blob: 4e9ee3402b35d9b989d4f23b3aad5d4ebc0050ab [file] [log] [blame]
Zhou Shengfd43dcf2007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengfd43dcf2007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencer5d0d05c2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengfd43dcf2007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
Reid Spencer9d6c9192007-02-24 03:58:46 +000015#define DEBUG_TYPE "apint"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000016#include "llvm/ADT/APInt.h"
Daniel Dunbar689ad6e2009-08-13 02:33:34 +000017#include "llvm/ADT/StringRef.h"
Ted Kremeneke420deb2008-01-19 04:23:33 +000018#include "llvm/ADT/FoldingSet.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Reid Spencer9d6c9192007-02-24 03:58:46 +000020#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000021#include "llvm/Support/ErrorHandling.h"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000022#include "llvm/Support/MathExtras.h"
Chris Lattner944fac72008-08-23 22:23:09 +000023#include "llvm/Support/raw_ostream.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000024#include <cmath>
Jeff Cohen09dfd8e2007-03-20 20:42:36 +000025#include <limits>
Zhou Shenga3832fd2007-02-07 06:14:53 +000026#include <cstring>
Zhou Shengfd43dcf2007-02-06 03:00:16 +000027#include <cstdlib>
28using namespace llvm;
29
Reid Spencer5d0d05c2007-02-25 19:32:03 +000030/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000032inline static uint64_t* getClearedMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000033 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
Zhou Sheng353815d2007-02-06 06:04:53 +000037}
38
Reid Spencer5d0d05c2007-02-25 19:32:03 +000039/// A utility function for allocating memory and checking for allocation
40/// failure. The content is not zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000041inline static uint64_t* getMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000042 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
45}
46
Chris Lattner455e9ab2009-01-21 18:09:24 +000047void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000048 pVal = getClearedMemory(getNumWords());
49 pVal[0] = val;
50 if (isSigned && int64_t(val) < 0)
51 for (unsigned i = 1; i < getNumWords(); ++i)
52 pVal[i] = -1ULL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +000053}
54
Chris Lattner119c30b2008-10-11 22:07:19 +000055void APInt::initSlowCase(const APInt& that) {
56 pVal = getMemory(getNumWords());
57 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
58}
59
60
Chris Lattner455e9ab2009-01-21 18:09:24 +000061APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner944fac72008-08-23 22:23:09 +000062 : BitWidth(numBits), VAL(0) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000063 assert(BitWidth && "bitwidth too small");
Zhou Shengfd43dcf2007-02-06 03:00:16 +000064 assert(bigVal && "Null pointer detected!");
65 if (isSingleWord())
Reid Spencer610fad82007-02-24 10:01:42 +000066 VAL = bigVal[0];
Zhou Shengfd43dcf2007-02-06 03:00:16 +000067 else {
Reid Spencer610fad82007-02-24 10:01:42 +000068 // Get memory, cleared to 0
69 pVal = getClearedMemory(getNumWords());
70 // Calculate the number of words to copy
Chris Lattner455e9ab2009-01-21 18:09:24 +000071 unsigned words = std::min<unsigned>(numWords, getNumWords());
Reid Spencer610fad82007-02-24 10:01:42 +000072 // Copy the words from bigVal to pVal
73 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +000074 }
Reid Spencer610fad82007-02-24 10:01:42 +000075 // Make sure unused high bits are cleared
76 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +000077}
78
Daniel Dunbar689ad6e2009-08-13 02:33:34 +000079APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
Reid Spencer385f7542007-02-21 03:55:44 +000080 : BitWidth(numbits), VAL(0) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000081 assert(BitWidth && "bitwidth too small");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +000082 fromString(numbits, Str, radix);
Zhou Shenga3832fd2007-02-07 06:14:53 +000083}
84
Chris Lattner98f8ccf2008-08-20 17:02:31 +000085APInt& APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer9ac44112007-02-26 23:38:21 +000086 // Don't do anything for X = X
87 if (this == &RHS)
88 return *this;
89
Reid Spencer9ac44112007-02-26 23:38:21 +000090 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000091 // assume same bit-width single-word case is already handled
92 assert(!isSingleWord());
93 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Reid Spencer9ac44112007-02-26 23:38:21 +000094 return *this;
95 }
96
Chris Lattner98f8ccf2008-08-20 17:02:31 +000097 if (isSingleWord()) {
98 // assume case where both are single words is already handled
99 assert(!RHS.isSingleWord());
100 VAL = 0;
101 pVal = getMemory(RHS.getNumWords());
102 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
103 } else if (getNumWords() == RHS.getNumWords())
Reid Spencer9ac44112007-02-26 23:38:21 +0000104 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
105 else if (RHS.isSingleWord()) {
106 delete [] pVal;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000107 VAL = RHS.VAL;
Reid Spencer9ac44112007-02-26 23:38:21 +0000108 } else {
109 delete [] pVal;
110 pVal = getMemory(RHS.getNumWords());
111 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
112 }
113 BitWidth = RHS.BitWidth;
114 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000115}
116
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000117APInt& APInt::operator=(uint64_t RHS) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000118 if (isSingleWord())
119 VAL = RHS;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000120 else {
121 pVal[0] = RHS;
Reid Spencera58f0582007-02-18 20:09:41 +0000122 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000123 }
Reid Spencer9ac44112007-02-26 23:38:21 +0000124 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000125}
126
Ted Kremeneke420deb2008-01-19 04:23:33 +0000127/// Profile - This method 'profiles' an APInt for use with FoldingSet.
128void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremeneka795aca2008-02-19 20:50:41 +0000129 ID.AddInteger(BitWidth);
130
Ted Kremeneke420deb2008-01-19 04:23:33 +0000131 if (isSingleWord()) {
132 ID.AddInteger(VAL);
133 return;
134 }
135
Chris Lattner455e9ab2009-01-21 18:09:24 +0000136 unsigned NumWords = getNumWords();
Ted Kremeneke420deb2008-01-19 04:23:33 +0000137 for (unsigned i = 0; i < NumWords; ++i)
138 ID.AddInteger(pVal[i]);
139}
140
Reid Spenceraf0e9562007-02-18 18:38:44 +0000141/// add_1 - This function adds a single "digit" integer, y, to the multiple
142/// "digit" integer array, x[]. x[] is modified to reflect the addition and
143/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000144/// @returns the carry of the addition.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000145static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
146 for (unsigned i = 0; i < len; ++i) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000147 dest[i] = y + x[i];
148 if (dest[i] < y)
Reid Spencer610fad82007-02-24 10:01:42 +0000149 y = 1; // Carry one to next digit.
Reid Spencerf2c521c2007-02-18 06:39:42 +0000150 else {
Reid Spencer610fad82007-02-24 10:01:42 +0000151 y = 0; // No need to carry so exit early
Reid Spencerf2c521c2007-02-18 06:39:42 +0000152 break;
153 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000154 }
Reid Spencerf2c521c2007-02-18 06:39:42 +0000155 return y;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000156}
157
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000158/// @brief Prefix increment operator. Increments the APInt by one.
159APInt& APInt::operator++() {
Reid Spencere81d2da2007-02-16 22:36:51 +0000160 if (isSingleWord())
161 ++VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000162 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000163 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000164 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000165}
166
Reid Spenceraf0e9562007-02-18 18:38:44 +0000167/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
168/// the multi-digit integer array, x[], propagating the borrowed 1 value until
169/// no further borrowing is neeeded or it runs out of "digits" in x. The result
170/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
171/// In other words, if y > x then this function returns 1, otherwise 0.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000172/// @returns the borrow out of the subtraction
Chris Lattner455e9ab2009-01-21 18:09:24 +0000173static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
174 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000175 uint64_t X = x[i];
Reid Spencerf2c521c2007-02-18 06:39:42 +0000176 x[i] -= y;
177 if (y > X)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000178 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer5e0a8512007-02-17 03:16:00 +0000179 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000180 y = 0; // No need to borrow
181 break; // Remaining digits are unchanged so exit early
Reid Spencer5e0a8512007-02-17 03:16:00 +0000182 }
183 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000184 return bool(y);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000185}
186
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000187/// @brief Prefix decrement operator. Decrements the APInt by one.
188APInt& APInt::operator--() {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000189 if (isSingleWord())
190 --VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000191 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000192 sub_1(pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000193 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000194}
195
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000196/// add - This function adds the integer array x to the integer array Y and
197/// places the result in dest.
198/// @returns the carry out from the addition
199/// @brief General addition of 64-bit integer arrays
Reid Spencer9d6c9192007-02-24 03:58:46 +0000200static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000201 unsigned len) {
Reid Spencer9d6c9192007-02-24 03:58:46 +0000202 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000203 for (unsigned i = 0; i< len; ++i) {
Reid Spencer92904632007-02-23 01:57:13 +0000204 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
Reid Spencer54362ca2007-02-20 23:40:25 +0000205 dest[i] = x[i] + y[i] + carry;
Reid Spencer60c0a6a2007-02-21 05:44:56 +0000206 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000207 }
208 return carry;
209}
210
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000211/// Adds the RHS APint to this APInt.
212/// @returns this, after addition of RHS.
213/// @brief Addition assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000214APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000215 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer54362ca2007-02-20 23:40:25 +0000216 if (isSingleWord())
217 VAL += RHS.VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000218 else {
Reid Spencer54362ca2007-02-20 23:40:25 +0000219 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000220 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000221 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000222}
223
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000224/// Subtracts the integer array y from the integer array x
225/// @returns returns the borrow out.
226/// @brief Generalized subtraction of 64-bit integer arrays.
Reid Spencer9d6c9192007-02-24 03:58:46 +0000227static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000228 unsigned len) {
Reid Spencer385f7542007-02-21 03:55:44 +0000229 bool borrow = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000230 for (unsigned i = 0; i < len; ++i) {
Reid Spencer385f7542007-02-21 03:55:44 +0000231 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
232 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
233 dest[i] = x_tmp - y[i];
Reid Spencer5e0a8512007-02-17 03:16:00 +0000234 }
Reid Spencer54362ca2007-02-20 23:40:25 +0000235 return borrow;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000236}
237
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000238/// Subtracts the RHS APInt from this APInt
239/// @returns this, after subtraction
240/// @brief Subtraction assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000241APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000242 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000243 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000244 VAL -= RHS.VAL;
245 else
246 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000247 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000248}
249
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000250/// Multiplies an integer array, x by a a uint64_t integer and places the result
251/// into dest.
252/// @returns the carry out of the multiplication.
253/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000254static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Reid Spencer610fad82007-02-24 10:01:42 +0000255 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
Reid Spencer5e0a8512007-02-17 03:16:00 +0000256 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000257 uint64_t carry = 0;
258
259 // For each digit of x.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000260 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000261 // Split x into high and low words
262 uint64_t lx = x[i] & 0xffffffffULL;
263 uint64_t hx = x[i] >> 32;
264 // hasCarry - A flag to indicate if there is a carry to the next digit.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000265 // hasCarry == 0, no carry
266 // hasCarry == 1, has carry
267 // hasCarry == 2, no carry and the calculation result == 0.
268 uint8_t hasCarry = 0;
269 dest[i] = carry + lx * ly;
270 // Determine if the add above introduces carry.
271 hasCarry = (dest[i] < carry) ? 1 : 0;
272 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
273 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
274 // (2^32 - 1) + 2^32 = 2^64.
275 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
276
277 carry += (lx * hy) & 0xffffffffULL;
278 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
279 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
280 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
281 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000282 return carry;
283}
284
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000285/// Multiplies integer array x by integer array y and stores the result into
286/// the integer array dest. Note that dest's size must be >= xlen + ylen.
287/// @brief Generalized multiplicate of integer arrays.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000288static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
289 unsigned ylen) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000290 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000291 for (unsigned i = 1; i < ylen; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000292 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencere0cdd332007-02-21 08:21:52 +0000293 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000294 for (unsigned j = 0; j < xlen; ++j) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000295 lx = x[j] & 0xffffffffULL;
296 hx = x[j] >> 32;
297 // hasCarry - A flag to indicate if has carry.
298 // hasCarry == 0, no carry
299 // hasCarry == 1, has carry
300 // hasCarry == 2, no carry and the calculation result == 0.
301 uint8_t hasCarry = 0;
302 uint64_t resul = carry + lx * ly;
303 hasCarry = (resul < carry) ? 1 : 0;
304 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
305 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
306
307 carry += (lx * hy) & 0xffffffffULL;
308 resul = (carry << 32) | (resul & 0xffffffffULL);
309 dest[i+j] += resul;
310 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
311 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
312 ((lx * hy) >> 32) + hx * hy;
313 }
314 dest[i+xlen] = carry;
315 }
316}
317
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000318APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000319 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencere0cdd332007-02-21 08:21:52 +0000320 if (isSingleWord()) {
Reid Spencer61eb1802007-02-20 20:42:10 +0000321 VAL *= RHS.VAL;
Reid Spencere0cdd332007-02-21 08:21:52 +0000322 clearUnusedBits();
323 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000324 }
Reid Spencere0cdd332007-02-21 08:21:52 +0000325
326 // Get some bit facts about LHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000327 unsigned lhsBits = getActiveBits();
328 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Reid Spencere0cdd332007-02-21 08:21:52 +0000329 if (!lhsWords)
330 // 0 * X ===> 0
331 return *this;
332
333 // Get some bit facts about RHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000334 unsigned rhsBits = RHS.getActiveBits();
335 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Reid Spencere0cdd332007-02-21 08:21:52 +0000336 if (!rhsWords) {
337 // X * 0 ===> 0
338 clear();
339 return *this;
340 }
341
342 // Allocate space for the result
Chris Lattner455e9ab2009-01-21 18:09:24 +0000343 unsigned destWords = rhsWords + lhsWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000344 uint64_t *dest = getMemory(destWords);
345
346 // Perform the long multiply
347 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
348
349 // Copy result back into *this
350 clear();
Chris Lattner455e9ab2009-01-21 18:09:24 +0000351 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000352 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
353
354 // delete dest array and return
355 delete[] dest;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000356 return *this;
357}
358
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000359APInt& APInt::operator&=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000360 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000361 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000362 VAL &= RHS.VAL;
363 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000364 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000365 unsigned numWords = getNumWords();
366 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000367 pVal[i] &= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000368 return *this;
369}
370
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000371APInt& APInt::operator|=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000372 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000373 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000374 VAL |= RHS.VAL;
375 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000376 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000377 unsigned numWords = getNumWords();
378 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000379 pVal[i] |= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000380 return *this;
381}
382
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000383APInt& APInt::operator^=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000384 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000385 if (isSingleWord()) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000386 VAL ^= RHS.VAL;
Reid Spencer54362ca2007-02-20 23:40:25 +0000387 this->clearUnusedBits();
Reid Spencerf2c521c2007-02-18 06:39:42 +0000388 return *this;
389 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000390 unsigned numWords = getNumWords();
391 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000392 pVal[i] ^= RHS.pVal[i];
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000393 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000394}
395
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000396APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000397 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000398 uint64_t* val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000399 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000400 val[i] = pVal[i] & RHS.pVal[i];
401 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000402}
403
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000404APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000405 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000406 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000407 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000408 val[i] = pVal[i] | RHS.pVal[i];
409 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000410}
411
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000412APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000413 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000414 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000415 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000416 val[i] = pVal[i] ^ RHS.pVal[i];
417
418 // 0^0==1 so clear the high bits in case they got set.
419 return APInt(val, getBitWidth()).clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000420}
421
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000422bool APInt::operator !() const {
423 if (isSingleWord())
424 return !VAL;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000425
Chris Lattner455e9ab2009-01-21 18:09:24 +0000426 for (unsigned i = 0; i < getNumWords(); ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000427 if (pVal[i])
428 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000429 return true;
430}
431
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000432APInt APInt::operator*(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000433 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000434 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000435 return APInt(BitWidth, VAL * RHS.VAL);
Reid Spencer61eb1802007-02-20 20:42:10 +0000436 APInt Result(*this);
437 Result *= RHS;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000438 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000439}
440
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000441APInt APInt::operator+(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000442 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000443 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000444 return APInt(BitWidth, VAL + RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000445 APInt Result(BitWidth, 0);
446 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000447 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000448}
449
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000450APInt APInt::operator-(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000451 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000452 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000453 return APInt(BitWidth, VAL - RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000454 APInt Result(BitWidth, 0);
455 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000456 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000457}
458
Chris Lattner455e9ab2009-01-21 18:09:24 +0000459bool APInt::operator[](unsigned bitPosition) const {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000460 return (maskBit(bitPosition) &
461 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000462}
463
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000464bool APInt::EqualSlowCase(const APInt& RHS) const {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000465 // Get some facts about the number of bits used in the two operands.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000466 unsigned n1 = getActiveBits();
467 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000468
469 // If the number of bits isn't the same, they aren't equal
Reid Spencer54362ca2007-02-20 23:40:25 +0000470 if (n1 != n2)
471 return false;
472
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000473 // If the number of bits fits in a word, we only need to compare the low word.
Reid Spencer54362ca2007-02-20 23:40:25 +0000474 if (n1 <= APINT_BITS_PER_WORD)
475 return pVal[0] == RHS.pVal[0];
476
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000477 // Otherwise, compare everything
Reid Spencer54362ca2007-02-20 23:40:25 +0000478 for (int i = whichWord(n1 - 1); i >= 0; --i)
479 if (pVal[i] != RHS.pVal[i])
480 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000481 return true;
482}
483
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000484bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000485 unsigned n = getActiveBits();
Reid Spencer54362ca2007-02-20 23:40:25 +0000486 if (n <= APINT_BITS_PER_WORD)
487 return pVal[0] == Val;
488 else
489 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000490}
491
Reid Spencere81d2da2007-02-16 22:36:51 +0000492bool APInt::ult(const APInt& RHS) const {
493 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
494 if (isSingleWord())
495 return VAL < RHS.VAL;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000496
497 // Get active bit length of both operands
Chris Lattner455e9ab2009-01-21 18:09:24 +0000498 unsigned n1 = getActiveBits();
499 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000500
501 // If magnitude of LHS is less than RHS, return true.
502 if (n1 < n2)
503 return true;
504
505 // If magnitude of RHS is greather than LHS, return false.
506 if (n2 < n1)
507 return false;
508
509 // If they bot fit in a word, just compare the low order word
510 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
511 return pVal[0] < RHS.pVal[0];
512
513 // Otherwise, compare all words
Chris Lattner455e9ab2009-01-21 18:09:24 +0000514 unsigned topWord = whichWord(std::max(n1,n2)-1);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000515 for (int i = topWord; i >= 0; --i) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000516 if (pVal[i] > RHS.pVal[i])
Reid Spencere81d2da2007-02-16 22:36:51 +0000517 return false;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000518 if (pVal[i] < RHS.pVal[i])
519 return true;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000520 }
521 return false;
522}
523
Reid Spencere81d2da2007-02-16 22:36:51 +0000524bool APInt::slt(const APInt& RHS) const {
525 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencera58f0582007-02-18 20:09:41 +0000526 if (isSingleWord()) {
527 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
528 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
529 return lhsSext < rhsSext;
Reid Spencere81d2da2007-02-16 22:36:51 +0000530 }
Reid Spencera58f0582007-02-18 20:09:41 +0000531
532 APInt lhs(*this);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000533 APInt rhs(RHS);
534 bool lhsNeg = isNegative();
535 bool rhsNeg = rhs.isNegative();
536 if (lhsNeg) {
537 // Sign bit is set so perform two's complement to make it positive
Reid Spencera58f0582007-02-18 20:09:41 +0000538 lhs.flip();
539 lhs++;
540 }
Reid Spencer1fa111e2007-02-27 18:23:40 +0000541 if (rhsNeg) {
542 // Sign bit is set so perform two's complement to make it positive
Reid Spencera58f0582007-02-18 20:09:41 +0000543 rhs.flip();
544 rhs++;
545 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000546
547 // Now we have unsigned values to compare so do the comparison if necessary
548 // based on the negativeness of the values.
Reid Spencer1fa111e2007-02-27 18:23:40 +0000549 if (lhsNeg)
550 if (rhsNeg)
551 return lhs.ugt(rhs);
Reid Spencera58f0582007-02-18 20:09:41 +0000552 else
553 return true;
Reid Spencer1fa111e2007-02-27 18:23:40 +0000554 else if (rhsNeg)
Reid Spencera58f0582007-02-18 20:09:41 +0000555 return false;
556 else
557 return lhs.ult(rhs);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000558}
559
Chris Lattner455e9ab2009-01-21 18:09:24 +0000560APInt& APInt::set(unsigned bitPosition) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000561 if (isSingleWord())
562 VAL |= maskBit(bitPosition);
563 else
564 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000565 return *this;
566}
567
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000568/// Set the given bit to 0 whose position is given as "bitPosition".
569/// @brief Set a given bit to 0.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000570APInt& APInt::clear(unsigned bitPosition) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000571 if (isSingleWord())
572 VAL &= ~maskBit(bitPosition);
573 else
574 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000575 return *this;
576}
577
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000578/// @brief Toggle every bit to its opposite value.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000579
580/// Toggle a given bit to its opposite value whose position is given
581/// as "bitPosition".
582/// @brief Toggles a given bit to its opposite value.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000583APInt& APInt::flip(unsigned bitPosition) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000584 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000585 if ((*this)[bitPosition]) clear(bitPosition);
586 else set(bitPosition);
587 return *this;
588}
589
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000590unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) {
591 assert(!str.empty() && "Invalid string length");
592
593 size_t slen = str.size();
Reid Spencer57ae4f52007-04-13 19:19:07 +0000594
595 // Each computation below needs to know if its negative
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000596 unsigned isNegative = str.front() == '-';
Reid Spencer57ae4f52007-04-13 19:19:07 +0000597 if (isNegative) {
598 slen--;
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000599 assert(slen && "string is only a minus!");
Reid Spencer57ae4f52007-04-13 19:19:07 +0000600 }
601 // For radixes of power-of-two values, the bits required is accurately and
602 // easily computed
603 if (radix == 2)
604 return slen + isNegative;
605 if (radix == 8)
606 return slen * 3 + isNegative;
607 if (radix == 16)
608 return slen * 4 + isNegative;
609
610 // Otherwise it must be radix == 10, the hard case
611 assert(radix == 10 && "Invalid radix");
612
613 // This is grossly inefficient but accurate. We could probably do something
614 // with a computation of roughly slen*64/20 and then adjust by the value of
615 // the first few digits. But, I'm not sure how accurate that could be.
616
617 // Compute a sufficient number of bits that is always large enough but might
618 // be too large. This avoids the assertion in the constructor.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000619 unsigned sufficient = slen*64/18;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000620
621 // Convert to the actual binary value.
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000622 APInt tmp(sufficient, str.substr(isNegative), radix);
Reid Spencer57ae4f52007-04-13 19:19:07 +0000623
624 // Compute how many bits are required.
Reid Spencer0468ab32007-04-14 00:00:10 +0000625 return isNegative + tmp.logBase2() + 1;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000626}
627
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000628// From http://www.burtleburtle.net, byBob Jenkins.
629// When targeting x86, both GCC and LLVM seem to recognize this as a
630// rotate instruction.
631#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Reid Spencer794f4722007-02-26 21:02:27 +0000632
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000633// From http://www.burtleburtle.net, by Bob Jenkins.
634#define mix(a,b,c) \
635 { \
636 a -= c; a ^= rot(c, 4); c += b; \
637 b -= a; b ^= rot(a, 6); a += c; \
638 c -= b; c ^= rot(b, 8); b += a; \
639 a -= c; a ^= rot(c,16); c += b; \
640 b -= a; b ^= rot(a,19); a += c; \
641 c -= b; c ^= rot(b, 4); b += a; \
642 }
643
644// From http://www.burtleburtle.net, by Bob Jenkins.
645#define final(a,b,c) \
646 { \
647 c ^= b; c -= rot(b,14); \
648 a ^= c; a -= rot(c,11); \
649 b ^= a; b -= rot(a,25); \
650 c ^= b; c -= rot(b,16); \
651 a ^= c; a -= rot(c,4); \
652 b ^= a; b -= rot(a,14); \
653 c ^= b; c -= rot(b,24); \
654 }
655
656// hashword() was adapted from http://www.burtleburtle.net, by Bob
657// Jenkins. k is a pointer to an array of uint32_t values; length is
658// the length of the key, in 32-bit chunks. This version only handles
659// keys that are a multiple of 32 bits in size.
660static inline uint32_t hashword(const uint64_t *k64, size_t length)
661{
662 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
663 uint32_t a,b,c;
664
665 /* Set up the internal state */
666 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
667
668 /*------------------------------------------------- handle most of the key */
669 while (length > 3)
670 {
671 a += k[0];
672 b += k[1];
673 c += k[2];
674 mix(a,b,c);
675 length -= 3;
676 k += 3;
677 }
678
679 /*------------------------------------------- handle the last 3 uint32_t's */
Mike Stumpf3dc0c02009-05-13 23:23:20 +0000680 switch (length) { /* all the case statements fall through */
681 case 3 : c+=k[2];
682 case 2 : b+=k[1];
683 case 1 : a+=k[0];
684 final(a,b,c);
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000685 case 0: /* case 0: nothing left to add */
686 break;
687 }
688 /*------------------------------------------------------ report the result */
689 return c;
690}
691
692// hashword8() was adapted from http://www.burtleburtle.net, by Bob
693// Jenkins. This computes a 32-bit hash from one 64-bit word. When
694// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
695// function into about 35 instructions when inlined.
696static inline uint32_t hashword8(const uint64_t k64)
697{
698 uint32_t a,b,c;
699 a = b = c = 0xdeadbeef + 4;
700 b += k64 >> 32;
701 a += k64 & 0xffffffff;
702 final(a,b,c);
703 return c;
704}
705#undef final
706#undef mix
707#undef rot
708
709uint64_t APInt::getHashValue() const {
710 uint64_t hash;
Reid Spencer794f4722007-02-26 21:02:27 +0000711 if (isSingleWord())
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000712 hash = hashword8(VAL);
Reid Spencer794f4722007-02-26 21:02:27 +0000713 else
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000714 hash = hashword(pVal, getNumWords()*2);
Reid Spencer794f4722007-02-26 21:02:27 +0000715 return hash;
716}
717
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000718/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000719APInt APInt::getHiBits(unsigned numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000720 return APIntOps::lshr(*this, BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000721}
722
723/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000724APInt APInt::getLoBits(unsigned numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000725 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
726 BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000727}
728
Reid Spencere81d2da2007-02-16 22:36:51 +0000729bool APInt::isPowerOf2() const {
730 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
731}
732
Chris Lattner455e9ab2009-01-21 18:09:24 +0000733unsigned APInt::countLeadingZerosSlowCase() const {
734 unsigned Count = 0;
735 for (unsigned i = getNumWords(); i > 0u; --i) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000736 if (pVal[i-1] == 0)
737 Count += APINT_BITS_PER_WORD;
738 else {
739 Count += CountLeadingZeros_64(pVal[i-1]);
740 break;
Reid Spencere549c492007-02-21 00:29:48 +0000741 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000742 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000743 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
Reid Spencerab2b2c82007-02-22 00:22:00 +0000744 if (remainder)
745 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner9e513ac2007-11-23 22:42:31 +0000746 return std::min(Count, BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000747}
748
Chris Lattner455e9ab2009-01-21 18:09:24 +0000749static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
750 unsigned Count = 0;
Reid Spencer681dcd12007-02-27 21:59:26 +0000751 if (skip)
752 V <<= skip;
753 while (V && (V & (1ULL << 63))) {
754 Count++;
755 V <<= 1;
756 }
757 return Count;
758}
759
Chris Lattner455e9ab2009-01-21 18:09:24 +0000760unsigned APInt::countLeadingOnes() const {
Reid Spencer681dcd12007-02-27 21:59:26 +0000761 if (isSingleWord())
762 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
763
Chris Lattner455e9ab2009-01-21 18:09:24 +0000764 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwin2d0f1c52009-01-27 18:06:03 +0000765 unsigned shift;
766 if (!highWordBits) {
767 highWordBits = APINT_BITS_PER_WORD;
768 shift = 0;
769 } else {
770 shift = APINT_BITS_PER_WORD - highWordBits;
771 }
Reid Spencer681dcd12007-02-27 21:59:26 +0000772 int i = getNumWords() - 1;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000773 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Reid Spencer681dcd12007-02-27 21:59:26 +0000774 if (Count == highWordBits) {
775 for (i--; i >= 0; --i) {
776 if (pVal[i] == -1ULL)
777 Count += APINT_BITS_PER_WORD;
778 else {
779 Count += countLeadingOnes_64(pVal[i], 0);
780 break;
781 }
782 }
783 }
784 return Count;
785}
786
Chris Lattner455e9ab2009-01-21 18:09:24 +0000787unsigned APInt::countTrailingZeros() const {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000788 if (isSingleWord())
Chris Lattner455e9ab2009-01-21 18:09:24 +0000789 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
790 unsigned Count = 0;
791 unsigned i = 0;
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000792 for (; i < getNumWords() && pVal[i] == 0; ++i)
793 Count += APINT_BITS_PER_WORD;
794 if (i < getNumWords())
795 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner5e557122007-11-23 22:36:25 +0000796 return std::min(Count, BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000797}
798
Chris Lattner455e9ab2009-01-21 18:09:24 +0000799unsigned APInt::countTrailingOnesSlowCase() const {
800 unsigned Count = 0;
801 unsigned i = 0;
Dan Gohman5a0e7b42008-02-14 22:38:45 +0000802 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohman42dd77f2008-02-13 21:11:05 +0000803 Count += APINT_BITS_PER_WORD;
804 if (i < getNumWords())
805 Count += CountTrailingOnes_64(pVal[i]);
806 return std::min(Count, BitWidth);
807}
808
Chris Lattner455e9ab2009-01-21 18:09:24 +0000809unsigned APInt::countPopulationSlowCase() const {
810 unsigned Count = 0;
811 for (unsigned i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000812 Count += CountPopulation_64(pVal[i]);
813 return Count;
814}
815
Reid Spencere81d2da2007-02-16 22:36:51 +0000816APInt APInt::byteSwap() const {
817 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
818 if (BitWidth == 16)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000819 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
Reid Spencere81d2da2007-02-16 22:36:51 +0000820 else if (BitWidth == 32)
Chris Lattner455e9ab2009-01-21 18:09:24 +0000821 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Reid Spencere81d2da2007-02-16 22:36:51 +0000822 else if (BitWidth == 48) {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000823 unsigned Tmp1 = unsigned(VAL >> 16);
Zhou Shengb04973e2007-02-15 06:36:31 +0000824 Tmp1 = ByteSwap_32(Tmp1);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000825 uint16_t Tmp2 = uint16_t(VAL);
Zhou Shengb04973e2007-02-15 06:36:31 +0000826 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000827 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Reid Spencere81d2da2007-02-16 22:36:51 +0000828 } else if (BitWidth == 64)
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000829 return APInt(BitWidth, ByteSwap_64(VAL));
Zhou Shengb04973e2007-02-15 06:36:31 +0000830 else {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000831 APInt Result(BitWidth, 0);
Zhou Shengb04973e2007-02-15 06:36:31 +0000832 char *pByte = (char*)Result.pVal;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000833 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Zhou Shengb04973e2007-02-15 06:36:31 +0000834 char Tmp = pByte[i];
Reid Spencera58f0582007-02-18 20:09:41 +0000835 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
836 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
Zhou Shengb04973e2007-02-15 06:36:31 +0000837 }
838 return Result;
839 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000840}
841
Zhou Sheng0b706b12007-02-08 14:35:19 +0000842APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
843 const APInt& API2) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000844 APInt A = API1, B = API2;
845 while (!!B) {
846 APInt T = B;
Reid Spencere81d2da2007-02-16 22:36:51 +0000847 B = APIntOps::urem(A, B);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000848 A = T;
849 }
850 return A;
851}
Chris Lattner6ad4c142007-02-06 05:38:37 +0000852
Chris Lattner455e9ab2009-01-21 18:09:24 +0000853APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd93f00c2007-02-12 20:02:55 +0000854 union {
855 double D;
856 uint64_t I;
857 } T;
858 T.D = Double;
Reid Spencer30f44f32007-02-27 01:28:10 +0000859
860 // Get the sign bit from the highest order bit
Zhou Shengd93f00c2007-02-12 20:02:55 +0000861 bool isNeg = T.I >> 63;
Reid Spencer30f44f32007-02-27 01:28:10 +0000862
863 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd93f00c2007-02-12 20:02:55 +0000864 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer30f44f32007-02-27 01:28:10 +0000865
866 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000867 if (exp < 0)
Reid Spencerff605762007-02-28 01:30:08 +0000868 return APInt(width, 0u);
Reid Spencer30f44f32007-02-27 01:28:10 +0000869
870 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
871 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
872
873 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd93f00c2007-02-12 20:02:55 +0000874 if (exp < 52)
Reid Spencer1fa111e2007-02-27 18:23:40 +0000875 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
876 APInt(width, mantissa >> (52 - exp));
877
878 // If the client didn't provide enough bits for us to shift the mantissa into
879 // then the result is undefined, just return 0
880 if (width <= exp - 52)
881 return APInt(width, 0);
Reid Spencer30f44f32007-02-27 01:28:10 +0000882
883 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer1fa111e2007-02-27 18:23:40 +0000884 APInt Tmp(width, mantissa);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000885 Tmp = Tmp.shl((unsigned)exp - 52);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000886 return isNeg ? -Tmp : Tmp;
887}
888
Dale Johannesen4e97a0f2009-08-12 18:04:11 +0000889/// RoundToDouble - This function converts this APInt to a double.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000890/// The layout for double is as following (IEEE Standard 754):
891/// --------------------------------------
892/// | Sign Exponent Fraction Bias |
893/// |-------------------------------------- |
894/// | 1[63] 11[62-52] 52[51-00] 1023 |
895/// --------------------------------------
Reid Spencere81d2da2007-02-16 22:36:51 +0000896double APInt::roundToDouble(bool isSigned) const {
Reid Spencer9c0696f2007-02-20 08:51:03 +0000897
898 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen4e97a0f2009-08-12 18:04:11 +0000899 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencera58f0582007-02-18 20:09:41 +0000900 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
901 if (isSigned) {
Dale Johannesen39c177d2009-08-12 17:42:34 +0000902 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
Reid Spencera58f0582007-02-18 20:09:41 +0000903 return double(sext);
904 } else
Dale Johannesen39c177d2009-08-12 17:42:34 +0000905 return double(getWord(0));
Reid Spencera58f0582007-02-18 20:09:41 +0000906 }
907
Reid Spencer9c0696f2007-02-20 08:51:03 +0000908 // Determine if the value is negative.
Reid Spencere81d2da2007-02-16 22:36:51 +0000909 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000910
911 // Construct the absolute value if we're negative.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000912 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencer9c0696f2007-02-20 08:51:03 +0000913
914 // Figure out how many bits we're using.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000915 unsigned n = Tmp.getActiveBits();
Zhou Shengd93f00c2007-02-12 20:02:55 +0000916
Reid Spencer9c0696f2007-02-20 08:51:03 +0000917 // The exponent (without bias normalization) is just the number of bits
918 // we are using. Note that the sign bit is gone since we constructed the
919 // absolute value.
920 uint64_t exp = n;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000921
Reid Spencer9c0696f2007-02-20 08:51:03 +0000922 // Return infinity for exponent overflow
923 if (exp > 1023) {
924 if (!isSigned || !isNeg)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000925 return std::numeric_limits<double>::infinity();
Reid Spencer9c0696f2007-02-20 08:51:03 +0000926 else
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000927 return -std::numeric_limits<double>::infinity();
Reid Spencer9c0696f2007-02-20 08:51:03 +0000928 }
929 exp += 1023; // Increment for 1023 bias
930
931 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
932 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000933 uint64_t mantissa;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000934 unsigned hiWord = whichWord(n-1);
935 if (hiWord == 0) {
936 mantissa = Tmp.pVal[0];
937 if (n > 52)
938 mantissa >>= n - 52; // shift down, we want the top 52 bits.
939 } else {
940 assert(hiWord > 0 && "huh?");
941 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
942 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
943 mantissa = hibits | lobits;
944 }
945
Zhou Shengd93f00c2007-02-12 20:02:55 +0000946 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencer443b5702007-02-18 00:44:22 +0000947 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000948 union {
949 double D;
950 uint64_t I;
951 } T;
952 T.I = sign | (exp << 52) | mantissa;
953 return T.D;
954}
955
Reid Spencere81d2da2007-02-16 22:36:51 +0000956// Truncate to new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000957APInt &APInt::trunc(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000958 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000959 assert(width && "Can't truncate to 0 bits");
Chris Lattner455e9ab2009-01-21 18:09:24 +0000960 unsigned wordsBefore = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +0000961 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000962 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +0000963 if (wordsBefore != wordsAfter) {
964 if (wordsAfter == 1) {
965 uint64_t *tmp = pVal;
966 VAL = pVal[0];
Reid Spencer9ac44112007-02-26 23:38:21 +0000967 delete [] tmp;
Reid Spencer9eec2412007-02-25 23:44:53 +0000968 } else {
969 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000970 for (unsigned i = 0; i < wordsAfter; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +0000971 newVal[i] = pVal[i];
Reid Spencer9ac44112007-02-26 23:38:21 +0000972 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +0000973 pVal = newVal;
974 }
975 }
Reid Spencer94900772007-02-28 17:34:32 +0000976 return clearUnusedBits();
Reid Spencere81d2da2007-02-16 22:36:51 +0000977}
978
979// Sign extend to a new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000980APInt &APInt::sext(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000981 assert(width > BitWidth && "Invalid APInt SignExtend request");
Reid Spencer9eec2412007-02-25 23:44:53 +0000982 // If the sign bit isn't set, this is the same as zext.
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000983 if (!isNegative()) {
Reid Spencer9eec2412007-02-25 23:44:53 +0000984 zext(width);
Reid Spencer94900772007-02-28 17:34:32 +0000985 return *this;
Reid Spencer9eec2412007-02-25 23:44:53 +0000986 }
987
988 // The sign bit is set. First, get some facts
Chris Lattner455e9ab2009-01-21 18:09:24 +0000989 unsigned wordsBefore = getNumWords();
990 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Reid Spencer9eec2412007-02-25 23:44:53 +0000991 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000992 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +0000993
994 // Mask the high order word appropriately
995 if (wordsBefore == wordsAfter) {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000996 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Reid Spencer9eec2412007-02-25 23:44:53 +0000997 // The extension is contained to the wordsBefore-1th word.
Reid Spencer36184ed2007-03-02 01:19:42 +0000998 uint64_t mask = ~0ULL;
999 if (newWordBits)
1000 mask >>= APINT_BITS_PER_WORD - newWordBits;
1001 mask <<= wordBits;
Reid Spencer9eec2412007-02-25 23:44:53 +00001002 if (wordsBefore == 1)
1003 VAL |= mask;
1004 else
1005 pVal[wordsBefore-1] |= mask;
Reid Spencer295e40a2007-03-01 23:30:25 +00001006 return clearUnusedBits();
Reid Spencer9eec2412007-02-25 23:44:53 +00001007 }
1008
Reid Spencerf30b1882007-02-25 23:54:00 +00001009 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
Reid Spencer9eec2412007-02-25 23:44:53 +00001010 uint64_t *newVal = getMemory(wordsAfter);
1011 if (wordsBefore == 1)
1012 newVal[0] = VAL | mask;
1013 else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001014 for (unsigned i = 0; i < wordsBefore; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +00001015 newVal[i] = pVal[i];
1016 newVal[wordsBefore-1] |= mask;
1017 }
Chris Lattner455e9ab2009-01-21 18:09:24 +00001018 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Reid Spencer9eec2412007-02-25 23:44:53 +00001019 newVal[i] = -1ULL;
1020 if (wordsBefore != 1)
Reid Spencer9ac44112007-02-26 23:38:21 +00001021 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001022 pVal = newVal;
Reid Spencer94900772007-02-28 17:34:32 +00001023 return clearUnusedBits();
Reid Spencere81d2da2007-02-16 22:36:51 +00001024}
1025
1026// Zero extend to a new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001027APInt &APInt::zext(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +00001028 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001029 unsigned wordsBefore = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001030 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001031 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001032 if (wordsBefore != wordsAfter) {
1033 uint64_t *newVal = getClearedMemory(wordsAfter);
1034 if (wordsBefore == 1)
1035 newVal[0] = VAL;
1036 else
Chris Lattner455e9ab2009-01-21 18:09:24 +00001037 for (unsigned i = 0; i < wordsBefore; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +00001038 newVal[i] = pVal[i];
1039 if (wordsBefore != 1)
Reid Spencer9ac44112007-02-26 23:38:21 +00001040 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001041 pVal = newVal;
1042 }
Reid Spencer94900772007-02-28 17:34:32 +00001043 return *this;
Reid Spencere81d2da2007-02-16 22:36:51 +00001044}
1045
Chris Lattner455e9ab2009-01-21 18:09:24 +00001046APInt &APInt::zextOrTrunc(unsigned width) {
Reid Spencer68e23002007-03-01 17:15:32 +00001047 if (BitWidth < width)
1048 return zext(width);
1049 if (BitWidth > width)
1050 return trunc(width);
1051 return *this;
1052}
1053
Chris Lattner455e9ab2009-01-21 18:09:24 +00001054APInt &APInt::sextOrTrunc(unsigned width) {
Reid Spencer68e23002007-03-01 17:15:32 +00001055 if (BitWidth < width)
1056 return sext(width);
1057 if (BitWidth > width)
1058 return trunc(width);
1059 return *this;
1060}
1061
Zhou Shengff4304f2007-02-09 07:48:24 +00001062/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001063/// @brief Arithmetic right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001064APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001065 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001066}
1067
1068/// Arithmetic right-shift this APInt by shiftAmt.
1069/// @brief Arithmetic right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001070APInt APInt::ashr(unsigned shiftAmt) const {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001071 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer46f9c942007-03-02 22:39:11 +00001072 // Handle a degenerate case
1073 if (shiftAmt == 0)
1074 return *this;
1075
1076 // Handle single word shifts with built-in ashr
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001077 if (isSingleWord()) {
1078 if (shiftAmt == BitWidth)
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001079 return APInt(BitWidth, 0); // undefined
1080 else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001081 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001082 return APInt(BitWidth,
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001083 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1084 }
Zhou Sheng0b706b12007-02-08 14:35:19 +00001085 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001086
Reid Spencer46f9c942007-03-02 22:39:11 +00001087 // If all the bits were shifted out, the result is, technically, undefined.
1088 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1089 // issues in the algorithm below.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001090 if (shiftAmt == BitWidth) {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001091 if (isNegative())
Zhou Shengbfde7d62008-06-05 13:27:38 +00001092 return APInt(BitWidth, -1ULL, true);
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001093 else
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001094 return APInt(BitWidth, 0);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001095 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001096
1097 // Create some space for the result.
1098 uint64_t * val = new uint64_t[getNumWords()];
1099
Reid Spencer46f9c942007-03-02 22:39:11 +00001100 // Compute some values needed by the following shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001101 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1102 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1103 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1104 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Reid Spencer46f9c942007-03-02 22:39:11 +00001105 if (bitsInWord == 0)
1106 bitsInWord = APINT_BITS_PER_WORD;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001107
1108 // If we are shifting whole words, just move whole words
1109 if (wordShift == 0) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001110 // Move the words containing significant bits
Chris Lattner455e9ab2009-01-21 18:09:24 +00001111 for (unsigned i = 0; i <= breakWord; ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001112 val[i] = pVal[i+offset]; // move whole word
1113
1114 // Adjust the top significant word for sign bit fill, if negative
1115 if (isNegative())
1116 if (bitsInWord < APINT_BITS_PER_WORD)
1117 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1118 } else {
1119 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001120 for (unsigned i = 0; i < breakWord; ++i) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001121 // This combines the shifted corresponding word with the low bits from
1122 // the next word (shifted into this word's high bits).
1123 val[i] = (pVal[i+offset] >> wordShift) |
1124 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1125 }
1126
1127 // Shift the break word. In this case there are no bits from the next word
1128 // to include in this word.
1129 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1130
1131 // Deal with sign extenstion in the break word, and possibly the word before
1132 // it.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001133 if (isNegative()) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001134 if (wordShift > bitsInWord) {
1135 if (breakWord > 0)
1136 val[breakWord-1] |=
1137 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1138 val[breakWord] |= ~0ULL;
1139 } else
1140 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001141 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001142 }
1143
Reid Spencer46f9c942007-03-02 22:39:11 +00001144 // Remaining words are 0 or -1, just assign them.
1145 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001146 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001147 val[i] = fillValue;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001148 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001149}
1150
Zhou Shengff4304f2007-02-09 07:48:24 +00001151/// Logical right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001152/// @brief Logical right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001153APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001154 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001155}
1156
1157/// Logical right-shift this APInt by shiftAmt.
1158/// @brief Logical right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001159APInt APInt::lshr(unsigned shiftAmt) const {
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001160 if (isSingleWord()) {
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001161 if (shiftAmt == BitWidth)
1162 return APInt(BitWidth, 0);
1163 else
1164 return APInt(BitWidth, this->VAL >> shiftAmt);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001165 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001166
Reid Spencerba81c2b2007-02-26 01:19:48 +00001167 // If all the bits were shifted out, the result is 0. This avoids issues
1168 // with shifting by the size of the integer type, which produces undefined
1169 // results. We define these "undefined results" to always be 0.
1170 if (shiftAmt == BitWidth)
1171 return APInt(BitWidth, 0);
1172
Reid Spencer02ae8b72007-05-17 06:26:29 +00001173 // If none of the bits are shifted out, the result is *this. This avoids
Nick Lewycky4bd47872009-01-19 17:42:33 +00001174 // issues with shifting by the size of the integer type, which produces
Reid Spencer02ae8b72007-05-17 06:26:29 +00001175 // undefined results in the code below. This is also an optimization.
1176 if (shiftAmt == 0)
1177 return *this;
1178
Reid Spencerba81c2b2007-02-26 01:19:48 +00001179 // Create some space for the result.
1180 uint64_t * val = new uint64_t[getNumWords()];
1181
1182 // If we are shifting less than a word, compute the shift with a simple carry
1183 if (shiftAmt < APINT_BITS_PER_WORD) {
1184 uint64_t carry = 0;
1185 for (int i = getNumWords()-1; i >= 0; --i) {
Reid Spenceraf8fb192007-03-01 05:39:56 +00001186 val[i] = (pVal[i] >> shiftAmt) | carry;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001187 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1188 }
1189 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001190 }
1191
Reid Spencerba81c2b2007-02-26 01:19:48 +00001192 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001193 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1194 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001195
1196 // If we are shifting whole words, just move whole words
1197 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001198 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001199 val[i] = pVal[i+offset];
Chris Lattner455e9ab2009-01-21 18:09:24 +00001200 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001201 val[i] = 0;
1202 return APInt(val,BitWidth).clearUnusedBits();
1203 }
1204
1205 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001206 unsigned breakWord = getNumWords() - offset -1;
1207 for (unsigned i = 0; i < breakWord; ++i)
Reid Spenceraf8fb192007-03-01 05:39:56 +00001208 val[i] = (pVal[i+offset] >> wordShift) |
1209 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
Reid Spencerba81c2b2007-02-26 01:19:48 +00001210 // Shift the break word.
1211 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1212
1213 // Remaining words are 0
Chris Lattner455e9ab2009-01-21 18:09:24 +00001214 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001215 val[i] = 0;
1216 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001217}
1218
Zhou Shengff4304f2007-02-09 07:48:24 +00001219/// Left-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001220/// @brief Left-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001221APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky4bd47872009-01-19 17:42:33 +00001222 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001223 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001224}
1225
Chris Lattner455e9ab2009-01-21 18:09:24 +00001226APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Reid Spencer87553802007-02-25 00:56:44 +00001227 // If all the bits were shifted out, the result is 0. This avoids issues
1228 // with shifting by the size of the integer type, which produces undefined
1229 // results. We define these "undefined results" to always be 0.
1230 if (shiftAmt == BitWidth)
1231 return APInt(BitWidth, 0);
1232
Reid Spencer92c72832007-05-12 18:01:57 +00001233 // If none of the bits are shifted out, the result is *this. This avoids a
1234 // lshr by the words size in the loop below which can produce incorrect
1235 // results. It also avoids the expensive computation below for a common case.
1236 if (shiftAmt == 0)
1237 return *this;
1238
Reid Spencer87553802007-02-25 00:56:44 +00001239 // Create some space for the result.
1240 uint64_t * val = new uint64_t[getNumWords()];
1241
1242 // If we are shifting less than a word, do it the easy way
1243 if (shiftAmt < APINT_BITS_PER_WORD) {
1244 uint64_t carry = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001245 for (unsigned i = 0; i < getNumWords(); i++) {
Reid Spencer87553802007-02-25 00:56:44 +00001246 val[i] = pVal[i] << shiftAmt | carry;
1247 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1248 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001249 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001250 }
1251
Reid Spencer87553802007-02-25 00:56:44 +00001252 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001253 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1254 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencer87553802007-02-25 00:56:44 +00001255
1256 // If we are shifting whole words, just move whole words
1257 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001258 for (unsigned i = 0; i < offset; i++)
Reid Spencer87553802007-02-25 00:56:44 +00001259 val[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001260 for (unsigned i = offset; i < getNumWords(); i++)
Reid Spencer87553802007-02-25 00:56:44 +00001261 val[i] = pVal[i-offset];
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001262 return APInt(val,BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001263 }
Reid Spencer87553802007-02-25 00:56:44 +00001264
1265 // Copy whole words from this to Result.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001266 unsigned i = getNumWords() - 1;
Reid Spencer87553802007-02-25 00:56:44 +00001267 for (; i > offset; --i)
1268 val[i] = pVal[i-offset] << wordShift |
1269 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
Reid Spencer438d71e2007-02-25 01:08:58 +00001270 val[offset] = pVal[0] << wordShift;
Reid Spencer87553802007-02-25 00:56:44 +00001271 for (i = 0; i < offset; ++i)
1272 val[i] = 0;
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001273 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001274}
1275
Dan Gohmancf609572008-02-29 01:40:47 +00001276APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001277 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001278}
1279
Chris Lattner455e9ab2009-01-21 18:09:24 +00001280APInt APInt::rotl(unsigned rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001281 if (rotateAmt == 0)
1282 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001283 // Don't get too fancy, just use existing shift/or facilities
1284 APInt hi(*this);
1285 APInt lo(*this);
1286 hi.shl(rotateAmt);
1287 lo.lshr(BitWidth - rotateAmt);
1288 return hi | lo;
1289}
1290
Dan Gohmancf609572008-02-29 01:40:47 +00001291APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001292 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001293}
1294
Chris Lattner455e9ab2009-01-21 18:09:24 +00001295APInt APInt::rotr(unsigned rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001296 if (rotateAmt == 0)
1297 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001298 // Don't get too fancy, just use existing shift/or facilities
1299 APInt hi(*this);
1300 APInt lo(*this);
1301 lo.lshr(rotateAmt);
1302 hi.shl(BitWidth - rotateAmt);
1303 return hi | lo;
1304}
Reid Spenceraf8fb192007-03-01 05:39:56 +00001305
1306// Square Root - this method computes and returns the square root of "this".
1307// Three mechanisms are used for computation. For small values (<= 5 bits),
1308// a table lookup is done. This gets some performance for common cases. For
1309// values using less than 52 bits, the value is converted to double and then
1310// the libc sqrt function is called. The result is rounded and then converted
1311// back to a uint64_t which is then used to construct the result. Finally,
1312// the Babylonian method for computing square roots is used.
1313APInt APInt::sqrt() const {
1314
1315 // Determine the magnitude of the value.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001316 unsigned magnitude = getActiveBits();
Reid Spenceraf8fb192007-03-01 05:39:56 +00001317
1318 // Use a fast table for some small values. This also gets rid of some
1319 // rounding errors in libc sqrt for small values.
1320 if (magnitude <= 5) {
Reid Spencer4e1e87f2007-03-01 17:47:31 +00001321 static const uint8_t results[32] = {
Reid Spencerb5ca2cd2007-03-01 06:23:32 +00001322 /* 0 */ 0,
1323 /* 1- 2 */ 1, 1,
1324 /* 3- 6 */ 2, 2, 2, 2,
1325 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1326 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1327 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1328 /* 31 */ 6
1329 };
1330 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
Reid Spenceraf8fb192007-03-01 05:39:56 +00001331 }
1332
1333 // If the magnitude of the value fits in less than 52 bits (the precision of
1334 // an IEEE double precision floating point value), then we can use the
1335 // libc sqrt function which will probably use a hardware sqrt computation.
1336 // This should be faster than the algorithm below.
Jeff Cohenca5183d2007-03-05 00:00:42 +00001337 if (magnitude < 52) {
1338#ifdef _MSC_VER
1339 // Amazingly, VC++ doesn't have round().
1340 return APInt(BitWidth,
1341 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1342#else
Reid Spenceraf8fb192007-03-01 05:39:56 +00001343 return APInt(BitWidth,
1344 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
Jeff Cohenca5183d2007-03-05 00:00:42 +00001345#endif
1346 }
Reid Spenceraf8fb192007-03-01 05:39:56 +00001347
1348 // Okay, all the short cuts are exhausted. We must compute it. The following
1349 // is a classical Babylonian method for computing the square root. This code
1350 // was adapted to APINt from a wikipedia article on such computations.
1351 // See http://www.wikipedia.org/ and go to the page named
1352 // Calculate_an_integer_square_root.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001353 unsigned nbits = BitWidth, i = 4;
Reid Spenceraf8fb192007-03-01 05:39:56 +00001354 APInt testy(BitWidth, 16);
1355 APInt x_old(BitWidth, 1);
1356 APInt x_new(BitWidth, 0);
1357 APInt two(BitWidth, 2);
1358
1359 // Select a good starting value using binary logarithms.
1360 for (;; i += 2, testy = testy.shl(2))
1361 if (i >= nbits || this->ule(testy)) {
1362 x_old = x_old.shl(i / 2);
1363 break;
1364 }
1365
1366 // Use the Babylonian method to arrive at the integer square root:
1367 for (;;) {
1368 x_new = (this->udiv(x_old) + x_old).udiv(two);
1369 if (x_old.ule(x_new))
1370 break;
1371 x_old = x_new;
1372 }
1373
1374 // Make sure we return the closest approximation
Reid Spencerf09aef72007-03-02 04:21:55 +00001375 // NOTE: The rounding calculation below is correct. It will produce an
1376 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1377 // determined to be a rounding issue with pari/gp as it begins to use a
1378 // floating point representation after 192 bits. There are no discrepancies
1379 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spenceraf8fb192007-03-01 05:39:56 +00001380 APInt square(x_old * x_old);
1381 APInt nextSquare((x_old + 1) * (x_old +1));
1382 if (this->ult(square))
1383 return x_old;
Reid Spencerf09aef72007-03-02 04:21:55 +00001384 else if (this->ule(nextSquare)) {
1385 APInt midpoint((nextSquare - square).udiv(two));
1386 APInt offset(*this - square);
1387 if (offset.ult(midpoint))
Reid Spenceraf8fb192007-03-01 05:39:56 +00001388 return x_old;
Reid Spencerf09aef72007-03-02 04:21:55 +00001389 else
1390 return x_old + 1;
1391 } else
Torok Edwinc23197a2009-07-14 16:55:14 +00001392 llvm_unreachable("Error in APInt::sqrt computation");
Reid Spenceraf8fb192007-03-01 05:39:56 +00001393 return x_old + 1;
1394}
1395
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001396/// Computes the multiplicative inverse of this APInt for a given modulo. The
1397/// iterative extended Euclidean algorithm is used to solve for this value,
1398/// however we simplify it to speed up calculating only the inverse, and take
1399/// advantage of div+rem calculations. We also use some tricks to avoid copying
1400/// (potentially large) APInts around.
1401APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1402 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1403
1404 // Using the properties listed at the following web page (accessed 06/21/08):
1405 // http://www.numbertheory.org/php/euclid.html
1406 // (especially the properties numbered 3, 4 and 9) it can be proved that
1407 // BitWidth bits suffice for all the computations in the algorithm implemented
1408 // below. More precisely, this number of bits suffice if the multiplicative
1409 // inverse exists, but may not suffice for the general extended Euclidean
1410 // algorithm.
1411
1412 APInt r[2] = { modulo, *this };
1413 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1414 APInt q(BitWidth, 0);
1415
1416 unsigned i;
1417 for (i = 0; r[i^1] != 0; i ^= 1) {
1418 // An overview of the math without the confusing bit-flipping:
1419 // q = r[i-2] / r[i-1]
1420 // r[i] = r[i-2] % r[i-1]
1421 // t[i] = t[i-2] - t[i-1] * q
1422 udivrem(r[i], r[i^1], q, r[i]);
1423 t[i] -= t[i^1] * q;
1424 }
1425
1426 // If this APInt and the modulo are not coprime, there is no multiplicative
1427 // inverse, so return 0. We check this by looking at the next-to-last
1428 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1429 // algorithm.
1430 if (r[i] != 1)
1431 return APInt(BitWidth, 0);
1432
1433 // The next-to-last t is the multiplicative inverse. However, we are
1434 // interested in a positive inverse. Calcuate a positive one from a negative
1435 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00001436 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001437 return t[i].isNegative() ? t[i] + modulo : t[i];
1438}
1439
Jay Foad4e5ea552009-04-30 10:15:35 +00001440/// Calculate the magic numbers required to implement a signed integer division
1441/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1442/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1443/// Warren, Jr., chapter 10.
1444APInt::ms APInt::magic() const {
1445 const APInt& d = *this;
1446 unsigned p;
1447 APInt ad, anc, delta, q1, r1, q2, r2, t;
1448 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1449 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1450 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1451 struct ms mag;
1452
1453 ad = d.abs();
1454 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1455 anc = t - 1 - t.urem(ad); // absolute value of nc
1456 p = d.getBitWidth() - 1; // initialize p
1457 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1458 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1459 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1460 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1461 do {
1462 p = p + 1;
1463 q1 = q1<<1; // update q1 = 2p/abs(nc)
1464 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1465 if (r1.uge(anc)) { // must be unsigned comparison
1466 q1 = q1 + 1;
1467 r1 = r1 - anc;
1468 }
1469 q2 = q2<<1; // update q2 = 2p/abs(d)
1470 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1471 if (r2.uge(ad)) { // must be unsigned comparison
1472 q2 = q2 + 1;
1473 r2 = r2 - ad;
1474 }
1475 delta = ad - r2;
1476 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
1477
1478 mag.m = q2 + 1;
1479 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1480 mag.s = p - d.getBitWidth(); // resulting shift
1481 return mag;
1482}
1483
1484/// Calculate the magic numbers required to implement an unsigned integer
1485/// division by a constant as a sequence of multiplies, adds and shifts.
1486/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1487/// S. Warren, Jr., chapter 10.
1488APInt::mu APInt::magicu() const {
1489 const APInt& d = *this;
1490 unsigned p;
1491 APInt nc, delta, q1, r1, q2, r2;
1492 struct mu magu;
1493 magu.a = 0; // initialize "add" indicator
1494 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1495 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1496 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1497
1498 nc = allOnes - (-d).urem(d);
1499 p = d.getBitWidth() - 1; // initialize p
1500 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1501 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1502 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1503 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1504 do {
1505 p = p + 1;
1506 if (r1.uge(nc - r1)) {
1507 q1 = q1 + q1 + 1; // update q1
1508 r1 = r1 + r1 - nc; // update r1
1509 }
1510 else {
1511 q1 = q1+q1; // update q1
1512 r1 = r1+r1; // update r1
1513 }
1514 if ((r2 + 1).uge(d - r2)) {
1515 if (q2.uge(signedMax)) magu.a = 1;
1516 q2 = q2+q2 + 1; // update q2
1517 r2 = r2+r2 + 1 - d; // update r2
1518 }
1519 else {
1520 if (q2.uge(signedMin)) magu.a = 1;
1521 q2 = q2+q2; // update q2
1522 r2 = r2+r2 + 1; // update r2
1523 }
1524 delta = d - 1 - r2;
1525 } while (p < d.getBitWidth()*2 &&
1526 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1527 magu.m = q2 + 1; // resulting magic number
1528 magu.s = p - d.getBitWidth(); // resulting shift
1529 return magu;
1530}
1531
Reid Spencer9c0696f2007-02-20 08:51:03 +00001532/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1533/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1534/// variables here have the same names as in the algorithm. Comments explain
1535/// the algorithm and any deviation from it.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001536static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1537 unsigned m, unsigned n) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00001538 assert(u && "Must provide dividend");
1539 assert(v && "Must provide divisor");
1540 assert(q && "Must provide quotient");
Reid Spencer9d6c9192007-02-24 03:58:46 +00001541 assert(u != v && u != q && v != q && "Must us different memory");
Reid Spencer9c0696f2007-02-20 08:51:03 +00001542 assert(n>1 && "n must be > 1");
1543
1544 // Knuth uses the value b as the base of the number system. In our case b
1545 // is 2^31 so we just set it to -1u.
1546 uint64_t b = uint64_t(1) << 32;
1547
Chris Lattnerfad86b02008-08-17 07:19:36 +00001548#if 0
Daniel Dunbara53902b2009-07-13 05:27:30 +00001549 DEBUG(errs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1550 DEBUG(errs() << "KnuthDiv: original:");
1551 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1552 DEBUG(errs() << " by");
1553 DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
1554 DEBUG(errs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001555#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001556 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1557 // u and v by d. Note that we have taken Knuth's advice here to use a power
1558 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1559 // 2 allows us to shift instead of multiply and it is easy to determine the
1560 // shift amount from the leading zeros. We are basically normalizing the u
1561 // and v so that its high bits are shifted to the top of v's range without
1562 // overflow. Note that this can require an extra word in u so that u must
1563 // be of length m+n+1.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001564 unsigned shift = CountLeadingZeros_32(v[n-1]);
1565 unsigned v_carry = 0;
1566 unsigned u_carry = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001567 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001568 for (unsigned i = 0; i < m+n; ++i) {
1569 unsigned u_tmp = u[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001570 u[i] = (u[i] << shift) | u_carry;
1571 u_carry = u_tmp;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001572 }
Chris Lattner455e9ab2009-01-21 18:09:24 +00001573 for (unsigned i = 0; i < n; ++i) {
1574 unsigned v_tmp = v[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001575 v[i] = (v[i] << shift) | v_carry;
1576 v_carry = v_tmp;
1577 }
1578 }
1579 u[m+n] = u_carry;
Chris Lattnerfad86b02008-08-17 07:19:36 +00001580#if 0
Daniel Dunbara53902b2009-07-13 05:27:30 +00001581 DEBUG(errs() << "KnuthDiv: normal:");
1582 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1583 DEBUG(errs() << " by");
1584 DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
1585 DEBUG(errs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001586#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001587
1588 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1589 int j = m;
1590 do {
Daniel Dunbara53902b2009-07-13 05:27:30 +00001591 DEBUG(errs() << "KnuthDiv: quotient digit #" << j << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001592 // D3. [Calculate q'.].
1593 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1594 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1595 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1596 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1597 // on v[n-2] determines at high speed most of the cases in which the trial
1598 // value qp is one too large, and it eliminates all cases where qp is two
1599 // too large.
Reid Spencer92904632007-02-23 01:57:13 +00001600 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
Daniel Dunbara53902b2009-07-13 05:27:30 +00001601 DEBUG(errs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencer92904632007-02-23 01:57:13 +00001602 uint64_t qp = dividend / v[n-1];
1603 uint64_t rp = dividend % v[n-1];
Reid Spencer9c0696f2007-02-20 08:51:03 +00001604 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1605 qp--;
1606 rp += v[n-1];
Reid Spencer610fad82007-02-24 10:01:42 +00001607 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencer9d6c9192007-02-24 03:58:46 +00001608 qp--;
Reid Spencer92904632007-02-23 01:57:13 +00001609 }
Daniel Dunbara53902b2009-07-13 05:27:30 +00001610 DEBUG(errs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001611
Reid Spencer92904632007-02-23 01:57:13 +00001612 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1613 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1614 // consists of a simple multiplication by a one-place number, combined with
Reid Spencer610fad82007-02-24 10:01:42 +00001615 // a subtraction.
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001616 bool isNeg = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001617 for (unsigned i = 0; i < n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001618 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
Reid Spencer9d6c9192007-02-24 03:58:46 +00001619 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
Reid Spencer610fad82007-02-24 10:01:42 +00001620 bool borrow = subtrahend > u_tmp;
Daniel Dunbara53902b2009-07-13 05:27:30 +00001621 DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp
1622 << ", subtrahend == " << subtrahend
1623 << ", borrow = " << borrow << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001624
Reid Spencer610fad82007-02-24 10:01:42 +00001625 uint64_t result = u_tmp - subtrahend;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001626 unsigned k = j + i;
1627 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1628 u[k++] = (unsigned)(result >> 32); // subtract high word
Reid Spencer610fad82007-02-24 10:01:42 +00001629 while (borrow && k <= m+n) { // deal with borrow to the left
1630 borrow = u[k] == 0;
1631 u[k]--;
1632 k++;
1633 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001634 isNeg |= borrow;
Daniel Dunbara53902b2009-07-13 05:27:30 +00001635 DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
Reid Spencer610fad82007-02-24 10:01:42 +00001636 u[j+i+1] << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001637 }
Daniel Dunbara53902b2009-07-13 05:27:30 +00001638 DEBUG(errs() << "KnuthDiv: after subtraction:");
1639 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1640 DEBUG(errs() << '\n');
Reid Spencer610fad82007-02-24 10:01:42 +00001641 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1642 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1643 // true value plus b**(n+1), namely as the b's complement of
Reid Spencer92904632007-02-23 01:57:13 +00001644 // the true value, and a "borrow" to the left should be remembered.
1645 //
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001646 if (isNeg) {
Reid Spencer610fad82007-02-24 10:01:42 +00001647 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattner455e9ab2009-01-21 18:09:24 +00001648 for (unsigned i = 0; i <= m+n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001649 u[i] = ~u[i] + carry; // b's complement
1650 carry = carry && u[i] == 0;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001651 }
Reid Spencer92904632007-02-23 01:57:13 +00001652 }
Daniel Dunbara53902b2009-07-13 05:27:30 +00001653 DEBUG(errs() << "KnuthDiv: after complement:");
1654 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1655 DEBUG(errs() << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001656
1657 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1658 // negative, go to step D6; otherwise go on to step D7.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001659 q[j] = (unsigned)qp;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001660 if (isNeg) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00001661 // D6. [Add back]. The probability that this step is necessary is very
1662 // small, on the order of only 2/b. Make sure that test data accounts for
Reid Spencer92904632007-02-23 01:57:13 +00001663 // this possibility. Decrease q[j] by 1
1664 q[j]--;
1665 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1666 // A carry will occur to the left of u[j+n], and it should be ignored
1667 // since it cancels with the borrow that occurred in D4.
1668 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001669 for (unsigned i = 0; i < n; i++) {
1670 unsigned limit = std::min(u[j+i],v[i]);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001671 u[j+i] += v[i] + carry;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001672 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001673 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001674 u[j+n] += carry;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001675 }
Daniel Dunbara53902b2009-07-13 05:27:30 +00001676 DEBUG(errs() << "KnuthDiv: after correction:");
1677 DEBUG(for (int i = m+n; i >=0; i--) errs() <<" " << u[i]);
1678 DEBUG(errs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001679
Reid Spencer92904632007-02-23 01:57:13 +00001680 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1681 } while (--j >= 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001682
Daniel Dunbara53902b2009-07-13 05:27:30 +00001683 DEBUG(errs() << "KnuthDiv: quotient:");
1684 DEBUG(for (int i = m; i >=0; i--) errs() <<" " << q[i]);
1685 DEBUG(errs() << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001686
Reid Spencer9c0696f2007-02-20 08:51:03 +00001687 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1688 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1689 // compute the remainder (urem uses this).
1690 if (r) {
1691 // The value d is expressed by the "shift" value above since we avoided
1692 // multiplication by d by using a shift left. So, all we have to do is
1693 // shift right here. In order to mak
Reid Spencer1050ec52007-02-24 20:38:01 +00001694 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001695 unsigned carry = 0;
Daniel Dunbara53902b2009-07-13 05:27:30 +00001696 DEBUG(errs() << "KnuthDiv: remainder:");
Reid Spencer1050ec52007-02-24 20:38:01 +00001697 for (int i = n-1; i >= 0; i--) {
1698 r[i] = (u[i] >> shift) | carry;
1699 carry = u[i] << (32 - shift);
Daniel Dunbara53902b2009-07-13 05:27:30 +00001700 DEBUG(errs() << " " << r[i]);
Reid Spencer1050ec52007-02-24 20:38:01 +00001701 }
1702 } else {
1703 for (int i = n-1; i >= 0; i--) {
1704 r[i] = u[i];
Daniel Dunbara53902b2009-07-13 05:27:30 +00001705 DEBUG(errs() << " " << r[i]);
Reid Spencer1050ec52007-02-24 20:38:01 +00001706 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001707 }
Daniel Dunbara53902b2009-07-13 05:27:30 +00001708 DEBUG(errs() << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001709 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00001710#if 0
Daniel Dunbara53902b2009-07-13 05:27:30 +00001711 DEBUG(errs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001712#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001713}
1714
Chris Lattner455e9ab2009-01-21 18:09:24 +00001715void APInt::divide(const APInt LHS, unsigned lhsWords,
1716 const APInt &RHS, unsigned rhsWords,
Reid Spencer9c0696f2007-02-20 08:51:03 +00001717 APInt *Quotient, APInt *Remainder)
1718{
1719 assert(lhsWords >= rhsWords && "Fractional result");
1720
1721 // First, compose the values into an array of 32-bit words instead of
1722 // 64-bit words. This is a necessity of both the "short division" algorithm
1723 // and the the Knuth "classical algorithm" which requires there to be native
1724 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1725 // can't use 64-bit operands here because we don't have native results of
Duncan Sandsbf5836b2009-03-19 11:37:15 +00001726 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencer9c0696f2007-02-20 08:51:03 +00001727 // work on large-endian machines.
Dan Gohmande551f92009-04-01 18:45:54 +00001728 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001729 unsigned n = rhsWords * 2;
1730 unsigned m = (lhsWords * 2) - n;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001731
1732 // Allocate space for the temporary values we need either on the stack, if
1733 // it will fit, or on the heap if it won't.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001734 unsigned SPACE[128];
1735 unsigned *U = 0;
1736 unsigned *V = 0;
1737 unsigned *Q = 0;
1738 unsigned *R = 0;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001739 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1740 U = &SPACE[0];
1741 V = &SPACE[m+n+1];
1742 Q = &SPACE[(m+n+1) + n];
1743 if (Remainder)
1744 R = &SPACE[(m+n+1) + n + (m+n)];
1745 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001746 U = new unsigned[m + n + 1];
1747 V = new unsigned[n];
1748 Q = new unsigned[m+n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001749 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001750 R = new unsigned[n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001751 }
1752
1753 // Initialize the dividend
Chris Lattner455e9ab2009-01-21 18:09:24 +00001754 memset(U, 0, (m+n+1)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001755 for (unsigned i = 0; i < lhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001756 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001757 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001758 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001759 }
1760 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1761
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001762 // Initialize the divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00001763 memset(V, 0, (n)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001764 for (unsigned i = 0; i < rhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001765 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001766 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001767 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001768 }
1769
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001770 // initialize the quotient and remainder
Chris Lattner455e9ab2009-01-21 18:09:24 +00001771 memset(Q, 0, (m+n) * sizeof(unsigned));
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001772 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001773 memset(R, 0, n * sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001774
1775 // Now, adjust m and n for the Knuth division. n is the number of words in
1776 // the divisor. m is the number of words by which the dividend exceeds the
1777 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1778 // contain any zero words or the Knuth algorithm fails.
1779 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1780 n--;
1781 m++;
1782 }
1783 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1784 m--;
1785
1786 // If we're left with only a single word for the divisor, Knuth doesn't work
1787 // so we implement the short division algorithm here. This is much simpler
1788 // and faster because we are certain that we can divide a 64-bit quantity
1789 // by a 32-bit quantity at hardware speed and short division is simply a
1790 // series of such operations. This is just like doing short division but we
1791 // are using base 2^32 instead of base 10.
1792 assert(n != 0 && "Divide by zero?");
1793 if (n == 1) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001794 unsigned divisor = V[0];
1795 unsigned remainder = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001796 for (int i = m+n-1; i >= 0; i--) {
1797 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1798 if (partial_dividend == 0) {
1799 Q[i] = 0;
1800 remainder = 0;
1801 } else if (partial_dividend < divisor) {
1802 Q[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001803 remainder = (unsigned)partial_dividend;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001804 } else if (partial_dividend == divisor) {
1805 Q[i] = 1;
1806 remainder = 0;
1807 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001808 Q[i] = (unsigned)(partial_dividend / divisor);
1809 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001810 }
1811 }
1812 if (R)
1813 R[0] = remainder;
1814 } else {
1815 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1816 // case n > 1.
1817 KnuthDiv(U, V, Q, R, m, n);
1818 }
1819
1820 // If the caller wants the quotient
1821 if (Quotient) {
1822 // Set up the Quotient value's memory.
1823 if (Quotient->BitWidth != LHS.BitWidth) {
1824 if (Quotient->isSingleWord())
1825 Quotient->VAL = 0;
1826 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001827 delete [] Quotient->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001828 Quotient->BitWidth = LHS.BitWidth;
1829 if (!Quotient->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001830 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001831 } else
1832 Quotient->clear();
1833
1834 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1835 // order words.
1836 if (lhsWords == 1) {
1837 uint64_t tmp =
1838 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1839 if (Quotient->isSingleWord())
1840 Quotient->VAL = tmp;
1841 else
1842 Quotient->pVal[0] = tmp;
1843 } else {
1844 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1845 for (unsigned i = 0; i < lhsWords; ++i)
1846 Quotient->pVal[i] =
1847 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1848 }
1849 }
1850
1851 // If the caller wants the remainder
1852 if (Remainder) {
1853 // Set up the Remainder value's memory.
1854 if (Remainder->BitWidth != RHS.BitWidth) {
1855 if (Remainder->isSingleWord())
1856 Remainder->VAL = 0;
1857 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001858 delete [] Remainder->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001859 Remainder->BitWidth = RHS.BitWidth;
1860 if (!Remainder->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001861 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001862 } else
1863 Remainder->clear();
1864
1865 // The remainder is in R. Reconstitute the remainder into Remainder's low
1866 // order words.
1867 if (rhsWords == 1) {
1868 uint64_t tmp =
1869 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1870 if (Remainder->isSingleWord())
1871 Remainder->VAL = tmp;
1872 else
1873 Remainder->pVal[0] = tmp;
1874 } else {
1875 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1876 for (unsigned i = 0; i < rhsWords; ++i)
1877 Remainder->pVal[i] =
1878 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1879 }
1880 }
1881
1882 // Clean up the memory we allocated.
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001883 if (U != &SPACE[0]) {
1884 delete [] U;
1885 delete [] V;
1886 delete [] Q;
1887 delete [] R;
1888 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00001889}
1890
Reid Spencere81d2da2007-02-16 22:36:51 +00001891APInt APInt::udiv(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001892 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001893
1894 // First, deal with the easy case
1895 if (isSingleWord()) {
1896 assert(RHS.VAL != 0 && "Divide by zero?");
1897 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001898 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001899
Reid Spencer71bd08f2007-02-17 02:07:07 +00001900 // Get some facts about the LHS and RHS number of bits and words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001901 unsigned rhsBits = RHS.getActiveBits();
1902 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001903 assert(rhsWords && "Divided by zero???");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001904 unsigned lhsBits = this->getActiveBits();
1905 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001906
1907 // Deal with some degenerate cases
1908 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +00001909 // 0 / X ===> 0
1910 return APInt(BitWidth, 0);
1911 else if (lhsWords < rhsWords || this->ult(RHS)) {
1912 // X / Y ===> 0, iff X < Y
1913 return APInt(BitWidth, 0);
1914 } else if (*this == RHS) {
1915 // X / X ===> 1
1916 return APInt(BitWidth, 1);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001917 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001918 // All high words are zero, just use native divide
Reid Spencere0cdd332007-02-21 08:21:52 +00001919 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001920 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001921
1922 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1923 APInt Quotient(1,0); // to hold result.
1924 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1925 return Quotient;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001926}
1927
Reid Spencere81d2da2007-02-16 22:36:51 +00001928APInt APInt::urem(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001929 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001930 if (isSingleWord()) {
1931 assert(RHS.VAL != 0 && "Remainder by zero?");
1932 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001933 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001934
Reid Spencere0cdd332007-02-21 08:21:52 +00001935 // Get some facts about the LHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001936 unsigned lhsBits = getActiveBits();
1937 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001938
1939 // Get some facts about the RHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001940 unsigned rhsBits = RHS.getActiveBits();
1941 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001942 assert(rhsWords && "Performing remainder operation by zero ???");
1943
Reid Spencer71bd08f2007-02-17 02:07:07 +00001944 // Check the degenerate cases
Reid Spencer9c0696f2007-02-20 08:51:03 +00001945 if (lhsWords == 0) {
Reid Spencere0cdd332007-02-21 08:21:52 +00001946 // 0 % Y ===> 0
1947 return APInt(BitWidth, 0);
1948 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1949 // X % Y ===> X, iff X < Y
1950 return *this;
1951 } else if (*this == RHS) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001952 // X % X == 0;
Reid Spencere0cdd332007-02-21 08:21:52 +00001953 return APInt(BitWidth, 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001954 } else if (lhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001955 // All high words are zero, just use native remainder
Reid Spencere0cdd332007-02-21 08:21:52 +00001956 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001957 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001958
Reid Spencer19dc32a2007-05-13 23:44:59 +00001959 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Reid Spencer9c0696f2007-02-20 08:51:03 +00001960 APInt Remainder(1,0);
1961 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1962 return Remainder;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001963}
Reid Spencer5e0a8512007-02-17 03:16:00 +00001964
Reid Spencer19dc32a2007-05-13 23:44:59 +00001965void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1966 APInt &Quotient, APInt &Remainder) {
1967 // Get some size facts about the dividend and divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00001968 unsigned lhsBits = LHS.getActiveBits();
1969 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1970 unsigned rhsBits = RHS.getActiveBits();
1971 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer19dc32a2007-05-13 23:44:59 +00001972
1973 // Check the degenerate cases
1974 if (lhsWords == 0) {
1975 Quotient = 0; // 0 / Y ===> 0
1976 Remainder = 0; // 0 % Y ===> 0
1977 return;
1978 }
1979
1980 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1981 Quotient = 0; // X / Y ===> 0, iff X < Y
1982 Remainder = LHS; // X % Y ===> X, iff X < Y
1983 return;
1984 }
1985
1986 if (LHS == RHS) {
1987 Quotient = 1; // X / X ===> 1
1988 Remainder = 0; // X % X ===> 0;
1989 return;
1990 }
1991
1992 if (lhsWords == 1 && rhsWords == 1) {
1993 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001994 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1995 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1996 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1997 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Reid Spencer19dc32a2007-05-13 23:44:59 +00001998 return;
1999 }
2000
2001 // Okay, lets do it the long way
2002 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2003}
2004
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002005void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
Reid Spencer385f7542007-02-21 03:55:44 +00002006 // Check our assumptions here
Reid Spencer5e0a8512007-02-17 03:16:00 +00002007 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2008 "Radix should be 2, 8, 10, or 16!");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002009 assert(!str.empty() && "Invalid string length");
2010 StringRef::iterator p = str.begin();
2011 size_t slen = str.size();
2012 bool isNeg = *p == '-';
2013 if (isNeg) {
2014 p++;
2015 slen--;
2016 assert(slen && "string is only a minus!");
2017 }
Chris Lattnera5ae15e2007-05-03 18:15:36 +00002018 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner38300e92009-04-25 18:34:04 +00002019 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2020 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2021 assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
Reid Spencer385f7542007-02-21 03:55:44 +00002022
2023 // Allocate memory
2024 if (!isSingleWord())
2025 pVal = getClearedMemory(getNumWords());
2026
2027 // Figure out if we can shift instead of multiply
Chris Lattner455e9ab2009-01-21 18:09:24 +00002028 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer385f7542007-02-21 03:55:44 +00002029
2030 // Set up an APInt for the digit to add outside the loop so we don't
2031 // constantly construct/destruct it.
2032 APInt apdigit(getBitWidth(), 0);
2033 APInt apradix(getBitWidth(), radix);
2034
2035 // Enter digit traversal loop
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002036 for (StringRef::iterator e = str.end(); p != e; ++p) {
Reid Spencer385f7542007-02-21 03:55:44 +00002037 // Get a digit
Chris Lattner455e9ab2009-01-21 18:09:24 +00002038 unsigned digit = 0;
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002039 char cdigit = *p;
Reid Spencer6551dcd2007-05-16 19:18:22 +00002040 if (radix == 16) {
2041 if (!isxdigit(cdigit))
Torok Edwinc23197a2009-07-14 16:55:14 +00002042 llvm_unreachable("Invalid hex digit in string");
Reid Spencer6551dcd2007-05-16 19:18:22 +00002043 if (isdigit(cdigit))
2044 digit = cdigit - '0';
2045 else if (cdigit >= 'a')
Reid Spencer385f7542007-02-21 03:55:44 +00002046 digit = cdigit - 'a' + 10;
2047 else if (cdigit >= 'A')
2048 digit = cdigit - 'A' + 10;
2049 else
Torok Edwinc23197a2009-07-14 16:55:14 +00002050 llvm_unreachable("huh? we shouldn't get here");
Reid Spencer6551dcd2007-05-16 19:18:22 +00002051 } else if (isdigit(cdigit)) {
2052 digit = cdigit - '0';
Bill Wendlingf7a91e62008-03-16 20:05:52 +00002053 assert((radix == 10 ||
2054 (radix == 8 && digit != 8 && digit != 9) ||
2055 (radix == 2 && (digit == 0 || digit == 1))) &&
2056 "Invalid digit in string for given radix");
Reid Spencer6551dcd2007-05-16 19:18:22 +00002057 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00002058 llvm_unreachable("Invalid character in digit string");
Reid Spencer6551dcd2007-05-16 19:18:22 +00002059 }
Reid Spencer385f7542007-02-21 03:55:44 +00002060
Reid Spencer6551dcd2007-05-16 19:18:22 +00002061 // Shift or multiply the value by the radix
Chris Lattner38300e92009-04-25 18:34:04 +00002062 if (slen > 1) {
2063 if (shift)
2064 *this <<= shift;
2065 else
2066 *this *= apradix;
2067 }
Reid Spencer385f7542007-02-21 03:55:44 +00002068
2069 // Add in the digit we just interpreted
Reid Spencer5bce8542007-02-24 20:19:37 +00002070 if (apdigit.isSingleWord())
2071 apdigit.VAL = digit;
2072 else
2073 apdigit.pVal[0] = digit;
Reid Spencer385f7542007-02-21 03:55:44 +00002074 *this += apdigit;
Reid Spencer5e0a8512007-02-17 03:16:00 +00002075 }
Reid Spencer9eec2412007-02-25 23:44:53 +00002076 // If its negative, put it in two's complement form
Reid Spencer47fbe9e2007-02-26 07:44:38 +00002077 if (isNeg) {
2078 (*this)--;
Reid Spencer9eec2412007-02-25 23:44:53 +00002079 this->flip();
Reid Spencer9eec2412007-02-25 23:44:53 +00002080 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00002081}
Reid Spencer9c0696f2007-02-20 08:51:03 +00002082
Chris Lattnerfad86b02008-08-17 07:19:36 +00002083void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2084 bool Signed) const {
2085 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Reid Spencer9c0696f2007-02-20 08:51:03 +00002086 "Radix should be 2, 8, 10, or 16!");
Chris Lattnerfad86b02008-08-17 07:19:36 +00002087
2088 // First, check for a zero value and just short circuit the logic below.
2089 if (*this == 0) {
2090 Str.push_back('0');
2091 return;
2092 }
2093
2094 static const char Digits[] = "0123456789ABCDEF";
2095
Reid Spencer9c0696f2007-02-20 08:51:03 +00002096 if (isSingleWord()) {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002097 char Buffer[65];
2098 char *BufPtr = Buffer+65;
2099
2100 uint64_t N;
2101 if (Signed) {
2102 int64_t I = getSExtValue();
2103 if (I < 0) {
2104 Str.push_back('-');
2105 I = -I;
2106 }
2107 N = I;
Reid Spencer9c0696f2007-02-20 08:51:03 +00002108 } else {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002109 N = getZExtValue();
Reid Spencer9c0696f2007-02-20 08:51:03 +00002110 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00002111
2112 while (N) {
2113 *--BufPtr = Digits[N % Radix];
2114 N /= Radix;
2115 }
2116 Str.append(BufPtr, Buffer+65);
2117 return;
Reid Spencer9c0696f2007-02-20 08:51:03 +00002118 }
2119
Chris Lattnerfad86b02008-08-17 07:19:36 +00002120 APInt Tmp(*this);
2121
2122 if (Signed && isNegative()) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00002123 // They want to print the signed version and it is a negative value
2124 // Flip the bits and add one to turn it into the equivalent positive
2125 // value and put a '-' in the result.
Chris Lattnerfad86b02008-08-17 07:19:36 +00002126 Tmp.flip();
2127 Tmp++;
2128 Str.push_back('-');
Reid Spencer9c0696f2007-02-20 08:51:03 +00002129 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00002130
2131 // We insert the digits backward, then reverse them to get the right order.
2132 unsigned StartDig = Str.size();
2133
2134 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2135 // because the number of bits per digit (1, 3 and 4 respectively) divides
2136 // equaly. We just shift until the value is zero.
2137 if (Radix != 10) {
2138 // Just shift tmp right for each digit width until it becomes zero
2139 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2140 unsigned MaskAmt = Radix - 1;
2141
2142 while (Tmp != 0) {
2143 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2144 Str.push_back(Digits[Digit]);
2145 Tmp = Tmp.lshr(ShiftAmt);
2146 }
2147 } else {
2148 APInt divisor(4, 10);
2149 while (Tmp != 0) {
2150 APInt APdigit(1, 0);
2151 APInt tmp2(Tmp.getBitWidth(), 0);
2152 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2153 &APdigit);
Chris Lattner455e9ab2009-01-21 18:09:24 +00002154 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002155 assert(Digit < Radix && "divide failed");
2156 Str.push_back(Digits[Digit]);
2157 Tmp = tmp2;
2158 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002159 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00002160
2161 // Reverse the digits before returning.
2162 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencer9c0696f2007-02-20 08:51:03 +00002163}
2164
Chris Lattnerfad86b02008-08-17 07:19:36 +00002165/// toString - This returns the APInt as a std::string. Note that this is an
2166/// inefficient method. It is better to pass in a SmallVector/SmallString
2167/// to the methods above.
2168std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2169 SmallString<40> S;
2170 toString(S, Radix, Signed);
Daniel Dunbardddfd342009-08-19 20:07:03 +00002171 return S.str();
Reid Spencer385f7542007-02-21 03:55:44 +00002172}
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002173
Chris Lattnerfad86b02008-08-17 07:19:36 +00002174
2175void APInt::dump() const {
2176 SmallString<40> S, U;
2177 this->toStringUnsigned(U);
2178 this->toStringSigned(S);
Daniel Dunbardddfd342009-08-19 20:07:03 +00002179 errs() << "APInt(" << BitWidth << "b, "
2180 << U.str() << "u " << S.str() << "s)";
Chris Lattnerfad86b02008-08-17 07:19:36 +00002181}
2182
Chris Lattner944fac72008-08-23 22:23:09 +00002183void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002184 SmallString<40> S;
2185 this->toString(S, 10, isSigned);
Daniel Dunbardddfd342009-08-19 20:07:03 +00002186 OS << S.str();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002187}
2188
Dan Gohman38a253d2009-06-30 20:10:56 +00002189std::ostream &llvm::operator<<(std::ostream &o, const APInt &I) {
2190 raw_os_ostream OS(o);
2191 OS << I;
2192 return o;
2193}
2194
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002195// This implements a variety of operations on a representation of
2196// arbitrary precision, two's-complement, bignum integer values.
2197
2198/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2199 and unrestricting assumption. */
Chris Lattner9f17eb02008-08-17 04:58:58 +00002200#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002201COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002202
2203/* Some handy functions local to this file. */
2204namespace {
2205
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002206 /* Returns the integer part with the least significant BITS set.
2207 BITS cannot be zero. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002208 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002209 lowBitMask(unsigned int bits)
2210 {
2211 assert (bits != 0 && bits <= integerPartWidth);
2212
2213 return ~(integerPart) 0 >> (integerPartWidth - bits);
2214 }
2215
Neil Booth055c0b32007-10-06 00:43:45 +00002216 /* Returns the value of the lower half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002217 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002218 lowHalf(integerPart part)
2219 {
2220 return part & lowBitMask(integerPartWidth / 2);
2221 }
2222
Neil Booth055c0b32007-10-06 00:43:45 +00002223 /* Returns the value of the upper half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002224 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002225 highHalf(integerPart part)
2226 {
2227 return part >> (integerPartWidth / 2);
2228 }
2229
Neil Booth055c0b32007-10-06 00:43:45 +00002230 /* Returns the bit number of the most significant set bit of a part.
2231 If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002232 static unsigned int
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002233 partMSB(integerPart value)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002234 {
2235 unsigned int n, msb;
2236
2237 if (value == 0)
2238 return -1U;
2239
2240 n = integerPartWidth / 2;
2241
2242 msb = 0;
2243 do {
2244 if (value >> n) {
2245 value >>= n;
2246 msb += n;
2247 }
2248
2249 n >>= 1;
2250 } while (n);
2251
2252 return msb;
2253 }
2254
Neil Booth055c0b32007-10-06 00:43:45 +00002255 /* Returns the bit number of the least significant set bit of a
2256 part. If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002257 static unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002258 partLSB(integerPart value)
2259 {
2260 unsigned int n, lsb;
2261
2262 if (value == 0)
2263 return -1U;
2264
2265 lsb = integerPartWidth - 1;
2266 n = integerPartWidth / 2;
2267
2268 do {
2269 if (value << n) {
2270 value <<= n;
2271 lsb -= n;
2272 }
2273
2274 n >>= 1;
2275 } while (n);
2276
2277 return lsb;
2278 }
2279}
2280
2281/* Sets the least significant part of a bignum to the input value, and
2282 zeroes out higher parts. */
2283void
2284APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2285{
2286 unsigned int i;
2287
Neil Booth68e53ad2007-10-08 13:47:12 +00002288 assert (parts > 0);
2289
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002290 dst[0] = part;
2291 for(i = 1; i < parts; i++)
2292 dst[i] = 0;
2293}
2294
2295/* Assign one bignum to another. */
2296void
2297APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2298{
2299 unsigned int i;
2300
2301 for(i = 0; i < parts; i++)
2302 dst[i] = src[i];
2303}
2304
2305/* Returns true if a bignum is zero, false otherwise. */
2306bool
2307APInt::tcIsZero(const integerPart *src, unsigned int parts)
2308{
2309 unsigned int i;
2310
2311 for(i = 0; i < parts; i++)
2312 if (src[i])
2313 return false;
2314
2315 return true;
2316}
2317
2318/* Extract the given bit of a bignum; returns 0 or 1. */
2319int
2320APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2321{
2322 return(parts[bit / integerPartWidth]
2323 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2324}
2325
2326/* Set the given bit of a bignum. */
2327void
2328APInt::tcSetBit(integerPart *parts, unsigned int bit)
2329{
2330 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2331}
2332
Neil Booth055c0b32007-10-06 00:43:45 +00002333/* Returns the bit number of the least significant set bit of a
2334 number. If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002335unsigned int
2336APInt::tcLSB(const integerPart *parts, unsigned int n)
2337{
2338 unsigned int i, lsb;
2339
2340 for(i = 0; i < n; i++) {
2341 if (parts[i] != 0) {
2342 lsb = partLSB(parts[i]);
2343
2344 return lsb + i * integerPartWidth;
2345 }
2346 }
2347
2348 return -1U;
2349}
2350
Neil Booth055c0b32007-10-06 00:43:45 +00002351/* Returns the bit number of the most significant set bit of a number.
2352 If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002353unsigned int
2354APInt::tcMSB(const integerPart *parts, unsigned int n)
2355{
2356 unsigned int msb;
2357
2358 do {
2359 --n;
2360
2361 if (parts[n] != 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002362 msb = partMSB(parts[n]);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002363
2364 return msb + n * integerPartWidth;
2365 }
2366 } while (n);
2367
2368 return -1U;
2369}
2370
Neil Booth68e53ad2007-10-08 13:47:12 +00002371/* Copy the bit vector of width srcBITS from SRC, starting at bit
2372 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2373 the least significant bit of DST. All high bits above srcBITS in
2374 DST are zero-filled. */
2375void
Evan Chengcf69a742009-05-21 23:47:47 +00002376APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Booth68e53ad2007-10-08 13:47:12 +00002377 unsigned int srcBits, unsigned int srcLSB)
2378{
2379 unsigned int firstSrcPart, dstParts, shift, n;
2380
2381 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2382 assert (dstParts <= dstCount);
2383
2384 firstSrcPart = srcLSB / integerPartWidth;
2385 tcAssign (dst, src + firstSrcPart, dstParts);
2386
2387 shift = srcLSB % integerPartWidth;
2388 tcShiftRight (dst, dstParts, shift);
2389
2390 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2391 in DST. If this is less that srcBits, append the rest, else
2392 clear the high bits. */
2393 n = dstParts * integerPartWidth - shift;
2394 if (n < srcBits) {
2395 integerPart mask = lowBitMask (srcBits - n);
2396 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2397 << n % integerPartWidth);
2398 } else if (n > srcBits) {
Neil Booth1e8390d2007-10-12 15:31:31 +00002399 if (srcBits % integerPartWidth)
2400 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Booth68e53ad2007-10-08 13:47:12 +00002401 }
2402
2403 /* Clear high parts. */
2404 while (dstParts < dstCount)
2405 dst[dstParts++] = 0;
2406}
2407
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002408/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2409integerPart
2410APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2411 integerPart c, unsigned int parts)
2412{
2413 unsigned int i;
2414
2415 assert(c <= 1);
2416
2417 for(i = 0; i < parts; i++) {
2418 integerPart l;
2419
2420 l = dst[i];
2421 if (c) {
2422 dst[i] += rhs[i] + 1;
2423 c = (dst[i] <= l);
2424 } else {
2425 dst[i] += rhs[i];
2426 c = (dst[i] < l);
2427 }
2428 }
2429
2430 return c;
2431}
2432
2433/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2434integerPart
2435APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2436 integerPart c, unsigned int parts)
2437{
2438 unsigned int i;
2439
2440 assert(c <= 1);
2441
2442 for(i = 0; i < parts; i++) {
2443 integerPart l;
2444
2445 l = dst[i];
2446 if (c) {
2447 dst[i] -= rhs[i] + 1;
2448 c = (dst[i] >= l);
2449 } else {
2450 dst[i] -= rhs[i];
2451 c = (dst[i] > l);
2452 }
2453 }
2454
2455 return c;
2456}
2457
2458/* Negate a bignum in-place. */
2459void
2460APInt::tcNegate(integerPart *dst, unsigned int parts)
2461{
2462 tcComplement(dst, parts);
2463 tcIncrement(dst, parts);
2464}
2465
Neil Booth055c0b32007-10-06 00:43:45 +00002466/* DST += SRC * MULTIPLIER + CARRY if add is true
2467 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002468
2469 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2470 they must start at the same point, i.e. DST == SRC.
2471
2472 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2473 returned. Otherwise DST is filled with the least significant
2474 DSTPARTS parts of the result, and if all of the omitted higher
2475 parts were zero return zero, otherwise overflow occurred and
2476 return one. */
2477int
2478APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2479 integerPart multiplier, integerPart carry,
2480 unsigned int srcParts, unsigned int dstParts,
2481 bool add)
2482{
2483 unsigned int i, n;
2484
2485 /* Otherwise our writes of DST kill our later reads of SRC. */
2486 assert(dst <= src || dst >= src + srcParts);
2487 assert(dstParts <= srcParts + 1);
2488
2489 /* N loops; minimum of dstParts and srcParts. */
2490 n = dstParts < srcParts ? dstParts: srcParts;
2491
2492 for(i = 0; i < n; i++) {
2493 integerPart low, mid, high, srcPart;
2494
2495 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2496
2497 This cannot overflow, because
2498
2499 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2500
2501 which is less than n^2. */
2502
2503 srcPart = src[i];
2504
2505 if (multiplier == 0 || srcPart == 0) {
2506 low = carry;
2507 high = 0;
2508 } else {
2509 low = lowHalf(srcPart) * lowHalf(multiplier);
2510 high = highHalf(srcPart) * highHalf(multiplier);
2511
2512 mid = lowHalf(srcPart) * highHalf(multiplier);
2513 high += highHalf(mid);
2514 mid <<= integerPartWidth / 2;
2515 if (low + mid < low)
2516 high++;
2517 low += mid;
2518
2519 mid = highHalf(srcPart) * lowHalf(multiplier);
2520 high += highHalf(mid);
2521 mid <<= integerPartWidth / 2;
2522 if (low + mid < low)
2523 high++;
2524 low += mid;
2525
2526 /* Now add carry. */
2527 if (low + carry < low)
2528 high++;
2529 low += carry;
2530 }
2531
2532 if (add) {
2533 /* And now DST[i], and store the new low part there. */
2534 if (low + dst[i] < low)
2535 high++;
2536 dst[i] += low;
2537 } else
2538 dst[i] = low;
2539
2540 carry = high;
2541 }
2542
2543 if (i < dstParts) {
2544 /* Full multiplication, there is no overflow. */
2545 assert(i + 1 == dstParts);
2546 dst[i] = carry;
2547 return 0;
2548 } else {
2549 /* We overflowed if there is carry. */
2550 if (carry)
2551 return 1;
2552
2553 /* We would overflow if any significant unwritten parts would be
2554 non-zero. This is true if any remaining src parts are non-zero
2555 and the multiplier is non-zero. */
2556 if (multiplier)
2557 for(; i < srcParts; i++)
2558 if (src[i])
2559 return 1;
2560
2561 /* We fitted in the narrow destination. */
2562 return 0;
2563 }
2564}
2565
2566/* DST = LHS * RHS, where DST has the same width as the operands and
2567 is filled with the least significant parts of the result. Returns
2568 one if overflow occurred, otherwise zero. DST must be disjoint
2569 from both operands. */
2570int
2571APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2572 const integerPart *rhs, unsigned int parts)
2573{
2574 unsigned int i;
2575 int overflow;
2576
2577 assert(dst != lhs && dst != rhs);
2578
2579 overflow = 0;
2580 tcSet(dst, 0, parts);
2581
2582 for(i = 0; i < parts; i++)
2583 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2584 parts - i, true);
2585
2586 return overflow;
2587}
2588
Neil Booth978661d2007-10-06 00:24:48 +00002589/* DST = LHS * RHS, where DST has width the sum of the widths of the
2590 operands. No overflow occurs. DST must be disjoint from both
2591 operands. Returns the number of parts required to hold the
2592 result. */
2593unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002594APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth978661d2007-10-06 00:24:48 +00002595 const integerPart *rhs, unsigned int lhsParts,
2596 unsigned int rhsParts)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002597{
Neil Booth978661d2007-10-06 00:24:48 +00002598 /* Put the narrower number on the LHS for less loops below. */
2599 if (lhsParts > rhsParts) {
2600 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2601 } else {
2602 unsigned int n;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002603
Neil Booth978661d2007-10-06 00:24:48 +00002604 assert(dst != lhs && dst != rhs);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002605
Neil Booth978661d2007-10-06 00:24:48 +00002606 tcSet(dst, 0, rhsParts);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002607
Neil Booth978661d2007-10-06 00:24:48 +00002608 for(n = 0; n < lhsParts; n++)
2609 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002610
Neil Booth978661d2007-10-06 00:24:48 +00002611 n = lhsParts + rhsParts;
2612
2613 return n - (dst[n - 1] == 0);
2614 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002615}
2616
2617/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2618 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2619 set REMAINDER to the remainder, return zero. i.e.
2620
2621 OLD_LHS = RHS * LHS + REMAINDER
2622
2623 SCRATCH is a bignum of the same size as the operands and result for
2624 use by the routine; its contents need not be initialized and are
2625 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2626*/
2627int
2628APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2629 integerPart *remainder, integerPart *srhs,
2630 unsigned int parts)
2631{
2632 unsigned int n, shiftCount;
2633 integerPart mask;
2634
2635 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2636
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002637 shiftCount = tcMSB(rhs, parts) + 1;
2638 if (shiftCount == 0)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002639 return true;
2640
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002641 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002642 n = shiftCount / integerPartWidth;
2643 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2644
2645 tcAssign(srhs, rhs, parts);
2646 tcShiftLeft(srhs, parts, shiftCount);
2647 tcAssign(remainder, lhs, parts);
2648 tcSet(lhs, 0, parts);
2649
2650 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2651 the total. */
2652 for(;;) {
2653 int compare;
2654
2655 compare = tcCompare(remainder, srhs, parts);
2656 if (compare >= 0) {
2657 tcSubtract(remainder, srhs, 0, parts);
2658 lhs[n] |= mask;
2659 }
2660
2661 if (shiftCount == 0)
2662 break;
2663 shiftCount--;
2664 tcShiftRight(srhs, parts, 1);
2665 if ((mask >>= 1) == 0)
2666 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2667 }
2668
2669 return false;
2670}
2671
2672/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2673 There are no restrictions on COUNT. */
2674void
2675APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2676{
Neil Booth68e53ad2007-10-08 13:47:12 +00002677 if (count) {
2678 unsigned int jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002679
Neil Booth68e53ad2007-10-08 13:47:12 +00002680 /* Jump is the inter-part jump; shift is is intra-part shift. */
2681 jump = count / integerPartWidth;
2682 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002683
Neil Booth68e53ad2007-10-08 13:47:12 +00002684 while (parts > jump) {
2685 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002686
Neil Booth68e53ad2007-10-08 13:47:12 +00002687 parts--;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002688
Neil Booth68e53ad2007-10-08 13:47:12 +00002689 /* dst[i] comes from the two parts src[i - jump] and, if we have
2690 an intra-part shift, src[i - jump - 1]. */
2691 part = dst[parts - jump];
2692 if (shift) {
2693 part <<= shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002694 if (parts >= jump + 1)
2695 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2696 }
2697
Neil Booth68e53ad2007-10-08 13:47:12 +00002698 dst[parts] = part;
2699 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002700
Neil Booth68e53ad2007-10-08 13:47:12 +00002701 while (parts > 0)
2702 dst[--parts] = 0;
2703 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002704}
2705
2706/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2707 zero. There are no restrictions on COUNT. */
2708void
2709APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2710{
Neil Booth68e53ad2007-10-08 13:47:12 +00002711 if (count) {
2712 unsigned int i, jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002713
Neil Booth68e53ad2007-10-08 13:47:12 +00002714 /* Jump is the inter-part jump; shift is is intra-part shift. */
2715 jump = count / integerPartWidth;
2716 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002717
Neil Booth68e53ad2007-10-08 13:47:12 +00002718 /* Perform the shift. This leaves the most significant COUNT bits
2719 of the result at zero. */
2720 for(i = 0; i < parts; i++) {
2721 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002722
Neil Booth68e53ad2007-10-08 13:47:12 +00002723 if (i + jump >= parts) {
2724 part = 0;
2725 } else {
2726 part = dst[i + jump];
2727 if (shift) {
2728 part >>= shift;
2729 if (i + jump + 1 < parts)
2730 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2731 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002732 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002733
Neil Booth68e53ad2007-10-08 13:47:12 +00002734 dst[i] = part;
2735 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002736 }
2737}
2738
2739/* Bitwise and of two bignums. */
2740void
2741APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2742{
2743 unsigned int i;
2744
2745 for(i = 0; i < parts; i++)
2746 dst[i] &= rhs[i];
2747}
2748
2749/* Bitwise inclusive or of two bignums. */
2750void
2751APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2752{
2753 unsigned int i;
2754
2755 for(i = 0; i < parts; i++)
2756 dst[i] |= rhs[i];
2757}
2758
2759/* Bitwise exclusive or of two bignums. */
2760void
2761APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2762{
2763 unsigned int i;
2764
2765 for(i = 0; i < parts; i++)
2766 dst[i] ^= rhs[i];
2767}
2768
2769/* Complement a bignum in-place. */
2770void
2771APInt::tcComplement(integerPart *dst, unsigned int parts)
2772{
2773 unsigned int i;
2774
2775 for(i = 0; i < parts; i++)
2776 dst[i] = ~dst[i];
2777}
2778
2779/* Comparison (unsigned) of two bignums. */
2780int
2781APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2782 unsigned int parts)
2783{
2784 while (parts) {
2785 parts--;
2786 if (lhs[parts] == rhs[parts])
2787 continue;
2788
2789 if (lhs[parts] > rhs[parts])
2790 return 1;
2791 else
2792 return -1;
2793 }
2794
2795 return 0;
2796}
2797
2798/* Increment a bignum in-place, return the carry flag. */
2799integerPart
2800APInt::tcIncrement(integerPart *dst, unsigned int parts)
2801{
2802 unsigned int i;
2803
2804 for(i = 0; i < parts; i++)
2805 if (++dst[i] != 0)
2806 break;
2807
2808 return i == parts;
2809}
2810
2811/* Set the least significant BITS bits of a bignum, clear the
2812 rest. */
2813void
2814APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2815 unsigned int bits)
2816{
2817 unsigned int i;
2818
2819 i = 0;
2820 while (bits > integerPartWidth) {
2821 dst[i++] = ~(integerPart) 0;
2822 bits -= integerPartWidth;
2823 }
2824
2825 if (bits)
2826 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2827
2828 while (i < parts)
2829 dst[i++] = 0;
2830}