blob: 1341d214370f460774590375fd1ca1368c724ea7 [file] [log] [blame]
Zhou Shengfd43dcf2007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengfd43dcf2007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencer5d0d05c2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengfd43dcf2007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
Reid Spencer9d6c9192007-02-24 03:58:46 +000015#define DEBUG_TYPE "apint"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000016#include "llvm/ADT/APInt.h"
Daniel Dunbar689ad6e2009-08-13 02:33:34 +000017#include "llvm/ADT/StringRef.h"
Ted Kremeneke420deb2008-01-19 04:23:33 +000018#include "llvm/ADT/FoldingSet.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Reid Spencer9d6c9192007-02-24 03:58:46 +000020#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000021#include "llvm/Support/ErrorHandling.h"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000022#include "llvm/Support/MathExtras.h"
Chris Lattner944fac72008-08-23 22:23:09 +000023#include "llvm/Support/raw_ostream.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000024#include <cmath>
Jeff Cohen09dfd8e2007-03-20 20:42:36 +000025#include <limits>
Zhou Shenga3832fd2007-02-07 06:14:53 +000026#include <cstring>
Zhou Shengfd43dcf2007-02-06 03:00:16 +000027#include <cstdlib>
28using namespace llvm;
29
Reid Spencer5d0d05c2007-02-25 19:32:03 +000030/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000032inline static uint64_t* getClearedMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000033 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
Zhou Sheng353815d2007-02-06 06:04:53 +000037}
38
Eric Christopherd37eda82009-08-21 04:06:45 +000039/// A utility function for allocating memory and checking for allocation
Reid Spencer5d0d05c2007-02-25 19:32:03 +000040/// failure. The content is not zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000041inline static uint64_t* getMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000042 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
45}
46
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000047/// A utility function that converts a character to a digit.
48inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000049 unsigned r;
50
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000051 if (radix == 16) {
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000052 r = cdigit - '0';
53 if (r <= 9)
54 return r;
55
56 r = cdigit - 'A';
57 if (r <= 5)
58 return r + 10;
59
60 r = cdigit - 'a';
61 if (r <= 5)
62 return r + 10;
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000063 }
64
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000065 r = cdigit - '0';
66 if (r < radix)
67 return r;
68
69 return -1U;
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000070}
71
72
Chris Lattner455e9ab2009-01-21 18:09:24 +000073void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000074 pVal = getClearedMemory(getNumWords());
75 pVal[0] = val;
Eric Christopherd37eda82009-08-21 04:06:45 +000076 if (isSigned && int64_t(val) < 0)
Chris Lattner98f8ccf2008-08-20 17:02:31 +000077 for (unsigned i = 1; i < getNumWords(); ++i)
78 pVal[i] = -1ULL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +000079}
80
Chris Lattner119c30b2008-10-11 22:07:19 +000081void APInt::initSlowCase(const APInt& that) {
82 pVal = getMemory(getNumWords());
83 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
84}
85
86
Chris Lattner455e9ab2009-01-21 18:09:24 +000087APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner944fac72008-08-23 22:23:09 +000088 : BitWidth(numBits), VAL(0) {
Erick Tryzelaarbb975312009-08-21 03:15:14 +000089 assert(BitWidth && "Bitwidth too small");
Zhou Shengfd43dcf2007-02-06 03:00:16 +000090 assert(bigVal && "Null pointer detected!");
91 if (isSingleWord())
Reid Spencer610fad82007-02-24 10:01:42 +000092 VAL = bigVal[0];
Zhou Shengfd43dcf2007-02-06 03:00:16 +000093 else {
Reid Spencer610fad82007-02-24 10:01:42 +000094 // Get memory, cleared to 0
95 pVal = getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
Chris Lattner455e9ab2009-01-21 18:09:24 +000097 unsigned words = std::min<unsigned>(numWords, getNumWords());
Reid Spencer610fad82007-02-24 10:01:42 +000098 // Copy the words from bigVal to pVal
99 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000100 }
Reid Spencer610fad82007-02-24 10:01:42 +0000101 // Make sure unused high bits are cleared
102 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000103}
104
Eric Christopherd37eda82009-08-21 04:06:45 +0000105APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
Reid Spencer385f7542007-02-21 03:55:44 +0000106 : BitWidth(numbits), VAL(0) {
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000107 assert(BitWidth && "Bitwidth too small");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000108 fromString(numbits, Str, radix);
Zhou Shenga3832fd2007-02-07 06:14:53 +0000109}
110
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000111APInt& APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer9ac44112007-02-26 23:38:21 +0000112 // Don't do anything for X = X
113 if (this == &RHS)
114 return *this;
115
Reid Spencer9ac44112007-02-26 23:38:21 +0000116 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000117 // assume same bit-width single-word case is already handled
118 assert(!isSingleWord());
119 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Reid Spencer9ac44112007-02-26 23:38:21 +0000120 return *this;
121 }
122
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000123 if (isSingleWord()) {
124 // assume case where both are single words is already handled
125 assert(!RHS.isSingleWord());
126 VAL = 0;
127 pVal = getMemory(RHS.getNumWords());
128 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Eric Christopherd37eda82009-08-21 04:06:45 +0000129 } else if (getNumWords() == RHS.getNumWords())
Reid Spencer9ac44112007-02-26 23:38:21 +0000130 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
131 else if (RHS.isSingleWord()) {
132 delete [] pVal;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000133 VAL = RHS.VAL;
Reid Spencer9ac44112007-02-26 23:38:21 +0000134 } else {
135 delete [] pVal;
136 pVal = getMemory(RHS.getNumWords());
137 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
138 }
139 BitWidth = RHS.BitWidth;
140 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000141}
142
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000143APInt& APInt::operator=(uint64_t RHS) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000144 if (isSingleWord())
Reid Spencere81d2da2007-02-16 22:36:51 +0000145 VAL = RHS;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000146 else {
147 pVal[0] = RHS;
Reid Spencera58f0582007-02-18 20:09:41 +0000148 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000149 }
Reid Spencer9ac44112007-02-26 23:38:21 +0000150 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000151}
152
Ted Kremeneke420deb2008-01-19 04:23:33 +0000153/// Profile - This method 'profiles' an APInt for use with FoldingSet.
154void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremeneka795aca2008-02-19 20:50:41 +0000155 ID.AddInteger(BitWidth);
Eric Christopherd37eda82009-08-21 04:06:45 +0000156
Ted Kremeneke420deb2008-01-19 04:23:33 +0000157 if (isSingleWord()) {
158 ID.AddInteger(VAL);
159 return;
160 }
161
Chris Lattner455e9ab2009-01-21 18:09:24 +0000162 unsigned NumWords = getNumWords();
Ted Kremeneke420deb2008-01-19 04:23:33 +0000163 for (unsigned i = 0; i < NumWords; ++i)
164 ID.AddInteger(pVal[i]);
165}
166
Eric Christopherd37eda82009-08-21 04:06:45 +0000167/// add_1 - This function adds a single "digit" integer, y, to the multiple
Reid Spenceraf0e9562007-02-18 18:38:44 +0000168/// "digit" integer array, x[]. x[] is modified to reflect the addition and
169/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000170/// @returns the carry of the addition.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000171static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
172 for (unsigned i = 0; i < len; ++i) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000173 dest[i] = y + x[i];
174 if (dest[i] < y)
Reid Spencer610fad82007-02-24 10:01:42 +0000175 y = 1; // Carry one to next digit.
Reid Spencerf2c521c2007-02-18 06:39:42 +0000176 else {
Reid Spencer610fad82007-02-24 10:01:42 +0000177 y = 0; // No need to carry so exit early
Reid Spencerf2c521c2007-02-18 06:39:42 +0000178 break;
179 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000180 }
Reid Spencerf2c521c2007-02-18 06:39:42 +0000181 return y;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000182}
183
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000184/// @brief Prefix increment operator. Increments the APInt by one.
185APInt& APInt::operator++() {
Eric Christopherd37eda82009-08-21 04:06:45 +0000186 if (isSingleWord())
Reid Spencere81d2da2007-02-16 22:36:51 +0000187 ++VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000188 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000189 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000190 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000191}
192
Eric Christopherd37eda82009-08-21 04:06:45 +0000193/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
194/// the multi-digit integer array, x[], propagating the borrowed 1 value until
Reid Spenceraf0e9562007-02-18 18:38:44 +0000195/// no further borrowing is neeeded or it runs out of "digits" in x. The result
196/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
197/// In other words, if y > x then this function returns 1, otherwise 0.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000198/// @returns the borrow out of the subtraction
Chris Lattner455e9ab2009-01-21 18:09:24 +0000199static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
200 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000201 uint64_t X = x[i];
Reid Spencerf2c521c2007-02-18 06:39:42 +0000202 x[i] -= y;
Eric Christopherd37eda82009-08-21 04:06:45 +0000203 if (y > X)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000204 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer5e0a8512007-02-17 03:16:00 +0000205 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000206 y = 0; // No need to borrow
207 break; // Remaining digits are unchanged so exit early
Reid Spencer5e0a8512007-02-17 03:16:00 +0000208 }
209 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000210 return bool(y);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000211}
212
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000213/// @brief Prefix decrement operator. Decrements the APInt by one.
214APInt& APInt::operator--() {
Eric Christopherd37eda82009-08-21 04:06:45 +0000215 if (isSingleWord())
Reid Spenceraf0e9562007-02-18 18:38:44 +0000216 --VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000217 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000218 sub_1(pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000219 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000220}
221
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000222/// add - This function adds the integer array x to the integer array Y and
Eric Christopherd37eda82009-08-21 04:06:45 +0000223/// places the result in dest.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000224/// @returns the carry out from the addition
225/// @brief General addition of 64-bit integer arrays
Eric Christopherd37eda82009-08-21 04:06:45 +0000226static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000227 unsigned len) {
Reid Spencer9d6c9192007-02-24 03:58:46 +0000228 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000229 for (unsigned i = 0; i< len; ++i) {
Reid Spencer92904632007-02-23 01:57:13 +0000230 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
Reid Spencer54362ca2007-02-20 23:40:25 +0000231 dest[i] = x[i] + y[i] + carry;
Reid Spencer60c0a6a2007-02-21 05:44:56 +0000232 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000233 }
234 return carry;
235}
236
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000237/// Adds the RHS APint to this APInt.
238/// @returns this, after addition of RHS.
Eric Christopherd37eda82009-08-21 04:06:45 +0000239/// @brief Addition assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000240APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopherd37eda82009-08-21 04:06:45 +0000242 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000243 VAL += RHS.VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000244 else {
Reid Spencer54362ca2007-02-20 23:40:25 +0000245 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000246 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000247 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000248}
249
Eric Christopherd37eda82009-08-21 04:06:45 +0000250/// Subtracts the integer array y from the integer array x
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000251/// @returns returns the borrow out.
252/// @brief Generalized subtraction of 64-bit integer arrays.
Eric Christopherd37eda82009-08-21 04:06:45 +0000253static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000254 unsigned len) {
Reid Spencer385f7542007-02-21 03:55:44 +0000255 bool borrow = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000256 for (unsigned i = 0; i < len; ++i) {
Reid Spencer385f7542007-02-21 03:55:44 +0000257 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
258 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
259 dest[i] = x_tmp - y[i];
Reid Spencer5e0a8512007-02-17 03:16:00 +0000260 }
Reid Spencer54362ca2007-02-20 23:40:25 +0000261 return borrow;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000262}
263
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000264/// Subtracts the RHS APInt from this APInt
265/// @returns this, after subtraction
Eric Christopherd37eda82009-08-21 04:06:45 +0000266/// @brief Subtraction assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000267APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000268 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopherd37eda82009-08-21 04:06:45 +0000269 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000270 VAL -= RHS.VAL;
271 else
272 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000273 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000274}
275
Dan Gohmanf451cb82010-02-10 16:03:48 +0000276/// Multiplies an integer array, x, by a uint64_t integer and places the result
Eric Christopherd37eda82009-08-21 04:06:45 +0000277/// into dest.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000278/// @returns the carry out of the multiplication.
279/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000280static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Reid Spencer610fad82007-02-24 10:01:42 +0000281 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
Reid Spencer5e0a8512007-02-17 03:16:00 +0000282 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000283 uint64_t carry = 0;
284
285 // For each digit of x.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000286 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000287 // Split x into high and low words
288 uint64_t lx = x[i] & 0xffffffffULL;
289 uint64_t hx = x[i] >> 32;
290 // hasCarry - A flag to indicate if there is a carry to the next digit.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000291 // hasCarry == 0, no carry
292 // hasCarry == 1, has carry
293 // hasCarry == 2, no carry and the calculation result == 0.
294 uint8_t hasCarry = 0;
295 dest[i] = carry + lx * ly;
296 // Determine if the add above introduces carry.
297 hasCarry = (dest[i] < carry) ? 1 : 0;
298 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
Eric Christopherd37eda82009-08-21 04:06:45 +0000299 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
Reid Spencer5e0a8512007-02-17 03:16:00 +0000300 // (2^32 - 1) + 2^32 = 2^64.
301 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
302
303 carry += (lx * hy) & 0xffffffffULL;
304 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
Eric Christopherd37eda82009-08-21 04:06:45 +0000305 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
Reid Spencer5e0a8512007-02-17 03:16:00 +0000306 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
307 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000308 return carry;
309}
310
Eric Christopherd37eda82009-08-21 04:06:45 +0000311/// Multiplies integer array x by integer array y and stores the result into
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000312/// the integer array dest. Note that dest's size must be >= xlen + ylen.
313/// @brief Generalized multiplicate of integer arrays.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000314static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
315 unsigned ylen) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000316 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000317 for (unsigned i = 1; i < ylen; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000318 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencere0cdd332007-02-21 08:21:52 +0000319 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000320 for (unsigned j = 0; j < xlen; ++j) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000321 lx = x[j] & 0xffffffffULL;
322 hx = x[j] >> 32;
323 // hasCarry - A flag to indicate if has carry.
324 // hasCarry == 0, no carry
325 // hasCarry == 1, has carry
326 // hasCarry == 2, no carry and the calculation result == 0.
327 uint8_t hasCarry = 0;
328 uint64_t resul = carry + lx * ly;
329 hasCarry = (resul < carry) ? 1 : 0;
330 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
331 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
332
333 carry += (lx * hy) & 0xffffffffULL;
334 resul = (carry << 32) | (resul & 0xffffffffULL);
335 dest[i+j] += resul;
336 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
Eric Christopherd37eda82009-08-21 04:06:45 +0000337 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
Reid Spencer5e0a8512007-02-17 03:16:00 +0000338 ((lx * hy) >> 32) + hx * hy;
339 }
340 dest[i+xlen] = carry;
341 }
342}
343
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000344APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000345 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencere0cdd332007-02-21 08:21:52 +0000346 if (isSingleWord()) {
Reid Spencer61eb1802007-02-20 20:42:10 +0000347 VAL *= RHS.VAL;
Reid Spencere0cdd332007-02-21 08:21:52 +0000348 clearUnusedBits();
349 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000350 }
Reid Spencere0cdd332007-02-21 08:21:52 +0000351
352 // Get some bit facts about LHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000353 unsigned lhsBits = getActiveBits();
354 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Eric Christopherd37eda82009-08-21 04:06:45 +0000355 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +0000356 // 0 * X ===> 0
357 return *this;
358
359 // Get some bit facts about RHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000360 unsigned rhsBits = RHS.getActiveBits();
361 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Reid Spencere0cdd332007-02-21 08:21:52 +0000362 if (!rhsWords) {
363 // X * 0 ===> 0
364 clear();
365 return *this;
366 }
367
368 // Allocate space for the result
Chris Lattner455e9ab2009-01-21 18:09:24 +0000369 unsigned destWords = rhsWords + lhsWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000370 uint64_t *dest = getMemory(destWords);
371
372 // Perform the long multiply
373 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
374
375 // Copy result back into *this
376 clear();
Chris Lattner455e9ab2009-01-21 18:09:24 +0000377 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000378 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
379
380 // delete dest array and return
381 delete[] dest;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000382 return *this;
383}
384
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000385APInt& APInt::operator&=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000386 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000387 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000388 VAL &= RHS.VAL;
389 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000390 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000391 unsigned numWords = getNumWords();
392 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000393 pVal[i] &= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000394 return *this;
395}
396
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000397APInt& APInt::operator|=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000398 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000399 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000400 VAL |= RHS.VAL;
401 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000402 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000403 unsigned numWords = getNumWords();
404 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000405 pVal[i] |= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000406 return *this;
407}
408
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000409APInt& APInt::operator^=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000410 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000411 if (isSingleWord()) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000412 VAL ^= RHS.VAL;
Reid Spencer54362ca2007-02-20 23:40:25 +0000413 this->clearUnusedBits();
Reid Spencerf2c521c2007-02-18 06:39:42 +0000414 return *this;
Eric Christopherd37eda82009-08-21 04:06:45 +0000415 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000416 unsigned numWords = getNumWords();
417 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000418 pVal[i] ^= RHS.pVal[i];
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000419 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000420}
421
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000422APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000423 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000424 uint64_t* val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000425 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000426 val[i] = pVal[i] & RHS.pVal[i];
427 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000428}
429
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000430APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000431 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000432 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000433 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000434 val[i] = pVal[i] | RHS.pVal[i];
435 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000436}
437
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000438APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000439 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000440 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000441 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000442 val[i] = pVal[i] ^ RHS.pVal[i];
443
444 // 0^0==1 so clear the high bits in case they got set.
445 return APInt(val, getBitWidth()).clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000446}
447
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000448bool APInt::operator !() const {
449 if (isSingleWord())
450 return !VAL;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000451
Chris Lattner455e9ab2009-01-21 18:09:24 +0000452 for (unsigned i = 0; i < getNumWords(); ++i)
Eric Christopherd37eda82009-08-21 04:06:45 +0000453 if (pVal[i])
Reid Spenceraf0e9562007-02-18 18:38:44 +0000454 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000455 return true;
456}
457
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000458APInt APInt::operator*(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000459 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000460 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000461 return APInt(BitWidth, VAL * RHS.VAL);
Reid Spencer61eb1802007-02-20 20:42:10 +0000462 APInt Result(*this);
463 Result *= RHS;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000464 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000465}
466
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000467APInt APInt::operator+(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000468 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000469 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000470 return APInt(BitWidth, VAL + RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000471 APInt Result(BitWidth, 0);
472 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000473 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000474}
475
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000476APInt APInt::operator-(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000477 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000478 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000479 return APInt(BitWidth, VAL - RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000480 APInt Result(BitWidth, 0);
481 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000482 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000483}
484
Chris Lattner455e9ab2009-01-21 18:09:24 +0000485bool APInt::operator[](unsigned bitPosition) const {
Eric Christopherd37eda82009-08-21 04:06:45 +0000486 return (maskBit(bitPosition) &
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000487 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000488}
489
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000490bool APInt::EqualSlowCase(const APInt& RHS) const {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000491 // Get some facts about the number of bits used in the two operands.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000492 unsigned n1 = getActiveBits();
493 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000494
495 // If the number of bits isn't the same, they aren't equal
Eric Christopherd37eda82009-08-21 04:06:45 +0000496 if (n1 != n2)
Reid Spencer54362ca2007-02-20 23:40:25 +0000497 return false;
498
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000499 // If the number of bits fits in a word, we only need to compare the low word.
Reid Spencer54362ca2007-02-20 23:40:25 +0000500 if (n1 <= APINT_BITS_PER_WORD)
501 return pVal[0] == RHS.pVal[0];
502
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000503 // Otherwise, compare everything
Reid Spencer54362ca2007-02-20 23:40:25 +0000504 for (int i = whichWord(n1 - 1); i >= 0; --i)
Eric Christopherd37eda82009-08-21 04:06:45 +0000505 if (pVal[i] != RHS.pVal[i])
Reid Spencer54362ca2007-02-20 23:40:25 +0000506 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000507 return true;
508}
509
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000510bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000511 unsigned n = getActiveBits();
Reid Spencer54362ca2007-02-20 23:40:25 +0000512 if (n <= APINT_BITS_PER_WORD)
513 return pVal[0] == Val;
514 else
515 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000516}
517
Reid Spencere81d2da2007-02-16 22:36:51 +0000518bool APInt::ult(const APInt& RHS) const {
519 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
520 if (isSingleWord())
521 return VAL < RHS.VAL;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000522
523 // Get active bit length of both operands
Chris Lattner455e9ab2009-01-21 18:09:24 +0000524 unsigned n1 = getActiveBits();
525 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000526
527 // If magnitude of LHS is less than RHS, return true.
528 if (n1 < n2)
529 return true;
530
531 // If magnitude of RHS is greather than LHS, return false.
532 if (n2 < n1)
533 return false;
534
535 // If they bot fit in a word, just compare the low order word
536 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
537 return pVal[0] < RHS.pVal[0];
538
539 // Otherwise, compare all words
Chris Lattner455e9ab2009-01-21 18:09:24 +0000540 unsigned topWord = whichWord(std::max(n1,n2)-1);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000541 for (int i = topWord; i >= 0; --i) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000542 if (pVal[i] > RHS.pVal[i])
Reid Spencere81d2da2007-02-16 22:36:51 +0000543 return false;
Eric Christopherd37eda82009-08-21 04:06:45 +0000544 if (pVal[i] < RHS.pVal[i])
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000545 return true;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000546 }
547 return false;
548}
549
Reid Spencere81d2da2007-02-16 22:36:51 +0000550bool APInt::slt(const APInt& RHS) const {
551 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencera58f0582007-02-18 20:09:41 +0000552 if (isSingleWord()) {
553 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
554 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
555 return lhsSext < rhsSext;
Reid Spencere81d2da2007-02-16 22:36:51 +0000556 }
Reid Spencera58f0582007-02-18 20:09:41 +0000557
558 APInt lhs(*this);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000559 APInt rhs(RHS);
560 bool lhsNeg = isNegative();
561 bool rhsNeg = rhs.isNegative();
562 if (lhsNeg) {
563 // Sign bit is set so perform two's complement to make it positive
Reid Spencera58f0582007-02-18 20:09:41 +0000564 lhs.flip();
565 lhs++;
566 }
Reid Spencer1fa111e2007-02-27 18:23:40 +0000567 if (rhsNeg) {
568 // Sign bit is set so perform two's complement to make it positive
Reid Spencera58f0582007-02-18 20:09:41 +0000569 rhs.flip();
570 rhs++;
571 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000572
573 // Now we have unsigned values to compare so do the comparison if necessary
574 // based on the negativeness of the values.
Reid Spencer1fa111e2007-02-27 18:23:40 +0000575 if (lhsNeg)
576 if (rhsNeg)
577 return lhs.ugt(rhs);
Reid Spencera58f0582007-02-18 20:09:41 +0000578 else
579 return true;
Reid Spencer1fa111e2007-02-27 18:23:40 +0000580 else if (rhsNeg)
Reid Spencera58f0582007-02-18 20:09:41 +0000581 return false;
Eric Christopherd37eda82009-08-21 04:06:45 +0000582 else
Reid Spencera58f0582007-02-18 20:09:41 +0000583 return lhs.ult(rhs);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000584}
585
Chris Lattner455e9ab2009-01-21 18:09:24 +0000586APInt& APInt::set(unsigned bitPosition) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000587 if (isSingleWord())
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000588 VAL |= maskBit(bitPosition);
Eric Christopherd37eda82009-08-21 04:06:45 +0000589 else
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000590 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000591 return *this;
592}
593
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000594/// Set the given bit to 0 whose position is given as "bitPosition".
595/// @brief Set a given bit to 0.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000596APInt& APInt::clear(unsigned bitPosition) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000597 if (isSingleWord())
Reid Spenceraf0e9562007-02-18 18:38:44 +0000598 VAL &= ~maskBit(bitPosition);
Eric Christopherd37eda82009-08-21 04:06:45 +0000599 else
Reid Spenceraf0e9562007-02-18 18:38:44 +0000600 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000601 return *this;
602}
603
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000604/// @brief Toggle every bit to its opposite value.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000605
Eric Christopherd37eda82009-08-21 04:06:45 +0000606/// Toggle a given bit to its opposite value whose position is given
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000607/// as "bitPosition".
608/// @brief Toggles a given bit to its opposite value.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000609APInt& APInt::flip(unsigned bitPosition) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000610 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000611 if ((*this)[bitPosition]) clear(bitPosition);
612 else set(bitPosition);
613 return *this;
614}
615
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000616unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) {
617 assert(!str.empty() && "Invalid string length");
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000618 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
619 "Radix should be 2, 8, 10, or 16!");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000620
621 size_t slen = str.size();
Reid Spencer57ae4f52007-04-13 19:19:07 +0000622
Eric Christophere250f2a2009-08-21 04:10:31 +0000623 // Each computation below needs to know if it's negative.
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000624 StringRef::iterator p = str.begin();
Eric Christophere250f2a2009-08-21 04:10:31 +0000625 unsigned isNegative = *p == '-';
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000626 if (*p == '-' || *p == '+') {
627 p++;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000628 slen--;
Eric Christophere250f2a2009-08-21 04:10:31 +0000629 assert(slen && "String is only a sign, needs a value.");
Reid Spencer57ae4f52007-04-13 19:19:07 +0000630 }
Eric Christophere250f2a2009-08-21 04:10:31 +0000631
Reid Spencer57ae4f52007-04-13 19:19:07 +0000632 // For radixes of power-of-two values, the bits required is accurately and
633 // easily computed
634 if (radix == 2)
635 return slen + isNegative;
636 if (radix == 8)
637 return slen * 3 + isNegative;
638 if (radix == 16)
639 return slen * 4 + isNegative;
640
Reid Spencer57ae4f52007-04-13 19:19:07 +0000641 // This is grossly inefficient but accurate. We could probably do something
642 // with a computation of roughly slen*64/20 and then adjust by the value of
643 // the first few digits. But, I'm not sure how accurate that could be.
644
645 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +0000646 // be too large. This avoids the assertion in the constructor. This
647 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
648 // bits in that case.
649 unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000650
651 // Convert to the actual binary value.
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000652 APInt tmp(sufficient, StringRef(p, slen), radix);
Reid Spencer57ae4f52007-04-13 19:19:07 +0000653
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +0000654 // Compute how many bits are required. If the log is infinite, assume we need
655 // just bit.
656 unsigned log = tmp.logBase2();
657 if (log == (unsigned)-1) {
658 return isNegative + 1;
659 } else {
660 return isNegative + log + 1;
661 }
Reid Spencer57ae4f52007-04-13 19:19:07 +0000662}
663
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000664// From http://www.burtleburtle.net, byBob Jenkins.
665// When targeting x86, both GCC and LLVM seem to recognize this as a
666// rotate instruction.
667#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Reid Spencer794f4722007-02-26 21:02:27 +0000668
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000669// From http://www.burtleburtle.net, by Bob Jenkins.
670#define mix(a,b,c) \
671 { \
672 a -= c; a ^= rot(c, 4); c += b; \
673 b -= a; b ^= rot(a, 6); a += c; \
674 c -= b; c ^= rot(b, 8); b += a; \
675 a -= c; a ^= rot(c,16); c += b; \
676 b -= a; b ^= rot(a,19); a += c; \
677 c -= b; c ^= rot(b, 4); b += a; \
678 }
679
680// From http://www.burtleburtle.net, by Bob Jenkins.
681#define final(a,b,c) \
682 { \
683 c ^= b; c -= rot(b,14); \
684 a ^= c; a -= rot(c,11); \
685 b ^= a; b -= rot(a,25); \
686 c ^= b; c -= rot(b,16); \
687 a ^= c; a -= rot(c,4); \
688 b ^= a; b -= rot(a,14); \
689 c ^= b; c -= rot(b,24); \
690 }
691
692// hashword() was adapted from http://www.burtleburtle.net, by Bob
693// Jenkins. k is a pointer to an array of uint32_t values; length is
694// the length of the key, in 32-bit chunks. This version only handles
695// keys that are a multiple of 32 bits in size.
696static inline uint32_t hashword(const uint64_t *k64, size_t length)
697{
698 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
699 uint32_t a,b,c;
700
701 /* Set up the internal state */
702 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
703
704 /*------------------------------------------------- handle most of the key */
Dan Gohman16e02092010-03-24 19:38:02 +0000705 while (length > 3) {
706 a += k[0];
707 b += k[1];
708 c += k[2];
709 mix(a,b,c);
710 length -= 3;
711 k += 3;
712 }
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000713
714 /*------------------------------------------- handle the last 3 uint32_t's */
Mike Stumpf3dc0c02009-05-13 23:23:20 +0000715 switch (length) { /* all the case statements fall through */
716 case 3 : c+=k[2];
717 case 2 : b+=k[1];
718 case 1 : a+=k[0];
719 final(a,b,c);
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000720 case 0: /* case 0: nothing left to add */
721 break;
722 }
723 /*------------------------------------------------------ report the result */
724 return c;
725}
726
727// hashword8() was adapted from http://www.burtleburtle.net, by Bob
728// Jenkins. This computes a 32-bit hash from one 64-bit word. When
729// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
730// function into about 35 instructions when inlined.
731static inline uint32_t hashword8(const uint64_t k64)
732{
733 uint32_t a,b,c;
734 a = b = c = 0xdeadbeef + 4;
735 b += k64 >> 32;
736 a += k64 & 0xffffffff;
737 final(a,b,c);
738 return c;
739}
740#undef final
741#undef mix
742#undef rot
743
744uint64_t APInt::getHashValue() const {
745 uint64_t hash;
Reid Spencer794f4722007-02-26 21:02:27 +0000746 if (isSingleWord())
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000747 hash = hashword8(VAL);
Reid Spencer794f4722007-02-26 21:02:27 +0000748 else
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000749 hash = hashword(pVal, getNumWords()*2);
Reid Spencer794f4722007-02-26 21:02:27 +0000750 return hash;
751}
752
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000753/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000754APInt APInt::getHiBits(unsigned numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000755 return APIntOps::lshr(*this, BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000756}
757
758/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000759APInt APInt::getLoBits(unsigned numBits) const {
Eric Christopherd37eda82009-08-21 04:06:45 +0000760 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
Reid Spencere81d2da2007-02-16 22:36:51 +0000761 BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000762}
763
Reid Spencere81d2da2007-02-16 22:36:51 +0000764bool APInt::isPowerOf2() const {
765 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
766}
767
Chris Lattner455e9ab2009-01-21 18:09:24 +0000768unsigned APInt::countLeadingZerosSlowCase() const {
John McCall281d0512010-02-03 03:42:44 +0000769 // Treat the most significand word differently because it might have
770 // meaningless bits set beyond the precision.
771 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
772 integerPart MSWMask;
773 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
774 else {
775 MSWMask = ~integerPart(0);
776 BitsInMSW = APINT_BITS_PER_WORD;
777 }
778
779 unsigned i = getNumWords();
780 integerPart MSW = pVal[i-1] & MSWMask;
781 if (MSW)
782 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
783
784 unsigned Count = BitsInMSW;
785 for (--i; i > 0u; --i) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000786 if (pVal[i-1] == 0)
787 Count += APINT_BITS_PER_WORD;
788 else {
789 Count += CountLeadingZeros_64(pVal[i-1]);
790 break;
Reid Spencere549c492007-02-21 00:29:48 +0000791 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000792 }
John McCall281d0512010-02-03 03:42:44 +0000793 return Count;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000794}
795
Chris Lattner455e9ab2009-01-21 18:09:24 +0000796static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
797 unsigned Count = 0;
Reid Spencer681dcd12007-02-27 21:59:26 +0000798 if (skip)
799 V <<= skip;
800 while (V && (V & (1ULL << 63))) {
801 Count++;
802 V <<= 1;
803 }
804 return Count;
805}
806
Chris Lattner455e9ab2009-01-21 18:09:24 +0000807unsigned APInt::countLeadingOnes() const {
Reid Spencer681dcd12007-02-27 21:59:26 +0000808 if (isSingleWord())
809 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
810
Chris Lattner455e9ab2009-01-21 18:09:24 +0000811 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwin2d0f1c52009-01-27 18:06:03 +0000812 unsigned shift;
813 if (!highWordBits) {
814 highWordBits = APINT_BITS_PER_WORD;
815 shift = 0;
816 } else {
817 shift = APINT_BITS_PER_WORD - highWordBits;
818 }
Reid Spencer681dcd12007-02-27 21:59:26 +0000819 int i = getNumWords() - 1;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000820 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Reid Spencer681dcd12007-02-27 21:59:26 +0000821 if (Count == highWordBits) {
822 for (i--; i >= 0; --i) {
823 if (pVal[i] == -1ULL)
824 Count += APINT_BITS_PER_WORD;
825 else {
826 Count += countLeadingOnes_64(pVal[i], 0);
827 break;
828 }
829 }
830 }
831 return Count;
832}
833
Chris Lattner455e9ab2009-01-21 18:09:24 +0000834unsigned APInt::countTrailingZeros() const {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000835 if (isSingleWord())
Chris Lattner455e9ab2009-01-21 18:09:24 +0000836 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
837 unsigned Count = 0;
838 unsigned i = 0;
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000839 for (; i < getNumWords() && pVal[i] == 0; ++i)
840 Count += APINT_BITS_PER_WORD;
841 if (i < getNumWords())
842 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner5e557122007-11-23 22:36:25 +0000843 return std::min(Count, BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000844}
845
Chris Lattner455e9ab2009-01-21 18:09:24 +0000846unsigned APInt::countTrailingOnesSlowCase() const {
847 unsigned Count = 0;
848 unsigned i = 0;
Dan Gohman5a0e7b42008-02-14 22:38:45 +0000849 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohman42dd77f2008-02-13 21:11:05 +0000850 Count += APINT_BITS_PER_WORD;
851 if (i < getNumWords())
852 Count += CountTrailingOnes_64(pVal[i]);
853 return std::min(Count, BitWidth);
854}
855
Chris Lattner455e9ab2009-01-21 18:09:24 +0000856unsigned APInt::countPopulationSlowCase() const {
857 unsigned Count = 0;
858 for (unsigned i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000859 Count += CountPopulation_64(pVal[i]);
860 return Count;
861}
862
Reid Spencere81d2da2007-02-16 22:36:51 +0000863APInt APInt::byteSwap() const {
864 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
865 if (BitWidth == 16)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000866 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
Reid Spencere81d2da2007-02-16 22:36:51 +0000867 else if (BitWidth == 32)
Chris Lattner455e9ab2009-01-21 18:09:24 +0000868 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Reid Spencere81d2da2007-02-16 22:36:51 +0000869 else if (BitWidth == 48) {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000870 unsigned Tmp1 = unsigned(VAL >> 16);
Zhou Shengb04973e2007-02-15 06:36:31 +0000871 Tmp1 = ByteSwap_32(Tmp1);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000872 uint16_t Tmp2 = uint16_t(VAL);
Zhou Shengb04973e2007-02-15 06:36:31 +0000873 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000874 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Reid Spencere81d2da2007-02-16 22:36:51 +0000875 } else if (BitWidth == 64)
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000876 return APInt(BitWidth, ByteSwap_64(VAL));
Zhou Shengb04973e2007-02-15 06:36:31 +0000877 else {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000878 APInt Result(BitWidth, 0);
Zhou Shengb04973e2007-02-15 06:36:31 +0000879 char *pByte = (char*)Result.pVal;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000880 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Zhou Shengb04973e2007-02-15 06:36:31 +0000881 char Tmp = pByte[i];
Reid Spencera58f0582007-02-18 20:09:41 +0000882 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
883 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
Zhou Shengb04973e2007-02-15 06:36:31 +0000884 }
885 return Result;
886 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000887}
888
Eric Christopherd37eda82009-08-21 04:06:45 +0000889APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
Zhou Sheng0b706b12007-02-08 14:35:19 +0000890 const APInt& API2) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000891 APInt A = API1, B = API2;
892 while (!!B) {
893 APInt T = B;
Reid Spencere81d2da2007-02-16 22:36:51 +0000894 B = APIntOps::urem(A, B);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000895 A = T;
896 }
897 return A;
898}
Chris Lattner6ad4c142007-02-06 05:38:37 +0000899
Chris Lattner455e9ab2009-01-21 18:09:24 +0000900APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd93f00c2007-02-12 20:02:55 +0000901 union {
902 double D;
903 uint64_t I;
904 } T;
905 T.D = Double;
Reid Spencer30f44f32007-02-27 01:28:10 +0000906
907 // Get the sign bit from the highest order bit
Zhou Shengd93f00c2007-02-12 20:02:55 +0000908 bool isNeg = T.I >> 63;
Reid Spencer30f44f32007-02-27 01:28:10 +0000909
910 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd93f00c2007-02-12 20:02:55 +0000911 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer30f44f32007-02-27 01:28:10 +0000912
913 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000914 if (exp < 0)
Reid Spencerff605762007-02-28 01:30:08 +0000915 return APInt(width, 0u);
Reid Spencer30f44f32007-02-27 01:28:10 +0000916
917 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
918 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
919
920 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd93f00c2007-02-12 20:02:55 +0000921 if (exp < 52)
Eric Christopherd37eda82009-08-21 04:06:45 +0000922 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Reid Spencer1fa111e2007-02-27 18:23:40 +0000923 APInt(width, mantissa >> (52 - exp));
924
925 // If the client didn't provide enough bits for us to shift the mantissa into
926 // then the result is undefined, just return 0
927 if (width <= exp - 52)
928 return APInt(width, 0);
Reid Spencer30f44f32007-02-27 01:28:10 +0000929
930 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer1fa111e2007-02-27 18:23:40 +0000931 APInt Tmp(width, mantissa);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000932 Tmp = Tmp.shl((unsigned)exp - 52);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000933 return isNeg ? -Tmp : Tmp;
934}
935
Dale Johannesen4e97a0f2009-08-12 18:04:11 +0000936/// RoundToDouble - This function converts this APInt to a double.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000937/// The layout for double is as following (IEEE Standard 754):
938/// --------------------------------------
939/// | Sign Exponent Fraction Bias |
940/// |-------------------------------------- |
941/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopherd37eda82009-08-21 04:06:45 +0000942/// --------------------------------------
Reid Spencere81d2da2007-02-16 22:36:51 +0000943double APInt::roundToDouble(bool isSigned) const {
Reid Spencer9c0696f2007-02-20 08:51:03 +0000944
945 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen4e97a0f2009-08-12 18:04:11 +0000946 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencera58f0582007-02-18 20:09:41 +0000947 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
948 if (isSigned) {
Dale Johannesen39c177d2009-08-12 17:42:34 +0000949 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
Reid Spencera58f0582007-02-18 20:09:41 +0000950 return double(sext);
951 } else
Dale Johannesen39c177d2009-08-12 17:42:34 +0000952 return double(getWord(0));
Reid Spencera58f0582007-02-18 20:09:41 +0000953 }
954
Reid Spencer9c0696f2007-02-20 08:51:03 +0000955 // Determine if the value is negative.
Reid Spencere81d2da2007-02-16 22:36:51 +0000956 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000957
958 // Construct the absolute value if we're negative.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000959 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencer9c0696f2007-02-20 08:51:03 +0000960
961 // Figure out how many bits we're using.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000962 unsigned n = Tmp.getActiveBits();
Zhou Shengd93f00c2007-02-12 20:02:55 +0000963
Reid Spencer9c0696f2007-02-20 08:51:03 +0000964 // The exponent (without bias normalization) is just the number of bits
965 // we are using. Note that the sign bit is gone since we constructed the
966 // absolute value.
967 uint64_t exp = n;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000968
Reid Spencer9c0696f2007-02-20 08:51:03 +0000969 // Return infinity for exponent overflow
970 if (exp > 1023) {
971 if (!isSigned || !isNeg)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000972 return std::numeric_limits<double>::infinity();
Eric Christopherd37eda82009-08-21 04:06:45 +0000973 else
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000974 return -std::numeric_limits<double>::infinity();
Reid Spencer9c0696f2007-02-20 08:51:03 +0000975 }
976 exp += 1023; // Increment for 1023 bias
977
978 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
979 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000980 uint64_t mantissa;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000981 unsigned hiWord = whichWord(n-1);
982 if (hiWord == 0) {
983 mantissa = Tmp.pVal[0];
984 if (n > 52)
985 mantissa >>= n - 52; // shift down, we want the top 52 bits.
986 } else {
987 assert(hiWord > 0 && "huh?");
988 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
989 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
990 mantissa = hibits | lobits;
991 }
992
Zhou Shengd93f00c2007-02-12 20:02:55 +0000993 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencer443b5702007-02-18 00:44:22 +0000994 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000995 union {
996 double D;
997 uint64_t I;
998 } T;
999 T.I = sign | (exp << 52) | mantissa;
1000 return T.D;
1001}
1002
Reid Spencere81d2da2007-02-16 22:36:51 +00001003// Truncate to new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001004APInt &APInt::trunc(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +00001005 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner98f8ccf2008-08-20 17:02:31 +00001006 assert(width && "Can't truncate to 0 bits");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001007 unsigned wordsBefore = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001008 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001009 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001010 if (wordsBefore != wordsAfter) {
1011 if (wordsAfter == 1) {
1012 uint64_t *tmp = pVal;
1013 VAL = pVal[0];
Reid Spencer9ac44112007-02-26 23:38:21 +00001014 delete [] tmp;
Reid Spencer9eec2412007-02-25 23:44:53 +00001015 } else {
1016 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001017 for (unsigned i = 0; i < wordsAfter; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +00001018 newVal[i] = pVal[i];
Reid Spencer9ac44112007-02-26 23:38:21 +00001019 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001020 pVal = newVal;
1021 }
1022 }
Reid Spencer94900772007-02-28 17:34:32 +00001023 return clearUnusedBits();
Reid Spencere81d2da2007-02-16 22:36:51 +00001024}
1025
1026// Sign extend to a new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001027APInt &APInt::sext(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +00001028 assert(width > BitWidth && "Invalid APInt SignExtend request");
Reid Spencer9eec2412007-02-25 23:44:53 +00001029 // If the sign bit isn't set, this is the same as zext.
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001030 if (!isNegative()) {
Reid Spencer9eec2412007-02-25 23:44:53 +00001031 zext(width);
Reid Spencer94900772007-02-28 17:34:32 +00001032 return *this;
Reid Spencer9eec2412007-02-25 23:44:53 +00001033 }
1034
1035 // The sign bit is set. First, get some facts
Chris Lattner455e9ab2009-01-21 18:09:24 +00001036 unsigned wordsBefore = getNumWords();
1037 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Reid Spencer9eec2412007-02-25 23:44:53 +00001038 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001039 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001040
1041 // Mask the high order word appropriately
1042 if (wordsBefore == wordsAfter) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001043 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Reid Spencer9eec2412007-02-25 23:44:53 +00001044 // The extension is contained to the wordsBefore-1th word.
Reid Spencer36184ed2007-03-02 01:19:42 +00001045 uint64_t mask = ~0ULL;
1046 if (newWordBits)
1047 mask >>= APINT_BITS_PER_WORD - newWordBits;
1048 mask <<= wordBits;
Reid Spencer9eec2412007-02-25 23:44:53 +00001049 if (wordsBefore == 1)
1050 VAL |= mask;
1051 else
1052 pVal[wordsBefore-1] |= mask;
Reid Spencer295e40a2007-03-01 23:30:25 +00001053 return clearUnusedBits();
Reid Spencer9eec2412007-02-25 23:44:53 +00001054 }
1055
Reid Spencerf30b1882007-02-25 23:54:00 +00001056 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
Reid Spencer9eec2412007-02-25 23:44:53 +00001057 uint64_t *newVal = getMemory(wordsAfter);
1058 if (wordsBefore == 1)
1059 newVal[0] = VAL | mask;
1060 else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001061 for (unsigned i = 0; i < wordsBefore; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +00001062 newVal[i] = pVal[i];
1063 newVal[wordsBefore-1] |= mask;
1064 }
Chris Lattner455e9ab2009-01-21 18:09:24 +00001065 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Reid Spencer9eec2412007-02-25 23:44:53 +00001066 newVal[i] = -1ULL;
1067 if (wordsBefore != 1)
Reid Spencer9ac44112007-02-26 23:38:21 +00001068 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001069 pVal = newVal;
Reid Spencer94900772007-02-28 17:34:32 +00001070 return clearUnusedBits();
Reid Spencere81d2da2007-02-16 22:36:51 +00001071}
1072
1073// Zero extend to a new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001074APInt &APInt::zext(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +00001075 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001076 unsigned wordsBefore = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001077 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001078 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001079 if (wordsBefore != wordsAfter) {
1080 uint64_t *newVal = getClearedMemory(wordsAfter);
1081 if (wordsBefore == 1)
1082 newVal[0] = VAL;
Eric Christopherd37eda82009-08-21 04:06:45 +00001083 else
Chris Lattner455e9ab2009-01-21 18:09:24 +00001084 for (unsigned i = 0; i < wordsBefore; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +00001085 newVal[i] = pVal[i];
1086 if (wordsBefore != 1)
Reid Spencer9ac44112007-02-26 23:38:21 +00001087 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001088 pVal = newVal;
1089 }
Reid Spencer94900772007-02-28 17:34:32 +00001090 return *this;
Reid Spencere81d2da2007-02-16 22:36:51 +00001091}
1092
Chris Lattner455e9ab2009-01-21 18:09:24 +00001093APInt &APInt::zextOrTrunc(unsigned width) {
Reid Spencer68e23002007-03-01 17:15:32 +00001094 if (BitWidth < width)
1095 return zext(width);
1096 if (BitWidth > width)
1097 return trunc(width);
1098 return *this;
1099}
1100
Chris Lattner455e9ab2009-01-21 18:09:24 +00001101APInt &APInt::sextOrTrunc(unsigned width) {
Reid Spencer68e23002007-03-01 17:15:32 +00001102 if (BitWidth < width)
1103 return sext(width);
1104 if (BitWidth > width)
1105 return trunc(width);
1106 return *this;
1107}
1108
Zhou Shengff4304f2007-02-09 07:48:24 +00001109/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001110/// @brief Arithmetic right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001111APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001112 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001113}
1114
1115/// Arithmetic right-shift this APInt by shiftAmt.
1116/// @brief Arithmetic right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001117APInt APInt::ashr(unsigned shiftAmt) const {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001118 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer46f9c942007-03-02 22:39:11 +00001119 // Handle a degenerate case
1120 if (shiftAmt == 0)
1121 return *this;
1122
1123 // Handle single word shifts with built-in ashr
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001124 if (isSingleWord()) {
1125 if (shiftAmt == BitWidth)
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001126 return APInt(BitWidth, 0); // undefined
1127 else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001128 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Eric Christopherd37eda82009-08-21 04:06:45 +00001129 return APInt(BitWidth,
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001130 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1131 }
Zhou Sheng0b706b12007-02-08 14:35:19 +00001132 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001133
Reid Spencer46f9c942007-03-02 22:39:11 +00001134 // If all the bits were shifted out, the result is, technically, undefined.
1135 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1136 // issues in the algorithm below.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001137 if (shiftAmt == BitWidth) {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001138 if (isNegative())
Zhou Shengbfde7d62008-06-05 13:27:38 +00001139 return APInt(BitWidth, -1ULL, true);
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001140 else
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001141 return APInt(BitWidth, 0);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001142 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001143
1144 // Create some space for the result.
1145 uint64_t * val = new uint64_t[getNumWords()];
1146
Reid Spencer46f9c942007-03-02 22:39:11 +00001147 // Compute some values needed by the following shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001148 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1149 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1150 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1151 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Reid Spencer46f9c942007-03-02 22:39:11 +00001152 if (bitsInWord == 0)
1153 bitsInWord = APINT_BITS_PER_WORD;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001154
1155 // If we are shifting whole words, just move whole words
1156 if (wordShift == 0) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001157 // Move the words containing significant bits
Chris Lattner455e9ab2009-01-21 18:09:24 +00001158 for (unsigned i = 0; i <= breakWord; ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001159 val[i] = pVal[i+offset]; // move whole word
1160
1161 // Adjust the top significant word for sign bit fill, if negative
1162 if (isNegative())
1163 if (bitsInWord < APINT_BITS_PER_WORD)
1164 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1165 } else {
Eric Christopherd37eda82009-08-21 04:06:45 +00001166 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001167 for (unsigned i = 0; i < breakWord; ++i) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001168 // This combines the shifted corresponding word with the low bits from
1169 // the next word (shifted into this word's high bits).
Eric Christopherd37eda82009-08-21 04:06:45 +00001170 val[i] = (pVal[i+offset] >> wordShift) |
Reid Spencer46f9c942007-03-02 22:39:11 +00001171 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1172 }
1173
1174 // Shift the break word. In this case there are no bits from the next word
1175 // to include in this word.
1176 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1177
1178 // Deal with sign extenstion in the break word, and possibly the word before
1179 // it.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001180 if (isNegative()) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001181 if (wordShift > bitsInWord) {
1182 if (breakWord > 0)
Eric Christopherd37eda82009-08-21 04:06:45 +00001183 val[breakWord-1] |=
Reid Spencer46f9c942007-03-02 22:39:11 +00001184 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1185 val[breakWord] |= ~0ULL;
Eric Christopherd37eda82009-08-21 04:06:45 +00001186 } else
Reid Spencer46f9c942007-03-02 22:39:11 +00001187 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001188 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001189 }
1190
Reid Spencer46f9c942007-03-02 22:39:11 +00001191 // Remaining words are 0 or -1, just assign them.
1192 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001193 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001194 val[i] = fillValue;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001195 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001196}
1197
Zhou Shengff4304f2007-02-09 07:48:24 +00001198/// Logical right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001199/// @brief Logical right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001200APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001201 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001202}
1203
1204/// Logical right-shift this APInt by shiftAmt.
1205/// @brief Logical right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001206APInt APInt::lshr(unsigned shiftAmt) const {
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001207 if (isSingleWord()) {
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001208 if (shiftAmt == BitWidth)
1209 return APInt(BitWidth, 0);
Eric Christopherd37eda82009-08-21 04:06:45 +00001210 else
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001211 return APInt(BitWidth, this->VAL >> shiftAmt);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001212 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001213
Reid Spencerba81c2b2007-02-26 01:19:48 +00001214 // If all the bits were shifted out, the result is 0. This avoids issues
1215 // with shifting by the size of the integer type, which produces undefined
1216 // results. We define these "undefined results" to always be 0.
1217 if (shiftAmt == BitWidth)
1218 return APInt(BitWidth, 0);
1219
Reid Spencer02ae8b72007-05-17 06:26:29 +00001220 // If none of the bits are shifted out, the result is *this. This avoids
Eric Christopherd37eda82009-08-21 04:06:45 +00001221 // issues with shifting by the size of the integer type, which produces
Reid Spencer02ae8b72007-05-17 06:26:29 +00001222 // undefined results in the code below. This is also an optimization.
1223 if (shiftAmt == 0)
1224 return *this;
1225
Reid Spencerba81c2b2007-02-26 01:19:48 +00001226 // Create some space for the result.
1227 uint64_t * val = new uint64_t[getNumWords()];
1228
1229 // If we are shifting less than a word, compute the shift with a simple carry
1230 if (shiftAmt < APINT_BITS_PER_WORD) {
1231 uint64_t carry = 0;
1232 for (int i = getNumWords()-1; i >= 0; --i) {
Reid Spenceraf8fb192007-03-01 05:39:56 +00001233 val[i] = (pVal[i] >> shiftAmt) | carry;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001234 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1235 }
1236 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001237 }
1238
Reid Spencerba81c2b2007-02-26 01:19:48 +00001239 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001240 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1241 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001242
1243 // If we are shifting whole words, just move whole words
1244 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001245 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001246 val[i] = pVal[i+offset];
Chris Lattner455e9ab2009-01-21 18:09:24 +00001247 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001248 val[i] = 0;
1249 return APInt(val,BitWidth).clearUnusedBits();
1250 }
1251
Eric Christopherd37eda82009-08-21 04:06:45 +00001252 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001253 unsigned breakWord = getNumWords() - offset -1;
1254 for (unsigned i = 0; i < breakWord; ++i)
Reid Spenceraf8fb192007-03-01 05:39:56 +00001255 val[i] = (pVal[i+offset] >> wordShift) |
1256 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
Reid Spencerba81c2b2007-02-26 01:19:48 +00001257 // Shift the break word.
1258 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1259
1260 // Remaining words are 0
Chris Lattner455e9ab2009-01-21 18:09:24 +00001261 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001262 val[i] = 0;
1263 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001264}
1265
Zhou Shengff4304f2007-02-09 07:48:24 +00001266/// Left-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001267/// @brief Left-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001268APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky4bd47872009-01-19 17:42:33 +00001269 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001270 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001271}
1272
Chris Lattner455e9ab2009-01-21 18:09:24 +00001273APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Reid Spencer87553802007-02-25 00:56:44 +00001274 // If all the bits were shifted out, the result is 0. This avoids issues
1275 // with shifting by the size of the integer type, which produces undefined
1276 // results. We define these "undefined results" to always be 0.
1277 if (shiftAmt == BitWidth)
1278 return APInt(BitWidth, 0);
1279
Reid Spencer92c72832007-05-12 18:01:57 +00001280 // If none of the bits are shifted out, the result is *this. This avoids a
1281 // lshr by the words size in the loop below which can produce incorrect
1282 // results. It also avoids the expensive computation below for a common case.
1283 if (shiftAmt == 0)
1284 return *this;
1285
Reid Spencer87553802007-02-25 00:56:44 +00001286 // Create some space for the result.
1287 uint64_t * val = new uint64_t[getNumWords()];
1288
1289 // If we are shifting less than a word, do it the easy way
1290 if (shiftAmt < APINT_BITS_PER_WORD) {
1291 uint64_t carry = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001292 for (unsigned i = 0; i < getNumWords(); i++) {
Reid Spencer87553802007-02-25 00:56:44 +00001293 val[i] = pVal[i] << shiftAmt | carry;
1294 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1295 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001296 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001297 }
1298
Reid Spencer87553802007-02-25 00:56:44 +00001299 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001300 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1301 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencer87553802007-02-25 00:56:44 +00001302
1303 // If we are shifting whole words, just move whole words
1304 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001305 for (unsigned i = 0; i < offset; i++)
Reid Spencer87553802007-02-25 00:56:44 +00001306 val[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001307 for (unsigned i = offset; i < getNumWords(); i++)
Reid Spencer87553802007-02-25 00:56:44 +00001308 val[i] = pVal[i-offset];
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001309 return APInt(val,BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001310 }
Reid Spencer87553802007-02-25 00:56:44 +00001311
1312 // Copy whole words from this to Result.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001313 unsigned i = getNumWords() - 1;
Reid Spencer87553802007-02-25 00:56:44 +00001314 for (; i > offset; --i)
1315 val[i] = pVal[i-offset] << wordShift |
1316 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
Reid Spencer438d71e2007-02-25 01:08:58 +00001317 val[offset] = pVal[0] << wordShift;
Reid Spencer87553802007-02-25 00:56:44 +00001318 for (i = 0; i < offset; ++i)
1319 val[i] = 0;
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001320 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001321}
1322
Dan Gohmancf609572008-02-29 01:40:47 +00001323APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001324 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001325}
1326
Chris Lattner455e9ab2009-01-21 18:09:24 +00001327APInt APInt::rotl(unsigned rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001328 if (rotateAmt == 0)
1329 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001330 // Don't get too fancy, just use existing shift/or facilities
1331 APInt hi(*this);
1332 APInt lo(*this);
1333 hi.shl(rotateAmt);
1334 lo.lshr(BitWidth - rotateAmt);
1335 return hi | lo;
1336}
1337
Dan Gohmancf609572008-02-29 01:40:47 +00001338APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001339 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001340}
1341
Chris Lattner455e9ab2009-01-21 18:09:24 +00001342APInt APInt::rotr(unsigned rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001343 if (rotateAmt == 0)
1344 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001345 // Don't get too fancy, just use existing shift/or facilities
1346 APInt hi(*this);
1347 APInt lo(*this);
1348 lo.lshr(rotateAmt);
1349 hi.shl(BitWidth - rotateAmt);
1350 return hi | lo;
1351}
Reid Spenceraf8fb192007-03-01 05:39:56 +00001352
1353// Square Root - this method computes and returns the square root of "this".
1354// Three mechanisms are used for computation. For small values (<= 5 bits),
1355// a table lookup is done. This gets some performance for common cases. For
1356// values using less than 52 bits, the value is converted to double and then
1357// the libc sqrt function is called. The result is rounded and then converted
1358// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopherd37eda82009-08-21 04:06:45 +00001359// the Babylonian method for computing square roots is used.
Reid Spenceraf8fb192007-03-01 05:39:56 +00001360APInt APInt::sqrt() const {
1361
1362 // Determine the magnitude of the value.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001363 unsigned magnitude = getActiveBits();
Reid Spenceraf8fb192007-03-01 05:39:56 +00001364
1365 // Use a fast table for some small values. This also gets rid of some
1366 // rounding errors in libc sqrt for small values.
1367 if (magnitude <= 5) {
Reid Spencer4e1e87f2007-03-01 17:47:31 +00001368 static const uint8_t results[32] = {
Reid Spencerb5ca2cd2007-03-01 06:23:32 +00001369 /* 0 */ 0,
1370 /* 1- 2 */ 1, 1,
Eric Christopherd37eda82009-08-21 04:06:45 +00001371 /* 3- 6 */ 2, 2, 2, 2,
Reid Spencerb5ca2cd2007-03-01 06:23:32 +00001372 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1373 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1374 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1375 /* 31 */ 6
1376 };
1377 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
Reid Spenceraf8fb192007-03-01 05:39:56 +00001378 }
1379
1380 // If the magnitude of the value fits in less than 52 bits (the precision of
1381 // an IEEE double precision floating point value), then we can use the
1382 // libc sqrt function which will probably use a hardware sqrt computation.
1383 // This should be faster than the algorithm below.
Jeff Cohenca5183d2007-03-05 00:00:42 +00001384 if (magnitude < 52) {
Chris Lattner4c297c92010-05-15 17:11:55 +00001385#if HAVE_ROUND
Eric Christopherd37eda82009-08-21 04:06:45 +00001386 return APInt(BitWidth,
Reid Spenceraf8fb192007-03-01 05:39:56 +00001387 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
Chris Lattner4c297c92010-05-15 17:11:55 +00001388#else
1389 return APInt(BitWidth,
1390 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
Jeff Cohenca5183d2007-03-05 00:00:42 +00001391#endif
1392 }
Reid Spenceraf8fb192007-03-01 05:39:56 +00001393
1394 // Okay, all the short cuts are exhausted. We must compute it. The following
1395 // is a classical Babylonian method for computing the square root. This code
1396 // was adapted to APINt from a wikipedia article on such computations.
1397 // See http://www.wikipedia.org/ and go to the page named
Eric Christopherd37eda82009-08-21 04:06:45 +00001398 // Calculate_an_integer_square_root.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001399 unsigned nbits = BitWidth, i = 4;
Reid Spenceraf8fb192007-03-01 05:39:56 +00001400 APInt testy(BitWidth, 16);
1401 APInt x_old(BitWidth, 1);
1402 APInt x_new(BitWidth, 0);
1403 APInt two(BitWidth, 2);
1404
1405 // Select a good starting value using binary logarithms.
Eric Christopherd37eda82009-08-21 04:06:45 +00001406 for (;; i += 2, testy = testy.shl(2))
Reid Spenceraf8fb192007-03-01 05:39:56 +00001407 if (i >= nbits || this->ule(testy)) {
1408 x_old = x_old.shl(i / 2);
1409 break;
1410 }
1411
Eric Christopherd37eda82009-08-21 04:06:45 +00001412 // Use the Babylonian method to arrive at the integer square root:
Reid Spenceraf8fb192007-03-01 05:39:56 +00001413 for (;;) {
1414 x_new = (this->udiv(x_old) + x_old).udiv(two);
1415 if (x_old.ule(x_new))
1416 break;
1417 x_old = x_new;
1418 }
1419
1420 // Make sure we return the closest approximation
Eric Christopherd37eda82009-08-21 04:06:45 +00001421 // NOTE: The rounding calculation below is correct. It will produce an
Reid Spencerf09aef72007-03-02 04:21:55 +00001422 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopherd37eda82009-08-21 04:06:45 +00001423 // determined to be a rounding issue with pari/gp as it begins to use a
Reid Spencerf09aef72007-03-02 04:21:55 +00001424 // floating point representation after 192 bits. There are no discrepancies
1425 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spenceraf8fb192007-03-01 05:39:56 +00001426 APInt square(x_old * x_old);
1427 APInt nextSquare((x_old + 1) * (x_old +1));
1428 if (this->ult(square))
1429 return x_old;
Reid Spencerf09aef72007-03-02 04:21:55 +00001430 else if (this->ule(nextSquare)) {
1431 APInt midpoint((nextSquare - square).udiv(two));
1432 APInt offset(*this - square);
1433 if (offset.ult(midpoint))
Reid Spenceraf8fb192007-03-01 05:39:56 +00001434 return x_old;
Reid Spencerf09aef72007-03-02 04:21:55 +00001435 else
1436 return x_old + 1;
1437 } else
Torok Edwinc23197a2009-07-14 16:55:14 +00001438 llvm_unreachable("Error in APInt::sqrt computation");
Reid Spenceraf8fb192007-03-01 05:39:56 +00001439 return x_old + 1;
1440}
1441
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001442/// Computes the multiplicative inverse of this APInt for a given modulo. The
1443/// iterative extended Euclidean algorithm is used to solve for this value,
1444/// however we simplify it to speed up calculating only the inverse, and take
1445/// advantage of div+rem calculations. We also use some tricks to avoid copying
1446/// (potentially large) APInts around.
1447APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1448 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1449
1450 // Using the properties listed at the following web page (accessed 06/21/08):
1451 // http://www.numbertheory.org/php/euclid.html
1452 // (especially the properties numbered 3, 4 and 9) it can be proved that
1453 // BitWidth bits suffice for all the computations in the algorithm implemented
1454 // below. More precisely, this number of bits suffice if the multiplicative
1455 // inverse exists, but may not suffice for the general extended Euclidean
1456 // algorithm.
1457
1458 APInt r[2] = { modulo, *this };
1459 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1460 APInt q(BitWidth, 0);
Eric Christopherd37eda82009-08-21 04:06:45 +00001461
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001462 unsigned i;
1463 for (i = 0; r[i^1] != 0; i ^= 1) {
1464 // An overview of the math without the confusing bit-flipping:
1465 // q = r[i-2] / r[i-1]
1466 // r[i] = r[i-2] % r[i-1]
1467 // t[i] = t[i-2] - t[i-1] * q
1468 udivrem(r[i], r[i^1], q, r[i]);
1469 t[i] -= t[i^1] * q;
1470 }
1471
1472 // If this APInt and the modulo are not coprime, there is no multiplicative
1473 // inverse, so return 0. We check this by looking at the next-to-last
1474 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1475 // algorithm.
1476 if (r[i] != 1)
1477 return APInt(BitWidth, 0);
1478
1479 // The next-to-last t is the multiplicative inverse. However, we are
1480 // interested in a positive inverse. Calcuate a positive one from a negative
1481 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00001482 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001483 return t[i].isNegative() ? t[i] + modulo : t[i];
1484}
1485
Jay Foad4e5ea552009-04-30 10:15:35 +00001486/// Calculate the magic numbers required to implement a signed integer division
1487/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1488/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1489/// Warren, Jr., chapter 10.
1490APInt::ms APInt::magic() const {
1491 const APInt& d = *this;
1492 unsigned p;
1493 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foad4e5ea552009-04-30 10:15:35 +00001494 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foad4e5ea552009-04-30 10:15:35 +00001495 struct ms mag;
Eric Christopherd37eda82009-08-21 04:06:45 +00001496
Jay Foad4e5ea552009-04-30 10:15:35 +00001497 ad = d.abs();
1498 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1499 anc = t - 1 - t.urem(ad); // absolute value of nc
1500 p = d.getBitWidth() - 1; // initialize p
1501 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1502 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1503 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1504 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1505 do {
1506 p = p + 1;
1507 q1 = q1<<1; // update q1 = 2p/abs(nc)
1508 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1509 if (r1.uge(anc)) { // must be unsigned comparison
1510 q1 = q1 + 1;
1511 r1 = r1 - anc;
1512 }
1513 q2 = q2<<1; // update q2 = 2p/abs(d)
1514 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1515 if (r2.uge(ad)) { // must be unsigned comparison
1516 q2 = q2 + 1;
1517 r2 = r2 - ad;
1518 }
1519 delta = ad - r2;
1520 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
Eric Christopherd37eda82009-08-21 04:06:45 +00001521
Jay Foad4e5ea552009-04-30 10:15:35 +00001522 mag.m = q2 + 1;
1523 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1524 mag.s = p - d.getBitWidth(); // resulting shift
1525 return mag;
1526}
1527
1528/// Calculate the magic numbers required to implement an unsigned integer
1529/// division by a constant as a sequence of multiplies, adds and shifts.
1530/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1531/// S. Warren, Jr., chapter 10.
1532APInt::mu APInt::magicu() const {
1533 const APInt& d = *this;
1534 unsigned p;
1535 APInt nc, delta, q1, r1, q2, r2;
1536 struct mu magu;
1537 magu.a = 0; // initialize "add" indicator
1538 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1539 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1540 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1541
1542 nc = allOnes - (-d).urem(d);
1543 p = d.getBitWidth() - 1; // initialize p
1544 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1545 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1546 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1547 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1548 do {
1549 p = p + 1;
1550 if (r1.uge(nc - r1)) {
1551 q1 = q1 + q1 + 1; // update q1
1552 r1 = r1 + r1 - nc; // update r1
1553 }
1554 else {
1555 q1 = q1+q1; // update q1
1556 r1 = r1+r1; // update r1
1557 }
1558 if ((r2 + 1).uge(d - r2)) {
1559 if (q2.uge(signedMax)) magu.a = 1;
1560 q2 = q2+q2 + 1; // update q2
1561 r2 = r2+r2 + 1 - d; // update r2
1562 }
1563 else {
1564 if (q2.uge(signedMin)) magu.a = 1;
1565 q2 = q2+q2; // update q2
1566 r2 = r2+r2 + 1; // update r2
1567 }
1568 delta = d - 1 - r2;
1569 } while (p < d.getBitWidth()*2 &&
1570 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1571 magu.m = q2 + 1; // resulting magic number
1572 magu.s = p - d.getBitWidth(); // resulting shift
1573 return magu;
1574}
1575
Reid Spencer9c0696f2007-02-20 08:51:03 +00001576/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1577/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1578/// variables here have the same names as in the algorithm. Comments explain
1579/// the algorithm and any deviation from it.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001580static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1581 unsigned m, unsigned n) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00001582 assert(u && "Must provide dividend");
1583 assert(v && "Must provide divisor");
1584 assert(q && "Must provide quotient");
Reid Spencer9d6c9192007-02-24 03:58:46 +00001585 assert(u != v && u != q && v != q && "Must us different memory");
Reid Spencer9c0696f2007-02-20 08:51:03 +00001586 assert(n>1 && "n must be > 1");
1587
1588 // Knuth uses the value b as the base of the number system. In our case b
1589 // is 2^31 so we just set it to -1u.
1590 uint64_t b = uint64_t(1) << 32;
1591
Chris Lattnerfad86b02008-08-17 07:19:36 +00001592#if 0
David Greene465abed2010-01-05 01:28:52 +00001593 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1594 DEBUG(dbgs() << "KnuthDiv: original:");
1595 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1596 DEBUG(dbgs() << " by");
1597 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1598 DEBUG(dbgs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001599#endif
Eric Christopherd37eda82009-08-21 04:06:45 +00001600 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1601 // u and v by d. Note that we have taken Knuth's advice here to use a power
1602 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1603 // 2 allows us to shift instead of multiply and it is easy to determine the
Reid Spencer9c0696f2007-02-20 08:51:03 +00001604 // shift amount from the leading zeros. We are basically normalizing the u
1605 // and v so that its high bits are shifted to the top of v's range without
1606 // overflow. Note that this can require an extra word in u so that u must
1607 // be of length m+n+1.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001608 unsigned shift = CountLeadingZeros_32(v[n-1]);
1609 unsigned v_carry = 0;
1610 unsigned u_carry = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001611 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001612 for (unsigned i = 0; i < m+n; ++i) {
1613 unsigned u_tmp = u[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001614 u[i] = (u[i] << shift) | u_carry;
1615 u_carry = u_tmp;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001616 }
Chris Lattner455e9ab2009-01-21 18:09:24 +00001617 for (unsigned i = 0; i < n; ++i) {
1618 unsigned v_tmp = v[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001619 v[i] = (v[i] << shift) | v_carry;
1620 v_carry = v_tmp;
1621 }
1622 }
1623 u[m+n] = u_carry;
Chris Lattnerfad86b02008-08-17 07:19:36 +00001624#if 0
David Greene465abed2010-01-05 01:28:52 +00001625 DEBUG(dbgs() << "KnuthDiv: normal:");
1626 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1627 DEBUG(dbgs() << " by");
1628 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1629 DEBUG(dbgs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001630#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001631
1632 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1633 int j = m;
1634 do {
David Greene465abed2010-01-05 01:28:52 +00001635 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopherd37eda82009-08-21 04:06:45 +00001636 // D3. [Calculate q'.].
Reid Spencer9c0696f2007-02-20 08:51:03 +00001637 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1638 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1639 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1640 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1641 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopherd37eda82009-08-21 04:06:45 +00001642 // value qp is one too large, and it eliminates all cases where qp is two
1643 // too large.
Reid Spencer92904632007-02-23 01:57:13 +00001644 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
David Greene465abed2010-01-05 01:28:52 +00001645 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencer92904632007-02-23 01:57:13 +00001646 uint64_t qp = dividend / v[n-1];
1647 uint64_t rp = dividend % v[n-1];
Reid Spencer9c0696f2007-02-20 08:51:03 +00001648 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1649 qp--;
1650 rp += v[n-1];
Reid Spencer610fad82007-02-24 10:01:42 +00001651 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencer9d6c9192007-02-24 03:58:46 +00001652 qp--;
Reid Spencer92904632007-02-23 01:57:13 +00001653 }
David Greene465abed2010-01-05 01:28:52 +00001654 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001655
Reid Spencer92904632007-02-23 01:57:13 +00001656 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1657 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1658 // consists of a simple multiplication by a one-place number, combined with
Eric Christopherd37eda82009-08-21 04:06:45 +00001659 // a subtraction.
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001660 bool isNeg = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001661 for (unsigned i = 0; i < n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001662 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
Reid Spencer9d6c9192007-02-24 03:58:46 +00001663 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
Reid Spencer610fad82007-02-24 10:01:42 +00001664 bool borrow = subtrahend > u_tmp;
David Greene465abed2010-01-05 01:28:52 +00001665 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
Daniel Dunbara53902b2009-07-13 05:27:30 +00001666 << ", subtrahend == " << subtrahend
1667 << ", borrow = " << borrow << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001668
Reid Spencer610fad82007-02-24 10:01:42 +00001669 uint64_t result = u_tmp - subtrahend;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001670 unsigned k = j + i;
1671 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1672 u[k++] = (unsigned)(result >> 32); // subtract high word
Reid Spencer610fad82007-02-24 10:01:42 +00001673 while (borrow && k <= m+n) { // deal with borrow to the left
1674 borrow = u[k] == 0;
1675 u[k]--;
1676 k++;
1677 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001678 isNeg |= borrow;
David Greene465abed2010-01-05 01:28:52 +00001679 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
Eric Christopherd37eda82009-08-21 04:06:45 +00001680 u[j+i+1] << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001681 }
David Greene465abed2010-01-05 01:28:52 +00001682 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1683 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1684 DEBUG(dbgs() << '\n');
Eric Christopherd37eda82009-08-21 04:06:45 +00001685 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1686 // this step is actually negative, (u[j+n]...u[j]) should be left as the
Reid Spencer610fad82007-02-24 10:01:42 +00001687 // true value plus b**(n+1), namely as the b's complement of
Reid Spencer92904632007-02-23 01:57:13 +00001688 // the true value, and a "borrow" to the left should be remembered.
1689 //
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001690 if (isNeg) {
Reid Spencer610fad82007-02-24 10:01:42 +00001691 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattner455e9ab2009-01-21 18:09:24 +00001692 for (unsigned i = 0; i <= m+n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001693 u[i] = ~u[i] + carry; // b's complement
1694 carry = carry && u[i] == 0;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001695 }
Reid Spencer92904632007-02-23 01:57:13 +00001696 }
David Greene465abed2010-01-05 01:28:52 +00001697 DEBUG(dbgs() << "KnuthDiv: after complement:");
1698 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1699 DEBUG(dbgs() << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001700
Eric Christopherd37eda82009-08-21 04:06:45 +00001701 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Reid Spencer9c0696f2007-02-20 08:51:03 +00001702 // negative, go to step D6; otherwise go on to step D7.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001703 q[j] = (unsigned)qp;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001704 if (isNeg) {
Eric Christopherd37eda82009-08-21 04:06:45 +00001705 // D6. [Add back]. The probability that this step is necessary is very
Reid Spencer9c0696f2007-02-20 08:51:03 +00001706 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopherd37eda82009-08-21 04:06:45 +00001707 // this possibility. Decrease q[j] by 1
Reid Spencer92904632007-02-23 01:57:13 +00001708 q[j]--;
Eric Christopherd37eda82009-08-21 04:06:45 +00001709 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1710 // A carry will occur to the left of u[j+n], and it should be ignored
Reid Spencer92904632007-02-23 01:57:13 +00001711 // since it cancels with the borrow that occurred in D4.
1712 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001713 for (unsigned i = 0; i < n; i++) {
1714 unsigned limit = std::min(u[j+i],v[i]);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001715 u[j+i] += v[i] + carry;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001716 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001717 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001718 u[j+n] += carry;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001719 }
David Greene465abed2010-01-05 01:28:52 +00001720 DEBUG(dbgs() << "KnuthDiv: after correction:");
1721 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
1722 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001723
Reid Spencer92904632007-02-23 01:57:13 +00001724 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1725 } while (--j >= 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001726
David Greene465abed2010-01-05 01:28:52 +00001727 DEBUG(dbgs() << "KnuthDiv: quotient:");
1728 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1729 DEBUG(dbgs() << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001730
Reid Spencer9c0696f2007-02-20 08:51:03 +00001731 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1732 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1733 // compute the remainder (urem uses this).
1734 if (r) {
1735 // The value d is expressed by the "shift" value above since we avoided
1736 // multiplication by d by using a shift left. So, all we have to do is
1737 // shift right here. In order to mak
Reid Spencer1050ec52007-02-24 20:38:01 +00001738 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001739 unsigned carry = 0;
David Greene465abed2010-01-05 01:28:52 +00001740 DEBUG(dbgs() << "KnuthDiv: remainder:");
Reid Spencer1050ec52007-02-24 20:38:01 +00001741 for (int i = n-1; i >= 0; i--) {
1742 r[i] = (u[i] >> shift) | carry;
1743 carry = u[i] << (32 - shift);
David Greene465abed2010-01-05 01:28:52 +00001744 DEBUG(dbgs() << " " << r[i]);
Reid Spencer1050ec52007-02-24 20:38:01 +00001745 }
1746 } else {
1747 for (int i = n-1; i >= 0; i--) {
1748 r[i] = u[i];
David Greene465abed2010-01-05 01:28:52 +00001749 DEBUG(dbgs() << " " << r[i]);
Reid Spencer1050ec52007-02-24 20:38:01 +00001750 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001751 }
David Greene465abed2010-01-05 01:28:52 +00001752 DEBUG(dbgs() << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001753 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00001754#if 0
David Greene465abed2010-01-05 01:28:52 +00001755 DEBUG(dbgs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001756#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001757}
1758
Chris Lattner455e9ab2009-01-21 18:09:24 +00001759void APInt::divide(const APInt LHS, unsigned lhsWords,
1760 const APInt &RHS, unsigned rhsWords,
Reid Spencer9c0696f2007-02-20 08:51:03 +00001761 APInt *Quotient, APInt *Remainder)
1762{
1763 assert(lhsWords >= rhsWords && "Fractional result");
1764
Eric Christopherd37eda82009-08-21 04:06:45 +00001765 // First, compose the values into an array of 32-bit words instead of
Reid Spencer9c0696f2007-02-20 08:51:03 +00001766 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohmanf451cb82010-02-10 16:03:48 +00001767 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopherd37eda82009-08-21 04:06:45 +00001768 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1769 // can't use 64-bit operands here because we don't have native results of
1770 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencer9c0696f2007-02-20 08:51:03 +00001771 // work on large-endian machines.
Dan Gohmande551f92009-04-01 18:45:54 +00001772 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001773 unsigned n = rhsWords * 2;
1774 unsigned m = (lhsWords * 2) - n;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001775
1776 // Allocate space for the temporary values we need either on the stack, if
1777 // it will fit, or on the heap if it won't.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001778 unsigned SPACE[128];
1779 unsigned *U = 0;
1780 unsigned *V = 0;
1781 unsigned *Q = 0;
1782 unsigned *R = 0;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001783 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1784 U = &SPACE[0];
1785 V = &SPACE[m+n+1];
1786 Q = &SPACE[(m+n+1) + n];
1787 if (Remainder)
1788 R = &SPACE[(m+n+1) + n + (m+n)];
1789 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001790 U = new unsigned[m + n + 1];
1791 V = new unsigned[n];
1792 Q = new unsigned[m+n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001793 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001794 R = new unsigned[n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001795 }
1796
1797 // Initialize the dividend
Chris Lattner455e9ab2009-01-21 18:09:24 +00001798 memset(U, 0, (m+n+1)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001799 for (unsigned i = 0; i < lhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001800 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001801 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001802 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001803 }
1804 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1805
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001806 // Initialize the divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00001807 memset(V, 0, (n)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001808 for (unsigned i = 0; i < rhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001809 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001810 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001811 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001812 }
1813
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001814 // initialize the quotient and remainder
Chris Lattner455e9ab2009-01-21 18:09:24 +00001815 memset(Q, 0, (m+n) * sizeof(unsigned));
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001816 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001817 memset(R, 0, n * sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001818
Eric Christopherd37eda82009-08-21 04:06:45 +00001819 // Now, adjust m and n for the Knuth division. n is the number of words in
Reid Spencer9c0696f2007-02-20 08:51:03 +00001820 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopherd37eda82009-08-21 04:06:45 +00001821 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Reid Spencer9c0696f2007-02-20 08:51:03 +00001822 // contain any zero words or the Knuth algorithm fails.
1823 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1824 n--;
1825 m++;
1826 }
1827 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1828 m--;
1829
1830 // If we're left with only a single word for the divisor, Knuth doesn't work
1831 // so we implement the short division algorithm here. This is much simpler
1832 // and faster because we are certain that we can divide a 64-bit quantity
1833 // by a 32-bit quantity at hardware speed and short division is simply a
1834 // series of such operations. This is just like doing short division but we
1835 // are using base 2^32 instead of base 10.
1836 assert(n != 0 && "Divide by zero?");
1837 if (n == 1) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001838 unsigned divisor = V[0];
1839 unsigned remainder = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001840 for (int i = m+n-1; i >= 0; i--) {
1841 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1842 if (partial_dividend == 0) {
1843 Q[i] = 0;
1844 remainder = 0;
1845 } else if (partial_dividend < divisor) {
1846 Q[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001847 remainder = (unsigned)partial_dividend;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001848 } else if (partial_dividend == divisor) {
1849 Q[i] = 1;
1850 remainder = 0;
1851 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001852 Q[i] = (unsigned)(partial_dividend / divisor);
1853 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001854 }
1855 }
1856 if (R)
1857 R[0] = remainder;
1858 } else {
1859 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1860 // case n > 1.
1861 KnuthDiv(U, V, Q, R, m, n);
1862 }
1863
1864 // If the caller wants the quotient
1865 if (Quotient) {
1866 // Set up the Quotient value's memory.
1867 if (Quotient->BitWidth != LHS.BitWidth) {
1868 if (Quotient->isSingleWord())
1869 Quotient->VAL = 0;
1870 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001871 delete [] Quotient->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001872 Quotient->BitWidth = LHS.BitWidth;
1873 if (!Quotient->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001874 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001875 } else
1876 Quotient->clear();
1877
Eric Christopherd37eda82009-08-21 04:06:45 +00001878 // The quotient is in Q. Reconstitute the quotient into Quotient's low
Reid Spencer9c0696f2007-02-20 08:51:03 +00001879 // order words.
1880 if (lhsWords == 1) {
Eric Christopherd37eda82009-08-21 04:06:45 +00001881 uint64_t tmp =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001882 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1883 if (Quotient->isSingleWord())
1884 Quotient->VAL = tmp;
1885 else
1886 Quotient->pVal[0] = tmp;
1887 } else {
1888 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1889 for (unsigned i = 0; i < lhsWords; ++i)
Eric Christopherd37eda82009-08-21 04:06:45 +00001890 Quotient->pVal[i] =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001891 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1892 }
1893 }
1894
1895 // If the caller wants the remainder
1896 if (Remainder) {
1897 // Set up the Remainder value's memory.
1898 if (Remainder->BitWidth != RHS.BitWidth) {
1899 if (Remainder->isSingleWord())
1900 Remainder->VAL = 0;
1901 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001902 delete [] Remainder->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001903 Remainder->BitWidth = RHS.BitWidth;
1904 if (!Remainder->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001905 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001906 } else
1907 Remainder->clear();
1908
1909 // The remainder is in R. Reconstitute the remainder into Remainder's low
1910 // order words.
1911 if (rhsWords == 1) {
Eric Christopherd37eda82009-08-21 04:06:45 +00001912 uint64_t tmp =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001913 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1914 if (Remainder->isSingleWord())
1915 Remainder->VAL = tmp;
1916 else
1917 Remainder->pVal[0] = tmp;
1918 } else {
1919 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1920 for (unsigned i = 0; i < rhsWords; ++i)
Eric Christopherd37eda82009-08-21 04:06:45 +00001921 Remainder->pVal[i] =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001922 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1923 }
1924 }
1925
1926 // Clean up the memory we allocated.
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001927 if (U != &SPACE[0]) {
1928 delete [] U;
1929 delete [] V;
1930 delete [] Q;
1931 delete [] R;
1932 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00001933}
1934
Reid Spencere81d2da2007-02-16 22:36:51 +00001935APInt APInt::udiv(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001936 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001937
1938 // First, deal with the easy case
1939 if (isSingleWord()) {
1940 assert(RHS.VAL != 0 && "Divide by zero?");
1941 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001942 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001943
Reid Spencer71bd08f2007-02-17 02:07:07 +00001944 // Get some facts about the LHS and RHS number of bits and words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001945 unsigned rhsBits = RHS.getActiveBits();
1946 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001947 assert(rhsWords && "Divided by zero???");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001948 unsigned lhsBits = this->getActiveBits();
1949 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001950
1951 // Deal with some degenerate cases
Eric Christopherd37eda82009-08-21 04:06:45 +00001952 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +00001953 // 0 / X ===> 0
Eric Christopherd37eda82009-08-21 04:06:45 +00001954 return APInt(BitWidth, 0);
Reid Spencere0cdd332007-02-21 08:21:52 +00001955 else if (lhsWords < rhsWords || this->ult(RHS)) {
1956 // X / Y ===> 0, iff X < Y
1957 return APInt(BitWidth, 0);
1958 } else if (*this == RHS) {
1959 // X / X ===> 1
1960 return APInt(BitWidth, 1);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001961 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001962 // All high words are zero, just use native divide
Reid Spencere0cdd332007-02-21 08:21:52 +00001963 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001964 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001965
1966 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1967 APInt Quotient(1,0); // to hold result.
1968 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1969 return Quotient;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001970}
1971
Reid Spencere81d2da2007-02-16 22:36:51 +00001972APInt APInt::urem(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001973 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001974 if (isSingleWord()) {
1975 assert(RHS.VAL != 0 && "Remainder by zero?");
1976 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001977 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001978
Reid Spencere0cdd332007-02-21 08:21:52 +00001979 // Get some facts about the LHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001980 unsigned lhsBits = getActiveBits();
1981 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001982
1983 // Get some facts about the RHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001984 unsigned rhsBits = RHS.getActiveBits();
1985 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001986 assert(rhsWords && "Performing remainder operation by zero ???");
1987
Reid Spencer71bd08f2007-02-17 02:07:07 +00001988 // Check the degenerate cases
Reid Spencer9c0696f2007-02-20 08:51:03 +00001989 if (lhsWords == 0) {
Reid Spencere0cdd332007-02-21 08:21:52 +00001990 // 0 % Y ===> 0
1991 return APInt(BitWidth, 0);
1992 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1993 // X % Y ===> X, iff X < Y
1994 return *this;
1995 } else if (*this == RHS) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001996 // X % X == 0;
Reid Spencere0cdd332007-02-21 08:21:52 +00001997 return APInt(BitWidth, 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001998 } else if (lhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001999 // All high words are zero, just use native remainder
Reid Spencere0cdd332007-02-21 08:21:52 +00002000 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00002001 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002002
Reid Spencer19dc32a2007-05-13 23:44:59 +00002003 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Reid Spencer9c0696f2007-02-20 08:51:03 +00002004 APInt Remainder(1,0);
2005 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
2006 return Remainder;
Zhou Sheng0b706b12007-02-08 14:35:19 +00002007}
Reid Spencer5e0a8512007-02-17 03:16:00 +00002008
Eric Christopherd37eda82009-08-21 04:06:45 +00002009void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Reid Spencer19dc32a2007-05-13 23:44:59 +00002010 APInt &Quotient, APInt &Remainder) {
2011 // Get some size facts about the dividend and divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00002012 unsigned lhsBits = LHS.getActiveBits();
2013 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2014 unsigned rhsBits = RHS.getActiveBits();
2015 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer19dc32a2007-05-13 23:44:59 +00002016
2017 // Check the degenerate cases
Eric Christopherd37eda82009-08-21 04:06:45 +00002018 if (lhsWords == 0) {
Reid Spencer19dc32a2007-05-13 23:44:59 +00002019 Quotient = 0; // 0 / Y ===> 0
2020 Remainder = 0; // 0 % Y ===> 0
2021 return;
Eric Christopherd37eda82009-08-21 04:06:45 +00002022 }
2023
2024 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Reid Spencer19dc32a2007-05-13 23:44:59 +00002025 Remainder = LHS; // X % Y ===> X, iff X < Y
John McCalld73bf592009-12-24 08:52:06 +00002026 Quotient = 0; // X / Y ===> 0, iff X < Y
Reid Spencer19dc32a2007-05-13 23:44:59 +00002027 return;
Eric Christopherd37eda82009-08-21 04:06:45 +00002028 }
2029
Reid Spencer19dc32a2007-05-13 23:44:59 +00002030 if (LHS == RHS) {
2031 Quotient = 1; // X / X ===> 1
2032 Remainder = 0; // X % X ===> 0;
2033 return;
Eric Christopherd37eda82009-08-21 04:06:45 +00002034 }
2035
Reid Spencer19dc32a2007-05-13 23:44:59 +00002036 if (lhsWords == 1 && rhsWords == 1) {
2037 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00002038 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2039 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2040 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2041 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Reid Spencer19dc32a2007-05-13 23:44:59 +00002042 return;
2043 }
2044
2045 // Okay, lets do it the long way
2046 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2047}
2048
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002049void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
Reid Spencer385f7542007-02-21 03:55:44 +00002050 // Check our assumptions here
Erick Tryzelaarbb975312009-08-21 03:15:14 +00002051 assert(!str.empty() && "Invalid string length");
Reid Spencer5e0a8512007-02-17 03:16:00 +00002052 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2053 "Radix should be 2, 8, 10, or 16!");
Erick Tryzelaarbb975312009-08-21 03:15:14 +00002054
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002055 StringRef::iterator p = str.begin();
2056 size_t slen = str.size();
2057 bool isNeg = *p == '-';
Erick Tryzelaarbb975312009-08-21 03:15:14 +00002058 if (*p == '-' || *p == '+') {
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002059 p++;
2060 slen--;
Eric Christophere250f2a2009-08-21 04:10:31 +00002061 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002062 }
Chris Lattnera5ae15e2007-05-03 18:15:36 +00002063 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner38300e92009-04-25 18:34:04 +00002064 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2065 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Dan Gohman16e02092010-03-24 19:38:02 +00002066 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2067 "Insufficient bit width");
Reid Spencer385f7542007-02-21 03:55:44 +00002068
2069 // Allocate memory
2070 if (!isSingleWord())
2071 pVal = getClearedMemory(getNumWords());
2072
2073 // Figure out if we can shift instead of multiply
Chris Lattner455e9ab2009-01-21 18:09:24 +00002074 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer385f7542007-02-21 03:55:44 +00002075
2076 // Set up an APInt for the digit to add outside the loop so we don't
2077 // constantly construct/destruct it.
2078 APInt apdigit(getBitWidth(), 0);
2079 APInt apradix(getBitWidth(), radix);
2080
2081 // Enter digit traversal loop
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002082 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +00002083 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +00002084 assert(digit < radix && "Invalid character in digit string");
Reid Spencer385f7542007-02-21 03:55:44 +00002085
Reid Spencer6551dcd2007-05-16 19:18:22 +00002086 // Shift or multiply the value by the radix
Chris Lattner38300e92009-04-25 18:34:04 +00002087 if (slen > 1) {
2088 if (shift)
2089 *this <<= shift;
2090 else
2091 *this *= apradix;
2092 }
Reid Spencer385f7542007-02-21 03:55:44 +00002093
2094 // Add in the digit we just interpreted
Reid Spencer5bce8542007-02-24 20:19:37 +00002095 if (apdigit.isSingleWord())
2096 apdigit.VAL = digit;
2097 else
2098 apdigit.pVal[0] = digit;
Reid Spencer385f7542007-02-21 03:55:44 +00002099 *this += apdigit;
Reid Spencer5e0a8512007-02-17 03:16:00 +00002100 }
Reid Spencer9eec2412007-02-25 23:44:53 +00002101 // If its negative, put it in two's complement form
Reid Spencer47fbe9e2007-02-26 07:44:38 +00002102 if (isNeg) {
2103 (*this)--;
Reid Spencer9eec2412007-02-25 23:44:53 +00002104 this->flip();
Reid Spencer9eec2412007-02-25 23:44:53 +00002105 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00002106}
Reid Spencer9c0696f2007-02-20 08:51:03 +00002107
Chris Lattnerfad86b02008-08-17 07:19:36 +00002108void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2109 bool Signed) const {
2110 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Reid Spencer9c0696f2007-02-20 08:51:03 +00002111 "Radix should be 2, 8, 10, or 16!");
Eric Christopherd37eda82009-08-21 04:06:45 +00002112
Chris Lattnerfad86b02008-08-17 07:19:36 +00002113 // First, check for a zero value and just short circuit the logic below.
2114 if (*this == 0) {
2115 Str.push_back('0');
2116 return;
2117 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002118
Chris Lattnerfad86b02008-08-17 07:19:36 +00002119 static const char Digits[] = "0123456789ABCDEF";
Eric Christopherd37eda82009-08-21 04:06:45 +00002120
Reid Spencer9c0696f2007-02-20 08:51:03 +00002121 if (isSingleWord()) {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002122 char Buffer[65];
2123 char *BufPtr = Buffer+65;
Eric Christopherd37eda82009-08-21 04:06:45 +00002124
Chris Lattnerfad86b02008-08-17 07:19:36 +00002125 uint64_t N;
2126 if (Signed) {
2127 int64_t I = getSExtValue();
2128 if (I < 0) {
2129 Str.push_back('-');
2130 I = -I;
2131 }
2132 N = I;
Reid Spencer9c0696f2007-02-20 08:51:03 +00002133 } else {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002134 N = getZExtValue();
Reid Spencer9c0696f2007-02-20 08:51:03 +00002135 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002136
Chris Lattnerfad86b02008-08-17 07:19:36 +00002137 while (N) {
2138 *--BufPtr = Digits[N % Radix];
2139 N /= Radix;
2140 }
2141 Str.append(BufPtr, Buffer+65);
2142 return;
Reid Spencer9c0696f2007-02-20 08:51:03 +00002143 }
2144
Chris Lattnerfad86b02008-08-17 07:19:36 +00002145 APInt Tmp(*this);
Eric Christopherd37eda82009-08-21 04:06:45 +00002146
Chris Lattnerfad86b02008-08-17 07:19:36 +00002147 if (Signed && isNegative()) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00002148 // They want to print the signed version and it is a negative value
2149 // Flip the bits and add one to turn it into the equivalent positive
2150 // value and put a '-' in the result.
Chris Lattnerfad86b02008-08-17 07:19:36 +00002151 Tmp.flip();
2152 Tmp++;
2153 Str.push_back('-');
Reid Spencer9c0696f2007-02-20 08:51:03 +00002154 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002155
Chris Lattnerfad86b02008-08-17 07:19:36 +00002156 // We insert the digits backward, then reverse them to get the right order.
2157 unsigned StartDig = Str.size();
Eric Christopherd37eda82009-08-21 04:06:45 +00002158
2159 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2160 // because the number of bits per digit (1, 3 and 4 respectively) divides
Chris Lattnerfad86b02008-08-17 07:19:36 +00002161 // equaly. We just shift until the value is zero.
2162 if (Radix != 10) {
2163 // Just shift tmp right for each digit width until it becomes zero
2164 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2165 unsigned MaskAmt = Radix - 1;
Eric Christopherd37eda82009-08-21 04:06:45 +00002166
Chris Lattnerfad86b02008-08-17 07:19:36 +00002167 while (Tmp != 0) {
2168 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2169 Str.push_back(Digits[Digit]);
2170 Tmp = Tmp.lshr(ShiftAmt);
2171 }
2172 } else {
2173 APInt divisor(4, 10);
2174 while (Tmp != 0) {
2175 APInt APdigit(1, 0);
2176 APInt tmp2(Tmp.getBitWidth(), 0);
Eric Christopherd37eda82009-08-21 04:06:45 +00002177 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
Chris Lattnerfad86b02008-08-17 07:19:36 +00002178 &APdigit);
Chris Lattner455e9ab2009-01-21 18:09:24 +00002179 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002180 assert(Digit < Radix && "divide failed");
2181 Str.push_back(Digits[Digit]);
2182 Tmp = tmp2;
2183 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002184 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002185
Chris Lattnerfad86b02008-08-17 07:19:36 +00002186 // Reverse the digits before returning.
2187 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencer9c0696f2007-02-20 08:51:03 +00002188}
2189
Chris Lattnerfad86b02008-08-17 07:19:36 +00002190/// toString - This returns the APInt as a std::string. Note that this is an
2191/// inefficient method. It is better to pass in a SmallVector/SmallString
2192/// to the methods above.
2193std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2194 SmallString<40> S;
2195 toString(S, Radix, Signed);
Daniel Dunbardddfd342009-08-19 20:07:03 +00002196 return S.str();
Reid Spencer385f7542007-02-21 03:55:44 +00002197}
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002198
Chris Lattnerfad86b02008-08-17 07:19:36 +00002199
2200void APInt::dump() const {
2201 SmallString<40> S, U;
2202 this->toStringUnsigned(U);
2203 this->toStringSigned(S);
David Greene465abed2010-01-05 01:28:52 +00002204 dbgs() << "APInt(" << BitWidth << "b, "
Daniel Dunbardddfd342009-08-19 20:07:03 +00002205 << U.str() << "u " << S.str() << "s)";
Chris Lattnerfad86b02008-08-17 07:19:36 +00002206}
2207
Chris Lattner944fac72008-08-23 22:23:09 +00002208void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002209 SmallString<40> S;
2210 this->toString(S, 10, isSigned);
Daniel Dunbardddfd342009-08-19 20:07:03 +00002211 OS << S.str();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002212}
2213
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002214// This implements a variety of operations on a representation of
2215// arbitrary precision, two's-complement, bignum integer values.
2216
Chris Lattner91021d32009-08-23 23:11:28 +00002217// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2218// and unrestricting assumption.
Chris Lattner9f17eb02008-08-17 04:58:58 +00002219#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002220COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002221
2222/* Some handy functions local to this file. */
2223namespace {
2224
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002225 /* Returns the integer part with the least significant BITS set.
2226 BITS cannot be zero. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002227 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002228 lowBitMask(unsigned int bits)
2229 {
Dan Gohman16e02092010-03-24 19:38:02 +00002230 assert(bits != 0 && bits <= integerPartWidth);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002231
2232 return ~(integerPart) 0 >> (integerPartWidth - bits);
2233 }
2234
Neil Booth055c0b32007-10-06 00:43:45 +00002235 /* Returns the value of the lower half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002236 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002237 lowHalf(integerPart part)
2238 {
2239 return part & lowBitMask(integerPartWidth / 2);
2240 }
2241
Neil Booth055c0b32007-10-06 00:43:45 +00002242 /* Returns the value of the upper half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002243 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002244 highHalf(integerPart part)
2245 {
2246 return part >> (integerPartWidth / 2);
2247 }
2248
Neil Booth055c0b32007-10-06 00:43:45 +00002249 /* Returns the bit number of the most significant set bit of a part.
2250 If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002251 static unsigned int
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002252 partMSB(integerPart value)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002253 {
2254 unsigned int n, msb;
2255
2256 if (value == 0)
2257 return -1U;
2258
2259 n = integerPartWidth / 2;
2260
2261 msb = 0;
2262 do {
2263 if (value >> n) {
2264 value >>= n;
2265 msb += n;
2266 }
2267
2268 n >>= 1;
2269 } while (n);
2270
2271 return msb;
2272 }
2273
Neil Booth055c0b32007-10-06 00:43:45 +00002274 /* Returns the bit number of the least significant set bit of a
2275 part. If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002276 static unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002277 partLSB(integerPart value)
2278 {
2279 unsigned int n, lsb;
2280
2281 if (value == 0)
2282 return -1U;
2283
2284 lsb = integerPartWidth - 1;
2285 n = integerPartWidth / 2;
2286
2287 do {
2288 if (value << n) {
2289 value <<= n;
2290 lsb -= n;
2291 }
2292
2293 n >>= 1;
2294 } while (n);
2295
2296 return lsb;
2297 }
2298}
2299
2300/* Sets the least significant part of a bignum to the input value, and
2301 zeroes out higher parts. */
2302void
2303APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2304{
2305 unsigned int i;
2306
Dan Gohman16e02092010-03-24 19:38:02 +00002307 assert(parts > 0);
Neil Booth68e53ad2007-10-08 13:47:12 +00002308
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002309 dst[0] = part;
Dan Gohman16e02092010-03-24 19:38:02 +00002310 for (i = 1; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002311 dst[i] = 0;
2312}
2313
2314/* Assign one bignum to another. */
2315void
2316APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2317{
2318 unsigned int i;
2319
Dan Gohman16e02092010-03-24 19:38:02 +00002320 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002321 dst[i] = src[i];
2322}
2323
2324/* Returns true if a bignum is zero, false otherwise. */
2325bool
2326APInt::tcIsZero(const integerPart *src, unsigned int parts)
2327{
2328 unsigned int i;
2329
Dan Gohman16e02092010-03-24 19:38:02 +00002330 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002331 if (src[i])
2332 return false;
2333
2334 return true;
2335}
2336
2337/* Extract the given bit of a bignum; returns 0 or 1. */
2338int
2339APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2340{
Dan Gohman16e02092010-03-24 19:38:02 +00002341 return (parts[bit / integerPartWidth] &
2342 ((integerPart) 1 << bit % integerPartWidth)) != 0;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002343}
2344
John McCalle12b7382010-02-28 02:51:25 +00002345/* Set the given bit of a bignum. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002346void
2347APInt::tcSetBit(integerPart *parts, unsigned int bit)
2348{
2349 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2350}
2351
John McCalle12b7382010-02-28 02:51:25 +00002352/* Clears the given bit of a bignum. */
2353void
2354APInt::tcClearBit(integerPart *parts, unsigned int bit)
2355{
2356 parts[bit / integerPartWidth] &=
2357 ~((integerPart) 1 << (bit % integerPartWidth));
2358}
2359
Neil Booth055c0b32007-10-06 00:43:45 +00002360/* Returns the bit number of the least significant set bit of a
2361 number. If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002362unsigned int
2363APInt::tcLSB(const integerPart *parts, unsigned int n)
2364{
2365 unsigned int i, lsb;
2366
Dan Gohman16e02092010-03-24 19:38:02 +00002367 for (i = 0; i < n; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002368 if (parts[i] != 0) {
2369 lsb = partLSB(parts[i]);
2370
2371 return lsb + i * integerPartWidth;
2372 }
2373 }
2374
2375 return -1U;
2376}
2377
Neil Booth055c0b32007-10-06 00:43:45 +00002378/* Returns the bit number of the most significant set bit of a number.
2379 If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002380unsigned int
2381APInt::tcMSB(const integerPart *parts, unsigned int n)
2382{
2383 unsigned int msb;
2384
2385 do {
Dan Gohman16e02092010-03-24 19:38:02 +00002386 --n;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002387
Dan Gohman16e02092010-03-24 19:38:02 +00002388 if (parts[n] != 0) {
2389 msb = partMSB(parts[n]);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002390
Dan Gohman16e02092010-03-24 19:38:02 +00002391 return msb + n * integerPartWidth;
2392 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002393 } while (n);
2394
2395 return -1U;
2396}
2397
Neil Booth68e53ad2007-10-08 13:47:12 +00002398/* Copy the bit vector of width srcBITS from SRC, starting at bit
2399 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2400 the least significant bit of DST. All high bits above srcBITS in
2401 DST are zero-filled. */
2402void
Evan Chengcf69a742009-05-21 23:47:47 +00002403APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Booth68e53ad2007-10-08 13:47:12 +00002404 unsigned int srcBits, unsigned int srcLSB)
2405{
2406 unsigned int firstSrcPart, dstParts, shift, n;
2407
2408 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
Dan Gohman16e02092010-03-24 19:38:02 +00002409 assert(dstParts <= dstCount);
Neil Booth68e53ad2007-10-08 13:47:12 +00002410
2411 firstSrcPart = srcLSB / integerPartWidth;
2412 tcAssign (dst, src + firstSrcPart, dstParts);
2413
2414 shift = srcLSB % integerPartWidth;
2415 tcShiftRight (dst, dstParts, shift);
2416
2417 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2418 in DST. If this is less that srcBits, append the rest, else
2419 clear the high bits. */
2420 n = dstParts * integerPartWidth - shift;
2421 if (n < srcBits) {
2422 integerPart mask = lowBitMask (srcBits - n);
2423 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2424 << n % integerPartWidth);
2425 } else if (n > srcBits) {
Neil Booth1e8390d2007-10-12 15:31:31 +00002426 if (srcBits % integerPartWidth)
2427 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Booth68e53ad2007-10-08 13:47:12 +00002428 }
2429
2430 /* Clear high parts. */
2431 while (dstParts < dstCount)
2432 dst[dstParts++] = 0;
2433}
2434
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002435/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2436integerPart
2437APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2438 integerPart c, unsigned int parts)
2439{
2440 unsigned int i;
2441
2442 assert(c <= 1);
2443
Dan Gohman16e02092010-03-24 19:38:02 +00002444 for (i = 0; i < parts; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002445 integerPart l;
2446
2447 l = dst[i];
2448 if (c) {
2449 dst[i] += rhs[i] + 1;
2450 c = (dst[i] <= l);
2451 } else {
2452 dst[i] += rhs[i];
2453 c = (dst[i] < l);
2454 }
2455 }
2456
2457 return c;
2458}
2459
2460/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2461integerPart
2462APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2463 integerPart c, unsigned int parts)
2464{
2465 unsigned int i;
2466
2467 assert(c <= 1);
2468
Dan Gohman16e02092010-03-24 19:38:02 +00002469 for (i = 0; i < parts; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002470 integerPart l;
2471
2472 l = dst[i];
2473 if (c) {
2474 dst[i] -= rhs[i] + 1;
2475 c = (dst[i] >= l);
2476 } else {
2477 dst[i] -= rhs[i];
2478 c = (dst[i] > l);
2479 }
2480 }
2481
2482 return c;
2483}
2484
2485/* Negate a bignum in-place. */
2486void
2487APInt::tcNegate(integerPart *dst, unsigned int parts)
2488{
2489 tcComplement(dst, parts);
2490 tcIncrement(dst, parts);
2491}
2492
Neil Booth055c0b32007-10-06 00:43:45 +00002493/* DST += SRC * MULTIPLIER + CARRY if add is true
2494 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002495
2496 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2497 they must start at the same point, i.e. DST == SRC.
2498
2499 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2500 returned. Otherwise DST is filled with the least significant
2501 DSTPARTS parts of the result, and if all of the omitted higher
2502 parts were zero return zero, otherwise overflow occurred and
2503 return one. */
2504int
2505APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2506 integerPart multiplier, integerPart carry,
2507 unsigned int srcParts, unsigned int dstParts,
2508 bool add)
2509{
2510 unsigned int i, n;
2511
2512 /* Otherwise our writes of DST kill our later reads of SRC. */
2513 assert(dst <= src || dst >= src + srcParts);
2514 assert(dstParts <= srcParts + 1);
2515
2516 /* N loops; minimum of dstParts and srcParts. */
2517 n = dstParts < srcParts ? dstParts: srcParts;
2518
Dan Gohman16e02092010-03-24 19:38:02 +00002519 for (i = 0; i < n; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002520 integerPart low, mid, high, srcPart;
2521
2522 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2523
2524 This cannot overflow, because
2525
2526 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2527
2528 which is less than n^2. */
2529
2530 srcPart = src[i];
2531
2532 if (multiplier == 0 || srcPart == 0) {
2533 low = carry;
2534 high = 0;
2535 } else {
2536 low = lowHalf(srcPart) * lowHalf(multiplier);
2537 high = highHalf(srcPart) * highHalf(multiplier);
2538
2539 mid = lowHalf(srcPart) * highHalf(multiplier);
2540 high += highHalf(mid);
2541 mid <<= integerPartWidth / 2;
2542 if (low + mid < low)
2543 high++;
2544 low += mid;
2545
2546 mid = highHalf(srcPart) * lowHalf(multiplier);
2547 high += highHalf(mid);
2548 mid <<= integerPartWidth / 2;
2549 if (low + mid < low)
2550 high++;
2551 low += mid;
2552
2553 /* Now add carry. */
2554 if (low + carry < low)
2555 high++;
2556 low += carry;
2557 }
2558
2559 if (add) {
2560 /* And now DST[i], and store the new low part there. */
2561 if (low + dst[i] < low)
2562 high++;
2563 dst[i] += low;
2564 } else
2565 dst[i] = low;
2566
2567 carry = high;
2568 }
2569
2570 if (i < dstParts) {
2571 /* Full multiplication, there is no overflow. */
2572 assert(i + 1 == dstParts);
2573 dst[i] = carry;
2574 return 0;
2575 } else {
2576 /* We overflowed if there is carry. */
2577 if (carry)
2578 return 1;
2579
2580 /* We would overflow if any significant unwritten parts would be
2581 non-zero. This is true if any remaining src parts are non-zero
2582 and the multiplier is non-zero. */
2583 if (multiplier)
Dan Gohman16e02092010-03-24 19:38:02 +00002584 for (; i < srcParts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002585 if (src[i])
2586 return 1;
2587
2588 /* We fitted in the narrow destination. */
2589 return 0;
2590 }
2591}
2592
2593/* DST = LHS * RHS, where DST has the same width as the operands and
2594 is filled with the least significant parts of the result. Returns
2595 one if overflow occurred, otherwise zero. DST must be disjoint
2596 from both operands. */
2597int
2598APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2599 const integerPart *rhs, unsigned int parts)
2600{
2601 unsigned int i;
2602 int overflow;
2603
2604 assert(dst != lhs && dst != rhs);
2605
2606 overflow = 0;
2607 tcSet(dst, 0, parts);
2608
Dan Gohman16e02092010-03-24 19:38:02 +00002609 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002610 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2611 parts - i, true);
2612
2613 return overflow;
2614}
2615
Neil Booth978661d2007-10-06 00:24:48 +00002616/* DST = LHS * RHS, where DST has width the sum of the widths of the
2617 operands. No overflow occurs. DST must be disjoint from both
2618 operands. Returns the number of parts required to hold the
2619 result. */
2620unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002621APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth978661d2007-10-06 00:24:48 +00002622 const integerPart *rhs, unsigned int lhsParts,
2623 unsigned int rhsParts)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002624{
Neil Booth978661d2007-10-06 00:24:48 +00002625 /* Put the narrower number on the LHS for less loops below. */
2626 if (lhsParts > rhsParts) {
2627 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2628 } else {
2629 unsigned int n;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002630
Neil Booth978661d2007-10-06 00:24:48 +00002631 assert(dst != lhs && dst != rhs);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002632
Neil Booth978661d2007-10-06 00:24:48 +00002633 tcSet(dst, 0, rhsParts);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002634
Dan Gohman16e02092010-03-24 19:38:02 +00002635 for (n = 0; n < lhsParts; n++)
Neil Booth978661d2007-10-06 00:24:48 +00002636 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002637
Neil Booth978661d2007-10-06 00:24:48 +00002638 n = lhsParts + rhsParts;
2639
2640 return n - (dst[n - 1] == 0);
2641 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002642}
2643
2644/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2645 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2646 set REMAINDER to the remainder, return zero. i.e.
2647
2648 OLD_LHS = RHS * LHS + REMAINDER
2649
2650 SCRATCH is a bignum of the same size as the operands and result for
2651 use by the routine; its contents need not be initialized and are
2652 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2653*/
2654int
2655APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2656 integerPart *remainder, integerPart *srhs,
2657 unsigned int parts)
2658{
2659 unsigned int n, shiftCount;
2660 integerPart mask;
2661
2662 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2663
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002664 shiftCount = tcMSB(rhs, parts) + 1;
2665 if (shiftCount == 0)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002666 return true;
2667
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002668 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002669 n = shiftCount / integerPartWidth;
2670 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2671
2672 tcAssign(srhs, rhs, parts);
2673 tcShiftLeft(srhs, parts, shiftCount);
2674 tcAssign(remainder, lhs, parts);
2675 tcSet(lhs, 0, parts);
2676
2677 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2678 the total. */
Dan Gohman16e02092010-03-24 19:38:02 +00002679 for (;;) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002680 int compare;
2681
2682 compare = tcCompare(remainder, srhs, parts);
2683 if (compare >= 0) {
2684 tcSubtract(remainder, srhs, 0, parts);
2685 lhs[n] |= mask;
2686 }
2687
2688 if (shiftCount == 0)
2689 break;
2690 shiftCount--;
2691 tcShiftRight(srhs, parts, 1);
2692 if ((mask >>= 1) == 0)
2693 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2694 }
2695
2696 return false;
2697}
2698
2699/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2700 There are no restrictions on COUNT. */
2701void
2702APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2703{
Neil Booth68e53ad2007-10-08 13:47:12 +00002704 if (count) {
2705 unsigned int jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002706
Neil Booth68e53ad2007-10-08 13:47:12 +00002707 /* Jump is the inter-part jump; shift is is intra-part shift. */
2708 jump = count / integerPartWidth;
2709 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002710
Neil Booth68e53ad2007-10-08 13:47:12 +00002711 while (parts > jump) {
2712 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002713
Neil Booth68e53ad2007-10-08 13:47:12 +00002714 parts--;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002715
Neil Booth68e53ad2007-10-08 13:47:12 +00002716 /* dst[i] comes from the two parts src[i - jump] and, if we have
2717 an intra-part shift, src[i - jump - 1]. */
2718 part = dst[parts - jump];
2719 if (shift) {
2720 part <<= shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002721 if (parts >= jump + 1)
2722 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2723 }
2724
Neil Booth68e53ad2007-10-08 13:47:12 +00002725 dst[parts] = part;
2726 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002727
Neil Booth68e53ad2007-10-08 13:47:12 +00002728 while (parts > 0)
2729 dst[--parts] = 0;
2730 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002731}
2732
2733/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2734 zero. There are no restrictions on COUNT. */
2735void
2736APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2737{
Neil Booth68e53ad2007-10-08 13:47:12 +00002738 if (count) {
2739 unsigned int i, jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002740
Neil Booth68e53ad2007-10-08 13:47:12 +00002741 /* Jump is the inter-part jump; shift is is intra-part shift. */
2742 jump = count / integerPartWidth;
2743 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002744
Neil Booth68e53ad2007-10-08 13:47:12 +00002745 /* Perform the shift. This leaves the most significant COUNT bits
2746 of the result at zero. */
Dan Gohman16e02092010-03-24 19:38:02 +00002747 for (i = 0; i < parts; i++) {
Neil Booth68e53ad2007-10-08 13:47:12 +00002748 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002749
Neil Booth68e53ad2007-10-08 13:47:12 +00002750 if (i + jump >= parts) {
2751 part = 0;
2752 } else {
2753 part = dst[i + jump];
2754 if (shift) {
2755 part >>= shift;
2756 if (i + jump + 1 < parts)
2757 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2758 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002759 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002760
Neil Booth68e53ad2007-10-08 13:47:12 +00002761 dst[i] = part;
2762 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002763 }
2764}
2765
2766/* Bitwise and of two bignums. */
2767void
2768APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2769{
2770 unsigned int i;
2771
Dan Gohman16e02092010-03-24 19:38:02 +00002772 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002773 dst[i] &= rhs[i];
2774}
2775
2776/* Bitwise inclusive or of two bignums. */
2777void
2778APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2779{
2780 unsigned int i;
2781
Dan Gohman16e02092010-03-24 19:38:02 +00002782 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002783 dst[i] |= rhs[i];
2784}
2785
2786/* Bitwise exclusive or of two bignums. */
2787void
2788APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2789{
2790 unsigned int i;
2791
Dan Gohman16e02092010-03-24 19:38:02 +00002792 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002793 dst[i] ^= rhs[i];
2794}
2795
2796/* Complement a bignum in-place. */
2797void
2798APInt::tcComplement(integerPart *dst, unsigned int parts)
2799{
2800 unsigned int i;
2801
Dan Gohman16e02092010-03-24 19:38:02 +00002802 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002803 dst[i] = ~dst[i];
2804}
2805
2806/* Comparison (unsigned) of two bignums. */
2807int
2808APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2809 unsigned int parts)
2810{
2811 while (parts) {
2812 parts--;
2813 if (lhs[parts] == rhs[parts])
2814 continue;
2815
2816 if (lhs[parts] > rhs[parts])
2817 return 1;
2818 else
2819 return -1;
2820 }
2821
2822 return 0;
2823}
2824
2825/* Increment a bignum in-place, return the carry flag. */
2826integerPart
2827APInt::tcIncrement(integerPart *dst, unsigned int parts)
2828{
2829 unsigned int i;
2830
Dan Gohman16e02092010-03-24 19:38:02 +00002831 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002832 if (++dst[i] != 0)
2833 break;
2834
2835 return i == parts;
2836}
2837
2838/* Set the least significant BITS bits of a bignum, clear the
2839 rest. */
2840void
2841APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2842 unsigned int bits)
2843{
2844 unsigned int i;
2845
2846 i = 0;
2847 while (bits > integerPartWidth) {
2848 dst[i++] = ~(integerPart) 0;
2849 bits -= integerPartWidth;
2850 }
2851
2852 if (bits)
2853 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2854
2855 while (i < parts)
2856 dst[i++] = 0;
2857}