blob: e4d50039f604c97135fdd863bb3fea1377eabd16 [file] [log] [blame]
Misha Brukman13fd15c2004-01-15 00:14:41 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Chris Lattner261efe92003-11-25 01:02:51 +00003<html>
4<head>
5 <title>LLVM Programmer's Manual</title>
Misha Brukman13fd15c2004-01-15 00:14:41 +00006 <link rel="stylesheet" href="llvm.css" type="text/css">
Chris Lattner261efe92003-11-25 01:02:51 +00007</head>
Misha Brukman13fd15c2004-01-15 00:14:41 +00008<body>
9
10<div class="doc_title">
11 LLVM Programmer's Manual
12</div>
13
Chris Lattner9355b472002-09-06 02:50:58 +000014<ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +000015 <li><a href="#introduction">Introduction</a></li>
Chris Lattner9355b472002-09-06 02:50:58 +000016 <li><a href="#general">General Information</a>
Chris Lattner261efe92003-11-25 01:02:51 +000017 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000018 <li><a href="#stl">The C++ Standard Template Library</a></li>
19<!--
20 <li>The <tt>-time-passes</tt> option</li>
21 <li>How to use the LLVM Makefile system</li>
22 <li>How to write a regression test</li>
Chris Lattner61db4652004-12-08 19:05:44 +000023
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000024-->
Chris Lattner84b7f8d2003-08-01 22:20:59 +000025 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +000026 </li>
27 <li><a href="#apis">Important and useful LLVM APIs</a>
28 <ul>
29 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
30and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
31 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt>
32option</a>
33 <ul>
34 <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
35and the <tt>-debug-only</tt> option</a> </li>
36 </ul>
37 </li>
38 <li><a href="#Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000039option</a></li>
40<!--
41 <li>The <tt>InstVisitor</tt> template
42 <li>The general graph API
43-->
Chris Lattnerf623a082005-10-17 01:36:23 +000044 <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 </ul>
46 </li>
Chris Lattnerae7f7592002-09-06 18:31:18 +000047 <li><a href="#common">Helpful Hints for Common Operations</a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000048 <ul>
Chris Lattner261efe92003-11-25 01:02:51 +000049 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
50 <ul>
51 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
52in a <tt>Function</tt></a> </li>
53 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
54in a <tt>BasicBlock</tt></a> </li>
55 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
56in a <tt>Function</tt></a> </li>
57 <li><a href="#iterate_convert">Turning an iterator into a
58class pointer</a> </li>
59 <li><a href="#iterate_complex">Finding call sites: a more
60complex example</a> </li>
61 <li><a href="#calls_and_invokes">Treating calls and invokes
62the same way</a> </li>
63 <li><a href="#iterate_chains">Iterating over def-use &amp;
64use-def chains</a> </li>
65 </ul>
66 </li>
67 <li><a href="#simplechanges">Making simple changes</a>
68 <ul>
69 <li><a href="#schanges_creating">Creating and inserting new
70 <tt>Instruction</tt>s</a> </li>
71 <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
72 <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
73with another <tt>Value</tt></a> </li>
74 </ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000075 </li>
Chris Lattnerae7f7592002-09-06 18:31:18 +000076<!--
77 <li>Working with the Control Flow Graph
78 <ul>
79 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
80 <li>
81 <li>
82 </ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000083-->
Chris Lattner261efe92003-11-25 01:02:51 +000084 </ul>
85 </li>
Chris Lattnerd9d6e102005-04-23 16:10:52 +000086
87 <li><a href="#advanced">Advanced Topics</a>
88 <ul>
Chris Lattnerf1b200b2005-04-23 17:27:36 +000089 <li><a href="#TypeResolve">LLVM Type Resolution</a>
90 <ul>
91 <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
92 <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
93 <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
94 <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
95 </ul></li>
96
Chris Lattnerd9d6e102005-04-23 16:10:52 +000097 <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
98 </ul></li>
99
Joel Stanley9b96c442002-09-06 21:55:13 +0000100 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
Chris Lattner9355b472002-09-06 02:50:58 +0000101 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000102 <li><a href="#Value">The <tt>Value</tt> class</a>
Chris Lattner9355b472002-09-06 02:50:58 +0000103 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000104 <li><a href="#User">The <tt>User</tt> class</a>
Chris Lattner261efe92003-11-25 01:02:51 +0000105 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000106 <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
107 <ul>
108 <li><a href="#GetElementPtrInst">The <tt>GetElementPtrInst</tt> class</a></li>
109 </ul>
110 </li>
111 <li><a href="#Module">The <tt>Module</tt> class</a></li>
112 <li><a href="#Constant">The <tt>Constant</tt> class</a>
113 <ul>
114 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
115 <ul>
116 <li><a href="#BasicBlock">The <tt>BasicBlock</tt>class</a></li>
117 <li><a href="#Function">The <tt>Function</tt> class</a></li>
118 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
119 </ul>
120 </li>
121 </ul>
122 </li>
Reid Spencer8b2da7a2004-07-18 13:10:31 +0000123 </ul>
124 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000125 <li><a href="#Type">The <tt>Type</tt> class</a> </li>
Reid Spencer096603a2004-05-26 08:41:35 +0000126 <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000127 </ul>
128 </li>
129 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 </li>
Chris Lattner9355b472002-09-06 02:50:58 +0000131</ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000132
Chris Lattner69bf8a92004-05-23 21:06:58 +0000133<div class="doc_author">
134 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
Chris Lattner94c43592004-05-26 16:52:55 +0000135 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
136 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>, and
137 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000138</div>
139
Chris Lattner9355b472002-09-06 02:50:58 +0000140<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000141<div class="doc_section">
142 <a name="introduction">Introduction </a>
143</div>
Chris Lattner9355b472002-09-06 02:50:58 +0000144<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000145
146<div class="doc_text">
147
148<p>This document is meant to highlight some of the important classes and
Chris Lattner261efe92003-11-25 01:02:51 +0000149interfaces available in the LLVM source-base. This manual is not
150intended to explain what LLVM is, how it works, and what LLVM code looks
151like. It assumes that you know the basics of LLVM and are interested
152in writing transformations or otherwise analyzing or manipulating the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000153code.</p>
154
155<p>This document should get you oriented so that you can find your
Chris Lattner261efe92003-11-25 01:02:51 +0000156way in the continuously growing source code that makes up the LLVM
157infrastructure. Note that this manual is not intended to serve as a
158replacement for reading the source code, so if you think there should be
159a method in one of these classes to do something, but it's not listed,
160check the source. Links to the <a href="/doxygen/">doxygen</a> sources
161are provided to make this as easy as possible.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000162
163<p>The first section of this document describes general information that is
164useful to know when working in the LLVM infrastructure, and the second describes
165the Core LLVM classes. In the future this manual will be extended with
166information describing how to use extension libraries, such as dominator
167information, CFG traversal routines, and useful utilities like the <tt><a
168href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
169
170</div>
171
Chris Lattner9355b472002-09-06 02:50:58 +0000172<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000173<div class="doc_section">
174 <a name="general">General Information</a>
175</div>
176<!-- *********************************************************************** -->
177
178<div class="doc_text">
179
180<p>This section contains general information that is useful if you are working
181in the LLVM source-base, but that isn't specific to any particular API.</p>
182
183</div>
184
185<!-- ======================================================================= -->
186<div class="doc_subsection">
187 <a name="stl">The C++ Standard Template Library</a>
188</div>
189
190<div class="doc_text">
191
192<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
Chris Lattner261efe92003-11-25 01:02:51 +0000193perhaps much more than you are used to, or have seen before. Because of
194this, you might want to do a little background reading in the
195techniques used and capabilities of the library. There are many good
196pages that discuss the STL, and several books on the subject that you
Misha Brukman13fd15c2004-01-15 00:14:41 +0000197can get, so it will not be discussed in this document.</p>
198
199<p>Here are some useful links:</p>
200
201<ol>
202
203<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
204reference</a> - an excellent reference for the STL and other parts of the
205standard C++ library.</li>
206
207<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
Tanya Lattner09cf73c2004-06-22 04:24:55 +0000208O'Reilly book in the making. It has a decent
209Standard Library
210Reference that rivals Dinkumware's, and is unfortunately no longer free since the book has been
Misha Brukman13fd15c2004-01-15 00:14:41 +0000211published.</li>
212
213<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
214Questions</a></li>
215
216<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
217Contains a useful <a
218href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
219STL</a>.</li>
220
221<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
222Page</a></li>
223
Tanya Lattner79445ba2004-12-08 18:34:56 +0000224<li><a href="http://64.78.49.204/">
Reid Spencer096603a2004-05-26 08:41:35 +0000225Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
226the book).</a></li>
227
Misha Brukman13fd15c2004-01-15 00:14:41 +0000228</ol>
229
230<p>You are also encouraged to take a look at the <a
231href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
232to write maintainable code more than where to put your curly braces.</p>
233
234</div>
235
236<!-- ======================================================================= -->
237<div class="doc_subsection">
238 <a name="stl">Other useful references</a>
239</div>
240
241<div class="doc_text">
242
Misha Brukman13fd15c2004-01-15 00:14:41 +0000243<ol>
244<li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
Chris Lattner261efe92003-11-25 01:02:51 +0000245Branch and Tag Primer</a></li>
Misha Brukmana0f71e42004-06-18 18:39:00 +0000246<li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
247static and shared libraries across platforms</a></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000248</ol>
249
250</div>
251
Chris Lattner9355b472002-09-06 02:50:58 +0000252<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000253<div class="doc_section">
254 <a name="apis">Important and useful LLVM APIs</a>
255</div>
256<!-- *********************************************************************** -->
257
258<div class="doc_text">
259
260<p>Here we highlight some LLVM APIs that are generally useful and good to
261know about when writing transformations.</p>
262
263</div>
264
265<!-- ======================================================================= -->
266<div class="doc_subsection">
267 <a name="isa">The isa&lt;&gt;, cast&lt;&gt; and dyn_cast&lt;&gt; templates</a>
268</div>
269
270<div class="doc_text">
271
272<p>The LLVM source-base makes extensive use of a custom form of RTTI.
Chris Lattner261efe92003-11-25 01:02:51 +0000273These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
274operator, but they don't have some drawbacks (primarily stemming from
275the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
276have a v-table). Because they are used so often, you must know what they
277do and how they work. All of these templates are defined in the <a
Chris Lattner695b78b2005-04-26 22:56:16 +0000278 href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000279file (note that you very rarely have to include this file directly).</p>
280
281<dl>
282 <dt><tt>isa&lt;&gt;</tt>: </dt>
283
284 <dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
285 "<tt>instanceof</tt>" operator. It returns true or false depending on whether
286 a reference or pointer points to an instance of the specified class. This can
287 be very useful for constraint checking of various sorts (example below).</dd>
288
289 <dt><tt>cast&lt;&gt;</tt>: </dt>
290
291 <dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
292 converts a pointer or reference from a base class to a derived cast, causing
293 an assertion failure if it is not really an instance of the right type. This
294 should be used in cases where you have some information that makes you believe
295 that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
296 and <tt>cast&lt;&gt;</tt> template is:
297
Chris Lattner69bf8a92004-05-23 21:06:58 +0000298 <pre>
299 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
300 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
301 return true;
302
Chris Lattner53f72b32005-04-22 04:49:59 +0000303 <i>// Otherwise, it must be an instruction...</i>
304 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
305 }
Chris Lattner69bf8a92004-05-23 21:06:58 +0000306 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000307
308 <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
309 by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
310 operator.</p>
311
312 </dd>
313
314 <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
315
316 <dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation. It
317 checks to see if the operand is of the specified type, and if so, returns a
318 pointer to it (this operator does not work with references). If the operand is
319 not of the correct type, a null pointer is returned. Thus, this works very
320 much like the <tt>dynamic_cast</tt> operator in C++, and should be used in the
321 same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt> operator is used
322 in an <tt>if</tt> statement or some other flow control statement like this:
323
Chris Lattner69bf8a92004-05-23 21:06:58 +0000324 <pre>
325 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
326 ...
327 }
328 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000329
330 <p> This form of the <tt>if</tt> statement effectively combines together a
331 call to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
332 statement, which is very convenient.</p>
333
Misha Brukman13fd15c2004-01-15 00:14:41 +0000334 <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
335 <tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused.
336 In particular you should not use big chained <tt>if/then/else</tt> blocks to
337 check for lots of different variants of classes. If you find yourself
338 wanting to do this, it is much cleaner and more efficient to use the
Chris Lattner53f72b32005-04-22 04:49:59 +0000339 <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000340
Chris Lattner261efe92003-11-25 01:02:51 +0000341 </dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000342
Chris Lattner261efe92003-11-25 01:02:51 +0000343 <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000344
345 <dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
346 <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as
347 an argument (which it then propagates). This can sometimes be useful,
348 allowing you to combine several null checks into one.</dd>
349
Chris Lattner261efe92003-11-25 01:02:51 +0000350 <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000351
352 <dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
353 <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
354 as an argument (which it then propagates). This can sometimes be useful,
355 allowing you to combine several null checks into one.</dd>
356
Chris Lattner261efe92003-11-25 01:02:51 +0000357 </dl>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000358
359<p>These five templates can be used with any classes, whether they have a
360v-table or not. To add support for these templates, you simply need to add
361<tt>classof</tt> static methods to the class you are interested casting
362to. Describing this is currently outside the scope of this document, but there
363are lots of examples in the LLVM source base.</p>
364
365</div>
366
367<!-- ======================================================================= -->
368<div class="doc_subsection">
369 <a name="DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt> option</a>
370</div>
371
372<div class="doc_text">
373
374<p>Often when working on your pass you will put a bunch of debugging printouts
375and other code into your pass. After you get it working, you want to remove
376it... but you may need it again in the future (to work out new bugs that you run
377across).</p>
378
379<p> Naturally, because of this, you don't want to delete the debug printouts,
380but you don't want them to always be noisy. A standard compromise is to comment
381them out, allowing you to enable them if you need them in the future.</p>
382
Chris Lattner695b78b2005-04-26 22:56:16 +0000383<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
Misha Brukman13fd15c2004-01-15 00:14:41 +0000384file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
385this problem. Basically, you can put arbitrary code into the argument of the
386<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
387tool) is run with the '<tt>-debug</tt>' command line argument:</p>
388
Chris Lattner261efe92003-11-25 01:02:51 +0000389 <pre> ... <br> DEBUG(std::cerr &lt;&lt; "I am here!\n");<br> ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000390
391<p>Then you can run your pass like this:</p>
392
Chris Lattner261efe92003-11-25 01:02:51 +0000393 <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> I am here!<br> $<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000394
395<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
396to not have to create "yet another" command line option for the debug output for
397your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
398so they do not cause a performance impact at all (for the same reason, they
399should also not contain side-effects!).</p>
400
401<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
402enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
403"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
404program hasn't been started yet, you can always just run it with
405<tt>-debug</tt>.</p>
406
407</div>
408
409<!-- _______________________________________________________________________ -->
410<div class="doc_subsubsection">
Chris Lattnerc9151082005-04-26 22:57:07 +0000411 <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
Misha Brukman13fd15c2004-01-15 00:14:41 +0000412 the <tt>-debug-only</tt> option</a>
413</div>
414
415<div class="doc_text">
416
417<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
418just turns on <b>too much</b> information (such as when working on the code
419generator). If you want to enable debug information with more fine-grained
420control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
421option as follows:</p>
422
Chris Lattner261efe92003-11-25 01:02:51 +0000423 <pre> ...<br> DEBUG(std::cerr &lt;&lt; "No debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "foo"<br> DEBUG(std::cerr &lt;&lt; "'foo' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "bar"<br> DEBUG(std::cerr &lt;&lt; "'bar' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE ""<br> DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");<br> ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000424
425<p>Then you can run your pass like this:</p>
426
Chris Lattner261efe92003-11-25 01:02:51 +0000427 <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> No debug type<br> 'foo' debug type<br> 'bar' debug type<br> No debug type (2)<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo<br> 'foo' debug type<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar<br> 'bar' debug type<br> $<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000428
429<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
430a file, to specify the debug type for the entire module (if you do this before
Chris Lattner695b78b2005-04-26 22:56:16 +0000431you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
Misha Brukman13fd15c2004-01-15 00:14:41 +0000432<tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
433"bar", because there is no system in place to ensure that names do not
434conflict. If two different modules use the same string, they will all be turned
435on when the name is specified. This allows, for example, all debug information
436for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
Chris Lattner261efe92003-11-25 01:02:51 +0000437even if the source lives in multiple files.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000438
439</div>
440
441<!-- ======================================================================= -->
442<div class="doc_subsection">
443 <a name="Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
444 option</a>
445</div>
446
447<div class="doc_text">
448
449<p>The "<tt><a
Chris Lattner695b78b2005-04-26 22:56:16 +0000450href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
Misha Brukman13fd15c2004-01-15 00:14:41 +0000451provides a template named <tt>Statistic</tt> that is used as a unified way to
452keep track of what the LLVM compiler is doing and how effective various
453optimizations are. It is useful to see what optimizations are contributing to
454making a particular program run faster.</p>
455
456<p>Often you may run your pass on some big program, and you're interested to see
457how many times it makes a certain transformation. Although you can do this with
458hand inspection, or some ad-hoc method, this is a real pain and not very useful
459for big programs. Using the <tt>Statistic</tt> template makes it very easy to
460keep track of this information, and the calculated information is presented in a
461uniform manner with the rest of the passes being executed.</p>
462
463<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
464it are as follows:</p>
465
466<ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000467 <li>Define your statistic like this:
Chris Lattner261efe92003-11-25 01:02:51 +0000468 <pre>static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000469
470 <p>The <tt>Statistic</tt> template can emulate just about any data-type,
471 but if you do not specify a template argument, it defaults to acting like
472 an unsigned int counter (this is usually what you want).</p></li>
473
Chris Lattner261efe92003-11-25 01:02:51 +0000474 <li>Whenever you make a transformation, bump the counter:
Chris Lattner261efe92003-11-25 01:02:51 +0000475 <pre> ++NumXForms; // I did stuff<br></pre>
Chris Lattner261efe92003-11-25 01:02:51 +0000476 </li>
477 </ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000478
479 <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
480 statistics gathered, use the '<tt>-stats</tt>' option:</p>
481
Chris Lattner261efe92003-11-25 01:02:51 +0000482 <pre> $ opt -stats -mypassname &lt; program.bc &gt; /dev/null<br> ... statistic output ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000483
Chris Lattner261efe92003-11-25 01:02:51 +0000484 <p> When running <tt>gccas</tt> on a C file from the SPEC benchmark
485suite, it gives a report that looks like this:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000486
Chris Lattner261efe92003-11-25 01:02:51 +0000487 <pre> 7646 bytecodewriter - Number of normal instructions<br> 725 bytecodewriter - Number of oversized instructions<br> 129996 bytecodewriter - Number of bytecode bytes written<br> 2817 raise - Number of insts DCEd or constprop'd<br> 3213 raise - Number of cast-of-self removed<br> 5046 raise - Number of expression trees converted<br> 75 raise - Number of other getelementptr's formed<br> 138 raise - Number of load/store peepholes<br> 42 deadtypeelim - Number of unused typenames removed from symtab<br> 392 funcresolve - Number of varargs functions resolved<br> 27 globaldce - Number of global variables removed<br> 2 adce - Number of basic blocks removed<br> 134 cee - Number of branches revectored<br> 49 cee - Number of setcc instruction eliminated<br> 532 gcse - Number of loads removed<br> 2919 gcse - Number of instructions removed<br> 86 indvars - Number of canonical indvars added<br> 87 indvars - Number of aux indvars removed<br> 25 instcombine - Number of dead inst eliminate<br> 434 instcombine - Number of insts combined<br> 248 licm - Number of load insts hoisted<br> 1298 licm - Number of insts hoisted to a loop pre-header<br> 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)<br> 75 mem2reg - Number of alloca's promoted<br> 1444 cfgsimplify - Number of blocks simplified<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000488
489<p>Obviously, with so many optimizations, having a unified framework for this
490stuff is very nice. Making your pass fit well into the framework makes it more
491maintainable and useful.</p>
492
493</div>
494
Chris Lattnerf623a082005-10-17 01:36:23 +0000495<!-- ======================================================================= -->
496<div class="doc_subsection">
497 <a name="ViewGraph">Viewing graphs while debugging code</a>
498</div>
499
500<div class="doc_text">
501
502<p>Several of the important data structures in LLVM are graphs: for example
503CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
504LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
505<a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
506DAGs</a>. In many cases, while debugging various parts of the compiler, it is
507nice to instantly visualize these graphs.</p>
508
509<p>LLVM provides several callbacks that are available in a debug build to do
510exactly that. If you call the <tt>Function::viewCFG()</tt> method, for example,
511the current LLVM tool will pop up a window containing the CFG for the function
512where each basic block is a node in the graph, and each node contains the
513instructions in the block. Similarly, there also exists
514<tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
515<tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
516and the <tt>SelectionDAG::viewGraph()</tt> methods. Within GDB, for example,
517you can usually use something like "<tt>call DAG.viewGraph()</tt>" to pop
518up a window. Alternatively, you can sprinkle calls to these functions in your
519code in places you want to debug.</p>
520
521<p>Getting this to work requires a small amount of configuration. On Unix
522systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
523toolkit, and make sure 'dot' and 'gv' are in your path. If you are running on
524Mac OS/X, download and install the Mac OS/X <a
525href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
526<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or whereever you install
527it) to your path. Once in your system and path are set up, rerun the LLVM
528configure script and rebuild LLVM to enable this functionality.</p>
529
530</div>
531
532
Misha Brukman13fd15c2004-01-15 00:14:41 +0000533<!-- *********************************************************************** -->
534<div class="doc_section">
535 <a name="common">Helpful Hints for Common Operations</a>
536</div>
537<!-- *********************************************************************** -->
538
539<div class="doc_text">
540
541<p>This section describes how to perform some very simple transformations of
542LLVM code. This is meant to give examples of common idioms used, showing the
543practical side of LLVM transformations. <p> Because this is a "how-to" section,
544you should also read about the main classes that you will be working with. The
545<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
546and descriptions of the main classes that you should know about.</p>
547
548</div>
549
550<!-- NOTE: this section should be heavy on example code -->
551<!-- ======================================================================= -->
552<div class="doc_subsection">
553 <a name="inspection">Basic Inspection and Traversal Routines</a>
554</div>
555
556<div class="doc_text">
557
558<p>The LLVM compiler infrastructure have many different data structures that may
559be traversed. Following the example of the C++ standard template library, the
560techniques used to traverse these various data structures are all basically the
561same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
562method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
563function returns an iterator pointing to one past the last valid element of the
564sequence, and there is some <tt>XXXiterator</tt> data type that is common
565between the two operations.</p>
566
567<p>Because the pattern for iteration is common across many different aspects of
568the program representation, the standard template library algorithms may be used
569on them, and it is easier to remember how to iterate. First we show a few common
570examples of the data structures that need to be traversed. Other data
571structures are traversed in very similar ways.</p>
572
573</div>
574
575<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000576<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000577 <a name="iterate_function">Iterating over the </a><a
578 href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
579 href="#Function"><tt>Function</tt></a>
580</div>
581
582<div class="doc_text">
583
584<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
585transform in some way; in particular, you'd like to manipulate its
586<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
587the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
588an example that prints the name of a <tt>BasicBlock</tt> and the number of
589<tt>Instruction</tt>s it contains:</p>
590
Chris Lattner261efe92003-11-25 01:02:51 +0000591 <pre> // func is a pointer to a Function instance<br> for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i) {<br><br> // print out the name of the basic block if it has one, and then the<br> // number of instructions that it contains<br><br> cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has " <br> &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";<br> }<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000592
593<p>Note that i can be used as if it were a pointer for the purposes of
Joel Stanley9b96c442002-09-06 21:55:13 +0000594invoking member functions of the <tt>Instruction</tt> class. This is
595because the indirection operator is overloaded for the iterator
Chris Lattner7496ec52003-08-05 22:54:23 +0000596classes. In the above code, the expression <tt>i-&gt;size()</tt> is
Misha Brukman13fd15c2004-01-15 00:14:41 +0000597exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
598
599</div>
600
601<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000602<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000603 <a name="iterate_basicblock">Iterating over the </a><a
604 href="#Instruction"><tt>Instruction</tt></a>s in a <a
605 href="#BasicBlock"><tt>BasicBlock</tt></a>
606</div>
607
608<div class="doc_text">
609
610<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
611easy to iterate over the individual instructions that make up
612<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
613a <tt>BasicBlock</tt>:</p>
614
Chris Lattner55c04612005-03-06 06:00:13 +0000615<pre>
616 // blk is a pointer to a BasicBlock instance
617 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
618 // the next statement works since operator&lt;&lt;(ostream&amp;,...)
619 // is overloaded for Instruction&amp;
620 std::cerr &lt;&lt; *i &lt;&lt; "\n";
621</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000622
623<p>However, this isn't really the best way to print out the contents of a
624<tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
625anything you'll care about, you could have just invoked the print routine on the
Chris Lattner55c04612005-03-06 06:00:13 +0000626basic block itself: <tt>std::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000627
628</div>
629
630<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000631<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000632 <a name="iterate_institer">Iterating over the </a><a
633 href="#Instruction"><tt>Instruction</tt></a>s in a <a
634 href="#Function"><tt>Function</tt></a>
635</div>
636
637<div class="doc_text">
638
639<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
640<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
641<tt>InstIterator</tt> should be used instead. You'll need to include <a
642href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
643and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000644small example that shows how to dump all instructions in a function to the standard error stream:<p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000645
Chris Lattner69bf8a92004-05-23 21:06:58 +0000646 <pre>#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"<br>...<br>// Suppose F is a ptr to a function<br>for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)<br> cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
Joel Stanleye7be6502002-09-09 15:50:33 +0000647Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
648worklist with its initial contents. For example, if you wanted to
Chris Lattner261efe92003-11-25 01:02:51 +0000649initialize a worklist to contain all instructions in a <tt>Function</tt>
650F, all you would need to do is something like:
651 <pre>std::set&lt;Instruction*&gt; worklist;<br>worklist.insert(inst_begin(F), inst_end(F));<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000652
653<p>The STL set <tt>worklist</tt> would now contain all instructions in the
654<tt>Function</tt> pointed to by F.</p>
655
656</div>
657
658<!-- _______________________________________________________________________ -->
659<div class="doc_subsubsection">
660 <a name="iterate_convert">Turning an iterator into a class pointer (and
661 vice-versa)</a>
662</div>
663
664<div class="doc_text">
665
666<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
Joel Stanley9b96c442002-09-06 21:55:13 +0000667instance when all you've got at hand is an iterator. Well, extracting
Chris Lattner69bf8a92004-05-23 21:06:58 +0000668a reference or a pointer from an iterator is very straight-forward.
Chris Lattner261efe92003-11-25 01:02:51 +0000669Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000670is a <tt>BasicBlock::const_iterator</tt>:</p>
671
Chris Lattner261efe92003-11-25 01:02:51 +0000672 <pre> Instruction&amp; inst = *i; // grab reference to instruction reference<br> Instruction* pinst = &amp;*i; // grab pointer to instruction reference<br> const Instruction&amp; inst = *j;<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000673
674<p>However, the iterators you'll be working with in the LLVM framework are
675special: they will automatically convert to a ptr-to-instance type whenever they
676need to. Instead of dereferencing the iterator and then taking the address of
677the result, you can simply assign the iterator to the proper pointer type and
678you get the dereference and address-of operation as a result of the assignment
679(behind the scenes, this is a result of overloading casting mechanisms). Thus
680the last line of the last example,</p>
681
Chris Lattner261efe92003-11-25 01:02:51 +0000682 <pre>Instruction* pinst = &amp;*i;</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000683
684<p>is semantically equivalent to</p>
685
Chris Lattner261efe92003-11-25 01:02:51 +0000686 <pre>Instruction* pinst = i;</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000687
Chris Lattner69bf8a92004-05-23 21:06:58 +0000688<p>It's also possible to turn a class pointer into the corresponding iterator,
689and this is a constant time operation (very efficient). The following code
690snippet illustrates use of the conversion constructors provided by LLVM
691iterators. By using these, you can explicitly grab the iterator of something
692without actually obtaining it via iteration over some structure:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000693
Chris Lattner261efe92003-11-25 01:02:51 +0000694 <pre>void printNextInstruction(Instruction* inst) {<br> BasicBlock::iterator it(inst);<br> ++it; // after this line, it refers to the instruction after *inst.<br> if (it != inst-&gt;getParent()-&gt;end()) cerr &lt;&lt; *it &lt;&lt; "\n";<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000695
Misha Brukman13fd15c2004-01-15 00:14:41 +0000696</div>
697
698<!--_______________________________________________________________________-->
699<div class="doc_subsubsection">
700 <a name="iterate_complex">Finding call sites: a slightly more complex
701 example</a>
702</div>
703
704<div class="doc_text">
705
706<p>Say that you're writing a FunctionPass and would like to count all the
707locations in the entire module (that is, across every <tt>Function</tt>) where a
708certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
709learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000710much more straight-forward manner, but this example will allow us to explore how
Misha Brukman13fd15c2004-01-15 00:14:41 +0000711you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudocode, this
712is what we want to do:</p>
713
Chris Lattner261efe92003-11-25 01:02:51 +0000714 <pre>initialize callCounter to zero<br>for each Function f in the Module<br> for each BasicBlock b in f<br> for each Instruction i in b<br> if (i is a CallInst and calls the given function)<br> increment callCounter<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000715
716<p>And the actual code is (remember, since we're writing a
717<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
718override the <tt>runOnFunction</tt> method...):</p>
719
Chris Lattner261efe92003-11-25 01:02:51 +0000720 <pre>Function* targetFunc = ...;<br><br>class OurFunctionPass : public FunctionPass {<br> public:<br> OurFunctionPass(): callCounter(0) { }<br><br> virtual runOnFunction(Function&amp; F) {<br> for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {<br> for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {<br> if (<a
721 href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
722 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {<br> // we know we've encountered a call instruction, so we<br> // need to determine if it's a call to the<br> // function pointed to by m_func or not.<br> <br> if (callInst-&gt;getCalledFunction() == targetFunc)<br> ++callCounter;<br> }<br> }<br> }<br> <br> private:<br> unsigned callCounter;<br>};<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000723
724</div>
725
Brian Gaekef1972c62003-11-07 19:25:45 +0000726<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000727<div class="doc_subsubsection">
728 <a name="calls_and_invokes">Treating calls and invokes the same way</a>
729</div>
730
731<div class="doc_text">
732
733<p>You may have noticed that the previous example was a bit oversimplified in
734that it did not deal with call sites generated by 'invoke' instructions. In
735this, and in other situations, you may find that you want to treat
736<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
737most-specific common base class is <tt>Instruction</tt>, which includes lots of
738less closely-related things. For these cases, LLVM provides a handy wrapper
739class called <a
Misha Brukman384047f2004-06-03 23:29:12 +0000740href="http://llvm.cs.uiuc.edu/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
Chris Lattner69bf8a92004-05-23 21:06:58 +0000741It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
742methods that provide functionality common to <tt>CallInst</tt>s and
Misha Brukman13fd15c2004-01-15 00:14:41 +0000743<tt>InvokeInst</tt>s.</p>
744
Chris Lattner69bf8a92004-05-23 21:06:58 +0000745<p>This class has "value semantics": it should be passed by value, not by
746reference and it should not be dynamically allocated or deallocated using
747<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
748assignable and constructable, with costs equivalents to that of a bare pointer.
749If you look at its definition, it has only a single pointer member.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000750
751</div>
752
Chris Lattner1a3105b2002-09-09 05:49:39 +0000753<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000754<div class="doc_subsubsection">
755 <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
756</div>
757
758<div class="doc_text">
759
760<p>Frequently, we might have an instance of the <a
Misha Brukman384047f2004-06-03 23:29:12 +0000761href="/doxygen/structllvm_1_1Value.html">Value Class</a> and we want to
762determine which <tt>User</tt>s use the <tt>Value</tt>. The list of all
763<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
764For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
765particular function <tt>foo</tt>. Finding all of the instructions that
766<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
767of <tt>F</tt>:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000768
Chris Lattner261efe92003-11-25 01:02:51 +0000769 <pre>Function* F = ...;<br><br>for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {<br> if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {<br> cerr &lt;&lt; "F is used in instruction:\n";<br> cerr &lt;&lt; *Inst &lt;&lt; "\n";<br> }<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000770
771<p>Alternately, it's common to have an instance of the <a
Misha Brukman384047f2004-06-03 23:29:12 +0000772href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
Misha Brukman13fd15c2004-01-15 00:14:41 +0000773<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
774<tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
775<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
776all of the values that a particular instruction uses (that is, the operands of
777the particular <tt>Instruction</tt>):</p>
778
Chris Lattner261efe92003-11-25 01:02:51 +0000779 <pre>Instruction* pi = ...;<br><br>for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {<br> Value* v = *i;<br> ...<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000780
Chris Lattner1a3105b2002-09-09 05:49:39 +0000781<!--
782 def-use chains ("finding all users of"): Value::use_begin/use_end
783 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
Misha Brukman13fd15c2004-01-15 00:14:41 +0000784-->
785
786</div>
787
788<!-- ======================================================================= -->
789<div class="doc_subsection">
790 <a name="simplechanges">Making simple changes</a>
791</div>
792
793<div class="doc_text">
794
795<p>There are some primitive transformation operations present in the LLVM
Joel Stanley753eb712002-09-11 22:32:24 +0000796infrastructure that are worth knowing about. When performing
Chris Lattner261efe92003-11-25 01:02:51 +0000797transformations, it's fairly common to manipulate the contents of basic
798blocks. This section describes some of the common methods for doing so
Misha Brukman13fd15c2004-01-15 00:14:41 +0000799and gives example code.</p>
800
801</div>
802
Chris Lattner261efe92003-11-25 01:02:51 +0000803<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000804<div class="doc_subsubsection">
805 <a name="schanges_creating">Creating and inserting new
806 <tt>Instruction</tt>s</a>
807</div>
808
809<div class="doc_text">
810
811<p><i>Instantiating Instructions</i></p>
812
Chris Lattner69bf8a92004-05-23 21:06:58 +0000813<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000814constructor for the kind of instruction to instantiate and provide the necessary
815parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
816(const-ptr-to) <tt>Type</tt>. Thus:</p>
817
818<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
819
820<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
821one integer in the current stack frame, at runtime. Each <tt>Instruction</tt>
822subclass is likely to have varying default parameters which change the semantics
823of the instruction, so refer to the <a
Misha Brukman31ca1de2004-06-03 23:35:54 +0000824href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
Misha Brukman13fd15c2004-01-15 00:14:41 +0000825Instruction</a> that you're interested in instantiating.</p>
826
827<p><i>Naming values</i></p>
828
829<p>It is very useful to name the values of instructions when you're able to, as
830this facilitates the debugging of your transformations. If you end up looking
831at generated LLVM machine code, you definitely want to have logical names
832associated with the results of instructions! By supplying a value for the
833<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
834associate a logical name with the result of the instruction's execution at
835runtime. For example, say that I'm writing a transformation that dynamically
836allocates space for an integer on the stack, and that integer is going to be
837used as some kind of index by some other code. To accomplish this, I place an
838<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
839<tt>Function</tt>, and I'm intending to use it within the same
840<tt>Function</tt>. I might do:</p>
841
842 <pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
843
844<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
845execution value, which is a pointer to an integer on the runtime stack.</p>
846
847<p><i>Inserting instructions</i></p>
848
849<p>There are essentially two ways to insert an <tt>Instruction</tt>
850into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
851
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000852<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000853 <li>Insertion into an explicit instruction list
854
855 <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
856 <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
857 before <tt>*pi</tt>, we do the following: </p>
858
Alkis Evlogimenos9a5dc4f2004-05-27 00:57:51 +0000859 <pre> BasicBlock *pb = ...;<br> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().insert(pi, newInst); // inserts newInst before pi in pb<br></pre>
860
861 <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
862 the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
863 classes provide constructors which take a pointer to a
864 <tt>BasicBlock</tt> to be appended to. For example code that
865 looked like: </p>
866
867 <pre> BasicBlock *pb = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().push_back(newInst); // appends newInst to pb<br></pre>
868
869 <p>becomes: </p>
870
871 <pre> BasicBlock *pb = ...;<br> Instruction *newInst = new Instruction(..., pb);<br></pre>
872
873 <p>which is much cleaner, especially if you are creating
874 long instruction streams.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000875
876 <li>Insertion into an implicit instruction list
877
878 <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
879 are implicitly associated with an existing instruction list: the instruction
880 list of the enclosing basic block. Thus, we could have accomplished the same
881 thing as the above code without being given a <tt>BasicBlock</tt> by doing:
882 </p>
883
884 <pre> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);<br></pre>
885
886 <p>In fact, this sequence of steps occurs so frequently that the
887 <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
888 constructors which take (as a default parameter) a pointer to an
889 <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
890 precede. That is, <tt>Instruction</tt> constructors are capable of
891 inserting the newly-created instance into the <tt>BasicBlock</tt> of a
892 provided instruction, immediately before that instruction. Using an
893 <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
894 parameter, the above code becomes:</p>
895
896 <pre>Instruction* pi = ...;<br>Instruction* newInst = new Instruction(..., pi);<br></pre>
897
898 <p>which is much cleaner, especially if you're creating a lot of
899instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
900</ul>
901
902</div>
903
904<!--_______________________________________________________________________-->
905<div class="doc_subsubsection">
906 <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
907</div>
908
909<div class="doc_text">
910
911<p>Deleting an instruction from an existing sequence of instructions that form a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000912<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
Misha Brukman13fd15c2004-01-15 00:14:41 +0000913you must have a pointer to the instruction that you wish to delete. Second, you
914need to obtain the pointer to that instruction's basic block. You use the
915pointer to the basic block to get its list of instructions and then use the
916erase function to remove your instruction. For example:</p>
917
Chris Lattner261efe92003-11-25 01:02:51 +0000918 <pre> <a href="#Instruction">Instruction</a> *I = .. ;<br> <a
919 href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();<br> BB-&gt;getInstList().erase(I);<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000920
921</div>
922
923<!--_______________________________________________________________________-->
924<div class="doc_subsubsection">
925 <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
926 <tt>Value</tt></a>
927</div>
928
929<div class="doc_text">
930
931<p><i>Replacing individual instructions</i></p>
932
933<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
Chris Lattner261efe92003-11-25 01:02:51 +0000934permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000935and <tt>ReplaceInstWithInst</tt>.</p>
936
Chris Lattner261efe92003-11-25 01:02:51 +0000937<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000938
Chris Lattner261efe92003-11-25 01:02:51 +0000939<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000940 <li><tt>ReplaceInstWithValue</tt>
941
942 <p>This function replaces all uses (within a basic block) of a given
943 instruction with a value, and then removes the original instruction. The
944 following example illustrates the replacement of the result of a particular
Chris Lattner58360822005-01-17 00:12:04 +0000945 <tt>AllocaInst</tt> that allocates memory for a single integer with a null
Misha Brukman13fd15c2004-01-15 00:14:41 +0000946 pointer to an integer.</p>
947
948 <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> Constant::getNullValue(PointerType::get(Type::IntTy)));<br></pre></li>
949
950 <li><tt>ReplaceInstWithInst</tt>
951
952 <p>This function replaces a particular instruction with another
953 instruction. The following example illustrates the replacement of one
954 <tt>AllocaInst</tt> with another.</p>
955
956 <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));<br></pre></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000957</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000958
959<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
960
961<p>You can use <tt>Value::replaceAllUsesWith</tt> and
962<tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
Misha Brukman384047f2004-06-03 23:29:12 +0000963doxygen documentation for the <a href="/doxygen/structllvm_1_1Value.html">Value Class</a>
964and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
Misha Brukman13fd15c2004-01-15 00:14:41 +0000965information.</p>
966
967<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
968include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
969ReplaceInstWithValue, ReplaceInstWithInst -->
970
971</div>
972
Chris Lattner9355b472002-09-06 02:50:58 +0000973<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000974<div class="doc_section">
Chris Lattnerd9d6e102005-04-23 16:10:52 +0000975 <a name="advanced">Advanced Topics</a>
976</div>
977<!-- *********************************************************************** -->
978
979<div class="doc_text">
Chris Lattnerf1b200b2005-04-23 17:27:36 +0000980<p>
981This section describes some of the advanced or obscure API's that most clients
982do not need to be aware of. These API's tend manage the inner workings of the
983LLVM system, and only need to be accessed in unusual circumstances.
984</p>
985</div>
Chris Lattnerd9d6e102005-04-23 16:10:52 +0000986
Chris Lattnerf1b200b2005-04-23 17:27:36 +0000987<!-- ======================================================================= -->
988<div class="doc_subsection">
989 <a name="TypeResolve">LLVM Type Resolution</a>
990</div>
Chris Lattnerd9d6e102005-04-23 16:10:52 +0000991
Chris Lattnerf1b200b2005-04-23 17:27:36 +0000992<div class="doc_text">
993
994<p>
995The LLVM type system has a very simple goal: allow clients to compare types for
996structural equality with a simple pointer comparison (aka a shallow compare).
997This goal makes clients much simpler and faster, and is used throughout the LLVM
998system.
999</p>
1000
1001<p>
1002Unfortunately achieving this goal is not a simple matter. In particular,
1003recursive types and late resolution of opaque types makes the situation very
1004difficult to handle. Fortunately, for the most part, our implementation makes
1005most clients able to be completely unaware of the nasty internal details. The
1006primary case where clients are exposed to the inner workings of it are when
1007building a recursive type. In addition to this case, the LLVM bytecode reader,
1008assembly parser, and linker also have to be aware of the inner workings of this
1009system.
1010</p>
1011
Chris Lattner0f876db2005-04-25 15:47:57 +00001012<p>
1013For our purposes below, we need three concepts. First, an "Opaque Type" is
1014exactly as defined in the <a href="LangRef.html#t_opaque">language
1015reference</a>. Second an "Abstract Type" is any type which includes an
1016opaque type as part of its type graph (for example "<tt>{ opaque, int }</tt>").
1017Third, a concrete type is a type that is not an abstract type (e.g. "<tt>[ int,
1018float }</tt>").
1019</p>
1020
Chris Lattnerf1b200b2005-04-23 17:27:36 +00001021</div>
1022
1023<!-- ______________________________________________________________________ -->
1024<div class="doc_subsubsection">
1025 <a name="BuildRecType">Basic Recursive Type Construction</a>
1026</div>
1027
1028<div class="doc_text">
1029
1030<p>
1031Because the most common question is "how do I build a recursive type with LLVM",
1032we answer it now and explain it as we go. Here we include enough to cause this
1033to be emitted to an output .ll file:
1034</p>
1035
1036<pre>
1037 %mylist = type { %mylist*, int }
1038</pre>
1039
1040<p>
1041To build this, use the following LLVM APIs:
1042</p>
1043
1044<pre>
1045 //<i> Create the initial outer struct.</i>
1046 <a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
1047 std::vector&lt;const Type*&gt; Elts;
1048 Elts.push_back(PointerType::get(StructTy));
1049 Elts.push_back(Type::IntTy);
1050 StructType *NewSTy = StructType::get(Elts);
1051
1052 //<i> At this point, NewSTy = "{ opaque*, int }". Tell VMCore that</i>
1053 //<i> the struct and the opaque type are actually the same.</i>
1054 cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
1055
1056 // <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
1057 // <i>kept up-to-date.</i>
1058 NewSTy = cast&lt;StructType&gt;(StructTy.get());
1059
1060 // <i>Add a name for the type to the module symbol table (optional).</i>
1061 MyModule-&gt;addTypeName("mylist", NewSTy);
1062</pre>
1063
1064<p>
1065This code shows the basic approach used to build recursive types: build a
1066non-recursive type using 'opaque', then use type unification to close the cycle.
1067The type unification step is performed by the <tt><a
1068ref="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
1069described next. After that, we describe the <a
1070href="#PATypeHolder">PATypeHolder class</a>.
1071</p>
1072
1073</div>
1074
1075<!-- ______________________________________________________________________ -->
1076<div class="doc_subsubsection">
1077 <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
1078</div>
1079
1080<div class="doc_text">
1081<p>
1082The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
1083While this method is actually a member of the DerivedType class, it is most
1084often used on OpaqueType instances. Type unification is actually a recursive
1085process. After unification, types can become structurally isomorphic to
1086existing types, and all duplicates are deleted (to preserve pointer equality).
1087</p>
1088
1089<p>
1090In the example above, the OpaqueType object is definitely deleted.
1091Additionally, if there is an "{ \2*, int}" type already created in the system,
1092the pointer and struct type created are <b>also</b> deleted. Obviously whenever
1093a type is deleted, any "Type*" pointers in the program are invalidated. As
1094such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
1095live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
1096types can never move or be deleted). To deal with this, the <a
1097href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
1098reference to a possibly refined type, and the <a
1099href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
1100complex datastructures.
1101</p>
1102
1103</div>
1104
1105<!-- ______________________________________________________________________ -->
1106<div class="doc_subsubsection">
1107 <a name="PATypeHolder">The PATypeHolder Class</a>
1108</div>
1109
1110<div class="doc_text">
1111<p>
1112PATypeHolder is a form of a "smart pointer" for Type objects. When VMCore
1113happily goes about nuking types that become isomorphic to existing types, it
1114automatically updates all PATypeHolder objects to point to the new type. In the
1115example above, this allows the code to maintain a pointer to the resultant
1116resolved recursive type, even though the Type*'s are potentially invalidated.
1117</p>
1118
1119<p>
1120PATypeHolder is an extremely light-weight object that uses a lazy union-find
1121implementation to update pointers. For example the pointer from a Value to its
1122Type is maintained by PATypeHolder objects.
1123</p>
1124
1125</div>
1126
1127<!-- ______________________________________________________________________ -->
1128<div class="doc_subsubsection">
1129 <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
1130</div>
1131
1132<div class="doc_text">
1133
1134<p>
1135Some data structures need more to perform more complex updates when types get
1136resolved. The <a href="#SymbolTable">SymbolTable</a> class, for example, needs
1137move and potentially merge type planes in its representation when a pointer
1138changes.</p>
1139
1140<p>
1141To support this, a class can derive from the AbstractTypeUser class. This class
1142allows it to get callbacks when certain types are resolved. To register to get
1143callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
Chris Lattner0f876db2005-04-25 15:47:57 +00001144methods can be called on a type. Note that these methods only work for <i>
1145abstract</i> types. Concrete types (those that do not include an opaque objects
Chris Lattnerf1b200b2005-04-23 17:27:36 +00001146somewhere) can never be refined.
1147</p>
Chris Lattnerd9d6e102005-04-23 16:10:52 +00001148</div>
1149
1150
1151<!-- ======================================================================= -->
1152<div class="doc_subsection">
1153 <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
1154</div>
Chris Lattnerf1b200b2005-04-23 17:27:36 +00001155
Chris Lattnerd9d6e102005-04-23 16:10:52 +00001156<div class="doc_text">
1157<p>This class provides a symbol table that the <a
1158href="#Function"><tt>Function</tt></a> and <a href="#Module">
1159<tt>Module</tt></a> classes use for naming definitions. The symbol table can
1160provide a name for any <a href="#Value"><tt>Value</tt></a> or <a
1161href="#Type"><tt>Type</tt></a>. <tt>SymbolTable</tt> is an abstract data
1162type. It hides the data it contains and provides access to it through a
1163controlled interface.</p>
1164
1165<p>Note that the symbol table class is should not be directly accessed by most
1166clients. It should only be used when iteration over the symbol table names
1167themselves are required, which is very special purpose. Note that not all LLVM
1168<a href="#Value">Value</a>s have names, and those without names (i.e. they have
1169an empty name) do not exist in the symbol table.
1170</p>
1171
1172<p>To use the <tt>SymbolTable</tt> well, you need to understand the
1173structure of the information it holds. The class contains two
1174<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of
1175<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>.
1176The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
1177are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
1178however, are stored in a single dimension and accessed only by name.</p>
1179
1180<p>The interface of this class provides three basic types of operations:
1181<ol>
1182 <li><em>Accessors</em>. Accessors provide read-only access to information
1183 such as finding a value for a name with the
1184 <a href="#SymbolTable_lookup">lookup</a> method.</li>
1185 <li><em>Mutators</em>. Mutators allow the user to add information to the
1186 <tt>SymbolTable</tt> with methods like
1187 <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
1188 <li><em>Iterators</em>. Iterators allow the user to traverse the content
1189 of the symbol table in well defined ways, such as the method
1190 <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
1191</ol>
1192
1193<h3>Accessors</h3>
1194<dl>
1195 <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
1196 </dt>
1197 <dd>The <tt>lookup</tt> method searches the type plane given by the
1198 <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
1199 If a suitable <tt>Value</tt> is not found, null is returned.</dd>
1200
1201 <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
1202 <dd>The <tt>lookupType</tt> method searches through the types for a
1203 <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
1204 is not found, null is returned.</dd>
1205
1206 <dt><tt>bool hasTypes() const</tt>:</dt>
1207 <dd>This function returns true if an entry has been made into the type
1208 map.</dd>
1209
1210 <dt><tt>bool isEmpty() const</tt>:</dt>
1211 <dd>This function returns true if both the value and types maps are
1212 empty</dd>
1213</dl>
1214
1215<h3>Mutators</h3>
1216<dl>
1217 <dt><tt>void insert(Value *Val)</tt>:</dt>
1218 <dd>This method adds the provided value to the symbol table. The Value must
1219 have both a name and a type which are extracted and used to place the value
1220 in the correct type plane under the value's name.</dd>
1221
1222 <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
1223 <dd> Inserts a constant or type into the symbol table with the specified
1224 name. There can be a many to one mapping between names and constants
1225 or types.</dd>
1226
1227 <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
1228 <dd> Inserts a type into the symbol table with the specified name. There
1229 can be a many-to-one mapping between names and types. This method
1230 allows a type with an existing entry in the symbol table to get
1231 a new name.</dd>
1232
1233 <dt><tt>void remove(Value* Val)</tt>:</dt>
1234 <dd> This method removes a named value from the symbol table. The
1235 type and name of the Value are extracted from \p N and used to
1236 lookup the Value in the correct type plane. If the Value is
1237 not in the symbol table, this method silently ignores the
1238 request.</dd>
1239
1240 <dt><tt>void remove(Type* Typ)</tt>:</dt>
1241 <dd> This method removes a named type from the symbol table. The
1242 name of the type is extracted from \P T and used to look up
1243 the Type in the type map. If the Type is not in the symbol
1244 table, this method silently ignores the request.</dd>
1245
1246 <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
1247 <dd> Remove a constant or type with the specified name from the
1248 symbol table.</dd>
1249
1250 <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
1251 <dd> Remove a type with the specified name from the symbol table.
1252 Returns the removed Type.</dd>
1253
1254 <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
1255 <dd> Removes a specific value from the symbol table.
1256 Returns the removed value.</dd>
1257
1258 <dt><tt>bool strip()</tt>:</dt>
1259 <dd> This method will strip the symbol table of its names leaving
1260 the type and values. </dd>
1261
1262 <dt><tt>void clear()</tt>:</dt>
1263 <dd>Empty the symbol table completely.</dd>
1264</dl>
1265
1266<h3>Iteration</h3>
1267<p>The following functions describe three types of iterators you can obtain
1268the beginning or end of the sequence for both const and non-const. It is
1269important to keep track of the different kinds of iterators. There are
1270three idioms worth pointing out:</p>
1271<table>
1272 <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
1273 <tr>
1274 <td align="left">Planes Of name/Value maps</td><td>PI</td>
1275 <td align="left"><pre><tt>
1276for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
1277 PE = ST.plane_end(); PI != PE; ++PI ) {
1278 PI-&gt;first // This is the Type* of the plane
1279 PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
1280 </tt></pre></td>
1281 </tr>
1282 <tr>
1283 <td align="left">All name/Type Pairs</td><td>TI</td>
1284 <td align="left"><pre><tt>
1285for (SymbolTable::type_const_iterator TI = ST.type_begin(),
1286 TE = ST.type_end(); TI != TE; ++TI )
1287 TI-&gt;first // This is the name of the type
1288 TI-&gt;second // This is the Type* value associated with the name
1289 </tt></pre></td>
1290 </tr>
1291 <tr>
1292 <td align="left">name/Value pairs in a plane</td><td>VI</td>
1293 <td align="left"><pre><tt>
1294for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
1295 VE = ST.value_end(SomeType); VI != VE; ++VI )
1296 VI-&gt;first // This is the name of the Value
1297 VI-&gt;second // This is the Value* value associated with the name
1298 </tt></pre></td>
1299 </tr>
1300</table>
1301
1302<p>Using the recommended iterator names and idioms will help you avoid
1303making mistakes. Of particular note, make sure that whenever you use
1304value_begin(SomeType) that you always compare the resulting iterator
1305with value_end(SomeType) not value_end(SomeOtherType) or else you
1306will loop infinitely.</p>
1307
1308<dl>
1309
1310 <dt><tt>plane_iterator plane_begin()</tt>:</dt>
1311 <dd>Get an iterator that starts at the beginning of the type planes.
1312 The iterator will iterate over the Type/ValueMap pairs in the
1313 type planes. </dd>
1314
1315 <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
1316 <dd>Get a const_iterator that starts at the beginning of the type
1317 planes. The iterator will iterate over the Type/ValueMap pairs
1318 in the type planes. </dd>
1319
1320 <dt><tt>plane_iterator plane_end()</tt>:</dt>
1321 <dd>Get an iterator at the end of the type planes. This serves as
1322 the marker for end of iteration over the type planes.</dd>
1323
1324 <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
1325 <dd>Get a const_iterator at the end of the type planes. This serves as
1326 the marker for end of iteration over the type planes.</dd>
1327
1328 <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
1329 <dd>Get an iterator that starts at the beginning of a type plane.
1330 The iterator will iterate over the name/value pairs in the type plane.
1331 Note: The type plane must already exist before using this.</dd>
1332
1333 <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
1334 <dd>Get a const_iterator that starts at the beginning of a type plane.
1335 The iterator will iterate over the name/value pairs in the type plane.
1336 Note: The type plane must already exist before using this.</dd>
1337
1338 <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
1339 <dd>Get an iterator to the end of a type plane. This serves as the marker
1340 for end of iteration of the type plane.
1341 Note: The type plane must already exist before using this.</dd>
1342
1343 <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
1344 <dd>Get a const_iterator to the end of a type plane. This serves as the
1345 marker for end of iteration of the type plane.
1346 Note: the type plane must already exist before using this.</dd>
1347
1348 <dt><tt>type_iterator type_begin()</tt>:</dt>
1349 <dd>Get an iterator to the start of the name/Type map.</dd>
1350
1351 <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
1352 <dd> Get a const_iterator to the start of the name/Type map.</dd>
1353
1354 <dt><tt>type_iterator type_end()</tt>:</dt>
1355 <dd>Get an iterator to the end of the name/Type map. This serves as the
1356 marker for end of iteration of the types.</dd>
1357
1358 <dt><tt>type_const_iterator type_end() const</tt>:</dt>
1359 <dd>Get a const-iterator to the end of the name/Type map. This serves
1360 as the marker for end of iteration of the types.</dd>
1361
1362 <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
1363 <dd>This method returns a plane_const_iterator for iteration over
1364 the type planes starting at a specific plane, given by \p Ty.</dd>
1365
1366 <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
1367 <dd>This method returns a plane_iterator for iteration over the
1368 type planes starting at a specific plane, given by \p Ty.</dd>
1369
1370</dl>
1371</div>
1372
1373
1374
1375<!-- *********************************************************************** -->
1376<div class="doc_section">
Misha Brukman13fd15c2004-01-15 00:14:41 +00001377 <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
1378</div>
1379<!-- *********************************************************************** -->
1380
1381<div class="doc_text">
1382
1383<p>The Core LLVM classes are the primary means of representing the program
Chris Lattner261efe92003-11-25 01:02:51 +00001384being inspected or transformed. The core LLVM classes are defined in
1385header files in the <tt>include/llvm/</tt> directory, and implemented in
Misha Brukman13fd15c2004-01-15 00:14:41 +00001386the <tt>lib/VMCore</tt> directory.</p>
1387
1388</div>
1389
1390<!-- ======================================================================= -->
1391<div class="doc_subsection">
1392 <a name="Value">The <tt>Value</tt> class</a>
1393</div>
1394
1395<div>
1396
1397<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
1398<br>
Misha Brukman384047f2004-06-03 23:29:12 +00001399doxygen info: <a href="/doxygen/structllvm_1_1Value.html">Value Class</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001400
1401<p>The <tt>Value</tt> class is the most important class in the LLVM Source
1402base. It represents a typed value that may be used (among other things) as an
1403operand to an instruction. There are many different types of <tt>Value</tt>s,
1404such as <a href="#Constant"><tt>Constant</tt></a>s,<a
1405href="#Argument"><tt>Argument</tt></a>s. Even <a
1406href="#Instruction"><tt>Instruction</tt></a>s and <a
1407href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
1408
1409<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
1410for a program. For example, an incoming argument to a function (represented
1411with an instance of the <a href="#Argument">Argument</a> class) is "used" by
1412every instruction in the function that references the argument. To keep track
1413of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
1414href="#User"><tt>User</tt></a>s that is using it (the <a
1415href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
1416graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
1417def-use information in the program, and is accessible through the <tt>use_</tt>*
1418methods, shown below.</p>
1419
1420<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
1421and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
1422method. In addition, all LLVM values can be named. The "name" of the
1423<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
1424
Chris Lattner261efe92003-11-25 01:02:51 +00001425 <pre> %<b>foo</b> = add int 1, 2<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001426
1427<p><a name="#nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
1428that the name of any value may be missing (an empty string), so names should
1429<b>ONLY</b> be used for debugging (making the source code easier to read,
1430debugging printouts), they should not be used to keep track of values or map
1431between them. For this purpose, use a <tt>std::map</tt> of pointers to the
1432<tt>Value</tt> itself instead.</p>
1433
1434<p>One important aspect of LLVM is that there is no distinction between an SSA
1435variable and the operation that produces it. Because of this, any reference to
1436the value produced by an instruction (or the value available as an incoming
Chris Lattnerd5fc4fc2004-03-18 14:58:55 +00001437argument, for example) is represented as a direct pointer to the instance of
1438the class that
Misha Brukman13fd15c2004-01-15 00:14:41 +00001439represents this value. Although this may take some getting used to, it
1440simplifies the representation and makes it easier to manipulate.</p>
1441
1442</div>
1443
1444<!-- _______________________________________________________________________ -->
1445<div class="doc_subsubsection">
1446 <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
1447</div>
1448
1449<div class="doc_text">
1450
Chris Lattner261efe92003-11-25 01:02:51 +00001451<ul>
1452 <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
1453use-list<br>
1454 <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
1455the use-list<br>
1456 <tt>unsigned use_size()</tt> - Returns the number of users of the
1457value.<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001458 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
Chris Lattner261efe92003-11-25 01:02:51 +00001459 <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
1460the use-list.<br>
1461 <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
1462use-list.<br>
1463 <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
1464element in the list.
1465 <p> These methods are the interface to access the def-use
1466information in LLVM. As with all other iterators in LLVM, the naming
1467conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001468 </li>
1469 <li><tt><a href="#Type">Type</a> *getType() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001470 <p>This method returns the Type of the Value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001471 </li>
1472 <li><tt>bool hasName() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001473 <tt>std::string getName() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00001474 <tt>void setName(const std::string &amp;Name)</tt>
1475 <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
1476be aware of the <a href="#nameWarning">precaution above</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001477 </li>
1478 <li><tt>void replaceAllUsesWith(Value *V)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001479
1480 <p>This method traverses the use list of a <tt>Value</tt> changing all <a
1481 href="#User"><tt>User</tt>s</a> of the current value to refer to
1482 "<tt>V</tt>" instead. For example, if you detect that an instruction always
1483 produces a constant value (for example through constant folding), you can
1484 replace all uses of the instruction with the constant like this:</p>
1485
Chris Lattner261efe92003-11-25 01:02:51 +00001486 <pre> Inst-&gt;replaceAllUsesWith(ConstVal);<br></pre>
Chris Lattner261efe92003-11-25 01:02:51 +00001487</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001488
1489</div>
1490
1491<!-- ======================================================================= -->
1492<div class="doc_subsection">
1493 <a name="User">The <tt>User</tt> class</a>
1494</div>
1495
1496<div class="doc_text">
1497
1498<p>
1499<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
Misha Brukman384047f2004-06-03 23:29:12 +00001500doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001501Superclass: <a href="#Value"><tt>Value</tt></a></p>
1502
1503<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
1504refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
1505that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
1506referring to. The <tt>User</tt> class itself is a subclass of
1507<tt>Value</tt>.</p>
1508
1509<p>The operands of a <tt>User</tt> point directly to the LLVM <a
1510href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
1511Single Assignment (SSA) form, there can only be one definition referred to,
1512allowing this direct connection. This connection provides the use-def
1513information in LLVM.</p>
1514
1515</div>
1516
1517<!-- _______________________________________________________________________ -->
1518<div class="doc_subsubsection">
1519 <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
1520</div>
1521
1522<div class="doc_text">
1523
1524<p>The <tt>User</tt> class exposes the operand list in two ways: through
1525an index access interface and through an iterator based interface.</p>
1526
Chris Lattner261efe92003-11-25 01:02:51 +00001527<ul>
Chris Lattner261efe92003-11-25 01:02:51 +00001528 <li><tt>Value *getOperand(unsigned i)</tt><br>
1529 <tt>unsigned getNumOperands()</tt>
1530 <p> These two methods expose the operands of the <tt>User</tt> in a
Misha Brukman13fd15c2004-01-15 00:14:41 +00001531convenient form for direct access.</p></li>
1532
Chris Lattner261efe92003-11-25 01:02:51 +00001533 <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
1534list<br>
Chris Lattner58360822005-01-17 00:12:04 +00001535 <tt>op_iterator op_begin()</tt> - Get an iterator to the start of
1536the operand list.<br>
1537 <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
Chris Lattner261efe92003-11-25 01:02:51 +00001538operand list.
1539 <p> Together, these methods make up the iterator based interface to
Misha Brukman13fd15c2004-01-15 00:14:41 +00001540the operands of a <tt>User</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001541</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001542
1543</div>
1544
1545<!-- ======================================================================= -->
1546<div class="doc_subsection">
1547 <a name="Instruction">The <tt>Instruction</tt> class</a>
1548</div>
1549
1550<div class="doc_text">
1551
1552<p><tt>#include "</tt><tt><a
1553href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
Misha Brukman31ca1de2004-06-03 23:35:54 +00001554doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001555Superclasses: <a href="#User"><tt>User</tt></a>, <a
1556href="#Value"><tt>Value</tt></a></p>
1557
1558<p>The <tt>Instruction</tt> class is the common base class for all LLVM
1559instructions. It provides only a few methods, but is a very commonly used
1560class. The primary data tracked by the <tt>Instruction</tt> class itself is the
1561opcode (instruction type) and the parent <a
1562href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
1563into. To represent a specific type of instruction, one of many subclasses of
1564<tt>Instruction</tt> are used.</p>
1565
1566<p> Because the <tt>Instruction</tt> class subclasses the <a
1567href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
1568way as for other <a href="#User"><tt>User</tt></a>s (with the
1569<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
1570<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
1571the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
1572file contains some meta-data about the various different types of instructions
1573in LLVM. It describes the enum values that are used as opcodes (for example
1574<tt>Instruction::Add</tt> and <tt>Instruction::SetLE</tt>), as well as the
1575concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
1576example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
1577href="#SetCondInst">SetCondInst</a></tt>). Unfortunately, the use of macros in
1578this file confuses doxygen, so these enum values don't show up correctly in the
Misha Brukman31ca1de2004-06-03 23:35:54 +00001579<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001580
1581</div>
1582
1583<!-- _______________________________________________________________________ -->
1584<div class="doc_subsubsection">
1585 <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
1586 class</a>
1587</div>
1588
1589<div class="doc_text">
1590
Chris Lattner261efe92003-11-25 01:02:51 +00001591<ul>
1592 <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001593 <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
1594this <tt>Instruction</tt> is embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001595 <li><tt>bool mayWriteToMemory()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001596 <p>Returns true if the instruction writes to memory, i.e. it is a
1597 <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001598 <li><tt>unsigned getOpcode()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001599 <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001600 <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001601 <p>Returns another instance of the specified instruction, identical
Chris Lattner261efe92003-11-25 01:02:51 +00001602in all ways to the original except that the instruction has no parent
1603(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
Misha Brukman13fd15c2004-01-15 00:14:41 +00001604and it has no name</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001605</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001606
1607</div>
1608
1609<!-- ======================================================================= -->
1610<div class="doc_subsection">
1611 <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
1612</div>
1613
1614<div class="doc_text">
1615
Misha Brukman384047f2004-06-03 23:29:12 +00001616<p><tt>#include "<a
1617href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
1618doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
1619Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001620Superclass: <a href="#Value"><tt>Value</tt></a></p>
1621
1622<p>This class represents a single entry multiple exit section of the code,
1623commonly known as a basic block by the compiler community. The
1624<tt>BasicBlock</tt> class maintains a list of <a
1625href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
1626Matching the language definition, the last element of this list of instructions
1627is always a terminator instruction (a subclass of the <a
1628href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
1629
1630<p>In addition to tracking the list of instructions that make up the block, the
1631<tt>BasicBlock</tt> class also keeps track of the <a
1632href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
1633
1634<p>Note that <tt>BasicBlock</tt>s themselves are <a
1635href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
1636like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
1637<tt>label</tt>.</p>
1638
1639</div>
1640
1641<!-- _______________________________________________________________________ -->
1642<div class="doc_subsubsection">
1643 <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
1644 class</a>
1645</div>
1646
1647<div class="doc_text">
1648
Chris Lattner261efe92003-11-25 01:02:51 +00001649<ul>
Misha Brukmanb0e7e452004-10-29 04:33:19 +00001650
1651<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
Chris Lattner261efe92003-11-25 01:02:51 +00001652 href="#Function">Function</a> *Parent = 0)</tt>
Misha Brukmanb0e7e452004-10-29 04:33:19 +00001653
1654<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
1655insertion into a function. The constructor optionally takes a name for the new
1656block, and a <a href="#Function"><tt>Function</tt></a> to insert it into. If
1657the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
1658automatically inserted at the end of the specified <a
1659href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
1660manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
1661
1662<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
1663<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
1664<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
Chris Lattner77d69242005-03-15 05:19:20 +00001665<tt>size()</tt>, <tt>empty()</tt>
Misha Brukmanb0e7e452004-10-29 04:33:19 +00001666STL-style functions for accessing the instruction list.
1667
1668<p>These methods and typedefs are forwarding functions that have the same
1669semantics as the standard library methods of the same names. These methods
1670expose the underlying instruction list of a basic block in a way that is easy to
1671manipulate. To get the full complement of container operations (including
1672operations to update the list), you must use the <tt>getInstList()</tt>
1673method.</p></li>
1674
1675<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
1676
1677<p>This method is used to get access to the underlying container that actually
1678holds the Instructions. This method must be used when there isn't a forwarding
1679function in the <tt>BasicBlock</tt> class for the operation that you would like
1680to perform. Because there are no forwarding functions for "updating"
1681operations, you need to use this if you want to update the contents of a
1682<tt>BasicBlock</tt>.</p></li>
1683
1684<li><tt><a href="#Function">Function</a> *getParent()</tt>
1685
1686<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
1687embedded into, or a null pointer if it is homeless.</p></li>
1688
1689<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
1690
1691<p> Returns a pointer to the terminator instruction that appears at the end of
1692the <tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
1693instruction in the block is not a terminator, then a null pointer is
1694returned.</p></li>
1695
Chris Lattner261efe92003-11-25 01:02:51 +00001696</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001697
1698</div>
1699
1700<!-- ======================================================================= -->
1701<div class="doc_subsection">
1702 <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
1703</div>
1704
1705<div class="doc_text">
1706
1707<p><tt>#include "<a
1708href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
Misha Brukman384047f2004-06-03 23:29:12 +00001709doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
1710Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001711Superclasses: <a href="#User"><tt>User</tt></a>, <a
1712href="#Value"><tt>Value</tt></a></p>
1713
1714<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
1715href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
1716visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
1717Because they are visible at global scope, they are also subject to linking with
1718other globals defined in different translation units. To control the linking
1719process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
1720<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
Reid Spencer8b2da7a2004-07-18 13:10:31 +00001721defined by the <tt>LinkageTypes</tt> enumeration.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001722
1723<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
1724<tt>static</tt> in C), it is not visible to code outside the current translation
1725unit, and does not participate in linking. If it has external linkage, it is
1726visible to external code, and does participate in linking. In addition to
1727linkage information, <tt>GlobalValue</tt>s keep track of which <a
1728href="#Module"><tt>Module</tt></a> they are currently part of.</p>
1729
1730<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
1731by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
1732global is always a pointer to its contents. It is important to remember this
1733when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
1734be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
1735subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
1736int]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
1737the address of the first element of this array and the value of the
1738<tt>GlobalVariable</tt> are the same, they have different types. The
1739<tt>GlobalVariable</tt>'s type is <tt>[24 x int]</tt>. The first element's type
1740is <tt>int.</tt> Because of this, accessing a global value requires you to
1741dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
1742can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
1743Language Reference Manual</a>.</p>
1744
1745</div>
1746
1747<!-- _______________________________________________________________________ -->
1748<div class="doc_subsubsection">
1749 <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
1750 class</a>
1751</div>
1752
1753<div class="doc_text">
1754
Chris Lattner261efe92003-11-25 01:02:51 +00001755<ul>
1756 <li><tt>bool hasInternalLinkage() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001757 <tt>bool hasExternalLinkage() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00001758 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
1759 <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
1760 <p> </p>
1761 </li>
1762 <li><tt><a href="#Module">Module</a> *getParent()</tt>
1763 <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
Misha Brukman13fd15c2004-01-15 00:14:41 +00001764GlobalValue is currently embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001765</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001766
1767</div>
1768
1769<!-- ======================================================================= -->
1770<div class="doc_subsection">
1771 <a name="Function">The <tt>Function</tt> class</a>
1772</div>
1773
1774<div class="doc_text">
1775
1776<p><tt>#include "<a
1777href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
Misha Brukman31ca1de2004-06-03 23:35:54 +00001778info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
1779Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
Misha Brukman13fd15c2004-01-15 00:14:41 +00001780href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
1781
1782<p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
1783actually one of the more complex classes in the LLVM heirarchy because it must
1784keep track of a large amount of data. The <tt>Function</tt> class keeps track
1785of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
1786href="#Argument"><tt>Argument</tt></a>s, and a <a
1787href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
1788
1789<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
1790commonly used part of <tt>Function</tt> objects. The list imposes an implicit
1791ordering of the blocks in the function, which indicate how the code will be
1792layed out by the backend. Additionally, the first <a
1793href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
1794<tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
1795block. There are no implicit exit nodes, and in fact there may be multiple exit
1796nodes from a single <tt>Function</tt>. If the <a
1797href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
1798the <tt>Function</tt> is actually a function declaration: the actual body of the
1799function hasn't been linked in yet.</p>
1800
1801<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
1802<tt>Function</tt> class also keeps track of the list of formal <a
1803href="#Argument"><tt>Argument</tt></a>s that the function receives. This
1804container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
1805nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
1806the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
1807
1808<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
1809LLVM feature that is only used when you have to look up a value by name. Aside
1810from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
1811internally to make sure that there are not conflicts between the names of <a
1812href="#Instruction"><tt>Instruction</tt></a>s, <a
1813href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
1814href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
1815
Reid Spencer8b2da7a2004-07-18 13:10:31 +00001816<p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
1817and therefore also a <a href="#Constant">Constant</a>. The value of the function
1818is its address (after linking) which is guaranteed to be constant.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001819</div>
1820
1821<!-- _______________________________________________________________________ -->
1822<div class="doc_subsubsection">
1823 <a name="m_Function">Important Public Members of the <tt>Function</tt>
1824 class</a>
1825</div>
1826
1827<div class="doc_text">
1828
Chris Lattner261efe92003-11-25 01:02:51 +00001829<ul>
1830 <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
Chris Lattnerac479e52004-08-04 05:10:48 +00001831 *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001832
1833 <p>Constructor used when you need to create new <tt>Function</tt>s to add
1834 the the program. The constructor must specify the type of the function to
Chris Lattnerac479e52004-08-04 05:10:48 +00001835 create and what type of linkage the function should have. The <a
1836 href="#FunctionType"><tt>FunctionType</tt></a> argument
Misha Brukman13fd15c2004-01-15 00:14:41 +00001837 specifies the formal arguments and return value for the function. The same
1838 <a href="#FunctionTypel"><tt>FunctionType</tt></a> value can be used to
1839 create multiple functions. The <tt>Parent</tt> argument specifies the Module
1840 in which the function is defined. If this argument is provided, the function
1841 will automatically be inserted into that module's list of
1842 functions.</p></li>
1843
Chris Lattner261efe92003-11-25 01:02:51 +00001844 <li><tt>bool isExternal()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001845
1846 <p>Return whether or not the <tt>Function</tt> has a body defined. If the
1847 function is "external", it does not have a body, and thus must be resolved
1848 by linking with a function defined in a different translation unit.</p></li>
1849
Chris Lattner261efe92003-11-25 01:02:51 +00001850 <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001851 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001852
Chris Lattner77d69242005-03-15 05:19:20 +00001853 <tt>begin()</tt>, <tt>end()</tt>
1854 <tt>size()</tt>, <tt>empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001855
1856 <p>These are forwarding methods that make it easy to access the contents of
1857 a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
1858 list.</p></li>
1859
Chris Lattner261efe92003-11-25 01:02:51 +00001860 <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001861
1862 <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
1863 is necessary to use when you need to update the list or perform a complex
1864 action that doesn't have a forwarding method.</p></li>
1865
Chris Lattner89cc2652005-03-15 04:48:32 +00001866 <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
Chris Lattner261efe92003-11-25 01:02:51 +00001867iterator<br>
Chris Lattner89cc2652005-03-15 04:48:32 +00001868 <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001869
Chris Lattner77d69242005-03-15 05:19:20 +00001870 <tt>arg_begin()</tt>, <tt>arg_end()</tt>
Chris Lattner89cc2652005-03-15 04:48:32 +00001871 <tt>arg_size()</tt>, <tt>arg_empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001872
1873 <p>These are forwarding methods that make it easy to access the contents of
1874 a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
1875 list.</p></li>
1876
Chris Lattner261efe92003-11-25 01:02:51 +00001877 <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001878
1879 <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
1880 necessary to use when you need to update the list or perform a complex
1881 action that doesn't have a forwarding method.</p></li>
1882
Chris Lattner261efe92003-11-25 01:02:51 +00001883 <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001884
1885 <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
1886 function. Because the entry block for the function is always the first
1887 block, this returns the first block of the <tt>Function</tt>.</p></li>
1888
Chris Lattner261efe92003-11-25 01:02:51 +00001889 <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
1890 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001891
1892 <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
1893 <tt>Function</tt> and returns the return type of the function, or the <a
1894 href="#FunctionType"><tt>FunctionType</tt></a> of the actual
1895 function.</p></li>
1896
Chris Lattner261efe92003-11-25 01:02:51 +00001897 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001898
Chris Lattner261efe92003-11-25 01:02:51 +00001899 <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001900 for this <tt>Function</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001901</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001902
1903</div>
1904
1905<!-- ======================================================================= -->
1906<div class="doc_subsection">
1907 <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
1908</div>
1909
1910<div class="doc_text">
1911
1912<p><tt>#include "<a
1913href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
1914<br>
Tanya Lattnera3da7772004-06-22 08:02:25 +00001915doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
Misha Brukman13fd15c2004-01-15 00:14:41 +00001916Class</a><br> Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1917href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
1918
1919<p>Global variables are represented with the (suprise suprise)
1920<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
1921subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
1922always referenced by their address (global values must live in memory, so their
1923"name" refers to their address). See <a
1924href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global variables
1925may have an initial value (which must be a <a
1926href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, they
1927may be marked as "constant" themselves (indicating that their contents never
1928change at runtime).</p>
1929
1930</div>
1931
1932<!-- _______________________________________________________________________ -->
1933<div class="doc_subsubsection">
1934 <a name="m_GlobalVariable">Important Public Members of the
1935 <tt>GlobalVariable</tt> class</a>
1936</div>
1937
1938<div class="doc_text">
1939
Chris Lattner261efe92003-11-25 01:02:51 +00001940<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001941 <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
1942 isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
1943 *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
1944
1945 <p>Create a new global variable of the specified type. If
1946 <tt>isConstant</tt> is true then the global variable will be marked as
1947 unchanging for the program. The Linkage parameter specifies the type of
1948 linkage (internal, external, weak, linkonce, appending) for the variable. If
1949 the linkage is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then
1950 the resultant global variable will have internal linkage. AppendingLinkage
1951 concatenates together all instances (in different translation units) of the
1952 variable into a single variable but is only applicable to arrays. &nbsp;See
1953 the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
1954 further details on linkage types. Optionally an initializer, a name, and the
1955 module to put the variable into may be specified for the global variable as
1956 well.</p></li>
1957
Chris Lattner261efe92003-11-25 01:02:51 +00001958 <li><tt>bool isConstant() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001959
1960 <p>Returns true if this is a global variable that is known not to
1961 be modified at runtime.</p></li>
1962
Chris Lattner261efe92003-11-25 01:02:51 +00001963 <li><tt>bool hasInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001964
1965 <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
1966
Chris Lattner261efe92003-11-25 01:02:51 +00001967 <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001968
1969 <p>Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal
1970 to call this method if there is no initializer.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001971</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001972
1973</div>
1974
1975<!-- ======================================================================= -->
1976<div class="doc_subsection">
1977 <a name="Module">The <tt>Module</tt> class</a>
1978</div>
1979
1980<div class="doc_text">
1981
1982<p><tt>#include "<a
1983href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
Tanya Lattnera3da7772004-06-22 08:02:25 +00001984<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001985
1986<p>The <tt>Module</tt> class represents the top level structure present in LLVM
1987programs. An LLVM module is effectively either a translation unit of the
1988original program or a combination of several translation units merged by the
1989linker. The <tt>Module</tt> class keeps track of a list of <a
1990href="#Function"><tt>Function</tt></a>s, a list of <a
1991href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
1992href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
1993helpful member functions that try to make common operations easy.</p>
1994
1995</div>
1996
1997<!-- _______________________________________________________________________ -->
1998<div class="doc_subsubsection">
1999 <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
2000</div>
2001
2002<div class="doc_text">
2003
Chris Lattner261efe92003-11-25 01:02:51 +00002004<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002005 <li><tt>Module::Module(std::string name = "")</tt></li>
Chris Lattner261efe92003-11-25 01:02:51 +00002006</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002007
2008<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
2009provide a name for it (probably based on the name of the translation unit).</p>
2010
Chris Lattner261efe92003-11-25 01:02:51 +00002011<ul>
2012 <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
Chris Lattner0377de42002-09-06 14:50:55 +00002013 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002014
Chris Lattner77d69242005-03-15 05:19:20 +00002015 <tt>begin()</tt>, <tt>end()</tt>
2016 <tt>size()</tt>, <tt>empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002017
2018 <p>These are forwarding methods that make it easy to access the contents of
2019 a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
2020 list.</p></li>
2021
Chris Lattner261efe92003-11-25 01:02:51 +00002022 <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002023
2024 <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
2025 necessary to use when you need to update the list or perform a complex
2026 action that doesn't have a forwarding method.</p>
2027
2028 <p><!-- Global Variable --></p></li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002029</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002030
2031<hr>
2032
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002033<ul>
Chris Lattner89cc2652005-03-15 04:48:32 +00002034 <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002035
Chris Lattner89cc2652005-03-15 04:48:32 +00002036 <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002037
Chris Lattner77d69242005-03-15 05:19:20 +00002038 <tt>global_begin()</tt>, <tt>global_end()</tt>
Chris Lattner89cc2652005-03-15 04:48:32 +00002039 <tt>global_size()</tt>, <tt>global_empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002040
2041 <p> These are forwarding methods that make it easy to access the contents of
2042 a <tt>Module</tt> object's <a
2043 href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
2044
2045 <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
2046
2047 <p>Returns the list of <a
2048 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
2049 use when you need to update the list or perform a complex action that
2050 doesn't have a forwarding method.</p>
2051
2052 <p><!-- Symbol table stuff --> </p></li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002053</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002054
2055<hr>
2056
2057<ul>
2058 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
2059
2060 <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2061 for this <tt>Module</tt>.</p>
2062
2063 <p><!-- Convenience methods --></p></li>
2064</ul>
2065
2066<hr>
2067
2068<ul>
2069 <li><tt><a href="#Function">Function</a> *getFunction(const std::string
2070 &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
2071
2072 <p>Look up the specified function in the <tt>Module</tt> <a
2073 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
2074 <tt>null</tt>.</p></li>
2075
2076 <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
2077 std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
2078
2079 <p>Look up the specified function in the <tt>Module</tt> <a
2080 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
2081 external declaration for the function and return it.</p></li>
2082
2083 <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
2084
2085 <p>If there is at least one entry in the <a
2086 href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
2087 href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
2088 string.</p></li>
2089
2090 <li><tt>bool addTypeName(const std::string &amp;Name, const <a
2091 href="#Type">Type</a> *Ty)</tt>
2092
2093 <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2094 mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
2095 name, true is returned and the <a
2096 href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
2097</ul>
2098
2099</div>
2100
2101<!-- ======================================================================= -->
2102<div class="doc_subsection">
2103 <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
2104</div>
2105
2106<div class="doc_text">
2107
2108<p>Constant represents a base class for different types of constants. It
2109is subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
2110ConstantArray etc for representing the various types of Constants.</p>
2111
2112</div>
2113
2114<!-- _______________________________________________________________________ -->
2115<div class="doc_subsubsection">
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002116 <a name="m_Constant">Important Public Methods</a>
2117</div>
2118<div class="doc_text">
Misha Brukman13fd15c2004-01-15 00:14:41 +00002119</div>
2120
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002121<!-- _______________________________________________________________________ -->
2122<div class="doc_subsubsection">Important Subclasses of Constant </div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002123<div class="doc_text">
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002124<ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002125 <li>ConstantSInt : This subclass of Constant represents a signed integer
2126 constant.
Chris Lattner261efe92003-11-25 01:02:51 +00002127 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002128 <li><tt>int64_t getValue() const</tt>: Returns the underlying value of
2129 this constant. </li>
Chris Lattner261efe92003-11-25 01:02:51 +00002130 </ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002131 </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002132 <li>ConstantUInt : This class represents an unsigned integer.
2133 <ul>
2134 <li><tt>uint64_t getValue() const</tt>: Returns the underlying value of
2135 this constant. </li>
2136 </ul>
2137 </li>
2138 <li>ConstantFP : This class represents a floating point constant.
2139 <ul>
2140 <li><tt>double getValue() const</tt>: Returns the underlying value of
2141 this constant. </li>
2142 </ul>
2143 </li>
2144 <li>ConstantBool : This represents a boolean constant.
2145 <ul>
2146 <li><tt>bool getValue() const</tt>: Returns the underlying value of this
2147 constant. </li>
2148 </ul>
2149 </li>
2150 <li>ConstantArray : This represents a constant array.
2151 <ul>
2152 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
Chris Lattner58360822005-01-17 00:12:04 +00002153 a vector of component constants that makeup this array. </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002154 </ul>
2155 </li>
2156 <li>ConstantStruct : This represents a constant struct.
2157 <ul>
2158 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
Chris Lattner58360822005-01-17 00:12:04 +00002159 a vector of component constants that makeup this array. </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00002160 </ul>
2161 </li>
2162 <li>GlobalValue : This represents either a global variable or a function. In
2163 either case, the value is a constant fixed address (after linking).
2164 </li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002165</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002166</div>
2167
2168<!-- ======================================================================= -->
2169<div class="doc_subsection">
2170 <a name="Type">The <tt>Type</tt> class and Derived Types</a>
2171</div>
2172
2173<div class="doc_text">
2174
2175<p>Type as noted earlier is also a subclass of a Value class. Any primitive
2176type (like int, short etc) in LLVM is an instance of Type Class. All other
2177types are instances of subclasses of type like FunctionType, ArrayType
2178etc. DerivedType is the interface for all such dervied types including
2179FunctionType, ArrayType, PointerType, StructType. Types can have names. They can
2180be recursive (StructType). There exists exactly one instance of any type
2181structure at a time. This allows using pointer equality of Type *s for comparing
2182types.</p>
2183
2184</div>
2185
2186<!-- _______________________________________________________________________ -->
2187<div class="doc_subsubsection">
2188 <a name="m_Value">Important Public Methods</a>
2189</div>
2190
2191<div class="doc_text">
2192
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002193<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002194
Misha Brukman13fd15c2004-01-15 00:14:41 +00002195 <li><tt>bool isSigned() const</tt>: Returns whether an integral numeric type
2196 is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is
2197 not true for Float and Double. </li>
2198
2199 <li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is
2200 unsigned. This is not quite the complement of isSigned... nonnumeric types
2201 return false as they do with isSigned. This returns true for UByteTy,
2202 UShortTy, UIntTy, and ULongTy. </li>
2203
Chris Lattner4573f1b2004-07-08 17:49:37 +00002204 <li><tt>bool isInteger() const</tt>: Equivalent to isSigned() || isUnsigned().</li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002205
2206 <li><tt>bool isIntegral() const</tt>: Returns true if this is an integral
2207 type, which is either Bool type or one of the Integer types.</li>
2208
2209 <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
2210 floating point types.</li>
2211
Misha Brukman13fd15c2004-01-15 00:14:41 +00002212 <li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if
2213 this type can be converted to 'Ty' without any reinterpretation of bits. For
Chris Lattner69bf8a92004-05-23 21:06:58 +00002214 example, uint to int or one pointer type to another.</li>
Reid Spencerc7d1d822004-11-01 09:16:30 +00002215</ul>
2216</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002217
Reid Spencerc7d1d822004-11-01 09:16:30 +00002218<!-- _______________________________________________________________________ -->
2219<div class="doc_subsubsection">
2220 <a name="m_Value">Important Derived Types</a>
2221</div>
2222<div class="doc_text">
2223<ul>
2224 <li>SequentialType : This is subclassed by ArrayType and PointerType
Chris Lattner261efe92003-11-25 01:02:51 +00002225 <ul>
Reid Spencerc7d1d822004-11-01 09:16:30 +00002226 <li><tt>const Type * getElementType() const</tt>: Returns the type of each
2227 of the elements in the sequential type. </li>
2228 </ul>
2229 </li>
2230 <li>ArrayType : This is a subclass of SequentialType and defines interface for
2231 array types.
2232 <ul>
2233 <li><tt>unsigned getNumElements() const</tt>: Returns the number of
2234 elements in the array. </li>
2235 </ul>
2236 </li>
2237 <li>PointerType : Subclass of SequentialType for pointer types. </li>
2238 <li>StructType : subclass of DerivedTypes for struct types </li>
2239 <li>FunctionType : subclass of DerivedTypes for function types.
2240 <ul>
2241 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
2242 function</li>
2243 <li><tt> const Type * getReturnType() const</tt>: Returns the
2244 return type of the function.</li>
2245 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
2246 the type of the ith parameter.</li>
2247 <li><tt> const unsigned getNumParams() const</tt>: Returns the
2248 number of formal parameters.</li>
Chris Lattner261efe92003-11-25 01:02:51 +00002249 </ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002250 </li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00002251</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00002252</div>
2253
2254<!-- ======================================================================= -->
2255<div class="doc_subsection">
2256 <a name="Argument">The <tt>Argument</tt> class</a>
2257</div>
2258
2259<div class="doc_text">
2260
2261<p>This subclass of Value defines the interface for incoming formal
Chris Lattner58360822005-01-17 00:12:04 +00002262arguments to a function. A Function maintains a list of its formal
Misha Brukman13fd15c2004-01-15 00:14:41 +00002263arguments. An argument has a pointer to the parent Function.</p>
2264
2265</div>
2266
Chris Lattner9355b472002-09-06 02:50:58 +00002267<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +00002268<hr>
2269<address>
2270 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2271 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
2272 <a href="http://validator.w3.org/check/referer"><img
2273 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
2274
2275 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
2276 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
2277 <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a><br>
2278 Last modified: $Date$
2279</address>
2280
Chris Lattner261efe92003-11-25 01:02:51 +00002281</body>
2282</html>