blob: e77fcdbdd242025353c306bf355f1465b733db30 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
Ted Kremenek109de0d2008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Chris Lattner89b36582008-08-17 07:19:36 +000018#include "llvm/ADT/SmallString.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "llvm/Support/Debug.h"
20#include "llvm/Support/MathExtras.h"
Chris Lattner1fefaac2008-08-23 22:23:09 +000021#include "llvm/Support/raw_ostream.h"
Chris Lattner89b36582008-08-17 07:19:36 +000022#include <cmath>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include <limits>
24#include <cstring>
25#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000026using namespace llvm;
27
28/// A utility function for allocating memory, checking for allocation failures,
29/// and ensuring the contents are zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000030inline static uint64_t* getClearedMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031 uint64_t * result = new uint64_t[numWords];
32 assert(result && "APInt memory allocation fails!");
33 memset(result, 0, numWords * sizeof(uint64_t));
34 return result;
35}
36
37/// A utility function for allocating memory and checking for allocation
38/// failure. The content is not zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000039inline static uint64_t* getMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000040 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 return result;
43}
44
Chris Lattneree5417c2009-01-21 18:09:24 +000045void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner84886852008-08-20 17:02:31 +000046 pVal = getClearedMemory(getNumWords());
47 pVal[0] = val;
48 if (isSigned && int64_t(val) < 0)
49 for (unsigned i = 1; i < getNumWords(); ++i)
50 pVal[i] = -1ULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051}
52
Chris Lattnera1f63bb2008-10-11 22:07:19 +000053void APInt::initSlowCase(const APInt& that) {
54 pVal = getMemory(getNumWords());
55 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
56}
57
58
Chris Lattneree5417c2009-01-21 18:09:24 +000059APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner1fefaac2008-08-23 22:23:09 +000060 : BitWidth(numBits), VAL(0) {
Chris Lattner84886852008-08-20 17:02:31 +000061 assert(BitWidth && "bitwidth too small");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062 assert(bigVal && "Null pointer detected!");
63 if (isSingleWord())
64 VAL = bigVal[0];
65 else {
66 // Get memory, cleared to 0
67 pVal = getClearedMemory(getNumWords());
68 // Calculate the number of words to copy
Chris Lattneree5417c2009-01-21 18:09:24 +000069 unsigned words = std::min<unsigned>(numWords, getNumWords());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070 // Copy the words from bigVal to pVal
71 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
72 }
73 // Make sure unused high bits are cleared
74 clearUnusedBits();
75}
76
Chris Lattneree5417c2009-01-21 18:09:24 +000077APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 uint8_t radix)
79 : BitWidth(numbits), VAL(0) {
Chris Lattner84886852008-08-20 17:02:31 +000080 assert(BitWidth && "bitwidth too small");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081 fromString(numbits, StrStart, slen, radix);
82}
83
Chris Lattner84886852008-08-20 17:02:31 +000084APInt& APInt::AssignSlowCase(const APInt& RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085 // Don't do anything for X = X
86 if (this == &RHS)
87 return *this;
88
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner84886852008-08-20 17:02:31 +000090 // assume same bit-width single-word case is already handled
91 assert(!isSingleWord());
92 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000093 return *this;
94 }
95
Chris Lattner84886852008-08-20 17:02:31 +000096 if (isSingleWord()) {
97 // assume case where both are single words is already handled
98 assert(!RHS.isSingleWord());
99 VAL = 0;
100 pVal = getMemory(RHS.getNumWords());
101 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
102 } else if (getNumWords() == RHS.getNumWords())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
104 else if (RHS.isSingleWord()) {
105 delete [] pVal;
106 VAL = RHS.VAL;
107 } else {
108 delete [] pVal;
109 pVal = getMemory(RHS.getNumWords());
110 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
111 }
112 BitWidth = RHS.BitWidth;
113 return clearUnusedBits();
114}
115
116APInt& APInt::operator=(uint64_t RHS) {
117 if (isSingleWord())
118 VAL = RHS;
119 else {
120 pVal[0] = RHS;
121 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
122 }
123 return clearUnusedBits();
124}
125
Ted Kremenek109de0d2008-01-19 04:23:33 +0000126/// Profile - This method 'profiles' an APInt for use with FoldingSet.
127void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek79f65912008-02-19 20:50:41 +0000128 ID.AddInteger(BitWidth);
129
Ted Kremenek109de0d2008-01-19 04:23:33 +0000130 if (isSingleWord()) {
131 ID.AddInteger(VAL);
132 return;
133 }
134
Chris Lattneree5417c2009-01-21 18:09:24 +0000135 unsigned NumWords = getNumWords();
Ted Kremenek109de0d2008-01-19 04:23:33 +0000136 for (unsigned i = 0; i < NumWords; ++i)
137 ID.AddInteger(pVal[i]);
138}
139
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140/// add_1 - This function adds a single "digit" integer, y, to the multiple
141/// "digit" integer array, x[]. x[] is modified to reflect the addition and
142/// 1 is returned if there is a carry out, otherwise 0 is returned.
143/// @returns the carry of the addition.
Chris Lattneree5417c2009-01-21 18:09:24 +0000144static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
145 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000146 dest[i] = y + x[i];
147 if (dest[i] < y)
148 y = 1; // Carry one to next digit.
149 else {
150 y = 0; // No need to carry so exit early
151 break;
152 }
153 }
154 return y;
155}
156
157/// @brief Prefix increment operator. Increments the APInt by one.
158APInt& APInt::operator++() {
159 if (isSingleWord())
160 ++VAL;
161 else
162 add_1(pVal, pVal, getNumWords(), 1);
163 return clearUnusedBits();
164}
165
166/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
167/// the multi-digit integer array, x[], propagating the borrowed 1 value until
168/// no further borrowing is neeeded or it runs out of "digits" in x. The result
169/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
170/// In other words, if y > x then this function returns 1, otherwise 0.
171/// @returns the borrow out of the subtraction
Chris Lattneree5417c2009-01-21 18:09:24 +0000172static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
173 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000174 uint64_t X = x[i];
175 x[i] -= y;
176 if (y > X)
177 y = 1; // We have to "borrow 1" from next "digit"
178 else {
179 y = 0; // No need to borrow
180 break; // Remaining digits are unchanged so exit early
181 }
182 }
183 return bool(y);
184}
185
186/// @brief Prefix decrement operator. Decrements the APInt by one.
187APInt& APInt::operator--() {
188 if (isSingleWord())
189 --VAL;
190 else
191 sub_1(pVal, getNumWords(), 1);
192 return clearUnusedBits();
193}
194
195/// add - This function adds the integer array x to the integer array Y and
196/// places the result in dest.
197/// @returns the carry out from the addition
198/// @brief General addition of 64-bit integer arrays
199static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000200 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000202 for (unsigned i = 0; i< len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
204 dest[i] = x[i] + y[i] + carry;
205 carry = dest[i] < limit || (carry && dest[i] == limit);
206 }
207 return carry;
208}
209
210/// Adds the RHS APint to this APInt.
211/// @returns this, after addition of RHS.
212/// @brief Addition assignment operator.
213APInt& APInt::operator+=(const APInt& RHS) {
214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
215 if (isSingleWord())
216 VAL += RHS.VAL;
217 else {
218 add(pVal, pVal, RHS.pVal, getNumWords());
219 }
220 return clearUnusedBits();
221}
222
223/// Subtracts the integer array y from the integer array x
224/// @returns returns the borrow out.
225/// @brief Generalized subtraction of 64-bit integer arrays.
226static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000227 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228 bool borrow = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000229 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000230 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
231 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
232 dest[i] = x_tmp - y[i];
233 }
234 return borrow;
235}
236
237/// Subtracts the RHS APInt from this APInt
238/// @returns this, after subtraction
239/// @brief Subtraction assignment operator.
240APInt& APInt::operator-=(const APInt& RHS) {
241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
242 if (isSingleWord())
243 VAL -= RHS.VAL;
244 else
245 sub(pVal, pVal, RHS.pVal, getNumWords());
246 return clearUnusedBits();
247}
248
249/// Multiplies an integer array, x by a a uint64_t integer and places the result
250/// into dest.
251/// @returns the carry out of the multiplication.
252/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattneree5417c2009-01-21 18:09:24 +0000253static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000254 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
255 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
256 uint64_t carry = 0;
257
258 // For each digit of x.
Chris Lattneree5417c2009-01-21 18:09:24 +0000259 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000260 // Split x into high and low words
261 uint64_t lx = x[i] & 0xffffffffULL;
262 uint64_t hx = x[i] >> 32;
263 // hasCarry - A flag to indicate if there is a carry to the next digit.
264 // hasCarry == 0, no carry
265 // hasCarry == 1, has carry
266 // hasCarry == 2, no carry and the calculation result == 0.
267 uint8_t hasCarry = 0;
268 dest[i] = carry + lx * ly;
269 // Determine if the add above introduces carry.
270 hasCarry = (dest[i] < carry) ? 1 : 0;
271 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
272 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
273 // (2^32 - 1) + 2^32 = 2^64.
274 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
275
276 carry += (lx * hy) & 0xffffffffULL;
277 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
278 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
279 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
280 }
281 return carry;
282}
283
284/// Multiplies integer array x by integer array y and stores the result into
285/// the integer array dest. Note that dest's size must be >= xlen + ylen.
286/// @brief Generalized multiplicate of integer arrays.
Chris Lattneree5417c2009-01-21 18:09:24 +0000287static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
288 unsigned ylen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattneree5417c2009-01-21 18:09:24 +0000290 for (unsigned i = 1; i < ylen; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
292 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +0000293 for (unsigned j = 0; j < xlen; ++j) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000294 lx = x[j] & 0xffffffffULL;
295 hx = x[j] >> 32;
296 // hasCarry - A flag to indicate if has carry.
297 // hasCarry == 0, no carry
298 // hasCarry == 1, has carry
299 // hasCarry == 2, no carry and the calculation result == 0.
300 uint8_t hasCarry = 0;
301 uint64_t resul = carry + lx * ly;
302 hasCarry = (resul < carry) ? 1 : 0;
303 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
304 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
305
306 carry += (lx * hy) & 0xffffffffULL;
307 resul = (carry << 32) | (resul & 0xffffffffULL);
308 dest[i+j] += resul;
309 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
310 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
311 ((lx * hy) >> 32) + hx * hy;
312 }
313 dest[i+xlen] = carry;
314 }
315}
316
317APInt& APInt::operator*=(const APInt& RHS) {
318 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
319 if (isSingleWord()) {
320 VAL *= RHS.VAL;
321 clearUnusedBits();
322 return *this;
323 }
324
325 // Get some bit facts about LHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000326 unsigned lhsBits = getActiveBits();
327 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328 if (!lhsWords)
329 // 0 * X ===> 0
330 return *this;
331
332 // Get some bit facts about RHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000333 unsigned rhsBits = RHS.getActiveBits();
334 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335 if (!rhsWords) {
336 // X * 0 ===> 0
337 clear();
338 return *this;
339 }
340
341 // Allocate space for the result
Chris Lattneree5417c2009-01-21 18:09:24 +0000342 unsigned destWords = rhsWords + lhsWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343 uint64_t *dest = getMemory(destWords);
344
345 // Perform the long multiply
346 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
347
348 // Copy result back into *this
349 clear();
Chris Lattneree5417c2009-01-21 18:09:24 +0000350 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000351 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
352
353 // delete dest array and return
354 delete[] dest;
355 return *this;
356}
357
358APInt& APInt::operator&=(const APInt& RHS) {
359 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
360 if (isSingleWord()) {
361 VAL &= RHS.VAL;
362 return *this;
363 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000364 unsigned numWords = getNumWords();
365 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000366 pVal[i] &= RHS.pVal[i];
367 return *this;
368}
369
370APInt& APInt::operator|=(const APInt& RHS) {
371 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
372 if (isSingleWord()) {
373 VAL |= RHS.VAL;
374 return *this;
375 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000376 unsigned numWords = getNumWords();
377 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000378 pVal[i] |= RHS.pVal[i];
379 return *this;
380}
381
382APInt& APInt::operator^=(const APInt& RHS) {
383 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
384 if (isSingleWord()) {
385 VAL ^= RHS.VAL;
386 this->clearUnusedBits();
387 return *this;
388 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000389 unsigned numWords = getNumWords();
390 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000391 pVal[i] ^= RHS.pVal[i];
392 return clearUnusedBits();
393}
394
Chris Lattner84886852008-08-20 17:02:31 +0000395APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000396 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397 uint64_t* val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000398 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 val[i] = pVal[i] & RHS.pVal[i];
400 return APInt(val, getBitWidth());
401}
402
Chris Lattner84886852008-08-20 17:02:31 +0000403APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000404 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000406 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000407 val[i] = pVal[i] | RHS.pVal[i];
408 return APInt(val, getBitWidth());
409}
410
Chris Lattner84886852008-08-20 17:02:31 +0000411APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000412 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000413 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000414 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415 val[i] = pVal[i] ^ RHS.pVal[i];
416
417 // 0^0==1 so clear the high bits in case they got set.
418 return APInt(val, getBitWidth()).clearUnusedBits();
419}
420
421bool APInt::operator !() const {
422 if (isSingleWord())
423 return !VAL;
424
Chris Lattneree5417c2009-01-21 18:09:24 +0000425 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 if (pVal[i])
427 return false;
428 return true;
429}
430
431APInt APInt::operator*(const APInt& RHS) const {
432 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
433 if (isSingleWord())
434 return APInt(BitWidth, VAL * RHS.VAL);
435 APInt Result(*this);
436 Result *= RHS;
437 return Result.clearUnusedBits();
438}
439
440APInt APInt::operator+(const APInt& RHS) const {
441 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
442 if (isSingleWord())
443 return APInt(BitWidth, VAL + RHS.VAL);
444 APInt Result(BitWidth, 0);
445 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
446 return Result.clearUnusedBits();
447}
448
449APInt APInt::operator-(const APInt& RHS) const {
450 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
451 if (isSingleWord())
452 return APInt(BitWidth, VAL - RHS.VAL);
453 APInt Result(BitWidth, 0);
454 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
455 return Result.clearUnusedBits();
456}
457
Chris Lattneree5417c2009-01-21 18:09:24 +0000458bool APInt::operator[](unsigned bitPosition) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000459 return (maskBit(bitPosition) &
460 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
461}
462
Chris Lattner84886852008-08-20 17:02:31 +0000463bool APInt::EqualSlowCase(const APInt& RHS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464 // Get some facts about the number of bits used in the two operands.
Chris Lattneree5417c2009-01-21 18:09:24 +0000465 unsigned n1 = getActiveBits();
466 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467
468 // If the number of bits isn't the same, they aren't equal
469 if (n1 != n2)
470 return false;
471
472 // If the number of bits fits in a word, we only need to compare the low word.
473 if (n1 <= APINT_BITS_PER_WORD)
474 return pVal[0] == RHS.pVal[0];
475
476 // Otherwise, compare everything
477 for (int i = whichWord(n1 - 1); i >= 0; --i)
478 if (pVal[i] != RHS.pVal[i])
479 return false;
480 return true;
481}
482
Chris Lattner84886852008-08-20 17:02:31 +0000483bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000484 unsigned n = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000485 if (n <= APINT_BITS_PER_WORD)
486 return pVal[0] == Val;
487 else
488 return false;
489}
490
491bool APInt::ult(const APInt& RHS) const {
492 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
493 if (isSingleWord())
494 return VAL < RHS.VAL;
495
496 // Get active bit length of both operands
Chris Lattneree5417c2009-01-21 18:09:24 +0000497 unsigned n1 = getActiveBits();
498 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000499
500 // If magnitude of LHS is less than RHS, return true.
501 if (n1 < n2)
502 return true;
503
504 // If magnitude of RHS is greather than LHS, return false.
505 if (n2 < n1)
506 return false;
507
508 // If they bot fit in a word, just compare the low order word
509 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
510 return pVal[0] < RHS.pVal[0];
511
512 // Otherwise, compare all words
Chris Lattneree5417c2009-01-21 18:09:24 +0000513 unsigned topWord = whichWord(std::max(n1,n2)-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000514 for (int i = topWord; i >= 0; --i) {
515 if (pVal[i] > RHS.pVal[i])
516 return false;
517 if (pVal[i] < RHS.pVal[i])
518 return true;
519 }
520 return false;
521}
522
523bool APInt::slt(const APInt& RHS) const {
524 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
525 if (isSingleWord()) {
526 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
527 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
528 return lhsSext < rhsSext;
529 }
530
531 APInt lhs(*this);
532 APInt rhs(RHS);
533 bool lhsNeg = isNegative();
534 bool rhsNeg = rhs.isNegative();
535 if (lhsNeg) {
536 // Sign bit is set so perform two's complement to make it positive
537 lhs.flip();
538 lhs++;
539 }
540 if (rhsNeg) {
541 // Sign bit is set so perform two's complement to make it positive
542 rhs.flip();
543 rhs++;
544 }
545
546 // Now we have unsigned values to compare so do the comparison if necessary
547 // based on the negativeness of the values.
548 if (lhsNeg)
549 if (rhsNeg)
550 return lhs.ugt(rhs);
551 else
552 return true;
553 else if (rhsNeg)
554 return false;
555 else
556 return lhs.ult(rhs);
557}
558
Chris Lattneree5417c2009-01-21 18:09:24 +0000559APInt& APInt::set(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000560 if (isSingleWord())
561 VAL |= maskBit(bitPosition);
562 else
563 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
564 return *this;
565}
566
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000567/// Set the given bit to 0 whose position is given as "bitPosition".
568/// @brief Set a given bit to 0.
Chris Lattneree5417c2009-01-21 18:09:24 +0000569APInt& APInt::clear(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000570 if (isSingleWord())
571 VAL &= ~maskBit(bitPosition);
572 else
573 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
574 return *this;
575}
576
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000577/// @brief Toggle every bit to its opposite value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000578
579/// Toggle a given bit to its opposite value whose position is given
580/// as "bitPosition".
581/// @brief Toggles a given bit to its opposite value.
Chris Lattneree5417c2009-01-21 18:09:24 +0000582APInt& APInt::flip(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000583 assert(bitPosition < BitWidth && "Out of the bit-width range!");
584 if ((*this)[bitPosition]) clear(bitPosition);
585 else set(bitPosition);
586 return *this;
587}
588
Chris Lattneree5417c2009-01-21 18:09:24 +0000589unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000590 assert(str != 0 && "Invalid value string");
591 assert(slen > 0 && "Invalid string length");
592
593 // Each computation below needs to know if its negative
Chris Lattneree5417c2009-01-21 18:09:24 +0000594 unsigned isNegative = str[0] == '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000595 if (isNegative) {
596 slen--;
597 str++;
598 }
599 // For radixes of power-of-two values, the bits required is accurately and
600 // easily computed
601 if (radix == 2)
602 return slen + isNegative;
603 if (radix == 8)
604 return slen * 3 + isNegative;
605 if (radix == 16)
606 return slen * 4 + isNegative;
607
608 // Otherwise it must be radix == 10, the hard case
609 assert(radix == 10 && "Invalid radix");
610
611 // This is grossly inefficient but accurate. We could probably do something
612 // with a computation of roughly slen*64/20 and then adjust by the value of
613 // the first few digits. But, I'm not sure how accurate that could be.
614
615 // Compute a sufficient number of bits that is always large enough but might
616 // be too large. This avoids the assertion in the constructor.
Chris Lattneree5417c2009-01-21 18:09:24 +0000617 unsigned sufficient = slen*64/18;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000618
619 // Convert to the actual binary value.
620 APInt tmp(sufficient, str, slen, radix);
621
622 // Compute how many bits are required.
623 return isNegative + tmp.logBase2() + 1;
624}
625
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000626// From http://www.burtleburtle.net, byBob Jenkins.
627// When targeting x86, both GCC and LLVM seem to recognize this as a
628// rotate instruction.
629#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000630
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000631// From http://www.burtleburtle.net, by Bob Jenkins.
632#define mix(a,b,c) \
633 { \
634 a -= c; a ^= rot(c, 4); c += b; \
635 b -= a; b ^= rot(a, 6); a += c; \
636 c -= b; c ^= rot(b, 8); b += a; \
637 a -= c; a ^= rot(c,16); c += b; \
638 b -= a; b ^= rot(a,19); a += c; \
639 c -= b; c ^= rot(b, 4); b += a; \
640 }
641
642// From http://www.burtleburtle.net, by Bob Jenkins.
643#define final(a,b,c) \
644 { \
645 c ^= b; c -= rot(b,14); \
646 a ^= c; a -= rot(c,11); \
647 b ^= a; b -= rot(a,25); \
648 c ^= b; c -= rot(b,16); \
649 a ^= c; a -= rot(c,4); \
650 b ^= a; b -= rot(a,14); \
651 c ^= b; c -= rot(b,24); \
652 }
653
654// hashword() was adapted from http://www.burtleburtle.net, by Bob
655// Jenkins. k is a pointer to an array of uint32_t values; length is
656// the length of the key, in 32-bit chunks. This version only handles
657// keys that are a multiple of 32 bits in size.
658static inline uint32_t hashword(const uint64_t *k64, size_t length)
659{
660 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
661 uint32_t a,b,c;
662
663 /* Set up the internal state */
664 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
665
666 /*------------------------------------------------- handle most of the key */
667 while (length > 3)
668 {
669 a += k[0];
670 b += k[1];
671 c += k[2];
672 mix(a,b,c);
673 length -= 3;
674 k += 3;
675 }
676
677 /*------------------------------------------- handle the last 3 uint32_t's */
678 switch(length) /* all the case statements fall through */
679 {
680 case 3 : c+=k[2];
681 case 2 : b+=k[1];
682 case 1 : a+=k[0];
683 final(a,b,c);
684 case 0: /* case 0: nothing left to add */
685 break;
686 }
687 /*------------------------------------------------------ report the result */
688 return c;
689}
690
691// hashword8() was adapted from http://www.burtleburtle.net, by Bob
692// Jenkins. This computes a 32-bit hash from one 64-bit word. When
693// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
694// function into about 35 instructions when inlined.
695static inline uint32_t hashword8(const uint64_t k64)
696{
697 uint32_t a,b,c;
698 a = b = c = 0xdeadbeef + 4;
699 b += k64 >> 32;
700 a += k64 & 0xffffffff;
701 final(a,b,c);
702 return c;
703}
704#undef final
705#undef mix
706#undef rot
707
708uint64_t APInt::getHashValue() const {
709 uint64_t hash;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000710 if (isSingleWord())
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000711 hash = hashword8(VAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712 else
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000713 hash = hashword(pVal, getNumWords()*2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000714 return hash;
715}
716
717/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000718APInt APInt::getHiBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719 return APIntOps::lshr(*this, BitWidth - numBits);
720}
721
722/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000723APInt APInt::getLoBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
725 BitWidth - numBits);
726}
727
728bool APInt::isPowerOf2() const {
729 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
730}
731
Chris Lattneree5417c2009-01-21 18:09:24 +0000732unsigned APInt::countLeadingZerosSlowCase() const {
733 unsigned Count = 0;
734 for (unsigned i = getNumWords(); i > 0u; --i) {
Chris Lattner84886852008-08-20 17:02:31 +0000735 if (pVal[i-1] == 0)
736 Count += APINT_BITS_PER_WORD;
737 else {
738 Count += CountLeadingZeros_64(pVal[i-1]);
739 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 }
741 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000742 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000743 if (remainder)
744 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner00b08ce2007-11-23 22:42:31 +0000745 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746}
747
Chris Lattneree5417c2009-01-21 18:09:24 +0000748static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
749 unsigned Count = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000750 if (skip)
751 V <<= skip;
752 while (V && (V & (1ULL << 63))) {
753 Count++;
754 V <<= 1;
755 }
756 return Count;
757}
758
Chris Lattneree5417c2009-01-21 18:09:24 +0000759unsigned APInt::countLeadingOnes() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000760 if (isSingleWord())
761 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
762
Chris Lattneree5417c2009-01-21 18:09:24 +0000763 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
edwinb95462a2009-01-27 18:06:03 +0000764 unsigned shift;
765 if (!highWordBits) {
766 highWordBits = APINT_BITS_PER_WORD;
767 shift = 0;
768 } else {
769 shift = APINT_BITS_PER_WORD - highWordBits;
770 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000771 int i = getNumWords() - 1;
Chris Lattneree5417c2009-01-21 18:09:24 +0000772 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000773 if (Count == highWordBits) {
774 for (i--; i >= 0; --i) {
775 if (pVal[i] == -1ULL)
776 Count += APINT_BITS_PER_WORD;
777 else {
778 Count += countLeadingOnes_64(pVal[i], 0);
779 break;
780 }
781 }
782 }
783 return Count;
784}
785
Chris Lattneree5417c2009-01-21 18:09:24 +0000786unsigned APInt::countTrailingZeros() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 if (isSingleWord())
Chris Lattneree5417c2009-01-21 18:09:24 +0000788 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
789 unsigned Count = 0;
790 unsigned i = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000791 for (; i < getNumWords() && pVal[i] == 0; ++i)
792 Count += APINT_BITS_PER_WORD;
793 if (i < getNumWords())
794 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000795 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000796}
797
Chris Lattneree5417c2009-01-21 18:09:24 +0000798unsigned APInt::countTrailingOnesSlowCase() const {
799 unsigned Count = 0;
800 unsigned i = 0;
Dan Gohmane4428412008-02-14 22:38:45 +0000801 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohmanf550d412008-02-13 21:11:05 +0000802 Count += APINT_BITS_PER_WORD;
803 if (i < getNumWords())
804 Count += CountTrailingOnes_64(pVal[i]);
805 return std::min(Count, BitWidth);
806}
807
Chris Lattneree5417c2009-01-21 18:09:24 +0000808unsigned APInt::countPopulationSlowCase() const {
809 unsigned Count = 0;
810 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000811 Count += CountPopulation_64(pVal[i]);
812 return Count;
813}
814
815APInt APInt::byteSwap() const {
816 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
817 if (BitWidth == 16)
818 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
819 else if (BitWidth == 32)
Chris Lattneree5417c2009-01-21 18:09:24 +0000820 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000821 else if (BitWidth == 48) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000822 unsigned Tmp1 = unsigned(VAL >> 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000823 Tmp1 = ByteSwap_32(Tmp1);
824 uint16_t Tmp2 = uint16_t(VAL);
825 Tmp2 = ByteSwap_16(Tmp2);
826 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
827 } else if (BitWidth == 64)
828 return APInt(BitWidth, ByteSwap_64(VAL));
829 else {
830 APInt Result(BitWidth, 0);
831 char *pByte = (char*)Result.pVal;
Chris Lattneree5417c2009-01-21 18:09:24 +0000832 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000833 char Tmp = pByte[i];
834 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
835 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
836 }
837 return Result;
838 }
839}
840
841APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
842 const APInt& API2) {
843 APInt A = API1, B = API2;
844 while (!!B) {
845 APInt T = B;
846 B = APIntOps::urem(A, B);
847 A = T;
848 }
849 return A;
850}
851
Chris Lattneree5417c2009-01-21 18:09:24 +0000852APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000853 union {
854 double D;
855 uint64_t I;
856 } T;
857 T.D = Double;
858
859 // Get the sign bit from the highest order bit
860 bool isNeg = T.I >> 63;
861
862 // Get the 11-bit exponent and adjust for the 1023 bit bias
863 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
864
865 // If the exponent is negative, the value is < 0 so just return 0.
866 if (exp < 0)
867 return APInt(width, 0u);
868
869 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
870 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
871
872 // If the exponent doesn't shift all bits out of the mantissa
873 if (exp < 52)
874 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
875 APInt(width, mantissa >> (52 - exp));
876
877 // If the client didn't provide enough bits for us to shift the mantissa into
878 // then the result is undefined, just return 0
879 if (width <= exp - 52)
880 return APInt(width, 0);
881
882 // Otherwise, we have to shift the mantissa bits up to the right location
883 APInt Tmp(width, mantissa);
Chris Lattneree5417c2009-01-21 18:09:24 +0000884 Tmp = Tmp.shl((unsigned)exp - 52);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000885 return isNeg ? -Tmp : Tmp;
886}
887
888/// RoundToDouble - This function convert this APInt to a double.
889/// The layout for double is as following (IEEE Standard 754):
890/// --------------------------------------
891/// | Sign Exponent Fraction Bias |
892/// |-------------------------------------- |
893/// | 1[63] 11[62-52] 52[51-00] 1023 |
894/// --------------------------------------
895double APInt::roundToDouble(bool isSigned) const {
896
897 // Handle the simple case where the value is contained in one uint64_t.
898 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
899 if (isSigned) {
900 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
901 return double(sext);
902 } else
903 return double(VAL);
904 }
905
906 // Determine if the value is negative.
907 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
908
909 // Construct the absolute value if we're negative.
910 APInt Tmp(isNeg ? -(*this) : (*this));
911
912 // Figure out how many bits we're using.
Chris Lattneree5417c2009-01-21 18:09:24 +0000913 unsigned n = Tmp.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000914
915 // The exponent (without bias normalization) is just the number of bits
916 // we are using. Note that the sign bit is gone since we constructed the
917 // absolute value.
918 uint64_t exp = n;
919
920 // Return infinity for exponent overflow
921 if (exp > 1023) {
922 if (!isSigned || !isNeg)
923 return std::numeric_limits<double>::infinity();
924 else
925 return -std::numeric_limits<double>::infinity();
926 }
927 exp += 1023; // Increment for 1023 bias
928
929 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
930 // extract the high 52 bits from the correct words in pVal.
931 uint64_t mantissa;
932 unsigned hiWord = whichWord(n-1);
933 if (hiWord == 0) {
934 mantissa = Tmp.pVal[0];
935 if (n > 52)
936 mantissa >>= n - 52; // shift down, we want the top 52 bits.
937 } else {
938 assert(hiWord > 0 && "huh?");
939 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
940 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
941 mantissa = hibits | lobits;
942 }
943
944 // The leading bit of mantissa is implicit, so get rid of it.
945 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
946 union {
947 double D;
948 uint64_t I;
949 } T;
950 T.I = sign | (exp << 52) | mantissa;
951 return T.D;
952}
953
954// Truncate to new width.
Chris Lattneree5417c2009-01-21 18:09:24 +0000955APInt &APInt::trunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000956 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner84886852008-08-20 17:02:31 +0000957 assert(width && "Can't truncate to 0 bits");
Chris Lattneree5417c2009-01-21 18:09:24 +0000958 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000959 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +0000960 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961 if (wordsBefore != wordsAfter) {
962 if (wordsAfter == 1) {
963 uint64_t *tmp = pVal;
964 VAL = pVal[0];
965 delete [] tmp;
966 } else {
967 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattneree5417c2009-01-21 18:09:24 +0000968 for (unsigned i = 0; i < wordsAfter; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000969 newVal[i] = pVal[i];
970 delete [] pVal;
971 pVal = newVal;
972 }
973 }
974 return clearUnusedBits();
975}
976
977// Sign extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +0000978APInt &APInt::sext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000979 assert(width > BitWidth && "Invalid APInt SignExtend request");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000980 // If the sign bit isn't set, this is the same as zext.
981 if (!isNegative()) {
982 zext(width);
983 return *this;
984 }
985
986 // The sign bit is set. First, get some facts
Chris Lattneree5417c2009-01-21 18:09:24 +0000987 unsigned wordsBefore = getNumWords();
988 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000989 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +0000990 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991
992 // Mask the high order word appropriately
993 if (wordsBefore == wordsAfter) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000994 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000995 // The extension is contained to the wordsBefore-1th word.
996 uint64_t mask = ~0ULL;
997 if (newWordBits)
998 mask >>= APINT_BITS_PER_WORD - newWordBits;
999 mask <<= wordBits;
1000 if (wordsBefore == 1)
1001 VAL |= mask;
1002 else
1003 pVal[wordsBefore-1] |= mask;
1004 return clearUnusedBits();
1005 }
1006
1007 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1008 uint64_t *newVal = getMemory(wordsAfter);
1009 if (wordsBefore == 1)
1010 newVal[0] = VAL | mask;
1011 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001012 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001013 newVal[i] = pVal[i];
1014 newVal[wordsBefore-1] |= mask;
1015 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001016 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001017 newVal[i] = -1ULL;
1018 if (wordsBefore != 1)
1019 delete [] pVal;
1020 pVal = newVal;
1021 return clearUnusedBits();
1022}
1023
1024// Zero extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +00001025APInt &APInt::zext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001026 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattneree5417c2009-01-21 18:09:24 +00001027 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +00001029 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001030 if (wordsBefore != wordsAfter) {
1031 uint64_t *newVal = getClearedMemory(wordsAfter);
1032 if (wordsBefore == 1)
1033 newVal[0] = VAL;
1034 else
Chris Lattneree5417c2009-01-21 18:09:24 +00001035 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001036 newVal[i] = pVal[i];
1037 if (wordsBefore != 1)
1038 delete [] pVal;
1039 pVal = newVal;
1040 }
1041 return *this;
1042}
1043
Chris Lattneree5417c2009-01-21 18:09:24 +00001044APInt &APInt::zextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001045 if (BitWidth < width)
1046 return zext(width);
1047 if (BitWidth > width)
1048 return trunc(width);
1049 return *this;
1050}
1051
Chris Lattneree5417c2009-01-21 18:09:24 +00001052APInt &APInt::sextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 if (BitWidth < width)
1054 return sext(width);
1055 if (BitWidth > width)
1056 return trunc(width);
1057 return *this;
1058}
1059
1060/// Arithmetic right-shift this APInt by shiftAmt.
1061/// @brief Arithmetic right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001062APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001063 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001064}
1065
1066/// Arithmetic right-shift this APInt by shiftAmt.
1067/// @brief Arithmetic right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001068APInt APInt::ashr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001069 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1070 // Handle a degenerate case
1071 if (shiftAmt == 0)
1072 return *this;
1073
1074 // Handle single word shifts with built-in ashr
1075 if (isSingleWord()) {
1076 if (shiftAmt == BitWidth)
1077 return APInt(BitWidth, 0); // undefined
1078 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001079 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001080 return APInt(BitWidth,
1081 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1082 }
1083 }
1084
1085 // If all the bits were shifted out, the result is, technically, undefined.
1086 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1087 // issues in the algorithm below.
1088 if (shiftAmt == BitWidth) {
1089 if (isNegative())
Zhou Sheng3f7ab5c2008-06-05 13:27:38 +00001090 return APInt(BitWidth, -1ULL, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001091 else
1092 return APInt(BitWidth, 0);
1093 }
1094
1095 // Create some space for the result.
1096 uint64_t * val = new uint64_t[getNumWords()];
1097
1098 // Compute some values needed by the following shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001099 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1100 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1101 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1102 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103 if (bitsInWord == 0)
1104 bitsInWord = APINT_BITS_PER_WORD;
1105
1106 // If we are shifting whole words, just move whole words
1107 if (wordShift == 0) {
1108 // Move the words containing significant bits
Chris Lattneree5417c2009-01-21 18:09:24 +00001109 for (unsigned i = 0; i <= breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001110 val[i] = pVal[i+offset]; // move whole word
1111
1112 // Adjust the top significant word for sign bit fill, if negative
1113 if (isNegative())
1114 if (bitsInWord < APINT_BITS_PER_WORD)
1115 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1116 } else {
1117 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001118 for (unsigned i = 0; i < breakWord; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001119 // This combines the shifted corresponding word with the low bits from
1120 // the next word (shifted into this word's high bits).
1121 val[i] = (pVal[i+offset] >> wordShift) |
1122 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1123 }
1124
1125 // Shift the break word. In this case there are no bits from the next word
1126 // to include in this word.
1127 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1128
1129 // Deal with sign extenstion in the break word, and possibly the word before
1130 // it.
1131 if (isNegative()) {
1132 if (wordShift > bitsInWord) {
1133 if (breakWord > 0)
1134 val[breakWord-1] |=
1135 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1136 val[breakWord] |= ~0ULL;
1137 } else
1138 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1139 }
1140 }
1141
1142 // Remaining words are 0 or -1, just assign them.
1143 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattneree5417c2009-01-21 18:09:24 +00001144 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001145 val[i] = fillValue;
1146 return APInt(val, BitWidth).clearUnusedBits();
1147}
1148
1149/// Logical right-shift this APInt by shiftAmt.
1150/// @brief Logical right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001151APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001152 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001153}
1154
1155/// Logical right-shift this APInt by shiftAmt.
1156/// @brief Logical right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001157APInt APInt::lshr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001158 if (isSingleWord()) {
1159 if (shiftAmt == BitWidth)
1160 return APInt(BitWidth, 0);
1161 else
1162 return APInt(BitWidth, this->VAL >> shiftAmt);
1163 }
1164
1165 // If all the bits were shifted out, the result is 0. This avoids issues
1166 // with shifting by the size of the integer type, which produces undefined
1167 // results. We define these "undefined results" to always be 0.
1168 if (shiftAmt == BitWidth)
1169 return APInt(BitWidth, 0);
1170
1171 // If none of the bits are shifted out, the result is *this. This avoids
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001172 // issues with shifting by the size of the integer type, which produces
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001173 // undefined results in the code below. This is also an optimization.
1174 if (shiftAmt == 0)
1175 return *this;
1176
1177 // Create some space for the result.
1178 uint64_t * val = new uint64_t[getNumWords()];
1179
1180 // If we are shifting less than a word, compute the shift with a simple carry
1181 if (shiftAmt < APINT_BITS_PER_WORD) {
1182 uint64_t carry = 0;
1183 for (int i = getNumWords()-1; i >= 0; --i) {
1184 val[i] = (pVal[i] >> shiftAmt) | carry;
1185 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1186 }
1187 return APInt(val, BitWidth).clearUnusedBits();
1188 }
1189
1190 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001191 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1192 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001193
1194 // If we are shifting whole words, just move whole words
1195 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001196 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001197 val[i] = pVal[i+offset];
Chris Lattneree5417c2009-01-21 18:09:24 +00001198 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001199 val[i] = 0;
1200 return APInt(val,BitWidth).clearUnusedBits();
1201 }
1202
1203 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001204 unsigned breakWord = getNumWords() - offset -1;
1205 for (unsigned i = 0; i < breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001206 val[i] = (pVal[i+offset] >> wordShift) |
1207 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1208 // Shift the break word.
1209 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1210
1211 // Remaining words are 0
Chris Lattneree5417c2009-01-21 18:09:24 +00001212 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001213 val[i] = 0;
1214 return APInt(val, BitWidth).clearUnusedBits();
1215}
1216
1217/// Left-shift this APInt by shiftAmt.
1218/// @brief Left-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001219APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001220 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattneree5417c2009-01-21 18:09:24 +00001221 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001222}
1223
Chris Lattneree5417c2009-01-21 18:09:24 +00001224APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001225 // If all the bits were shifted out, the result is 0. This avoids issues
1226 // with shifting by the size of the integer type, which produces undefined
1227 // results. We define these "undefined results" to always be 0.
1228 if (shiftAmt == BitWidth)
1229 return APInt(BitWidth, 0);
1230
1231 // If none of the bits are shifted out, the result is *this. This avoids a
1232 // lshr by the words size in the loop below which can produce incorrect
1233 // results. It also avoids the expensive computation below for a common case.
1234 if (shiftAmt == 0)
1235 return *this;
1236
1237 // Create some space for the result.
1238 uint64_t * val = new uint64_t[getNumWords()];
1239
1240 // If we are shifting less than a word, do it the easy way
1241 if (shiftAmt < APINT_BITS_PER_WORD) {
1242 uint64_t carry = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001243 for (unsigned i = 0; i < getNumWords(); i++) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244 val[i] = pVal[i] << shiftAmt | carry;
1245 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1246 }
1247 return APInt(val, BitWidth).clearUnusedBits();
1248 }
1249
1250 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001251 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1252 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001253
1254 // If we are shifting whole words, just move whole words
1255 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001256 for (unsigned i = 0; i < offset; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001257 val[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001258 for (unsigned i = offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001259 val[i] = pVal[i-offset];
1260 return APInt(val,BitWidth).clearUnusedBits();
1261 }
1262
1263 // Copy whole words from this to Result.
Chris Lattneree5417c2009-01-21 18:09:24 +00001264 unsigned i = getNumWords() - 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 for (; i > offset; --i)
1266 val[i] = pVal[i-offset] << wordShift |
1267 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1268 val[offset] = pVal[0] << wordShift;
1269 for (i = 0; i < offset; ++i)
1270 val[i] = 0;
1271 return APInt(val, BitWidth).clearUnusedBits();
1272}
1273
Dan Gohman625ff8d2008-02-29 01:40:47 +00001274APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001275 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001276}
1277
Chris Lattneree5417c2009-01-21 18:09:24 +00001278APInt APInt::rotl(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001279 if (rotateAmt == 0)
1280 return *this;
1281 // Don't get too fancy, just use existing shift/or facilities
1282 APInt hi(*this);
1283 APInt lo(*this);
1284 hi.shl(rotateAmt);
1285 lo.lshr(BitWidth - rotateAmt);
1286 return hi | lo;
1287}
1288
Dan Gohman625ff8d2008-02-29 01:40:47 +00001289APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001290 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001291}
1292
Chris Lattneree5417c2009-01-21 18:09:24 +00001293APInt APInt::rotr(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001294 if (rotateAmt == 0)
1295 return *this;
1296 // Don't get too fancy, just use existing shift/or facilities
1297 APInt hi(*this);
1298 APInt lo(*this);
1299 lo.lshr(rotateAmt);
1300 hi.shl(BitWidth - rotateAmt);
1301 return hi | lo;
1302}
1303
1304// Square Root - this method computes and returns the square root of "this".
1305// Three mechanisms are used for computation. For small values (<= 5 bits),
1306// a table lookup is done. This gets some performance for common cases. For
1307// values using less than 52 bits, the value is converted to double and then
1308// the libc sqrt function is called. The result is rounded and then converted
1309// back to a uint64_t which is then used to construct the result. Finally,
1310// the Babylonian method for computing square roots is used.
1311APInt APInt::sqrt() const {
1312
1313 // Determine the magnitude of the value.
Chris Lattneree5417c2009-01-21 18:09:24 +00001314 unsigned magnitude = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001315
1316 // Use a fast table for some small values. This also gets rid of some
1317 // rounding errors in libc sqrt for small values.
1318 if (magnitude <= 5) {
1319 static const uint8_t results[32] = {
1320 /* 0 */ 0,
1321 /* 1- 2 */ 1, 1,
1322 /* 3- 6 */ 2, 2, 2, 2,
1323 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1324 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1325 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1326 /* 31 */ 6
1327 };
1328 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1329 }
1330
1331 // If the magnitude of the value fits in less than 52 bits (the precision of
1332 // an IEEE double precision floating point value), then we can use the
1333 // libc sqrt function which will probably use a hardware sqrt computation.
1334 // This should be faster than the algorithm below.
1335 if (magnitude < 52) {
1336#ifdef _MSC_VER
1337 // Amazingly, VC++ doesn't have round().
1338 return APInt(BitWidth,
1339 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1340#else
1341 return APInt(BitWidth,
1342 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1343#endif
1344 }
1345
1346 // Okay, all the short cuts are exhausted. We must compute it. The following
1347 // is a classical Babylonian method for computing the square root. This code
1348 // was adapted to APINt from a wikipedia article on such computations.
1349 // See http://www.wikipedia.org/ and go to the page named
1350 // Calculate_an_integer_square_root.
Chris Lattneree5417c2009-01-21 18:09:24 +00001351 unsigned nbits = BitWidth, i = 4;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001352 APInt testy(BitWidth, 16);
1353 APInt x_old(BitWidth, 1);
1354 APInt x_new(BitWidth, 0);
1355 APInt two(BitWidth, 2);
1356
1357 // Select a good starting value using binary logarithms.
1358 for (;; i += 2, testy = testy.shl(2))
1359 if (i >= nbits || this->ule(testy)) {
1360 x_old = x_old.shl(i / 2);
1361 break;
1362 }
1363
1364 // Use the Babylonian method to arrive at the integer square root:
1365 for (;;) {
1366 x_new = (this->udiv(x_old) + x_old).udiv(two);
1367 if (x_old.ule(x_new))
1368 break;
1369 x_old = x_new;
1370 }
1371
1372 // Make sure we return the closest approximation
1373 // NOTE: The rounding calculation below is correct. It will produce an
1374 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1375 // determined to be a rounding issue with pari/gp as it begins to use a
1376 // floating point representation after 192 bits. There are no discrepancies
1377 // between this algorithm and pari/gp for bit widths < 192 bits.
1378 APInt square(x_old * x_old);
1379 APInt nextSquare((x_old + 1) * (x_old +1));
1380 if (this->ult(square))
1381 return x_old;
1382 else if (this->ule(nextSquare)) {
1383 APInt midpoint((nextSquare - square).udiv(two));
1384 APInt offset(*this - square);
1385 if (offset.ult(midpoint))
1386 return x_old;
1387 else
1388 return x_old + 1;
1389 } else
1390 assert(0 && "Error in APInt::sqrt computation");
1391 return x_old + 1;
1392}
1393
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001394/// Computes the multiplicative inverse of this APInt for a given modulo. The
1395/// iterative extended Euclidean algorithm is used to solve for this value,
1396/// however we simplify it to speed up calculating only the inverse, and take
1397/// advantage of div+rem calculations. We also use some tricks to avoid copying
1398/// (potentially large) APInts around.
1399APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1400 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1401
1402 // Using the properties listed at the following web page (accessed 06/21/08):
1403 // http://www.numbertheory.org/php/euclid.html
1404 // (especially the properties numbered 3, 4 and 9) it can be proved that
1405 // BitWidth bits suffice for all the computations in the algorithm implemented
1406 // below. More precisely, this number of bits suffice if the multiplicative
1407 // inverse exists, but may not suffice for the general extended Euclidean
1408 // algorithm.
1409
1410 APInt r[2] = { modulo, *this };
1411 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1412 APInt q(BitWidth, 0);
1413
1414 unsigned i;
1415 for (i = 0; r[i^1] != 0; i ^= 1) {
1416 // An overview of the math without the confusing bit-flipping:
1417 // q = r[i-2] / r[i-1]
1418 // r[i] = r[i-2] % r[i-1]
1419 // t[i] = t[i-2] - t[i-1] * q
1420 udivrem(r[i], r[i^1], q, r[i]);
1421 t[i] -= t[i^1] * q;
1422 }
1423
1424 // If this APInt and the modulo are not coprime, there is no multiplicative
1425 // inverse, so return 0. We check this by looking at the next-to-last
1426 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1427 // algorithm.
1428 if (r[i] != 1)
1429 return APInt(BitWidth, 0);
1430
1431 // The next-to-last t is the multiplicative inverse. However, we are
1432 // interested in a positive inverse. Calcuate a positive one from a negative
1433 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00001434 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001435 return t[i].isNegative() ? t[i] + modulo : t[i];
1436}
1437
Jay Foad56b11f92009-04-30 10:15:35 +00001438/// Calculate the magic numbers required to implement a signed integer division
1439/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1440/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1441/// Warren, Jr., chapter 10.
1442APInt::ms APInt::magic() const {
1443 const APInt& d = *this;
1444 unsigned p;
1445 APInt ad, anc, delta, q1, r1, q2, r2, t;
1446 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1447 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1448 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1449 struct ms mag;
1450
1451 ad = d.abs();
1452 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1453 anc = t - 1 - t.urem(ad); // absolute value of nc
1454 p = d.getBitWidth() - 1; // initialize p
1455 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1456 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1457 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1458 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1459 do {
1460 p = p + 1;
1461 q1 = q1<<1; // update q1 = 2p/abs(nc)
1462 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1463 if (r1.uge(anc)) { // must be unsigned comparison
1464 q1 = q1 + 1;
1465 r1 = r1 - anc;
1466 }
1467 q2 = q2<<1; // update q2 = 2p/abs(d)
1468 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1469 if (r2.uge(ad)) { // must be unsigned comparison
1470 q2 = q2 + 1;
1471 r2 = r2 - ad;
1472 }
1473 delta = ad - r2;
1474 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
1475
1476 mag.m = q2 + 1;
1477 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1478 mag.s = p - d.getBitWidth(); // resulting shift
1479 return mag;
1480}
1481
1482/// Calculate the magic numbers required to implement an unsigned integer
1483/// division by a constant as a sequence of multiplies, adds and shifts.
1484/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1485/// S. Warren, Jr., chapter 10.
1486APInt::mu APInt::magicu() const {
1487 const APInt& d = *this;
1488 unsigned p;
1489 APInt nc, delta, q1, r1, q2, r2;
1490 struct mu magu;
1491 magu.a = 0; // initialize "add" indicator
1492 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1493 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1494 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1495
1496 nc = allOnes - (-d).urem(d);
1497 p = d.getBitWidth() - 1; // initialize p
1498 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1499 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1500 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1501 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1502 do {
1503 p = p + 1;
1504 if (r1.uge(nc - r1)) {
1505 q1 = q1 + q1 + 1; // update q1
1506 r1 = r1 + r1 - nc; // update r1
1507 }
1508 else {
1509 q1 = q1+q1; // update q1
1510 r1 = r1+r1; // update r1
1511 }
1512 if ((r2 + 1).uge(d - r2)) {
1513 if (q2.uge(signedMax)) magu.a = 1;
1514 q2 = q2+q2 + 1; // update q2
1515 r2 = r2+r2 + 1 - d; // update r2
1516 }
1517 else {
1518 if (q2.uge(signedMin)) magu.a = 1;
1519 q2 = q2+q2; // update q2
1520 r2 = r2+r2 + 1; // update r2
1521 }
1522 delta = d - 1 - r2;
1523 } while (p < d.getBitWidth()*2 &&
1524 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1525 magu.m = q2 + 1; // resulting magic number
1526 magu.s = p - d.getBitWidth(); // resulting shift
1527 return magu;
1528}
1529
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001530/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1531/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1532/// variables here have the same names as in the algorithm. Comments explain
1533/// the algorithm and any deviation from it.
Chris Lattneree5417c2009-01-21 18:09:24 +00001534static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1535 unsigned m, unsigned n) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001536 assert(u && "Must provide dividend");
1537 assert(v && "Must provide divisor");
1538 assert(q && "Must provide quotient");
1539 assert(u != v && u != q && v != q && "Must us different memory");
1540 assert(n>1 && "n must be > 1");
1541
1542 // Knuth uses the value b as the base of the number system. In our case b
1543 // is 2^31 so we just set it to -1u.
1544 uint64_t b = uint64_t(1) << 32;
1545
Chris Lattner89b36582008-08-17 07:19:36 +00001546#if 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001547 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1548 DEBUG(cerr << "KnuthDiv: original:");
1549 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1550 DEBUG(cerr << " by");
1551 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1552 DEBUG(cerr << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001553#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001554 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1555 // u and v by d. Note that we have taken Knuth's advice here to use a power
1556 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1557 // 2 allows us to shift instead of multiply and it is easy to determine the
1558 // shift amount from the leading zeros. We are basically normalizing the u
1559 // and v so that its high bits are shifted to the top of v's range without
1560 // overflow. Note that this can require an extra word in u so that u must
1561 // be of length m+n+1.
Chris Lattneree5417c2009-01-21 18:09:24 +00001562 unsigned shift = CountLeadingZeros_32(v[n-1]);
1563 unsigned v_carry = 0;
1564 unsigned u_carry = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001565 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001566 for (unsigned i = 0; i < m+n; ++i) {
1567 unsigned u_tmp = u[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001568 u[i] = (u[i] << shift) | u_carry;
1569 u_carry = u_tmp;
1570 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001571 for (unsigned i = 0; i < n; ++i) {
1572 unsigned v_tmp = v[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001573 v[i] = (v[i] << shift) | v_carry;
1574 v_carry = v_tmp;
1575 }
1576 }
1577 u[m+n] = u_carry;
Chris Lattner89b36582008-08-17 07:19:36 +00001578#if 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001579 DEBUG(cerr << "KnuthDiv: normal:");
1580 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1581 DEBUG(cerr << " by");
1582 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1583 DEBUG(cerr << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001584#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001585
1586 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1587 int j = m;
1588 do {
1589 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1590 // D3. [Calculate q'.].
1591 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1592 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1593 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1594 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1595 // on v[n-2] determines at high speed most of the cases in which the trial
1596 // value qp is one too large, and it eliminates all cases where qp is two
1597 // too large.
1598 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1599 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1600 uint64_t qp = dividend / v[n-1];
1601 uint64_t rp = dividend % v[n-1];
1602 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1603 qp--;
1604 rp += v[n-1];
1605 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1606 qp--;
1607 }
1608 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1609
1610 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1611 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1612 // consists of a simple multiplication by a one-place number, combined with
1613 // a subtraction.
1614 bool isNeg = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001615 for (unsigned i = 0; i < n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001616 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1617 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1618 bool borrow = subtrahend > u_tmp;
1619 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1620 << ", subtrahend == " << subtrahend
1621 << ", borrow = " << borrow << '\n');
1622
1623 uint64_t result = u_tmp - subtrahend;
Chris Lattneree5417c2009-01-21 18:09:24 +00001624 unsigned k = j + i;
1625 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1626 u[k++] = (unsigned)(result >> 32); // subtract high word
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001627 while (borrow && k <= m+n) { // deal with borrow to the left
1628 borrow = u[k] == 0;
1629 u[k]--;
1630 k++;
1631 }
1632 isNeg |= borrow;
1633 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1634 u[j+i+1] << '\n');
1635 }
1636 DEBUG(cerr << "KnuthDiv: after subtraction:");
1637 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1638 DEBUG(cerr << '\n');
1639 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1640 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1641 // true value plus b**(n+1), namely as the b's complement of
1642 // the true value, and a "borrow" to the left should be remembered.
1643 //
1644 if (isNeg) {
1645 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattneree5417c2009-01-21 18:09:24 +00001646 for (unsigned i = 0; i <= m+n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001647 u[i] = ~u[i] + carry; // b's complement
1648 carry = carry && u[i] == 0;
1649 }
1650 }
1651 DEBUG(cerr << "KnuthDiv: after complement:");
1652 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1653 DEBUG(cerr << '\n');
1654
1655 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1656 // negative, go to step D6; otherwise go on to step D7.
Chris Lattneree5417c2009-01-21 18:09:24 +00001657 q[j] = (unsigned)qp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001658 if (isNeg) {
1659 // D6. [Add back]. The probability that this step is necessary is very
1660 // small, on the order of only 2/b. Make sure that test data accounts for
1661 // this possibility. Decrease q[j] by 1
1662 q[j]--;
1663 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1664 // A carry will occur to the left of u[j+n], and it should be ignored
1665 // since it cancels with the borrow that occurred in D4.
1666 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001667 for (unsigned i = 0; i < n; i++) {
1668 unsigned limit = std::min(u[j+i],v[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001669 u[j+i] += v[i] + carry;
1670 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1671 }
1672 u[j+n] += carry;
1673 }
1674 DEBUG(cerr << "KnuthDiv: after correction:");
1675 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1676 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1677
1678 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1679 } while (--j >= 0);
1680
1681 DEBUG(cerr << "KnuthDiv: quotient:");
1682 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1683 DEBUG(cerr << '\n');
1684
1685 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1686 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1687 // compute the remainder (urem uses this).
1688 if (r) {
1689 // The value d is expressed by the "shift" value above since we avoided
1690 // multiplication by d by using a shift left. So, all we have to do is
1691 // shift right here. In order to mak
1692 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001693 unsigned carry = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001694 DEBUG(cerr << "KnuthDiv: remainder:");
1695 for (int i = n-1; i >= 0; i--) {
1696 r[i] = (u[i] >> shift) | carry;
1697 carry = u[i] << (32 - shift);
1698 DEBUG(cerr << " " << r[i]);
1699 }
1700 } else {
1701 for (int i = n-1; i >= 0; i--) {
1702 r[i] = u[i];
1703 DEBUG(cerr << " " << r[i]);
1704 }
1705 }
1706 DEBUG(cerr << '\n');
1707 }
Chris Lattner89b36582008-08-17 07:19:36 +00001708#if 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001709 DEBUG(cerr << std::setbase(10) << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001710#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001711}
1712
Chris Lattneree5417c2009-01-21 18:09:24 +00001713void APInt::divide(const APInt LHS, unsigned lhsWords,
1714 const APInt &RHS, unsigned rhsWords,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001715 APInt *Quotient, APInt *Remainder)
1716{
1717 assert(lhsWords >= rhsWords && "Fractional result");
1718
1719 // First, compose the values into an array of 32-bit words instead of
1720 // 64-bit words. This is a necessity of both the "short division" algorithm
1721 // and the the Knuth "classical algorithm" which requires there to be native
1722 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1723 // can't use 64-bit operands here because we don't have native results of
Duncan Sandsf3a74072009-03-19 11:37:15 +00001724 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001725 // work on large-endian machines.
Dan Gohmand06cad62009-04-01 18:45:54 +00001726 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattneree5417c2009-01-21 18:09:24 +00001727 unsigned n = rhsWords * 2;
1728 unsigned m = (lhsWords * 2) - n;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001729
1730 // Allocate space for the temporary values we need either on the stack, if
1731 // it will fit, or on the heap if it won't.
Chris Lattneree5417c2009-01-21 18:09:24 +00001732 unsigned SPACE[128];
1733 unsigned *U = 0;
1734 unsigned *V = 0;
1735 unsigned *Q = 0;
1736 unsigned *R = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001737 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1738 U = &SPACE[0];
1739 V = &SPACE[m+n+1];
1740 Q = &SPACE[(m+n+1) + n];
1741 if (Remainder)
1742 R = &SPACE[(m+n+1) + n + (m+n)];
1743 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001744 U = new unsigned[m + n + 1];
1745 V = new unsigned[n];
1746 Q = new unsigned[m+n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001747 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001748 R = new unsigned[n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749 }
1750
1751 // Initialize the dividend
Chris Lattneree5417c2009-01-21 18:09:24 +00001752 memset(U, 0, (m+n+1)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001753 for (unsigned i = 0; i < lhsWords; ++i) {
1754 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001755 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmand06cad62009-04-01 18:45:54 +00001756 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001757 }
1758 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1759
1760 // Initialize the divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001761 memset(V, 0, (n)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001762 for (unsigned i = 0; i < rhsWords; ++i) {
1763 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001764 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmand06cad62009-04-01 18:45:54 +00001765 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001766 }
1767
1768 // initialize the quotient and remainder
Chris Lattneree5417c2009-01-21 18:09:24 +00001769 memset(Q, 0, (m+n) * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001770 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001771 memset(R, 0, n * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001772
1773 // Now, adjust m and n for the Knuth division. n is the number of words in
1774 // the divisor. m is the number of words by which the dividend exceeds the
1775 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1776 // contain any zero words or the Knuth algorithm fails.
1777 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1778 n--;
1779 m++;
1780 }
1781 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1782 m--;
1783
1784 // If we're left with only a single word for the divisor, Knuth doesn't work
1785 // so we implement the short division algorithm here. This is much simpler
1786 // and faster because we are certain that we can divide a 64-bit quantity
1787 // by a 32-bit quantity at hardware speed and short division is simply a
1788 // series of such operations. This is just like doing short division but we
1789 // are using base 2^32 instead of base 10.
1790 assert(n != 0 && "Divide by zero?");
1791 if (n == 1) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001792 unsigned divisor = V[0];
1793 unsigned remainder = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001794 for (int i = m+n-1; i >= 0; i--) {
1795 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1796 if (partial_dividend == 0) {
1797 Q[i] = 0;
1798 remainder = 0;
1799 } else if (partial_dividend < divisor) {
1800 Q[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001801 remainder = (unsigned)partial_dividend;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001802 } else if (partial_dividend == divisor) {
1803 Q[i] = 1;
1804 remainder = 0;
1805 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001806 Q[i] = (unsigned)(partial_dividend / divisor);
1807 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001808 }
1809 }
1810 if (R)
1811 R[0] = remainder;
1812 } else {
1813 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1814 // case n > 1.
1815 KnuthDiv(U, V, Q, R, m, n);
1816 }
1817
1818 // If the caller wants the quotient
1819 if (Quotient) {
1820 // Set up the Quotient value's memory.
1821 if (Quotient->BitWidth != LHS.BitWidth) {
1822 if (Quotient->isSingleWord())
1823 Quotient->VAL = 0;
1824 else
1825 delete [] Quotient->pVal;
1826 Quotient->BitWidth = LHS.BitWidth;
1827 if (!Quotient->isSingleWord())
1828 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1829 } else
1830 Quotient->clear();
1831
1832 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1833 // order words.
1834 if (lhsWords == 1) {
1835 uint64_t tmp =
1836 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1837 if (Quotient->isSingleWord())
1838 Quotient->VAL = tmp;
1839 else
1840 Quotient->pVal[0] = tmp;
1841 } else {
1842 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1843 for (unsigned i = 0; i < lhsWords; ++i)
1844 Quotient->pVal[i] =
1845 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1846 }
1847 }
1848
1849 // If the caller wants the remainder
1850 if (Remainder) {
1851 // Set up the Remainder value's memory.
1852 if (Remainder->BitWidth != RHS.BitWidth) {
1853 if (Remainder->isSingleWord())
1854 Remainder->VAL = 0;
1855 else
1856 delete [] Remainder->pVal;
1857 Remainder->BitWidth = RHS.BitWidth;
1858 if (!Remainder->isSingleWord())
1859 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1860 } else
1861 Remainder->clear();
1862
1863 // The remainder is in R. Reconstitute the remainder into Remainder's low
1864 // order words.
1865 if (rhsWords == 1) {
1866 uint64_t tmp =
1867 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1868 if (Remainder->isSingleWord())
1869 Remainder->VAL = tmp;
1870 else
1871 Remainder->pVal[0] = tmp;
1872 } else {
1873 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1874 for (unsigned i = 0; i < rhsWords; ++i)
1875 Remainder->pVal[i] =
1876 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1877 }
1878 }
1879
1880 // Clean up the memory we allocated.
1881 if (U != &SPACE[0]) {
1882 delete [] U;
1883 delete [] V;
1884 delete [] Q;
1885 delete [] R;
1886 }
1887}
1888
1889APInt APInt::udiv(const APInt& RHS) const {
1890 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1891
1892 // First, deal with the easy case
1893 if (isSingleWord()) {
1894 assert(RHS.VAL != 0 && "Divide by zero?");
1895 return APInt(BitWidth, VAL / RHS.VAL);
1896 }
1897
1898 // Get some facts about the LHS and RHS number of bits and words
Chris Lattneree5417c2009-01-21 18:09:24 +00001899 unsigned rhsBits = RHS.getActiveBits();
1900 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001901 assert(rhsWords && "Divided by zero???");
Chris Lattneree5417c2009-01-21 18:09:24 +00001902 unsigned lhsBits = this->getActiveBits();
1903 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001904
1905 // Deal with some degenerate cases
1906 if (!lhsWords)
1907 // 0 / X ===> 0
1908 return APInt(BitWidth, 0);
1909 else if (lhsWords < rhsWords || this->ult(RHS)) {
1910 // X / Y ===> 0, iff X < Y
1911 return APInt(BitWidth, 0);
1912 } else if (*this == RHS) {
1913 // X / X ===> 1
1914 return APInt(BitWidth, 1);
1915 } else if (lhsWords == 1 && rhsWords == 1) {
1916 // All high words are zero, just use native divide
1917 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1918 }
1919
1920 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1921 APInt Quotient(1,0); // to hold result.
1922 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1923 return Quotient;
1924}
1925
1926APInt APInt::urem(const APInt& RHS) const {
1927 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1928 if (isSingleWord()) {
1929 assert(RHS.VAL != 0 && "Remainder by zero?");
1930 return APInt(BitWidth, VAL % RHS.VAL);
1931 }
1932
1933 // Get some facts about the LHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001934 unsigned lhsBits = getActiveBits();
1935 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001936
1937 // Get some facts about the RHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001938 unsigned rhsBits = RHS.getActiveBits();
1939 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001940 assert(rhsWords && "Performing remainder operation by zero ???");
1941
1942 // Check the degenerate cases
1943 if (lhsWords == 0) {
1944 // 0 % Y ===> 0
1945 return APInt(BitWidth, 0);
1946 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1947 // X % Y ===> X, iff X < Y
1948 return *this;
1949 } else if (*this == RHS) {
1950 // X % X == 0;
1951 return APInt(BitWidth, 0);
1952 } else if (lhsWords == 1) {
1953 // All high words are zero, just use native remainder
1954 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1955 }
1956
1957 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1958 APInt Remainder(1,0);
1959 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1960 return Remainder;
1961}
1962
1963void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1964 APInt &Quotient, APInt &Remainder) {
1965 // Get some size facts about the dividend and divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001966 unsigned lhsBits = LHS.getActiveBits();
1967 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1968 unsigned rhsBits = RHS.getActiveBits();
1969 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001970
1971 // Check the degenerate cases
1972 if (lhsWords == 0) {
1973 Quotient = 0; // 0 / Y ===> 0
1974 Remainder = 0; // 0 % Y ===> 0
1975 return;
1976 }
1977
1978 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1979 Quotient = 0; // X / Y ===> 0, iff X < Y
1980 Remainder = LHS; // X % Y ===> X, iff X < Y
1981 return;
1982 }
1983
1984 if (LHS == RHS) {
1985 Quotient = 1; // X / X ===> 1
1986 Remainder = 0; // X % X ===> 0;
1987 return;
1988 }
1989
1990 if (lhsWords == 1 && rhsWords == 1) {
1991 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001992 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1993 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1994 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1995 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001996 return;
1997 }
1998
1999 // Okay, lets do it the long way
2000 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2001}
2002
Chris Lattneree5417c2009-01-21 18:09:24 +00002003void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002004 uint8_t radix) {
2005 // Check our assumptions here
2006 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2007 "Radix should be 2, 8, 10, or 16!");
2008 assert(str && "String is null?");
2009 bool isNeg = str[0] == '-';
2010 if (isNeg)
2011 str++, slen--;
2012 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner981440e2009-04-25 18:34:04 +00002013 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2014 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2015 assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002016
2017 // Allocate memory
2018 if (!isSingleWord())
2019 pVal = getClearedMemory(getNumWords());
2020
2021 // Figure out if we can shift instead of multiply
Chris Lattneree5417c2009-01-21 18:09:24 +00002022 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002023
2024 // Set up an APInt for the digit to add outside the loop so we don't
2025 // constantly construct/destruct it.
2026 APInt apdigit(getBitWidth(), 0);
2027 APInt apradix(getBitWidth(), radix);
2028
2029 // Enter digit traversal loop
2030 for (unsigned i = 0; i < slen; i++) {
2031 // Get a digit
Chris Lattneree5417c2009-01-21 18:09:24 +00002032 unsigned digit = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002033 char cdigit = str[i];
2034 if (radix == 16) {
2035 if (!isxdigit(cdigit))
2036 assert(0 && "Invalid hex digit in string");
2037 if (isdigit(cdigit))
2038 digit = cdigit - '0';
2039 else if (cdigit >= 'a')
2040 digit = cdigit - 'a' + 10;
2041 else if (cdigit >= 'A')
2042 digit = cdigit - 'A' + 10;
2043 else
2044 assert(0 && "huh? we shouldn't get here");
2045 } else if (isdigit(cdigit)) {
2046 digit = cdigit - '0';
Bill Wendling1dde5862008-03-16 20:05:52 +00002047 assert((radix == 10 ||
2048 (radix == 8 && digit != 8 && digit != 9) ||
2049 (radix == 2 && (digit == 0 || digit == 1))) &&
2050 "Invalid digit in string for given radix");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002051 } else {
2052 assert(0 && "Invalid character in digit string");
2053 }
2054
2055 // Shift or multiply the value by the radix
Chris Lattner981440e2009-04-25 18:34:04 +00002056 if (slen > 1) {
2057 if (shift)
2058 *this <<= shift;
2059 else
2060 *this *= apradix;
2061 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002062
2063 // Add in the digit we just interpreted
2064 if (apdigit.isSingleWord())
2065 apdigit.VAL = digit;
2066 else
2067 apdigit.pVal[0] = digit;
2068 *this += apdigit;
2069 }
2070 // If its negative, put it in two's complement form
2071 if (isNeg) {
2072 (*this)--;
2073 this->flip();
2074 }
2075}
2076
Chris Lattner89b36582008-08-17 07:19:36 +00002077void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2078 bool Signed) const {
2079 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002080 "Radix should be 2, 8, 10, or 16!");
Chris Lattner89b36582008-08-17 07:19:36 +00002081
2082 // First, check for a zero value and just short circuit the logic below.
2083 if (*this == 0) {
2084 Str.push_back('0');
2085 return;
2086 }
2087
2088 static const char Digits[] = "0123456789ABCDEF";
2089
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002090 if (isSingleWord()) {
Chris Lattner89b36582008-08-17 07:19:36 +00002091 char Buffer[65];
2092 char *BufPtr = Buffer+65;
2093
2094 uint64_t N;
2095 if (Signed) {
2096 int64_t I = getSExtValue();
2097 if (I < 0) {
2098 Str.push_back('-');
2099 I = -I;
2100 }
2101 N = I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002102 } else {
Chris Lattner89b36582008-08-17 07:19:36 +00002103 N = getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002104 }
Chris Lattner89b36582008-08-17 07:19:36 +00002105
2106 while (N) {
2107 *--BufPtr = Digits[N % Radix];
2108 N /= Radix;
2109 }
2110 Str.append(BufPtr, Buffer+65);
2111 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002112 }
2113
Chris Lattner89b36582008-08-17 07:19:36 +00002114 APInt Tmp(*this);
2115
2116 if (Signed && isNegative()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002117 // They want to print the signed version and it is a negative value
2118 // Flip the bits and add one to turn it into the equivalent positive
2119 // value and put a '-' in the result.
Chris Lattner89b36582008-08-17 07:19:36 +00002120 Tmp.flip();
2121 Tmp++;
2122 Str.push_back('-');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002123 }
Chris Lattner89b36582008-08-17 07:19:36 +00002124
2125 // We insert the digits backward, then reverse them to get the right order.
2126 unsigned StartDig = Str.size();
2127
2128 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2129 // because the number of bits per digit (1, 3 and 4 respectively) divides
2130 // equaly. We just shift until the value is zero.
2131 if (Radix != 10) {
2132 // Just shift tmp right for each digit width until it becomes zero
2133 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2134 unsigned MaskAmt = Radix - 1;
2135
2136 while (Tmp != 0) {
2137 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2138 Str.push_back(Digits[Digit]);
2139 Tmp = Tmp.lshr(ShiftAmt);
2140 }
2141 } else {
2142 APInt divisor(4, 10);
2143 while (Tmp != 0) {
2144 APInt APdigit(1, 0);
2145 APInt tmp2(Tmp.getBitWidth(), 0);
2146 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2147 &APdigit);
Chris Lattneree5417c2009-01-21 18:09:24 +00002148 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner89b36582008-08-17 07:19:36 +00002149 assert(Digit < Radix && "divide failed");
2150 Str.push_back(Digits[Digit]);
2151 Tmp = tmp2;
2152 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002153 }
Chris Lattner89b36582008-08-17 07:19:36 +00002154
2155 // Reverse the digits before returning.
2156 std::reverse(Str.begin()+StartDig, Str.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002157}
2158
Chris Lattner89b36582008-08-17 07:19:36 +00002159/// toString - This returns the APInt as a std::string. Note that this is an
2160/// inefficient method. It is better to pass in a SmallVector/SmallString
2161/// to the methods above.
2162std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2163 SmallString<40> S;
2164 toString(S, Radix, Signed);
2165 return S.c_str();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002166}
Chris Lattner73cde982007-08-16 15:56:55 +00002167
Chris Lattner89b36582008-08-17 07:19:36 +00002168
2169void APInt::dump() const {
2170 SmallString<40> S, U;
2171 this->toStringUnsigned(U);
2172 this->toStringSigned(S);
2173 fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
2174}
2175
Chris Lattner1fefaac2008-08-23 22:23:09 +00002176void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner89b36582008-08-17 07:19:36 +00002177 SmallString<40> S;
2178 this->toString(S, 10, isSigned);
2179 OS << S.c_str();
2180}
2181
Chris Lattner73cde982007-08-16 15:56:55 +00002182// This implements a variety of operations on a representation of
2183// arbitrary precision, two's-complement, bignum integer values.
2184
2185/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2186 and unrestricting assumption. */
Chris Lattner12e44312008-08-17 04:58:58 +00002187#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerdb80e212007-08-20 22:49:32 +00002188COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002189
2190/* Some handy functions local to this file. */
2191namespace {
2192
Chris Lattnerdb80e212007-08-20 22:49:32 +00002193 /* Returns the integer part with the least significant BITS set.
2194 BITS cannot be zero. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002195 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002196 lowBitMask(unsigned int bits)
2197 {
2198 assert (bits != 0 && bits <= integerPartWidth);
2199
2200 return ~(integerPart) 0 >> (integerPartWidth - bits);
2201 }
2202
Neil Booth58ffb232007-10-06 00:43:45 +00002203 /* Returns the value of the lower half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002204 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002205 lowHalf(integerPart part)
2206 {
2207 return part & lowBitMask(integerPartWidth / 2);
2208 }
2209
Neil Booth58ffb232007-10-06 00:43:45 +00002210 /* Returns the value of the upper half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002211 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002212 highHalf(integerPart part)
2213 {
2214 return part >> (integerPartWidth / 2);
2215 }
2216
Neil Booth58ffb232007-10-06 00:43:45 +00002217 /* Returns the bit number of the most significant set bit of a part.
2218 If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002219 static unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002220 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002221 {
2222 unsigned int n, msb;
2223
2224 if (value == 0)
2225 return -1U;
2226
2227 n = integerPartWidth / 2;
2228
2229 msb = 0;
2230 do {
2231 if (value >> n) {
2232 value >>= n;
2233 msb += n;
2234 }
2235
2236 n >>= 1;
2237 } while (n);
2238
2239 return msb;
2240 }
2241
Neil Booth58ffb232007-10-06 00:43:45 +00002242 /* Returns the bit number of the least significant set bit of a
2243 part. If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002244 static unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002245 partLSB(integerPart value)
2246 {
2247 unsigned int n, lsb;
2248
2249 if (value == 0)
2250 return -1U;
2251
2252 lsb = integerPartWidth - 1;
2253 n = integerPartWidth / 2;
2254
2255 do {
2256 if (value << n) {
2257 value <<= n;
2258 lsb -= n;
2259 }
2260
2261 n >>= 1;
2262 } while (n);
2263
2264 return lsb;
2265 }
2266}
2267
2268/* Sets the least significant part of a bignum to the input value, and
2269 zeroes out higher parts. */
2270void
2271APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2272{
2273 unsigned int i;
2274
Neil Bootha0f524a2007-10-08 13:47:12 +00002275 assert (parts > 0);
2276
Chris Lattner73cde982007-08-16 15:56:55 +00002277 dst[0] = part;
2278 for(i = 1; i < parts; i++)
2279 dst[i] = 0;
2280}
2281
2282/* Assign one bignum to another. */
2283void
2284APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2285{
2286 unsigned int i;
2287
2288 for(i = 0; i < parts; i++)
2289 dst[i] = src[i];
2290}
2291
2292/* Returns true if a bignum is zero, false otherwise. */
2293bool
2294APInt::tcIsZero(const integerPart *src, unsigned int parts)
2295{
2296 unsigned int i;
2297
2298 for(i = 0; i < parts; i++)
2299 if (src[i])
2300 return false;
2301
2302 return true;
2303}
2304
2305/* Extract the given bit of a bignum; returns 0 or 1. */
2306int
2307APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2308{
2309 return(parts[bit / integerPartWidth]
2310 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2311}
2312
2313/* Set the given bit of a bignum. */
2314void
2315APInt::tcSetBit(integerPart *parts, unsigned int bit)
2316{
2317 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2318}
2319
Neil Booth58ffb232007-10-06 00:43:45 +00002320/* Returns the bit number of the least significant set bit of a
2321 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002322unsigned int
2323APInt::tcLSB(const integerPart *parts, unsigned int n)
2324{
2325 unsigned int i, lsb;
2326
2327 for(i = 0; i < n; i++) {
2328 if (parts[i] != 0) {
2329 lsb = partLSB(parts[i]);
2330
2331 return lsb + i * integerPartWidth;
2332 }
2333 }
2334
2335 return -1U;
2336}
2337
Neil Booth58ffb232007-10-06 00:43:45 +00002338/* Returns the bit number of the most significant set bit of a number.
2339 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002340unsigned int
2341APInt::tcMSB(const integerPart *parts, unsigned int n)
2342{
2343 unsigned int msb;
2344
2345 do {
2346 --n;
2347
2348 if (parts[n] != 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002349 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002350
2351 return msb + n * integerPartWidth;
2352 }
2353 } while (n);
2354
2355 return -1U;
2356}
2357
Neil Bootha0f524a2007-10-08 13:47:12 +00002358/* Copy the bit vector of width srcBITS from SRC, starting at bit
2359 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2360 the least significant bit of DST. All high bits above srcBITS in
2361 DST are zero-filled. */
2362void
2363APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
2364 unsigned int srcBits, unsigned int srcLSB)
2365{
2366 unsigned int firstSrcPart, dstParts, shift, n;
2367
2368 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2369 assert (dstParts <= dstCount);
2370
2371 firstSrcPart = srcLSB / integerPartWidth;
2372 tcAssign (dst, src + firstSrcPart, dstParts);
2373
2374 shift = srcLSB % integerPartWidth;
2375 tcShiftRight (dst, dstParts, shift);
2376
2377 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2378 in DST. If this is less that srcBits, append the rest, else
2379 clear the high bits. */
2380 n = dstParts * integerPartWidth - shift;
2381 if (n < srcBits) {
2382 integerPart mask = lowBitMask (srcBits - n);
2383 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2384 << n % integerPartWidth);
2385 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002386 if (srcBits % integerPartWidth)
2387 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002388 }
2389
2390 /* Clear high parts. */
2391 while (dstParts < dstCount)
2392 dst[dstParts++] = 0;
2393}
2394
Chris Lattner73cde982007-08-16 15:56:55 +00002395/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2396integerPart
2397APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2398 integerPart c, unsigned int parts)
2399{
2400 unsigned int i;
2401
2402 assert(c <= 1);
2403
2404 for(i = 0; i < parts; i++) {
2405 integerPart l;
2406
2407 l = dst[i];
2408 if (c) {
2409 dst[i] += rhs[i] + 1;
2410 c = (dst[i] <= l);
2411 } else {
2412 dst[i] += rhs[i];
2413 c = (dst[i] < l);
2414 }
2415 }
2416
2417 return c;
2418}
2419
2420/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2421integerPart
2422APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2423 integerPart c, unsigned int parts)
2424{
2425 unsigned int i;
2426
2427 assert(c <= 1);
2428
2429 for(i = 0; i < parts; i++) {
2430 integerPart l;
2431
2432 l = dst[i];
2433 if (c) {
2434 dst[i] -= rhs[i] + 1;
2435 c = (dst[i] >= l);
2436 } else {
2437 dst[i] -= rhs[i];
2438 c = (dst[i] > l);
2439 }
2440 }
2441
2442 return c;
2443}
2444
2445/* Negate a bignum in-place. */
2446void
2447APInt::tcNegate(integerPart *dst, unsigned int parts)
2448{
2449 tcComplement(dst, parts);
2450 tcIncrement(dst, parts);
2451}
2452
Neil Booth58ffb232007-10-06 00:43:45 +00002453/* DST += SRC * MULTIPLIER + CARRY if add is true
2454 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002455
2456 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2457 they must start at the same point, i.e. DST == SRC.
2458
2459 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2460 returned. Otherwise DST is filled with the least significant
2461 DSTPARTS parts of the result, and if all of the omitted higher
2462 parts were zero return zero, otherwise overflow occurred and
2463 return one. */
2464int
2465APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2466 integerPart multiplier, integerPart carry,
2467 unsigned int srcParts, unsigned int dstParts,
2468 bool add)
2469{
2470 unsigned int i, n;
2471
2472 /* Otherwise our writes of DST kill our later reads of SRC. */
2473 assert(dst <= src || dst >= src + srcParts);
2474 assert(dstParts <= srcParts + 1);
2475
2476 /* N loops; minimum of dstParts and srcParts. */
2477 n = dstParts < srcParts ? dstParts: srcParts;
2478
2479 for(i = 0; i < n; i++) {
2480 integerPart low, mid, high, srcPart;
2481
2482 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2483
2484 This cannot overflow, because
2485
2486 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2487
2488 which is less than n^2. */
2489
2490 srcPart = src[i];
2491
2492 if (multiplier == 0 || srcPart == 0) {
2493 low = carry;
2494 high = 0;
2495 } else {
2496 low = lowHalf(srcPart) * lowHalf(multiplier);
2497 high = highHalf(srcPart) * highHalf(multiplier);
2498
2499 mid = lowHalf(srcPart) * highHalf(multiplier);
2500 high += highHalf(mid);
2501 mid <<= integerPartWidth / 2;
2502 if (low + mid < low)
2503 high++;
2504 low += mid;
2505
2506 mid = highHalf(srcPart) * lowHalf(multiplier);
2507 high += highHalf(mid);
2508 mid <<= integerPartWidth / 2;
2509 if (low + mid < low)
2510 high++;
2511 low += mid;
2512
2513 /* Now add carry. */
2514 if (low + carry < low)
2515 high++;
2516 low += carry;
2517 }
2518
2519 if (add) {
2520 /* And now DST[i], and store the new low part there. */
2521 if (low + dst[i] < low)
2522 high++;
2523 dst[i] += low;
2524 } else
2525 dst[i] = low;
2526
2527 carry = high;
2528 }
2529
2530 if (i < dstParts) {
2531 /* Full multiplication, there is no overflow. */
2532 assert(i + 1 == dstParts);
2533 dst[i] = carry;
2534 return 0;
2535 } else {
2536 /* We overflowed if there is carry. */
2537 if (carry)
2538 return 1;
2539
2540 /* We would overflow if any significant unwritten parts would be
2541 non-zero. This is true if any remaining src parts are non-zero
2542 and the multiplier is non-zero. */
2543 if (multiplier)
2544 for(; i < srcParts; i++)
2545 if (src[i])
2546 return 1;
2547
2548 /* We fitted in the narrow destination. */
2549 return 0;
2550 }
2551}
2552
2553/* DST = LHS * RHS, where DST has the same width as the operands and
2554 is filled with the least significant parts of the result. Returns
2555 one if overflow occurred, otherwise zero. DST must be disjoint
2556 from both operands. */
2557int
2558APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2559 const integerPart *rhs, unsigned int parts)
2560{
2561 unsigned int i;
2562 int overflow;
2563
2564 assert(dst != lhs && dst != rhs);
2565
2566 overflow = 0;
2567 tcSet(dst, 0, parts);
2568
2569 for(i = 0; i < parts; i++)
2570 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2571 parts - i, true);
2572
2573 return overflow;
2574}
2575
Neil Booth004e9f42007-10-06 00:24:48 +00002576/* DST = LHS * RHS, where DST has width the sum of the widths of the
2577 operands. No overflow occurs. DST must be disjoint from both
2578 operands. Returns the number of parts required to hold the
2579 result. */
2580unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002581APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002582 const integerPart *rhs, unsigned int lhsParts,
2583 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002584{
Neil Booth004e9f42007-10-06 00:24:48 +00002585 /* Put the narrower number on the LHS for less loops below. */
2586 if (lhsParts > rhsParts) {
2587 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2588 } else {
2589 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002590
Neil Booth004e9f42007-10-06 00:24:48 +00002591 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002592
Neil Booth004e9f42007-10-06 00:24:48 +00002593 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002594
Neil Booth004e9f42007-10-06 00:24:48 +00002595 for(n = 0; n < lhsParts; n++)
2596 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002597
Neil Booth004e9f42007-10-06 00:24:48 +00002598 n = lhsParts + rhsParts;
2599
2600 return n - (dst[n - 1] == 0);
2601 }
Chris Lattner73cde982007-08-16 15:56:55 +00002602}
2603
2604/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2605 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2606 set REMAINDER to the remainder, return zero. i.e.
2607
2608 OLD_LHS = RHS * LHS + REMAINDER
2609
2610 SCRATCH is a bignum of the same size as the operands and result for
2611 use by the routine; its contents need not be initialized and are
2612 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2613*/
2614int
2615APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2616 integerPart *remainder, integerPart *srhs,
2617 unsigned int parts)
2618{
2619 unsigned int n, shiftCount;
2620 integerPart mask;
2621
2622 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2623
Chris Lattnerdb80e212007-08-20 22:49:32 +00002624 shiftCount = tcMSB(rhs, parts) + 1;
2625 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002626 return true;
2627
Chris Lattnerdb80e212007-08-20 22:49:32 +00002628 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002629 n = shiftCount / integerPartWidth;
2630 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2631
2632 tcAssign(srhs, rhs, parts);
2633 tcShiftLeft(srhs, parts, shiftCount);
2634 tcAssign(remainder, lhs, parts);
2635 tcSet(lhs, 0, parts);
2636
2637 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2638 the total. */
2639 for(;;) {
2640 int compare;
2641
2642 compare = tcCompare(remainder, srhs, parts);
2643 if (compare >= 0) {
2644 tcSubtract(remainder, srhs, 0, parts);
2645 lhs[n] |= mask;
2646 }
2647
2648 if (shiftCount == 0)
2649 break;
2650 shiftCount--;
2651 tcShiftRight(srhs, parts, 1);
2652 if ((mask >>= 1) == 0)
2653 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2654 }
2655
2656 return false;
2657}
2658
2659/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2660 There are no restrictions on COUNT. */
2661void
2662APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2663{
Neil Bootha0f524a2007-10-08 13:47:12 +00002664 if (count) {
2665 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002666
Neil Bootha0f524a2007-10-08 13:47:12 +00002667 /* Jump is the inter-part jump; shift is is intra-part shift. */
2668 jump = count / integerPartWidth;
2669 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002670
Neil Bootha0f524a2007-10-08 13:47:12 +00002671 while (parts > jump) {
2672 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002673
Neil Bootha0f524a2007-10-08 13:47:12 +00002674 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002675
Neil Bootha0f524a2007-10-08 13:47:12 +00002676 /* dst[i] comes from the two parts src[i - jump] and, if we have
2677 an intra-part shift, src[i - jump - 1]. */
2678 part = dst[parts - jump];
2679 if (shift) {
2680 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002681 if (parts >= jump + 1)
2682 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2683 }
2684
Neil Bootha0f524a2007-10-08 13:47:12 +00002685 dst[parts] = part;
2686 }
Chris Lattner73cde982007-08-16 15:56:55 +00002687
Neil Bootha0f524a2007-10-08 13:47:12 +00002688 while (parts > 0)
2689 dst[--parts] = 0;
2690 }
Chris Lattner73cde982007-08-16 15:56:55 +00002691}
2692
2693/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2694 zero. There are no restrictions on COUNT. */
2695void
2696APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2697{
Neil Bootha0f524a2007-10-08 13:47:12 +00002698 if (count) {
2699 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002700
Neil Bootha0f524a2007-10-08 13:47:12 +00002701 /* Jump is the inter-part jump; shift is is intra-part shift. */
2702 jump = count / integerPartWidth;
2703 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002704
Neil Bootha0f524a2007-10-08 13:47:12 +00002705 /* Perform the shift. This leaves the most significant COUNT bits
2706 of the result at zero. */
2707 for(i = 0; i < parts; i++) {
2708 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002709
Neil Bootha0f524a2007-10-08 13:47:12 +00002710 if (i + jump >= parts) {
2711 part = 0;
2712 } else {
2713 part = dst[i + jump];
2714 if (shift) {
2715 part >>= shift;
2716 if (i + jump + 1 < parts)
2717 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2718 }
Chris Lattner73cde982007-08-16 15:56:55 +00002719 }
Chris Lattner73cde982007-08-16 15:56:55 +00002720
Neil Bootha0f524a2007-10-08 13:47:12 +00002721 dst[i] = part;
2722 }
Chris Lattner73cde982007-08-16 15:56:55 +00002723 }
2724}
2725
2726/* Bitwise and of two bignums. */
2727void
2728APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2729{
2730 unsigned int i;
2731
2732 for(i = 0; i < parts; i++)
2733 dst[i] &= rhs[i];
2734}
2735
2736/* Bitwise inclusive or of two bignums. */
2737void
2738APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2739{
2740 unsigned int i;
2741
2742 for(i = 0; i < parts; i++)
2743 dst[i] |= rhs[i];
2744}
2745
2746/* Bitwise exclusive or of two bignums. */
2747void
2748APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2749{
2750 unsigned int i;
2751
2752 for(i = 0; i < parts; i++)
2753 dst[i] ^= rhs[i];
2754}
2755
2756/* Complement a bignum in-place. */
2757void
2758APInt::tcComplement(integerPart *dst, unsigned int parts)
2759{
2760 unsigned int i;
2761
2762 for(i = 0; i < parts; i++)
2763 dst[i] = ~dst[i];
2764}
2765
2766/* Comparison (unsigned) of two bignums. */
2767int
2768APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2769 unsigned int parts)
2770{
2771 while (parts) {
2772 parts--;
2773 if (lhs[parts] == rhs[parts])
2774 continue;
2775
2776 if (lhs[parts] > rhs[parts])
2777 return 1;
2778 else
2779 return -1;
2780 }
2781
2782 return 0;
2783}
2784
2785/* Increment a bignum in-place, return the carry flag. */
2786integerPart
2787APInt::tcIncrement(integerPart *dst, unsigned int parts)
2788{
2789 unsigned int i;
2790
2791 for(i = 0; i < parts; i++)
2792 if (++dst[i] != 0)
2793 break;
2794
2795 return i == parts;
2796}
2797
2798/* Set the least significant BITS bits of a bignum, clear the
2799 rest. */
2800void
2801APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2802 unsigned int bits)
2803{
2804 unsigned int i;
2805
2806 i = 0;
2807 while (bits > integerPartWidth) {
2808 dst[i++] = ~(integerPart) 0;
2809 bits -= integerPartWidth;
2810 }
2811
2812 if (bits)
2813 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2814
2815 while (i < parts)
2816 dst[i++] = 0;
2817}