blob: 51aae8840551b3e31ec103214be23185af849785 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
29 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
30 <li><a href="#datalayout">Data Layout</a></li>
31 </ol>
32 </li>
33 <li><a href="#typesystem">Type System</a>
34 <ol>
35 <li><a href="#t_primitive">Primitive Types</a>
36 <ol>
37 <li><a href="#t_classifications">Type Classifications</a></li>
38 </ol>
39 </li>
40 <li><a href="#t_derived">Derived Types</a>
41 <ol>
42 <li><a href="#t_array">Array Type</a></li>
43 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
45 <li><a href="#t_struct">Structure Type</a></li>
46 <li><a href="#t_pstruct">Packed Structure Type</a></li>
47 <li><a href="#t_vector">Vector Type</a></li>
48 <li><a href="#t_opaque">Opaque Type</a></li>
49 </ol>
50 </li>
51 </ol>
52 </li>
53 <li><a href="#constants">Constants</a>
54 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
61 </li>
62 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
67 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
71 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
73 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
75 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
76 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
77 </ol>
78 </li>
79 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
81 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
84 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
87 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
90 </ol>
91 </li>
92 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
94 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
97 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
98 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
99 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
100 </ol>
101 </li>
102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
107 </ol>
108 </li>
109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
110 <ol>
111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
117 </ol>
118 </li>
119 <li><a href="#convertops">Conversion Operations</a>
120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
133 </ol>
134 <li><a href="#otherops">Other Operations</a>
135 <ol>
136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 </ol>
145 </li>
146 <li><a href="#intrinsics">Intrinsic Functions</a>
147 <ol>
148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
153 </ol>
154 </li>
155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160 </ol>
161 </li>
162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
171 </ol>
172 </li>
173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman361079c2007-10-15 20:30:11 +0000180 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
181 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
182 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000183 </ol>
184 </li>
185 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
186 <ol>
187 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
188 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
190 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
191 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
192 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
193 </ol>
194 </li>
195 <li><a href="#int_debugger">Debugger intrinsics</a></li>
196 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000197 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000198 <ol>
199 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000200 </ol>
201 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000202 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000204 <li><a href="#int_var_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000205 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Reid Spencerb043f672007-07-20 19:59:11 +0000206 </ol>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000207 <ol>
208 <li><a href="#int_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000209 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000210 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000211 </li>
212 </ol>
213 </li>
214</ol>
215
216<div class="doc_author">
217 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
218 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
219</div>
220
221<!-- *********************************************************************** -->
222<div class="doc_section"> <a name="abstract">Abstract </a></div>
223<!-- *********************************************************************** -->
224
225<div class="doc_text">
226<p>This document is a reference manual for the LLVM assembly language.
227LLVM is an SSA based representation that provides type safety,
228low-level operations, flexibility, and the capability of representing
229'all' high-level languages cleanly. It is the common code
230representation used throughout all phases of the LLVM compilation
231strategy.</p>
232</div>
233
234<!-- *********************************************************************** -->
235<div class="doc_section"> <a name="introduction">Introduction</a> </div>
236<!-- *********************************************************************** -->
237
238<div class="doc_text">
239
240<p>The LLVM code representation is designed to be used in three
241different forms: as an in-memory compiler IR, as an on-disk bitcode
242representation (suitable for fast loading by a Just-In-Time compiler),
243and as a human readable assembly language representation. This allows
244LLVM to provide a powerful intermediate representation for efficient
245compiler transformations and analysis, while providing a natural means
246to debug and visualize the transformations. The three different forms
247of LLVM are all equivalent. This document describes the human readable
248representation and notation.</p>
249
250<p>The LLVM representation aims to be light-weight and low-level
251while being expressive, typed, and extensible at the same time. It
252aims to be a "universal IR" of sorts, by being at a low enough level
253that high-level ideas may be cleanly mapped to it (similar to how
254microprocessors are "universal IR's", allowing many source languages to
255be mapped to them). By providing type information, LLVM can be used as
256the target of optimizations: for example, through pointer analysis, it
257can be proven that a C automatic variable is never accessed outside of
258the current function... allowing it to be promoted to a simple SSA
259value instead of a memory location.</p>
260
261</div>
262
263<!-- _______________________________________________________________________ -->
264<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
265
266<div class="doc_text">
267
268<p>It is important to note that this document describes 'well formed'
269LLVM assembly language. There is a difference between what the parser
270accepts and what is considered 'well formed'. For example, the
271following instruction is syntactically okay, but not well formed:</p>
272
273<div class="doc_code">
274<pre>
275%x = <a href="#i_add">add</a> i32 1, %x
276</pre>
277</div>
278
279<p>...because the definition of <tt>%x</tt> does not dominate all of
280its uses. The LLVM infrastructure provides a verification pass that may
281be used to verify that an LLVM module is well formed. This pass is
282automatically run by the parser after parsing input assembly and by
283the optimizer before it outputs bitcode. The violations pointed out
284by the verifier pass indicate bugs in transformation passes or input to
285the parser.</p>
286</div>
287
Chris Lattnera83fdc02007-10-03 17:34:29 +0000288<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289
290<!-- *********************************************************************** -->
291<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
292<!-- *********************************************************************** -->
293
294<div class="doc_text">
295
Reid Spencerc8245b02007-08-07 14:34:28 +0000296 <p>LLVM identifiers come in two basic types: global and local. Global
297 identifiers (functions, global variables) begin with the @ character. Local
298 identifiers (register names, types) begin with the % character. Additionally,
299 there are three different formats for identifiers, for different purposes:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000300
301<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000302 <li>Named values are represented as a string of characters with their prefix.
303 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
304 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305 Identifiers which require other characters in their names can be surrounded
Reid Spencerc8245b02007-08-07 14:34:28 +0000306 with quotes. In this way, anything except a <tt>&quot;</tt> character can
307 be used in a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308
Reid Spencerc8245b02007-08-07 14:34:28 +0000309 <li>Unnamed values are represented as an unsigned numeric value with their
310 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000311
312 <li>Constants, which are described in a <a href="#constants">section about
313 constants</a>, below.</li>
314</ol>
315
Reid Spencerc8245b02007-08-07 14:34:28 +0000316<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000317don't need to worry about name clashes with reserved words, and the set of
318reserved words may be expanded in the future without penalty. Additionally,
319unnamed identifiers allow a compiler to quickly come up with a temporary
320variable without having to avoid symbol table conflicts.</p>
321
322<p>Reserved words in LLVM are very similar to reserved words in other
323languages. There are keywords for different opcodes
324('<tt><a href="#i_add">add</a></tt>',
325 '<tt><a href="#i_bitcast">bitcast</a></tt>',
326 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
327href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
328and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000329none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330
331<p>Here is an example of LLVM code to multiply the integer variable
332'<tt>%X</tt>' by 8:</p>
333
334<p>The easy way:</p>
335
336<div class="doc_code">
337<pre>
338%result = <a href="#i_mul">mul</a> i32 %X, 8
339</pre>
340</div>
341
342<p>After strength reduction:</p>
343
344<div class="doc_code">
345<pre>
346%result = <a href="#i_shl">shl</a> i32 %X, i8 3
347</pre>
348</div>
349
350<p>And the hard way:</p>
351
352<div class="doc_code">
353<pre>
354<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
355<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
356%result = <a href="#i_add">add</a> i32 %1, %1
357</pre>
358</div>
359
360<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
361important lexical features of LLVM:</p>
362
363<ol>
364
365 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
366 line.</li>
367
368 <li>Unnamed temporaries are created when the result of a computation is not
369 assigned to a named value.</li>
370
371 <li>Unnamed temporaries are numbered sequentially</li>
372
373</ol>
374
375<p>...and it also shows a convention that we follow in this document. When
376demonstrating instructions, we will follow an instruction with a comment that
377defines the type and name of value produced. Comments are shown in italic
378text.</p>
379
380</div>
381
382<!-- *********************************************************************** -->
383<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
384<!-- *********************************************************************** -->
385
386<!-- ======================================================================= -->
387<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
388</div>
389
390<div class="doc_text">
391
392<p>LLVM programs are composed of "Module"s, each of which is a
393translation unit of the input programs. Each module consists of
394functions, global variables, and symbol table entries. Modules may be
395combined together with the LLVM linker, which merges function (and
396global variable) definitions, resolves forward declarations, and merges
397symbol table entries. Here is an example of the "hello world" module:</p>
398
399<div class="doc_code">
400<pre><i>; Declare the string constant as a global constant...</i>
401<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
402 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
403
404<i>; External declaration of the puts function</i>
405<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
406
407<i>; Definition of main function</i>
408define i32 @main() { <i>; i32()* </i>
409 <i>; Convert [13x i8 ]* to i8 *...</i>
410 %cast210 = <a
411 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
412
413 <i>; Call puts function to write out the string to stdout...</i>
414 <a
415 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
416 <a
417 href="#i_ret">ret</a> i32 0<br>}<br>
418</pre>
419</div>
420
421<p>This example is made up of a <a href="#globalvars">global variable</a>
422named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
423function, and a <a href="#functionstructure">function definition</a>
424for "<tt>main</tt>".</p>
425
426<p>In general, a module is made up of a list of global values,
427where both functions and global variables are global values. Global values are
428represented by a pointer to a memory location (in this case, a pointer to an
429array of char, and a pointer to a function), and have one of the following <a
430href="#linkage">linkage types</a>.</p>
431
432</div>
433
434<!-- ======================================================================= -->
435<div class="doc_subsection">
436 <a name="linkage">Linkage Types</a>
437</div>
438
439<div class="doc_text">
440
441<p>
442All Global Variables and Functions have one of the following types of linkage:
443</p>
444
445<dl>
446
447 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
448
449 <dd>Global values with internal linkage are only directly accessible by
450 objects in the current module. In particular, linking code into a module with
451 an internal global value may cause the internal to be renamed as necessary to
452 avoid collisions. Because the symbol is internal to the module, all
453 references can be updated. This corresponds to the notion of the
454 '<tt>static</tt>' keyword in C.
455 </dd>
456
457 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
458
459 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
460 the same name when linkage occurs. This is typically used to implement
461 inline functions, templates, or other code which must be generated in each
462 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
463 allowed to be discarded.
464 </dd>
465
466 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
467
468 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
469 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
470 used for globals that may be emitted in multiple translation units, but that
471 are not guaranteed to be emitted into every translation unit that uses them.
472 One example of this are common globals in C, such as "<tt>int X;</tt>" at
473 global scope.
474 </dd>
475
476 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
477
478 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
479 pointer to array type. When two global variables with appending linkage are
480 linked together, the two global arrays are appended together. This is the
481 LLVM, typesafe, equivalent of having the system linker append together
482 "sections" with identical names when .o files are linked.
483 </dd>
484
485 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
486 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
487 until linked, if not linked, the symbol becomes null instead of being an
488 undefined reference.
489 </dd>
490
491 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
492
493 <dd>If none of the above identifiers are used, the global is externally
494 visible, meaning that it participates in linkage and can be used to resolve
495 external symbol references.
496 </dd>
497</dl>
498
499 <p>
500 The next two types of linkage are targeted for Microsoft Windows platform
501 only. They are designed to support importing (exporting) symbols from (to)
502 DLLs.
503 </p>
504
505 <dl>
506 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
507
508 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
509 or variable via a global pointer to a pointer that is set up by the DLL
510 exporting the symbol. On Microsoft Windows targets, the pointer name is
511 formed by combining <code>_imp__</code> and the function or variable name.
512 </dd>
513
514 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
515
516 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
517 pointer to a pointer in a DLL, so that it can be referenced with the
518 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
519 name is formed by combining <code>_imp__</code> and the function or variable
520 name.
521 </dd>
522
523</dl>
524
525<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
526variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
527variable and was linked with this one, one of the two would be renamed,
528preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
529external (i.e., lacking any linkage declarations), they are accessible
530outside of the current module.</p>
531<p>It is illegal for a function <i>declaration</i>
532to have any linkage type other than "externally visible", <tt>dllimport</tt>,
533or <tt>extern_weak</tt>.</p>
534<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
535linkages.
536</div>
537
538<!-- ======================================================================= -->
539<div class="doc_subsection">
540 <a name="callingconv">Calling Conventions</a>
541</div>
542
543<div class="doc_text">
544
545<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
546and <a href="#i_invoke">invokes</a> can all have an optional calling convention
547specified for the call. The calling convention of any pair of dynamic
548caller/callee must match, or the behavior of the program is undefined. The
549following calling conventions are supported by LLVM, and more may be added in
550the future:</p>
551
552<dl>
553 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
554
555 <dd>This calling convention (the default if no other calling convention is
556 specified) matches the target C calling conventions. This calling convention
557 supports varargs function calls and tolerates some mismatch in the declared
558 prototype and implemented declaration of the function (as does normal C).
559 </dd>
560
561 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
562
563 <dd>This calling convention attempts to make calls as fast as possible
564 (e.g. by passing things in registers). This calling convention allows the
565 target to use whatever tricks it wants to produce fast code for the target,
566 without having to conform to an externally specified ABI. Implementations of
567 this convention should allow arbitrary tail call optimization to be supported.
568 This calling convention does not support varargs and requires the prototype of
569 all callees to exactly match the prototype of the function definition.
570 </dd>
571
572 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
573
574 <dd>This calling convention attempts to make code in the caller as efficient
575 as possible under the assumption that the call is not commonly executed. As
576 such, these calls often preserve all registers so that the call does not break
577 any live ranges in the caller side. This calling convention does not support
578 varargs and requires the prototype of all callees to exactly match the
579 prototype of the function definition.
580 </dd>
581
582 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
583
584 <dd>Any calling convention may be specified by number, allowing
585 target-specific calling conventions to be used. Target specific calling
586 conventions start at 64.
587 </dd>
588</dl>
589
590<p>More calling conventions can be added/defined on an as-needed basis, to
591support pascal conventions or any other well-known target-independent
592convention.</p>
593
594</div>
595
596<!-- ======================================================================= -->
597<div class="doc_subsection">
598 <a name="visibility">Visibility Styles</a>
599</div>
600
601<div class="doc_text">
602
603<p>
604All Global Variables and Functions have one of the following visibility styles:
605</p>
606
607<dl>
608 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
609
610 <dd>On ELF, default visibility means that the declaration is visible to other
611 modules and, in shared libraries, means that the declared entity may be
612 overridden. On Darwin, default visibility means that the declaration is
613 visible to other modules. Default visibility corresponds to "external
614 linkage" in the language.
615 </dd>
616
617 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
618
619 <dd>Two declarations of an object with hidden visibility refer to the same
620 object if they are in the same shared object. Usually, hidden visibility
621 indicates that the symbol will not be placed into the dynamic symbol table,
622 so no other module (executable or shared library) can reference it
623 directly.
624 </dd>
625
626 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
627
628 <dd>On ELF, protected visibility indicates that the symbol will be placed in
629 the dynamic symbol table, but that references within the defining module will
630 bind to the local symbol. That is, the symbol cannot be overridden by another
631 module.
632 </dd>
633</dl>
634
635</div>
636
637<!-- ======================================================================= -->
638<div class="doc_subsection">
639 <a name="globalvars">Global Variables</a>
640</div>
641
642<div class="doc_text">
643
644<p>Global variables define regions of memory allocated at compilation time
645instead of run-time. Global variables may optionally be initialized, may have
646an explicit section to be placed in, and may have an optional explicit alignment
647specified. A variable may be defined as "thread_local", which means that it
648will not be shared by threads (each thread will have a separated copy of the
649variable). A variable may be defined as a global "constant," which indicates
650that the contents of the variable will <b>never</b> be modified (enabling better
651optimization, allowing the global data to be placed in the read-only section of
652an executable, etc). Note that variables that need runtime initialization
653cannot be marked "constant" as there is a store to the variable.</p>
654
655<p>
656LLVM explicitly allows <em>declarations</em> of global variables to be marked
657constant, even if the final definition of the global is not. This capability
658can be used to enable slightly better optimization of the program, but requires
659the language definition to guarantee that optimizations based on the
660'constantness' are valid for the translation units that do not include the
661definition.
662</p>
663
664<p>As SSA values, global variables define pointer values that are in
665scope (i.e. they dominate) all basic blocks in the program. Global
666variables always define a pointer to their "content" type because they
667describe a region of memory, and all memory objects in LLVM are
668accessed through pointers.</p>
669
670<p>LLVM allows an explicit section to be specified for globals. If the target
671supports it, it will emit globals to the section specified.</p>
672
673<p>An explicit alignment may be specified for a global. If not present, or if
674the alignment is set to zero, the alignment of the global is set by the target
675to whatever it feels convenient. If an explicit alignment is specified, the
676global is forced to have at least that much alignment. All alignments must be
677a power of 2.</p>
678
679<p>For example, the following defines a global with an initializer, section,
680 and alignment:</p>
681
682<div class="doc_code">
683<pre>
684@G = constant float 1.0, section "foo", align 4
685</pre>
686</div>
687
688</div>
689
690
691<!-- ======================================================================= -->
692<div class="doc_subsection">
693 <a name="functionstructure">Functions</a>
694</div>
695
696<div class="doc_text">
697
698<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
699an optional <a href="#linkage">linkage type</a>, an optional
700<a href="#visibility">visibility style</a>, an optional
701<a href="#callingconv">calling convention</a>, a return type, an optional
702<a href="#paramattrs">parameter attribute</a> for the return type, a function
703name, a (possibly empty) argument list (each with optional
704<a href="#paramattrs">parameter attributes</a>), an optional section, an
705optional alignment, an opening curly brace, a list of basic blocks, and a
706closing curly brace.
707
708LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
709optional <a href="#linkage">linkage type</a>, an optional
710<a href="#visibility">visibility style</a>, an optional
711<a href="#callingconv">calling convention</a>, a return type, an optional
712<a href="#paramattrs">parameter attribute</a> for the return type, a function
713name, a possibly empty list of arguments, and an optional alignment.</p>
714
715<p>A function definition contains a list of basic blocks, forming the CFG for
716the function. Each basic block may optionally start with a label (giving the
717basic block a symbol table entry), contains a list of instructions, and ends
718with a <a href="#terminators">terminator</a> instruction (such as a branch or
719function return).</p>
720
721<p>The first basic block in a function is special in two ways: it is immediately
722executed on entrance to the function, and it is not allowed to have predecessor
723basic blocks (i.e. there can not be any branches to the entry block of a
724function). Because the block can have no predecessors, it also cannot have any
725<a href="#i_phi">PHI nodes</a>.</p>
726
727<p>LLVM allows an explicit section to be specified for functions. If the target
728supports it, it will emit functions to the section specified.</p>
729
730<p>An explicit alignment may be specified for a function. If not present, or if
731the alignment is set to zero, the alignment of the function is set by the target
732to whatever it feels convenient. If an explicit alignment is specified, the
733function is forced to have at least that much alignment. All alignments must be
734a power of 2.</p>
735
736</div>
737
738
739<!-- ======================================================================= -->
740<div class="doc_subsection">
741 <a name="aliasstructure">Aliases</a>
742</div>
743<div class="doc_text">
744 <p>Aliases act as "second name" for the aliasee value (which can be either
745 function or global variable or bitcast of global value). Aliases may have an
746 optional <a href="#linkage">linkage type</a>, and an
747 optional <a href="#visibility">visibility style</a>.</p>
748
749 <h5>Syntax:</h5>
750
751<div class="doc_code">
752<pre>
753@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
754</pre>
755</div>
756
757</div>
758
759
760
761<!-- ======================================================================= -->
762<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
763<div class="doc_text">
764 <p>The return type and each parameter of a function type may have a set of
765 <i>parameter attributes</i> associated with them. Parameter attributes are
766 used to communicate additional information about the result or parameters of
767 a function. Parameter attributes are considered to be part of the function
768 type so two functions types that differ only by the parameter attributes
769 are different function types.</p>
770
771 <p>Parameter attributes are simple keywords that follow the type specified. If
772 multiple parameter attributes are needed, they are space separated. For
773 example:</p>
774
775<div class="doc_code">
776<pre>
Reid Spencerf234bed2007-07-19 23:13:04 +0000777%someFunc = i16 (i8 signext %someParam) zeroext
778%someFunc = i16 (i8 zeroext %someParam) zeroext
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000779</pre>
780</div>
781
782 <p>Note that the two function types above are unique because the parameter has
Reid Spencerf234bed2007-07-19 23:13:04 +0000783 a different attribute (<tt>signext</tt> in the first one, <tt>zeroext</tt> in
784 the second). Also note that the attribute for the function result
785 (<tt>zeroext</tt>) comes immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000786
787 <p>Currently, only the following parameter attributes are defined:</p>
788 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000789 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790 <dd>This indicates that the parameter should be zero extended just before
791 a call to this function.</dd>
Reid Spencerf234bed2007-07-19 23:13:04 +0000792 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000793 <dd>This indicates that the parameter should be sign extended just before
794 a call to this function.</dd>
795 <dt><tt>inreg</tt></dt>
796 <dd>This indicates that the parameter should be placed in register (if
797 possible) during assembling function call. Support for this attribute is
798 target-specific</dd>
799 <dt><tt>sret</tt></dt>
800 <dd>This indicates that the parameter specifies the address of a structure
801 that is the return value of the function in the source program.</dd>
802 <dt><tt>noalias</tt></dt>
803 <dd>This indicates that the parameter not alias any other object or any
804 other "noalias" objects during the function call.
805 <dt><tt>noreturn</tt></dt>
806 <dd>This function attribute indicates that the function never returns. This
807 indicates to LLVM that every call to this function should be treated as if
808 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
809 <dt><tt>nounwind</tt></dt>
810 <dd>This function attribute indicates that the function type does not use
811 the unwind instruction and does not allow stack unwinding to propagate
812 through it.</dd>
Duncan Sands4ee46812007-07-27 19:57:41 +0000813 <dt><tt>nest</tt></dt>
814 <dd>This indicates that the parameter can be excised using the
815 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816 </dl>
817
818</div>
819
820<!-- ======================================================================= -->
821<div class="doc_subsection">
822 <a name="moduleasm">Module-Level Inline Assembly</a>
823</div>
824
825<div class="doc_text">
826<p>
827Modules may contain "module-level inline asm" blocks, which corresponds to the
828GCC "file scope inline asm" blocks. These blocks are internally concatenated by
829LLVM and treated as a single unit, but may be separated in the .ll file if
830desired. The syntax is very simple:
831</p>
832
833<div class="doc_code">
834<pre>
835module asm "inline asm code goes here"
836module asm "more can go here"
837</pre>
838</div>
839
840<p>The strings can contain any character by escaping non-printable characters.
841 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
842 for the number.
843</p>
844
845<p>
846 The inline asm code is simply printed to the machine code .s file when
847 assembly code is generated.
848</p>
849</div>
850
851<!-- ======================================================================= -->
852<div class="doc_subsection">
853 <a name="datalayout">Data Layout</a>
854</div>
855
856<div class="doc_text">
857<p>A module may specify a target specific data layout string that specifies how
858data is to be laid out in memory. The syntax for the data layout is simply:</p>
859<pre> target datalayout = "<i>layout specification</i>"</pre>
860<p>The <i>layout specification</i> consists of a list of specifications
861separated by the minus sign character ('-'). Each specification starts with a
862letter and may include other information after the letter to define some
863aspect of the data layout. The specifications accepted are as follows: </p>
864<dl>
865 <dt><tt>E</tt></dt>
866 <dd>Specifies that the target lays out data in big-endian form. That is, the
867 bits with the most significance have the lowest address location.</dd>
868 <dt><tt>e</tt></dt>
869 <dd>Specifies that hte target lays out data in little-endian form. That is,
870 the bits with the least significance have the lowest address location.</dd>
871 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
872 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
873 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
874 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
875 too.</dd>
876 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
877 <dd>This specifies the alignment for an integer type of a given bit
878 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
879 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
880 <dd>This specifies the alignment for a vector type of a given bit
881 <i>size</i>.</dd>
882 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
883 <dd>This specifies the alignment for a floating point type of a given bit
884 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
885 (double).</dd>
886 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
887 <dd>This specifies the alignment for an aggregate type of a given bit
888 <i>size</i>.</dd>
889</dl>
890<p>When constructing the data layout for a given target, LLVM starts with a
891default set of specifications which are then (possibly) overriden by the
892specifications in the <tt>datalayout</tt> keyword. The default specifications
893are given in this list:</p>
894<ul>
895 <li><tt>E</tt> - big endian</li>
896 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
897 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
898 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
899 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
900 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
901 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
902 alignment of 64-bits</li>
903 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
904 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
905 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
906 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
907 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
908</ul>
909<p>When llvm is determining the alignment for a given type, it uses the
910following rules:
911<ol>
912 <li>If the type sought is an exact match for one of the specifications, that
913 specification is used.</li>
914 <li>If no match is found, and the type sought is an integer type, then the
915 smallest integer type that is larger than the bitwidth of the sought type is
916 used. If none of the specifications are larger than the bitwidth then the the
917 largest integer type is used. For example, given the default specifications
918 above, the i7 type will use the alignment of i8 (next largest) while both
919 i65 and i256 will use the alignment of i64 (largest specified).</li>
920 <li>If no match is found, and the type sought is a vector type, then the
921 largest vector type that is smaller than the sought vector type will be used
922 as a fall back. This happens because <128 x double> can be implemented in
923 terms of 64 <2 x double>, for example.</li>
924</ol>
925</div>
926
927<!-- *********************************************************************** -->
928<div class="doc_section"> <a name="typesystem">Type System</a> </div>
929<!-- *********************************************************************** -->
930
931<div class="doc_text">
932
933<p>The LLVM type system is one of the most important features of the
934intermediate representation. Being typed enables a number of
935optimizations to be performed on the IR directly, without having to do
936extra analyses on the side before the transformation. A strong type
937system makes it easier to read the generated code and enables novel
938analyses and transformations that are not feasible to perform on normal
939three address code representations.</p>
940
941</div>
942
943<!-- ======================================================================= -->
944<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
945<div class="doc_text">
946<p>The primitive types are the fundamental building blocks of the LLVM
947system. The current set of primitive types is as follows:</p>
948
949<table class="layout">
950 <tr class="layout">
951 <td class="left">
952 <table>
953 <tbody>
954 <tr><th>Type</th><th>Description</th></tr>
955 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
956 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
957 </tbody>
958 </table>
959 </td>
960 <td class="right">
961 <table>
962 <tbody>
963 <tr><th>Type</th><th>Description</th></tr>
964 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
965 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
966 </tbody>
967 </table>
968 </td>
969 </tr>
970</table>
971</div>
972
973<!-- _______________________________________________________________________ -->
974<div class="doc_subsubsection"> <a name="t_classifications">Type
975Classifications</a> </div>
976<div class="doc_text">
977<p>These different primitive types fall into a few useful
978classifications:</p>
979
980<table border="1" cellspacing="0" cellpadding="4">
981 <tbody>
982 <tr><th>Classification</th><th>Types</th></tr>
983 <tr>
984 <td><a name="t_integer">integer</a></td>
985 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
986 </tr>
987 <tr>
988 <td><a name="t_floating">floating point</a></td>
989 <td><tt>float, double</tt></td>
990 </tr>
991 <tr>
992 <td><a name="t_firstclass">first class</a></td>
993 <td><tt>i1, ..., float, double, <br/>
994 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
995 </td>
996 </tr>
997 </tbody>
998</table>
999
1000<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1001most important. Values of these types are the only ones which can be
1002produced by instructions, passed as arguments, or used as operands to
1003instructions. This means that all structures and arrays must be
1004manipulated either by pointer or by component.</p>
1005</div>
1006
1007<!-- ======================================================================= -->
1008<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1009
1010<div class="doc_text">
1011
1012<p>The real power in LLVM comes from the derived types in the system.
1013This is what allows a programmer to represent arrays, functions,
1014pointers, and other useful types. Note that these derived types may be
1015recursive: For example, it is possible to have a two dimensional array.</p>
1016
1017</div>
1018
1019<!-- _______________________________________________________________________ -->
1020<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1021
1022<div class="doc_text">
1023
1024<h5>Overview:</h5>
1025<p>The integer type is a very simple derived type that simply specifies an
1026arbitrary bit width for the integer type desired. Any bit width from 1 bit to
10272^23-1 (about 8 million) can be specified.</p>
1028
1029<h5>Syntax:</h5>
1030
1031<pre>
1032 iN
1033</pre>
1034
1035<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1036value.</p>
1037
1038<h5>Examples:</h5>
1039<table class="layout">
1040 <tr class="layout">
1041 <td class="left">
1042 <tt>i1</tt><br/>
1043 <tt>i4</tt><br/>
1044 <tt>i8</tt><br/>
1045 <tt>i16</tt><br/>
1046 <tt>i32</tt><br/>
1047 <tt>i42</tt><br/>
1048 <tt>i64</tt><br/>
1049 <tt>i1942652</tt><br/>
1050 </td>
1051 <td class="left">
1052 A boolean integer of 1 bit<br/>
1053 A nibble sized integer of 4 bits.<br/>
1054 A byte sized integer of 8 bits.<br/>
1055 A half word sized integer of 16 bits.<br/>
1056 A word sized integer of 32 bits.<br/>
1057 An integer whose bit width is the answer. <br/>
1058 A double word sized integer of 64 bits.<br/>
1059 A really big integer of over 1 million bits.<br/>
1060 </td>
1061 </tr>
1062</table>
1063</div>
1064
1065<!-- _______________________________________________________________________ -->
1066<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1067
1068<div class="doc_text">
1069
1070<h5>Overview:</h5>
1071
1072<p>The array type is a very simple derived type that arranges elements
1073sequentially in memory. The array type requires a size (number of
1074elements) and an underlying data type.</p>
1075
1076<h5>Syntax:</h5>
1077
1078<pre>
1079 [&lt;# elements&gt; x &lt;elementtype&gt;]
1080</pre>
1081
1082<p>The number of elements is a constant integer value; elementtype may
1083be any type with a size.</p>
1084
1085<h5>Examples:</h5>
1086<table class="layout">
1087 <tr class="layout">
1088 <td class="left">
1089 <tt>[40 x i32 ]</tt><br/>
1090 <tt>[41 x i32 ]</tt><br/>
1091 <tt>[40 x i8]</tt><br/>
1092 </td>
1093 <td class="left">
1094 Array of 40 32-bit integer values.<br/>
1095 Array of 41 32-bit integer values.<br/>
1096 Array of 40 8-bit integer values.<br/>
1097 </td>
1098 </tr>
1099</table>
1100<p>Here are some examples of multidimensional arrays:</p>
1101<table class="layout">
1102 <tr class="layout">
1103 <td class="left">
1104 <tt>[3 x [4 x i32]]</tt><br/>
1105 <tt>[12 x [10 x float]]</tt><br/>
1106 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
1107 </td>
1108 <td class="left">
1109 3x4 array of 32-bit integer values.<br/>
1110 12x10 array of single precision floating point values.<br/>
1111 2x3x4 array of 16-bit integer values.<br/>
1112 </td>
1113 </tr>
1114</table>
1115
1116<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1117length array. Normally, accesses past the end of an array are undefined in
1118LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1119As a special case, however, zero length arrays are recognized to be variable
1120length. This allows implementation of 'pascal style arrays' with the LLVM
1121type "{ i32, [0 x float]}", for example.</p>
1122
1123</div>
1124
1125<!-- _______________________________________________________________________ -->
1126<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1127<div class="doc_text">
1128<h5>Overview:</h5>
1129<p>The function type can be thought of as a function signature. It
1130consists of a return type and a list of formal parameter types.
1131Function types are usually used to build virtual function tables
1132(which are structures of pointers to functions), for indirect function
1133calls, and when defining a function.</p>
1134<p>
1135The return type of a function type cannot be an aggregate type.
1136</p>
1137<h5>Syntax:</h5>
1138<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1139<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1140specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1141which indicates that the function takes a variable number of arguments.
1142Variable argument functions can access their arguments with the <a
1143 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1144<h5>Examples:</h5>
1145<table class="layout">
1146 <tr class="layout">
1147 <td class="left"><tt>i32 (i32)</tt></td>
1148 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1149 </td>
1150 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001151 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001152 </tt></td>
1153 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1154 an <tt>i16</tt> that should be sign extended and a
1155 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1156 <tt>float</tt>.
1157 </td>
1158 </tr><tr class="layout">
1159 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1160 <td class="left">A vararg function that takes at least one
1161 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1162 which returns an integer. This is the signature for <tt>printf</tt> in
1163 LLVM.
1164 </td>
1165 </tr>
1166</table>
1167
1168</div>
1169<!-- _______________________________________________________________________ -->
1170<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1171<div class="doc_text">
1172<h5>Overview:</h5>
1173<p>The structure type is used to represent a collection of data members
1174together in memory. The packing of the field types is defined to match
1175the ABI of the underlying processor. The elements of a structure may
1176be any type that has a size.</p>
1177<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1178and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1179field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1180instruction.</p>
1181<h5>Syntax:</h5>
1182<pre> { &lt;type list&gt; }<br></pre>
1183<h5>Examples:</h5>
1184<table class="layout">
1185 <tr class="layout">
1186 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1187 <td class="left">A triple of three <tt>i32</tt> values</td>
1188 </tr><tr class="layout">
1189 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1190 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1191 second element is a <a href="#t_pointer">pointer</a> to a
1192 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1193 an <tt>i32</tt>.</td>
1194 </tr>
1195</table>
1196</div>
1197
1198<!-- _______________________________________________________________________ -->
1199<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1200</div>
1201<div class="doc_text">
1202<h5>Overview:</h5>
1203<p>The packed structure type is used to represent a collection of data members
1204together in memory. There is no padding between fields. Further, the alignment
1205of a packed structure is 1 byte. The elements of a packed structure may
1206be any type that has a size.</p>
1207<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1208and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1209field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1210instruction.</p>
1211<h5>Syntax:</h5>
1212<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1213<h5>Examples:</h5>
1214<table class="layout">
1215 <tr class="layout">
1216 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1217 <td class="left">A triple of three <tt>i32</tt> values</td>
1218 </tr><tr class="layout">
1219 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1220 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1221 second element is a <a href="#t_pointer">pointer</a> to a
1222 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1223 an <tt>i32</tt>.</td>
1224 </tr>
1225</table>
1226</div>
1227
1228<!-- _______________________________________________________________________ -->
1229<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1230<div class="doc_text">
1231<h5>Overview:</h5>
1232<p>As in many languages, the pointer type represents a pointer or
1233reference to another object, which must live in memory.</p>
1234<h5>Syntax:</h5>
1235<pre> &lt;type&gt; *<br></pre>
1236<h5>Examples:</h5>
1237<table class="layout">
1238 <tr class="layout">
1239 <td class="left">
1240 <tt>[4x i32]*</tt><br/>
1241 <tt>i32 (i32 *) *</tt><br/>
1242 </td>
1243 <td class="left">
1244 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
1245 four <tt>i32</tt> values<br/>
1246 A <a href="#t_pointer">pointer</a> to a <a
1247 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1248 <tt>i32</tt>.<br/>
1249 </td>
1250 </tr>
1251</table>
1252</div>
1253
1254<!-- _______________________________________________________________________ -->
1255<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1256<div class="doc_text">
1257
1258<h5>Overview:</h5>
1259
1260<p>A vector type is a simple derived type that represents a vector
1261of elements. Vector types are used when multiple primitive data
1262are operated in parallel using a single instruction (SIMD).
1263A vector type requires a size (number of
1264elements) and an underlying primitive data type. Vectors must have a power
1265of two length (1, 2, 4, 8, 16 ...). Vector types are
1266considered <a href="#t_firstclass">first class</a>.</p>
1267
1268<h5>Syntax:</h5>
1269
1270<pre>
1271 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1272</pre>
1273
1274<p>The number of elements is a constant integer value; elementtype may
1275be any integer or floating point type.</p>
1276
1277<h5>Examples:</h5>
1278
1279<table class="layout">
1280 <tr class="layout">
1281 <td class="left">
1282 <tt>&lt;4 x i32&gt;</tt><br/>
1283 <tt>&lt;8 x float&gt;</tt><br/>
1284 <tt>&lt;2 x i64&gt;</tt><br/>
1285 </td>
1286 <td class="left">
1287 Vector of 4 32-bit integer values.<br/>
1288 Vector of 8 floating-point values.<br/>
1289 Vector of 2 64-bit integer values.<br/>
1290 </td>
1291 </tr>
1292</table>
1293</div>
1294
1295<!-- _______________________________________________________________________ -->
1296<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1297<div class="doc_text">
1298
1299<h5>Overview:</h5>
1300
1301<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksenda0706e2007-10-14 00:34:53 +00001302corresponds (for example) to the C notion of a forward declared structure type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001303In LLVM, opaque types can eventually be resolved to any type (not just a
1304structure type).</p>
1305
1306<h5>Syntax:</h5>
1307
1308<pre>
1309 opaque
1310</pre>
1311
1312<h5>Examples:</h5>
1313
1314<table class="layout">
1315 <tr class="layout">
1316 <td class="left">
1317 <tt>opaque</tt>
1318 </td>
1319 <td class="left">
1320 An opaque type.<br/>
1321 </td>
1322 </tr>
1323</table>
1324</div>
1325
1326
1327<!-- *********************************************************************** -->
1328<div class="doc_section"> <a name="constants">Constants</a> </div>
1329<!-- *********************************************************************** -->
1330
1331<div class="doc_text">
1332
1333<p>LLVM has several different basic types of constants. This section describes
1334them all and their syntax.</p>
1335
1336</div>
1337
1338<!-- ======================================================================= -->
1339<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1340
1341<div class="doc_text">
1342
1343<dl>
1344 <dt><b>Boolean constants</b></dt>
1345
1346 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1347 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1348 </dd>
1349
1350 <dt><b>Integer constants</b></dt>
1351
1352 <dd>Standard integers (such as '4') are constants of the <a
1353 href="#t_integer">integer</a> type. Negative numbers may be used with
1354 integer types.
1355 </dd>
1356
1357 <dt><b>Floating point constants</b></dt>
1358
1359 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1360 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1361 notation (see below). Floating point constants must have a <a
1362 href="#t_floating">floating point</a> type. </dd>
1363
1364 <dt><b>Null pointer constants</b></dt>
1365
1366 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1367 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1368
1369</dl>
1370
1371<p>The one non-intuitive notation for constants is the optional hexadecimal form
1372of floating point constants. For example, the form '<tt>double
13730x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
13744.5e+15</tt>'. The only time hexadecimal floating point constants are required
1375(and the only time that they are generated by the disassembler) is when a
1376floating point constant must be emitted but it cannot be represented as a
1377decimal floating point number. For example, NaN's, infinities, and other
1378special values are represented in their IEEE hexadecimal format so that
1379assembly and disassembly do not cause any bits to change in the constants.</p>
1380
1381</div>
1382
1383<!-- ======================================================================= -->
1384<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1385</div>
1386
1387<div class="doc_text">
1388<p>Aggregate constants arise from aggregation of simple constants
1389and smaller aggregate constants.</p>
1390
1391<dl>
1392 <dt><b>Structure constants</b></dt>
1393
1394 <dd>Structure constants are represented with notation similar to structure
1395 type definitions (a comma separated list of elements, surrounded by braces
1396 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1397 where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
1398 must have <a href="#t_struct">structure type</a>, and the number and
1399 types of elements must match those specified by the type.
1400 </dd>
1401
1402 <dt><b>Array constants</b></dt>
1403
1404 <dd>Array constants are represented with notation similar to array type
1405 definitions (a comma separated list of elements, surrounded by square brackets
1406 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1407 constants must have <a href="#t_array">array type</a>, and the number and
1408 types of elements must match those specified by the type.
1409 </dd>
1410
1411 <dt><b>Vector constants</b></dt>
1412
1413 <dd>Vector constants are represented with notation similar to vector type
1414 definitions (a comma separated list of elements, surrounded by
1415 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1416 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1417 href="#t_vector">vector type</a>, and the number and types of elements must
1418 match those specified by the type.
1419 </dd>
1420
1421 <dt><b>Zero initialization</b></dt>
1422
1423 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1424 value to zero of <em>any</em> type, including scalar and aggregate types.
1425 This is often used to avoid having to print large zero initializers (e.g. for
1426 large arrays) and is always exactly equivalent to using explicit zero
1427 initializers.
1428 </dd>
1429</dl>
1430
1431</div>
1432
1433<!-- ======================================================================= -->
1434<div class="doc_subsection">
1435 <a name="globalconstants">Global Variable and Function Addresses</a>
1436</div>
1437
1438<div class="doc_text">
1439
1440<p>The addresses of <a href="#globalvars">global variables</a> and <a
1441href="#functionstructure">functions</a> are always implicitly valid (link-time)
1442constants. These constants are explicitly referenced when the <a
1443href="#identifiers">identifier for the global</a> is used and always have <a
1444href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1445file:</p>
1446
1447<div class="doc_code">
1448<pre>
1449@X = global i32 17
1450@Y = global i32 42
1451@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1452</pre>
1453</div>
1454
1455</div>
1456
1457<!-- ======================================================================= -->
1458<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1459<div class="doc_text">
1460 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1461 no specific value. Undefined values may be of any type and be used anywhere
1462 a constant is permitted.</p>
1463
1464 <p>Undefined values indicate to the compiler that the program is well defined
1465 no matter what value is used, giving the compiler more freedom to optimize.
1466 </p>
1467</div>
1468
1469<!-- ======================================================================= -->
1470<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1471</div>
1472
1473<div class="doc_text">
1474
1475<p>Constant expressions are used to allow expressions involving other constants
1476to be used as constants. Constant expressions may be of any <a
1477href="#t_firstclass">first class</a> type and may involve any LLVM operation
1478that does not have side effects (e.g. load and call are not supported). The
1479following is the syntax for constant expressions:</p>
1480
1481<dl>
1482 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1483 <dd>Truncate a constant to another type. The bit size of CST must be larger
1484 than the bit size of TYPE. Both types must be integers.</dd>
1485
1486 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1487 <dd>Zero extend a constant to another type. The bit size of CST must be
1488 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1489
1490 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1491 <dd>Sign extend a constant to another type. The bit size of CST must be
1492 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1493
1494 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1495 <dd>Truncate a floating point constant to another floating point type. The
1496 size of CST must be larger than the size of TYPE. Both types must be
1497 floating point.</dd>
1498
1499 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1500 <dd>Floating point extend a constant to another type. The size of CST must be
1501 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1502
Reid Spencere6adee82007-07-31 14:40:14 +00001503 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001504 <dd>Convert a floating point constant to the corresponding unsigned integer
1505 constant. TYPE must be an integer type. CST must be floating point. If the
1506 value won't fit in the integer type, the results are undefined.</dd>
1507
1508 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1509 <dd>Convert a floating point constant to the corresponding signed integer
1510 constant. TYPE must be an integer type. CST must be floating point. If the
1511 value won't fit in the integer type, the results are undefined.</dd>
1512
1513 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1514 <dd>Convert an unsigned integer constant to the corresponding floating point
1515 constant. TYPE must be floating point. CST must be of integer type. If the
1516 value won't fit in the floating point type, the results are undefined.</dd>
1517
1518 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1519 <dd>Convert a signed integer constant to the corresponding floating point
1520 constant. TYPE must be floating point. CST must be of integer type. If the
1521 value won't fit in the floating point type, the results are undefined.</dd>
1522
1523 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1524 <dd>Convert a pointer typed constant to the corresponding integer constant
1525 TYPE must be an integer type. CST must be of pointer type. The CST value is
1526 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1527
1528 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1529 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1530 pointer type. CST must be of integer type. The CST value is zero extended,
1531 truncated, or unchanged to make it fit in a pointer size. This one is
1532 <i>really</i> dangerous!</dd>
1533
1534 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1535 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1536 identical (same number of bits). The conversion is done as if the CST value
1537 was stored to memory and read back as TYPE. In other words, no bits change
1538 with this operator, just the type. This can be used for conversion of
1539 vector types to any other type, as long as they have the same bit width. For
1540 pointers it is only valid to cast to another pointer type.
1541 </dd>
1542
1543 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1544
1545 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1546 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1547 instruction, the index list may have zero or more indexes, which are required
1548 to make sense for the type of "CSTPTR".</dd>
1549
1550 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1551
1552 <dd>Perform the <a href="#i_select">select operation</a> on
1553 constants.</dd>
1554
1555 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1556 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1557
1558 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1559 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1560
1561 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1562
1563 <dd>Perform the <a href="#i_extractelement">extractelement
1564 operation</a> on constants.
1565
1566 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1567
1568 <dd>Perform the <a href="#i_insertelement">insertelement
1569 operation</a> on constants.</dd>
1570
1571
1572 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1573
1574 <dd>Perform the <a href="#i_shufflevector">shufflevector
1575 operation</a> on constants.</dd>
1576
1577 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1578
1579 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1580 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1581 binary</a> operations. The constraints on operands are the same as those for
1582 the corresponding instruction (e.g. no bitwise operations on floating point
1583 values are allowed).</dd>
1584</dl>
1585</div>
1586
1587<!-- *********************************************************************** -->
1588<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1589<!-- *********************************************************************** -->
1590
1591<!-- ======================================================================= -->
1592<div class="doc_subsection">
1593<a name="inlineasm">Inline Assembler Expressions</a>
1594</div>
1595
1596<div class="doc_text">
1597
1598<p>
1599LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1600Module-Level Inline Assembly</a>) through the use of a special value. This
1601value represents the inline assembler as a string (containing the instructions
1602to emit), a list of operand constraints (stored as a string), and a flag that
1603indicates whether or not the inline asm expression has side effects. An example
1604inline assembler expression is:
1605</p>
1606
1607<div class="doc_code">
1608<pre>
1609i32 (i32) asm "bswap $0", "=r,r"
1610</pre>
1611</div>
1612
1613<p>
1614Inline assembler expressions may <b>only</b> be used as the callee operand of
1615a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1616</p>
1617
1618<div class="doc_code">
1619<pre>
1620%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1621</pre>
1622</div>
1623
1624<p>
1625Inline asms with side effects not visible in the constraint list must be marked
1626as having side effects. This is done through the use of the
1627'<tt>sideeffect</tt>' keyword, like so:
1628</p>
1629
1630<div class="doc_code">
1631<pre>
1632call void asm sideeffect "eieio", ""()
1633</pre>
1634</div>
1635
1636<p>TODO: The format of the asm and constraints string still need to be
1637documented here. Constraints on what can be done (e.g. duplication, moving, etc
1638need to be documented).
1639</p>
1640
1641</div>
1642
1643<!-- *********************************************************************** -->
1644<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1645<!-- *********************************************************************** -->
1646
1647<div class="doc_text">
1648
1649<p>The LLVM instruction set consists of several different
1650classifications of instructions: <a href="#terminators">terminator
1651instructions</a>, <a href="#binaryops">binary instructions</a>,
1652<a href="#bitwiseops">bitwise binary instructions</a>, <a
1653 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1654instructions</a>.</p>
1655
1656</div>
1657
1658<!-- ======================================================================= -->
1659<div class="doc_subsection"> <a name="terminators">Terminator
1660Instructions</a> </div>
1661
1662<div class="doc_text">
1663
1664<p>As mentioned <a href="#functionstructure">previously</a>, every
1665basic block in a program ends with a "Terminator" instruction, which
1666indicates which block should be executed after the current block is
1667finished. These terminator instructions typically yield a '<tt>void</tt>'
1668value: they produce control flow, not values (the one exception being
1669the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1670<p>There are six different terminator instructions: the '<a
1671 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1672instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1673the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1674 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1675 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1676
1677</div>
1678
1679<!-- _______________________________________________________________________ -->
1680<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1681Instruction</a> </div>
1682<div class="doc_text">
1683<h5>Syntax:</h5>
1684<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1685 ret void <i>; Return from void function</i>
1686</pre>
1687<h5>Overview:</h5>
1688<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1689value) from a function back to the caller.</p>
1690<p>There are two forms of the '<tt>ret</tt>' instruction: one that
1691returns a value and then causes control flow, and one that just causes
1692control flow to occur.</p>
1693<h5>Arguments:</h5>
1694<p>The '<tt>ret</tt>' instruction may return any '<a
1695 href="#t_firstclass">first class</a>' type. Notice that a function is
1696not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1697instruction inside of the function that returns a value that does not
1698match the return type of the function.</p>
1699<h5>Semantics:</h5>
1700<p>When the '<tt>ret</tt>' instruction is executed, control flow
1701returns back to the calling function's context. If the caller is a "<a
1702 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1703the instruction after the call. If the caller was an "<a
1704 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1705at the beginning of the "normal" destination block. If the instruction
1706returns a value, that value shall set the call or invoke instruction's
1707return value.</p>
1708<h5>Example:</h5>
1709<pre> ret i32 5 <i>; Return an integer value of 5</i>
1710 ret void <i>; Return from a void function</i>
1711</pre>
1712</div>
1713<!-- _______________________________________________________________________ -->
1714<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1715<div class="doc_text">
1716<h5>Syntax:</h5>
1717<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1718</pre>
1719<h5>Overview:</h5>
1720<p>The '<tt>br</tt>' instruction is used to cause control flow to
1721transfer to a different basic block in the current function. There are
1722two forms of this instruction, corresponding to a conditional branch
1723and an unconditional branch.</p>
1724<h5>Arguments:</h5>
1725<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1726single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1727unconditional form of the '<tt>br</tt>' instruction takes a single
1728'<tt>label</tt>' value as a target.</p>
1729<h5>Semantics:</h5>
1730<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1731argument is evaluated. If the value is <tt>true</tt>, control flows
1732to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1733control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1734<h5>Example:</h5>
1735<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1736 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1737</div>
1738<!-- _______________________________________________________________________ -->
1739<div class="doc_subsubsection">
1740 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1741</div>
1742
1743<div class="doc_text">
1744<h5>Syntax:</h5>
1745
1746<pre>
1747 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1748</pre>
1749
1750<h5>Overview:</h5>
1751
1752<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1753several different places. It is a generalization of the '<tt>br</tt>'
1754instruction, allowing a branch to occur to one of many possible
1755destinations.</p>
1756
1757
1758<h5>Arguments:</h5>
1759
1760<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1761comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1762an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1763table is not allowed to contain duplicate constant entries.</p>
1764
1765<h5>Semantics:</h5>
1766
1767<p>The <tt>switch</tt> instruction specifies a table of values and
1768destinations. When the '<tt>switch</tt>' instruction is executed, this
1769table is searched for the given value. If the value is found, control flow is
1770transfered to the corresponding destination; otherwise, control flow is
1771transfered to the default destination.</p>
1772
1773<h5>Implementation:</h5>
1774
1775<p>Depending on properties of the target machine and the particular
1776<tt>switch</tt> instruction, this instruction may be code generated in different
1777ways. For example, it could be generated as a series of chained conditional
1778branches or with a lookup table.</p>
1779
1780<h5>Example:</h5>
1781
1782<pre>
1783 <i>; Emulate a conditional br instruction</i>
1784 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1785 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1786
1787 <i>; Emulate an unconditional br instruction</i>
1788 switch i32 0, label %dest [ ]
1789
1790 <i>; Implement a jump table:</i>
1791 switch i32 %val, label %otherwise [ i32 0, label %onzero
1792 i32 1, label %onone
1793 i32 2, label %ontwo ]
1794</pre>
1795</div>
1796
1797<!-- _______________________________________________________________________ -->
1798<div class="doc_subsubsection">
1799 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1800</div>
1801
1802<div class="doc_text">
1803
1804<h5>Syntax:</h5>
1805
1806<pre>
1807 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
1808 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1809</pre>
1810
1811<h5>Overview:</h5>
1812
1813<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1814function, with the possibility of control flow transfer to either the
1815'<tt>normal</tt>' label or the
1816'<tt>exception</tt>' label. If the callee function returns with the
1817"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1818"normal" label. If the callee (or any indirect callees) returns with the "<a
1819href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1820continued at the dynamically nearest "exception" label.</p>
1821
1822<h5>Arguments:</h5>
1823
1824<p>This instruction requires several arguments:</p>
1825
1826<ol>
1827 <li>
1828 The optional "cconv" marker indicates which <a href="#callingconv">calling
1829 convention</a> the call should use. If none is specified, the call defaults
1830 to using C calling conventions.
1831 </li>
1832 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1833 function value being invoked. In most cases, this is a direct function
1834 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1835 an arbitrary pointer to function value.
1836 </li>
1837
1838 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1839 function to be invoked. </li>
1840
1841 <li>'<tt>function args</tt>': argument list whose types match the function
1842 signature argument types. If the function signature indicates the function
1843 accepts a variable number of arguments, the extra arguments can be
1844 specified. </li>
1845
1846 <li>'<tt>normal label</tt>': the label reached when the called function
1847 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1848
1849 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1850 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1851
1852</ol>
1853
1854<h5>Semantics:</h5>
1855
1856<p>This instruction is designed to operate as a standard '<tt><a
1857href="#i_call">call</a></tt>' instruction in most regards. The primary
1858difference is that it establishes an association with a label, which is used by
1859the runtime library to unwind the stack.</p>
1860
1861<p>This instruction is used in languages with destructors to ensure that proper
1862cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1863exception. Additionally, this is important for implementation of
1864'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1865
1866<h5>Example:</h5>
1867<pre>
1868 %retval = invoke i32 %Test(i32 15) to label %Continue
1869 unwind label %TestCleanup <i>; {i32}:retval set</i>
1870 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1871 unwind label %TestCleanup <i>; {i32}:retval set</i>
1872</pre>
1873</div>
1874
1875
1876<!-- _______________________________________________________________________ -->
1877
1878<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1879Instruction</a> </div>
1880
1881<div class="doc_text">
1882
1883<h5>Syntax:</h5>
1884<pre>
1885 unwind
1886</pre>
1887
1888<h5>Overview:</h5>
1889
1890<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1891at the first callee in the dynamic call stack which used an <a
1892href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1893primarily used to implement exception handling.</p>
1894
1895<h5>Semantics:</h5>
1896
1897<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1898immediately halt. The dynamic call stack is then searched for the first <a
1899href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1900execution continues at the "exceptional" destination block specified by the
1901<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1902dynamic call chain, undefined behavior results.</p>
1903</div>
1904
1905<!-- _______________________________________________________________________ -->
1906
1907<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1908Instruction</a> </div>
1909
1910<div class="doc_text">
1911
1912<h5>Syntax:</h5>
1913<pre>
1914 unreachable
1915</pre>
1916
1917<h5>Overview:</h5>
1918
1919<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1920instruction is used to inform the optimizer that a particular portion of the
1921code is not reachable. This can be used to indicate that the code after a
1922no-return function cannot be reached, and other facts.</p>
1923
1924<h5>Semantics:</h5>
1925
1926<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1927</div>
1928
1929
1930
1931<!-- ======================================================================= -->
1932<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
1933<div class="doc_text">
1934<p>Binary operators are used to do most of the computation in a
1935program. They require two operands, execute an operation on them, and
1936produce a single value. The operands might represent
1937multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
1938The result value of a binary operator is not
1939necessarily the same type as its operands.</p>
1940<p>There are several different binary operators:</p>
1941</div>
1942<!-- _______________________________________________________________________ -->
1943<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1944Instruction</a> </div>
1945<div class="doc_text">
1946<h5>Syntax:</h5>
1947<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1948</pre>
1949<h5>Overview:</h5>
1950<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
1951<h5>Arguments:</h5>
1952<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
1953 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1954 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1955Both arguments must have identical types.</p>
1956<h5>Semantics:</h5>
1957<p>The value produced is the integer or floating point sum of the two
1958operands.</p>
1959<h5>Example:</h5>
1960<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
1961</pre>
1962</div>
1963<!-- _______________________________________________________________________ -->
1964<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1965Instruction</a> </div>
1966<div class="doc_text">
1967<h5>Syntax:</h5>
1968<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1969</pre>
1970<h5>Overview:</h5>
1971<p>The '<tt>sub</tt>' instruction returns the difference of its two
1972operands.</p>
1973<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1974instruction present in most other intermediate representations.</p>
1975<h5>Arguments:</h5>
1976<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
1977 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1978values.
1979This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1980Both arguments must have identical types.</p>
1981<h5>Semantics:</h5>
1982<p>The value produced is the integer or floating point difference of
1983the two operands.</p>
1984<h5>Example:</h5>
1985<pre>
1986 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1987 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
1988</pre>
1989</div>
1990<!-- _______________________________________________________________________ -->
1991<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1992Instruction</a> </div>
1993<div class="doc_text">
1994<h5>Syntax:</h5>
1995<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1996</pre>
1997<h5>Overview:</h5>
1998<p>The '<tt>mul</tt>' instruction returns the product of its two
1999operands.</p>
2000<h5>Arguments:</h5>
2001<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
2002 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2003values.
2004This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2005Both arguments must have identical types.</p>
2006<h5>Semantics:</h5>
2007<p>The value produced is the integer or floating point product of the
2008two operands.</p>
2009<p>Because the operands are the same width, the result of an integer
2010multiplication is the same whether the operands should be deemed unsigned or
2011signed.</p>
2012<h5>Example:</h5>
2013<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2014</pre>
2015</div>
2016<!-- _______________________________________________________________________ -->
2017<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2018</a></div>
2019<div class="doc_text">
2020<h5>Syntax:</h5>
2021<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2022</pre>
2023<h5>Overview:</h5>
2024<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2025operands.</p>
2026<h5>Arguments:</h5>
2027<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2028<a href="#t_integer">integer</a> values. Both arguments must have identical
2029types. This instruction can also take <a href="#t_vector">vector</a> versions
2030of the values in which case the elements must be integers.</p>
2031<h5>Semantics:</h5>
2032<p>The value produced is the unsigned integer quotient of the two operands. This
2033instruction always performs an unsigned division operation, regardless of
2034whether the arguments are unsigned or not.</p>
2035<h5>Example:</h5>
2036<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2037</pre>
2038</div>
2039<!-- _______________________________________________________________________ -->
2040<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2041</a> </div>
2042<div class="doc_text">
2043<h5>Syntax:</h5>
2044<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2045</pre>
2046<h5>Overview:</h5>
2047<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2048operands.</p>
2049<h5>Arguments:</h5>
2050<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2051<a href="#t_integer">integer</a> values. Both arguments must have identical
2052types. This instruction can also take <a href="#t_vector">vector</a> versions
2053of the values in which case the elements must be integers.</p>
2054<h5>Semantics:</h5>
2055<p>The value produced is the signed integer quotient of the two operands. This
2056instruction always performs a signed division operation, regardless of whether
2057the arguments are signed or not.</p>
2058<h5>Example:</h5>
2059<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2060</pre>
2061</div>
2062<!-- _______________________________________________________________________ -->
2063<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2064Instruction</a> </div>
2065<div class="doc_text">
2066<h5>Syntax:</h5>
2067<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2068</pre>
2069<h5>Overview:</h5>
2070<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2071operands.</p>
2072<h5>Arguments:</h5>
2073<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2074<a href="#t_floating">floating point</a> values. Both arguments must have
2075identical types. This instruction can also take <a href="#t_vector">vector</a>
2076versions of floating point values.</p>
2077<h5>Semantics:</h5>
2078<p>The value produced is the floating point quotient of the two operands.</p>
2079<h5>Example:</h5>
2080<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2081</pre>
2082</div>
2083<!-- _______________________________________________________________________ -->
2084<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2085</div>
2086<div class="doc_text">
2087<h5>Syntax:</h5>
2088<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2089</pre>
2090<h5>Overview:</h5>
2091<p>The '<tt>urem</tt>' instruction returns the remainder from the
2092unsigned division of its two arguments.</p>
2093<h5>Arguments:</h5>
2094<p>The two arguments to the '<tt>urem</tt>' instruction must be
2095<a href="#t_integer">integer</a> values. Both arguments must have identical
2096types.</p>
2097<h5>Semantics:</h5>
2098<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2099This instruction always performs an unsigned division to get the remainder,
2100regardless of whether the arguments are unsigned or not.</p>
2101<h5>Example:</h5>
2102<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2103</pre>
2104
2105</div>
2106<!-- _______________________________________________________________________ -->
2107<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2108Instruction</a> </div>
2109<div class="doc_text">
2110<h5>Syntax:</h5>
2111<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2112</pre>
2113<h5>Overview:</h5>
2114<p>The '<tt>srem</tt>' instruction returns the remainder from the
2115signed division of its two operands.</p>
2116<h5>Arguments:</h5>
2117<p>The two arguments to the '<tt>srem</tt>' instruction must be
2118<a href="#t_integer">integer</a> values. Both arguments must have identical
2119types.</p>
2120<h5>Semantics:</h5>
2121<p>This instruction returns the <i>remainder</i> of a division (where the result
2122has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2123operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2124a value. For more information about the difference, see <a
2125 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2126Math Forum</a>. For a table of how this is implemented in various languages,
2127please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2128Wikipedia: modulo operation</a>.</p>
2129<h5>Example:</h5>
2130<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2131</pre>
2132
2133</div>
2134<!-- _______________________________________________________________________ -->
2135<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2136Instruction</a> </div>
2137<div class="doc_text">
2138<h5>Syntax:</h5>
2139<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2140</pre>
2141<h5>Overview:</h5>
2142<p>The '<tt>frem</tt>' instruction returns the remainder from the
2143division of its two operands.</p>
2144<h5>Arguments:</h5>
2145<p>The two arguments to the '<tt>frem</tt>' instruction must be
2146<a href="#t_floating">floating point</a> values. Both arguments must have
2147identical types.</p>
2148<h5>Semantics:</h5>
2149<p>This instruction returns the <i>remainder</i> of a division.</p>
2150<h5>Example:</h5>
2151<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2152</pre>
2153</div>
2154
2155<!-- ======================================================================= -->
2156<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2157Operations</a> </div>
2158<div class="doc_text">
2159<p>Bitwise binary operators are used to do various forms of
2160bit-twiddling in a program. They are generally very efficient
2161instructions and can commonly be strength reduced from other
2162instructions. They require two operands, execute an operation on them,
2163and produce a single value. The resulting value of the bitwise binary
2164operators is always the same type as its first operand.</p>
2165</div>
2166
2167<!-- _______________________________________________________________________ -->
2168<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2169Instruction</a> </div>
2170<div class="doc_text">
2171<h5>Syntax:</h5>
2172<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2173</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002174
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002175<h5>Overview:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002176
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002177<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2178the left a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002179
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002180<h5>Arguments:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002181
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002182<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2183 href="#t_integer">integer</a> type.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002184
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002185<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002186
2187<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>. If
2188<tt>var2</tt> is (statically or dynamically) equal to or larger than the number
2189of bits in <tt>var1</tt>, the result is undefined.</p>
2190
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002191<h5>Example:</h5><pre>
2192 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2193 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2194 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002195 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002196</pre>
2197</div>
2198<!-- _______________________________________________________________________ -->
2199<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2200Instruction</a> </div>
2201<div class="doc_text">
2202<h5>Syntax:</h5>
2203<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2204</pre>
2205
2206<h5>Overview:</h5>
2207<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2208operand shifted to the right a specified number of bits with zero fill.</p>
2209
2210<h5>Arguments:</h5>
2211<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2212<a href="#t_integer">integer</a> type.</p>
2213
2214<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002215
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002216<p>This instruction always performs a logical shift right operation. The most
2217significant bits of the result will be filled with zero bits after the
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002218shift. If <tt>var2</tt> is (statically or dynamically) equal to or larger than
2219the number of bits in <tt>var1</tt>, the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002220
2221<h5>Example:</h5>
2222<pre>
2223 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2224 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2225 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2226 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002227 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002228</pre>
2229</div>
2230
2231<!-- _______________________________________________________________________ -->
2232<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2233Instruction</a> </div>
2234<div class="doc_text">
2235
2236<h5>Syntax:</h5>
2237<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2238</pre>
2239
2240<h5>Overview:</h5>
2241<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2242operand shifted to the right a specified number of bits with sign extension.</p>
2243
2244<h5>Arguments:</h5>
2245<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2246<a href="#t_integer">integer</a> type.</p>
2247
2248<h5>Semantics:</h5>
2249<p>This instruction always performs an arithmetic shift right operation,
2250The most significant bits of the result will be filled with the sign bit
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002251of <tt>var1</tt>. If <tt>var2</tt> is (statically or dynamically) equal to or
2252larger than the number of bits in <tt>var1</tt>, the result is undefined.
2253</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002254
2255<h5>Example:</h5>
2256<pre>
2257 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2258 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2259 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2260 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002261 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002262</pre>
2263</div>
2264
2265<!-- _______________________________________________________________________ -->
2266<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2267Instruction</a> </div>
2268<div class="doc_text">
2269<h5>Syntax:</h5>
2270<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2271</pre>
2272<h5>Overview:</h5>
2273<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2274its two operands.</p>
2275<h5>Arguments:</h5>
2276<p>The two arguments to the '<tt>and</tt>' instruction must be <a
2277 href="#t_integer">integer</a> values. Both arguments must have
2278identical types.</p>
2279<h5>Semantics:</h5>
2280<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2281<p> </p>
2282<div style="align: center">
2283<table border="1" cellspacing="0" cellpadding="4">
2284 <tbody>
2285 <tr>
2286 <td>In0</td>
2287 <td>In1</td>
2288 <td>Out</td>
2289 </tr>
2290 <tr>
2291 <td>0</td>
2292 <td>0</td>
2293 <td>0</td>
2294 </tr>
2295 <tr>
2296 <td>0</td>
2297 <td>1</td>
2298 <td>0</td>
2299 </tr>
2300 <tr>
2301 <td>1</td>
2302 <td>0</td>
2303 <td>0</td>
2304 </tr>
2305 <tr>
2306 <td>1</td>
2307 <td>1</td>
2308 <td>1</td>
2309 </tr>
2310 </tbody>
2311</table>
2312</div>
2313<h5>Example:</h5>
2314<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2315 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2316 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2317</pre>
2318</div>
2319<!-- _______________________________________________________________________ -->
2320<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2321<div class="doc_text">
2322<h5>Syntax:</h5>
2323<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2324</pre>
2325<h5>Overview:</h5>
2326<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2327or of its two operands.</p>
2328<h5>Arguments:</h5>
2329<p>The two arguments to the '<tt>or</tt>' instruction must be <a
2330 href="#t_integer">integer</a> values. Both arguments must have
2331identical types.</p>
2332<h5>Semantics:</h5>
2333<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2334<p> </p>
2335<div style="align: center">
2336<table border="1" cellspacing="0" cellpadding="4">
2337 <tbody>
2338 <tr>
2339 <td>In0</td>
2340 <td>In1</td>
2341 <td>Out</td>
2342 </tr>
2343 <tr>
2344 <td>0</td>
2345 <td>0</td>
2346 <td>0</td>
2347 </tr>
2348 <tr>
2349 <td>0</td>
2350 <td>1</td>
2351 <td>1</td>
2352 </tr>
2353 <tr>
2354 <td>1</td>
2355 <td>0</td>
2356 <td>1</td>
2357 </tr>
2358 <tr>
2359 <td>1</td>
2360 <td>1</td>
2361 <td>1</td>
2362 </tr>
2363 </tbody>
2364</table>
2365</div>
2366<h5>Example:</h5>
2367<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2368 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2369 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2370</pre>
2371</div>
2372<!-- _______________________________________________________________________ -->
2373<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2374Instruction</a> </div>
2375<div class="doc_text">
2376<h5>Syntax:</h5>
2377<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2378</pre>
2379<h5>Overview:</h5>
2380<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2381or of its two operands. The <tt>xor</tt> is used to implement the
2382"one's complement" operation, which is the "~" operator in C.</p>
2383<h5>Arguments:</h5>
2384<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2385 href="#t_integer">integer</a> values. Both arguments must have
2386identical types.</p>
2387<h5>Semantics:</h5>
2388<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2389<p> </p>
2390<div style="align: center">
2391<table border="1" cellspacing="0" cellpadding="4">
2392 <tbody>
2393 <tr>
2394 <td>In0</td>
2395 <td>In1</td>
2396 <td>Out</td>
2397 </tr>
2398 <tr>
2399 <td>0</td>
2400 <td>0</td>
2401 <td>0</td>
2402 </tr>
2403 <tr>
2404 <td>0</td>
2405 <td>1</td>
2406 <td>1</td>
2407 </tr>
2408 <tr>
2409 <td>1</td>
2410 <td>0</td>
2411 <td>1</td>
2412 </tr>
2413 <tr>
2414 <td>1</td>
2415 <td>1</td>
2416 <td>0</td>
2417 </tr>
2418 </tbody>
2419</table>
2420</div>
2421<p> </p>
2422<h5>Example:</h5>
2423<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2424 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2425 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2426 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2427</pre>
2428</div>
2429
2430<!-- ======================================================================= -->
2431<div class="doc_subsection">
2432 <a name="vectorops">Vector Operations</a>
2433</div>
2434
2435<div class="doc_text">
2436
2437<p>LLVM supports several instructions to represent vector operations in a
2438target-independent manner. These instructions cover the element-access and
2439vector-specific operations needed to process vectors effectively. While LLVM
2440does directly support these vector operations, many sophisticated algorithms
2441will want to use target-specific intrinsics to take full advantage of a specific
2442target.</p>
2443
2444</div>
2445
2446<!-- _______________________________________________________________________ -->
2447<div class="doc_subsubsection">
2448 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2449</div>
2450
2451<div class="doc_text">
2452
2453<h5>Syntax:</h5>
2454
2455<pre>
2456 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2457</pre>
2458
2459<h5>Overview:</h5>
2460
2461<p>
2462The '<tt>extractelement</tt>' instruction extracts a single scalar
2463element from a vector at a specified index.
2464</p>
2465
2466
2467<h5>Arguments:</h5>
2468
2469<p>
2470The first operand of an '<tt>extractelement</tt>' instruction is a
2471value of <a href="#t_vector">vector</a> type. The second operand is
2472an index indicating the position from which to extract the element.
2473The index may be a variable.</p>
2474
2475<h5>Semantics:</h5>
2476
2477<p>
2478The result is a scalar of the same type as the element type of
2479<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2480<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2481results are undefined.
2482</p>
2483
2484<h5>Example:</h5>
2485
2486<pre>
2487 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2488</pre>
2489</div>
2490
2491
2492<!-- _______________________________________________________________________ -->
2493<div class="doc_subsubsection">
2494 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2495</div>
2496
2497<div class="doc_text">
2498
2499<h5>Syntax:</h5>
2500
2501<pre>
2502 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2503</pre>
2504
2505<h5>Overview:</h5>
2506
2507<p>
2508The '<tt>insertelement</tt>' instruction inserts a scalar
2509element into a vector at a specified index.
2510</p>
2511
2512
2513<h5>Arguments:</h5>
2514
2515<p>
2516The first operand of an '<tt>insertelement</tt>' instruction is a
2517value of <a href="#t_vector">vector</a> type. The second operand is a
2518scalar value whose type must equal the element type of the first
2519operand. The third operand is an index indicating the position at
2520which to insert the value. The index may be a variable.</p>
2521
2522<h5>Semantics:</h5>
2523
2524<p>
2525The result is a vector of the same type as <tt>val</tt>. Its
2526element values are those of <tt>val</tt> except at position
2527<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2528exceeds the length of <tt>val</tt>, the results are undefined.
2529</p>
2530
2531<h5>Example:</h5>
2532
2533<pre>
2534 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2535</pre>
2536</div>
2537
2538<!-- _______________________________________________________________________ -->
2539<div class="doc_subsubsection">
2540 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2541</div>
2542
2543<div class="doc_text">
2544
2545<h5>Syntax:</h5>
2546
2547<pre>
2548 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2549</pre>
2550
2551<h5>Overview:</h5>
2552
2553<p>
2554The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2555from two input vectors, returning a vector of the same type.
2556</p>
2557
2558<h5>Arguments:</h5>
2559
2560<p>
2561The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2562with types that match each other and types that match the result of the
2563instruction. The third argument is a shuffle mask, which has the same number
2564of elements as the other vector type, but whose element type is always 'i32'.
2565</p>
2566
2567<p>
2568The shuffle mask operand is required to be a constant vector with either
2569constant integer or undef values.
2570</p>
2571
2572<h5>Semantics:</h5>
2573
2574<p>
2575The elements of the two input vectors are numbered from left to right across
2576both of the vectors. The shuffle mask operand specifies, for each element of
2577the result vector, which element of the two input registers the result element
2578gets. The element selector may be undef (meaning "don't care") and the second
2579operand may be undef if performing a shuffle from only one vector.
2580</p>
2581
2582<h5>Example:</h5>
2583
2584<pre>
2585 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2586 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2587 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2588 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2589</pre>
2590</div>
2591
2592
2593<!-- ======================================================================= -->
2594<div class="doc_subsection">
2595 <a name="memoryops">Memory Access and Addressing Operations</a>
2596</div>
2597
2598<div class="doc_text">
2599
2600<p>A key design point of an SSA-based representation is how it
2601represents memory. In LLVM, no memory locations are in SSA form, which
2602makes things very simple. This section describes how to read, write,
2603allocate, and free memory in LLVM.</p>
2604
2605</div>
2606
2607<!-- _______________________________________________________________________ -->
2608<div class="doc_subsubsection">
2609 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2610</div>
2611
2612<div class="doc_text">
2613
2614<h5>Syntax:</h5>
2615
2616<pre>
2617 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2618</pre>
2619
2620<h5>Overview:</h5>
2621
2622<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2623heap and returns a pointer to it.</p>
2624
2625<h5>Arguments:</h5>
2626
2627<p>The '<tt>malloc</tt>' instruction allocates
2628<tt>sizeof(&lt;type&gt;)*NumElements</tt>
2629bytes of memory from the operating system and returns a pointer of the
2630appropriate type to the program. If "NumElements" is specified, it is the
2631number of elements allocated. If an alignment is specified, the value result
2632of the allocation is guaranteed to be aligned to at least that boundary. If
2633not specified, or if zero, the target can choose to align the allocation on any
2634convenient boundary.</p>
2635
2636<p>'<tt>type</tt>' must be a sized type.</p>
2637
2638<h5>Semantics:</h5>
2639
2640<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2641a pointer is returned.</p>
2642
2643<h5>Example:</h5>
2644
2645<pre>
2646 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
2647
2648 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2649 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2650 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2651 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2652 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
2653</pre>
2654</div>
2655
2656<!-- _______________________________________________________________________ -->
2657<div class="doc_subsubsection">
2658 <a name="i_free">'<tt>free</tt>' Instruction</a>
2659</div>
2660
2661<div class="doc_text">
2662
2663<h5>Syntax:</h5>
2664
2665<pre>
2666 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
2667</pre>
2668
2669<h5>Overview:</h5>
2670
2671<p>The '<tt>free</tt>' instruction returns memory back to the unused
2672memory heap to be reallocated in the future.</p>
2673
2674<h5>Arguments:</h5>
2675
2676<p>'<tt>value</tt>' shall be a pointer value that points to a value
2677that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2678instruction.</p>
2679
2680<h5>Semantics:</h5>
2681
2682<p>Access to the memory pointed to by the pointer is no longer defined
2683after this instruction executes.</p>
2684
2685<h5>Example:</h5>
2686
2687<pre>
2688 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2689 free [4 x i8]* %array
2690</pre>
2691</div>
2692
2693<!-- _______________________________________________________________________ -->
2694<div class="doc_subsubsection">
2695 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2696</div>
2697
2698<div class="doc_text">
2699
2700<h5>Syntax:</h5>
2701
2702<pre>
2703 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2704</pre>
2705
2706<h5>Overview:</h5>
2707
2708<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2709currently executing function, to be automatically released when this function
2710returns to its caller.</p>
2711
2712<h5>Arguments:</h5>
2713
2714<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2715bytes of memory on the runtime stack, returning a pointer of the
2716appropriate type to the program. If "NumElements" is specified, it is the
2717number of elements allocated. If an alignment is specified, the value result
2718of the allocation is guaranteed to be aligned to at least that boundary. If
2719not specified, or if zero, the target can choose to align the allocation on any
2720convenient boundary.</p>
2721
2722<p>'<tt>type</tt>' may be any sized type.</p>
2723
2724<h5>Semantics:</h5>
2725
2726<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
2727memory is automatically released when the function returns. The '<tt>alloca</tt>'
2728instruction is commonly used to represent automatic variables that must
2729have an address available. When the function returns (either with the <tt><a
2730 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2731instructions), the memory is reclaimed.</p>
2732
2733<h5>Example:</h5>
2734
2735<pre>
2736 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2737 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2738 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2739 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
2740</pre>
2741</div>
2742
2743<!-- _______________________________________________________________________ -->
2744<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2745Instruction</a> </div>
2746<div class="doc_text">
2747<h5>Syntax:</h5>
2748<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2749<h5>Overview:</h5>
2750<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2751<h5>Arguments:</h5>
2752<p>The argument to the '<tt>load</tt>' instruction specifies the memory
2753address from which to load. The pointer must point to a <a
2754 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
2755marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2756the number or order of execution of this <tt>load</tt> with other
2757volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2758instructions. </p>
2759<h5>Semantics:</h5>
2760<p>The location of memory pointed to is loaded.</p>
2761<h5>Examples:</h5>
2762<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2763 <a
2764 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2765 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2766</pre>
2767</div>
2768<!-- _______________________________________________________________________ -->
2769<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2770Instruction</a> </div>
2771<div class="doc_text">
2772<h5>Syntax:</h5>
2773<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2774 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2775</pre>
2776<h5>Overview:</h5>
2777<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2778<h5>Arguments:</h5>
2779<p>There are two arguments to the '<tt>store</tt>' instruction: a value
2780to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
2781operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2782operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2783optimizer is not allowed to modify the number or order of execution of
2784this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2785 href="#i_store">store</a></tt> instructions.</p>
2786<h5>Semantics:</h5>
2787<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2788at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2789<h5>Example:</h5>
2790<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2791 <a
2792 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2793 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2794</pre>
2795</div>
2796
2797<!-- _______________________________________________________________________ -->
2798<div class="doc_subsubsection">
2799 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2800</div>
2801
2802<div class="doc_text">
2803<h5>Syntax:</h5>
2804<pre>
2805 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2806</pre>
2807
2808<h5>Overview:</h5>
2809
2810<p>
2811The '<tt>getelementptr</tt>' instruction is used to get the address of a
2812subelement of an aggregate data structure.</p>
2813
2814<h5>Arguments:</h5>
2815
2816<p>This instruction takes a list of integer operands that indicate what
2817elements of the aggregate object to index to. The actual types of the arguments
2818provided depend on the type of the first pointer argument. The
2819'<tt>getelementptr</tt>' instruction is used to index down through the type
2820levels of a structure or to a specific index in an array. When indexing into a
2821structure, only <tt>i32</tt> integer constants are allowed. When indexing
2822into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2823be sign extended to 64-bit values.</p>
2824
2825<p>For example, let's consider a C code fragment and how it gets
2826compiled to LLVM:</p>
2827
2828<div class="doc_code">
2829<pre>
2830struct RT {
2831 char A;
2832 int B[10][20];
2833 char C;
2834};
2835struct ST {
2836 int X;
2837 double Y;
2838 struct RT Z;
2839};
2840
2841int *foo(struct ST *s) {
2842 return &amp;s[1].Z.B[5][13];
2843}
2844</pre>
2845</div>
2846
2847<p>The LLVM code generated by the GCC frontend is:</p>
2848
2849<div class="doc_code">
2850<pre>
2851%RT = type { i8 , [10 x [20 x i32]], i8 }
2852%ST = type { i32, double, %RT }
2853
2854define i32* %foo(%ST* %s) {
2855entry:
2856 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2857 ret i32* %reg
2858}
2859</pre>
2860</div>
2861
2862<h5>Semantics:</h5>
2863
2864<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2865on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2866and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2867<a href="#t_integer">integer</a> type but the value will always be sign extended
2868to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2869<b>constants</b>.</p>
2870
2871<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2872type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2873}</tt>' type, a structure. The second index indexes into the third element of
2874the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2875i8 }</tt>' type, another structure. The third index indexes into the second
2876element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2877array. The two dimensions of the array are subscripted into, yielding an
2878'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2879to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
2880
2881<p>Note that it is perfectly legal to index partially through a
2882structure, returning a pointer to an inner element. Because of this,
2883the LLVM code for the given testcase is equivalent to:</p>
2884
2885<pre>
2886 define i32* %foo(%ST* %s) {
2887 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2888 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2889 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2890 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2891 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2892 ret i32* %t5
2893 }
2894</pre>
2895
2896<p>Note that it is undefined to access an array out of bounds: array and
2897pointer indexes must always be within the defined bounds of the array type.
2898The one exception for this rules is zero length arrays. These arrays are
2899defined to be accessible as variable length arrays, which requires access
2900beyond the zero'th element.</p>
2901
2902<p>The getelementptr instruction is often confusing. For some more insight
2903into how it works, see <a href="GetElementPtr.html">the getelementptr
2904FAQ</a>.</p>
2905
2906<h5>Example:</h5>
2907
2908<pre>
2909 <i>; yields [12 x i8]*:aptr</i>
2910 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
2911</pre>
2912</div>
2913
2914<!-- ======================================================================= -->
2915<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
2916</div>
2917<div class="doc_text">
2918<p>The instructions in this category are the conversion instructions (casting)
2919which all take a single operand and a type. They perform various bit conversions
2920on the operand.</p>
2921</div>
2922
2923<!-- _______________________________________________________________________ -->
2924<div class="doc_subsubsection">
2925 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2926</div>
2927<div class="doc_text">
2928
2929<h5>Syntax:</h5>
2930<pre>
2931 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2932</pre>
2933
2934<h5>Overview:</h5>
2935<p>
2936The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2937</p>
2938
2939<h5>Arguments:</h5>
2940<p>
2941The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2942be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2943and type of the result, which must be an <a href="#t_integer">integer</a>
2944type. The bit size of <tt>value</tt> must be larger than the bit size of
2945<tt>ty2</tt>. Equal sized types are not allowed.</p>
2946
2947<h5>Semantics:</h5>
2948<p>
2949The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2950and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2951larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2952It will always truncate bits.</p>
2953
2954<h5>Example:</h5>
2955<pre>
2956 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
2957 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2958 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
2959</pre>
2960</div>
2961
2962<!-- _______________________________________________________________________ -->
2963<div class="doc_subsubsection">
2964 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2965</div>
2966<div class="doc_text">
2967
2968<h5>Syntax:</h5>
2969<pre>
2970 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2971</pre>
2972
2973<h5>Overview:</h5>
2974<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2975<tt>ty2</tt>.</p>
2976
2977
2978<h5>Arguments:</h5>
2979<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2980<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2981also be of <a href="#t_integer">integer</a> type. The bit size of the
2982<tt>value</tt> must be smaller than the bit size of the destination type,
2983<tt>ty2</tt>.</p>
2984
2985<h5>Semantics:</h5>
2986<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2987bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
2988
2989<p>When zero extending from i1, the result will always be either 0 or 1.</p>
2990
2991<h5>Example:</h5>
2992<pre>
2993 %X = zext i32 257 to i64 <i>; yields i64:257</i>
2994 %Y = zext i1 true to i32 <i>; yields i32:1</i>
2995</pre>
2996</div>
2997
2998<!-- _______________________________________________________________________ -->
2999<div class="doc_subsubsection">
3000 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3001</div>
3002<div class="doc_text">
3003
3004<h5>Syntax:</h5>
3005<pre>
3006 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3007</pre>
3008
3009<h5>Overview:</h5>
3010<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3011
3012<h5>Arguments:</h5>
3013<p>
3014The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3015<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3016also be of <a href="#t_integer">integer</a> type. The bit size of the
3017<tt>value</tt> must be smaller than the bit size of the destination type,
3018<tt>ty2</tt>.</p>
3019
3020<h5>Semantics:</h5>
3021<p>
3022The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3023bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3024the type <tt>ty2</tt>.</p>
3025
3026<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3027
3028<h5>Example:</h5>
3029<pre>
3030 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3031 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3032</pre>
3033</div>
3034
3035<!-- _______________________________________________________________________ -->
3036<div class="doc_subsubsection">
3037 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3038</div>
3039
3040<div class="doc_text">
3041
3042<h5>Syntax:</h5>
3043
3044<pre>
3045 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3046</pre>
3047
3048<h5>Overview:</h5>
3049<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3050<tt>ty2</tt>.</p>
3051
3052
3053<h5>Arguments:</h5>
3054<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3055 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3056cast it to. The size of <tt>value</tt> must be larger than the size of
3057<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3058<i>no-op cast</i>.</p>
3059
3060<h5>Semantics:</h5>
3061<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3062<a href="#t_floating">floating point</a> type to a smaller
3063<a href="#t_floating">floating point</a> type. If the value cannot fit within
3064the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3065
3066<h5>Example:</h5>
3067<pre>
3068 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3069 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3070</pre>
3071</div>
3072
3073<!-- _______________________________________________________________________ -->
3074<div class="doc_subsubsection">
3075 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3076</div>
3077<div class="doc_text">
3078
3079<h5>Syntax:</h5>
3080<pre>
3081 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3082</pre>
3083
3084<h5>Overview:</h5>
3085<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3086floating point value.</p>
3087
3088<h5>Arguments:</h5>
3089<p>The '<tt>fpext</tt>' instruction takes a
3090<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3091and a <a href="#t_floating">floating point</a> type to cast it to. The source
3092type must be smaller than the destination type.</p>
3093
3094<h5>Semantics:</h5>
3095<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3096<a href="#t_floating">floating point</a> type to a larger
3097<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3098used to make a <i>no-op cast</i> because it always changes bits. Use
3099<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3100
3101<h5>Example:</h5>
3102<pre>
3103 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3104 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3105</pre>
3106</div>
3107
3108<!-- _______________________________________________________________________ -->
3109<div class="doc_subsubsection">
3110 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3111</div>
3112<div class="doc_text">
3113
3114<h5>Syntax:</h5>
3115<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003116 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003117</pre>
3118
3119<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003120<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003121unsigned integer equivalent of type <tt>ty2</tt>.
3122</p>
3123
3124<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003125<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003126<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3127must be an <a href="#t_integer">integer</a> type.</p>
3128
3129<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003130<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003131<a href="#t_floating">floating point</a> operand into the nearest (rounding
3132towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3133the results are undefined.</p>
3134
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003135<h5>Example:</h5>
3136<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003137 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003138 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencere6adee82007-07-31 14:40:14 +00003139 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003140</pre>
3141</div>
3142
3143<!-- _______________________________________________________________________ -->
3144<div class="doc_subsubsection">
3145 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3146</div>
3147<div class="doc_text">
3148
3149<h5>Syntax:</h5>
3150<pre>
3151 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3152</pre>
3153
3154<h5>Overview:</h5>
3155<p>The '<tt>fptosi</tt>' instruction converts
3156<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3157</p>
3158
3159
3160<h5>Arguments:</h5>
3161<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
3162<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3163must also be an <a href="#t_integer">integer</a> type.</p>
3164
3165<h5>Semantics:</h5>
3166<p>The '<tt>fptosi</tt>' instruction converts its
3167<a href="#t_floating">floating point</a> operand into the nearest (rounding
3168towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3169the results are undefined.</p>
3170
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003171<h5>Example:</h5>
3172<pre>
3173 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003174 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003175 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3176</pre>
3177</div>
3178
3179<!-- _______________________________________________________________________ -->
3180<div class="doc_subsubsection">
3181 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3182</div>
3183<div class="doc_text">
3184
3185<h5>Syntax:</h5>
3186<pre>
3187 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3188</pre>
3189
3190<h5>Overview:</h5>
3191<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3192integer and converts that value to the <tt>ty2</tt> type.</p>
3193
3194
3195<h5>Arguments:</h5>
3196<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
3197<a href="#t_integer">integer</a> value, and a type to cast it to, which must
3198be a <a href="#t_floating">floating point</a> type.</p>
3199
3200<h5>Semantics:</h5>
3201<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3202integer quantity and converts it to the corresponding floating point value. If
3203the value cannot fit in the floating point value, the results are undefined.</p>
3204
3205
3206<h5>Example:</h5>
3207<pre>
3208 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3209 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3210</pre>
3211</div>
3212
3213<!-- _______________________________________________________________________ -->
3214<div class="doc_subsubsection">
3215 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3216</div>
3217<div class="doc_text">
3218
3219<h5>Syntax:</h5>
3220<pre>
3221 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3222</pre>
3223
3224<h5>Overview:</h5>
3225<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3226integer and converts that value to the <tt>ty2</tt> type.</p>
3227
3228<h5>Arguments:</h5>
3229<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
3230<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
3231a <a href="#t_floating">floating point</a> type.</p>
3232
3233<h5>Semantics:</h5>
3234<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3235integer quantity and converts it to the corresponding floating point value. If
3236the value cannot fit in the floating point value, the results are undefined.</p>
3237
3238<h5>Example:</h5>
3239<pre>
3240 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3241 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3242</pre>
3243</div>
3244
3245<!-- _______________________________________________________________________ -->
3246<div class="doc_subsubsection">
3247 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3248</div>
3249<div class="doc_text">
3250
3251<h5>Syntax:</h5>
3252<pre>
3253 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3254</pre>
3255
3256<h5>Overview:</h5>
3257<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3258the integer type <tt>ty2</tt>.</p>
3259
3260<h5>Arguments:</h5>
3261<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3262must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3263<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3264
3265<h5>Semantics:</h5>
3266<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3267<tt>ty2</tt> by interpreting the pointer value as an integer and either
3268truncating or zero extending that value to the size of the integer type. If
3269<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3270<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3271are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3272change.</p>
3273
3274<h5>Example:</h5>
3275<pre>
3276 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3277 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3278</pre>
3279</div>
3280
3281<!-- _______________________________________________________________________ -->
3282<div class="doc_subsubsection">
3283 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3284</div>
3285<div class="doc_text">
3286
3287<h5>Syntax:</h5>
3288<pre>
3289 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3290</pre>
3291
3292<h5>Overview:</h5>
3293<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3294a pointer type, <tt>ty2</tt>.</p>
3295
3296<h5>Arguments:</h5>
3297<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3298value to cast, and a type to cast it to, which must be a
3299<a href="#t_pointer">pointer</a> type.
3300
3301<h5>Semantics:</h5>
3302<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3303<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3304the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3305size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3306the size of a pointer then a zero extension is done. If they are the same size,
3307nothing is done (<i>no-op cast</i>).</p>
3308
3309<h5>Example:</h5>
3310<pre>
3311 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3312 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3313 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3314</pre>
3315</div>
3316
3317<!-- _______________________________________________________________________ -->
3318<div class="doc_subsubsection">
3319 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3320</div>
3321<div class="doc_text">
3322
3323<h5>Syntax:</h5>
3324<pre>
3325 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3326</pre>
3327
3328<h5>Overview:</h5>
3329<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3330<tt>ty2</tt> without changing any bits.</p>
3331
3332<h5>Arguments:</h5>
3333<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3334a first class value, and a type to cast it to, which must also be a <a
3335 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3336and the destination type, <tt>ty2</tt>, must be identical. If the source
3337type is a pointer, the destination type must also be a pointer.</p>
3338
3339<h5>Semantics:</h5>
3340<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3341<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3342this conversion. The conversion is done as if the <tt>value</tt> had been
3343stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3344converted to other pointer types with this instruction. To convert pointers to
3345other types, use the <a href="#i_inttoptr">inttoptr</a> or
3346<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3347
3348<h5>Example:</h5>
3349<pre>
3350 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3351 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3352 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3353</pre>
3354</div>
3355
3356<!-- ======================================================================= -->
3357<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3358<div class="doc_text">
3359<p>The instructions in this category are the "miscellaneous"
3360instructions, which defy better classification.</p>
3361</div>
3362
3363<!-- _______________________________________________________________________ -->
3364<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3365</div>
3366<div class="doc_text">
3367<h5>Syntax:</h5>
3368<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3369</pre>
3370<h5>Overview:</h5>
3371<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3372of its two integer operands.</p>
3373<h5>Arguments:</h5>
3374<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3375the condition code indicating the kind of comparison to perform. It is not
3376a value, just a keyword. The possible condition code are:
3377<ol>
3378 <li><tt>eq</tt>: equal</li>
3379 <li><tt>ne</tt>: not equal </li>
3380 <li><tt>ugt</tt>: unsigned greater than</li>
3381 <li><tt>uge</tt>: unsigned greater or equal</li>
3382 <li><tt>ult</tt>: unsigned less than</li>
3383 <li><tt>ule</tt>: unsigned less or equal</li>
3384 <li><tt>sgt</tt>: signed greater than</li>
3385 <li><tt>sge</tt>: signed greater or equal</li>
3386 <li><tt>slt</tt>: signed less than</li>
3387 <li><tt>sle</tt>: signed less or equal</li>
3388</ol>
3389<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3390<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3391<h5>Semantics:</h5>
3392<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3393the condition code given as <tt>cond</tt>. The comparison performed always
3394yields a <a href="#t_primitive">i1</a> result, as follows:
3395<ol>
3396 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3397 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3398 </li>
3399 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3400 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3401 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3402 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3403 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3404 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3405 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3406 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3407 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3408 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3409 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3410 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3411 <li><tt>sge</tt>: interprets the operands as signed values and yields
3412 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3413 <li><tt>slt</tt>: interprets the operands as signed values and yields
3414 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3415 <li><tt>sle</tt>: interprets the operands as signed values and yields
3416 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3417</ol>
3418<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3419values are compared as if they were integers.</p>
3420
3421<h5>Example:</h5>
3422<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3423 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3424 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3425 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3426 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3427 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3428</pre>
3429</div>
3430
3431<!-- _______________________________________________________________________ -->
3432<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3433</div>
3434<div class="doc_text">
3435<h5>Syntax:</h5>
3436<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3437</pre>
3438<h5>Overview:</h5>
3439<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3440of its floating point operands.</p>
3441<h5>Arguments:</h5>
3442<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3443the condition code indicating the kind of comparison to perform. It is not
3444a value, just a keyword. The possible condition code are:
3445<ol>
3446 <li><tt>false</tt>: no comparison, always returns false</li>
3447 <li><tt>oeq</tt>: ordered and equal</li>
3448 <li><tt>ogt</tt>: ordered and greater than </li>
3449 <li><tt>oge</tt>: ordered and greater than or equal</li>
3450 <li><tt>olt</tt>: ordered and less than </li>
3451 <li><tt>ole</tt>: ordered and less than or equal</li>
3452 <li><tt>one</tt>: ordered and not equal</li>
3453 <li><tt>ord</tt>: ordered (no nans)</li>
3454 <li><tt>ueq</tt>: unordered or equal</li>
3455 <li><tt>ugt</tt>: unordered or greater than </li>
3456 <li><tt>uge</tt>: unordered or greater than or equal</li>
3457 <li><tt>ult</tt>: unordered or less than </li>
3458 <li><tt>ule</tt>: unordered or less than or equal</li>
3459 <li><tt>une</tt>: unordered or not equal</li>
3460 <li><tt>uno</tt>: unordered (either nans)</li>
3461 <li><tt>true</tt>: no comparison, always returns true</li>
3462</ol>
3463<p><i>Ordered</i> means that neither operand is a QNAN while
3464<i>unordered</i> means that either operand may be a QNAN.</p>
3465<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3466<a href="#t_floating">floating point</a> typed. They must have identical
3467types.</p>
3468<h5>Semantics:</h5>
3469<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3470the condition code given as <tt>cond</tt>. The comparison performed always
3471yields a <a href="#t_primitive">i1</a> result, as follows:
3472<ol>
3473 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3474 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3475 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3476 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3477 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3478 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3479 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3480 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3481 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3482 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3483 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3484 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3485 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3486 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3487 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
3488 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3489 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
3490 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3491 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
3492 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3493 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
3494 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3495 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
3496 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3497 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
3498 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3499 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3500 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3501</ol>
3502
3503<h5>Example:</h5>
3504<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3505 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3506 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3507 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3508</pre>
3509</div>
3510
3511<!-- _______________________________________________________________________ -->
3512<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3513Instruction</a> </div>
3514<div class="doc_text">
3515<h5>Syntax:</h5>
3516<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3517<h5>Overview:</h5>
3518<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3519the SSA graph representing the function.</p>
3520<h5>Arguments:</h5>
3521<p>The type of the incoming values is specified with the first type
3522field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3523as arguments, with one pair for each predecessor basic block of the
3524current block. Only values of <a href="#t_firstclass">first class</a>
3525type may be used as the value arguments to the PHI node. Only labels
3526may be used as the label arguments.</p>
3527<p>There must be no non-phi instructions between the start of a basic
3528block and the PHI instructions: i.e. PHI instructions must be first in
3529a basic block.</p>
3530<h5>Semantics:</h5>
3531<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3532specified by the pair corresponding to the predecessor basic block that executed
3533just prior to the current block.</p>
3534<h5>Example:</h5>
3535<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
3536</div>
3537
3538<!-- _______________________________________________________________________ -->
3539<div class="doc_subsubsection">
3540 <a name="i_select">'<tt>select</tt>' Instruction</a>
3541</div>
3542
3543<div class="doc_text">
3544
3545<h5>Syntax:</h5>
3546
3547<pre>
3548 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3549</pre>
3550
3551<h5>Overview:</h5>
3552
3553<p>
3554The '<tt>select</tt>' instruction is used to choose one value based on a
3555condition, without branching.
3556</p>
3557
3558
3559<h5>Arguments:</h5>
3560
3561<p>
3562The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3563</p>
3564
3565<h5>Semantics:</h5>
3566
3567<p>
3568If the boolean condition evaluates to true, the instruction returns the first
3569value argument; otherwise, it returns the second value argument.
3570</p>
3571
3572<h5>Example:</h5>
3573
3574<pre>
3575 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
3576</pre>
3577</div>
3578
3579
3580<!-- _______________________________________________________________________ -->
3581<div class="doc_subsubsection">
3582 <a name="i_call">'<tt>call</tt>' Instruction</a>
3583</div>
3584
3585<div class="doc_text">
3586
3587<h5>Syntax:</h5>
3588<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003589 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003590</pre>
3591
3592<h5>Overview:</h5>
3593
3594<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3595
3596<h5>Arguments:</h5>
3597
3598<p>This instruction requires several arguments:</p>
3599
3600<ol>
3601 <li>
3602 <p>The optional "tail" marker indicates whether the callee function accesses
3603 any allocas or varargs in the caller. If the "tail" marker is present, the
3604 function call is eligible for tail call optimization. Note that calls may
3605 be marked "tail" even if they do not occur before a <a
3606 href="#i_ret"><tt>ret</tt></a> instruction.
3607 </li>
3608 <li>
3609 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3610 convention</a> the call should use. If none is specified, the call defaults
3611 to using C calling conventions.
3612 </li>
3613 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003614 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3615 the type of the return value. Functions that return no value are marked
3616 <tt><a href="#t_void">void</a></tt>.</p>
3617 </li>
3618 <li>
3619 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3620 value being invoked. The argument types must match the types implied by
3621 this signature. This type can be omitted if the function is not varargs
3622 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003623 </li>
3624 <li>
3625 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3626 be invoked. In most cases, this is a direct function invocation, but
3627 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3628 to function value.</p>
3629 </li>
3630 <li>
3631 <p>'<tt>function args</tt>': argument list whose types match the
3632 function signature argument types. All arguments must be of
3633 <a href="#t_firstclass">first class</a> type. If the function signature
3634 indicates the function accepts a variable number of arguments, the extra
3635 arguments can be specified.</p>
3636 </li>
3637</ol>
3638
3639<h5>Semantics:</h5>
3640
3641<p>The '<tt>call</tt>' instruction is used to cause control flow to
3642transfer to a specified function, with its incoming arguments bound to
3643the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3644instruction in the called function, control flow continues with the
3645instruction after the function call, and the return value of the
3646function is bound to the result argument. This is a simpler case of
3647the <a href="#i_invoke">invoke</a> instruction.</p>
3648
3649<h5>Example:</h5>
3650
3651<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003652 %retval = call i32 @test(i32 %argc)
3653 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
3654 %X = tail call i32 @foo()
3655 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
3656 %Z = call void %foo(i8 97 signext)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003657</pre>
3658
3659</div>
3660
3661<!-- _______________________________________________________________________ -->
3662<div class="doc_subsubsection">
3663 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3664</div>
3665
3666<div class="doc_text">
3667
3668<h5>Syntax:</h5>
3669
3670<pre>
3671 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3672</pre>
3673
3674<h5>Overview:</h5>
3675
3676<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3677the "variable argument" area of a function call. It is used to implement the
3678<tt>va_arg</tt> macro in C.</p>
3679
3680<h5>Arguments:</h5>
3681
3682<p>This instruction takes a <tt>va_list*</tt> value and the type of
3683the argument. It returns a value of the specified argument type and
3684increments the <tt>va_list</tt> to point to the next argument. The
3685actual type of <tt>va_list</tt> is target specific.</p>
3686
3687<h5>Semantics:</h5>
3688
3689<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3690type from the specified <tt>va_list</tt> and causes the
3691<tt>va_list</tt> to point to the next argument. For more information,
3692see the variable argument handling <a href="#int_varargs">Intrinsic
3693Functions</a>.</p>
3694
3695<p>It is legal for this instruction to be called in a function which does not
3696take a variable number of arguments, for example, the <tt>vfprintf</tt>
3697function.</p>
3698
3699<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3700href="#intrinsics">intrinsic function</a> because it takes a type as an
3701argument.</p>
3702
3703<h5>Example:</h5>
3704
3705<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3706
3707</div>
3708
3709<!-- *********************************************************************** -->
3710<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3711<!-- *********************************************************************** -->
3712
3713<div class="doc_text">
3714
3715<p>LLVM supports the notion of an "intrinsic function". These functions have
3716well known names and semantics and are required to follow certain restrictions.
3717Overall, these intrinsics represent an extension mechanism for the LLVM
3718language that does not require changing all of the transformations in LLVM when
3719adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3720
3721<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3722prefix is reserved in LLVM for intrinsic names; thus, function names may not
3723begin with this prefix. Intrinsic functions must always be external functions:
3724you cannot define the body of intrinsic functions. Intrinsic functions may
3725only be used in call or invoke instructions: it is illegal to take the address
3726of an intrinsic function. Additionally, because intrinsic functions are part
3727of the LLVM language, it is required if any are added that they be documented
3728here.</p>
3729
Chandler Carrutha228e392007-08-04 01:51:18 +00003730<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3731a family of functions that perform the same operation but on different data
3732types. Because LLVM can represent over 8 million different integer types,
3733overloading is used commonly to allow an intrinsic function to operate on any
3734integer type. One or more of the argument types or the result type can be
3735overloaded to accept any integer type. Argument types may also be defined as
3736exactly matching a previous argument's type or the result type. This allows an
3737intrinsic function which accepts multiple arguments, but needs all of them to
3738be of the same type, to only be overloaded with respect to a single argument or
3739the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003740
Chandler Carrutha228e392007-08-04 01:51:18 +00003741<p>Overloaded intrinsics will have the names of its overloaded argument types
3742encoded into its function name, each preceded by a period. Only those types
3743which are overloaded result in a name suffix. Arguments whose type is matched
3744against another type do not. For example, the <tt>llvm.ctpop</tt> function can
3745take an integer of any width and returns an integer of exactly the same integer
3746width. This leads to a family of functions such as
3747<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3748Only one type, the return type, is overloaded, and only one type suffix is
3749required. Because the argument's type is matched against the return type, it
3750does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003751
3752<p>To learn how to add an intrinsic function, please see the
3753<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3754</p>
3755
3756</div>
3757
3758<!-- ======================================================================= -->
3759<div class="doc_subsection">
3760 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3761</div>
3762
3763<div class="doc_text">
3764
3765<p>Variable argument support is defined in LLVM with the <a
3766 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3767intrinsic functions. These functions are related to the similarly
3768named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3769
3770<p>All of these functions operate on arguments that use a
3771target-specific value type "<tt>va_list</tt>". The LLVM assembly
3772language reference manual does not define what this type is, so all
3773transformations should be prepared to handle these functions regardless of
3774the type used.</p>
3775
3776<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3777instruction and the variable argument handling intrinsic functions are
3778used.</p>
3779
3780<div class="doc_code">
3781<pre>
3782define i32 @test(i32 %X, ...) {
3783 ; Initialize variable argument processing
3784 %ap = alloca i8*
3785 %ap2 = bitcast i8** %ap to i8*
3786 call void @llvm.va_start(i8* %ap2)
3787
3788 ; Read a single integer argument
3789 %tmp = va_arg i8** %ap, i32
3790
3791 ; Demonstrate usage of llvm.va_copy and llvm.va_end
3792 %aq = alloca i8*
3793 %aq2 = bitcast i8** %aq to i8*
3794 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3795 call void @llvm.va_end(i8* %aq2)
3796
3797 ; Stop processing of arguments.
3798 call void @llvm.va_end(i8* %ap2)
3799 ret i32 %tmp
3800}
3801
3802declare void @llvm.va_start(i8*)
3803declare void @llvm.va_copy(i8*, i8*)
3804declare void @llvm.va_end(i8*)
3805</pre>
3806</div>
3807
3808</div>
3809
3810<!-- _______________________________________________________________________ -->
3811<div class="doc_subsubsection">
3812 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3813</div>
3814
3815
3816<div class="doc_text">
3817<h5>Syntax:</h5>
3818<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3819<h5>Overview:</h5>
3820<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3821<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3822href="#i_va_arg">va_arg</a></tt>.</p>
3823
3824<h5>Arguments:</h5>
3825
3826<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3827
3828<h5>Semantics:</h5>
3829
3830<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3831macro available in C. In a target-dependent way, it initializes the
3832<tt>va_list</tt> element to which the argument points, so that the next call to
3833<tt>va_arg</tt> will produce the first variable argument passed to the function.
3834Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3835last argument of the function as the compiler can figure that out.</p>
3836
3837</div>
3838
3839<!-- _______________________________________________________________________ -->
3840<div class="doc_subsubsection">
3841 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3842</div>
3843
3844<div class="doc_text">
3845<h5>Syntax:</h5>
3846<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3847<h5>Overview:</h5>
3848
3849<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3850which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3851or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3852
3853<h5>Arguments:</h5>
3854
3855<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3856
3857<h5>Semantics:</h5>
3858
3859<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3860macro available in C. In a target-dependent way, it destroys the
3861<tt>va_list</tt> element to which the argument points. Calls to <a
3862href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3863<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3864<tt>llvm.va_end</tt>.</p>
3865
3866</div>
3867
3868<!-- _______________________________________________________________________ -->
3869<div class="doc_subsubsection">
3870 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3871</div>
3872
3873<div class="doc_text">
3874
3875<h5>Syntax:</h5>
3876
3877<pre>
3878 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
3879</pre>
3880
3881<h5>Overview:</h5>
3882
3883<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3884from the source argument list to the destination argument list.</p>
3885
3886<h5>Arguments:</h5>
3887
3888<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
3889The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
3890
3891
3892<h5>Semantics:</h5>
3893
3894<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3895macro available in C. In a target-dependent way, it copies the source
3896<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3897intrinsic is necessary because the <tt><a href="#int_va_start">
3898llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3899example, memory allocation.</p>
3900
3901</div>
3902
3903<!-- ======================================================================= -->
3904<div class="doc_subsection">
3905 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3906</div>
3907
3908<div class="doc_text">
3909
3910<p>
3911LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3912Collection</a> requires the implementation and generation of these intrinsics.
3913These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
3914stack</a>, as well as garbage collector implementations that require <a
3915href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
3916Front-ends for type-safe garbage collected languages should generate these
3917intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3918href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3919</p>
3920</div>
3921
3922<!-- _______________________________________________________________________ -->
3923<div class="doc_subsubsection">
3924 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3925</div>
3926
3927<div class="doc_text">
3928
3929<h5>Syntax:</h5>
3930
3931<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003932 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003933</pre>
3934
3935<h5>Overview:</h5>
3936
3937<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
3938the code generator, and allows some metadata to be associated with it.</p>
3939
3940<h5>Arguments:</h5>
3941
3942<p>The first argument specifies the address of a stack object that contains the
3943root pointer. The second pointer (which must be either a constant or a global
3944value address) contains the meta-data to be associated with the root.</p>
3945
3946<h5>Semantics:</h5>
3947
3948<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3949location. At compile-time, the code generator generates information to allow
3950the runtime to find the pointer at GC safe points.
3951</p>
3952
3953</div>
3954
3955
3956<!-- _______________________________________________________________________ -->
3957<div class="doc_subsubsection">
3958 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3959</div>
3960
3961<div class="doc_text">
3962
3963<h5>Syntax:</h5>
3964
3965<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003966 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003967</pre>
3968
3969<h5>Overview:</h5>
3970
3971<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3972locations, allowing garbage collector implementations that require read
3973barriers.</p>
3974
3975<h5>Arguments:</h5>
3976
3977<p>The second argument is the address to read from, which should be an address
3978allocated from the garbage collector. The first object is a pointer to the
3979start of the referenced object, if needed by the language runtime (otherwise
3980null).</p>
3981
3982<h5>Semantics:</h5>
3983
3984<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3985instruction, but may be replaced with substantially more complex code by the
3986garbage collector runtime, as needed.</p>
3987
3988</div>
3989
3990
3991<!-- _______________________________________________________________________ -->
3992<div class="doc_subsubsection">
3993 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3994</div>
3995
3996<div class="doc_text">
3997
3998<h5>Syntax:</h5>
3999
4000<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004001 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004002</pre>
4003
4004<h5>Overview:</h5>
4005
4006<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4007locations, allowing garbage collector implementations that require write
4008barriers (such as generational or reference counting collectors).</p>
4009
4010<h5>Arguments:</h5>
4011
4012<p>The first argument is the reference to store, the second is the start of the
4013object to store it to, and the third is the address of the field of Obj to
4014store to. If the runtime does not require a pointer to the object, Obj may be
4015null.</p>
4016
4017<h5>Semantics:</h5>
4018
4019<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4020instruction, but may be replaced with substantially more complex code by the
4021garbage collector runtime, as needed.</p>
4022
4023</div>
4024
4025
4026
4027<!-- ======================================================================= -->
4028<div class="doc_subsection">
4029 <a name="int_codegen">Code Generator Intrinsics</a>
4030</div>
4031
4032<div class="doc_text">
4033<p>
4034These intrinsics are provided by LLVM to expose special features that may only
4035be implemented with code generator support.
4036</p>
4037
4038</div>
4039
4040<!-- _______________________________________________________________________ -->
4041<div class="doc_subsubsection">
4042 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4043</div>
4044
4045<div class="doc_text">
4046
4047<h5>Syntax:</h5>
4048<pre>
4049 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4050</pre>
4051
4052<h5>Overview:</h5>
4053
4054<p>
4055The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4056target-specific value indicating the return address of the current function
4057or one of its callers.
4058</p>
4059
4060<h5>Arguments:</h5>
4061
4062<p>
4063The argument to this intrinsic indicates which function to return the address
4064for. Zero indicates the calling function, one indicates its caller, etc. The
4065argument is <b>required</b> to be a constant integer value.
4066</p>
4067
4068<h5>Semantics:</h5>
4069
4070<p>
4071The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4072the return address of the specified call frame, or zero if it cannot be
4073identified. The value returned by this intrinsic is likely to be incorrect or 0
4074for arguments other than zero, so it should only be used for debugging purposes.
4075</p>
4076
4077<p>
4078Note that calling this intrinsic does not prevent function inlining or other
4079aggressive transformations, so the value returned may not be that of the obvious
4080source-language caller.
4081</p>
4082</div>
4083
4084
4085<!-- _______________________________________________________________________ -->
4086<div class="doc_subsubsection">
4087 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4088</div>
4089
4090<div class="doc_text">
4091
4092<h5>Syntax:</h5>
4093<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004094 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004095</pre>
4096
4097<h5>Overview:</h5>
4098
4099<p>
4100The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4101target-specific frame pointer value for the specified stack frame.
4102</p>
4103
4104<h5>Arguments:</h5>
4105
4106<p>
4107The argument to this intrinsic indicates which function to return the frame
4108pointer for. Zero indicates the calling function, one indicates its caller,
4109etc. The argument is <b>required</b> to be a constant integer value.
4110</p>
4111
4112<h5>Semantics:</h5>
4113
4114<p>
4115The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4116the frame address of the specified call frame, or zero if it cannot be
4117identified. The value returned by this intrinsic is likely to be incorrect or 0
4118for arguments other than zero, so it should only be used for debugging purposes.
4119</p>
4120
4121<p>
4122Note that calling this intrinsic does not prevent function inlining or other
4123aggressive transformations, so the value returned may not be that of the obvious
4124source-language caller.
4125</p>
4126</div>
4127
4128<!-- _______________________________________________________________________ -->
4129<div class="doc_subsubsection">
4130 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4131</div>
4132
4133<div class="doc_text">
4134
4135<h5>Syntax:</h5>
4136<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004137 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004138</pre>
4139
4140<h5>Overview:</h5>
4141
4142<p>
4143The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4144the function stack, for use with <a href="#int_stackrestore">
4145<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4146features like scoped automatic variable sized arrays in C99.
4147</p>
4148
4149<h5>Semantics:</h5>
4150
4151<p>
4152This intrinsic returns a opaque pointer value that can be passed to <a
4153href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4154<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4155<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4156state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4157practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4158that were allocated after the <tt>llvm.stacksave</tt> was executed.
4159</p>
4160
4161</div>
4162
4163<!-- _______________________________________________________________________ -->
4164<div class="doc_subsubsection">
4165 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4166</div>
4167
4168<div class="doc_text">
4169
4170<h5>Syntax:</h5>
4171<pre>
4172 declare void @llvm.stackrestore(i8 * %ptr)
4173</pre>
4174
4175<h5>Overview:</h5>
4176
4177<p>
4178The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4179the function stack to the state it was in when the corresponding <a
4180href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4181useful for implementing language features like scoped automatic variable sized
4182arrays in C99.
4183</p>
4184
4185<h5>Semantics:</h5>
4186
4187<p>
4188See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4189</p>
4190
4191</div>
4192
4193
4194<!-- _______________________________________________________________________ -->
4195<div class="doc_subsubsection">
4196 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4197</div>
4198
4199<div class="doc_text">
4200
4201<h5>Syntax:</h5>
4202<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004203 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004204</pre>
4205
4206<h5>Overview:</h5>
4207
4208
4209<p>
4210The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4211a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4212no
4213effect on the behavior of the program but can change its performance
4214characteristics.
4215</p>
4216
4217<h5>Arguments:</h5>
4218
4219<p>
4220<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4221determining if the fetch should be for a read (0) or write (1), and
4222<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4223locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4224<tt>locality</tt> arguments must be constant integers.
4225</p>
4226
4227<h5>Semantics:</h5>
4228
4229<p>
4230This intrinsic does not modify the behavior of the program. In particular,
4231prefetches cannot trap and do not produce a value. On targets that support this
4232intrinsic, the prefetch can provide hints to the processor cache for better
4233performance.
4234</p>
4235
4236</div>
4237
4238<!-- _______________________________________________________________________ -->
4239<div class="doc_subsubsection">
4240 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4241</div>
4242
4243<div class="doc_text">
4244
4245<h5>Syntax:</h5>
4246<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004247 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004248</pre>
4249
4250<h5>Overview:</h5>
4251
4252
4253<p>
4254The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4255(PC) in a region of
4256code to simulators and other tools. The method is target specific, but it is
4257expected that the marker will use exported symbols to transmit the PC of the marker.
4258The marker makes no guarantees that it will remain with any specific instruction
4259after optimizations. It is possible that the presence of a marker will inhibit
4260optimizations. The intended use is to be inserted after optimizations to allow
4261correlations of simulation runs.
4262</p>
4263
4264<h5>Arguments:</h5>
4265
4266<p>
4267<tt>id</tt> is a numerical id identifying the marker.
4268</p>
4269
4270<h5>Semantics:</h5>
4271
4272<p>
4273This intrinsic does not modify the behavior of the program. Backends that do not
4274support this intrinisic may ignore it.
4275</p>
4276
4277</div>
4278
4279<!-- _______________________________________________________________________ -->
4280<div class="doc_subsubsection">
4281 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4282</div>
4283
4284<div class="doc_text">
4285
4286<h5>Syntax:</h5>
4287<pre>
4288 declare i64 @llvm.readcyclecounter( )
4289</pre>
4290
4291<h5>Overview:</h5>
4292
4293
4294<p>
4295The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4296counter register (or similar low latency, high accuracy clocks) on those targets
4297that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4298As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4299should only be used for small timings.
4300</p>
4301
4302<h5>Semantics:</h5>
4303
4304<p>
4305When directly supported, reading the cycle counter should not modify any memory.
4306Implementations are allowed to either return a application specific value or a
4307system wide value. On backends without support, this is lowered to a constant 0.
4308</p>
4309
4310</div>
4311
4312<!-- ======================================================================= -->
4313<div class="doc_subsection">
4314 <a name="int_libc">Standard C Library Intrinsics</a>
4315</div>
4316
4317<div class="doc_text">
4318<p>
4319LLVM provides intrinsics for a few important standard C library functions.
4320These intrinsics allow source-language front-ends to pass information about the
4321alignment of the pointer arguments to the code generator, providing opportunity
4322for more efficient code generation.
4323</p>
4324
4325</div>
4326
4327<!-- _______________________________________________________________________ -->
4328<div class="doc_subsubsection">
4329 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4330</div>
4331
4332<div class="doc_text">
4333
4334<h5>Syntax:</h5>
4335<pre>
4336 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4337 i32 &lt;len&gt;, i32 &lt;align&gt;)
4338 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4339 i64 &lt;len&gt;, i32 &lt;align&gt;)
4340</pre>
4341
4342<h5>Overview:</h5>
4343
4344<p>
4345The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4346location to the destination location.
4347</p>
4348
4349<p>
4350Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4351intrinsics do not return a value, and takes an extra alignment argument.
4352</p>
4353
4354<h5>Arguments:</h5>
4355
4356<p>
4357The first argument is a pointer to the destination, the second is a pointer to
4358the source. The third argument is an integer argument
4359specifying the number of bytes to copy, and the fourth argument is the alignment
4360of the source and destination locations.
4361</p>
4362
4363<p>
4364If the call to this intrinisic has an alignment value that is not 0 or 1, then
4365the caller guarantees that both the source and destination pointers are aligned
4366to that boundary.
4367</p>
4368
4369<h5>Semantics:</h5>
4370
4371<p>
4372The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4373location to the destination location, which are not allowed to overlap. It
4374copies "len" bytes of memory over. If the argument is known to be aligned to
4375some boundary, this can be specified as the fourth argument, otherwise it should
4376be set to 0 or 1.
4377</p>
4378</div>
4379
4380
4381<!-- _______________________________________________________________________ -->
4382<div class="doc_subsubsection">
4383 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4384</div>
4385
4386<div class="doc_text">
4387
4388<h5>Syntax:</h5>
4389<pre>
4390 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4391 i32 &lt;len&gt;, i32 &lt;align&gt;)
4392 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4393 i64 &lt;len&gt;, i32 &lt;align&gt;)
4394</pre>
4395
4396<h5>Overview:</h5>
4397
4398<p>
4399The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4400location to the destination location. It is similar to the
4401'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
4402</p>
4403
4404<p>
4405Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4406intrinsics do not return a value, and takes an extra alignment argument.
4407</p>
4408
4409<h5>Arguments:</h5>
4410
4411<p>
4412The first argument is a pointer to the destination, the second is a pointer to
4413the source. The third argument is an integer argument
4414specifying the number of bytes to copy, and the fourth argument is the alignment
4415of the source and destination locations.
4416</p>
4417
4418<p>
4419If the call to this intrinisic has an alignment value that is not 0 or 1, then
4420the caller guarantees that the source and destination pointers are aligned to
4421that boundary.
4422</p>
4423
4424<h5>Semantics:</h5>
4425
4426<p>
4427The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4428location to the destination location, which may overlap. It
4429copies "len" bytes of memory over. If the argument is known to be aligned to
4430some boundary, this can be specified as the fourth argument, otherwise it should
4431be set to 0 or 1.
4432</p>
4433</div>
4434
4435
4436<!-- _______________________________________________________________________ -->
4437<div class="doc_subsubsection">
4438 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4439</div>
4440
4441<div class="doc_text">
4442
4443<h5>Syntax:</h5>
4444<pre>
4445 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4446 i32 &lt;len&gt;, i32 &lt;align&gt;)
4447 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4448 i64 &lt;len&gt;, i32 &lt;align&gt;)
4449</pre>
4450
4451<h5>Overview:</h5>
4452
4453<p>
4454The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4455byte value.
4456</p>
4457
4458<p>
4459Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4460does not return a value, and takes an extra alignment argument.
4461</p>
4462
4463<h5>Arguments:</h5>
4464
4465<p>
4466The first argument is a pointer to the destination to fill, the second is the
4467byte value to fill it with, the third argument is an integer
4468argument specifying the number of bytes to fill, and the fourth argument is the
4469known alignment of destination location.
4470</p>
4471
4472<p>
4473If the call to this intrinisic has an alignment value that is not 0 or 1, then
4474the caller guarantees that the destination pointer is aligned to that boundary.
4475</p>
4476
4477<h5>Semantics:</h5>
4478
4479<p>
4480The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4481the
4482destination location. If the argument is known to be aligned to some boundary,
4483this can be specified as the fourth argument, otherwise it should be set to 0 or
44841.
4485</p>
4486</div>
4487
4488
4489<!-- _______________________________________________________________________ -->
4490<div class="doc_subsubsection">
4491 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4492</div>
4493
4494<div class="doc_text">
4495
4496<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004497<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00004498floating point or vector of floating point type. Not all targets support all
4499types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004500<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004501 declare float @llvm.sqrt.f32(float %Val)
4502 declare double @llvm.sqrt.f64(double %Val)
4503 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
4504 declare fp128 @llvm.sqrt.f128(fp128 %Val)
4505 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004506</pre>
4507
4508<h5>Overview:</h5>
4509
4510<p>
4511The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman361079c2007-10-15 20:30:11 +00004512returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004513<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4514negative numbers (which allows for better optimization).
4515</p>
4516
4517<h5>Arguments:</h5>
4518
4519<p>
4520The argument and return value are floating point numbers of the same type.
4521</p>
4522
4523<h5>Semantics:</h5>
4524
4525<p>
4526This function returns the sqrt of the specified operand if it is a nonnegative
4527floating point number.
4528</p>
4529</div>
4530
4531<!-- _______________________________________________________________________ -->
4532<div class="doc_subsubsection">
4533 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4534</div>
4535
4536<div class="doc_text">
4537
4538<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004539<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00004540floating point or vector of floating point type. Not all targets support all
4541types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004542<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004543 declare float @llvm.powi.f32(float %Val, i32 %power)
4544 declare double @llvm.powi.f64(double %Val, i32 %power)
4545 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
4546 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
4547 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004548</pre>
4549
4550<h5>Overview:</h5>
4551
4552<p>
4553The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4554specified (positive or negative) power. The order of evaluation of
Dan Gohman361079c2007-10-15 20:30:11 +00004555multiplications is not defined. When a vector of floating point type is
4556used, the second argument remains a scalar integer value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004557</p>
4558
4559<h5>Arguments:</h5>
4560
4561<p>
4562The second argument is an integer power, and the first is a value to raise to
4563that power.
4564</p>
4565
4566<h5>Semantics:</h5>
4567
4568<p>
4569This function returns the first value raised to the second power with an
4570unspecified sequence of rounding operations.</p>
4571</div>
4572
Dan Gohman361079c2007-10-15 20:30:11 +00004573<!-- _______________________________________________________________________ -->
4574<div class="doc_subsubsection">
4575 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
4576</div>
4577
4578<div class="doc_text">
4579
4580<h5>Syntax:</h5>
4581<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
4582floating point or vector of floating point type. Not all targets support all
4583types however.
4584<pre>
4585 declare float @llvm.sin.f32(float %Val)
4586 declare double @llvm.sin.f64(double %Val)
4587 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
4588 declare fp128 @llvm.sin.f128(fp128 %Val)
4589 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
4590</pre>
4591
4592<h5>Overview:</h5>
4593
4594<p>
4595The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
4596</p>
4597
4598<h5>Arguments:</h5>
4599
4600<p>
4601The argument and return value are floating point numbers of the same type.
4602</p>
4603
4604<h5>Semantics:</h5>
4605
4606<p>
4607This function returns the sine of the specified operand, returning the
4608same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00004609conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00004610</div>
4611
4612<!-- _______________________________________________________________________ -->
4613<div class="doc_subsubsection">
4614 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
4615</div>
4616
4617<div class="doc_text">
4618
4619<h5>Syntax:</h5>
4620<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
4621floating point or vector of floating point type. Not all targets support all
4622types however.
4623<pre>
4624 declare float @llvm.cos.f32(float %Val)
4625 declare double @llvm.cos.f64(double %Val)
4626 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
4627 declare fp128 @llvm.cos.f128(fp128 %Val)
4628 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
4629</pre>
4630
4631<h5>Overview:</h5>
4632
4633<p>
4634The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
4635</p>
4636
4637<h5>Arguments:</h5>
4638
4639<p>
4640The argument and return value are floating point numbers of the same type.
4641</p>
4642
4643<h5>Semantics:</h5>
4644
4645<p>
4646This function returns the cosine of the specified operand, returning the
4647same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00004648conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00004649</div>
4650
4651<!-- _______________________________________________________________________ -->
4652<div class="doc_subsubsection">
4653 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
4654</div>
4655
4656<div class="doc_text">
4657
4658<h5>Syntax:</h5>
4659<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
4660floating point or vector of floating point type. Not all targets support all
4661types however.
4662<pre>
4663 declare float @llvm.pow.f32(float %Val, float %Power)
4664 declare double @llvm.pow.f64(double %Val, double %Power)
4665 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
4666 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
4667 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
4668</pre>
4669
4670<h5>Overview:</h5>
4671
4672<p>
4673The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
4674specified (positive or negative) power.
4675</p>
4676
4677<h5>Arguments:</h5>
4678
4679<p>
4680The second argument is a floating point power, and the first is a value to
4681raise to that power.
4682</p>
4683
4684<h5>Semantics:</h5>
4685
4686<p>
4687This function returns the first value raised to the second power,
4688returning the
4689same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00004690conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00004691</div>
4692
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004693
4694<!-- ======================================================================= -->
4695<div class="doc_subsection">
4696 <a name="int_manip">Bit Manipulation Intrinsics</a>
4697</div>
4698
4699<div class="doc_text">
4700<p>
4701LLVM provides intrinsics for a few important bit manipulation operations.
4702These allow efficient code generation for some algorithms.
4703</p>
4704
4705</div>
4706
4707<!-- _______________________________________________________________________ -->
4708<div class="doc_subsubsection">
4709 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4710</div>
4711
4712<div class="doc_text">
4713
4714<h5>Syntax:</h5>
4715<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carrutha228e392007-08-04 01:51:18 +00004716type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004717<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004718 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4719 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4720 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004721</pre>
4722
4723<h5>Overview:</h5>
4724
4725<p>
4726The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
4727values with an even number of bytes (positive multiple of 16 bits). These are
4728useful for performing operations on data that is not in the target's native
4729byte order.
4730</p>
4731
4732<h5>Semantics:</h5>
4733
4734<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00004735The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004736and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4737intrinsic returns an i32 value that has the four bytes of the input i32
4738swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00004739i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
4740<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004741additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4742</p>
4743
4744</div>
4745
4746<!-- _______________________________________________________________________ -->
4747<div class="doc_subsubsection">
4748 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4749</div>
4750
4751<div class="doc_text">
4752
4753<h5>Syntax:</h5>
4754<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4755width. Not all targets support all bit widths however.
4756<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004757 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4758 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004759 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004760 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4761 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004762</pre>
4763
4764<h5>Overview:</h5>
4765
4766<p>
4767The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4768value.
4769</p>
4770
4771<h5>Arguments:</h5>
4772
4773<p>
4774The only argument is the value to be counted. The argument may be of any
4775integer type. The return type must match the argument type.
4776</p>
4777
4778<h5>Semantics:</h5>
4779
4780<p>
4781The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4782</p>
4783</div>
4784
4785<!-- _______________________________________________________________________ -->
4786<div class="doc_subsubsection">
4787 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4788</div>
4789
4790<div class="doc_text">
4791
4792<h5>Syntax:</h5>
4793<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4794integer bit width. Not all targets support all bit widths however.
4795<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004796 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4797 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004798 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004799 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
4800 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004801</pre>
4802
4803<h5>Overview:</h5>
4804
4805<p>
4806The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4807leading zeros in a variable.
4808</p>
4809
4810<h5>Arguments:</h5>
4811
4812<p>
4813The only argument is the value to be counted. The argument may be of any
4814integer type. The return type must match the argument type.
4815</p>
4816
4817<h5>Semantics:</h5>
4818
4819<p>
4820The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4821in a variable. If the src == 0 then the result is the size in bits of the type
4822of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4823</p>
4824</div>
4825
4826
4827
4828<!-- _______________________________________________________________________ -->
4829<div class="doc_subsubsection">
4830 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4831</div>
4832
4833<div class="doc_text">
4834
4835<h5>Syntax:</h5>
4836<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4837integer bit width. Not all targets support all bit widths however.
4838<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004839 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
4840 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004841 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004842 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
4843 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004844</pre>
4845
4846<h5>Overview:</h5>
4847
4848<p>
4849The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4850trailing zeros.
4851</p>
4852
4853<h5>Arguments:</h5>
4854
4855<p>
4856The only argument is the value to be counted. The argument may be of any
4857integer type. The return type must match the argument type.
4858</p>
4859
4860<h5>Semantics:</h5>
4861
4862<p>
4863The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4864in a variable. If the src == 0 then the result is the size in bits of the type
4865of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4866</p>
4867</div>
4868
4869<!-- _______________________________________________________________________ -->
4870<div class="doc_subsubsection">
4871 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
4872</div>
4873
4874<div class="doc_text">
4875
4876<h5>Syntax:</h5>
4877<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
4878on any integer bit width.
4879<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004880 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4881 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004882</pre>
4883
4884<h5>Overview:</h5>
4885<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
4886range of bits from an integer value and returns them in the same bit width as
4887the original value.</p>
4888
4889<h5>Arguments:</h5>
4890<p>The first argument, <tt>%val</tt> and the result may be integer types of
4891any bit width but they must have the same bit width. The second and third
4892arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
4893
4894<h5>Semantics:</h5>
4895<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
4896of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4897<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4898operates in forward mode.</p>
4899<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4900right by <tt>%loBit</tt> bits and then ANDing it with a mask with
4901only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4902<ol>
4903 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4904 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4905 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4906 to determine the number of bits to retain.</li>
4907 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4908 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4909</ol>
4910<p>In reverse mode, a similar computation is made except that the bits are
4911returned in the reverse order. So, for example, if <tt>X</tt> has the value
4912<tt>i16 0x0ACF (101011001111)</tt> and we apply
4913<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4914<tt>i16 0x0026 (000000100110)</tt>.</p>
4915</div>
4916
4917<div class="doc_subsubsection">
4918 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4919</div>
4920
4921<div class="doc_text">
4922
4923<h5>Syntax:</h5>
4924<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4925on any integer bit width.
4926<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004927 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4928 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004929</pre>
4930
4931<h5>Overview:</h5>
4932<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4933of bits in an integer value with another integer value. It returns the integer
4934with the replaced bits.</p>
4935
4936<h5>Arguments:</h5>
4937<p>The first argument, <tt>%val</tt> and the result may be integer types of
4938any bit width but they must have the same bit width. <tt>%val</tt> is the value
4939whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4940integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4941type since they specify only a bit index.</p>
4942
4943<h5>Semantics:</h5>
4944<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4945of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4946<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4947operates in forward mode.</p>
4948<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4949truncating it down to the size of the replacement area or zero extending it
4950up to that size.</p>
4951<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4952are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4953in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4954to the <tt>%hi</tt>th bit.
4955<p>In reverse mode, a similar computation is made except that the bits are
4956reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4957<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
4958<h5>Examples:</h5>
4959<pre>
4960 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
4961 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4962 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4963 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
4964 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
4965</pre>
4966</div>
4967
4968<!-- ======================================================================= -->
4969<div class="doc_subsection">
4970 <a name="int_debugger">Debugger Intrinsics</a>
4971</div>
4972
4973<div class="doc_text">
4974<p>
4975The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4976are described in the <a
4977href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4978Debugging</a> document.
4979</p>
4980</div>
4981
4982
4983<!-- ======================================================================= -->
4984<div class="doc_subsection">
4985 <a name="int_eh">Exception Handling Intrinsics</a>
4986</div>
4987
4988<div class="doc_text">
4989<p> The LLVM exception handling intrinsics (which all start with
4990<tt>llvm.eh.</tt> prefix), are described in the <a
4991href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4992Handling</a> document. </p>
4993</div>
4994
4995<!-- ======================================================================= -->
4996<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00004997 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00004998</div>
4999
5000<div class="doc_text">
5001<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005002 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00005003 the <tt>nest</tt> attribute, from a function. The result is a callable
5004 function pointer lacking the nest parameter - the caller does not need
5005 to provide a value for it. Instead, the value to use is stored in
5006 advance in a "trampoline", a block of memory usually allocated
5007 on the stack, which also contains code to splice the nest value into the
5008 argument list. This is used to implement the GCC nested function address
5009 extension.
5010</p>
5011<p>
5012 For example, if the function is
5013 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005014 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005015<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005016 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5017 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5018 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5019 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00005020</pre>
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005021 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5022 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005023</div>
5024
5025<!-- _______________________________________________________________________ -->
5026<div class="doc_subsubsection">
5027 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5028</div>
5029<div class="doc_text">
5030<h5>Syntax:</h5>
5031<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005032declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00005033</pre>
5034<h5>Overview:</h5>
5035<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005036 This fills the memory pointed to by <tt>tramp</tt> with code
5037 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00005038</p>
5039<h5>Arguments:</h5>
5040<p>
5041 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5042 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5043 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00005044 intrinsic. Note that the size and the alignment are target-specific - LLVM
5045 currently provides no portable way of determining them, so a front-end that
5046 generates this intrinsic needs to have some target-specific knowledge.
5047 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00005048</p>
5049<h5>Semantics:</h5>
5050<p>
5051 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00005052 dependent code, turning it into a function. A pointer to this function is
5053 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00005054 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005055 before being called. The new function's signature is the same as that of
5056 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5057 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5058 of pointer type. Calling the new function is equivalent to calling
5059 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5060 missing <tt>nest</tt> argument. If, after calling
5061 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5062 modified, then the effect of any later call to the returned function pointer is
5063 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00005064</p>
5065</div>
5066
5067<!-- ======================================================================= -->
5068<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005069 <a name="int_general">General Intrinsics</a>
5070</div>
5071
5072<div class="doc_text">
5073<p> This class of intrinsics is designed to be generic and has
5074no specific purpose. </p>
5075</div>
5076
5077<!-- _______________________________________________________________________ -->
5078<div class="doc_subsubsection">
5079 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5080</div>
5081
5082<div class="doc_text">
5083
5084<h5>Syntax:</h5>
5085<pre>
5086 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5087</pre>
5088
5089<h5>Overview:</h5>
5090
5091<p>
5092The '<tt>llvm.var.annotation</tt>' intrinsic
5093</p>
5094
5095<h5>Arguments:</h5>
5096
5097<p>
5098The first argument is a pointer to a value, the second is a pointer to a
5099global string, the third is a pointer to a global string which is the source
5100file name, and the last argument is the line number.
5101</p>
5102
5103<h5>Semantics:</h5>
5104
5105<p>
5106This intrinsic allows annotation of local variables with arbitrary strings.
5107This can be useful for special purpose optimizations that want to look for these
5108 annotations. These have no other defined use, they are ignored by code
5109 generation and optimization.
5110</div>
5111
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005112<!-- _______________________________________________________________________ -->
5113<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00005114 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005115</div>
5116
5117<div class="doc_text">
5118
5119<h5>Syntax:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00005120<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
5121any integer bit width.
5122</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005123<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00005124 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5125 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5126 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5127 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5128 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005129</pre>
5130
5131<h5>Overview:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00005132
5133<p>
5134The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005135</p>
5136
5137<h5>Arguments:</h5>
5138
5139<p>
5140The first argument is an integer value (result of some expression),
5141the second is a pointer to a global string, the third is a pointer to a global
5142string which is the source file name, and the last argument is the line number.
Tanya Lattnere545be72007-09-21 23:56:27 +00005143It returns the value of the first argument.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005144</p>
5145
5146<h5>Semantics:</h5>
5147
5148<p>
5149This intrinsic allows annotations to be put on arbitrary expressions
5150with arbitrary strings. This can be useful for special purpose optimizations
5151that want to look for these annotations. These have no other defined use, they
5152are ignored by code generation and optimization.
5153</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005154
5155<!-- *********************************************************************** -->
5156<hr>
5157<address>
5158 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5159 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5160 <a href="http://validator.w3.org/check/referer"><img
5161 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
5162
5163 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
5164 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
5165 Last modified: $Date$
5166</address>
5167</body>
5168</html>