP_4: return X86::COND_P;
2196 case X86::JNP_4: return X86::COND_NP;
2197 case X86::JO_4: return X86::COND_O;
2198 case X86::JNO_4: return X86::COND_NO;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002199 }
2200}
2201
Manman Ren62093642012-07-09 18:57:12 +00002202/// getCondFromSETOpc - return condition code of a SET opcode.
2203static X86::CondCode getCondFromSETOpc(unsigned Opc) {
2204 switch (Opc) {
2205 default: return X86::COND_INVALID;
2206 case X86::SETAr: case X86::SETAm: return X86::COND_A;
2207 case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
2208 case X86::SETBr: case X86::SETBm: return X86::COND_B;
2209 case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
2210 case X86::SETEr: case X86::SETEm: return X86::COND_E;
2211 case X86::SETGr: case X86::SETGm: return X86::COND_G;
2212 case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
2213 case X86::SETLr: case X86::SETLm: return X86::COND_L;
2214 case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
2215 case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
2216 case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
2217 case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
2218 case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
2219 case X86::SETOr: case X86::SETOm: return X86::COND_O;
2220 case X86::SETPr: case X86::SETPm: return X86::COND_P;
2221 case X86::SETSr: case X86::SETSm: return X86::COND_S;
2222 }
2223}
2224
2225/// getCondFromCmovOpc - return condition code of a CMov opcode.
2226static X86::CondCode getCondFromCMovOpc(unsigned Opc) {
2227 switch (Opc) {
2228 default: return X86::COND_INVALID;
2229 case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm:
2230 case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr:
2231 return X86::COND_A;
2232 case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
2233 case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
2234 return X86::COND_AE;
2235 case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm:
2236 case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr:
2237 return X86::COND_B;
2238 case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
2239 case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
2240 return X86::COND_BE;
2241 case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm:
2242 case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr:
2243 return X86::COND_E;
2244 case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm:
2245 case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr:
2246 return X86::COND_G;
2247 case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
2248 case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
2249 return X86::COND_GE;
2250 case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm:
2251 case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr:
2252 return X86::COND_L;
2253 case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
2254 case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
2255 return X86::COND_LE;
2256 case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
2257 case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
2258 return X86::COND_NE;
2259 case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
2260 case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
2261 return X86::COND_NO;
2262 case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
2263 case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
2264 return X86::COND_NP;
2265 case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
2266 case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
2267 return X86::COND_NS;
2268 case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm:
2269 case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr:
2270 return X86::COND_O;
2271 case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm:
2272 case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr:
2273 return X86::COND_P;
2274 case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm:
2275 case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr:
2276 return X86::COND_S;
2277 }
2278}
2279
Chris Lattner7fbe9722006-10-20 17:42:20 +00002280unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
2281 switch (CC) {
Torok Edwinc23197a2009-07-14 16:55:14 +00002282 default: llvm_unreachable("Illegal condition code!");
Chris Lattnerbd13fb62010-02-11 19:25:55 +00002283 case X86::COND_E: return X86::JE_4;
2284 case X86::COND_NE: return X86::JNE_4;
2285 case X86::COND_L: return X86::JL_4;
2286 case X86::COND_LE: return X86::JLE_4;
2287 case X86::COND_G: return X86::JG_4;
2288 case X86::COND_GE: return X86::JGE_4;
2289 case X86::COND_B: return X86::JB_4;
2290 case X86::COND_BE: return X86::JBE_4;
2291 case X86::COND_A: return X86::JA_4;
2292 case X86::COND_AE: return X86::JAE_4;
2293 case X86::COND_S: return X86::JS_4;
2294 case X86::COND_NS: return X86::JNS_4;
2295 case X86::COND_P: return X86::JP_4;
2296 case X86::COND_NP: return X86::JNP_4;
2297 case X86::COND_O: return X86::JO_4;
2298 case X86::COND_NO: return X86::JNO_4;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002299 }
2300}
2301
Chris Lattner9cd68752006-10-21 05:52:40 +00002302/// GetOppositeBranchCondition - Return the inverse of the specified condition,
2303/// e.g. turning COND_E to COND_NE.
2304X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2305 switch (CC) {
Torok Edwinc23197a2009-07-14 16:55:14 +00002306 default: llvm_unreachable("Illegal condition code!");
Chris Lattner9cd68752006-10-21 05:52:40 +00002307 case X86::COND_E: return X86::COND_NE;
2308 case X86::COND_NE: return X86::COND_E;
2309 case X86::COND_L: return X86::COND_GE;
2310 case X86::COND_LE: return X86::COND_G;
2311 case X86::COND_G: return X86::COND_LE;
2312 case X86::COND_GE: return X86::COND_L;
2313 case X86::COND_B: return X86::COND_AE;
2314 case X86::COND_BE: return X86::COND_A;
2315 case X86::COND_A: return X86::COND_BE;
2316 case X86::COND_AE: return X86::COND_B;
2317 case X86::COND_S: return X86::COND_NS;
2318 case X86::COND_NS: return X86::COND_S;
2319 case X86::COND_P: return X86::COND_NP;
2320 case X86::COND_NP: return X86::COND_P;
2321 case X86::COND_O: return X86::COND_NO;
2322 case X86::COND_NO: return X86::COND_O;
2323 }
2324}
2325
Manman Ren62093642012-07-09 18:57:12 +00002326/// getSwappedCondition - assume the flags are set by MI(a,b), return
2327/// the condition code if we modify the instructions such that flags are
2328/// set by MI(b,a).
Benjamin Kramer23d36222012-07-13 13:25:15 +00002329static X86::CondCode getSwappedCondition(X86::CondCode CC) {
Manman Ren62093642012-07-09 18:57:12 +00002330 switch (CC) {
2331 default: return X86::COND_INVALID;
2332 case X86::COND_E: return X86::COND_E;
2333 case X86::COND_NE: return X86::COND_NE;
2334 case X86::COND_L: return X86::COND_G;
2335 case X86::COND_LE: return X86::COND_GE;
2336 case X86::COND_G: return X86::COND_L;
2337 case X86::COND_GE: return X86::COND_LE;
2338 case X86::COND_B: return X86::COND_A;
2339 case X86::COND_BE: return X86::COND_AE;
2340 case X86::COND_A: return X86::COND_B;
2341 case X86::COND_AE: return X86::COND_BE;
2342 }
2343}
2344
2345/// getSETFromCond - Return a set opcode for the given condition and
2346/// whether it has memory operand.
2347static unsigned getSETFromCond(X86::CondCode CC,
2348 bool HasMemoryOperand) {
2349 static const unsigned Opc[16][2] = {
2350 { X86::SETAr, X86::SETAm },
2351 { X86::SETAEr, X86::SETAEm },
2352 { X86::SETBr, X86::SETBm },
2353 { X86::SETBEr, X86::SETBEm },
2354 { X86::SETEr, X86::SETEm },
2355 { X86::SETGr, X86::SETGm },
2356 { X86::SETGEr, X86::SETGEm },
2357 { X86::SETLr, X86::SETLm },
2358 { X86::SETLEr, X86::SETLEm },
2359 { X86::SETNEr, X86::SETNEm },
2360 { X86::SETNOr, X86::SETNOm },
2361 { X86::SETNPr, X86::SETNPm },
2362 { X86::SETNSr, X86::SETNSm },
2363 { X86::SETOr, X86::SETOm },
2364 { X86::SETPr, X86::SETPm },
2365 { X86::SETSr, X86::SETSm }
2366 };
2367
2368 assert(CC < 16 && "Can only handle standard cond codes");
2369 return Opc[CC][HasMemoryOperand ? 1 : 0];
2370}
2371
2372/// getCMovFromCond - Return a cmov opcode for the given condition,
2373/// register size in bytes, and operand type.
2374static unsigned getCMovFromCond(X86::CondCode CC, unsigned RegBytes,
2375 bool HasMemoryOperand) {
2376 static const unsigned Opc[32][3] = {
Jakob Stoklund Olesen59bde4d2012-07-04 00:09:58 +00002377 { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr },
2378 { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
2379 { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr },
2380 { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
2381 { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr },
2382 { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr },
2383 { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
2384 { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr },
2385 { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
2386 { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
2387 { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
2388 { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
2389 { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
2390 { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr },
2391 { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr },
Manman Ren62093642012-07-09 18:57:12 +00002392 { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr },
2393 { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm },
2394 { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
2395 { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm },
2396 { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
2397 { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm },
2398 { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm },
2399 { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
2400 { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm },
2401 { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
2402 { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
2403 { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
2404 { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
2405 { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
2406 { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm },
2407 { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm },
2408 { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm }
Jakob Stoklund Olesen59bde4d2012-07-04 00:09:58 +00002409 };
2410
2411 assert(CC < 16 && "Can only handle standard cond codes");
Manman Ren62093642012-07-09 18:57:12 +00002412 unsigned Idx = HasMemoryOperand ? 16+CC : CC;
Jakob Stoklund Olesen59bde4d2012-07-04 00:09:58 +00002413 switch(RegBytes) {
2414 default: llvm_unreachable("Illegal register size!");
Manman Ren62093642012-07-09 18:57:12 +00002415 case 2: return Opc[Idx][0];
2416 case 4: return Opc[Idx][1];
2417 case 8: return Opc[Idx][2];
Jakob Stoklund Olesen59bde4d2012-07-04 00:09:58 +00002418 }
2419}
2420
Dale Johannesen318093b2007-06-14 22:03:45 +00002421bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Evan Cheng5a96b3d2011-12-07 07:15:52 +00002422 if (!MI->isTerminator()) return false;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002423
Chris Lattner69244302008-01-07 01:56:04 +00002424 // Conditional branch is a special case.
Evan Cheng5a96b3d2011-12-07 07:15:52 +00002425 if (MI->isBranch() && !MI->isBarrier())
Chris Lattner69244302008-01-07 01:56:04 +00002426 return true;
Evan Cheng5a96b3d2011-12-07 07:15:52 +00002427 if (!MI->isPredicable())
Chris Lattner69244302008-01-07 01:56:04 +00002428 return true;
2429 return !isPredicated(MI);
Dale Johannesen318093b2007-06-14 22:03:45 +00002430}
Chris Lattner9cd68752006-10-21 05:52:40 +00002431
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002432bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
Chris Lattner7fbe9722006-10-20 17:42:20 +00002433 MachineBasicBlock *&TBB,
2434 MachineBasicBlock *&FBB,
Evan Chengdc54d312009-02-09 07:14:22 +00002435 SmallVectorImpl<MachineOperand> &Cond,
2436 bool AllowModify) const {
Dan Gohman279c22e2008-10-21 03:29:32 +00002437 // Start from the bottom of the block and work up, examining the
2438 // terminator instructions.
Chris Lattner7fbe9722006-10-20 17:42:20 +00002439 MachineBasicBlock::iterator I = MBB.end();
Evan Chengfc5a03e2010-04-13 18:50:27 +00002440 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00002441 while (I != MBB.begin()) {
2442 --I;
Dale Johannesen93d6a7e2010-04-02 01:38:09 +00002443 if (I->isDebugValue())
2444 continue;
Bill Wendling85de1e52009-12-14 06:51:19 +00002445
2446 // Working from the bottom, when we see a non-terminator instruction, we're
2447 // done.
Jakob Stoklund Olesen468a2a42010-07-16 17:41:44 +00002448 if (!isUnpredicatedTerminator(I))
Dan Gohman279c22e2008-10-21 03:29:32 +00002449 break;
Bill Wendling85de1e52009-12-14 06:51:19 +00002450
2451 // A terminator that isn't a branch can't easily be handled by this
2452 // analysis.
Evan Cheng5a96b3d2011-12-07 07:15:52 +00002453 if (!I->isBranch())
Chris Lattner7fbe9722006-10-20 17:42:20 +00002454 return true;
Bill Wendling85de1e52009-12-14 06:51:19 +00002455
Dan Gohman279c22e2008-10-21 03:29:32 +00002456 // Handle unconditional branches.
Chris Lattnerbd13fb62010-02-11 19:25:55 +00002457 if (I->getOpcode() == X86::JMP_4) {
Evan Chengfc5a03e2010-04-13 18:50:27 +00002458 UnCondBrIter = I;
2459
Evan Chengdc54d312009-02-09 07:14:22 +00002460 if (!AllowModify) {
2461 TBB = I->getOperand(0).getMBB();
Evan Cheng45e00102009-05-08 06:34:09 +00002462 continue;
Evan Chengdc54d312009-02-09 07:14:22 +00002463 }
2464
Dan Gohman279c22e2008-10-21 03:29:32 +00002465 // If the block has any instructions after a JMP, delete them.
Chris Lattner7896c9f2009-12-03 00:50:42 +00002466 while (llvm::next(I) != MBB.end())
2467 llvm::next(I)->eraseFromParent();
Bill Wendling85de1e52009-12-14 06:51:19 +00002468
Dan Gohman279c22e2008-10-21 03:29:32 +00002469 Cond.clear();
2470 FBB = 0;
Bill Wendling85de1e52009-12-14 06:51:19 +00002471
Dan Gohman279c22e2008-10-21 03:29:32 +00002472 // Delete the JMP if it's equivalent to a fall-through.
2473 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2474 TBB = 0;
2475 I->eraseFromParent();
2476 I = MBB.end();
Evan Chengfc5a03e2010-04-13 18:50:27 +00002477 UnCondBrIter = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00002478 continue;
2479 }
Bill Wendling85de1e52009-12-14 06:51:19 +00002480
Evan Chengfc5a03e2010-04-13 18:50:27 +00002481 // TBB is used to indicate the unconditional destination.
Dan Gohman279c22e2008-10-21 03:29:32 +00002482 TBB = I->getOperand(0).getMBB();
2483 continue;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002484 }
Bill Wendling85de1e52009-12-14 06:51:19 +00002485
Dan Gohman279c22e2008-10-21 03:29:32 +00002486 // Handle conditional branches.
Manman Ren62093642012-07-09 18:57:12 +00002487 X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
Chris Lattner7fbe9722006-10-20 17:42:20 +00002488 if (BranchCode == X86::COND_INVALID)
2489 return true; // Can't handle indirect branch.
Bill Wendling85de1e52009-12-14 06:51:19 +00002490
Dan Gohman279c22e2008-10-21 03:29:32 +00002491 // Working from the bottom, handle the first conditional branch.
2492 if (Cond.empty()) {
Evan Chengfc5a03e2010-04-13 18:50:27 +00002493 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2494 if (AllowModify && UnCondBrIter != MBB.end() &&
2495 MBB.isLayoutSuccessor(TargetBB)) {
2496 // If we can modify the code and it ends in something like:
2497 //
2498 // jCC L1
2499 // jmp L2
2500 // L1:
2501 // ...
2502 // L2:
2503 //
2504 // Then we can change this to:
2505 //
2506 // jnCC L2
2507 // L1:
2508 // ...
2509 // L2:
2510 //
2511 // Which is a bit more efficient.
2512 // We conditionally jump to the fall-through block.
2513 BranchCode = GetOppositeBranchCondition(BranchCode);
2514 unsigned JNCC = GetCondBranchFromCond(BranchCode);
2515 MachineBasicBlock::iterator OldInst = I;
2516
2517 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2518 .addMBB(UnCondBrIter->getOperand(0).getMBB());
2519 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
2520 .addMBB(TargetBB);
Evan Chengfc5a03e2010-04-13 18:50:27 +00002521
2522 OldInst->eraseFromParent();
2523 UnCondBrIter->eraseFromParent();
2524
2525 // Restart the analysis.
2526 UnCondBrIter = MBB.end();
2527 I = MBB.end();
2528 continue;
2529 }
2530
Dan Gohman279c22e2008-10-21 03:29:32 +00002531 FBB = TBB;
2532 TBB = I->getOperand(0).getMBB();
2533 Cond.push_back(MachineOperand::CreateImm(BranchCode));
2534 continue;
2535 }
Bill Wendling85de1e52009-12-14 06:51:19 +00002536
2537 // Handle subsequent conditional branches. Only handle the case where all
2538 // conditional branches branch to the same destination and their condition
2539 // opcodes fit one of the special multi-branch idioms.
Dan Gohman279c22e2008-10-21 03:29:32 +00002540 assert(Cond.size() == 1);
2541 assert(TBB);
Bill Wendling85de1e52009-12-14 06:51:19 +00002542
2543 // Only handle the case where all conditional branches branch to the same
2544 // destination.
Dan Gohman279c22e2008-10-21 03:29:32 +00002545 if (TBB != I->getOperand(0).getMBB())
2546 return true;
Bill Wendling85de1e52009-12-14 06:51:19 +00002547
Dan Gohman279c22e2008-10-21 03:29:32 +00002548 // If the conditions are the same, we can leave them alone.
Bill Wendling85de1e52009-12-14 06:51:19 +00002549 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
Dan Gohman279c22e2008-10-21 03:29:32 +00002550 if (OldBranchCode == BranchCode)
2551 continue;
Bill Wendling85de1e52009-12-14 06:51:19 +00002552
2553 // If they differ, see if they fit one of the known patterns. Theoretically,
2554 // we could handle more patterns here, but we shouldn't expect to see them
2555 // if instruction selection has done a reasonable job.
Dan Gohman279c22e2008-10-21 03:29:32 +00002556 if ((OldBranchCode == X86::COND_NP &&
2557 BranchCode == X86::COND_E) ||
2558 (OldBranchCode == X86::COND_E &&
2559 BranchCode == X86::COND_NP))
2560 BranchCode = X86::COND_NP_OR_E;
2561 else if ((OldBranchCode == X86::COND_P &&
2562 BranchCode == X86::COND_NE) ||
2563 (OldBranchCode == X86::COND_NE &&
2564 BranchCode == X86::COND_P))
2565 BranchCode = X86::COND_NE_OR_P;
2566 else
2567 return true;
Bill Wendling85de1e52009-12-14 06:51:19 +00002568
Dan Gohman279c22e2008-10-21 03:29:32 +00002569 // Update the MachineOperand.
2570 Cond[0].setImm(BranchCode);
Chris Lattner6ce64432006-10-30 22:27:23 +00002571 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00002572
Dan Gohman279c22e2008-10-21 03:29:32 +00002573 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002574}
2575
Evan Cheng6ae36262007-05-18 00:18:17 +00002576unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00002577 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00002578 unsigned Count = 0;
2579
2580 while (I != MBB.begin()) {
2581 --I;
Dale Johannesen93d6a7e2010-04-02 01:38:09 +00002582 if (I->isDebugValue())
2583 continue;
Chris Lattnerbd13fb62010-02-11 19:25:55 +00002584 if (I->getOpcode() != X86::JMP_4 &&
Manman Ren62093642012-07-09 18:57:12 +00002585 getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Dan Gohman279c22e2008-10-21 03:29:32 +00002586 break;
2587 // Remove the branch.
2588 I->eraseFromParent();
2589 I = MBB.end();
2590 ++Count;
2591 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002592
Dan Gohman279c22e2008-10-21 03:29:32 +00002593 return Count;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002594}
2595
Evan Cheng6ae36262007-05-18 00:18:17 +00002596unsigned
2597X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
2598 MachineBasicBlock *FBB,
Stuart Hastings3bf91252010-06-17 22:43:56 +00002599 const SmallVectorImpl<MachineOperand> &Cond,
2600 DebugLoc DL) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00002601 // Shouldn't be a fall through.
2602 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00002603 assert((Cond.size() == 1 || Cond.size() == 0) &&
2604 "X86 branch conditions have one component!");
2605
Dan Gohman279c22e2008-10-21 03:29:32 +00002606 if (Cond.empty()) {
2607 // Unconditional branch?
2608 assert(!FBB && "Unconditional branch with multiple successors!");
Stuart Hastings3bf91252010-06-17 22:43:56 +00002609 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00002610 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002611 }
Dan Gohman279c22e2008-10-21 03:29:32 +00002612
2613 // Conditional branch.
2614 unsigned Count = 0;
2615 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2616 switch (CC) {
2617 case X86::COND_NP_OR_E:
2618 // Synthesize NP_OR_E with two branches.
Stuart Hastings3bf91252010-06-17 22:43:56 +00002619 BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002620 ++Count;
Stuart Hastings3bf91252010-06-17 22:43:56 +00002621 BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002622 ++Count;
Dan Gohman279c22e2008-10-21 03:29:32 +00002623 break;
2624 case X86::COND_NE_OR_P:
2625 // Synthesize NE_OR_P with two branches.
Stuart Hastings3bf91252010-06-17 22:43:56 +00002626 BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002627 ++Count;
Stuart Hastings3bf91252010-06-17 22:43:56 +00002628 BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002629 ++Count;
Dan Gohman279c22e2008-10-21 03:29:32 +00002630 break;
Bill Wendling18ce64e2010-03-05 00:33:59 +00002631 default: {
2632 unsigned Opc = GetCondBranchFromCond(CC);
Stuart Hastings3bf91252010-06-17 22:43:56 +00002633 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002634 ++Count;
Dan Gohman279c22e2008-10-21 03:29:32 +00002635 }
Bill Wendling18ce64e2010-03-05 00:33:59 +00002636 }
Dan Gohman279c22e2008-10-21 03:29:32 +00002637 if (FBB) {
2638 // Two-way Conditional branch. Insert the second branch.
Stuart Hastings3bf91252010-06-17 22:43:56 +00002639 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
Dan Gohman279c22e2008-10-21 03:29:32 +00002640 ++Count;
2641 }
2642 return Count;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002643}
2644
Jakob Stoklund Olesen59bde4d2012-07-04 00:09:58 +00002645bool X86InstrInfo::
2646canInsertSelect(const MachineBasicBlock &MBB,
2647 const SmallVectorImpl<MachineOperand> &Cond,
2648 unsigned TrueReg, unsigned FalseReg,
2649 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2650 // Not all subtargets have cmov instructions.
2651 if (!TM.getSubtarget<X86Subtarget>().hasCMov())
2652 return false;
2653 if (Cond.size() != 1)
2654 return false;
2655 // We cannot do the composite conditions, at least not in SSA form.
2656 if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
2657 return false;
2658
2659 // Check register classes.
2660 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2661 const TargetRegisterClass *RC =
2662 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2663 if (!RC)
2664 return false;
2665
2666 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2667 if (X86::GR16RegClass.hasSubClassEq(RC) ||
2668 X86::GR32RegClass.hasSubClassEq(RC) ||
2669 X86::GR64RegClass.hasSubClassEq(RC)) {
2670 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2671 // Bridge. Probably Ivy Bridge as well.
2672 CondCycles = 2;
2673 TrueCycles = 2;
2674 FalseCycles = 2;
2675 return true;
2676 }
2677
2678 // Can't do vectors.
2679 return false;
2680}
2681
2682void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2683 MachineBasicBlock::iterator I, DebugLoc DL,
2684 unsigned DstReg,
2685 const SmallVectorImpl<MachineOperand> &Cond,
2686 unsigned TrueReg, unsigned FalseReg) const {
2687 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2688 assert(Cond.size() == 1 && "Invalid Cond array");
2689 unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
Manman Ren62093642012-07-09 18:57:12 +00002690 MRI.getRegClass(DstReg)->getSize(),
2691 false/*HasMemoryOperand*/);
Jakob Stoklund Olesen59bde4d2012-07-04 00:09:58 +00002692 BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
2693}
2694
Dan Gohman6d9305c2009-04-15 00:04:23 +00002695/// isHReg - Test if the given register is a physical h register.
2696static bool isHReg(unsigned Reg) {
Dan Gohman4af325d2009-04-27 16:41:36 +00002697 return X86::GR8_ABCD_HRegClass.contains(Reg);
Dan Gohman6d9305c2009-04-15 00:04:23 +00002698}
2699
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002700// Try and copy between VR128/VR64 and GR64 registers.
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002701static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2702 bool HasAVX) {
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002703 // SrcReg(VR128) -> DestReg(GR64)
2704 // SrcReg(VR64) -> DestReg(GR64)
2705 // SrcReg(GR64) -> DestReg(VR128)
2706 // SrcReg(GR64) -> DestReg(VR64)
2707
2708 if (X86::GR64RegClass.contains(DestReg)) {
2709 if (X86::VR128RegClass.contains(SrcReg)) {
2710 // Copy from a VR128 register to a GR64 register.
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002711 return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002712 } else if (X86::VR64RegClass.contains(SrcReg)) {
2713 // Copy from a VR64 register to a GR64 register.
2714 return X86::MOVSDto64rr;
2715 }
2716 } else if (X86::GR64RegClass.contains(SrcReg)) {
2717 // Copy from a GR64 register to a VR128 register.
2718 if (X86::VR128RegClass.contains(DestReg))
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002719 return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002720 // Copy from a GR64 register to a VR64 register.
2721 else if (X86::VR64RegClass.contains(DestReg))
2722 return X86::MOV64toSDrr;
2723 }
2724
Jakob Stoklund Olesen4bd89872011-09-22 22:45:24 +00002725 // SrcReg(FR32) -> DestReg(GR32)
2726 // SrcReg(GR32) -> DestReg(FR32)
2727
2728 if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
2729 // Copy from a FR32 register to a GR32 register.
2730 return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
2731
2732 if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
2733 // Copy from a GR32 register to a FR32 register.
2734 return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
2735
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002736 return 0;
2737}
2738
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002739void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2740 MachineBasicBlock::iterator MI, DebugLoc DL,
2741 unsigned DestReg, unsigned SrcReg,
2742 bool KillSrc) const {
2743 // First deal with the normal symmetric copies.
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002744 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002745 unsigned Opc = 0;
2746 if (X86::GR64RegClass.contains(DestReg, SrcReg))
2747 Opc = X86::MOV64rr;
2748 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2749 Opc = X86::MOV32rr;
2750 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2751 Opc = X86::MOV16rr;
2752 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2753 // Copying to or from a physical H register on x86-64 requires a NOREX
2754 // move. Otherwise use a normal move.
2755 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
Jakob Stoklund Olesenb66f1842011-10-07 20:15:54 +00002756 TM.getSubtarget<X86Subtarget>().is64Bit()) {
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002757 Opc = X86::MOV8rr_NOREX;
Jakob Stoklund Olesenb66f1842011-10-07 20:15:54 +00002758 // Both operands must be encodable without an REX prefix.
2759 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2760 "8-bit H register can not be copied outside GR8_NOREX");
2761 } else
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002762 Opc = X86::MOV8rr;
2763 } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002764 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00002765 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
2766 Opc = X86::VMOVAPSYrr;
Jakob Stoklund Olesen61c8ecc2010-07-08 22:30:35 +00002767 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2768 Opc = X86::MMX_MOVQ64rr;
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002769 else
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002770 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002771
2772 if (Opc) {
2773 BuildMI(MBB, MI, DL, get(Opc), DestReg)
2774 .addReg(SrcReg, getKillRegState(KillSrc));
2775 return;
2776 }
2777
2778 // Moving EFLAGS to / from another register requires a push and a pop.
2779 if (SrcReg == X86::EFLAGS) {
2780 if (X86::GR64RegClass.contains(DestReg)) {
2781 BuildMI(MBB, MI, DL, get(X86::PUSHF64));
2782 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
2783 return;
2784 } else if (X86::GR32RegClass.contains(DestReg)) {
2785 BuildMI(MBB, MI, DL, get(X86::PUSHF32));
2786 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
2787 return;
2788 }
2789 }
2790 if (DestReg == X86::EFLAGS) {
2791 if (X86::GR64RegClass.contains(SrcReg)) {
2792 BuildMI(MBB, MI, DL, get(X86::PUSH64r))
2793 .addReg(SrcReg, getKillRegState(KillSrc));
2794 BuildMI(MBB, MI, DL, get(X86::POPF64));
2795 return;
2796 } else if (X86::GR32RegClass.contains(SrcReg)) {
2797 BuildMI(MBB, MI, DL, get(X86::PUSH32r))
2798 .addReg(SrcReg, getKillRegState(KillSrc));
2799 BuildMI(MBB, MI, DL, get(X86::POPF32));
2800 return;
2801 }
2802 }
2803
2804 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
2805 << " to " << RI.getName(DestReg) << '\n');
2806 llvm_unreachable("Cannot emit physreg copy instruction");
2807}
2808
Rafael Espindola21d238f2010-06-12 20:13:29 +00002809static unsigned getLoadStoreRegOpcode(unsigned Reg,
2810 const TargetRegisterClass *RC,
2811 bool isStackAligned,
2812 const TargetMachine &TM,
2813 bool load) {
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002814 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002815 switch (RC->getSize()) {
Rafael Espindola5a717a32010-07-12 03:43:04 +00002816 default:
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002817 llvm_unreachable("Unknown spill size");
2818 case 1:
2819 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
Rafael Espindola21d238f2010-06-12 20:13:29 +00002820 if (TM.getSubtarget<X86Subtarget>().is64Bit())
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002821 // Copying to or from a physical H register on x86-64 requires a NOREX
2822 // move. Otherwise use a normal move.
2823 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2824 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2825 return load ? X86::MOV8rm : X86::MOV8mr;
2826 case 2:
2827 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
2828 return load ? X86::MOV16rm : X86::MOV16mr;
2829 case 4:
2830 if (X86::GR32RegClass.hasSubClassEq(RC))
2831 return load ? X86::MOV32rm : X86::MOV32mr;
2832 if (X86::FR32RegClass.hasSubClassEq(RC))
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002833 return load ?
2834 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
2835 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002836 if (X86::RFP32RegClass.hasSubClassEq(RC))
2837 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2838 llvm_unreachable("Unknown 4-byte regclass");
2839 case 8:
2840 if (X86::GR64RegClass.hasSubClassEq(RC))
2841 return load ? X86::MOV64rm : X86::MOV64mr;
2842 if (X86::FR64RegClass.hasSubClassEq(RC))
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002843 return load ?
2844 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
2845 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002846 if (X86::VR64RegClass.hasSubClassEq(RC))
2847 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2848 if (X86::RFP64RegClass.hasSubClassEq(RC))
2849 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2850 llvm_unreachable("Unknown 8-byte regclass");
2851 case 10:
2852 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
Rafael Espindola21d238f2010-06-12 20:13:29 +00002853 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002854 case 16: {
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002855 assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
Rafael Espindola21d238f2010-06-12 20:13:29 +00002856 // If stack is realigned we can use aligned stores.
2857 if (isStackAligned)
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002858 return load ?
2859 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
2860 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
Rafael Espindola21d238f2010-06-12 20:13:29 +00002861 else
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002862 return load ?
2863 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
2864 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
2865 }
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00002866 case 32:
2867 assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
2868 // If stack is realigned we can use aligned stores.
2869 if (isStackAligned)
2870 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
2871 else
2872 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
Rafael Espindola21d238f2010-06-12 20:13:29 +00002873 }
2874}
2875
Dan Gohman4af325d2009-04-27 16:41:36 +00002876static unsigned getStoreRegOpcode(unsigned SrcReg,
2877 const TargetRegisterClass *RC,
2878 bool isStackAligned,
2879 TargetMachine &TM) {
Rafael Espindola21d238f2010-06-12 20:13:29 +00002880 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2881}
Owen Andersonf6372aa2008-01-01 21:11:32 +00002882
Rafael Espindola21d238f2010-06-12 20:13:29 +00002883
2884static unsigned getLoadRegOpcode(unsigned DestReg,
2885 const TargetRegisterClass *RC,
2886 bool isStackAligned,
2887 const TargetMachine &TM) {
2888 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002889}
2890
2891void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2892 MachineBasicBlock::iterator MI,
2893 unsigned SrcReg, bool isKill, int FrameIdx,
Evan Cheng746ad692010-05-06 19:06:44 +00002894 const TargetRegisterClass *RC,
2895 const TargetRegisterInfo *TRI) const {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002896 const MachineFunction &MF = *MBB.getParent();
Jakob Stoklund Olesen516cd452010-07-27 04:16:58 +00002897 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2898 "Stack slot too small for store");
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002899 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2900 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
Evan Cheng2fa82bc2011-06-23 01:53:43 +00002901 RI.canRealignStack(MF);
Dan Gohman4af325d2009-04-27 16:41:36 +00002902 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Dale Johannesen6ec25f52010-01-26 00:03:12 +00002903 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendlingfbef3102009-02-11 21:51:19 +00002904 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
Bill Wendling587daed2009-05-13 21:33:08 +00002905 .addReg(SrcReg, getKillRegState(isKill));
Owen Andersonf6372aa2008-01-01 21:11:32 +00002906}
2907
2908void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2909 bool isKill,
2910 SmallVectorImpl<MachineOperand> &Addr,
2911 const TargetRegisterClass *RC,
Dan Gohman91e69c32009-10-09 18:10:05 +00002912 MachineInstr::mmo_iterator MMOBegin,
2913 MachineInstr::mmo_iterator MMOEnd,
Owen Andersonf6372aa2008-01-01 21:11:32 +00002914 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002915 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2916 bool isAligned = MMOBegin != MMOEnd &&
2917 (*MMOBegin)->getAlignment() >= Alignment;
Dan Gohman4af325d2009-04-27 16:41:36 +00002918 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Chris Lattnerc7f3ace2010-04-02 20:16:16 +00002919 DebugLoc DL;
Dale Johannesen21b55412009-02-12 23:08:38 +00002920 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Andersonf6372aa2008-01-01 21:11:32 +00002921 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002922 MIB.addOperand(Addr[i]);
Bill Wendling587daed2009-05-13 21:33:08 +00002923 MIB.addReg(SrcReg, getKillRegState(isKill));
Dan Gohman91e69c32009-10-09 18:10:05 +00002924 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002925 NewMIs.push_back(MIB);
2926}
2927
Owen Andersonf6372aa2008-01-01 21:11:32 +00002928
2929void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002930 MachineBasicBlock::iterator MI,
2931 unsigned DestReg, int FrameIdx,
Evan Cheng746ad692010-05-06 19:06:44 +00002932 const TargetRegisterClass *RC,
2933 const TargetRegisterInfo *TRI) const {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002934 const MachineFunction &MF = *MBB.getParent();
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002935 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2936 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
Evan Cheng2fa82bc2011-06-23 01:53:43 +00002937 RI.canRealignStack(MF);
Dan Gohman4af325d2009-04-27 16:41:36 +00002938 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Dale Johannesen6ec25f52010-01-26 00:03:12 +00002939 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendlingfbef3102009-02-11 21:51:19 +00002940 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002941}
2942
2943void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Cheng9f1c8312008-07-03 09:09:37 +00002944 SmallVectorImpl<MachineOperand> &Addr,
2945 const TargetRegisterClass *RC,
Dan Gohman91e69c32009-10-09 18:10:05 +00002946 MachineInstr::mmo_iterator MMOBegin,
2947 MachineInstr::mmo_iterator MMOEnd,
Owen Andersonf6372aa2008-01-01 21:11:32 +00002948 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002949 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2950 bool isAligned = MMOBegin != MMOEnd &&
2951 (*MMOBegin)->getAlignment() >= Alignment;
Dan Gohman4af325d2009-04-27 16:41:36 +00002952 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Chris Lattnerc7f3ace2010-04-02 20:16:16 +00002953 DebugLoc DL;
Dale Johannesen21b55412009-02-12 23:08:38 +00002954 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002955 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002956 MIB.addOperand(Addr[i]);
Dan Gohman91e69c32009-10-09 18:10:05 +00002957 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002958 NewMIs.push_back(MIB);
2959}
2960
Manman Ren2af66dc2012-07-06 17:36:20 +00002961bool X86InstrInfo::
2962analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
2963 int &CmpMask, int &CmpValue) const {
2964 switch (MI->getOpcode()) {
2965 default: break;
2966 case X86::CMP64ri32:
2967 case X86::CMP64ri8:
2968 case X86::CMP32ri:
2969 case X86::CMP32ri8:
2970 case X86::CMP16ri:
2971 case X86::CMP16ri8:
2972 case X86::CMP8ri:
2973 SrcReg = MI->getOperand(0).getReg();
2974 SrcReg2 = 0;
2975 CmpMask = ~0;
2976 CmpValue = MI->getOperand(1).getImm();
2977 return true;
Manman Ren39ad5682012-08-08 00:51:41 +00002978 // A SUB can be used to perform comparison.
2979 case X86::SUB64rm:
2980 case X86::SUB32rm:
2981 case X86::SUB16rm:
2982 case X86::SUB8rm:
2983 SrcReg = MI->getOperand(1).getReg();
2984 SrcReg2 = 0;
2985 CmpMask = ~0;
2986 CmpValue = 0;
2987 return true;
2988 case X86::SUB64rr:
2989 case X86::SUB32rr:
2990 case X86::SUB16rr:
2991 case X86::SUB8rr:
2992 SrcReg = MI->getOperand(1).getReg();
2993 SrcReg2 = MI->getOperand(2).getReg();
2994 CmpMask = ~0;
2995 CmpValue = 0;
2996 return true;
2997 case X86::SUB64ri32:
2998 case X86::SUB64ri8:
2999 case X86::SUB32ri:
3000 case X86::SUB32ri8:
3001 case X86::SUB16ri:
3002 case X86::SUB16ri8:
3003 case X86::SUB8ri:
3004 SrcReg = MI->getOperand(1).getReg();
3005 SrcReg2 = 0;
3006 CmpMask = ~0;
3007 CmpValue = MI->getOperand(2).getImm();
3008 return true;
Manman Ren2af66dc2012-07-06 17:36:20 +00003009 case X86::CMP64rr:
3010 case X86::CMP32rr:
3011 case X86::CMP16rr:
3012 case X86::CMP8rr:
3013 SrcReg = MI->getOperand(0).getReg();
3014 SrcReg2 = MI->getOperand(1).getReg();
3015 CmpMask = ~0;
3016 CmpValue = 0;
3017 return true;
Manman Ren62a89f52012-07-18 21:40:01 +00003018 case X86::TEST8rr:
3019 case X86::TEST16rr:
3020 case X86::TEST32rr:
3021 case X86::TEST64rr:
3022 SrcReg = MI->getOperand(0).getReg();
3023 if (MI->getOperand(1).getReg() != SrcReg) return false;
3024 // Compare against zero.
3025 SrcReg2 = 0;
3026 CmpMask = ~0;
3027 CmpValue = 0;
3028 return true;
Manman Ren2af66dc2012-07-06 17:36:20 +00003029 }
3030 return false;
3031}
3032
Manman Ren2af66dc2012-07-06 17:36:20 +00003033/// isRedundantFlagInstr - check whether the first instruction, whose only
3034/// purpose is to update flags, can be made redundant.
3035/// CMPrr can be made redundant by SUBrr if the operands are the same.
3036/// This function can be extended later on.
3037/// SrcReg, SrcRegs: register operands for FlagI.
3038/// ImmValue: immediate for FlagI if it takes an immediate.
3039inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
3040 unsigned SrcReg2, int ImmValue,
3041 MachineInstr *OI) {
3042 if (((FlagI->getOpcode() == X86::CMP64rr &&
3043 OI->getOpcode() == X86::SUB64rr) ||
3044 (FlagI->getOpcode() == X86::CMP32rr &&
3045 OI->getOpcode() == X86::SUB32rr)||
3046 (FlagI->getOpcode() == X86::CMP16rr &&
3047 OI->getOpcode() == X86::SUB16rr)||
3048 (FlagI->getOpcode() == X86::CMP8rr &&
3049 OI->getOpcode() == X86::SUB8rr)) &&
3050 ((OI->getOperand(1).getReg() == SrcReg &&
3051 OI->getOperand(2).getReg() == SrcReg2) ||
3052 (OI->getOperand(1).getReg() == SrcReg2 &&
3053 OI->getOperand(2).getReg() == SrcReg)))
3054 return true;
3055
3056 if (((FlagI->getOpcode() == X86::CMP64ri32 &&
3057 OI->getOpcode() == X86::SUB64ri32) ||
3058 (FlagI->getOpcode() == X86::CMP64ri8 &&
3059 OI->getOpcode() == X86::SUB64ri8) ||
3060 (FlagI->getOpcode() == X86::CMP32ri &&
3061 OI->getOpcode() == X86::SUB32ri) ||
3062 (FlagI->getOpcode() == X86::CMP32ri8 &&
3063 OI->getOpcode() == X86::SUB32ri8) ||
3064 (FlagI->getOpcode() == X86::CMP16ri &&
3065 OI->getOpcode() == X86::SUB16ri) ||
3066 (FlagI->getOpcode() == X86::CMP16ri8 &&
3067 OI->getOpcode() == X86::SUB16ri8) ||
3068 (FlagI->getOpcode() == X86::CMP8ri &&
3069 OI->getOpcode() == X86::SUB8ri)) &&
3070 OI->getOperand(1).getReg() == SrcReg &&
3071 OI->getOperand(2).getImm() == ImmValue)
3072 return true;
3073 return false;
3074}
3075
Manman Ren62a89f52012-07-18 21:40:01 +00003076/// isDefConvertible - check whether the definition can be converted
3077/// to remove a comparison against zero.
3078inline static bool isDefConvertible(MachineInstr *MI) {
3079 switch (MI->getOpcode()) {
3080 default: return false;
3081 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3082 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
3083 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
3084 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
3085 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
3086 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3087 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
3088 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
3089 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
3090 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
3091 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3092 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
3093 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
3094 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
3095 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
3096 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3097 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
3098 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
3099 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
3100 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
3101 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
3102 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
3103 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
3104 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
3105 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
3106 return true;
3107 }
3108}
3109
Manman Ren2af66dc2012-07-06 17:36:20 +00003110/// optimizeCompareInstr - Check if there exists an earlier instruction that
3111/// operates on the same source operands and sets flags in the same way as
3112/// Compare; remove Compare if possible.
3113bool X86InstrInfo::
3114optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
3115 int CmpMask, int CmpValue,
3116 const MachineRegisterInfo *MRI) const {
Manman Ren39ad5682012-08-08 00:51:41 +00003117 // Check whether we can replace SUB with CMP.
3118 unsigned NewOpcode = 0;
3119 switch (CmpInstr->getOpcode()) {
3120 default: break;
3121 case X86::SUB64ri32:
3122 case X86::SUB64ri8:
3123 case X86::SUB32ri:
3124 case X86::SUB32ri8:
3125 case X86::SUB16ri:
3126 case X86::SUB16ri8:
3127 case X86::SUB8ri:
3128 case X86::SUB64rm:
3129 case X86::SUB32rm:
3130 case X86::SUB16rm:
3131 case X86::SUB8rm:
3132 case X86::SUB64rr:
3133 case X86::SUB32rr:
3134 case X86::SUB16rr:
3135 case X86::SUB8rr: {
3136 if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
3137 return false;
3138 // There is no use of the destination register, we can replace SUB with CMP.
3139 switch (CmpInstr->getOpcode()) {
3140 default: llvm_unreachable(0);
3141 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
3142 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
3143 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
3144 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
3145 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
3146 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
3147 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
3148 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
3149 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3150 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
3151 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
3152 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
3153 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
3154 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
3155 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
3156 }
3157 CmpInstr->setDesc(get(NewOpcode));
3158 CmpInstr->RemoveOperand(0);
3159 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3160 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3161 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3162 return false;
3163 }
3164 }
3165
Manman Ren2af66dc2012-07-06 17:36:20 +00003166 // Get the unique definition of SrcReg.
3167 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3168 if (!MI) return false;
3169
3170 // CmpInstr is the first instruction of the BB.
3171 MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3172
Manman Ren62a89f52012-07-18 21:40:01 +00003173 // If we are comparing against zero, check whether we can use MI to update
3174 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3175 bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
3176 if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() ||
3177 !isDefConvertible(MI)))
3178 return false;
3179
Manman Ren2af66dc2012-07-06 17:36:20 +00003180 // We are searching for an earlier instruction that can make CmpInstr
3181 // redundant and that instruction will be saved in Sub.
3182 MachineInstr *Sub = NULL;
3183 const TargetRegisterInfo *TRI = &getRegisterInfo();
Manman Ren62093642012-07-09 18:57:12 +00003184
Manman Ren2af66dc2012-07-06 17:36:20 +00003185 // We iterate backward, starting from the instruction before CmpInstr and
3186 // stop when reaching the definition of a source register or done with the BB.
3187 // RI points to the instruction before CmpInstr.
3188 // If the definition is in this basic block, RE points to the definition;
3189 // otherwise, RE is the rend of the basic block.
3190 MachineBasicBlock::reverse_iterator
3191 RI = MachineBasicBlock::reverse_iterator(I),
3192 RE = CmpInstr->getParent() == MI->getParent() ?
3193 MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
3194 CmpInstr->getParent()->rend();
Manman Ren84ae7e92012-07-11 19:35:12 +00003195 MachineInstr *Movr0Inst = 0;
Manman Ren2af66dc2012-07-06 17:36:20 +00003196 for (; RI != RE; ++RI) {
3197 MachineInstr *Instr = &*RI;
3198 // Check whether CmpInstr can be made redundant by the current instruction.
Manman Ren62a89f52012-07-18 21:40:01 +00003199 if (!IsCmpZero &&
3200 isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
Manman Ren2af66dc2012-07-06 17:36:20 +00003201 Sub = Instr;
3202 break;
3203 }
3204
3205 if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
Manman Ren84ae7e92012-07-11 19:35:12 +00003206 Instr->readsRegister(X86::EFLAGS, TRI)) {
Manman Ren2af66dc2012-07-06 17:36:20 +00003207 // This instruction modifies or uses EFLAGS.
Manman Ren84ae7e92012-07-11 19:35:12 +00003208
3209 // MOV32r0 etc. are implemented with xor which clobbers condition code.
3210 // They are safe to move up, if the definition to EFLAGS is dead and
3211 // earlier instructions do not read or write EFLAGS.
3212 if (!Movr0Inst && (Instr->getOpcode() == X86::MOV8r0 ||
3213 Instr->getOpcode() == X86::MOV16r0 ||
3214 Instr->getOpcode() == X86::MOV32r0 ||
3215 Instr->getOpcode() == X86::MOV64r0) &&
3216 Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
3217 Movr0Inst = Instr;
3218 continue;
3219 }
3220
Manman Ren2af66dc2012-07-06 17:36:20 +00003221 // We can't remove CmpInstr.
3222 return false;
Manman Ren84ae7e92012-07-11 19:35:12 +00003223 }
Manman Ren2af66dc2012-07-06 17:36:20 +00003224 }
3225
3226 // Return false if no candidates exist.
Manman Ren62a89f52012-07-18 21:40:01 +00003227 if (!IsCmpZero && !Sub)
Manman Ren2af66dc2012-07-06 17:36:20 +00003228 return false;
3229
Manman Ren2d4215f2012-07-07 03:34:46 +00003230 bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3231 Sub->getOperand(2).getReg() == SrcReg);
3232
Manman Ren2af66dc2012-07-06 17:36:20 +00003233 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
Manman Ren2d4215f2012-07-07 03:34:46 +00003234 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3235 // If we are done with the basic block, we need to check whether EFLAGS is
3236 // live-out.
3237 bool IsSafe = false;
Manman Ren2af66dc2012-07-06 17:36:20 +00003238 SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
3239 MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
3240 for (++I; I != E; ++I) {
3241 const MachineInstr &Instr = *I;
Manman Ren43d9ab12012-07-28 03:15:46 +00003242 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3243 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3244 // We should check the usage if this instruction uses and updates EFLAGS.
3245 if (!UseEFLAGS && ModifyEFLAGS) {
Manman Ren2af66dc2012-07-06 17:36:20 +00003246 // It is safe to remove CmpInstr if EFLAGS is updated again.
Manman Ren2d4215f2012-07-07 03:34:46 +00003247 IsSafe = true;
Manman Ren2af66dc2012-07-06 17:36:20 +00003248 break;
Manman Ren2d4215f2012-07-07 03:34:46 +00003249 }
Manman Ren43d9ab12012-07-28 03:15:46 +00003250 if (!UseEFLAGS && !ModifyEFLAGS)
Manman Ren2af66dc2012-07-06 17:36:20 +00003251 continue;
3252
3253 // EFLAGS is used by this instruction.
Manman Ren62a89f52012-07-18 21:40:01 +00003254 X86::CondCode OldCC;
3255 bool OpcIsSET = false;
3256 if (IsCmpZero || IsSwapped) {
3257 // We decode the condition code from opcode.
Manman Ren62093642012-07-09 18:57:12 +00003258 if (Instr.isBranch())
3259 OldCC = getCondFromBranchOpc(Instr.getOpcode());
3260 else {
3261 OldCC = getCondFromSETOpc(Instr.getOpcode());
3262 if (OldCC != X86::COND_INVALID)
3263 OpcIsSET = true;
3264 else
3265 OldCC = getCondFromCMovOpc(Instr.getOpcode());
3266 }
3267 if (OldCC == X86::COND_INVALID) return false;
Manman Ren62a89f52012-07-18 21:40:01 +00003268 }
3269 if (IsCmpZero) {
3270 switch (OldCC) {
3271 default: break;
3272 case X86::COND_A: case X86::COND_AE:
3273 case X86::COND_B: case X86::COND_BE:
3274 case X86::COND_G: case X86::COND_GE:
3275 case X86::COND_L: case X86::COND_LE:
3276 case X86::COND_O: case X86::COND_NO:
3277 // CF and OF are used, we can't perform this optimization.
3278 return false;
3279 }
3280 } else if (IsSwapped) {
3281 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3282 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3283 // We swap the condition code and synthesize the new opcode.
Manman Ren62093642012-07-09 18:57:12 +00003284 X86::CondCode NewCC = getSwappedCondition(OldCC);
3285 if (NewCC == X86::COND_INVALID) return false;
3286
3287 // Synthesize the new opcode.
3288 bool HasMemoryOperand = Instr.hasOneMemOperand();
3289 unsigned NewOpc;
3290 if (Instr.isBranch())
3291 NewOpc = GetCondBranchFromCond(NewCC);
3292 else if(OpcIsSET)
3293 NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
3294 else {
3295 unsigned DstReg = Instr.getOperand(0).getReg();
3296 NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
3297 HasMemoryOperand);
3298 }
Manman Ren2af66dc2012-07-06 17:36:20 +00003299
3300 // Push the MachineInstr to OpsToUpdate.
3301 // If it is safe to remove CmpInstr, the condition code of these
3302 // instructions will be modified.
3303 OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
3304 }
Manman Ren43d9ab12012-07-28 03:15:46 +00003305 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3306 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
Manman Ren2d4215f2012-07-07 03:34:46 +00003307 IsSafe = true;
3308 break;
3309 }
3310 }
3311
3312 // If EFLAGS is not killed nor re-defined, we should check whether it is
3313 // live-out. If it is live-out, do not optimize.
Manman Ren62a89f52012-07-18 21:40:01 +00003314 if ((IsCmpZero || IsSwapped) && !IsSafe) {
Manman Ren2d4215f2012-07-07 03:34:46 +00003315 MachineBasicBlock *MBB = CmpInstr->getParent();
3316 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3317 SE = MBB->succ_end(); SI != SE; ++SI)
3318 if ((*SI)->isLiveIn(X86::EFLAGS))
3319 return false;
Manman Ren2af66dc2012-07-06 17:36:20 +00003320 }
3321
Manman Ren62a89f52012-07-18 21:40:01 +00003322 // The instruction to be updated is either Sub or MI.
3323 Sub = IsCmpZero ? MI : Sub;
Manman Ren84ae7e92012-07-11 19:35:12 +00003324 // Move Movr0Inst to the place right before Sub.
3325 if (Movr0Inst) {
3326 Sub->getParent()->remove(Movr0Inst);
3327 Sub->getParent()->insert(MachineBasicBlock::iterator(Sub), Movr0Inst);
3328 }
3329
Manman Ren2af66dc2012-07-06 17:36:20 +00003330 // Make sure Sub instruction defines EFLAGS.
Manman Ren62a89f52012-07-18 21:40:01 +00003331 assert(Sub->getNumOperands() >= 2 &&
3332 Sub->getOperand(Sub->getNumOperands()-1).isReg() &&
3333 Sub->getOperand(Sub->getNumOperands()-1).getReg() == X86::EFLAGS &&
3334 "EFLAGS should be the last operand of SUB, ADD, OR, XOR, AND");
3335 Sub->getOperand(Sub->getNumOperands()-1).setIsDef(true);
Manman Ren2af66dc2012-07-06 17:36:20 +00003336 CmpInstr->eraseFromParent();
3337
3338 // Modify the condition code of instructions in OpsToUpdate.
3339 for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
3340 OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
3341 return true;
3342}
3343
Manman Rend7d003c2012-08-02 00:56:42 +00003344/// optimizeLoadInstr - Try to remove the load by folding it to a register
3345/// operand at the use. We fold the load instructions if load defines a virtual
3346/// register, the virtual register is used once in the same BB, and the
3347/// instructions in-between do not load or store, and have no side effects.
3348MachineInstr* X86InstrInfo::
3349optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
3350 unsigned &FoldAsLoadDefReg,
3351 MachineInstr *&DefMI) const {
3352 if (FoldAsLoadDefReg == 0)
3353 return 0;
3354 // To be conservative, if there exists another load, clear the load candidate.
3355 if (MI->mayLoad()) {
3356 FoldAsLoadDefReg = 0;
3357 return 0;
3358 }
3359
3360 // Check whether we can move DefMI here.
3361 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3362 assert(DefMI);
3363 bool SawStore = false;
3364 if (!DefMI->isSafeToMove(this, 0, SawStore))
3365 return 0;
3366
3367 // We try to commute MI if possible.
3368 unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
3369 for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
3370 // Collect information about virtual register operands of MI.
3371 unsigned SrcOperandId = 0;
3372 bool FoundSrcOperand = false;
3373 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
3374 MachineOperand &MO = MI->getOperand(i);
3375 if (!MO.isReg())
3376 continue;
3377 unsigned Reg = MO.getReg();
3378 if (Reg != FoldAsLoadDefReg)
3379 continue;
3380 // Do not fold if we have a subreg use or a def or multiple uses.
3381 if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
3382 return 0;
3383
3384 SrcOperandId = i;
3385 FoundSrcOperand = true;
3386 }
3387 if (!FoundSrcOperand) return 0;
3388
3389 // Check whether we can fold the def into SrcOperandId.
3390 SmallVector<unsigned, 8> Ops;
3391 Ops.push_back(SrcOperandId);
3392 MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
3393 if (FoldMI) {
3394 FoldAsLoadDefReg = 0;
3395 return FoldMI;
3396 }
3397
3398 if (Idx == 1) {
3399 // MI was changed but it didn't help, commute it back!
3400 commuteInstruction(MI, false);
3401 return 0;
3402 }
3403
3404 // Check whether we can commute MI and enable folding.
3405 if (MI->isCommutable()) {
3406 MachineInstr *NewMI = commuteInstruction(MI, false);
3407 // Unable to commute.
3408 if (!NewMI) return 0;
3409 if (NewMI != MI) {
3410 // New instruction. It doesn't need to be kept.
3411 NewMI->eraseFromParent();
3412 return 0;
3413 }
3414 }
3415 }
3416 return 0;
3417}
3418
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00003419/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
3420/// instruction with two undef reads of the register being defined. This is
3421/// used for mapping:
3422/// %xmm4 = V_SET0
3423/// to:
3424/// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
3425///
3426static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) {
3427 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3428 unsigned Reg = MI->getOperand(0).getReg();
3429 MI->setDesc(Desc);
3430
3431 // MachineInstr::addOperand() will insert explicit operands before any
3432 // implicit operands.
3433 MachineInstrBuilder(MI).addReg(Reg, RegState::Undef)
3434 .addReg(Reg, RegState::Undef);
3435 // But we don't trust that.
3436 assert(MI->getOperand(1).getReg() == Reg &&
3437 MI->getOperand(2).getReg() == Reg && "Misplaced operand");
3438 return true;
3439}
3440
3441bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
3442 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
3443 switch (MI->getOpcode()) {
3444 case X86::V_SET0:
Jakob Stoklund Olesen0edd83b2011-11-29 22:27:25 +00003445 case X86::FsFLD0SS:
3446 case X86::FsFLD0SD:
Jakob Stoklund Olesen3e5d5c52011-11-07 19:15:58 +00003447 return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
Jakob Stoklund Olesened744822011-10-08 18:28:28 +00003448 case X86::TEST8ri_NOREX:
3449 MI->setDesc(get(X86::TEST8ri));
3450 return true;
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00003451 }
3452 return false;
3453}
3454
Evan Cheng962021b2010-04-26 07:38:55 +00003455MachineInstr*
3456X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
Evan Cheng8601a3d2010-04-29 01:13:30 +00003457 int FrameIx, uint64_t Offset,
Evan Cheng962021b2010-04-26 07:38:55 +00003458 const MDNode *MDPtr,
3459 DebugLoc DL) const {
Evan Cheng962021b2010-04-26 07:38:55 +00003460 X86AddressMode AM;
3461 AM.BaseType = X86AddressMode::FrameIndexBase;
3462 AM.Base.FrameIndex = FrameIx;
3463 MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
3464 addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
3465 return &*MIB;
3466}
3467
Dan Gohman8e5f2c62008-07-07 23:14:23 +00003468static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmand68a0762009-01-05 17:59:02 +00003469 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendling9bc96a52009-02-03 00:55:04 +00003470 MachineInstr *MI,
3471 const TargetInstrInfo &TII) {
Owen Anderson43dbe052008-01-07 01:35:02 +00003472 // Create the base instruction with the memory operand as the first part.
Bill Wendling9bc96a52009-02-03 00:55:04 +00003473 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
3474 MI->getDebugLoc(), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00003475 MachineInstrBuilder MIB(NewMI);
3476 unsigned NumAddrOps = MOs.size();
3477 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00003478 MIB.addOperand(MOs[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00003479 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola094fad32009-04-08 21:14:34 +00003480 addOffset(MIB, 0);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003481
Owen Anderson43dbe052008-01-07 01:35:02 +00003482 // Loop over the rest of the ri operands, converting them over.
Chris Lattner749c6f62008-01-07 07:27:27 +00003483 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson43dbe052008-01-07 01:35:02 +00003484 for (unsigned i = 0; i != NumOps; ++i) {
3485 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohman97357612009-02-18 05:45:50 +00003486 MIB.addOperand(MO);
Owen Anderson43dbe052008-01-07 01:35:02 +00003487 }
3488 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
3489 MachineOperand &MO = MI->getOperand(i);
Dan Gohman97357612009-02-18 05:45:50 +00003490 MIB.addOperand(MO);
Owen Anderson43dbe052008-01-07 01:35:02 +00003491 }
3492 return MIB;
3493}
3494
Dan Gohman8e5f2c62008-07-07 23:14:23 +00003495static MachineInstr *FuseInst(MachineFunction &MF,
3496 unsigned Opcode, unsigned OpNo,
Dan Gohmand68a0762009-01-05 17:59:02 +00003497 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00003498 MachineInstr *MI, const TargetInstrInfo &TII) {
Bill Wendling9bc96a52009-02-03 00:55:04 +00003499 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
3500 MI->getDebugLoc(), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00003501 MachineInstrBuilder MIB(NewMI);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003502
Owen Anderson43dbe052008-01-07 01:35:02 +00003503 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
3504 MachineOperand &MO = MI->getOperand(i);
3505 if (i == OpNo) {
Dan Gohmand735b802008-10-03 15:45:36 +00003506 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson43dbe052008-01-07 01:35:02 +00003507 unsigned NumAddrOps = MOs.size();
3508 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00003509 MIB.addOperand(MOs[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00003510 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola094fad32009-04-08 21:14:34 +00003511 addOffset(MIB, 0);
Owen Anderson43dbe052008-01-07 01:35:02 +00003512 } else {
Dan Gohman97357612009-02-18 05:45:50 +00003513 MIB.addOperand(MO);
Owen Anderson43dbe052008-01-07 01:35:02 +00003514 }
3515 }
3516 return MIB;
3517}
3518
3519static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmand68a0762009-01-05 17:59:02 +00003520 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00003521 MachineInstr *MI) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00003522 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendlingfbef3102009-02-11 21:51:19 +00003523 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson43dbe052008-01-07 01:35:02 +00003524
3525 unsigned NumAddrOps = MOs.size();
3526 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00003527 MIB.addOperand(MOs[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00003528 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola094fad32009-04-08 21:14:34 +00003529 addOffset(MIB, 0);
Owen Anderson43dbe052008-01-07 01:35:02 +00003530 return MIB.addImm(0);
3531}
3532
3533MachineInstr*
Dan Gohmanc54baa22008-12-03 18:43:12 +00003534X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
3535 MachineInstr *MI, unsigned i,
Evan Chengf9b36f02009-07-15 06:10:07 +00003536 const SmallVectorImpl<MachineOperand> &MOs,
Evan Cheng9cef48e2009-09-11 00:39:26 +00003537 unsigned Size, unsigned Align) const {
Chris Lattner45a1cb22010-10-07 23:08:41 +00003538 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
Owen Anderson43dbe052008-01-07 01:35:02 +00003539 bool isTwoAddrFold = false;
Chris Lattner749c6f62008-01-07 07:27:27 +00003540 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00003541 bool isTwoAddr = NumOps > 1 &&
Evan Chenge837dea2011-06-28 19:10:37 +00003542 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00003543
Jakob Stoklund Olesen60045c22011-04-30 23:00:05 +00003544 // FIXME: AsmPrinter doesn't know how to handle
3545 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
3546 if (MI->getOpcode() == X86::ADD32ri &&
3547 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
3548 return NULL;
3549
Owen Anderson43dbe052008-01-07 01:35:02 +00003550 MachineInstr *NewMI = NULL;
3551 // Folding a memory location into the two-address part of a two-address
3552 // instruction is different than folding it other places. It requires
3553 // replacing the *two* registers with the memory location.
3554 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmand735b802008-10-03 15:45:36 +00003555 MI->getOperand(0).isReg() &&
3556 MI->getOperand(1).isReg() &&
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003557 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
Owen Anderson43dbe052008-01-07 01:35:02 +00003558 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
3559 isTwoAddrFold = true;
3560 } else if (i == 0) { // If operand 0
Dan Gohmanf1b4d262010-01-12 04:42:54 +00003561 if (MI->getOpcode() == X86::MOV64r0)
3562 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
3563 else if (MI->getOpcode() == X86::MOV32r0)
Owen Anderson43dbe052008-01-07 01:35:02 +00003564 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
Dan Gohmanf1b4d262010-01-12 04:42:54 +00003565 else if (MI->getOpcode() == X86::MOV16r0)
3566 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
Owen Anderson43dbe052008-01-07 01:35:02 +00003567 else if (MI->getOpcode() == X86::MOV8r0)
3568 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Cheng9f1c8312008-07-03 09:09:37 +00003569 if (NewMI)
Owen Anderson43dbe052008-01-07 01:35:02 +00003570 return NewMI;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003571
Owen Anderson43dbe052008-01-07 01:35:02 +00003572 OpcodeTablePtr = &RegOp2MemOpTable0;
3573 } else if (i == 1) {
3574 OpcodeTablePtr = &RegOp2MemOpTable1;
3575 } else if (i == 2) {
3576 OpcodeTablePtr = &RegOp2MemOpTable2;
Elena Demikhovsky1503aba2012-08-01 12:06:00 +00003577 } else if (i == 3) {
3578 OpcodeTablePtr = &RegOp2MemOpTable3;
Owen Anderson43dbe052008-01-07 01:35:02 +00003579 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003580
Owen Anderson43dbe052008-01-07 01:35:02 +00003581 // If table selected...
3582 if (OpcodeTablePtr) {
3583 // Find the Opcode to fuse
Chris Lattner45a1cb22010-10-07 23:08:41 +00003584 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3585 OpcodeTablePtr->find(MI->getOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00003586 if (I != OpcodeTablePtr->end()) {
Evan Cheng9cef48e2009-09-11 00:39:26 +00003587 unsigned Opcode = I->second.first;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00003588 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
Evan Chengf9b36f02009-07-15 06:10:07 +00003589 if (Align < MinAlign)
3590 return NULL;
Evan Cheng879caea2009-09-11 01:01:31 +00003591 bool NarrowToMOV32rm = false;
Evan Cheng9cef48e2009-09-11 00:39:26 +00003592 if (Size) {
Jakob Stoklund Olesen397fc482012-05-07 22:10:26 +00003593 unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
Evan Cheng9cef48e2009-09-11 00:39:26 +00003594 if (Size < RCSize) {
3595 // Check if it's safe to fold the load. If the size of the object is
3596 // narrower than the load width, then it's not.
3597 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
3598 return NULL;
3599 // If this is a 64-bit load, but the spill slot is 32, then we can do
3600 // a 32-bit load which is implicitly zero-extended. This likely is due
3601 // to liveintervalanalysis remat'ing a load from stack slot.
Evan Cheng879caea2009-09-11 01:01:31 +00003602 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
3603 return NULL;
Evan Cheng9cef48e2009-09-11 00:39:26 +00003604 Opcode = X86::MOV32rm;
Evan Cheng879caea2009-09-11 01:01:31 +00003605 NarrowToMOV32rm = true;
Evan Cheng9cef48e2009-09-11 00:39:26 +00003606 }
3607 }
3608
Owen Anderson43dbe052008-01-07 01:35:02 +00003609 if (isTwoAddrFold)
Evan Cheng9cef48e2009-09-11 00:39:26 +00003610 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
Owen Anderson43dbe052008-01-07 01:35:02 +00003611 else
Evan Cheng9cef48e2009-09-11 00:39:26 +00003612 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
Evan Cheng879caea2009-09-11 01:01:31 +00003613
3614 if (NarrowToMOV32rm) {
3615 // If this is the special case where we use a MOV32rm to load a 32-bit
3616 // value and zero-extend the top bits. Change the destination register
3617 // to a 32-bit one.
3618 unsigned DstReg = NewMI->getOperand(0).getReg();
3619 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
3620 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
Jakob Stoklund Olesen3458e9e2010-05-24 14:48:17 +00003621 X86::sub_32bit));
Evan Cheng879caea2009-09-11 01:01:31 +00003622 else
Jakob Stoklund Olesen3458e9e2010-05-24 14:48:17 +00003623 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
Evan Cheng879caea2009-09-11 01:01:31 +00003624 }
Owen Anderson43dbe052008-01-07 01:35:02 +00003625 return NewMI;
3626 }
3627 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003628
3629 // No fusion
Jakob Stoklund Olesen9c50e8b2010-07-09 20:43:09 +00003630 if (PrintFailedFusing && !MI->isCopy())
David Greene5b901322010-01-05 01:29:29 +00003631 dbgs() << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson43dbe052008-01-07 01:35:02 +00003632 return NULL;
3633}
3634
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00003635/// hasPartialRegUpdate - Return true for all instructions that only update
3636/// the first 32 or 64-bits of the destination register and leave the rest
3637/// unmodified. This can be used to avoid folding loads if the instructions
3638/// only update part of the destination register, and the non-updated part is
3639/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
3640/// instructions breaks the partial register dependency and it can improve
3641/// performance. e.g.:
3642///
3643/// movss (%rdi), %xmm0
3644/// cvtss2sd %xmm0, %xmm0
3645///
3646/// Instead of
3647/// cvtss2sd (%rdi), %xmm0
3648///
Bruno Cardoso Lopes6b5b79c2011-09-15 23:04:24 +00003649/// FIXME: This should be turned into a TSFlags.
3650///
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00003651static bool hasPartialRegUpdate(unsigned Opcode) {
3652 switch (Opcode) {
Jakob Stoklund Olesenc2ecf3e2011-11-15 01:15:30 +00003653 case X86::CVTSI2SSrr:
3654 case X86::CVTSI2SS64rr:
3655 case X86::CVTSI2SDrr:
3656 case X86::CVTSI2SD64rr:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00003657 case X86::CVTSD2SSrr:
3658 case X86::Int_CVTSD2SSrr:
3659 case X86::CVTSS2SDrr:
3660 case X86::Int_CVTSS2SDrr:
3661 case X86::RCPSSr:
3662 case X86::RCPSSr_Int:
3663 case X86::ROUNDSDr:
Benjamin Kramera73fb9a2011-12-09 15:43:55 +00003664 case X86::ROUNDSDr_Int:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00003665 case X86::ROUNDSSr:
Benjamin Kramera73fb9a2011-12-09 15:43:55 +00003666 case X86::ROUNDSSr_Int:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00003667 case X86::RSQRTSSr:
3668 case X86::RSQRTSSr_Int:
3669 case X86::SQRTSSr:
3670 case X86::SQRTSSr_Int:
3671 // AVX encoded versions
3672 case X86::VCVTSD2SSrr:
3673 case X86::Int_VCVTSD2SSrr:
3674 case X86::VCVTSS2SDrr:
3675 case X86::Int_VCVTSS2SDrr:
3676 case X86::VRCPSSr:
3677 case X86::VROUNDSDr:
Benjamin Kramera73fb9a2011-12-09 15:43:55 +00003678 case X86::VROUNDSDr_Int:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00003679 case X86::VROUNDSSr:
Benjamin Kramera73fb9a2011-12-09 15:43:55 +00003680 case X86::VROUNDSSr_Int:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00003681 case X86::VRSQRTSSr:
3682 case X86::VSQRTSSr:
3683 return true;
3684 }
3685
3686 return false;
3687}
Owen Anderson43dbe052008-01-07 01:35:02 +00003688
Jakob Stoklund Olesenc2ecf3e2011-11-15 01:15:30 +00003689/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
3690/// instructions we would like before a partial register update.
3691unsigned X86InstrInfo::
3692getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
3693 const TargetRegisterInfo *TRI) const {
3694 if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
3695 return 0;
3696
3697 // If MI is marked as reading Reg, the partial register update is wanted.
3698 const MachineOperand &MO = MI->getOperand(0);
3699 unsigned Reg = MO.getReg();
3700 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
3701 if (MO.readsReg() || MI->readsVirtualRegister(Reg))
3702 return 0;
3703 } else {
3704 if (MI->readsRegister(Reg, TRI))
3705 return 0;
3706 }
3707
3708 // If any of the preceding 16 instructions are reading Reg, insert a
3709 // dependency breaking instruction. The magic number is based on a few
3710 // Nehalem experiments.
3711 return 16;
3712}
3713
3714void X86InstrInfo::
3715breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
3716 const TargetRegisterInfo *TRI) const {
3717 unsigned Reg = MI->getOperand(OpNum).getReg();
3718 if (X86::VR128RegClass.contains(Reg)) {
3719 // These instructions are all floating point domain, so xorps is the best
3720 // choice.
3721 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
3722 unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
3723 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
3724 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3725 } else if (X86::VR256RegClass.contains(Reg)) {
3726 // Use vxorps to clear the full ymm register.
3727 // It wants to read and write the xmm sub-register.
3728 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
3729 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
3730 .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
3731 .addReg(Reg, RegState::ImplicitDefine);
3732 } else
3733 return;
3734 MI->addRegisterKilled(Reg, TRI, true);
3735}
3736
Dan Gohmanc54baa22008-12-03 18:43:12 +00003737MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
3738 MachineInstr *MI,
Evan Chengf9b36f02009-07-15 06:10:07 +00003739 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanc54baa22008-12-03 18:43:12 +00003740 int FrameIndex) const {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003741 // Check switch flag
Owen Anderson43dbe052008-01-07 01:35:02 +00003742 if (NoFusing) return NULL;
3743
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00003744 // Unless optimizing for size, don't fold to avoid partial
3745 // register update stalls
3746 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
3747 hasPartialRegUpdate(MI->getOpcode()))
3748 return 0;
Evan Cheng400073d2009-12-18 07:40:29 +00003749
Evan Cheng5fd79d02008-02-08 21:20:40 +00003750 const MachineFrameInfo *MFI = MF.getFrameInfo();
Evan Cheng9cef48e2009-09-11 00:39:26 +00003751 unsigned Size = MFI->getObjectSize(FrameIndex);
Evan Cheng5fd79d02008-02-08 21:20:40 +00003752 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
Owen Anderson43dbe052008-01-07 01:35:02 +00003753 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3754 unsigned NewOpc = 0;
Evan Cheng9cef48e2009-09-11 00:39:26 +00003755 unsigned RCSize = 0;
Owen Anderson43dbe052008-01-07 01:35:02 +00003756 switch (MI->getOpcode()) {
3757 default: return NULL;
Evan Cheng9cef48e2009-09-11 00:39:26 +00003758 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
Dan Gohmane5efbaf2010-05-18 21:42:03 +00003759 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
3760 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
3761 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
Owen Anderson43dbe052008-01-07 01:35:02 +00003762 }
Evan Cheng9cef48e2009-09-11 00:39:26 +00003763 // Check if it's safe to fold the load. If the size of the object is
3764 // narrower than the load width, then it's not.
3765 if (Size < RCSize)
3766 return NULL;
Owen Anderson43dbe052008-01-07 01:35:02 +00003767 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00003768 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00003769 MI->getOperand(1).ChangeToImmediate(0);
3770 } else if (Ops.size() != 1)
3771 return NULL;
3772
3773 SmallVector<MachineOperand,4> MOs;
3774 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Evan Cheng9cef48e2009-09-11 00:39:26 +00003775 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
Owen Anderson43dbe052008-01-07 01:35:02 +00003776}
3777
Dan Gohmanc54baa22008-12-03 18:43:12 +00003778MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
3779 MachineInstr *MI,
Evan Chengf9b36f02009-07-15 06:10:07 +00003780 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanc54baa22008-12-03 18:43:12 +00003781 MachineInstr *LoadMI) const {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003782 // Check switch flag
Owen Anderson43dbe052008-01-07 01:35:02 +00003783 if (NoFusing) return NULL;
3784
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00003785 // Unless optimizing for size, don't fold to avoid partial
3786 // register update stalls
3787 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
3788 hasPartialRegUpdate(MI->getOpcode()))
3789 return 0;
Evan Cheng400073d2009-12-18 07:40:29 +00003790
Dan Gohmancddc11e2008-07-12 00:10:52 +00003791 // Determine the alignment of the load.
Evan Cheng5fd79d02008-02-08 21:20:40 +00003792 unsigned Alignment = 0;
Dan Gohmancddc11e2008-07-12 00:10:52 +00003793 if (LoadMI->hasOneMemOperand())
Dan Gohmanc76909a2009-09-25 20:36:54 +00003794 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003795 else
3796 switch (LoadMI->getOpcode()) {
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003797 case X86::AVX_SET0PSY:
3798 case X86::AVX_SET0PDY:
Craig Topper745a86b2011-11-19 22:34:59 +00003799 case X86::AVX2_SETALLONES:
Craig Topper12216172012-01-13 08:12:35 +00003800 case X86::AVX2_SET0:
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003801 Alignment = 32;
3802 break;
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00003803 case X86::V_SET0:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003804 case X86::V_SETALLONES:
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00003805 case X86::AVX_SETALLONES:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003806 Alignment = 16;
3807 break;
3808 case X86::FsFLD0SD:
3809 Alignment = 8;
3810 break;
3811 case X86::FsFLD0SS:
3812 Alignment = 4;
3813 break;
3814 default:
Eli Friedmanbe5cbaa2011-06-10 01:13:01 +00003815 return 0;
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003816 }
Owen Anderson43dbe052008-01-07 01:35:02 +00003817 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3818 unsigned NewOpc = 0;
3819 switch (MI->getOpcode()) {
3820 default: return NULL;
3821 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003822 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
3823 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
3824 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
Owen Anderson43dbe052008-01-07 01:35:02 +00003825 }
3826 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00003827 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00003828 MI->getOperand(1).ChangeToImmediate(0);
3829 } else if (Ops.size() != 1)
3830 return NULL;
3831
Jakob Stoklund Olesend29583b2010-08-11 23:08:22 +00003832 // Make sure the subregisters match.
3833 // Otherwise we risk changing the size of the load.
3834 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
3835 return NULL;
3836
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003837 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003838 switch (LoadMI->getOpcode()) {
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00003839 case X86::V_SET0:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003840 case X86::V_SETALLONES:
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003841 case X86::AVX_SET0PSY:
3842 case X86::AVX_SET0PDY:
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00003843 case X86::AVX_SETALLONES:
Craig Topper745a86b2011-11-19 22:34:59 +00003844 case X86::AVX2_SETALLONES:
Craig Topper12216172012-01-13 08:12:35 +00003845 case X86::AVX2_SET0:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003846 case X86::FsFLD0SD:
Jakob Stoklund Olesen0edd83b2011-11-29 22:27:25 +00003847 case X86::FsFLD0SS: {
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00003848 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
Dan Gohman62c939d2008-12-03 05:21:24 +00003849 // Create a constant-pool entry and operands to load from it.
3850
Dan Gohman81d0c362010-03-09 03:01:40 +00003851 // Medium and large mode can't fold loads this way.
3852 if (TM.getCodeModel() != CodeModel::Small &&
3853 TM.getCodeModel() != CodeModel::Kernel)
3854 return NULL;
3855
Dan Gohman62c939d2008-12-03 05:21:24 +00003856 // x86-32 PIC requires a PIC base register for constant pools.
3857 unsigned PICBase = 0;
Jakob Stoklund Olesen93e55de2009-07-16 21:24:13 +00003858 if (TM.getRelocationModel() == Reloc::PIC_) {
Evan Cheng2b48ab92009-07-16 18:44:05 +00003859 if (TM.getSubtarget<X86Subtarget>().is64Bit())
3860 PICBase = X86::RIP;
Jakob Stoklund Olesen93e55de2009-07-16 21:24:13 +00003861 else
Dan Gohman84023e02010-07-10 09:00:22 +00003862 // FIXME: PICBase = getGlobalBaseReg(&MF);
Evan Cheng2b48ab92009-07-16 18:44:05 +00003863 // This doesn't work for several reasons.
3864 // 1. GlobalBaseReg may have been spilled.
3865 // 2. It may not be live at MI.
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003866 return NULL;
Jakob Stoklund Olesen93e55de2009-07-16 21:24:13 +00003867 }
Dan Gohman62c939d2008-12-03 05:21:24 +00003868
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003869 // Create a constant-pool entry.
Dan Gohman62c939d2008-12-03 05:21:24 +00003870 MachineConstantPool &MCP = *MF.getConstantPool();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003871 Type *Ty;
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003872 unsigned Opc = LoadMI->getOpcode();
Jakob Stoklund Olesen0edd83b2011-11-29 22:27:25 +00003873 if (Opc == X86::FsFLD0SS)
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003874 Ty = Type::getFloatTy(MF.getFunction()->getContext());
Jakob Stoklund Olesen0edd83b2011-11-29 22:27:25 +00003875 else if (Opc == X86::FsFLD0SD)
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003876 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003877 else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
3878 Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
Craig Topper12216172012-01-13 08:12:35 +00003879 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX2_SET0)
Craig Topperb9c7f652012-01-13 06:12:41 +00003880 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003881 else
3882 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00003883
Craig Topper745a86b2011-11-19 22:34:59 +00003884 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES ||
3885 Opc == X86::AVX2_SETALLONES);
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00003886 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
3887 Constant::getNullValue(Ty);
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003888 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
Dan Gohman62c939d2008-12-03 05:21:24 +00003889
3890 // Create operands to load from the constant pool entry.
3891 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
3892 MOs.push_back(MachineOperand::CreateImm(1));
3893 MOs.push_back(MachineOperand::CreateReg(0, false));
3894 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindola094fad32009-04-08 21:14:34 +00003895 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003896 break;
3897 }
3898 default: {
Dan Gohman62c939d2008-12-03 05:21:24 +00003899 // Folding a normal load. Just copy the load's address operands.
3900 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003901 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
Dan Gohman62c939d2008-12-03 05:21:24 +00003902 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003903 break;
3904 }
Dan Gohman62c939d2008-12-03 05:21:24 +00003905 }
Evan Cheng9cef48e2009-09-11 00:39:26 +00003906 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
Owen Anderson43dbe052008-01-07 01:35:02 +00003907}
3908
3909
Dan Gohman8e8b8a22008-10-16 01:49:15 +00003910bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
3911 const SmallVectorImpl<unsigned> &Ops) const {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003912 // Check switch flag
Owen Anderson43dbe052008-01-07 01:35:02 +00003913 if (NoFusing) return 0;
3914
3915 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3916 switch (MI->getOpcode()) {
3917 default: return false;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003918 case X86::TEST8rr:
Owen Anderson43dbe052008-01-07 01:35:02 +00003919 case X86::TEST16rr:
3920 case X86::TEST32rr:
3921 case X86::TEST64rr:
3922 return true;
Jakob Stoklund Olesen60045c22011-04-30 23:00:05 +00003923 case X86::ADD32ri:
3924 // FIXME: AsmPrinter doesn't know how to handle
3925 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
3926 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
3927 return false;
3928 break;
Owen Anderson43dbe052008-01-07 01:35:02 +00003929 }
3930 }
3931
3932 if (Ops.size() != 1)
3933 return false;
3934
3935 unsigned OpNum = Ops[0];
3936 unsigned Opc = MI->getOpcode();
Chris Lattner749c6f62008-01-07 07:27:27 +00003937 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00003938 bool isTwoAddr = NumOps > 1 &&
Evan Chenge837dea2011-06-28 19:10:37 +00003939 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00003940
3941 // Folding a memory location into the two-address part of a two-address
3942 // instruction is different than folding it other places. It requires
3943 // replacing the *two* registers with the memory location.
Chris Lattner45a1cb22010-10-07 23:08:41 +00003944 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003945 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
Owen Anderson43dbe052008-01-07 01:35:02 +00003946 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
3947 } else if (OpNum == 0) { // If operand 0
3948 switch (Opc) {
Chris Lattner9ac75422009-07-14 20:19:57 +00003949 case X86::MOV8r0:
Dan Gohmanf1b4d262010-01-12 04:42:54 +00003950 case X86::MOV16r0:
Owen Anderson43dbe052008-01-07 01:35:02 +00003951 case X86::MOV32r0:
Chris Lattner45a1cb22010-10-07 23:08:41 +00003952 case X86::MOV64r0: return true;
Owen Anderson43dbe052008-01-07 01:35:02 +00003953 default: break;
3954 }
3955 OpcodeTablePtr = &RegOp2MemOpTable0;
3956 } else if (OpNum == 1) {
3957 OpcodeTablePtr = &RegOp2MemOpTable1;
3958 } else if (OpNum == 2) {
3959 OpcodeTablePtr = &RegOp2MemOpTable2;
3960 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003961
Chris Lattner99ae6652010-10-08 03:54:52 +00003962 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
3963 return true;
Jakob Stoklund Olesen1f323402010-07-09 20:43:13 +00003964 return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
Owen Anderson43dbe052008-01-07 01:35:02 +00003965}
3966
3967bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
3968 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendlingfbef3102009-02-11 21:51:19 +00003969 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Chris Lattner45a1cb22010-10-07 23:08:41 +00003970 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3971 MemOp2RegOpTable.find(MI->getOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00003972 if (I == MemOp2RegOpTable.end())
3973 return false;
3974 unsigned Opc = I->second.first;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00003975 unsigned Index = I->second.second & TB_INDEX_MASK;
3976 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3977 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Owen Anderson43dbe052008-01-07 01:35:02 +00003978 if (UnfoldLoad && !FoldedLoad)
3979 return false;
3980 UnfoldLoad &= FoldedLoad;
3981 if (UnfoldStore && !FoldedStore)
3982 return false;
3983 UnfoldStore &= FoldedStore;
3984
Evan Chenge837dea2011-06-28 19:10:37 +00003985 const MCInstrDesc &MCID = get(Opc);
Jakob Stoklund Olesen397fc482012-05-07 22:10:26 +00003986 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
Evan Cheng98ec91e2010-07-02 20:36:18 +00003987 if (!MI->hasOneMemOperand() &&
3988 RC == &X86::VR128RegClass &&
3989 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3990 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
3991 // conservatively assume the address is unaligned. That's bad for
3992 // performance.
3993 return false;
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003994 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
Owen Anderson43dbe052008-01-07 01:35:02 +00003995 SmallVector<MachineOperand,2> BeforeOps;
3996 SmallVector<MachineOperand,2> AfterOps;
3997 SmallVector<MachineOperand,4> ImpOps;
3998 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
3999 MachineOperand &Op = MI->getOperand(i);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00004000 if (i >= Index && i < Index + X86::AddrNumOperands)
Owen Anderson43dbe052008-01-07 01:35:02 +00004001 AddrOps.push_back(Op);
Dan Gohmand735b802008-10-03 15:45:36 +00004002 else if (Op.isReg() && Op.isImplicit())
Owen Anderson43dbe052008-01-07 01:35:02 +00004003 ImpOps.push_back(Op);
4004 else if (i < Index)
4005 BeforeOps.push_back(Op);
4006 else if (i > Index)
4007 AfterOps.push_back(Op);
4008 }
4009
4010 // Emit the load instruction.
4011 if (UnfoldLoad) {
Dan Gohman91e69c32009-10-09 18:10:05 +00004012 std::pair<MachineInstr::mmo_iterator,
4013 MachineInstr::mmo_iterator> MMOs =
4014 MF.extractLoadMemRefs(MI->memoperands_begin(),
4015 MI->memoperands_end());
4016 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson43dbe052008-01-07 01:35:02 +00004017 if (UnfoldStore) {
4018 // Address operands cannot be marked isKill.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00004019 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
Owen Anderson43dbe052008-01-07 01:35:02 +00004020 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00004021 if (MO.isReg())
Owen Anderson43dbe052008-01-07 01:35:02 +00004022 MO.setIsKill(false);
4023 }
4024 }
4025 }
4026
4027 // Emit the data processing instruction.
Evan Chenge837dea2011-06-28 19:10:37 +00004028 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00004029 MachineInstrBuilder MIB(DataMI);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00004030
Owen Anderson43dbe052008-01-07 01:35:02 +00004031 if (FoldedStore)
Bill Wendling587daed2009-05-13 21:33:08 +00004032 MIB.addReg(Reg, RegState::Define);
Owen Anderson43dbe052008-01-07 01:35:02 +00004033 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00004034 MIB.addOperand(BeforeOps[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00004035 if (FoldedLoad)
4036 MIB.addReg(Reg);
4037 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00004038 MIB.addOperand(AfterOps[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00004039 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
4040 MachineOperand &MO = ImpOps[i];
Bill Wendling587daed2009-05-13 21:33:08 +00004041 MIB.addReg(MO.getReg(),
4042 getDefRegState(MO.isDef()) |
4043 RegState::Implicit |
4044 getKillRegState(MO.isKill()) |
Evan Cheng4784f1f2009-06-30 08:49:04 +00004045 getDeadRegState(MO.isDead()) |
4046 getUndefRegState(MO.isUndef()));
Owen Anderson43dbe052008-01-07 01:35:02 +00004047 }
4048 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
4049 unsigned NewOpc = 0;
4050 switch (DataMI->getOpcode()) {
4051 default: break;
4052 case X86::CMP64ri32:
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00004053 case X86::CMP64ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00004054 case X86::CMP32ri:
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00004055 case X86::CMP32ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00004056 case X86::CMP16ri:
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00004057 case X86::CMP16ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00004058 case X86::CMP8ri: {
4059 MachineOperand &MO0 = DataMI->getOperand(0);
4060 MachineOperand &MO1 = DataMI->getOperand(1);
4061 if (MO1.getImm() == 0) {
4062 switch (DataMI->getOpcode()) {
4063 default: break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00004064 case X86::CMP64ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00004065 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00004066 case X86::CMP32ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00004067 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00004068 case X86::CMP16ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00004069 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
4070 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
4071 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00004072 DataMI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00004073 MO1.ChangeToRegister(MO0.getReg(), false);
4074 }
4075 }
4076 }
4077 NewMIs.push_back(DataMI);
4078
4079 // Emit the store instruction.
4080 if (UnfoldStore) {
Jakob Stoklund Olesen397fc482012-05-07 22:10:26 +00004081 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
Dan Gohman91e69c32009-10-09 18:10:05 +00004082 std::pair<MachineInstr::mmo_iterator,
4083 MachineInstr::mmo_iterator> MMOs =
4084 MF.extractStoreMemRefs(MI->memoperands_begin(),
4085 MI->memoperands_end());
4086 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson43dbe052008-01-07 01:35:02 +00004087 }
4088
4089 return true;
4090}
4091
4092bool
4093X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendlingfbef3102009-02-11 21:51:19 +00004094 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmane8be6c62008-07-17 19:10:17 +00004095 if (!N->isMachineOpcode())
Owen Anderson43dbe052008-01-07 01:35:02 +00004096 return false;
4097
Chris Lattner45a1cb22010-10-07 23:08:41 +00004098 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4099 MemOp2RegOpTable.find(N->getMachineOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00004100 if (I == MemOp2RegOpTable.end())
4101 return false;
4102 unsigned Opc = I->second.first;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00004103 unsigned Index = I->second.second & TB_INDEX_MASK;
4104 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4105 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Evan Chenge837dea2011-06-28 19:10:37 +00004106 const MCInstrDesc &MCID = get(Opc);
Jakob Stoklund Olesen397fc482012-05-07 22:10:26 +00004107 MachineFunction &MF = DAG.getMachineFunction();
4108 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
Evan Chenge837dea2011-06-28 19:10:37 +00004109 unsigned NumDefs = MCID.NumDefs;
Dan Gohman475871a2008-07-27 21:46:04 +00004110 std::vector<SDValue> AddrOps;
4111 std::vector<SDValue> BeforeOps;
4112 std::vector<SDValue> AfterOps;
Dale Johannesened2eee62009-02-06 01:31:28 +00004113 DebugLoc dl = N->getDebugLoc();
Owen Anderson43dbe052008-01-07 01:35:02 +00004114 unsigned NumOps = N->getNumOperands();
Dan Gohmanc76909a2009-09-25 20:36:54 +00004115 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman475871a2008-07-27 21:46:04 +00004116 SDValue Op = N->getOperand(i);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00004117 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
Owen Anderson43dbe052008-01-07 01:35:02 +00004118 AddrOps.push_back(Op);
Dan Gohmanb37a8202009-03-04 19:23:38 +00004119 else if (i < Index-NumDefs)
Owen Anderson43dbe052008-01-07 01:35:02 +00004120 BeforeOps.push_back(Op);
Dan Gohmanb37a8202009-03-04 19:23:38 +00004121 else if (i > Index-NumDefs)
Owen Anderson43dbe052008-01-07 01:35:02 +00004122 AfterOps.push_back(Op);
4123 }
Dan Gohman475871a2008-07-27 21:46:04 +00004124 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson43dbe052008-01-07 01:35:02 +00004125 AddrOps.push_back(Chain);
4126
4127 // Emit the load instruction.
4128 SDNode *Load = 0;
4129 if (FoldedLoad) {
Owen Andersone50ed302009-08-10 22:56:29 +00004130 EVT VT = *RC->vt_begin();
Evan Cheng600c0432009-11-16 21:56:03 +00004131 std::pair<MachineInstr::mmo_iterator,
4132 MachineInstr::mmo_iterator> MMOs =
4133 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4134 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng98ec91e2010-07-02 20:36:18 +00004135 if (!(*MMOs.first) &&
4136 RC == &X86::VR128RegClass &&
4137 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4138 // Do not introduce a slow unaligned load.
4139 return false;
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00004140 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4141 bool isAligned = (*MMOs.first) &&
4142 (*MMOs.first)->getAlignment() >= Alignment;
Dan Gohman602b0c82009-09-25 18:54:59 +00004143 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
4144 VT, MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00004145 NewNodes.push_back(Load);
Dan Gohman91e69c32009-10-09 18:10:05 +00004146
4147 // Preserve memory reference information.
Dan Gohman91e69c32009-10-09 18:10:05 +00004148 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson43dbe052008-01-07 01:35:02 +00004149 }
4150
4151 // Emit the data processing instruction.
Owen Andersone50ed302009-08-10 22:56:29 +00004152 std::vector<EVT> VTs;
Owen Anderson43dbe052008-01-07 01:35:02 +00004153 const TargetRegisterClass *DstRC = 0;
Evan Chenge837dea2011-06-28 19:10:37 +00004154 if (MCID.getNumDefs() > 0) {
Jakob Stoklund Olesen397fc482012-05-07 22:10:26 +00004155 DstRC = getRegClass(MCID, 0, &RI, MF);
Owen Anderson43dbe052008-01-07 01:35:02 +00004156 VTs.push_back(*DstRC->vt_begin());
4157 }
4158 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Owen Andersone50ed302009-08-10 22:56:29 +00004159 EVT VT = N->getValueType(i);
Evan Chenge837dea2011-06-28 19:10:37 +00004160 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
Owen Anderson43dbe052008-01-07 01:35:02 +00004161 VTs.push_back(VT);
4162 }
4163 if (Load)
Dan Gohman475871a2008-07-27 21:46:04 +00004164 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson43dbe052008-01-07 01:35:02 +00004165 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Dan Gohman602b0c82009-09-25 18:54:59 +00004166 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
4167 BeforeOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00004168 NewNodes.push_back(NewNode);
4169
4170 // Emit the store instruction.
4171 if (FoldedStore) {
4172 AddrOps.pop_back();
Dan Gohman475871a2008-07-27 21:46:04 +00004173 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson43dbe052008-01-07 01:35:02 +00004174 AddrOps.push_back(Chain);
Evan Cheng600c0432009-11-16 21:56:03 +00004175 std::pair<MachineInstr::mmo_iterator,
4176 MachineInstr::mmo_iterator> MMOs =
4177 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4178 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng98ec91e2010-07-02 20:36:18 +00004179 if (!(*MMOs.first) &&
4180 RC == &X86::VR128RegClass &&
4181 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4182 // Do not introduce a slow unaligned store.
4183 return false;
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00004184 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4185 bool isAligned = (*MMOs.first) &&
4186 (*MMOs.first)->getAlignment() >= Alignment;
Dan Gohman602b0c82009-09-25 18:54:59 +00004187 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
4188 isAligned, TM),
4189 dl, MVT::Other,
4190 &AddrOps[0], AddrOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00004191 NewNodes.push_back(Store);
Dan Gohman91e69c32009-10-09 18:10:05 +00004192
4193 // Preserve memory reference information.
Dan Gohman91e69c32009-10-09 18:10:05 +00004194 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson43dbe052008-01-07 01:35:02 +00004195 }
4196
4197 return true;
4198}
4199
4200unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
Dan Gohman0115e162009-10-30 22:18:41 +00004201 bool UnfoldLoad, bool UnfoldStore,
4202 unsigned *LoadRegIndex) const {
Chris Lattner45a1cb22010-10-07 23:08:41 +00004203 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4204 MemOp2RegOpTable.find(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00004205 if (I == MemOp2RegOpTable.end())
4206 return 0;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00004207 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4208 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Owen Anderson43dbe052008-01-07 01:35:02 +00004209 if (UnfoldLoad && !FoldedLoad)
4210 return 0;
4211 if (UnfoldStore && !FoldedStore)
4212 return 0;
Dan Gohman0115e162009-10-30 22:18:41 +00004213 if (LoadRegIndex)
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00004214 *LoadRegIndex = I->second.second & TB_INDEX_MASK;
Owen Anderson43dbe052008-01-07 01:35:02 +00004215 return I->second.first;
4216}
4217
Evan Cheng96dc1152010-01-22 03:34:51 +00004218bool
4219X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
4220 int64_t &Offset1, int64_t &Offset2) const {
4221 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
4222 return false;
4223 unsigned Opc1 = Load1->getMachineOpcode();
4224 unsigned Opc2 = Load2->getMachineOpcode();
4225 switch (Opc1) {
4226 default: return false;
4227 case X86::MOV8rm:
4228 case X86::MOV16rm:
4229 case X86::MOV32rm:
4230 case X86::MOV64rm:
4231 case X86::LD_Fp32m:
4232 case X86::LD_Fp64m:
4233 case X86::LD_Fp80m:
4234 case X86::MOVSSrm:
4235 case X86::MOVSDrm:
4236 case X86::MMX_MOVD64rm:
4237 case X86::MMX_MOVQ64rm:
4238 case X86::FsMOVAPSrm:
4239 case X86::FsMOVAPDrm:
4240 case X86::MOVAPSrm:
4241 case X86::MOVUPSrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00004242 case X86::MOVAPDrm:
4243 case X86::MOVDQArm:
4244 case X86::MOVDQUrm:
Bruno Cardoso Lopesb4e905d2011-09-15 22:15:52 +00004245 // AVX load instructions
4246 case X86::VMOVSSrm:
4247 case X86::VMOVSDrm:
4248 case X86::FsVMOVAPSrm:
4249 case X86::FsVMOVAPDrm:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00004250 case X86::VMOVAPSrm:
4251 case X86::VMOVUPSrm:
4252 case X86::VMOVAPDrm:
4253 case X86::VMOVDQArm:
4254 case X86::VMOVDQUrm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00004255 case X86::VMOVAPSYrm:
4256 case X86::VMOVUPSYrm:
4257 case X86::VMOVAPDYrm:
4258 case X86::VMOVDQAYrm:
4259 case X86::VMOVDQUYrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00004260 break;
4261 }
4262 switch (Opc2) {
4263 default: return false;
4264 case X86::MOV8rm:
4265 case X86::MOV16rm:
4266 case X86::MOV32rm:
4267 case X86::MOV64rm:
4268 case X86::LD_Fp32m:
4269 case X86::LD_Fp64m:
4270 case X86::LD_Fp80m:
4271 case X86::MOVSSrm:
4272 case X86::MOVSDrm:
4273 case X86::MMX_MOVD64rm:
4274 case X86::MMX_MOVQ64rm:
4275 case X86::FsMOVAPSrm:
4276 case X86::FsMOVAPDrm:
4277 case X86::MOVAPSrm:
4278 case X86::MOVUPSrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00004279 case X86::MOVAPDrm:
4280 case X86::MOVDQArm:
4281 case X86::MOVDQUrm:
Bruno Cardoso Lopesb4e905d2011-09-15 22:15:52 +00004282 // AVX load instructions
4283 case X86::VMOVSSrm:
4284 case X86::VMOVSDrm:
4285 case X86::FsVMOVAPSrm:
4286 case X86::FsVMOVAPDrm:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00004287 case X86::VMOVAPSrm:
4288 case X86::VMOVUPSrm:
4289 case X86::VMOVAPDrm:
4290 case X86::VMOVDQArm:
4291 case X86::VMOVDQUrm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00004292 case X86::VMOVAPSYrm:
4293 case X86::VMOVUPSYrm:
4294 case X86::VMOVAPDYrm:
4295 case X86::VMOVDQAYrm:
4296 case X86::VMOVDQUYrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00004297 break;
4298 }
4299
4300 // Check if chain operands and base addresses match.
4301 if (Load1->getOperand(0) != Load2->getOperand(0) ||
4302 Load1->getOperand(5) != Load2->getOperand(5))
4303 return false;
4304 // Segment operands should match as well.
4305 if (Load1->getOperand(4) != Load2->getOperand(4))
4306 return false;
4307 // Scale should be 1, Index should be Reg0.
4308 if (Load1->getOperand(1) == Load2->getOperand(1) &&
4309 Load1->getOperand(2) == Load2->getOperand(2)) {
4310 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
4311 return false;
Evan Cheng96dc1152010-01-22 03:34:51 +00004312
4313 // Now let's examine the displacements.
4314 if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
4315 isa<ConstantSDNode>(Load2->getOperand(3))) {
4316 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
4317 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
4318 return true;
4319 }
4320 }
4321 return false;
4322}
4323
4324bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
4325 int64_t Offset1, int64_t Offset2,
4326 unsigned NumLoads) const {
4327 assert(Offset2 > Offset1);
4328 if ((Offset2 - Offset1) / 8 > 64)
4329 return false;
4330
4331 unsigned Opc1 = Load1->getMachineOpcode();
4332 unsigned Opc2 = Load2->getMachineOpcode();
4333 if (Opc1 != Opc2)
4334 return false; // FIXME: overly conservative?
4335
4336 switch (Opc1) {
4337 default: break;
4338 case X86::LD_Fp32m:
4339 case X86::LD_Fp64m:
4340 case X86::LD_Fp80m:
4341 case X86::MMX_MOVD64rm:
4342 case X86::MMX_MOVQ64rm:
4343 return false;
4344 }
4345
4346 EVT VT = Load1->getValueType(0);
4347 switch (VT.getSimpleVT().SimpleTy) {
Bill Wendling19d85972010-06-22 22:16:17 +00004348 default:
Evan Cheng96dc1152010-01-22 03:34:51 +00004349 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
4350 // have 16 of them to play with.
4351 if (TM.getSubtargetImpl()->is64Bit()) {
4352 if (NumLoads >= 3)
4353 return false;
Bill Wendling19d85972010-06-22 22:16:17 +00004354 } else if (NumLoads) {
Evan Cheng96dc1152010-01-22 03:34:51 +00004355 return false;
Bill Wendling19d85972010-06-22 22:16:17 +00004356 }
Evan Cheng96dc1152010-01-22 03:34:51 +00004357 break;
Evan Cheng96dc1152010-01-22 03:34:51 +00004358 case MVT::i8:
4359 case MVT::i16:
4360 case MVT::i32:
4361 case MVT::i64:
Evan Chengafc36732010-01-22 23:49:11 +00004362 case MVT::f32:
4363 case MVT::f64:
Evan Cheng96dc1152010-01-22 03:34:51 +00004364 if (NumLoads)
4365 return false;
Bill Wendling19d85972010-06-22 22:16:17 +00004366 break;
Evan Cheng96dc1152010-01-22 03:34:51 +00004367 }
4368
4369 return true;
4370}
4371
4372
Chris Lattner7fbe9722006-10-20 17:42:20 +00004373bool X86InstrInfo::
Owen Anderson44eb65c2008-08-14 22:49:33 +00004374ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00004375 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Cheng97af60b2008-08-29 23:21:31 +00004376 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman279c22e2008-10-21 03:29:32 +00004377 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
4378 return true;
Evan Cheng97af60b2008-08-29 23:21:31 +00004379 Cond[0].setImm(GetOppositeBranchCondition(CC));
Chris Lattner9cd68752006-10-21 05:52:40 +00004380 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00004381}
4382
Evan Cheng23066282008-10-27 07:14:50 +00004383bool X86InstrInfo::
Evan Cheng4350eb82009-02-06 17:17:30 +00004384isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
4385 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Cheng23066282008-10-27 07:14:50 +00004386 // allow any loads of these registers before FpGet_ST0_80.
Evan Cheng4350eb82009-02-06 17:17:30 +00004387 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
4388 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Cheng23066282008-10-27 07:14:50 +00004389}
4390
Dan Gohman57c3dac2008-09-30 00:58:23 +00004391/// getGlobalBaseReg - Return a virtual register initialized with the
4392/// the global base register value. Output instructions required to
4393/// initialize the register in the function entry block, if necessary.
Dan Gohman8b746962008-09-23 18:22:58 +00004394///
Dan Gohman84023e02010-07-10 09:00:22 +00004395/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
4396///
Dan Gohman57c3dac2008-09-30 00:58:23 +00004397unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
4398 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
4399 "X86-64 PIC uses RIP relative addressing");
4400
4401 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
4402 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
4403 if (GlobalBaseReg != 0)
4404 return GlobalBaseReg;
4405
Dan Gohman84023e02010-07-10 09:00:22 +00004406 // Create the register. The code to initialize it is inserted
4407 // later, by the CGBR pass (below).
Dan Gohman8b746962008-09-23 18:22:58 +00004408 MachineRegisterInfo &RegInfo = MF->getRegInfo();
Jakob Stoklund Olesen53df9252012-05-20 18:43:00 +00004409 GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Dan Gohman57c3dac2008-09-30 00:58:23 +00004410 X86FI->setGlobalBaseReg(GlobalBaseReg);
4411 return GlobalBaseReg;
Dan Gohman8b746962008-09-23 18:22:58 +00004412}
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00004413
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00004414// These are the replaceable SSE instructions. Some of these have Int variants
4415// that we don't include here. We don't want to replace instructions selected
4416// by intrinsics.
Craig Topper72051bf2012-03-09 07:45:21 +00004417static const uint16_t ReplaceableInstrs[][3] = {
Bruno Cardoso Lopes4d043622010-08-12 02:08:52 +00004418 //PackedSingle PackedDouble PackedInt
Jakob Stoklund Olesen357be7f2010-03-30 22:46:53 +00004419 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
4420 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
4421 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
4422 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
4423 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
4424 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
4425 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
4426 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
4427 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
4428 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
4429 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
4430 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
4431 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
4432 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00004433 // AVX 128-bit support
4434 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
4435 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
4436 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
4437 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
4438 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
4439 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
4440 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
4441 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
4442 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
4443 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
4444 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
4445 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00004446 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
4447 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00004448 // AVX 256-bit support
4449 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
4450 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
4451 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
4452 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
4453 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
Craig Topper4c077a12011-11-15 05:55:35 +00004454 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }
4455};
4456
Craig Topper72051bf2012-03-09 07:45:21 +00004457static const uint16_t ReplaceableInstrsAVX2[][3] = {
Craig Topper4c077a12011-11-15 05:55:35 +00004458 //PackedSingle PackedDouble PackedInt
Craig Topperb80ada92011-11-09 09:37:21 +00004459 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
4460 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
4461 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
4462 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
4463 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
4464 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
4465 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
Craig Topperfe2a6c52011-11-29 05:37:58 +00004466 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
4467 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
4468 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
4469 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
4470 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
4471 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
4472 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00004473};
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00004474
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00004475// FIXME: Some shuffle and unpack instructions have equivalents in different
4476// domains, but they require a bit more work than just switching opcodes.
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00004477
Craig Topper72051bf2012-03-09 07:45:21 +00004478static const uint16_t *lookup(unsigned opcode, unsigned domain) {
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00004479 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00004480 if (ReplaceableInstrs[i][domain-1] == opcode)
4481 return ReplaceableInstrs[i];
Craig Topper44ec9fd2011-11-15 06:39:01 +00004482 return 0;
4483}
4484
Craig Topper72051bf2012-03-09 07:45:21 +00004485static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
Craig Topper44ec9fd2011-11-15 06:39:01 +00004486 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
4487 if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
4488 return ReplaceableInstrsAVX2[i];
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00004489 return 0;
4490}
4491
4492std::pair<uint16_t, uint16_t>
Jakob Stoklund Olesen98e933f2011-09-27 22:57:18 +00004493X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00004494 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
Craig Topper4c077a12011-11-15 05:55:35 +00004495 bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
Craig Topper44ec9fd2011-11-15 06:39:01 +00004496 uint16_t validDomains = 0;
4497 if (domain && lookup(MI->getOpcode(), domain))
4498 validDomains = 0xe;
4499 else if (domain && lookupAVX2(MI->getOpcode(), domain))
4500 validDomains = hasAVX2 ? 0xe : 0x6;
4501 return std::make_pair(domain, validDomains);
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00004502}
4503
Jakob Stoklund Olesen98e933f2011-09-27 22:57:18 +00004504void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00004505 assert(Domain>0 && Domain<4 && "Invalid execution domain");
4506 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
4507 assert(dom && "Not an SSE instruction");
Craig Topper72051bf2012-03-09 07:45:21 +00004508 const uint16_t *table = lookup(MI->getOpcode(), dom);
Jakob Stoklund Olesen7f5e43f2011-11-23 04:03:08 +00004509 if (!table) { // try the other table
4510 assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
4511 "256-bit vector operations only available in AVX2");
Craig Topper44ec9fd2011-11-15 06:39:01 +00004512 table = lookupAVX2(MI->getOpcode(), dom);
Jakob Stoklund Olesen7f5e43f2011-11-23 04:03:08 +00004513 }
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00004514 assert(table && "Cannot change domain");
4515 MI->setDesc(get(table[Domain-1]));
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00004516}
Chris Lattneree9eb412010-04-26 23:37:21 +00004517
4518/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
4519void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
4520 NopInst.setOpcode(X86::NOOP);
4521}
Dan Gohman84023e02010-07-10 09:00:22 +00004522
Andrew Tricke0ef5092011-03-05 08:00:22 +00004523bool X86InstrInfo::isHighLatencyDef(int opc) const {
4524 switch (opc) {
Evan Cheng23128422010-10-19 18:58:51 +00004525 default: return false;
4526 case X86::DIVSDrm:
4527 case X86::DIVSDrm_Int:
4528 case X86::DIVSDrr:
4529 case X86::DIVSDrr_Int:
4530 case X86::DIVSSrm:
4531 case X86::DIVSSrm_Int:
4532 case X86::DIVSSrr:
4533 case X86::DIVSSrr_Int:
4534 case X86::SQRTPDm:
4535 case X86::SQRTPDm_Int:
4536 case X86::SQRTPDr:
4537 case X86::SQRTPDr_Int:
4538 case X86::SQRTPSm:
4539 case X86::SQRTPSm_Int:
4540 case X86::SQRTPSr:
4541 case X86::SQRTPSr_Int:
4542 case X86::SQRTSDm:
4543 case X86::SQRTSDm_Int:
4544 case X86::SQRTSDr:
4545 case X86::SQRTSDr_Int:
4546 case X86::SQRTSSm:
4547 case X86::SQRTSSm_Int:
4548 case X86::SQRTSSr:
4549 case X86::SQRTSSr_Int:
Bruno Cardoso Lopesb4e905d2011-09-15 22:15:52 +00004550 // AVX instructions with high latency
4551 case X86::VDIVSDrm:
4552 case X86::VDIVSDrm_Int:
4553 case X86::VDIVSDrr:
4554 case X86::VDIVSDrr_Int:
4555 case X86::VDIVSSrm:
4556 case X86::VDIVSSrm_Int:
4557 case X86::VDIVSSrr:
4558 case X86::VDIVSSrr_Int:
4559 case X86::VSQRTPDm:
4560 case X86::VSQRTPDm_Int:
4561 case X86::VSQRTPDr:
4562 case X86::VSQRTPDr_Int:
4563 case X86::VSQRTPSm:
4564 case X86::VSQRTPSm_Int:
4565 case X86::VSQRTPSr:
4566 case X86::VSQRTPSr_Int:
4567 case X86::VSQRTSDm:
4568 case X86::VSQRTSDm_Int:
4569 case X86::VSQRTSDr:
4570 case X86::VSQRTSSm:
4571 case X86::VSQRTSSm_Int:
4572 case X86::VSQRTSSr:
Evan Cheng23128422010-10-19 18:58:51 +00004573 return true;
4574 }
4575}
4576
Andrew Tricke0ef5092011-03-05 08:00:22 +00004577bool X86InstrInfo::
4578hasHighOperandLatency(const InstrItineraryData *ItinData,
4579 const MachineRegisterInfo *MRI,
4580 const MachineInstr *DefMI, unsigned DefIdx,
4581 const MachineInstr *UseMI, unsigned UseIdx) const {
4582 return isHighLatencyDef(DefMI->getOpcode());
4583}
4584
Dan Gohman84023e02010-07-10 09:00:22 +00004585namespace {
4586 /// CGBR - Create Global Base Reg pass. This initializes the PIC
4587 /// global base register for x86-32.
4588 struct CGBR : public MachineFunctionPass {
4589 static char ID;
Owen Anderson90c579d2010-08-06 18:33:48 +00004590 CGBR() : MachineFunctionPass(ID) {}
Dan Gohman84023e02010-07-10 09:00:22 +00004591
4592 virtual bool runOnMachineFunction(MachineFunction &MF) {
4593 const X86TargetMachine *TM =
4594 static_cast<const X86TargetMachine *>(&MF.getTarget());
4595
4596 assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
4597 "X86-64 PIC uses RIP relative addressing");
4598
4599 // Only emit a global base reg in PIC mode.
4600 if (TM->getRelocationModel() != Reloc::PIC_)
4601 return false;
4602
Dan Gohmand8c0a512010-09-17 20:24:24 +00004603 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
4604 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
4605
4606 // If we didn't need a GlobalBaseReg, don't insert code.
4607 if (GlobalBaseReg == 0)
4608 return false;
4609
Dan Gohman84023e02010-07-10 09:00:22 +00004610 // Insert the set of GlobalBaseReg into the first MBB of the function
4611 MachineBasicBlock &FirstMBB = MF.front();
4612 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
4613 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
4614 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4615 const X86InstrInfo *TII = TM->getInstrInfo();
4616
4617 unsigned PC;
4618 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
Craig Topperc9099502012-04-20 06:31:50 +00004619 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Dan Gohman84023e02010-07-10 09:00:22 +00004620 else
Dan Gohmand8c0a512010-09-17 20:24:24 +00004621 PC = GlobalBaseReg;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00004622
Dan Gohman84023e02010-07-10 09:00:22 +00004623 // Operand of MovePCtoStack is completely ignored by asm printer. It's
4624 // only used in JIT code emission as displacement to pc.
4625 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00004626
Dan Gohman84023e02010-07-10 09:00:22 +00004627 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
4628 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
4629 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman84023e02010-07-10 09:00:22 +00004630 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
4631 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
4632 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
4633 X86II::MO_GOT_ABSOLUTE_ADDRESS);
4634 }
4635
4636 return true;
4637 }
4638
4639 virtual const char *getPassName() const {
4640 return "X86 PIC Global Base Reg Initialization";
4641 }
4642
4643 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
4644 AU.setPreservesCFG();
4645 MachineFunctionPass::getAnalysisUsage(AU);
4646 }
4647 };
4648}
4649
4650char CGBR::ID = 0;
4651FunctionPass*
4652llvm::createGlobalBaseRegPass() { return new CGBR(); }
Hans Wennborgf0234fc2012-06-01 16:27:21 +00004653
4654namespace {
4655 struct LDTLSCleanup : public MachineFunctionPass {
4656 static char ID;
4657 LDTLSCleanup() : MachineFunctionPass(ID) {}
4658
4659 virtual bool runOnMachineFunction(MachineFunction &MF) {
4660 X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
4661 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
4662 // No point folding accesses if there isn't at least two.
4663 return false;
4664 }
4665
4666 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
4667 return VisitNode(DT->getRootNode(), 0);
4668 }
4669
4670 // Visit the dominator subtree rooted at Node in pre-order.
4671 // If TLSBaseAddrReg is non-null, then use that to replace any
4672 // TLS_base_addr instructions. Otherwise, create the register
4673 // when the first such instruction is seen, and then use it
4674 // as we encounter more instructions.
4675 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
4676 MachineBasicBlock *BB = Node->getBlock();
4677 bool Changed = false;
4678
4679 // Traverse the current block.
4680 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
4681 ++I) {
4682 switch (I->getOpcode()) {
4683 case X86::TLS_base_addr32:
4684 case X86::TLS_base_addr64:
4685 if (TLSBaseAddrReg)
4686 I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
4687 else
4688 I = SetRegister(I, &TLSBaseAddrReg);
4689 Changed = true;
4690 break;
4691 default:
4692 break;
4693 }
4694 }
4695
4696 // Visit the children of this block in the dominator tree.
4697 for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
4698 I != E; ++I) {
4699 Changed |= VisitNode(*I, TLSBaseAddrReg);
4700 }
4701
4702 return Changed;
4703 }
4704
4705 // Replace the TLS_base_addr instruction I with a copy from
4706 // TLSBaseAddrReg, returning the new instruction.
4707 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
4708 unsigned TLSBaseAddrReg) {
4709 MachineFunction *MF = I->getParent()->getParent();
4710 const X86TargetMachine *TM =
4711 static_cast<const X86TargetMachine *>(&MF->getTarget());
4712 const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
4713 const X86InstrInfo *TII = TM->getInstrInfo();
4714
4715 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
4716 MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
4717 TII->get(TargetOpcode::COPY),
4718 is64Bit ? X86::RAX : X86::EAX)
4719 .addReg(TLSBaseAddrReg);
4720
4721 // Erase the TLS_base_addr instruction.
4722 I->eraseFromParent();
4723
4724 return Copy;
4725 }
4726
4727 // Create a virtal register in *TLSBaseAddrReg, and populate it by
4728 // inserting a copy instruction after I. Returns the new instruction.
4729 MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
4730 MachineFunction *MF = I->getParent()->getParent();
4731 const X86TargetMachine *TM =
4732 static_cast<const X86TargetMachine *>(&MF->getTarget());
4733 const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
4734 const X86InstrInfo *TII = TM->getInstrInfo();
4735
4736 // Create a virtual register for the TLS base address.
4737 MachineRegisterInfo &RegInfo = MF->getRegInfo();
4738 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
4739 ? &X86::GR64RegClass
4740 : &X86::GR32RegClass);
4741
4742 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
4743 MachineInstr *Next = I->getNextNode();
4744 MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
4745 TII->get(TargetOpcode::COPY),
4746 *TLSBaseAddrReg)
4747 .addReg(is64Bit ? X86::RAX : X86::EAX);
4748
4749 return Copy;
4750 }
4751
4752 virtual const char *getPassName() const {
4753 return "Local Dynamic TLS Access Clean-up";
4754 }
4755
4756 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
4757 AU.setPreservesCFG();
4758 AU.addRequired<MachineDominatorTree>();
4759 MachineFunctionPass::getAnalysisUsage(AU);
4760 }
4761 };
4762}
4763
4764char LDTLSCleanup::ID = 0;
4765FunctionPass*
4766llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }