blob: cebac7a263650b8b01f7ea5043b73025fe7a3c74 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// Register - You should define one instance of this class for each register
25// in the target machine. String n will become the "name" of the register.
26class Register<string n> {
27 string Namespace = "";
Bill Wendling8eeb9792008-02-26 21:11:01 +000028 string AsmName = n;
Bill Wendling9b0baeb2008-02-26 21:47:57 +000029 string Name = n;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030
31 // SpillSize - If this value is set to a non-zero value, it is the size in
32 // bits of the spill slot required to hold this register. If this value is
33 // set to zero, the information is inferred from any register classes the
34 // register belongs to.
35 int SpillSize = 0;
36
37 // SpillAlignment - This value is used to specify the alignment required for
38 // spilling the register. Like SpillSize, this should only be explicitly
39 // specified if the register is not in a register class.
40 int SpillAlignment = 0;
41
42 // Aliases - A list of registers that this register overlaps with. A read or
43 // modification of this register can potentially read or modify the aliased
44 // registers.
45 list<Register> Aliases = [];
46
47 // SubRegs - A list of registers that are parts of this register. Note these
48 // are "immediate" sub-registers and the registers within the list do not
49 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
50 // not [AX, AH, AL].
51 list<Register> SubRegs = [];
52
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +000053 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000054 // These values can be determined by locating the <target>.h file in the
55 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
56 // order of these names correspond to the enumeration used by gcc. A value of
Anton Korobeynikov0c2107c2007-11-11 19:53:50 +000057 // -1 indicates that the gcc number is undefined and -2 that register number
58 // is invalid for this mode/flavour.
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +000059 list<int> DwarfNumbers = [];
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060}
61
62// RegisterWithSubRegs - This can be used to define instances of Register which
63// need to specify sub-registers.
64// List "subregs" specifies which registers are sub-registers to this one. This
65// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
66// This allows the code generator to be careful not to put two values with
67// overlapping live ranges into registers which alias.
68class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
69 let SubRegs = subregs;
70}
71
72// SubRegSet - This can be used to define a specific mapping of registers to
73// indices, for use as named subregs of a particular physical register. Each
74// register in 'subregs' becomes an addressable subregister at index 'n' of the
75// corresponding register in 'regs'.
76class SubRegSet<int n, list<Register> regs, list<Register> subregs> {
77 int index = n;
78
79 list<Register> From = regs;
80 list<Register> To = subregs;
81}
82
83// RegisterClass - Now that all of the registers are defined, and aliases
84// between registers are defined, specify which registers belong to which
85// register classes. This also defines the default allocation order of
86// registers by register allocators.
87//
88class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
89 list<Register> regList> {
90 string Namespace = namespace;
91
92 // RegType - Specify the list ValueType of the registers in this register
93 // class. Note that all registers in a register class must have the same
94 // ValueTypes. This is a list because some targets permit storing different
95 // types in same register, for example vector values with 128-bit total size,
96 // but different count/size of items, like SSE on x86.
97 //
98 list<ValueType> RegTypes = regTypes;
99
100 // Size - Specify the spill size in bits of the registers. A default value of
101 // zero lets tablgen pick an appropriate size.
102 int Size = 0;
103
104 // Alignment - Specify the alignment required of the registers when they are
105 // stored or loaded to memory.
106 //
107 int Alignment = alignment;
108
Evan Cheng77ac1822007-09-19 01:35:01 +0000109 // CopyCost - This value is used to specify the cost of copying a value
110 // between two registers in this register class. The default value is one
111 // meaning it takes a single instruction to perform the copying. A negative
112 // value means copying is extremely expensive or impossible.
113 int CopyCost = 1;
114
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000115 // MemberList - Specify which registers are in this class. If the
116 // allocation_order_* method are not specified, this also defines the order of
117 // allocation used by the register allocator.
118 //
119 list<Register> MemberList = regList;
120
121 // SubClassList - Specify which register classes correspond to subregisters
122 // of this class. The order should be by subregister set index.
123 list<RegisterClass> SubRegClassList = [];
124
125 // MethodProtos/MethodBodies - These members can be used to insert arbitrary
126 // code into a generated register class. The normal usage of this is to
127 // overload virtual methods.
128 code MethodProtos = [{}];
129 code MethodBodies = [{}];
130}
131
132
133//===----------------------------------------------------------------------===//
134// DwarfRegNum - This class provides a mapping of the llvm register enumeration
135// to the register numbering used by gcc and gdb. These values are used by a
136// debug information writer (ex. DwarfWriter) to describe where values may be
137// located during execution.
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +0000138class DwarfRegNum<list<int> Numbers> {
139 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140 // These values can be determined by locating the <target>.h file in the
141 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
142 // order of these names correspond to the enumeration used by gcc. A value of
Anton Korobeynikov0c2107c2007-11-11 19:53:50 +0000143 // -1 indicates that the gcc number is undefined and -2 that register number is
144 // invalid for this mode/flavour.
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +0000145 list<int> DwarfNumbers = Numbers;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000146}
147
148//===----------------------------------------------------------------------===//
149// Pull in the common support for scheduling
150//
151include "TargetSchedule.td"
152
153class Predicate; // Forward def
154
155//===----------------------------------------------------------------------===//
156// Instruction set description - These classes correspond to the C++ classes in
157// the Target/TargetInstrInfo.h file.
158//
159class Instruction {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000160 string Namespace = "";
161
Evan Chengb783fa32007-07-19 01:14:50 +0000162 dag OutOperandList; // An dag containing the MI def operand list.
163 dag InOperandList; // An dag containing the MI use operand list.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000164 string AsmString = ""; // The .s format to print the instruction with.
165
166 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
167 // otherwise, uninitialized.
168 list<dag> Pattern;
169
170 // The follow state will eventually be inferred automatically from the
171 // instruction pattern.
172
173 list<Register> Uses = []; // Default to using no non-operand registers
174 list<Register> Defs = []; // Default to modifying no non-operand registers
175
176 // Predicates - List of predicates which will be turned into isel matching
177 // code.
178 list<Predicate> Predicates = [];
179
180 // Code size.
181 int CodeSize = 0;
182
183 // Added complexity passed onto matching pattern.
184 int AddedComplexity = 0;
185
186 // These bits capture information about the high-level semantics of the
187 // instruction.
188 bit isReturn = 0; // Is this instruction a return instruction?
189 bit isBranch = 0; // Is this instruction a branch instruction?
Owen Andersonf8053082007-11-12 07:39:39 +0000190 bit isIndirectBranch = 0; // Is this instruction an indirect branch?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191 bit isBarrier = 0; // Can control flow fall through this instruction?
192 bit isCall = 0; // Is this instruction a call instruction?
Chris Lattner1a1932c2008-01-06 23:38:27 +0000193 bit isSimpleLoad = 0; // Is this just a load instruction?
Chris Lattnerf58bdaa2008-01-07 23:16:55 +0000194 bit mayLoad = 0; // Is it possible for this inst to read memory?
195 bit mayStore = 0; // Is it possible for this inst to write memory?
Evan Chenge399fbb2007-12-12 23:12:09 +0000196 bit isImplicitDef = 0; // Is this instruction an implicit def instruction?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000197 bit isTwoAddress = 0; // Is this a two address instruction?
198 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
199 bit isCommutable = 0; // Is this 3 operand instruction commutable?
200 bit isTerminator = 0; // Is this part of the terminator for a basic block?
201 bit isReMaterializable = 0; // Is this instruction re-materializable?
202 bit isPredicable = 0; // Is this instruction predicable?
203 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
204 bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.
205 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
Bill Wendlingaf109da2007-12-14 01:48:59 +0000207
Chris Lattnerc90ee9c2008-01-10 07:59:24 +0000208 // Side effect flags - When set, the flags have these meanings:
Bill Wendlinga8551892007-12-17 21:02:07 +0000209 //
Chris Lattnerc90ee9c2008-01-10 07:59:24 +0000210 // hasSideEffects - The instruction has side effects that are not
211 // captured by any operands of the instruction or other flags.
Bill Wendlinga8551892007-12-17 21:02:07 +0000212 // mayHaveSideEffects - Some instances of the instruction can have side
213 // effects. The virtual method "isReallySideEffectFree" is called to
214 // determine this. Load instructions are an example of where this is
215 // useful. In general, loads always have side effects. However, loads from
216 // constant pools don't. Individual back ends make this determination.
Chris Lattnerc90ee9c2008-01-10 07:59:24 +0000217 // neverHasSideEffects - Set on an instruction with no pattern if it has no
218 // side effects.
219 bit hasSideEffects = 0;
Bill Wendlinga8551892007-12-17 21:02:07 +0000220 bit mayHaveSideEffects = 0;
Chris Lattnerc90ee9c2008-01-10 07:59:24 +0000221 bit neverHasSideEffects = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000222
223 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
224
225 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
226
227 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
228 /// be encoded into the output machineinstr.
229 string DisableEncoding = "";
230}
231
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000232/// Predicates - These are extra conditionals which are turned into instruction
233/// selector matching code. Currently each predicate is just a string.
234class Predicate<string cond> {
235 string CondString = cond;
236}
237
238/// NoHonorSignDependentRounding - This predicate is true if support for
239/// sign-dependent-rounding is not enabled.
240def NoHonorSignDependentRounding
241 : Predicate<"!HonorSignDependentRoundingFPMath()">;
242
243class Requires<list<Predicate> preds> {
244 list<Predicate> Predicates = preds;
245}
246
247/// ops definition - This is just a simple marker used to identify the operands
Evan Chengb783fa32007-07-19 01:14:50 +0000248/// list for an instruction. outs and ins are identical both syntatically and
249/// semantically, they are used to define def operands and use operands to
250/// improve readibility. This should be used like this:
251/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000252def ops;
Evan Chengb783fa32007-07-19 01:14:50 +0000253def outs;
254def ins;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000255
256/// variable_ops definition - Mark this instruction as taking a variable number
257/// of operands.
258def variable_ops;
259
260/// ptr_rc definition - Mark this operand as being a pointer value whose
261/// register class is resolved dynamically via a callback to TargetInstrInfo.
262/// FIXME: We should probably change this to a class which contain a list of
263/// flags. But currently we have but one flag.
264def ptr_rc;
265
266/// Operand Types - These provide the built-in operand types that may be used
267/// by a target. Targets can optionally provide their own operand types as
268/// needed, though this should not be needed for RISC targets.
269class Operand<ValueType ty> {
270 ValueType Type = ty;
271 string PrintMethod = "printOperand";
272 dag MIOperandInfo = (ops);
273}
274
275def i1imm : Operand<i1>;
276def i8imm : Operand<i8>;
277def i16imm : Operand<i16>;
278def i32imm : Operand<i32>;
279def i64imm : Operand<i64>;
280
Nate Begemanccd39b02008-02-14 07:25:46 +0000281def f32imm : Operand<f32>;
282def f64imm : Operand<f64>;
283
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000284/// zero_reg definition - Special node to stand for the zero register.
285///
286def zero_reg;
287
288/// PredicateOperand - This can be used to define a predicate operand for an
289/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
290/// AlwaysVal specifies the value of this predicate when set to "always
291/// execute".
292class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
293 : Operand<ty> {
294 let MIOperandInfo = OpTypes;
295 dag DefaultOps = AlwaysVal;
296}
297
298/// OptionalDefOperand - This is used to define a optional definition operand
299/// for an instruction. DefaultOps is the register the operand represents if none
300/// is supplied, e.g. zero_reg.
301class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
302 : Operand<ty> {
303 let MIOperandInfo = OpTypes;
304 dag DefaultOps = defaultops;
305}
306
307
308// InstrInfo - This class should only be instantiated once to provide parameters
309// which are global to the the target machine.
310//
311class InstrInfo {
312 // If the target wants to associate some target-specific information with each
313 // instruction, it should provide these two lists to indicate how to assemble
314 // the target specific information into the 32 bits available.
315 //
316 list<string> TSFlagsFields = [];
317 list<int> TSFlagsShifts = [];
318
319 // Target can specify its instructions in either big or little-endian formats.
320 // For instance, while both Sparc and PowerPC are big-endian platforms, the
321 // Sparc manual specifies its instructions in the format [31..0] (big), while
322 // PowerPC specifies them using the format [0..31] (little).
323 bit isLittleEndianEncoding = 0;
324}
325
326// Standard Instructions.
327def PHI : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000328 let OutOperandList = (ops);
329 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330 let AsmString = "PHINODE";
331 let Namespace = "TargetInstrInfo";
332}
333def INLINEASM : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000334 let OutOperandList = (ops);
335 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336 let AsmString = "";
337 let Namespace = "TargetInstrInfo";
338}
339def LABEL : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000340 let OutOperandList = (ops);
Evan Cheng13d1c292008-01-31 09:59:15 +0000341 let InOperandList = (ops i32imm:$id, i32imm:$flavor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000342 let AsmString = "";
343 let Namespace = "TargetInstrInfo";
344 let hasCtrlDep = 1;
345}
Evan Cheng2e28d622008-02-02 04:07:54 +0000346def DECLARE : Instruction {
347 let OutOperandList = (ops);
348 let InOperandList = (ops variable_ops);
349 let AsmString = "";
350 let Namespace = "TargetInstrInfo";
351 let hasCtrlDep = 1;
352}
Christopher Lamb071a2a72007-07-26 07:48:21 +0000353def EXTRACT_SUBREG : Instruction {
Evan Chengbd97af02008-03-10 19:31:26 +0000354 let OutOperandList = (ops variable_ops);
355 let InOperandList = (ops variable_ops);
Christopher Lamb071a2a72007-07-26 07:48:21 +0000356 let AsmString = "";
357 let Namespace = "TargetInstrInfo";
Chris Lattnerc90ee9c2008-01-10 07:59:24 +0000358 let neverHasSideEffects = 1;
Christopher Lamb071a2a72007-07-26 07:48:21 +0000359}
360def INSERT_SUBREG : Instruction {
Evan Chengbd97af02008-03-10 19:31:26 +0000361 let OutOperandList = (ops variable_ops);
362 let InOperandList = (ops variable_ops);
Christopher Lamb071a2a72007-07-26 07:48:21 +0000363 let AsmString = "";
364 let Namespace = "TargetInstrInfo";
Chris Lattnerc90ee9c2008-01-10 07:59:24 +0000365 let neverHasSideEffects = 1;
Christopher Lamb071a2a72007-07-26 07:48:21 +0000366}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000367
368//===----------------------------------------------------------------------===//
369// AsmWriter - This class can be implemented by targets that need to customize
370// the format of the .s file writer.
371//
372// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
373// on X86 for example).
374//
375class AsmWriter {
376 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
377 // class. Generated AsmWriter classes are always prefixed with the target
378 // name.
379 string AsmWriterClassName = "AsmPrinter";
380
381 // InstFormatName - AsmWriters can specify the name of the format string to
382 // print instructions with.
383 string InstFormatName = "AsmString";
384
385 // Variant - AsmWriters can be of multiple different variants. Variants are
386 // used to support targets that need to emit assembly code in ways that are
387 // mostly the same for different targets, but have minor differences in
388 // syntax. If the asmstring contains {|} characters in them, this integer
389 // will specify which alternative to use. For example "{x|y|z}" with Variant
390 // == 1, will expand to "y".
391 int Variant = 0;
392}
393def DefaultAsmWriter : AsmWriter;
394
395
396//===----------------------------------------------------------------------===//
397// Target - This class contains the "global" target information
398//
399class Target {
400 // InstructionSet - Instruction set description for this target.
401 InstrInfo InstructionSet;
402
403 // AssemblyWriters - The AsmWriter instances available for this target.
404 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
405}
406
407//===----------------------------------------------------------------------===//
408// SubtargetFeature - A characteristic of the chip set.
409//
410class SubtargetFeature<string n, string a, string v, string d,
411 list<SubtargetFeature> i = []> {
412 // Name - Feature name. Used by command line (-mattr=) to determine the
413 // appropriate target chip.
414 //
415 string Name = n;
416
417 // Attribute - Attribute to be set by feature.
418 //
419 string Attribute = a;
420
421 // Value - Value the attribute to be set to by feature.
422 //
423 string Value = v;
424
425 // Desc - Feature description. Used by command line (-mattr=) to display help
426 // information.
427 //
428 string Desc = d;
429
430 // Implies - Features that this feature implies are present. If one of those
431 // features isn't set, then this one shouldn't be set either.
432 //
433 list<SubtargetFeature> Implies = i;
434}
435
436//===----------------------------------------------------------------------===//
437// Processor chip sets - These values represent each of the chip sets supported
438// by the scheduler. Each Processor definition requires corresponding
439// instruction itineraries.
440//
441class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
442 // Name - Chip set name. Used by command line (-mcpu=) to determine the
443 // appropriate target chip.
444 //
445 string Name = n;
446
447 // ProcItin - The scheduling information for the target processor.
448 //
449 ProcessorItineraries ProcItin = pi;
450
451 // Features - list of
452 list<SubtargetFeature> Features = f;
453}
454
455//===----------------------------------------------------------------------===//
456// Pull in the common support for calling conventions.
457//
458include "TargetCallingConv.td"
459
460//===----------------------------------------------------------------------===//
461// Pull in the common support for DAG isel generation.
462//
463include "TargetSelectionDAG.td"