blob: a1d8110637f6b13aae1179cc13c9c8915770276e [file] [log] [blame]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001================================
2Source Level Debugging with LLVM
3================================
4
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00005.. contents::
6 :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM. It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information. Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here. The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26 compiler. No transformations, analyses, or code generators should need to
27 be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30 ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33 LLVM-to-LLVM tools should not need to know anything about the semantics of
34 the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37 LLVM should not put any restrictions of the flavor of the source-language,
38 and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41 to compile a program to native machine code and standard debugging
42 formats. This allows compatibility with traditional machine-code level
43 debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects. The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information. As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process. This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
66Currently, debug information is consumed by DwarfDebug to produce dwarf
67information used by the gdb debugger. Other targets could use the same
68information to produce stabs or other debug forms.
69
70It would also be reasonable to use debug information to feed profiling tools
71for analysis of generated code, or, tools for reconstructing the original
72source from generated code.
73
74TODO - expound a bit more.
75
76.. _intro_debugopt:
77
78Debugging optimized code
79------------------------
80
81An extremely high priority of LLVM debugging information is to make it interact
82well with optimizations and analysis. In particular, the LLVM debug
83information provides the following guarantees:
84
85* LLVM debug information **always provides information to accurately read
86 the source-level state of the program**, regardless of which LLVM
87 optimizations have been run, and without any modification to the
88 optimizations themselves. However, some optimizations may impact the
89 ability to modify the current state of the program with a debugger, such
90 as setting program variables, or calling functions that have been
91 deleted.
92
93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
94 debugging information, allowing them to update the debugging information
95 as they perform aggressive optimizations. This means that, with effort,
96 the LLVM optimizers could optimize debug code just as well as non-debug
97 code.
98
99* LLVM debug information does not prevent optimizations from
100 happening (for example inlining, basic block reordering/merging/cleanup,
101 tail duplication, etc).
102
103* LLVM debug information is automatically optimized along with the rest of
104 the program, using existing facilities. For example, duplicate
105 information is automatically merged by the linker, and unused information
106 is automatically removed.
107
108Basically, the debug information allows you to compile a program with
109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
110the program as it executes from a debugger. Compiling a program with
111"``-O3 -g``" gives you full debug information that is always available and
112accurate for reading (e.g., you get accurate stack traces despite tail call
113elimination and inlining), but you might lose the ability to modify the program
114and call functions where were optimized out of the program, or inlined away
115completely.
116
117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
118optimizer's handling of debugging information. It can be run like this:
119
120.. code-block:: bash
121
122 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
123 % make TEST=dbgopt
124
125This will test impact of debugging information on optimization passes. If
126debugging information influences optimization passes then it will be reported
127as a failure. See :doc:`TestingGuide` for more information on LLVM test
128infrastructure and how to run various tests.
129
130.. _format:
131
132Debugging information format
133============================
134
135LLVM debugging information has been carefully designed to make it possible for
136the optimizer to optimize the program and debugging information without
137necessarily having to know anything about debugging information. In
138particular, the use of metadata avoids duplicated debugging information from
139the beginning, and the global dead code elimination pass automatically deletes
140debugging information for a function if it decides to delete the function.
141
142To do this, most of the debugging information (descriptors for types,
143variables, functions, source files, etc) is inserted by the language front-end
144in the form of LLVM metadata.
145
146Debug information is designed to be agnostic about the target debugger and
147debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
148pass to decode the information that represents variables, types, functions,
149namespaces, etc: this allows for arbitrary source-language semantics and
150type-systems to be used, as long as there is a module written for the target
151debugger to interpret the information.
152
153To provide basic functionality, the LLVM debugger does have to make some
154assumptions about the source-level language being debugged, though it keeps
155these to a minimum. The only common features that the LLVM debugger assumes
156exist are :ref:`source files <format_files>`, and :ref:`program objects
157<format_global_variables>`. These abstract objects are used by a debugger to
158form stack traces, show information about local variables, etc.
159
160This section of the documentation first describes the representation aspects
161common to any source-language. :ref:`ccxx_frontend` describes the data layout
162conventions used by the C and C++ front-ends.
163
164Debug information descriptors
165-----------------------------
166
167In consideration of the complexity and volume of debug information, LLVM
168provides a specification for well formed debug descriptors.
169
170Consumers of LLVM debug information expect the descriptors for program objects
171to start in a canonical format, but the descriptors can include additional
David Blaikie61212bc2013-05-29 02:05:13 +0000172information appended at the end that is source-language specific. All debugging
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000173information objects start with a tag to indicate what type of object it is.
174The source-language is allowed to define its own objects, by using unreserved
175tag numbers. We recommend using with tags in the range 0x1000 through 0x2000
176(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
177
178The fields of debug descriptors used internally by LLVM are restricted to only
179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
180``mdnode``.
181
182.. code-block:: llvm
183
184 !1 = metadata !{
185 i32, ;; A tag
186 ...
187 }
188
189<a name="LLVMDebugVersion">The first field of a descriptor is always an
190``i32`` containing a tag value identifying the content of the descriptor.
191The remaining fields are specific to the descriptor. The values of tags are
192loosely bound to the tag values of DWARF information entries. However, that
David Blaikie61212bc2013-05-29 02:05:13 +0000193does not restrict the use of the information supplied to DWARF targets.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000194
195The details of the various descriptors follow.
196
197Compile unit descriptors
198^^^^^^^^^^^^^^^^^^^^^^^^
199
200.. code-block:: llvm
201
202 !0 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000203 i32, ;; Tag = 17 (DW_TAG_compile_unit)
204 metadata, ;; Source directory (including trailing slash) & file pair
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000205 i32, ;; DWARF language identifier (ex. DW_LANG_C89)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000206 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000207 i1, ;; True if this is optimized.
208 metadata, ;; Flags
209 i32 ;; Runtime version
210 metadata ;; List of enums types
211 metadata ;; List of retained types
212 metadata ;; List of subprograms
213 metadata ;; List of global variables
David Blaikie61212bc2013-05-29 02:05:13 +0000214 metadata ;; List of imported entities
215 metadata ;; Split debug filename
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000216 }
217
218These descriptors contain a source language ID for the file (we use the DWARF
2193.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
David Blaikie61212bc2013-05-29 02:05:13 +0000220``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of
221strings for the source file name and the working directory, as well as an
222identifier string for the compiler that produced it.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000223
224Compile unit descriptors provide the root context for objects declared in a
225specific compilation unit. File descriptors are defined using this context.
Eli Bendersky00a3e5e2012-11-28 00:27:25 +0000226These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
David Blaikie61212bc2013-05-29 02:05:13 +0000227keep track of subprograms, global variables, type information, and imported
228entities (declarations and namespaces).
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000229
230.. _format_files:
231
232File descriptors
233^^^^^^^^^^^^^^^^
234
235.. code-block:: llvm
236
237 !0 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000238 i32, ;; Tag = 41 (DW_TAG_file_type)
239 metadata, ;; Source directory (including trailing slash) & file pair
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000240 }
241
242These descriptors contain information for a file. Global variables and top
243level functions would be defined using this context. File descriptors also
244provide context for source line correspondence.
245
246Each input file is encoded as a separate file descriptor in LLVM debugging
247information output.
248
249.. _format_global_variables:
250
251Global variable descriptors
252^^^^^^^^^^^^^^^^^^^^^^^^^^^
253
254.. code-block:: llvm
255
256 !1 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000257 i32, ;; Tag = 52 (DW_TAG_variable)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000258 i32, ;; Unused field.
259 metadata, ;; Reference to context descriptor
260 metadata, ;; Name
261 metadata, ;; Display name (fully qualified C++ name)
262 metadata, ;; MIPS linkage name (for C++)
263 metadata, ;; Reference to file where defined
264 i32, ;; Line number where defined
265 metadata, ;; Reference to type descriptor
266 i1, ;; True if the global is local to compile unit (static)
267 i1, ;; True if the global is defined in the compile unit (not extern)
David Blaikie61212bc2013-05-29 02:05:13 +0000268 {}*, ;; Reference to the global variable
269 metadata, ;; The static member declaration, if any
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000270 }
271
Eli Bendersky00a3e5e2012-11-28 00:27:25 +0000272These descriptors provide debug information about globals variables. They
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000273provide details such as name, type and where the variable is defined. All
274global variables are collected inside the named metadata ``!llvm.dbg.cu``.
275
276.. _format_subprograms:
277
278Subprogram descriptors
279^^^^^^^^^^^^^^^^^^^^^^
280
281.. code-block:: llvm
282
283 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000284 i32, ;; Tag = 46 (DW_TAG_subprogram)
285 metadata, ;; Source directory (including trailing slash) & file pair
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000286 metadata, ;; Reference to context descriptor
287 metadata, ;; Name
288 metadata, ;; Display name (fully qualified C++ name)
289 metadata, ;; MIPS linkage name (for C++)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000290 i32, ;; Line number where defined
291 metadata, ;; Reference to type descriptor
292 i1, ;; True if the global is local to compile unit (static)
293 i1, ;; True if the global is defined in the compile unit (not extern)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000294 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
295 i32, ;; Index into a virtual function
296 metadata, ;; indicates which base type contains the vtable pointer for the
297 ;; derived class
Benjamin Kramerd5976142013-10-29 17:53:27 +0000298 i32, ;; Flags - Artificial, Private, Protected, Explicit, Prototyped.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000299 i1, ;; isOptimized
300 Function * , ;; Pointer to LLVM function
301 metadata, ;; Lists function template parameters
302 metadata, ;; Function declaration descriptor
Dmitri Gribenko49136802013-02-16 20:07:40 +0000303 metadata, ;; List of function variables
304 i32 ;; Line number where the scope of the subprogram begins
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000305 }
306
307These descriptors provide debug information about functions, methods and
308subprograms. They provide details such as name, return types and the source
309location where the subprogram is defined.
310
311Block descriptors
312^^^^^^^^^^^^^^^^^
313
314.. code-block:: llvm
315
316 !3 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000317 i32, ;; Tag = 11 (DW_TAG_lexical_block)
318 metadata,;; Source directory (including trailing slash) & file pair
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000319 metadata,;; Reference to context descriptor
320 i32, ;; Line number
321 i32, ;; Column number
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000322 i32 ;; Unique ID to identify blocks from a template function
323 }
324
325This descriptor provides debug information about nested blocks within a
326subprogram. The line number and column numbers are used to dinstinguish two
327lexical blocks at same depth.
328
329.. code-block:: llvm
330
331 !3 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000332 i32, ;; Tag = 11 (DW_TAG_lexical_block)
333 metadata,;; Source directory (including trailing slash) & file pair
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000334 metadata ;; Reference to the scope we're annotating with a file change
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000335 }
336
337This descriptor provides a wrapper around a lexical scope to handle file
338changes in the middle of a lexical block.
339
340.. _format_basic_type:
341
342Basic type descriptors
343^^^^^^^^^^^^^^^^^^^^^^
344
345.. code-block:: llvm
346
347 !4 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000348 i32, ;; Tag = 36 (DW_TAG_base_type)
Manman Ren33f4c792013-08-29 17:07:49 +0000349 metadata, ;; Source directory (including trailing slash) & file pair (may be null)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000350 metadata, ;; Reference to context
351 metadata, ;; Name (may be "" for anonymous types)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000352 i32, ;; Line number where defined (may be 0)
353 i64, ;; Size in bits
354 i64, ;; Alignment in bits
355 i64, ;; Offset in bits
356 i32, ;; Flags
357 i32 ;; DWARF type encoding
358 }
359
360These descriptors define primitive types used in the code. Example ``int``,
361``bool`` and ``float``. The context provides the scope of the type, which is
362usually the top level. Since basic types are not usually user defined the
363context and line number can be left as NULL and 0. The size, alignment and
364offset are expressed in bits and can be 64 bit values. The alignment is used
365to round the offset when embedded in a :ref:`composite type
366<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
367The offset is the bit offset if embedded in a :ref:`composite type
368<format_composite_type>`.
369
370The type encoding provides the details of the type. The values are typically
371one of the following:
372
373.. code-block:: llvm
374
375 DW_ATE_address = 1
376 DW_ATE_boolean = 2
377 DW_ATE_float = 4
378 DW_ATE_signed = 5
379 DW_ATE_signed_char = 6
380 DW_ATE_unsigned = 7
381 DW_ATE_unsigned_char = 8
382
383.. _format_derived_type:
384
385Derived type descriptors
386^^^^^^^^^^^^^^^^^^^^^^^^
387
388.. code-block:: llvm
389
390 !5 = metadata !{
391 i32, ;; Tag (see below)
Manman Ren33f4c792013-08-29 17:07:49 +0000392 metadata, ;; Source directory (including trailing slash) & file pair (may be null)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000393 metadata, ;; Reference to context
394 metadata, ;; Name (may be "" for anonymous types)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000395 i32, ;; Line number where defined (may be 0)
396 i64, ;; Size in bits
397 i64, ;; Alignment in bits
398 i64, ;; Offset in bits
399 i32, ;; Flags to encode attributes, e.g. private
400 metadata, ;; Reference to type derived from
401 metadata, ;; (optional) Name of the Objective C property associated with
David Blaikie92f09172013-01-07 06:02:07 +0000402 ;; Objective-C an ivar, or the type of which this
403 ;; pointer-to-member is pointing to members of.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000404 metadata, ;; (optional) Name of the Objective C property getter selector.
405 metadata, ;; (optional) Name of the Objective C property setter selector.
406 i32 ;; (optional) Objective C property attributes.
407 }
408
409These descriptors are used to define types derived from other types. The value
410of the tag varies depending on the meaning. The following are possible tag
411values:
412
413.. code-block:: llvm
414
David Blaikie92f09172013-01-07 06:02:07 +0000415 DW_TAG_formal_parameter = 5
416 DW_TAG_member = 13
417 DW_TAG_pointer_type = 15
418 DW_TAG_reference_type = 16
419 DW_TAG_typedef = 22
420 DW_TAG_ptr_to_member_type = 31
421 DW_TAG_const_type = 38
422 DW_TAG_volatile_type = 53
423 DW_TAG_restrict_type = 55
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000424
425``DW_TAG_member`` is used to define a member of a :ref:`composite type
426<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type
427of the member is the :ref:`derived type <format_derived_type>`.
428``DW_TAG_formal_parameter`` is used to define a member which is a formal
429argument of a subprogram.
430
431``DW_TAG_typedef`` is used to provide a name for the derived type.
432
433``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
434``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
435:ref:`derived type <format_derived_type>`.
436
437:ref:`Derived type <format_derived_type>` location can be determined from the
438context and line number. The size, alignment and offset are expressed in bits
439and can be 64 bit values. The alignment is used to round the offset when
440embedded in a :ref:`composite type <format_composite_type>` (example to keep
441float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
442in a :ref:`composite type <format_composite_type>`.
443
444Note that the ``void *`` type is expressed as a type derived from NULL.
445
446.. _format_composite_type:
447
448Composite type descriptors
449^^^^^^^^^^^^^^^^^^^^^^^^^^
450
451.. code-block:: llvm
452
453 !6 = metadata !{
454 i32, ;; Tag (see below)
Manman Ren33f4c792013-08-29 17:07:49 +0000455 metadata, ;; Source directory (including trailing slash) & file pair (may be null)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000456 metadata, ;; Reference to context
457 metadata, ;; Name (may be "" for anonymous types)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000458 i32, ;; Line number where defined (may be 0)
459 i64, ;; Size in bits
460 i64, ;; Alignment in bits
461 i64, ;; Offset in bits
462 i32, ;; Flags
463 metadata, ;; Reference to type derived from
464 metadata, ;; Reference to array of member descriptors
Manman Ren33f4c792013-08-29 17:07:49 +0000465 i32, ;; Runtime languages
David Blaikie61212bc2013-05-29 02:05:13 +0000466 metadata, ;; Base type containing the vtable pointer for this type
Manman Ren33f4c792013-08-29 17:07:49 +0000467 metadata, ;; Template parameters
468 metadata ;; A unique identifier for type uniquing purpose (may be null)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000469 }
470
471These descriptors are used to define types that are composed of 0 or more
472elements. The value of the tag varies depending on the meaning. The following
473are possible tag values:
474
475.. code-block:: llvm
476
477 DW_TAG_array_type = 1
478 DW_TAG_enumeration_type = 4
479 DW_TAG_structure_type = 19
480 DW_TAG_union_type = 23
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000481 DW_TAG_subroutine_type = 21
482 DW_TAG_inheritance = 28
483
484The vector flag indicates that an array type is a native packed vector.
485
Eric Christopher9a1e0e22013-01-08 01:53:52 +0000486The members of array types (tag = ``DW_TAG_array_type``) are
487:ref:`subrange descriptors <format_subrange>`, each
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000488representing the range of subscripts at that level of indexing.
489
490The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
491:ref:`enumerator descriptors <format_enumerator>`, each representing the
492definition of enumeration value for the set. All enumeration type descriptors
493are collected inside the named metadata ``!llvm.dbg.cu``.
494
495The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
496``DW_TAG_union_type``) types are any one of the :ref:`basic
497<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
498<format_composite_type>` type descriptors, each representing a field member of
499the structure or union.
500
501For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
502information about base classes, static members and member functions. If a
503member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
504of ``DW_TAG_inheritance``, then the type represents a base class. If the member
505of is a :ref:`global variable descriptor <format_global_variables>` then it
506represents a static member. And, if the member is a :ref:`subprogram
507descriptor <format_subprograms>` then it represents a member function. For
508static members and member functions, ``getName()`` returns the members link or
509the C++ mangled name. ``getDisplayName()`` the simplied version of the name.
510
511The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
512is the return type for the subroutine. The remaining elements are the formal
513arguments to the subroutine.
514
515:ref:`Composite type <format_composite_type>` location can be determined from
516the context and line number. The size, alignment and offset are expressed in
517bits and can be 64 bit values. The alignment is used to round the offset when
518embedded in a :ref:`composite type <format_composite_type>` (as an example, to
519keep float doubles on 64 bit boundaries). The offset is the bit offset if
520embedded in a :ref:`composite type <format_composite_type>`.
521
522.. _format_subrange:
523
524Subrange descriptors
525^^^^^^^^^^^^^^^^^^^^
526
527.. code-block:: llvm
528
529 !42 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000530 i32, ;; Tag = 33 (DW_TAG_subrange_type)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000531 i64, ;; Low value
532 i64 ;; High value
533 }
534
535These descriptors are used to define ranges of array subscripts for an array
536:ref:`composite type <format_composite_type>`. The low value defines the lower
537bounds typically zero for C/C++. The high value is the upper bounds. Values
538are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High``
539the array bounds are not included in generated debugging information.
540
541.. _format_enumerator:
542
543Enumerator descriptors
544^^^^^^^^^^^^^^^^^^^^^^
545
546.. code-block:: llvm
547
548 !6 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +0000549 i32, ;; Tag = 40 (DW_TAG_enumerator)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000550 metadata, ;; Name
551 i64 ;; Value
552 }
553
554These descriptors are used to define members of an enumeration :ref:`composite
555type <format_composite_type>`, it associates the name to the value.
556
557Local variables
558^^^^^^^^^^^^^^^
559
560.. code-block:: llvm
561
562 !7 = metadata !{
563 i32, ;; Tag (see below)
564 metadata, ;; Context
565 metadata, ;; Name
566 metadata, ;; Reference to file where defined
567 i32, ;; 24 bit - Line number where defined
568 ;; 8 bit - Argument number. 1 indicates 1st argument.
569 metadata, ;; Type descriptor
570 i32, ;; flags
571 metadata ;; (optional) Reference to inline location
572 }
573
574These descriptors are used to define variables local to a sub program. The
575value of the tag depends on the usage of the variable:
576
577.. code-block:: llvm
578
579 DW_TAG_auto_variable = 256
580 DW_TAG_arg_variable = 257
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000581
582An auto variable is any variable declared in the body of the function. An
583argument variable is any variable that appears as a formal argument to the
Eric Christopher72a81be2013-01-08 00:16:33 +0000584function.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000585
586The context is either the subprogram or block where the variable is defined.
587Name the source variable name. Context and line indicate where the variable
588was defined. Type descriptor defines the declared type of the variable.
589
590.. _format_common_intrinsics:
591
592Debugger intrinsic functions
593^^^^^^^^^^^^^^^^^^^^^^^^^^^^
594
595LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
596provide debug information at various points in generated code.
597
598``llvm.dbg.declare``
599^^^^^^^^^^^^^^^^^^^^
600
601.. code-block:: llvm
602
603 void %llvm.dbg.declare(metadata, metadata)
604
605This intrinsic provides information about a local element (e.g., variable).
606The first argument is metadata holding the alloca for the variable. The second
607argument is metadata containing a description of the variable.
608
609``llvm.dbg.value``
610^^^^^^^^^^^^^^^^^^
611
612.. code-block:: llvm
613
614 void %llvm.dbg.value(metadata, i64, metadata)
615
616This intrinsic provides information when a user source variable is set to a new
617value. The first argument is the new value (wrapped as metadata). The second
618argument is the offset in the user source variable where the new value is
619written. The third argument is metadata containing a description of the user
620source variable.
621
622Object lifetimes and scoping
623============================
624
625In many languages, the local variables in functions can have their lifetimes or
626scopes limited to a subset of a function. In the C family of languages, for
627example, variables are only live (readable and writable) within the source
628block that they are defined in. In functional languages, values are only
629readable after they have been defined. Though this is a very obvious concept,
630it is non-trivial to model in LLVM, because it has no notion of scoping in this
631sense, and does not want to be tied to a language's scoping rules.
632
633In order to handle this, the LLVM debug format uses the metadata attached to
634llvm instructions to encode line number and scoping information. Consider the
635following C fragment, for example:
636
637.. code-block:: c
638
639 1. void foo() {
640 2. int X = 21;
641 3. int Y = 22;
642 4. {
643 5. int Z = 23;
644 6. Z = X;
645 7. }
646 8. X = Y;
647 9. }
648
649Compiled to LLVM, this function would be represented like this:
650
651.. code-block:: llvm
652
Bill Wendling1a57aa42013-10-27 04:50:34 +0000653 define void @foo() #0 {
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000654 entry:
Bill Wendling1a57aa42013-10-27 04:50:34 +0000655 %X = alloca i32, align 4
656 %Y = alloca i32, align 4
657 %Z = alloca i32, align 4
658 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
David Blaikie61212bc2013-05-29 02:05:13 +0000659 ; [debug line = 2:7] [debug variable = X]
Bill Wendling1a57aa42013-10-27 04:50:34 +0000660 store i32 21, i32* %X, align 4, !dbg !12
661 call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !13), !dbg !14
David Blaikie61212bc2013-05-29 02:05:13 +0000662 ; [debug line = 3:7] [debug variable = Y]
Bill Wendling1a57aa42013-10-27 04:50:34 +0000663 store i32 22, i32* %Y, align 4, !dbg !14
David Blaikie61212bc2013-05-29 02:05:13 +0000664 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
665 ; [debug line = 5:9] [debug variable = Z]
Bill Wendling1a57aa42013-10-27 04:50:34 +0000666 store i32 23, i32* %Z, align 4, !dbg !17
667 %0 = load i32* %X, align 4, !dbg !18
David Blaikie61212bc2013-05-29 02:05:13 +0000668 [debug line = 6:5]
Bill Wendling1a57aa42013-10-27 04:50:34 +0000669 store i32 %0, i32* %Z, align 4, !dbg !18
670 %1 = load i32* %Y, align 4, !dbg !19
David Blaikie61212bc2013-05-29 02:05:13 +0000671 [debug line = 8:3]
Bill Wendling1a57aa42013-10-27 04:50:34 +0000672 store i32 %1, i32* %X, align 4, !dbg !19
673 ret void, !dbg !20
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000674 }
675
David Blaikie61212bc2013-05-29 02:05:13 +0000676 ; Function Attrs: nounwind readnone
677 declare void @llvm.dbg.declare(metadata, metadata) #1
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000678
Bill Wendling1a57aa42013-10-27 04:50:34 +0000679 attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false"
680 "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"
681 "no-infs-fp-math"="false" "no-nans-fp-math"="false"
682 "stack-protector-buffer-size"="8" "unsafe-fp-math"="false"
David Blaikie61212bc2013-05-29 02:05:13 +0000683 "use-soft-float"="false" }
684 attributes #1 = { nounwind readnone }
685
686 !llvm.dbg.cu = !{!0}
Bill Wendling1a57aa42013-10-27 04:50:34 +0000687 !llvm.module.flags = !{!8}
688 !llvm.ident = !{!9}
689
David Blaikie61212bc2013-05-29 02:05:13 +0000690 !0 = metadata !{i32 786449, metadata !1, i32 12,
Bill Wendling1a57aa42013-10-27 04:50:34 +0000691 metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)",
692 i1 false, metadata !"", i32 0, metadata !2, metadata !2, metadata !3,
693 metadata !2, metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \
David Blaikie61212bc2013-05-29 02:05:13 +0000694 [/private/tmp/foo.c] \
Bill Wendling1a57aa42013-10-27 04:50:34 +0000695 [DW_LANG_C99]
696 !1 = metadata !{metadata !"t.c", metadata !"/private/tmp"}
David Blaikie61212bc2013-05-29 02:05:13 +0000697 !2 = metadata !{i32 0}
698 !3 = metadata !{metadata !4}
699 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
Bill Wendling1a57aa42013-10-27 04:50:34 +0000700 metadata !"foo", metadata !"", i32 1, metadata !6,
701 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
702 void ()* @foo, null, null, metadata !2, i32 1}
David Blaikie61212bc2013-05-29 02:05:13 +0000703 ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
Bill Wendling1a57aa42013-10-27 04:50:34 +0000704 !5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] \
705 [/private/tmp/t.c]
706 !6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0,
707 i64 0, i32 0, null, metadata !7, i32 0, null, null, null}
David Blaikie61212bc2013-05-29 02:05:13 +0000708 ; [ DW_TAG_subroutine_type ] \
709 [line 0, size 0, align 0, offset 0] [from ]
710 !7 = metadata !{null}
Bill Wendling1a57aa42013-10-27 04:50:34 +0000711 !8 = metadata !{i32 2, metadata !"Dwarf Version", i32 2}
712 !9 = metadata !{metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)"}
713 !10 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2,
714 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \
715 [line 2]
716 !11 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32,
717 i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \
718 [line 0, size 32, align 32, offset 0, enc DW_ATE_signed]
719 !12 = metadata !{i32 2, i32 0, metadata !4, null}
720 !13 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3,
721 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \
David Blaikie61212bc2013-05-29 02:05:13 +0000722 [line 3]
Bill Wendling1a57aa42013-10-27 04:50:34 +0000723 !14 = metadata !{i32 3, i32 0, metadata !4, null}
724 !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5,
725 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \
David Blaikie61212bc2013-05-29 02:05:13 +0000726 [line 5]
Bill Wendling1a57aa42013-10-27 04:50:34 +0000727 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} \
728 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
729 !17 = metadata !{i32 5, i32 0, metadata !16, null}
730 !18 = metadata !{i32 6, i32 0, metadata !16, null}
731 !19 = metadata !{i32 8, i32 0, metadata !4, null} ; [ DW_TAG_imported_declaration ]
732 !20 = metadata !{i32 9, i32 0, metadata !4, null}
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000733
734This example illustrates a few important details about LLVM debugging
735information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
736location information, which are attached to an instruction, are applied
737together to allow a debugger to analyze the relationship between statements,
738variable definitions, and the code used to implement the function.
739
740.. code-block:: llvm
741
Bill Wendling1a57aa42013-10-27 04:50:34 +0000742 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
David Blaikie61212bc2013-05-29 02:05:13 +0000743 ; [debug line = 2:7] [debug variable = X]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000744
745The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
Bill Wendling1a57aa42013-10-27 04:50:34 +0000746variable ``X``. The metadata ``!dbg !12`` attached to the intrinsic provides
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000747scope information for the variable ``X``.
748
749.. code-block:: llvm
750
Bill Wendling1a57aa42013-10-27 04:50:34 +0000751 !12 = metadata !{i32 2, i32 0, metadata !4, null}
David Blaikie61212bc2013-05-29 02:05:13 +0000752 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
Bill Wendling1a57aa42013-10-27 04:50:34 +0000753 metadata !"foo", metadata !"", i32 1, metadata !6,
754 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
755 void ()* @foo, null, null, metadata !2, i32 1}
756 ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000757
Bill Wendling1a57aa42013-10-27 04:50:34 +0000758Here ``!12`` is metadata providing location information. It has four fields:
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000759line number, column number, scope, and original scope. The original scope
760represents inline location if this instruction is inlined inside a caller, and
David Blaikie61212bc2013-05-29 02:05:13 +0000761is null otherwise. In this example, scope is encoded by ``!4``, a
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000762:ref:`subprogram descriptor <format_subprograms>`. This way the location
763information attached to the intrinsics indicates that the variable ``X`` is
764declared at line number 2 at a function level scope in function ``foo``.
765
766Now lets take another example.
767
768.. code-block:: llvm
769
David Blaikie61212bc2013-05-29 02:05:13 +0000770 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
771 ; [debug line = 5:9] [debug variable = Z]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000772
David Blaikie61212bc2013-05-29 02:05:13 +0000773The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
774variable ``Z``. The metadata ``!dbg !17`` attached to the intrinsic provides
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000775scope information for the variable ``Z``.
776
777.. code-block:: llvm
778
Bill Wendling1a57aa42013-10-27 04:50:34 +0000779 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0}
780 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
781 !17 = metadata !{i32 5, i32 0, metadata !16, null}
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000782
David Blaikie61212bc2013-05-29 02:05:13 +0000783Here ``!15`` indicates that ``Z`` is declared at line number 5 and
Bill Wendling1a57aa42013-10-27 04:50:34 +0000784column number 0 inside of lexical scope ``!16``. The lexical scope itself
David Blaikie61212bc2013-05-29 02:05:13 +0000785resides inside of subprogram ``!4`` described above.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000786
787The scope information attached with each instruction provides a straightforward
788way to find instructions covered by a scope.
789
790.. _ccxx_frontend:
791
792C/C++ front-end specific debug information
793==========================================
794
795The C and C++ front-ends represent information about the program in a format
796that is effectively identical to `DWARF 3.0
797<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
798content. This allows code generators to trivially support native debuggers by
799generating standard dwarf information, and contains enough information for
800non-dwarf targets to translate it as needed.
801
802This section describes the forms used to represent C and C++ programs. Other
803languages could pattern themselves after this (which itself is tuned to
804representing programs in the same way that DWARF 3 does), or they could choose
805to provide completely different forms if they don't fit into the DWARF model.
806As support for debugging information gets added to the various LLVM
807source-language front-ends, the information used should be documented here.
808
809The following sections provide examples of various C/C++ constructs and the
810debug information that would best describe those constructs.
811
812C/C++ source file information
813-----------------------------
814
815Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
816directory ``/Users/mine/sources``, the following code:
817
818.. code-block:: c
819
820 #include "MyHeader.h"
821
822 int main(int argc, char *argv[]) {
823 return 0;
824 }
825
826a C/C++ front-end would generate the following descriptors:
827
828.. code-block:: llvm
829
830 ...
831 ;;
832 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
833 ;;
David Blaikie61212bc2013-05-29 02:05:13 +0000834 !0 = metadata !{
835 i32 786449, ;; Tag
836 metadata !1, ;; File/directory name
837 i32 4, ;; Language Id
838 metadata !"clang version 3.4 ",
839 i1 false, ;; Optimized compile unit
840 metadata !"", ;; Compiler flags
841 i32 0, ;; Runtime version
842 metadata !2, ;; Enumeration types
843 metadata !2, ;; Retained types
844 metadata !3, ;; Subprograms
845 metadata !2, ;; Global variables
846 metadata !2, ;; Imported entities (declarations and namespaces)
847 metadata !"" ;; Split debug filename
848 }
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000849
850 ;;
851 ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
852 ;;
853 !1 = metadata !{
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000854 metadata !"MySource.cpp",
David Blaikie61212bc2013-05-29 02:05:13 +0000855 metadata !"/Users/mine/sources"
856 }
857 !5 = metadata !{
858 i32 786473, ;; Tag
859 metadata !1
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000860 }
861
862 ;;
863 ;; Define the file for the file "/Users/mine/sources/Myheader.h"
864 ;;
David Blaikie61212bc2013-05-29 02:05:13 +0000865 !14 = metadata !{
866 i32 786473, ;; Tag
867 metadata !15
868 }
869 !15 = metadata !{
870 metadata !"./MyHeader.h",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000871 metadata !"/Users/mine/sources",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000872 }
873
874 ...
875
876``llvm::Instruction`` provides easy access to metadata attached with an
877instruction. One can extract line number information encoded in LLVM IR using
878``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
879
880.. code-block:: c++
881
882 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction
883 DILocation Loc(N); // DILocation is in DebugInfo.h
884 unsigned Line = Loc.getLineNumber();
885 StringRef File = Loc.getFilename();
886 StringRef Dir = Loc.getDirectory();
887 }
888
889C/C++ global variable information
890---------------------------------
891
892Given an integer global variable declared as follows:
893
894.. code-block:: c
895
896 int MyGlobal = 100;
897
898a C/C++ front-end would generate the following descriptors:
899
900.. code-block:: llvm
901
902 ;;
903 ;; Define the global itself.
904 ;;
905 %MyGlobal = global int 100
906 ...
907 ;;
908 ;; List of debug info of globals
909 ;;
910 !llvm.dbg.cu = !{!0}
911
912 ;; Define the compile unit.
913 !0 = metadata !{
914 i32 786449, ;; Tag
915 i32 0, ;; Context
916 i32 4, ;; Language
917 metadata !"foo.cpp", ;; File
918 metadata !"/Volumes/Data/tmp", ;; Directory
919 metadata !"clang version 3.1 ", ;; Producer
920 i1 true, ;; Deprecated field
921 i1 false, ;; "isOptimized"?
922 metadata !"", ;; Flags
923 i32 0, ;; Runtime Version
924 metadata !1, ;; Enum Types
925 metadata !1, ;; Retained Types
926 metadata !1, ;; Subprograms
David Blaikie61212bc2013-05-29 02:05:13 +0000927 metadata !3, ;; Global Variables
928 metadata !1, ;; Imported entities
929 "", ;; Split debug filename
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000930 } ; [ DW_TAG_compile_unit ]
931
932 ;; The Array of Global Variables
933 !3 = metadata !{
934 metadata !4
935 }
936
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000937 ;;
938 ;; Define the global variable itself.
939 ;;
David Blaikie61212bc2013-05-29 02:05:13 +0000940 !4 = metadata !{
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000941 i32 786484, ;; Tag
942 i32 0, ;; Unused
943 null, ;; Unused
944 metadata !"MyGlobal", ;; Name
945 metadata !"MyGlobal", ;; Display Name
946 metadata !"", ;; Linkage Name
947 metadata !6, ;; File
948 i32 1, ;; Line
949 metadata !7, ;; Type
950 i32 0, ;; IsLocalToUnit
951 i32 1, ;; IsDefinition
David Blaikie61212bc2013-05-29 02:05:13 +0000952 i32* @MyGlobal, ;; LLVM-IR Value
953 null ;; Static member declaration
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000954 } ; [ DW_TAG_variable ]
955
956 ;;
957 ;; Define the file
958 ;;
David Blaikie61212bc2013-05-29 02:05:13 +0000959 !5 = metadata !{
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000960 metadata !"foo.cpp", ;; File
961 metadata !"/Volumes/Data/tmp", ;; Directory
David Blaikie61212bc2013-05-29 02:05:13 +0000962 }
963 !6 = metadata !{
964 i32 786473, ;; Tag
965 metadata !5 ;; Unused
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000966 } ; [ DW_TAG_file_type ]
967
968 ;;
969 ;; Define the type
970 ;;
971 !7 = metadata !{
972 i32 786468, ;; Tag
973 null, ;; Unused
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000974 null, ;; Unused
David Blaikie61212bc2013-05-29 02:05:13 +0000975 metadata !"int", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000976 i32 0, ;; Line
977 i64 32, ;; Size in Bits
978 i64 32, ;; Align in Bits
979 i64 0, ;; Offset
980 i32 0, ;; Flags
981 i32 5 ;; Encoding
982 } ; [ DW_TAG_base_type ]
983
984C/C++ function information
985--------------------------
986
987Given a function declared as follows:
988
989.. code-block:: c
990
991 int main(int argc, char *argv[]) {
992 return 0;
993 }
994
995a C/C++ front-end would generate the following descriptors:
996
997.. code-block:: llvm
998
999 ;;
David Blaikie61212bc2013-05-29 02:05:13 +00001000 ;; Define the anchor for subprograms.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001001 ;;
1002 !6 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001003 i32 786484, ;; Tag
1004 metadata !1, ;; File
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001005 metadata !1, ;; Context
1006 metadata !"main", ;; Name
1007 metadata !"main", ;; Display name
1008 metadata !"main", ;; Linkage name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001009 i32 1, ;; Line number
1010 metadata !4, ;; Type
1011 i1 false, ;; Is local
1012 i1 true, ;; Is definition
1013 i32 0, ;; Virtuality attribute, e.g. pure virtual function
1014 i32 0, ;; Index into virtual table for C++ methods
1015 i32 0, ;; Type that holds virtual table.
1016 i32 0, ;; Flags
1017 i1 false, ;; True if this function is optimized
1018 Function *, ;; Pointer to llvm::Function
David Blaikie61212bc2013-05-29 02:05:13 +00001019 null, ;; Function template parameters
1020 null, ;; List of function variables (emitted when optimizing)
1021 1 ;; Line number of the opening '{' of the function
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001022 }
1023 ;;
1024 ;; Define the subprogram itself.
1025 ;;
1026 define i32 @main(i32 %argc, i8** %argv) {
1027 ...
1028 }
1029
1030C/C++ basic types
1031-----------------
1032
1033The following are the basic type descriptors for C/C++ core types:
1034
1035bool
1036^^^^
1037
1038.. code-block:: llvm
1039
1040 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001041 i32 786468, ;; Tag
1042 null, ;; File
1043 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001044 metadata !"bool", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001045 i32 0, ;; Line number
1046 i64 8, ;; Size in Bits
1047 i64 8, ;; Align in Bits
1048 i64 0, ;; Offset in Bits
1049 i32 0, ;; Flags
1050 i32 2 ;; Encoding
1051 }
1052
1053char
1054^^^^
1055
1056.. code-block:: llvm
1057
1058 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001059 i32 786468, ;; Tag
1060 null, ;; File
1061 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001062 metadata !"char", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001063 i32 0, ;; Line number
1064 i64 8, ;; Size in Bits
1065 i64 8, ;; Align in Bits
1066 i64 0, ;; Offset in Bits
1067 i32 0, ;; Flags
1068 i32 6 ;; Encoding
1069 }
1070
1071unsigned char
1072^^^^^^^^^^^^^
1073
1074.. code-block:: llvm
1075
1076 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001077 i32 786468, ;; Tag
1078 null, ;; File
1079 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001080 metadata !"unsigned char",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001081 i32 0, ;; Line number
1082 i64 8, ;; Size in Bits
1083 i64 8, ;; Align in Bits
1084 i64 0, ;; Offset in Bits
1085 i32 0, ;; Flags
1086 i32 8 ;; Encoding
1087 }
1088
1089short
1090^^^^^
1091
1092.. code-block:: llvm
1093
1094 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001095 i32 786468, ;; Tag
1096 null, ;; File
1097 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001098 metadata !"short int",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001099 i32 0, ;; Line number
1100 i64 16, ;; Size in Bits
1101 i64 16, ;; Align in Bits
1102 i64 0, ;; Offset in Bits
1103 i32 0, ;; Flags
1104 i32 5 ;; Encoding
1105 }
1106
1107unsigned short
1108^^^^^^^^^^^^^^
1109
1110.. code-block:: llvm
1111
1112 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001113 i32 786468, ;; Tag
1114 null, ;; File
1115 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001116 metadata !"short unsigned int",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001117 i32 0, ;; Line number
1118 i64 16, ;; Size in Bits
1119 i64 16, ;; Align in Bits
1120 i64 0, ;; Offset in Bits
1121 i32 0, ;; Flags
1122 i32 7 ;; Encoding
1123 }
1124
1125int
1126^^^
1127
1128.. code-block:: llvm
1129
1130 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001131 i32 786468, ;; Tag
1132 null, ;; File
1133 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001134 metadata !"int", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001135 i32 0, ;; Line number
1136 i64 32, ;; Size in Bits
1137 i64 32, ;; Align in Bits
1138 i64 0, ;; Offset in Bits
1139 i32 0, ;; Flags
1140 i32 5 ;; Encoding
1141 }
1142
1143unsigned int
1144^^^^^^^^^^^^
1145
1146.. code-block:: llvm
1147
1148 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001149 i32 786468, ;; Tag
1150 null, ;; File
1151 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001152 metadata !"unsigned int",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001153 i32 0, ;; Line number
1154 i64 32, ;; Size in Bits
1155 i64 32, ;; Align in Bits
1156 i64 0, ;; Offset in Bits
1157 i32 0, ;; Flags
1158 i32 7 ;; Encoding
1159 }
1160
1161long long
1162^^^^^^^^^
1163
1164.. code-block:: llvm
1165
1166 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001167 i32 786468, ;; Tag
1168 null, ;; File
1169 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001170 metadata !"long long int",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001171 i32 0, ;; Line number
1172 i64 64, ;; Size in Bits
1173 i64 64, ;; Align in Bits
1174 i64 0, ;; Offset in Bits
1175 i32 0, ;; Flags
1176 i32 5 ;; Encoding
1177 }
1178
1179unsigned long long
1180^^^^^^^^^^^^^^^^^^
1181
1182.. code-block:: llvm
1183
1184 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001185 i32 786468, ;; Tag
1186 null, ;; File
1187 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001188 metadata !"long long unsigned int",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001189 i32 0, ;; Line number
1190 i64 64, ;; Size in Bits
1191 i64 64, ;; Align in Bits
1192 i64 0, ;; Offset in Bits
1193 i32 0, ;; Flags
1194 i32 7 ;; Encoding
1195 }
1196
1197float
1198^^^^^
1199
1200.. code-block:: llvm
1201
1202 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001203 i32 786468, ;; Tag
1204 null, ;; File
1205 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001206 metadata !"float",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001207 i32 0, ;; Line number
1208 i64 32, ;; Size in Bits
1209 i64 32, ;; Align in Bits
1210 i64 0, ;; Offset in Bits
1211 i32 0, ;; Flags
1212 i32 4 ;; Encoding
1213 }
1214
1215double
1216^^^^^^
1217
1218.. code-block:: llvm
1219
1220 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001221 i32 786468, ;; Tag
1222 null, ;; File
1223 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001224 metadata !"double",;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001225 i32 0, ;; Line number
1226 i64 64, ;; Size in Bits
1227 i64 64, ;; Align in Bits
1228 i64 0, ;; Offset in Bits
1229 i32 0, ;; Flags
1230 i32 4 ;; Encoding
1231 }
1232
1233C/C++ derived types
1234-------------------
1235
1236Given the following as an example of C/C++ derived type:
1237
1238.. code-block:: c
1239
1240 typedef const int *IntPtr;
1241
1242a C/C++ front-end would generate the following descriptors:
1243
1244.. code-block:: llvm
1245
1246 ;;
1247 ;; Define the typedef "IntPtr".
1248 ;;
1249 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001250 i32 786454, ;; Tag
1251 metadata !3, ;; File
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001252 metadata !1, ;; Context
1253 metadata !"IntPtr", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001254 i32 0, ;; Line number
1255 i64 0, ;; Size in bits
1256 i64 0, ;; Align in bits
1257 i64 0, ;; Offset in bits
1258 i32 0, ;; Flags
1259 metadata !4 ;; Derived From type
1260 }
1261 ;;
1262 ;; Define the pointer type.
1263 ;;
1264 !4 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001265 i32 786447, ;; Tag
1266 null, ;; File
1267 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001268 metadata !"", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001269 i32 0, ;; Line number
1270 i64 64, ;; Size in bits
1271 i64 64, ;; Align in bits
1272 i64 0, ;; Offset in bits
1273 i32 0, ;; Flags
1274 metadata !5 ;; Derived From type
1275 }
1276 ;;
1277 ;; Define the const type.
1278 ;;
1279 !5 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001280 i32 786470, ;; Tag
1281 null, ;; File
1282 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001283 metadata !"", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001284 i32 0, ;; Line number
David Blaikie61212bc2013-05-29 02:05:13 +00001285 i64 0, ;; Size in bits
1286 i64 0, ;; Align in bits
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001287 i64 0, ;; Offset in bits
1288 i32 0, ;; Flags
1289 metadata !6 ;; Derived From type
1290 }
1291 ;;
1292 ;; Define the int type.
1293 ;;
1294 !6 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001295 i32 786468, ;; Tag
1296 null, ;; File
1297 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001298 metadata !"int", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001299 i32 0, ;; Line number
1300 i64 32, ;; Size in bits
1301 i64 32, ;; Align in bits
1302 i64 0, ;; Offset in bits
1303 i32 0, ;; Flags
David Blaikie61212bc2013-05-29 02:05:13 +00001304 i32 5 ;; Encoding
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001305 }
1306
1307C/C++ struct/union types
1308------------------------
1309
1310Given the following as an example of C/C++ struct type:
1311
1312.. code-block:: c
1313
1314 struct Color {
1315 unsigned Red;
1316 unsigned Green;
1317 unsigned Blue;
1318 };
1319
1320a C/C++ front-end would generate the following descriptors:
1321
1322.. code-block:: llvm
1323
1324 ;;
1325 ;; Define basic type for unsigned int.
1326 ;;
1327 !5 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001328 i32 786468, ;; Tag
1329 null, ;; File
1330 null, ;; Context
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001331 metadata !"unsigned int",
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001332 i32 0, ;; Line number
1333 i64 32, ;; Size in Bits
1334 i64 32, ;; Align in Bits
1335 i64 0, ;; Offset in Bits
1336 i32 0, ;; Flags
1337 i32 7 ;; Encoding
1338 }
1339 ;;
1340 ;; Define composite type for struct Color.
1341 ;;
1342 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001343 i32 786451, ;; Tag
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001344 metadata !1, ;; Compile unit
David Blaikie61212bc2013-05-29 02:05:13 +00001345 null, ;; Context
1346 metadata !"Color", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001347 i32 1, ;; Line number
1348 i64 96, ;; Size in bits
1349 i64 32, ;; Align in bits
1350 i64 0, ;; Offset in bits
1351 i32 0, ;; Flags
1352 null, ;; Derived From
1353 metadata !3, ;; Elements
David Blaikie61212bc2013-05-29 02:05:13 +00001354 i32 0, ;; Runtime Language
1355 null, ;; Base type containing the vtable pointer for this type
1356 null ;; Template parameters
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001357 }
1358
1359 ;;
1360 ;; Define the Red field.
1361 ;;
1362 !4 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001363 i32 786445, ;; Tag
1364 metadata !1, ;; File
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001365 metadata !1, ;; Context
1366 metadata !"Red", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001367 i32 2, ;; Line number
1368 i64 32, ;; Size in bits
1369 i64 32, ;; Align in bits
1370 i64 0, ;; Offset in bits
1371 i32 0, ;; Flags
1372 metadata !5 ;; Derived From type
1373 }
1374
1375 ;;
1376 ;; Define the Green field.
1377 ;;
1378 !6 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001379 i32 786445, ;; Tag
1380 metadata !1, ;; File
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001381 metadata !1, ;; Context
1382 metadata !"Green", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001383 i32 3, ;; Line number
1384 i64 32, ;; Size in bits
1385 i64 32, ;; Align in bits
1386 i64 32, ;; Offset in bits
1387 i32 0, ;; Flags
1388 metadata !5 ;; Derived From type
1389 }
1390
1391 ;;
1392 ;; Define the Blue field.
1393 ;;
1394 !7 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001395 i32 786445, ;; Tag
1396 metadata !1, ;; File
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001397 metadata !1, ;; Context
1398 metadata !"Blue", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001399 i32 4, ;; Line number
1400 i64 32, ;; Size in bits
1401 i64 32, ;; Align in bits
1402 i64 64, ;; Offset in bits
1403 i32 0, ;; Flags
1404 metadata !5 ;; Derived From type
1405 }
1406
1407 ;;
1408 ;; Define the array of fields used by the composite type Color.
1409 ;;
1410 !3 = metadata !{metadata !4, metadata !6, metadata !7}
1411
1412C/C++ enumeration types
1413-----------------------
1414
1415Given the following as an example of C/C++ enumeration type:
1416
1417.. code-block:: c
1418
1419 enum Trees {
1420 Spruce = 100,
1421 Oak = 200,
1422 Maple = 300
1423 };
1424
1425a C/C++ front-end would generate the following descriptors:
1426
1427.. code-block:: llvm
1428
1429 ;;
1430 ;; Define composite type for enum Trees
1431 ;;
1432 !2 = metadata !{
David Blaikie61212bc2013-05-29 02:05:13 +00001433 i32 786436, ;; Tag
1434 metadata !1, ;; File
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001435 metadata !1, ;; Context
1436 metadata !"Trees", ;; Name
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001437 i32 1, ;; Line number
1438 i64 32, ;; Size in bits
1439 i64 32, ;; Align in bits
1440 i64 0, ;; Offset in bits
1441 i32 0, ;; Flags
1442 null, ;; Derived From type
1443 metadata !3, ;; Elements
1444 i32 0 ;; Runtime language
1445 }
1446
1447 ;;
1448 ;; Define the array of enumerators used by composite type Trees.
1449 ;;
1450 !3 = metadata !{metadata !4, metadata !5, metadata !6}
1451
1452 ;;
1453 ;; Define Spruce enumerator.
1454 ;;
David Blaikie61212bc2013-05-29 02:05:13 +00001455 !4 = metadata !{i32 786472, metadata !"Spruce", i64 100}
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001456
1457 ;;
1458 ;; Define Oak enumerator.
1459 ;;
David Blaikie61212bc2013-05-29 02:05:13 +00001460 !5 = metadata !{i32 786472, metadata !"Oak", i64 200}
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001461
1462 ;;
1463 ;; Define Maple enumerator.
1464 ;;
David Blaikie61212bc2013-05-29 02:05:13 +00001465 !6 = metadata !{i32 786472, metadata !"Maple", i64 300}
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001466
1467Debugging information format
1468============================
1469
1470Debugging Information Extension for Objective C Properties
1471----------------------------------------------------------
1472
1473Introduction
1474^^^^^^^^^^^^
1475
1476Objective C provides a simpler way to declare and define accessor methods using
1477declared properties. The language provides features to declare a property and
1478to let compiler synthesize accessor methods.
1479
1480The debugger lets developer inspect Objective C interfaces and their instance
1481variables and class variables. However, the debugger does not know anything
1482about the properties defined in Objective C interfaces. The debugger consumes
1483information generated by compiler in DWARF format. The format does not support
1484encoding of Objective C properties. This proposal describes DWARF extensions to
1485encode Objective C properties, which the debugger can use to let developers
1486inspect Objective C properties.
1487
1488Proposal
1489^^^^^^^^
1490
1491Objective C properties exist separately from class members. A property can be
1492defined only by "setter" and "getter" selectors, and be calculated anew on each
1493access. Or a property can just be a direct access to some declared ivar.
1494Finally it can have an ivar "automatically synthesized" for it by the compiler,
1495in which case the property can be referred to in user code directly using the
1496standard C dereference syntax as well as through the property "dot" syntax, but
1497there is no entry in the ``@interface`` declaration corresponding to this ivar.
1498
1499To facilitate debugging, these properties we will add a new DWARF TAG into the
1500``DW_TAG_structure_type`` definition for the class to hold the description of a
1501given property, and a set of DWARF attributes that provide said description.
1502The property tag will also contain the name and declared type of the property.
1503
1504If there is a related ivar, there will also be a DWARF property attribute placed
1505in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1506for that property. And in the case where the compiler synthesizes the ivar
1507directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1508ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1509to access this ivar directly in code, and with the property attribute pointing
1510back to the property it is backing.
1511
1512The following examples will serve as illustration for our discussion:
1513
1514.. code-block:: objc
1515
1516 @interface I1 {
1517 int n2;
1518 }
1519
1520 @property int p1;
1521 @property int p2;
1522 @end
1523
1524 @implementation I1
1525 @synthesize p1;
1526 @synthesize p2 = n2;
1527 @end
1528
1529This produces the following DWARF (this is a "pseudo dwarfdump" output):
1530
1531.. code-block:: none
1532
1533 0x00000100: TAG_structure_type [7] *
1534 AT_APPLE_runtime_class( 0x10 )
1535 AT_name( "I1" )
1536 AT_decl_file( "Objc_Property.m" )
1537 AT_decl_line( 3 )
1538
1539 0x00000110 TAG_APPLE_property
1540 AT_name ( "p1" )
1541 AT_type ( {0x00000150} ( int ) )
1542
1543 0x00000120: TAG_APPLE_property
1544 AT_name ( "p2" )
1545 AT_type ( {0x00000150} ( int ) )
1546
1547 0x00000130: TAG_member [8]
1548 AT_name( "_p1" )
1549 AT_APPLE_property ( {0x00000110} "p1" )
1550 AT_type( {0x00000150} ( int ) )
1551 AT_artificial ( 0x1 )
1552
1553 0x00000140: TAG_member [8]
1554 AT_name( "n2" )
1555 AT_APPLE_property ( {0x00000120} "p2" )
1556 AT_type( {0x00000150} ( int ) )
1557
1558 0x00000150: AT_type( ( int ) )
1559
1560Note, the current convention is that the name of the ivar for an
1561auto-synthesized property is the name of the property from which it derives
1562with an underscore prepended, as is shown in the example. But we actually
1563don't need to know this convention, since we are given the name of the ivar
1564directly.
1565
1566Also, it is common practice in ObjC to have different property declarations in
1567the @interface and @implementation - e.g. to provide a read-only property in
1568the interface,and a read-write interface in the implementation. In that case,
1569the compiler should emit whichever property declaration will be in force in the
1570current translation unit.
1571
1572Developers can decorate a property with attributes which are encoded using
1573``DW_AT_APPLE_property_attribute``.
1574
1575.. code-block:: objc
1576
1577 @property (readonly, nonatomic) int pr;
1578
1579.. code-block:: none
1580
1581 TAG_APPLE_property [8]
1582 AT_name( "pr" )
1583 AT_type ( {0x00000147} (int) )
1584 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1585
1586The setter and getter method names are attached to the property using
1587``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1588
1589.. code-block:: objc
1590
1591 @interface I1
1592 @property (setter=myOwnP3Setter:) int p3;
1593 -(void)myOwnP3Setter:(int)a;
1594 @end
1595
1596 @implementation I1
1597 @synthesize p3;
1598 -(void)myOwnP3Setter:(int)a{ }
1599 @end
1600
1601The DWARF for this would be:
1602
1603.. code-block:: none
1604
1605 0x000003bd: TAG_structure_type [7] *
1606 AT_APPLE_runtime_class( 0x10 )
1607 AT_name( "I1" )
1608 AT_decl_file( "Objc_Property.m" )
1609 AT_decl_line( 3 )
1610
1611 0x000003cd TAG_APPLE_property
1612 AT_name ( "p3" )
1613 AT_APPLE_property_setter ( "myOwnP3Setter:" )
1614 AT_type( {0x00000147} ( int ) )
1615
1616 0x000003f3: TAG_member [8]
1617 AT_name( "_p3" )
1618 AT_type ( {0x00000147} ( int ) )
1619 AT_APPLE_property ( {0x000003cd} )
1620 AT_artificial ( 0x1 )
1621
1622New DWARF Tags
1623^^^^^^^^^^^^^^
1624
1625+-----------------------+--------+
1626| TAG | Value |
1627+=======================+========+
1628| DW_TAG_APPLE_property | 0x4200 |
1629+-----------------------+--------+
1630
1631New DWARF Attributes
1632^^^^^^^^^^^^^^^^^^^^
1633
1634+--------------------------------+--------+-----------+
1635| Attribute | Value | Classes |
1636+================================+========+===========+
1637| DW_AT_APPLE_property | 0x3fed | Reference |
1638+--------------------------------+--------+-----------+
1639| DW_AT_APPLE_property_getter | 0x3fe9 | String |
1640+--------------------------------+--------+-----------+
1641| DW_AT_APPLE_property_setter | 0x3fea | String |
1642+--------------------------------+--------+-----------+
1643| DW_AT_APPLE_property_attribute | 0x3feb | Constant |
1644+--------------------------------+--------+-----------+
1645
1646New DWARF Constants
1647^^^^^^^^^^^^^^^^^^^
1648
1649+--------------------------------+-------+
1650| Name | Value |
1651+================================+=======+
1652| DW_AT_APPLE_PROPERTY_readonly | 0x1 |
1653+--------------------------------+-------+
1654| DW_AT_APPLE_PROPERTY_readwrite | 0x2 |
1655+--------------------------------+-------+
1656| DW_AT_APPLE_PROPERTY_assign | 0x4 |
1657+--------------------------------+-------+
1658| DW_AT_APPLE_PROPERTY_retain | 0x8 |
1659+--------------------------------+-------+
1660| DW_AT_APPLE_PROPERTY_copy | 0x10 |
1661+--------------------------------+-------+
1662| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 |
1663+--------------------------------+-------+
1664
1665Name Accelerator Tables
1666-----------------------
1667
1668Introduction
1669^^^^^^^^^^^^
1670
1671The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1672debugger needs. The "``pub``" in the section name indicates that the entries
1673in the table are publicly visible names only. This means no static or hidden
1674functions show up in the "``.debug_pubnames``". No static variables or private
1675class variables are in the "``.debug_pubtypes``". Many compilers add different
1676things to these tables, so we can't rely upon the contents between gcc, icc, or
1677clang.
1678
1679The typical query given by users tends not to match up with the contents of
1680these tables. For example, the DWARF spec states that "In the case of the name
1681of a function member or static data member of a C++ structure, class or union,
1682the name presented in the "``.debug_pubnames``" section is not the simple name
1683given by the ``DW_AT_name attribute`` of the referenced debugging information
1684entry, but rather the fully qualified name of the data or function member."
1685So the only names in these tables for complex C++ entries is a fully
1686qualified name. Debugger users tend not to enter their search strings as
1687"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1688"``a::b::c``". So the name entered in the name table must be demangled in
1689order to chop it up appropriately and additional names must be manually entered
1690into the table to make it effective as a name lookup table for debuggers to
1691se.
1692
1693All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1694its inconsistent and useless public-only name content making it a waste of
1695space in the object file. These tables, when they are written to disk, are not
1696sorted in any way, leaving every debugger to do its own parsing and sorting.
1697These tables also include an inlined copy of the string values in the table
1698itself making the tables much larger than they need to be on disk, especially
1699for large C++ programs.
1700
1701Can't we just fix the sections by adding all of the names we need to this
1702table? No, because that is not what the tables are defined to contain and we
1703won't know the difference between the old bad tables and the new good tables.
1704At best we could make our own renamed sections that contain all of the data we
1705need.
1706
1707These tables are also insufficient for what a debugger like LLDB needs. LLDB
1708uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
1709often asked to look for type "``foo``" or namespace "``bar``", or list items in
1710namespace "``baz``". Namespaces are not included in the pubnames or pubtypes
1711tables. Since clang asks a lot of questions when it is parsing an expression,
1712we need to be very fast when looking up names, as it happens a lot. Having new
1713accelerator tables that are optimized for very quick lookups will benefit this
1714type of debugging experience greatly.
1715
1716We would like to generate name lookup tables that can be mapped into memory
1717from disk, and used as is, with little or no up-front parsing. We would also
1718be able to control the exact content of these different tables so they contain
1719exactly what we need. The Name Accelerator Tables were designed to fix these
1720issues. In order to solve these issues we need to:
1721
1722* Have a format that can be mapped into memory from disk and used as is
1723* Lookups should be very fast
1724* Extensible table format so these tables can be made by many producers
1725* Contain all of the names needed for typical lookups out of the box
1726* Strict rules for the contents of tables
1727
1728Table size is important and the accelerator table format should allow the reuse
1729of strings from common string tables so the strings for the names are not
1730duplicated. We also want to make sure the table is ready to be used as-is by
1731simply mapping the table into memory with minimal header parsing.
1732
1733The name lookups need to be fast and optimized for the kinds of lookups that
1734debuggers tend to do. Optimally we would like to touch as few parts of the
1735mapped table as possible when doing a name lookup and be able to quickly find
1736the name entry we are looking for, or discover there are no matches. In the
1737case of debuggers we optimized for lookups that fail most of the time.
1738
1739Each table that is defined should have strict rules on exactly what is in the
1740accelerator tables and documented so clients can rely on the content.
1741
1742Hash Tables
1743^^^^^^^^^^^
1744
1745Standard Hash Tables
1746""""""""""""""""""""
1747
1748Typical hash tables have a header, buckets, and each bucket points to the
1749bucket contents:
1750
1751.. code-block:: none
1752
1753 .------------.
1754 | HEADER |
1755 |------------|
1756 | BUCKETS |
1757 |------------|
1758 | DATA |
1759 `------------'
1760
1761The BUCKETS are an array of offsets to DATA for each hash:
1762
1763.. code-block:: none
1764
1765 .------------.
1766 | 0x00001000 | BUCKETS[0]
1767 | 0x00002000 | BUCKETS[1]
1768 | 0x00002200 | BUCKETS[2]
1769 | 0x000034f0 | BUCKETS[3]
1770 | | ...
1771 | 0xXXXXXXXX | BUCKETS[n_buckets]
1772 '------------'
1773
1774So for ``bucket[3]`` in the example above, we have an offset into the table
17750x000034f0 which points to a chain of entries for the bucket. Each bucket must
1776contain a next pointer, full 32 bit hash value, the string itself, and the data
1777for the current string value.
1778
1779.. code-block:: none
1780
1781 .------------.
1782 0x000034f0: | 0x00003500 | next pointer
1783 | 0x12345678 | 32 bit hash
1784 | "erase" | string value
1785 | data[n] | HashData for this bucket
1786 |------------|
1787 0x00003500: | 0x00003550 | next pointer
1788 | 0x29273623 | 32 bit hash
1789 | "dump" | string value
1790 | data[n] | HashData for this bucket
1791 |------------|
1792 0x00003550: | 0x00000000 | next pointer
1793 | 0x82638293 | 32 bit hash
1794 | "main" | string value
1795 | data[n] | HashData for this bucket
1796 `------------'
1797
1798The problem with this layout for debuggers is that we need to optimize for the
1799negative lookup case where the symbol we're searching for is not present. So
1800if we were to lookup "``printf``" in the table above, we would make a 32 hash
1801for "``printf``", it might match ``bucket[3]``. We would need to go to the
1802offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do
1803so, we need to read the next pointer, then read the hash, compare it, and skip
1804to the next bucket. Each time we are skipping many bytes in memory and
1805touching new cache pages just to do the compare on the full 32 bit hash. All
1806of these accesses then tell us that we didn't have a match.
1807
1808Name Hash Tables
1809""""""""""""""""
1810
1811To solve the issues mentioned above we have structured the hash tables a bit
1812differently: a header, buckets, an array of all unique 32 bit hash values,
1813followed by an array of hash value data offsets, one for each hash value, then
1814the data for all hash values:
1815
1816.. code-block:: none
1817
1818 .-------------.
1819 | HEADER |
1820 |-------------|
1821 | BUCKETS |
1822 |-------------|
1823 | HASHES |
1824 |-------------|
1825 | OFFSETS |
1826 |-------------|
1827 | DATA |
1828 `-------------'
1829
1830The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By
1831making all of the full 32 bit hash values contiguous in memory, we allow
1832ourselves to efficiently check for a match while touching as little memory as
1833possible. Most often checking the 32 bit hash values is as far as the lookup
1834goes. If it does match, it usually is a match with no collisions. So for a
1835table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1836values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1837``OFFSETS`` as:
1838
1839.. code-block:: none
1840
1841 .-------------------------.
1842 | HEADER.magic | uint32_t
1843 | HEADER.version | uint16_t
1844 | HEADER.hash_function | uint16_t
1845 | HEADER.bucket_count | uint32_t
1846 | HEADER.hashes_count | uint32_t
1847 | HEADER.header_data_len | uint32_t
1848 | HEADER_DATA | HeaderData
1849 |-------------------------|
Eric Christopherafa288d2013-03-18 20:21:47 +00001850 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001851 |-------------------------|
Eric Christopherafa288d2013-03-18 20:21:47 +00001852 | HASHES | uint32_t[n_hashes] // 32 bit hash values
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001853 |-------------------------|
Eric Christopherafa288d2013-03-18 20:21:47 +00001854 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001855 |-------------------------|
1856 | ALL HASH DATA |
1857 `-------------------------'
1858
1859So taking the exact same data from the standard hash example above we end up
1860with:
1861
1862.. code-block:: none
1863
1864 .------------.
1865 | HEADER |
1866 |------------|
1867 | 0 | BUCKETS[0]
1868 | 2 | BUCKETS[1]
1869 | 5 | BUCKETS[2]
1870 | 6 | BUCKETS[3]
1871 | | ...
1872 | ... | BUCKETS[n_buckets]
1873 |------------|
1874 | 0x........ | HASHES[0]
1875 | 0x........ | HASHES[1]
1876 | 0x........ | HASHES[2]
1877 | 0x........ | HASHES[3]
1878 | 0x........ | HASHES[4]
1879 | 0x........ | HASHES[5]
1880 | 0x12345678 | HASHES[6] hash for BUCKETS[3]
1881 | 0x29273623 | HASHES[7] hash for BUCKETS[3]
1882 | 0x82638293 | HASHES[8] hash for BUCKETS[3]
1883 | 0x........ | HASHES[9]
1884 | 0x........ | HASHES[10]
1885 | 0x........ | HASHES[11]
1886 | 0x........ | HASHES[12]
1887 | 0x........ | HASHES[13]
1888 | 0x........ | HASHES[n_hashes]
1889 |------------|
1890 | 0x........ | OFFSETS[0]
1891 | 0x........ | OFFSETS[1]
1892 | 0x........ | OFFSETS[2]
1893 | 0x........ | OFFSETS[3]
1894 | 0x........ | OFFSETS[4]
1895 | 0x........ | OFFSETS[5]
1896 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
1897 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
1898 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
1899 | 0x........ | OFFSETS[9]
1900 | 0x........ | OFFSETS[10]
1901 | 0x........ | OFFSETS[11]
1902 | 0x........ | OFFSETS[12]
1903 | 0x........ | OFFSETS[13]
1904 | 0x........ | OFFSETS[n_hashes]
1905 |------------|
1906 | |
1907 | |
1908 | |
1909 | |
1910 | |
1911 |------------|
1912 0x000034f0: | 0x00001203 | .debug_str ("erase")
1913 | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1914 | 0x........ | HashData[0]
1915 | 0x........ | HashData[1]
1916 | 0x........ | HashData[2]
1917 | 0x........ | HashData[3]
1918 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1919 |------------|
1920 0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1921 | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1922 | 0x........ | HashData[0]
1923 | 0x........ | HashData[1]
1924 | 0x00001203 | String offset into .debug_str ("dump")
1925 | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1926 | 0x........ | HashData[0]
1927 | 0x........ | HashData[1]
1928 | 0x........ | HashData[2]
1929 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1930 |------------|
1931 0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1932 | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1933 | 0x........ | HashData[0]
1934 | 0x........ | HashData[1]
1935 | 0x........ | HashData[2]
1936 | 0x........ | HashData[3]
1937 | 0x........ | HashData[4]
1938 | 0x........ | HashData[5]
1939 | 0x........ | HashData[6]
1940 | 0x........ | HashData[7]
1941 | 0x........ | HashData[8]
1942 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1943 `------------'
1944
1945So we still have all of the same data, we just organize it more efficiently for
1946debugger lookup. If we repeat the same "``printf``" lookup from above, we
1947would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1948hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which
1949is the index into the ``HASHES`` table. We would then compare any consecutive
195032 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1951``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo
1952``n_buckets`` is still 3. In the case of a failed lookup we would access the
1953memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1954before we know that we have no match. We don't end up marching through
1955multiple words of memory and we really keep the number of processor data cache
1956lines being accessed as small as possible.
1957
1958The string hash that is used for these lookup tables is the Daniel J.
1959Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a
1960very good hash for all kinds of names in programs with very few hash
1961collisions.
1962
1963Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1964
1965Details
1966^^^^^^^
1967
1968These name hash tables are designed to be generic where specializations of the
1969table get to define additional data that goes into the header ("``HeaderData``"),
1970how the string value is stored ("``KeyType``") and the content of the data for each
1971hash value.
1972
1973Header Layout
1974"""""""""""""
1975
1976The header has a fixed part, and the specialized part. The exact format of the
1977header is:
1978
1979.. code-block:: c
1980
1981 struct Header
1982 {
1983 uint32_t magic; // 'HASH' magic value to allow endian detection
1984 uint16_t version; // Version number
1985 uint16_t hash_function; // The hash function enumeration that was used
1986 uint32_t bucket_count; // The number of buckets in this hash table
1987 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table
1988 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1989 // Specifically the length of the following HeaderData field - this does not
1990 // include the size of the preceding fields
1991 HeaderData header_data; // Implementation specific header data
1992 };
1993
1994The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1995encoded as an ASCII integer. This allows the detection of the start of the
1996hash table and also allows the table's byte order to be determined so the table
1997can be correctly extracted. The "``magic``" value is followed by a 16 bit
1998``version`` number which allows the table to be revised and modified in the
1999future. The current version number is 1. ``hash_function`` is a ``uint16_t``
2000enumeration that specifies which hash function was used to produce this table.
2001The current values for the hash function enumerations include:
2002
2003.. code-block:: c
2004
2005 enum HashFunctionType
2006 {
2007 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
2008 };
2009
2010``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
2011are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit
2012hash values that are in the ``HASHES`` array, and is the same number of offsets
2013are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size
2014in bytes of the ``HeaderData`` that is filled in by specialized versions of
2015this table.
2016
2017Fixed Lookup
2018""""""""""""
2019
2020The header is followed by the buckets, hashes, offsets, and hash value data.
2021
2022.. code-block:: c
2023
2024 struct FixedTable
2025 {
2026 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below
2027 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table
2028 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above
2029 };
2030
2031``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The
2032``hashes`` array contains all of the 32 bit hash values for all names in the
2033hash table. Each hash in the ``hashes`` table has an offset in the ``offsets``
2034array that points to the data for the hash value.
2035
2036This table setup makes it very easy to repurpose these tables to contain
2037different data, while keeping the lookup mechanism the same for all tables.
2038This layout also makes it possible to save the table to disk and map it in
2039later and do very efficient name lookups with little or no parsing.
2040
2041DWARF lookup tables can be implemented in a variety of ways and can store a lot
2042of information for each name. We want to make the DWARF tables extensible and
2043able to store the data efficiently so we have used some of the DWARF features
2044that enable efficient data storage to define exactly what kind of data we store
2045for each name.
2046
2047The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2048We might want to store an offset to all of the debug information entries (DIEs)
2049for each name. To keep things extensible, we create a list of items, or
2050Atoms, that are contained in the data for each name. First comes the type of
2051the data in each atom:
2052
2053.. code-block:: c
2054
2055 enum AtomType
2056 {
2057 eAtomTypeNULL = 0u,
2058 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
2059 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
2060 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2061 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
2062 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags
2063 };
2064
2065The enumeration values and their meanings are:
2066
2067.. code-block:: none
2068
2069 eAtomTypeNULL - a termination atom that specifies the end of the atom list
2070 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
2071 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
2072 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2073 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2074 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)
2075
2076Then we allow each atom type to define the atom type and how the data for each
2077atom type data is encoded:
2078
2079.. code-block:: c
2080
2081 struct Atom
2082 {
2083 uint16_t type; // AtomType enum value
2084 uint16_t form; // DWARF DW_FORM_XXX defines
2085 };
2086
2087The ``form`` type above is from the DWARF specification and defines the exact
2088encoding of the data for the Atom type. See the DWARF specification for the
2089``DW_FORM_`` definitions.
2090
2091.. code-block:: c
2092
2093 struct HeaderData
2094 {
2095 uint32_t die_offset_base;
2096 uint32_t atom_count;
2097 Atoms atoms[atom_count0];
2098 };
2099
2100``HeaderData`` defines the base DIE offset that should be added to any atoms
2101that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2102``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines
2103what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2104each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2105should be interpreted.
2106
2107For the current implementations of the "``.apple_names``" (all functions +
2108globals), the "``.apple_types``" (names of all types that are defined), and
2109the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2110array to be:
2111
2112.. code-block:: c
2113
2114 HeaderData.atom_count = 1;
2115 HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2116 HeaderData.atoms[0].form = DW_FORM_data4;
2117
2118This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
Eric Christopher61e0b782013-03-19 23:10:26 +00002119encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
2120multiple matching DIEs in a single file, which could come up with an inlined
2121function for instance. Future tables could include more information about the
2122DIE such as flags indicating if the DIE is a function, method, block,
2123or inlined.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00002124
2125The KeyType for the DWARF table is a 32 bit string table offset into the
Eric Christopher61e0b782013-03-19 23:10:26 +00002126".debug_str" table. The ".debug_str" is the string table for the DWARF which
2127may already contain copies of all of the strings. This helps make sure, with
2128help from the compiler, that we reuse the strings between all of the DWARF
2129sections and keeps the hash table size down. Another benefit to having the
2130compiler generate all strings as DW_FORM_strp in the debug info, is that
2131DWARF parsing can be made much faster.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00002132
2133After a lookup is made, we get an offset into the hash data. The hash data
Eric Christopher61e0b782013-03-19 23:10:26 +00002134needs to be able to deal with 32 bit hash collisions, so the chunk of data
2135at the offset in the hash data consists of a triple:
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00002136
2137.. code-block:: c
2138
2139 uint32_t str_offset
2140 uint32_t hash_data_count
2141 HashData[hash_data_count]
2142
2143If "str_offset" is zero, then the bucket contents are done. 99.9% of the
Eric Christopher61e0b782013-03-19 23:10:26 +00002144hash data chunks contain a single item (no 32 bit hash collision):
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00002145
2146.. code-block:: none
2147
2148 .------------.
2149 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2150 | 0x00000004 | uint32_t HashData count
2151 | 0x........ | uint32_t HashData[0] DIE offset
2152 | 0x........ | uint32_t HashData[1] DIE offset
2153 | 0x........ | uint32_t HashData[2] DIE offset
2154 | 0x........ | uint32_t HashData[3] DIE offset
2155 | 0x00000000 | uint32_t KeyType (end of hash chain)
2156 `------------'
2157
2158If there are collisions, you will have multiple valid string offsets:
2159
2160.. code-block:: none
2161
2162 .------------.
2163 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2164 | 0x00000004 | uint32_t HashData count
2165 | 0x........ | uint32_t HashData[0] DIE offset
2166 | 0x........ | uint32_t HashData[1] DIE offset
2167 | 0x........ | uint32_t HashData[2] DIE offset
2168 | 0x........ | uint32_t HashData[3] DIE offset
2169 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2170 | 0x00000002 | uint32_t HashData count
2171 | 0x........ | uint32_t HashData[0] DIE offset
2172 | 0x........ | uint32_t HashData[1] DIE offset
2173 | 0x00000000 | uint32_t KeyType (end of hash chain)
2174 `------------'
2175
2176Current testing with real world C++ binaries has shown that there is around 1
217732 bit hash collision per 100,000 name entries.
2178
2179Contents
2180^^^^^^^^
2181
2182As we said, we want to strictly define exactly what is included in the
2183different tables. For DWARF, we have 3 tables: "``.apple_names``",
2184"``.apple_types``", and "``.apple_namespaces``".
2185
2186"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2187``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2188``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2189``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains
2190``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2191static variables). All global and static variables should be included,
2192including those scoped within functions and classes. For example using the
2193following code:
2194
2195.. code-block:: c
2196
2197 static int var = 0;
2198
2199 void f ()
2200 {
2201 static int var = 0;
2202 }
2203
2204Both of the static ``var`` variables would be included in the table. All
2205functions should emit both their full names and their basenames. For C or C++,
2206the full name is the mangled name (if available) which is usually in the
2207``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2208function basename. If global or static variables have a mangled name in a
2209``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2210simple name found in the ``DW_AT_name`` attribute.
2211
2212"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2213tag is one of:
2214
2215* DW_TAG_array_type
2216* DW_TAG_class_type
2217* DW_TAG_enumeration_type
2218* DW_TAG_pointer_type
2219* DW_TAG_reference_type
2220* DW_TAG_string_type
2221* DW_TAG_structure_type
2222* DW_TAG_subroutine_type
2223* DW_TAG_typedef
2224* DW_TAG_union_type
2225* DW_TAG_ptr_to_member_type
2226* DW_TAG_set_type
2227* DW_TAG_subrange_type
2228* DW_TAG_base_type
2229* DW_TAG_const_type
2230* DW_TAG_constant
2231* DW_TAG_file_type
2232* DW_TAG_namelist
2233* DW_TAG_packed_type
2234* DW_TAG_volatile_type
2235* DW_TAG_restrict_type
2236* DW_TAG_interface_type
2237* DW_TAG_unspecified_type
2238* DW_TAG_shared_type
2239
2240Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2241not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2242value). For example, using the following code:
2243
2244.. code-block:: c
2245
2246 int main ()
2247 {
2248 int *b = 0;
2249 return *b;
2250 }
2251
2252We get a few type DIEs:
2253
2254.. code-block:: none
2255
2256 0x00000067: TAG_base_type [5]
2257 AT_encoding( DW_ATE_signed )
2258 AT_name( "int" )
2259 AT_byte_size( 0x04 )
2260
2261 0x0000006e: TAG_pointer_type [6]
2262 AT_type( {0x00000067} ( int ) )
2263 AT_byte_size( 0x08 )
2264
2265The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2266
2267"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2268If we run into a namespace that has no name this is an anonymous namespace, and
2269the name should be output as "``(anonymous namespace)``" (without the quotes).
2270Why? This matches the output of the ``abi::cxa_demangle()`` that is in the
2271standard C++ library that demangles mangled names.
2272
2273
2274Language Extensions and File Format Changes
2275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2276
2277Objective-C Extensions
2278""""""""""""""""""""""
2279
2280"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2281Objective-C class. The name used in the hash table is the name of the
2282Objective-C class itself. If the Objective-C class has a category, then an
2283entry is made for both the class name without the category, and for the class
2284name with the category. So if we have a DIE at offset 0x1234 with a name of
2285method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2286an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2287"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly
2288track down all Objective-C methods for an Objective-C class when doing
2289expressions. It is needed because of the dynamic nature of Objective-C where
2290anyone can add methods to a class. The DWARF for Objective-C methods is also
2291emitted differently from C++ classes where the methods are not usually
2292contained in the class definition, they are scattered about across one or more
2293compile units. Categories can also be defined in different shared libraries.
2294So we need to be able to quickly find all of the methods and class functions
2295given the Objective-C class name, or quickly find all methods and class
2296functions for a class + category name. This table does not contain any
2297selector names, it just maps Objective-C class names (or class names +
2298category) to all of the methods and class functions. The selectors are added
2299as function basenames in the "``.debug_names``" section.
2300
2301In the "``.apple_names``" section for Objective-C functions, the full name is
2302the entire function name with the brackets ("``-[NSString
2303stringWithCString:]``") and the basename is the selector only
2304("``stringWithCString:``").
2305
2306Mach-O Changes
2307""""""""""""""
2308
2309The sections names for the apple hash tables are for non mach-o files. For
2310mach-o files, the sections should be contained in the ``__DWARF`` segment with
2311names as follows:
2312
2313* "``.apple_names``" -> "``__apple_names``"
2314* "``.apple_types``" -> "``__apple_types``"
2315* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2316* "``.apple_objc``" -> "``__apple_objc``"
2317