blob: b095bc42726d14ce6902052a37d8c1f7bd545afd [file] [log] [blame]
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
Duncan Sands4cd2ad12010-11-23 10:50:08 +000011// that do not require creating new instructions. This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
Duncan Sandsee9a2e32010-12-20 14:47:04 +000014// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
Chris Lattner9f3c25a2009-11-09 22:57:59 +000017//
18//===----------------------------------------------------------------------===//
19
Duncan Sandsa3c44a52010-12-22 09:40:51 +000020#define DEBUG_TYPE "instsimplify"
Chandler Carruthfc72ae62012-03-12 11:19:31 +000021#include "llvm/GlobalAlias.h"
Jay Foad562b84b2011-04-11 09:35:34 +000022#include "llvm/Operator.h"
Duncan Sandsa3c44a52010-12-22 09:40:51 +000023#include "llvm/ADT/Statistic.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000024#include "llvm/Analysis/InstructionSimplify.h"
Nick Lewyckyf7087ea2012-02-26 02:09:49 +000025#include "llvm/Analysis/AliasAnalysis.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000026#include "llvm/Analysis/ConstantFolding.h"
Duncan Sands18450092010-11-16 12:16:38 +000027#include "llvm/Analysis/Dominators.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000028#include "llvm/Analysis/ValueTracking.h"
Nick Lewycky3a73e342011-03-04 07:00:57 +000029#include "llvm/Support/ConstantRange.h"
Chandler Carruthfc72ae62012-03-12 11:19:31 +000030#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerd06094f2009-11-10 00:55:12 +000031#include "llvm/Support/PatternMatch.h"
Duncan Sands18450092010-11-16 12:16:38 +000032#include "llvm/Support/ValueHandle.h"
Duncan Sandse60d79f2010-11-21 13:53:09 +000033#include "llvm/Target/TargetData.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000034using namespace llvm;
Chris Lattnerd06094f2009-11-10 00:55:12 +000035using namespace llvm::PatternMatch;
Chris Lattner9f3c25a2009-11-09 22:57:59 +000036
Chris Lattner81a0dc92011-02-09 17:15:04 +000037enum { RecursionLimit = 3 };
Duncan Sandsa74a58c2010-11-10 18:23:01 +000038
Duncan Sandsa3c44a52010-12-22 09:40:51 +000039STATISTIC(NumExpand, "Number of expansions");
40STATISTIC(NumFactor , "Number of factorizations");
41STATISTIC(NumReassoc, "Number of reassociations");
42
Duncan Sands0aa85eb2012-03-13 11:42:19 +000043struct Query {
44 const TargetData *TD;
45 const TargetLibraryInfo *TLI;
46 const DominatorTree *DT;
47
48 Query(const TargetData *td, const TargetLibraryInfo *tli,
49 const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {};
50};
51
52static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
53static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +000054 unsigned);
Duncan Sands0aa85eb2012-03-13 11:42:19 +000055static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +000056 unsigned);
Duncan Sands0aa85eb2012-03-13 11:42:19 +000057static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
58static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
Duncan Sandsbd0fe562012-03-13 14:07:05 +000059static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
Duncan Sands18450092010-11-16 12:16:38 +000060
Duncan Sandsf56138d2011-07-26 15:03:53 +000061/// getFalse - For a boolean type, or a vector of boolean type, return false, or
62/// a vector with every element false, as appropriate for the type.
63static Constant *getFalse(Type *Ty) {
Nick Lewycky66d004e2011-12-01 02:39:36 +000064 assert(Ty->getScalarType()->isIntegerTy(1) &&
Duncan Sandsf56138d2011-07-26 15:03:53 +000065 "Expected i1 type or a vector of i1!");
66 return Constant::getNullValue(Ty);
67}
68
69/// getTrue - For a boolean type, or a vector of boolean type, return true, or
70/// a vector with every element true, as appropriate for the type.
71static Constant *getTrue(Type *Ty) {
Nick Lewycky66d004e2011-12-01 02:39:36 +000072 assert(Ty->getScalarType()->isIntegerTy(1) &&
Duncan Sandsf56138d2011-07-26 15:03:53 +000073 "Expected i1 type or a vector of i1!");
74 return Constant::getAllOnesValue(Ty);
75}
76
Duncan Sands6dc9e2b2011-10-30 19:56:36 +000077/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
78static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
79 Value *RHS) {
80 CmpInst *Cmp = dyn_cast<CmpInst>(V);
81 if (!Cmp)
82 return false;
83 CmpInst::Predicate CPred = Cmp->getPredicate();
84 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
85 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
86 return true;
87 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
88 CRHS == LHS;
89}
90
Duncan Sands18450092010-11-16 12:16:38 +000091/// ValueDominatesPHI - Does the given value dominate the specified phi node?
92static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
93 Instruction *I = dyn_cast<Instruction>(V);
94 if (!I)
95 // Arguments and constants dominate all instructions.
96 return true;
97
98 // If we have a DominatorTree then do a precise test.
Eli Friedman5b8f0dd2012-03-13 01:06:07 +000099 if (DT) {
100 if (!DT->isReachableFromEntry(P->getParent()))
101 return true;
102 if (!DT->isReachableFromEntry(I->getParent()))
103 return false;
104 return DT->dominates(I, P);
105 }
Duncan Sands18450092010-11-16 12:16:38 +0000106
107 // Otherwise, if the instruction is in the entry block, and is not an invoke,
108 // then it obviously dominates all phi nodes.
109 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
110 !isa<InvokeInst>(I))
111 return true;
112
113 return false;
114}
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000115
Duncan Sands3421d902010-12-21 13:32:22 +0000116/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
117/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
118/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
119/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
120/// Returns the simplified value, or null if no simplification was performed.
121static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000122 unsigned OpcToExpand, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +0000123 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000124 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000125 // Recursion is always used, so bail out at once if we already hit the limit.
126 if (!MaxRecurse--)
127 return 0;
128
129 // Check whether the expression has the form "(A op' B) op C".
130 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
131 if (Op0->getOpcode() == OpcodeToExpand) {
132 // It does! Try turning it into "(A op C) op' (B op C)".
133 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
134 // Do "A op C" and "B op C" both simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000135 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
136 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000137 // They do! Return "L op' R" if it simplifies or is already available.
138 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000139 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
140 && L == B && R == A)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000141 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000142 return LHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000143 }
Duncan Sands3421d902010-12-21 13:32:22 +0000144 // Otherwise return "L op' R" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000145 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000146 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000147 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000148 }
Duncan Sands3421d902010-12-21 13:32:22 +0000149 }
150 }
151
152 // Check whether the expression has the form "A op (B op' C)".
153 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
154 if (Op1->getOpcode() == OpcodeToExpand) {
155 // It does! Try turning it into "(A op B) op' (A op C)".
156 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
157 // Do "A op B" and "A op C" both simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000158 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
159 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000160 // They do! Return "L op' R" if it simplifies or is already available.
161 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000162 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
163 && L == C && R == B)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000164 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000165 return RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000166 }
Duncan Sands3421d902010-12-21 13:32:22 +0000167 // Otherwise return "L op' R" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000168 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000169 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000170 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000171 }
Duncan Sands3421d902010-12-21 13:32:22 +0000172 }
173 }
174
175 return 0;
176}
177
178/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
179/// using the operation OpCodeToExtract. For example, when Opcode is Add and
180/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
181/// Returns the simplified value, or null if no simplification was performed.
182static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000183 unsigned OpcToExtract, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +0000184 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000185 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
Duncan Sands3421d902010-12-21 13:32:22 +0000186 // Recursion is always used, so bail out at once if we already hit the limit.
187 if (!MaxRecurse--)
188 return 0;
189
190 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
191 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
192
193 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
194 !Op1 || Op1->getOpcode() != OpcodeToExtract)
195 return 0;
196
197 // The expression has the form "(A op' B) op (C op' D)".
Duncan Sands82fdab32010-12-21 14:00:22 +0000198 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
199 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Duncan Sands3421d902010-12-21 13:32:22 +0000200
201 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
202 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
203 // commutative case, "(A op' B) op (C op' A)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000204 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
205 Value *DD = A == C ? D : C;
Duncan Sands3421d902010-12-21 13:32:22 +0000206 // Form "A op' (B op DD)" if it simplifies completely.
207 // Does "B op DD" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000208 if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000209 // It does! Return "A op' V" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000210 // If V equals B then "A op' V" is just the LHS. If V equals DD then
211 // "A op' V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000212 if (V == B || V == DD) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000213 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000214 return V == B ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000215 }
Duncan Sands3421d902010-12-21 13:32:22 +0000216 // Otherwise return "A op' V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000217 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000218 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000219 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000220 }
Duncan Sands3421d902010-12-21 13:32:22 +0000221 }
222 }
223
224 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
225 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
226 // commutative case, "(A op' B) op (B op' D)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000227 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
228 Value *CC = B == D ? C : D;
Duncan Sands3421d902010-12-21 13:32:22 +0000229 // Form "(A op CC) op' B" if it simplifies completely..
230 // Does "A op CC" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000231 if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000232 // It does! Return "V op' B" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000233 // If V equals A then "V op' B" is just the LHS. If V equals CC then
234 // "V op' B" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000235 if (V == A || V == CC) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000236 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000237 return V == A ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000238 }
Duncan Sands3421d902010-12-21 13:32:22 +0000239 // Otherwise return "V op' B" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000240 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000241 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000242 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000243 }
Duncan Sands3421d902010-12-21 13:32:22 +0000244 }
245 }
246
247 return 0;
248}
249
250/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
251/// operations. Returns the simpler value, or null if none was found.
Benjamin Kramere21083a2010-12-28 13:52:52 +0000252static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000253 const Query &Q, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000254 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
Duncan Sands566edb02010-12-21 08:49:00 +0000255 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
256
257 // Recursion is always used, so bail out at once if we already hit the limit.
258 if (!MaxRecurse--)
259 return 0;
260
261 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
262 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
263
264 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
265 if (Op0 && Op0->getOpcode() == Opcode) {
266 Value *A = Op0->getOperand(0);
267 Value *B = Op0->getOperand(1);
268 Value *C = RHS;
269
270 // Does "B op C" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000271 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000272 // It does! Return "A op V" if it simplifies or is already available.
273 // If V equals B then "A op V" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000274 if (V == B) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000275 // Otherwise return "A op V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000276 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000277 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000278 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000279 }
Duncan Sands566edb02010-12-21 08:49:00 +0000280 }
281 }
282
283 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
284 if (Op1 && Op1->getOpcode() == Opcode) {
285 Value *A = LHS;
286 Value *B = Op1->getOperand(0);
287 Value *C = Op1->getOperand(1);
288
289 // Does "A op B" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000290 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000291 // It does! Return "V op C" if it simplifies or is already available.
292 // If V equals B then "V op C" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000293 if (V == B) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000294 // Otherwise return "V op C" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000295 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000296 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000297 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000298 }
Duncan Sands566edb02010-12-21 08:49:00 +0000299 }
300 }
301
302 // The remaining transforms require commutativity as well as associativity.
303 if (!Instruction::isCommutative(Opcode))
304 return 0;
305
306 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
307 if (Op0 && Op0->getOpcode() == Opcode) {
308 Value *A = Op0->getOperand(0);
309 Value *B = Op0->getOperand(1);
310 Value *C = RHS;
311
312 // Does "C op A" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000313 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000314 // It does! Return "V op B" if it simplifies or is already available.
315 // If V equals A then "V op B" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000316 if (V == A) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000317 // Otherwise return "V op B" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000318 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000319 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000320 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000321 }
Duncan Sands566edb02010-12-21 08:49:00 +0000322 }
323 }
324
325 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
326 if (Op1 && Op1->getOpcode() == Opcode) {
327 Value *A = LHS;
328 Value *B = Op1->getOperand(0);
329 Value *C = Op1->getOperand(1);
330
331 // Does "C op A" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000332 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000333 // It does! Return "B op V" if it simplifies or is already available.
334 // If V equals C then "B op V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000335 if (V == C) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000336 // Otherwise return "B op V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000337 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000338 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000339 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000340 }
Duncan Sands566edb02010-12-21 08:49:00 +0000341 }
342 }
343
344 return 0;
345}
346
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000347/// ThreadBinOpOverSelect - In the case of a binary operation with a select
348/// instruction as an operand, try to simplify the binop by seeing whether
349/// evaluating it on both branches of the select results in the same value.
350/// Returns the common value if so, otherwise returns null.
351static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000352 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000353 // Recursion is always used, so bail out at once if we already hit the limit.
354 if (!MaxRecurse--)
355 return 0;
356
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000357 SelectInst *SI;
358 if (isa<SelectInst>(LHS)) {
359 SI = cast<SelectInst>(LHS);
360 } else {
361 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
362 SI = cast<SelectInst>(RHS);
363 }
364
365 // Evaluate the BinOp on the true and false branches of the select.
366 Value *TV;
367 Value *FV;
368 if (SI == LHS) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000369 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
370 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000371 } else {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000372 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
373 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000374 }
375
Duncan Sands7cf85e72011-01-01 16:12:09 +0000376 // If they simplified to the same value, then return the common value.
Duncan Sands124708d2011-01-01 20:08:02 +0000377 // If they both failed to simplify then return null.
378 if (TV == FV)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000379 return TV;
380
381 // If one branch simplified to undef, return the other one.
382 if (TV && isa<UndefValue>(TV))
383 return FV;
384 if (FV && isa<UndefValue>(FV))
385 return TV;
386
387 // If applying the operation did not change the true and false select values,
388 // then the result of the binop is the select itself.
Duncan Sands124708d2011-01-01 20:08:02 +0000389 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000390 return SI;
391
392 // If one branch simplified and the other did not, and the simplified
393 // value is equal to the unsimplified one, return the simplified value.
394 // For example, select (cond, X, X & Z) & Z -> X & Z.
395 if ((FV && !TV) || (TV && !FV)) {
396 // Check that the simplified value has the form "X op Y" where "op" is the
397 // same as the original operation.
398 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
399 if (Simplified && Simplified->getOpcode() == Opcode) {
400 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
401 // We already know that "op" is the same as for the simplified value. See
402 // if the operands match too. If so, return the simplified value.
403 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
404 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
405 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
Duncan Sands124708d2011-01-01 20:08:02 +0000406 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
407 Simplified->getOperand(1) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000408 return Simplified;
409 if (Simplified->isCommutative() &&
Duncan Sands124708d2011-01-01 20:08:02 +0000410 Simplified->getOperand(1) == UnsimplifiedLHS &&
411 Simplified->getOperand(0) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000412 return Simplified;
413 }
414 }
415
416 return 0;
417}
418
419/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
420/// try to simplify the comparison by seeing whether both branches of the select
421/// result in the same value. Returns the common value if so, otherwise returns
422/// null.
423static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000424 Value *RHS, const Query &Q,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000425 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000426 // Recursion is always used, so bail out at once if we already hit the limit.
427 if (!MaxRecurse--)
428 return 0;
429
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000430 // Make sure the select is on the LHS.
431 if (!isa<SelectInst>(LHS)) {
432 std::swap(LHS, RHS);
433 Pred = CmpInst::getSwappedPredicate(Pred);
434 }
435 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
436 SelectInst *SI = cast<SelectInst>(LHS);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000437 Value *Cond = SI->getCondition();
438 Value *TV = SI->getTrueValue();
439 Value *FV = SI->getFalseValue();
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000440
Duncan Sands50ca4d32011-02-03 09:37:39 +0000441 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000442 // Does "cmp TV, RHS" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000443 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000444 if (TCmp == Cond) {
445 // It not only simplified, it simplified to the select condition. Replace
446 // it with 'true'.
447 TCmp = getTrue(Cond->getType());
448 } else if (!TCmp) {
449 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
450 // condition then we can replace it with 'true'. Otherwise give up.
451 if (!isSameCompare(Cond, Pred, TV, RHS))
452 return 0;
453 TCmp = getTrue(Cond->getType());
Duncan Sands50ca4d32011-02-03 09:37:39 +0000454 }
455
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000456 // Does "cmp FV, RHS" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000457 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000458 if (FCmp == Cond) {
459 // It not only simplified, it simplified to the select condition. Replace
460 // it with 'false'.
461 FCmp = getFalse(Cond->getType());
462 } else if (!FCmp) {
463 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
464 // condition then we can replace it with 'false'. Otherwise give up.
465 if (!isSameCompare(Cond, Pred, FV, RHS))
466 return 0;
467 FCmp = getFalse(Cond->getType());
468 }
469
470 // If both sides simplified to the same value, then use it as the result of
471 // the original comparison.
472 if (TCmp == FCmp)
473 return TCmp;
Duncan Sandsaa97bb52012-02-10 14:31:24 +0000474
475 // The remaining cases only make sense if the select condition has the same
476 // type as the result of the comparison, so bail out if this is not so.
477 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
478 return 0;
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000479 // If the false value simplified to false, then the result of the compare
480 // is equal to "Cond && TCmp". This also catches the case when the false
481 // value simplified to false and the true value to true, returning "Cond".
482 if (match(FCmp, m_Zero()))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000483 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000484 return V;
485 // If the true value simplified to true, then the result of the compare
486 // is equal to "Cond || FCmp".
487 if (match(TCmp, m_One()))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000488 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000489 return V;
490 // Finally, if the false value simplified to true and the true value to
491 // false, then the result of the compare is equal to "!Cond".
492 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
493 if (Value *V =
494 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000495 Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000496 return V;
497
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000498 return 0;
499}
500
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000501/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
502/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
503/// it on the incoming phi values yields the same result for every value. If so
504/// returns the common value, otherwise returns null.
505static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000506 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000507 // Recursion is always used, so bail out at once if we already hit the limit.
508 if (!MaxRecurse--)
509 return 0;
510
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000511 PHINode *PI;
512 if (isa<PHINode>(LHS)) {
513 PI = cast<PHINode>(LHS);
Duncan Sands18450092010-11-16 12:16:38 +0000514 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000515 if (!ValueDominatesPHI(RHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000516 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000517 } else {
518 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
519 PI = cast<PHINode>(RHS);
Duncan Sands18450092010-11-16 12:16:38 +0000520 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000521 if (!ValueDominatesPHI(LHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000522 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000523 }
524
525 // Evaluate the BinOp on the incoming phi values.
526 Value *CommonValue = 0;
527 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000528 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000529 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000530 if (Incoming == PI) continue;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000531 Value *V = PI == LHS ?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000532 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
533 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000534 // If the operation failed to simplify, or simplified to a different value
535 // to previously, then give up.
536 if (!V || (CommonValue && V != CommonValue))
537 return 0;
538 CommonValue = V;
539 }
540
541 return CommonValue;
542}
543
544/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
545/// try to simplify the comparison by seeing whether comparing with all of the
546/// incoming phi values yields the same result every time. If so returns the
547/// common result, otherwise returns null.
548static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000549 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000550 // Recursion is always used, so bail out at once if we already hit the limit.
551 if (!MaxRecurse--)
552 return 0;
553
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000554 // Make sure the phi is on the LHS.
555 if (!isa<PHINode>(LHS)) {
556 std::swap(LHS, RHS);
557 Pred = CmpInst::getSwappedPredicate(Pred);
558 }
559 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
560 PHINode *PI = cast<PHINode>(LHS);
561
Duncan Sands18450092010-11-16 12:16:38 +0000562 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000563 if (!ValueDominatesPHI(RHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000564 return 0;
565
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000566 // Evaluate the BinOp on the incoming phi values.
567 Value *CommonValue = 0;
568 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000569 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000570 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000571 if (Incoming == PI) continue;
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000572 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000573 // If the operation failed to simplify, or simplified to a different value
574 // to previously, then give up.
575 if (!V || (CommonValue && V != CommonValue))
576 return 0;
577 CommonValue = V;
578 }
579
580 return CommonValue;
581}
582
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000583/// SimplifyAddInst - Given operands for an Add, see if we can
584/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000585static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000586 const Query &Q, unsigned MaxRecurse) {
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000587 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
588 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
589 Constant *Ops[] = { CLHS, CRHS };
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000590 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
591 Q.TD, Q.TLI);
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000592 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000593
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000594 // Canonicalize the constant to the RHS.
595 std::swap(Op0, Op1);
596 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000597
Duncan Sandsfea3b212010-12-15 14:07:39 +0000598 // X + undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000599 if (match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000600 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000601
Duncan Sandsfea3b212010-12-15 14:07:39 +0000602 // X + 0 -> X
603 if (match(Op1, m_Zero()))
604 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000605
Duncan Sandsfea3b212010-12-15 14:07:39 +0000606 // X + (Y - X) -> Y
607 // (Y - X) + X -> Y
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000608 // Eg: X + -X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000609 Value *Y = 0;
610 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
611 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000612 return Y;
613
614 // X + ~X -> -1 since ~X = -X-1
Duncan Sands124708d2011-01-01 20:08:02 +0000615 if (match(Op0, m_Not(m_Specific(Op1))) ||
616 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000617 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands87689cf2010-11-19 09:20:39 +0000618
Duncan Sands82fdab32010-12-21 14:00:22 +0000619 /// i1 add -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000620 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000621 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000622 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000623
Duncan Sands566edb02010-12-21 08:49:00 +0000624 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000625 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
Duncan Sands566edb02010-12-21 08:49:00 +0000626 MaxRecurse))
627 return V;
628
Duncan Sands3421d902010-12-21 13:32:22 +0000629 // Mul distributes over Add. Try some generic simplifications based on this.
630 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000631 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +0000632 return V;
633
Duncan Sands87689cf2010-11-19 09:20:39 +0000634 // Threading Add over selects and phi nodes is pointless, so don't bother.
635 // Threading over the select in "A + select(cond, B, C)" means evaluating
636 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
637 // only if B and C are equal. If B and C are equal then (since we assume
638 // that operands have already been simplified) "select(cond, B, C)" should
639 // have been simplified to the common value of B and C already. Analysing
640 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
641 // for threading over phi nodes.
642
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000643 return 0;
644}
645
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000646Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Chad Rosier618c1db2011-12-01 03:08:23 +0000647 const TargetData *TD, const TargetLibraryInfo *TLI,
648 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000649 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
650 RecursionLimit);
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000651}
652
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000653/// \brief Accumulate the constant integer offset a GEP represents.
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000654///
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000655/// Given a getelementptr instruction/constantexpr, accumulate the constant
656/// offset from the base pointer into the provided APInt 'Offset'. Returns true
657/// if the GEP has all-constant indices. Returns false if any non-constant
658/// index is encountered leaving the 'Offset' in an undefined state. The
659/// 'Offset' APInt must be the bitwidth of the target's pointer size.
660static bool accumulateGEPOffset(const TargetData &TD, GEPOperator *GEP,
661 APInt &Offset) {
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000662 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000663 assert(IntPtrWidth == Offset.getBitWidth());
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000664
665 gep_type_iterator GTI = gep_type_begin(GEP);
666 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); I != E;
667 ++I, ++GTI) {
668 ConstantInt *OpC = dyn_cast<ConstantInt>(*I);
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000669 if (!OpC) return false;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000670 if (OpC->isZero()) continue;
671
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000672 // Handle a struct index, which adds its field offset to the pointer.
673 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000674 unsigned ElementIdx = OpC->getZExtValue();
675 const StructLayout *SL = TD.getStructLayout(STy);
676 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx),
677 /*isSigned=*/true);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000678 continue;
679 }
680
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000681 APInt TypeSize(IntPtrWidth, TD.getTypeAllocSize(GTI.getIndexedType()),
682 /*isSigned=*/true);
683 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000684 }
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000685 return true;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000686}
687
688/// \brief Compute the base pointer and cumulative constant offsets for V.
689///
690/// This strips all constant offsets off of V, leaving it the base pointer, and
691/// accumulates the total constant offset applied in the returned constant. It
692/// returns 0 if V is not a pointer, and returns the constant '0' if there are
693/// no constant offsets applied.
694static Constant *stripAndComputeConstantOffsets(const TargetData &TD,
695 Value *&V) {
696 if (!V->getType()->isPointerTy())
697 return 0;
698
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000699 unsigned IntPtrWidth = TD.getPointerSizeInBits();
700 APInt Offset = APInt::getNullValue(IntPtrWidth);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000701
702 // Even though we don't look through PHI nodes, we could be called on an
703 // instruction in an unreachable block, which may be on a cycle.
704 SmallPtrSet<Value *, 4> Visited;
705 Visited.insert(V);
706 do {
707 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000708 if (!accumulateGEPOffset(TD, GEP, Offset))
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000709 break;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000710 V = GEP->getPointerOperand();
711 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
712 V = cast<Operator>(V)->getOperand(0);
713 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
714 if (GA->mayBeOverridden())
715 break;
716 V = GA->getAliasee();
717 } else {
718 break;
719 }
720 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
721 } while (Visited.insert(V));
722
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000723 Type *IntPtrTy = TD.getIntPtrType(V->getContext());
724 return ConstantInt::get(IntPtrTy, Offset);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000725}
726
727/// \brief Compute the constant difference between two pointer values.
728/// If the difference is not a constant, returns zero.
729static Constant *computePointerDifference(const TargetData &TD,
730 Value *LHS, Value *RHS) {
731 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
732 if (!LHSOffset)
733 return 0;
734 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
735 if (!RHSOffset)
736 return 0;
737
738 // If LHS and RHS are not related via constant offsets to the same base
739 // value, there is nothing we can do here.
740 if (LHS != RHS)
741 return 0;
742
743 // Otherwise, the difference of LHS - RHS can be computed as:
744 // LHS - RHS
745 // = (LHSOffset + Base) - (RHSOffset + Base)
746 // = LHSOffset - RHSOffset
747 return ConstantExpr::getSub(LHSOffset, RHSOffset);
748}
749
Duncan Sandsfea3b212010-12-15 14:07:39 +0000750/// SimplifySubInst - Given operands for a Sub, see if we can
751/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000752static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000753 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsfea3b212010-12-15 14:07:39 +0000754 if (Constant *CLHS = dyn_cast<Constant>(Op0))
755 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
756 Constant *Ops[] = { CLHS, CRHS };
757 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000758 Ops, Q.TD, Q.TLI);
Duncan Sandsfea3b212010-12-15 14:07:39 +0000759 }
760
761 // X - undef -> undef
762 // undef - X -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000763 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000764 return UndefValue::get(Op0->getType());
765
766 // X - 0 -> X
767 if (match(Op1, m_Zero()))
768 return Op0;
769
770 // X - X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000771 if (Op0 == Op1)
Duncan Sandsfea3b212010-12-15 14:07:39 +0000772 return Constant::getNullValue(Op0->getType());
773
Duncan Sandsfe02c692011-01-18 09:24:58 +0000774 // (X*2) - X -> X
775 // (X<<1) - X -> X
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000776 Value *X = 0;
Duncan Sandsfe02c692011-01-18 09:24:58 +0000777 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
778 match(Op0, m_Shl(m_Specific(Op1), m_One())))
779 return Op1;
780
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000781 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
782 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
783 Value *Y = 0, *Z = Op1;
784 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
785 // See if "V === Y - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000786 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000787 // It does! Now see if "X + V" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000788 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000789 // It does, we successfully reassociated!
790 ++NumReassoc;
791 return W;
792 }
793 // See if "V === X - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000794 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000795 // It does! Now see if "Y + V" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000796 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000797 // It does, we successfully reassociated!
798 ++NumReassoc;
799 return W;
800 }
801 }
Duncan Sands82fdab32010-12-21 14:00:22 +0000802
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000803 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
804 // For example, X - (X + 1) -> -1
805 X = Op0;
806 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
807 // See if "V === X - Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000808 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000809 // It does! Now see if "V - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000810 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000811 // It does, we successfully reassociated!
812 ++NumReassoc;
813 return W;
814 }
815 // See if "V === X - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000816 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000817 // It does! Now see if "V - Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000818 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000819 // It does, we successfully reassociated!
820 ++NumReassoc;
821 return W;
822 }
823 }
824
825 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
826 // For example, X - (X - Y) -> Y.
827 Z = Op0;
Duncan Sandsc087e202011-01-14 15:26:10 +0000828 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
829 // See if "V === Z - X" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000830 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000831 // It does! Now see if "V + Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000832 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
Duncan Sandsc087e202011-01-14 15:26:10 +0000833 // It does, we successfully reassociated!
834 ++NumReassoc;
835 return W;
836 }
837
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000838 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
839 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
840 match(Op1, m_Trunc(m_Value(Y))))
841 if (X->getType() == Y->getType())
842 // See if "V === X - Y" simplifies.
843 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
844 // It does! Now see if "trunc V" simplifies.
845 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
846 // It does, return the simplified "trunc V".
847 return W;
848
849 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
850 if (Q.TD && match(Op0, m_PtrToInt(m_Value(X))) &&
851 match(Op1, m_PtrToInt(m_Value(Y))))
852 if (Constant *Result = computePointerDifference(*Q.TD, X, Y))
853 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
854
Duncan Sands3421d902010-12-21 13:32:22 +0000855 // Mul distributes over Sub. Try some generic simplifications based on this.
856 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000857 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +0000858 return V;
859
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000860 // i1 sub -> xor.
861 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000862 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000863 return V;
864
Duncan Sandsfea3b212010-12-15 14:07:39 +0000865 // Threading Sub over selects and phi nodes is pointless, so don't bother.
866 // Threading over the select in "A - select(cond, B, C)" means evaluating
867 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
868 // only if B and C are equal. If B and C are equal then (since we assume
869 // that operands have already been simplified) "select(cond, B, C)" should
870 // have been simplified to the common value of B and C already. Analysing
871 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
872 // for threading over phi nodes.
873
874 return 0;
875}
876
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000877Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000878 const TargetData *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +0000879 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000880 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
881 RecursionLimit);
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000882}
883
Duncan Sands82fdab32010-12-21 14:00:22 +0000884/// SimplifyMulInst - Given operands for a Mul, see if we can
885/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000886static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
887 unsigned MaxRecurse) {
Duncan Sands82fdab32010-12-21 14:00:22 +0000888 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
889 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
890 Constant *Ops[] = { CLHS, CRHS };
891 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000892 Ops, Q.TD, Q.TLI);
Duncan Sands82fdab32010-12-21 14:00:22 +0000893 }
894
895 // Canonicalize the constant to the RHS.
896 std::swap(Op0, Op1);
897 }
898
899 // X * undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000900 if (match(Op1, m_Undef()))
Duncan Sands82fdab32010-12-21 14:00:22 +0000901 return Constant::getNullValue(Op0->getType());
902
903 // X * 0 -> 0
904 if (match(Op1, m_Zero()))
905 return Op1;
906
907 // X * 1 -> X
908 if (match(Op1, m_One()))
909 return Op0;
910
Duncan Sands1895e982011-01-30 18:03:50 +0000911 // (X / Y) * Y -> X if the division is exact.
Benjamin Kramer55c6d572012-01-01 17:55:30 +0000912 Value *X = 0;
913 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
914 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
915 return X;
Duncan Sands1895e982011-01-30 18:03:50 +0000916
Nick Lewycky54138802011-01-29 19:55:23 +0000917 // i1 mul -> and.
Duncan Sands75d289e2010-12-21 14:48:48 +0000918 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000919 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000920 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000921
922 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000923 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +0000924 MaxRecurse))
925 return V;
926
927 // Mul distributes over Add. Try some generic simplifications based on this.
928 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000929 Q, MaxRecurse))
Duncan Sands82fdab32010-12-21 14:00:22 +0000930 return V;
931
932 // If the operation is with the result of a select instruction, check whether
933 // operating on either branch of the select always yields the same value.
934 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000935 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +0000936 MaxRecurse))
937 return V;
938
939 // If the operation is with the result of a phi instruction, check whether
940 // operating on all incoming values of the phi always yields the same value.
941 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000942 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +0000943 MaxRecurse))
944 return V;
945
946 return 0;
947}
948
949Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +0000950 const TargetLibraryInfo *TLI,
Duncan Sands82fdab32010-12-21 14:00:22 +0000951 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000952 return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands82fdab32010-12-21 14:00:22 +0000953}
954
Duncan Sands593faa52011-01-28 16:51:11 +0000955/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
956/// fold the result. If not, this returns null.
Anders Carlsson479b4b92011-02-05 18:33:43 +0000957static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000958 const Query &Q, unsigned MaxRecurse) {
Duncan Sands593faa52011-01-28 16:51:11 +0000959 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
960 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
961 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000962 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sands593faa52011-01-28 16:51:11 +0000963 }
964 }
965
Duncan Sandsa3e292c2011-01-28 18:50:50 +0000966 bool isSigned = Opcode == Instruction::SDiv;
967
Duncan Sands593faa52011-01-28 16:51:11 +0000968 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000969 if (match(Op1, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +0000970 return Op1;
971
972 // undef / X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000973 if (match(Op0, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +0000974 return Constant::getNullValue(Op0->getType());
975
976 // 0 / X -> 0, we don't need to preserve faults!
977 if (match(Op0, m_Zero()))
978 return Op0;
979
980 // X / 1 -> X
981 if (match(Op1, m_One()))
982 return Op0;
Duncan Sands593faa52011-01-28 16:51:11 +0000983
984 if (Op0->getType()->isIntegerTy(1))
985 // It can't be division by zero, hence it must be division by one.
986 return Op0;
987
988 // X / X -> 1
989 if (Op0 == Op1)
990 return ConstantInt::get(Op0->getType(), 1);
991
992 // (X * Y) / Y -> X if the multiplication does not overflow.
993 Value *X = 0, *Y = 0;
994 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
995 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
Duncan Sands32a43cc2011-10-27 19:16:21 +0000996 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
Duncan Sands4b720712011-02-02 20:52:00 +0000997 // If the Mul knows it does not overflow, then we are good to go.
998 if ((isSigned && Mul->hasNoSignedWrap()) ||
999 (!isSigned && Mul->hasNoUnsignedWrap()))
1000 return X;
Duncan Sands593faa52011-01-28 16:51:11 +00001001 // If X has the form X = A / Y then X * Y cannot overflow.
1002 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1003 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1004 return X;
1005 }
1006
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001007 // (X rem Y) / Y -> 0
1008 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1009 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1010 return Constant::getNullValue(Op0->getType());
1011
1012 // If the operation is with the result of a select instruction, check whether
1013 // operating on either branch of the select always yields the same value.
1014 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001015 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001016 return V;
1017
1018 // If the operation is with the result of a phi instruction, check whether
1019 // operating on all incoming values of the phi always yields the same value.
1020 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001021 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001022 return V;
1023
Duncan Sands593faa52011-01-28 16:51:11 +00001024 return 0;
1025}
1026
1027/// SimplifySDivInst - Given operands for an SDiv, see if we can
1028/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001029static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1030 unsigned MaxRecurse) {
1031 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
Duncan Sands593faa52011-01-28 16:51:11 +00001032 return V;
1033
Duncan Sands593faa52011-01-28 16:51:11 +00001034 return 0;
1035}
1036
1037Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001038 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001039 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001040 return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands593faa52011-01-28 16:51:11 +00001041}
1042
1043/// SimplifyUDivInst - Given operands for a UDiv, see if we can
1044/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001045static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1046 unsigned MaxRecurse) {
1047 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
Duncan Sands593faa52011-01-28 16:51:11 +00001048 return V;
1049
Duncan Sands593faa52011-01-28 16:51:11 +00001050 return 0;
1051}
1052
1053Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001054 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001055 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001056 return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands593faa52011-01-28 16:51:11 +00001057}
1058
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001059static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1060 unsigned) {
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001061 // undef / X -> undef (the undef could be a snan).
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001062 if (match(Op0, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001063 return Op0;
1064
1065 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001066 if (match(Op1, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001067 return Op1;
1068
1069 return 0;
1070}
1071
1072Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001073 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001074 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001075 return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001076}
1077
Duncan Sandsf24ed772011-05-02 16:27:02 +00001078/// SimplifyRem - Given operands for an SRem or URem, see if we can
1079/// fold the result. If not, this returns null.
1080static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001081 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001082 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1083 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1084 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001085 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001086 }
1087 }
1088
Duncan Sandsf24ed772011-05-02 16:27:02 +00001089 // X % undef -> undef
1090 if (match(Op1, m_Undef()))
1091 return Op1;
1092
1093 // undef % X -> 0
1094 if (match(Op0, m_Undef()))
1095 return Constant::getNullValue(Op0->getType());
1096
1097 // 0 % X -> 0, we don't need to preserve faults!
1098 if (match(Op0, m_Zero()))
1099 return Op0;
1100
1101 // X % 0 -> undef, we don't need to preserve faults!
1102 if (match(Op1, m_Zero()))
1103 return UndefValue::get(Op0->getType());
1104
1105 // X % 1 -> 0
1106 if (match(Op1, m_One()))
1107 return Constant::getNullValue(Op0->getType());
1108
1109 if (Op0->getType()->isIntegerTy(1))
1110 // It can't be remainder by zero, hence it must be remainder by one.
1111 return Constant::getNullValue(Op0->getType());
1112
1113 // X % X -> 0
1114 if (Op0 == Op1)
1115 return Constant::getNullValue(Op0->getType());
1116
1117 // If the operation is with the result of a select instruction, check whether
1118 // operating on either branch of the select always yields the same value.
1119 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001120 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001121 return V;
1122
1123 // If the operation is with the result of a phi instruction, check whether
1124 // operating on all incoming values of the phi always yields the same value.
1125 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001126 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001127 return V;
1128
1129 return 0;
1130}
1131
1132/// SimplifySRemInst - Given operands for an SRem, see if we can
1133/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001134static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1135 unsigned MaxRecurse) {
1136 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001137 return V;
1138
1139 return 0;
1140}
1141
1142Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001143 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001144 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001145 return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001146}
1147
1148/// SimplifyURemInst - Given operands for a URem, see if we can
1149/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001150static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +00001151 unsigned MaxRecurse) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001152 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001153 return V;
1154
1155 return 0;
1156}
1157
1158Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001159 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001160 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001161 return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001162}
1163
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001164static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +00001165 unsigned) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001166 // undef % X -> undef (the undef could be a snan).
1167 if (match(Op0, m_Undef()))
1168 return Op0;
1169
1170 // X % undef -> undef
1171 if (match(Op1, m_Undef()))
1172 return Op1;
1173
1174 return 0;
1175}
1176
1177Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001178 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001179 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001180 return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001181}
1182
Duncan Sandscf80bc12011-01-14 14:44:12 +00001183/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
Duncan Sandsc43cee32011-01-14 00:37:45 +00001184/// fold the result. If not, this returns null.
Duncan Sandscf80bc12011-01-14 14:44:12 +00001185static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001186 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsc43cee32011-01-14 00:37:45 +00001187 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1188 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1189 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001190 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001191 }
1192 }
1193
Duncan Sandscf80bc12011-01-14 14:44:12 +00001194 // 0 shift by X -> 0
Duncan Sandsc43cee32011-01-14 00:37:45 +00001195 if (match(Op0, m_Zero()))
1196 return Op0;
1197
Duncan Sandscf80bc12011-01-14 14:44:12 +00001198 // X shift by 0 -> X
Duncan Sandsc43cee32011-01-14 00:37:45 +00001199 if (match(Op1, m_Zero()))
1200 return Op0;
1201
Duncan Sandscf80bc12011-01-14 14:44:12 +00001202 // X shift by undef -> undef because it may shift by the bitwidth.
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001203 if (match(Op1, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001204 return Op1;
1205
1206 // Shifting by the bitwidth or more is undefined.
1207 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1208 if (CI->getValue().getLimitedValue() >=
1209 Op0->getType()->getScalarSizeInBits())
1210 return UndefValue::get(Op0->getType());
1211
Duncan Sandscf80bc12011-01-14 14:44:12 +00001212 // If the operation is with the result of a select instruction, check whether
1213 // operating on either branch of the select always yields the same value.
1214 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001215 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001216 return V;
1217
1218 // If the operation is with the result of a phi instruction, check whether
1219 // operating on all incoming values of the phi always yields the same value.
1220 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001221 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001222 return V;
1223
1224 return 0;
1225}
1226
1227/// SimplifyShlInst - Given operands for an Shl, see if we can
1228/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001229static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001230 const Query &Q, unsigned MaxRecurse) {
1231 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001232 return V;
1233
1234 // undef << X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001235 if (match(Op0, m_Undef()))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001236 return Constant::getNullValue(Op0->getType());
1237
Chris Lattner81a0dc92011-02-09 17:15:04 +00001238 // (X >> A) << A -> X
1239 Value *X;
Benjamin Kramer55c6d572012-01-01 17:55:30 +00001240 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
Chris Lattner81a0dc92011-02-09 17:15:04 +00001241 return X;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001242 return 0;
1243}
1244
Chris Lattner81a0dc92011-02-09 17:15:04 +00001245Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Chad Rosier618c1db2011-12-01 03:08:23 +00001246 const TargetData *TD, const TargetLibraryInfo *TLI,
1247 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001248 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1249 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001250}
1251
1252/// SimplifyLShrInst - Given operands for an LShr, see if we can
1253/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001254static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001255 const Query &Q, unsigned MaxRecurse) {
1256 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001257 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001258
1259 // undef >>l X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001260 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001261 return Constant::getNullValue(Op0->getType());
1262
Chris Lattner81a0dc92011-02-09 17:15:04 +00001263 // (X << A) >> A -> X
1264 Value *X;
1265 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1266 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1267 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001268
Duncan Sandsc43cee32011-01-14 00:37:45 +00001269 return 0;
1270}
1271
Chris Lattner81a0dc92011-02-09 17:15:04 +00001272Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Chad Rosier618c1db2011-12-01 03:08:23 +00001273 const TargetData *TD,
1274 const TargetLibraryInfo *TLI,
1275 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001276 return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1277 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001278}
1279
1280/// SimplifyAShrInst - Given operands for an AShr, see if we can
1281/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001282static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001283 const Query &Q, unsigned MaxRecurse) {
1284 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001285 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001286
1287 // all ones >>a X -> all ones
1288 if (match(Op0, m_AllOnes()))
1289 return Op0;
1290
1291 // undef >>a X -> all ones
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001292 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001293 return Constant::getAllOnesValue(Op0->getType());
1294
Chris Lattner81a0dc92011-02-09 17:15:04 +00001295 // (X << A) >> A -> X
1296 Value *X;
1297 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1298 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1299 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001300
Duncan Sandsc43cee32011-01-14 00:37:45 +00001301 return 0;
1302}
1303
Chris Lattner81a0dc92011-02-09 17:15:04 +00001304Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Chad Rosier618c1db2011-12-01 03:08:23 +00001305 const TargetData *TD,
1306 const TargetLibraryInfo *TLI,
1307 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001308 return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1309 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001310}
1311
Chris Lattnerd06094f2009-11-10 00:55:12 +00001312/// SimplifyAndInst - Given operands for an And, see if we can
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001313/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001314static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +00001315 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001316 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1317 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1318 Constant *Ops[] = { CLHS, CRHS };
1319 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001320 Ops, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001321 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001322
Chris Lattnerd06094f2009-11-10 00:55:12 +00001323 // Canonicalize the constant to the RHS.
1324 std::swap(Op0, Op1);
1325 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001326
Chris Lattnerd06094f2009-11-10 00:55:12 +00001327 // X & undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001328 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001329 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001330
Chris Lattnerd06094f2009-11-10 00:55:12 +00001331 // X & X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001332 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001333 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001334
Duncan Sands2b749872010-11-17 18:52:15 +00001335 // X & 0 = 0
1336 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001337 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001338
Duncan Sands2b749872010-11-17 18:52:15 +00001339 // X & -1 = X
1340 if (match(Op1, m_AllOnes()))
1341 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001342
Chris Lattnerd06094f2009-11-10 00:55:12 +00001343 // A & ~A = ~A & A = 0
Chris Lattner81a0dc92011-02-09 17:15:04 +00001344 if (match(Op0, m_Not(m_Specific(Op1))) ||
1345 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001346 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001347
Chris Lattnerd06094f2009-11-10 00:55:12 +00001348 // (A | ?) & A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001349 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001350 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001351 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001352 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001353
Chris Lattnerd06094f2009-11-10 00:55:12 +00001354 // A & (A | ?) = A
1355 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001356 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001357 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001358
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001359 // A & (-A) = A if A is a power of two or zero.
1360 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1361 match(Op1, m_Neg(m_Specific(Op0)))) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001362 if (isPowerOfTwo(Op0, Q.TD, /*OrZero*/true))
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001363 return Op0;
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001364 if (isPowerOfTwo(Op1, Q.TD, /*OrZero*/true))
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001365 return Op1;
1366 }
1367
Duncan Sands566edb02010-12-21 08:49:00 +00001368 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001369 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1370 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001371 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001372
Duncan Sands3421d902010-12-21 13:32:22 +00001373 // And distributes over Or. Try some generic simplifications based on this.
1374 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001375 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001376 return V;
1377
1378 // And distributes over Xor. Try some generic simplifications based on this.
1379 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001380 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001381 return V;
1382
1383 // Or distributes over And. Try some generic simplifications based on this.
1384 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001385 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001386 return V;
1387
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001388 // If the operation is with the result of a select instruction, check whether
1389 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001390 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001391 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1392 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001393 return V;
1394
1395 // If the operation is with the result of a phi instruction, check whether
1396 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001397 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001398 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
Duncan Sands0312a932010-12-21 09:09:15 +00001399 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001400 return V;
1401
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001402 return 0;
1403}
1404
Duncan Sands18450092010-11-16 12:16:38 +00001405Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001406 const TargetLibraryInfo *TLI,
Duncan Sands18450092010-11-16 12:16:38 +00001407 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001408 return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001409}
1410
Chris Lattnerd06094f2009-11-10 00:55:12 +00001411/// SimplifyOrInst - Given operands for an Or, see if we can
1412/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001413static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1414 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001415 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1416 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1417 Constant *Ops[] = { CLHS, CRHS };
1418 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001419 Ops, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001420 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001421
Chris Lattnerd06094f2009-11-10 00:55:12 +00001422 // Canonicalize the constant to the RHS.
1423 std::swap(Op0, Op1);
1424 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001425
Chris Lattnerd06094f2009-11-10 00:55:12 +00001426 // X | undef -> -1
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001427 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001428 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001429
Chris Lattnerd06094f2009-11-10 00:55:12 +00001430 // X | X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001431 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001432 return Op0;
1433
Duncan Sands2b749872010-11-17 18:52:15 +00001434 // X | 0 = X
1435 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001436 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001437
Duncan Sands2b749872010-11-17 18:52:15 +00001438 // X | -1 = -1
1439 if (match(Op1, m_AllOnes()))
1440 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001441
Chris Lattnerd06094f2009-11-10 00:55:12 +00001442 // A | ~A = ~A | A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001443 if (match(Op0, m_Not(m_Specific(Op1))) ||
1444 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001445 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001446
Chris Lattnerd06094f2009-11-10 00:55:12 +00001447 // (A & ?) | A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001448 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001449 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001450 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001451 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001452
Chris Lattnerd06094f2009-11-10 00:55:12 +00001453 // A | (A & ?) = A
1454 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001455 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001456 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001457
Benjamin Kramer38f7f662011-02-20 15:20:01 +00001458 // ~(A & ?) | A = -1
1459 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1460 (A == Op1 || B == Op1))
1461 return Constant::getAllOnesValue(Op1->getType());
1462
1463 // A | ~(A & ?) = -1
1464 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1465 (A == Op0 || B == Op0))
1466 return Constant::getAllOnesValue(Op0->getType());
1467
Duncan Sands566edb02010-12-21 08:49:00 +00001468 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001469 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1470 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001471 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001472
Duncan Sands3421d902010-12-21 13:32:22 +00001473 // Or distributes over And. Try some generic simplifications based on this.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001474 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1475 MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001476 return V;
1477
1478 // And distributes over Or. Try some generic simplifications based on this.
1479 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001480 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001481 return V;
1482
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001483 // If the operation is with the result of a select instruction, check whether
1484 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001485 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001486 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
Duncan Sands0312a932010-12-21 09:09:15 +00001487 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001488 return V;
1489
1490 // If the operation is with the result of a phi instruction, check whether
1491 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001492 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001493 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001494 return V;
1495
Chris Lattnerd06094f2009-11-10 00:55:12 +00001496 return 0;
1497}
1498
Duncan Sands18450092010-11-16 12:16:38 +00001499Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001500 const TargetLibraryInfo *TLI,
Duncan Sands18450092010-11-16 12:16:38 +00001501 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001502 return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001503}
Chris Lattnerd06094f2009-11-10 00:55:12 +00001504
Duncan Sands2b749872010-11-17 18:52:15 +00001505/// SimplifyXorInst - Given operands for a Xor, see if we can
1506/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001507static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1508 unsigned MaxRecurse) {
Duncan Sands2b749872010-11-17 18:52:15 +00001509 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1510 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1511 Constant *Ops[] = { CLHS, CRHS };
1512 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001513 Ops, Q.TD, Q.TLI);
Duncan Sands2b749872010-11-17 18:52:15 +00001514 }
1515
1516 // Canonicalize the constant to the RHS.
1517 std::swap(Op0, Op1);
1518 }
1519
1520 // A ^ undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001521 if (match(Op1, m_Undef()))
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001522 return Op1;
Duncan Sands2b749872010-11-17 18:52:15 +00001523
1524 // A ^ 0 = A
1525 if (match(Op1, m_Zero()))
1526 return Op0;
1527
Eli Friedmanf23d4ad2011-08-17 19:31:49 +00001528 // A ^ A = 0
1529 if (Op0 == Op1)
1530 return Constant::getNullValue(Op0->getType());
1531
Duncan Sands2b749872010-11-17 18:52:15 +00001532 // A ^ ~A = ~A ^ A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001533 if (match(Op0, m_Not(m_Specific(Op1))) ||
1534 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sands2b749872010-11-17 18:52:15 +00001535 return Constant::getAllOnesValue(Op0->getType());
1536
Duncan Sands566edb02010-12-21 08:49:00 +00001537 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001538 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1539 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001540 return V;
Duncan Sands2b749872010-11-17 18:52:15 +00001541
Duncan Sands3421d902010-12-21 13:32:22 +00001542 // And distributes over Xor. Try some generic simplifications based on this.
1543 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001544 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001545 return V;
1546
Duncan Sands87689cf2010-11-19 09:20:39 +00001547 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1548 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1549 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1550 // only if B and C are equal. If B and C are equal then (since we assume
1551 // that operands have already been simplified) "select(cond, B, C)" should
1552 // have been simplified to the common value of B and C already. Analysing
1553 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1554 // for threading over phi nodes.
Duncan Sands2b749872010-11-17 18:52:15 +00001555
1556 return 0;
1557}
1558
1559Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001560 const TargetLibraryInfo *TLI,
Duncan Sands2b749872010-11-17 18:52:15 +00001561 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001562 return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands2b749872010-11-17 18:52:15 +00001563}
1564
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001565static Type *GetCompareTy(Value *Op) {
Chris Lattner210c5d42009-11-09 23:55:12 +00001566 return CmpInst::makeCmpResultType(Op->getType());
1567}
1568
Duncan Sandse864b5b2011-05-07 16:56:49 +00001569/// ExtractEquivalentCondition - Rummage around inside V looking for something
1570/// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
1571/// otherwise return null. Helper function for analyzing max/min idioms.
1572static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1573 Value *LHS, Value *RHS) {
1574 SelectInst *SI = dyn_cast<SelectInst>(V);
1575 if (!SI)
1576 return 0;
1577 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1578 if (!Cmp)
1579 return 0;
1580 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1581 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1582 return Cmp;
1583 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1584 LHS == CmpRHS && RHS == CmpLHS)
1585 return Cmp;
1586 return 0;
1587}
1588
Chris Lattner009e2652012-02-24 19:01:58 +00001589
Chris Lattner9dbb4292009-11-09 23:28:39 +00001590/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1591/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001592static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001593 const Query &Q, unsigned MaxRecurse) {
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001594 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
Chris Lattner9dbb4292009-11-09 23:28:39 +00001595 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001596
Chris Lattnerd06094f2009-11-10 00:55:12 +00001597 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner8f73dea2009-11-09 23:06:58 +00001598 if (Constant *CRHS = dyn_cast<Constant>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001599 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001600
1601 // If we have a constant, make sure it is on the RHS.
1602 std::swap(LHS, RHS);
1603 Pred = CmpInst::getSwappedPredicate(Pred);
1604 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001605
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001606 Type *ITy = GetCompareTy(LHS); // The return type.
1607 Type *OpTy = LHS->getType(); // The operand type.
Duncan Sands12a86f52010-11-14 11:23:23 +00001608
Chris Lattner210c5d42009-11-09 23:55:12 +00001609 // icmp X, X -> true/false
Chris Lattnerc8e14b32010-03-03 19:46:03 +00001610 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1611 // because X could be 0.
Duncan Sands124708d2011-01-01 20:08:02 +00001612 if (LHS == RHS || isa<UndefValue>(RHS))
Chris Lattner210c5d42009-11-09 23:55:12 +00001613 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +00001614
Duncan Sands6dc91252011-01-13 08:56:29 +00001615 // Special case logic when the operands have i1 type.
Nick Lewycky66d004e2011-12-01 02:39:36 +00001616 if (OpTy->getScalarType()->isIntegerTy(1)) {
Duncan Sands6dc91252011-01-13 08:56:29 +00001617 switch (Pred) {
1618 default: break;
1619 case ICmpInst::ICMP_EQ:
1620 // X == 1 -> X
1621 if (match(RHS, m_One()))
1622 return LHS;
1623 break;
1624 case ICmpInst::ICMP_NE:
1625 // X != 0 -> X
1626 if (match(RHS, m_Zero()))
1627 return LHS;
1628 break;
1629 case ICmpInst::ICMP_UGT:
1630 // X >u 0 -> X
1631 if (match(RHS, m_Zero()))
1632 return LHS;
1633 break;
1634 case ICmpInst::ICMP_UGE:
1635 // X >=u 1 -> X
1636 if (match(RHS, m_One()))
1637 return LHS;
1638 break;
1639 case ICmpInst::ICMP_SLT:
1640 // X <s 0 -> X
1641 if (match(RHS, m_Zero()))
1642 return LHS;
1643 break;
1644 case ICmpInst::ICMP_SLE:
1645 // X <=s -1 -> X
1646 if (match(RHS, m_One()))
1647 return LHS;
1648 break;
1649 }
1650 }
1651
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001652 // icmp <object*>, <object*/null> - Different identified objects have
1653 // different addresses (unless null), and what's more the address of an
1654 // identified local is never equal to another argument (again, barring null).
1655 // Note that generalizing to the case where LHS is a global variable address
1656 // or null is pointless, since if both LHS and RHS are constants then we
1657 // already constant folded the compare, and if only one of them is then we
1658 // moved it to RHS already.
Benjamin Kramerea79b8e2012-02-16 15:19:59 +00001659 Value *LHSPtr = LHS->stripPointerCasts();
1660 Value *RHSPtr = RHS->stripPointerCasts();
Eli Friedman2c3acb02012-02-18 03:29:25 +00001661 if (LHSPtr == RHSPtr)
1662 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001663
Chris Lattnerb053fc12012-02-20 00:42:49 +00001664 // Be more aggressive about stripping pointer adjustments when checking a
1665 // comparison of an alloca address to another object. We can rip off all
1666 // inbounds GEP operations, even if they are variable.
Chandler Carruth84dfc322012-03-10 08:39:09 +00001667 LHSPtr = LHSPtr->stripInBoundsOffsets();
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001668 if (llvm::isIdentifiedObject(LHSPtr)) {
Chandler Carruth84dfc322012-03-10 08:39:09 +00001669 RHSPtr = RHSPtr->stripInBoundsOffsets();
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001670 if (llvm::isKnownNonNull(LHSPtr) || llvm::isKnownNonNull(RHSPtr)) {
1671 // If both sides are different identified objects, they aren't equal
1672 // unless they're null.
Bill Wendlingc17731d652012-03-10 17:56:03 +00001673 if (LHSPtr != RHSPtr && llvm::isIdentifiedObject(RHSPtr) &&
Bill Wendling798d0132012-03-10 18:20:55 +00001674 Pred == CmpInst::ICMP_EQ)
Bill Wendlingc17731d652012-03-10 17:56:03 +00001675 return ConstantInt::get(ITy, false);
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001676
1677 // A local identified object (alloca or noalias call) can't equal any
1678 // incoming argument, unless they're both null.
Bill Wendlingc17731d652012-03-10 17:56:03 +00001679 if (isa<Instruction>(LHSPtr) && isa<Argument>(RHSPtr) &&
Bill Wendling798d0132012-03-10 18:20:55 +00001680 Pred == CmpInst::ICMP_EQ)
Bill Wendlingc17731d652012-03-10 17:56:03 +00001681 return ConstantInt::get(ITy, false);
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001682 }
1683
1684 // Assume that the constant null is on the right.
Bill Wendlingc17731d652012-03-10 17:56:03 +00001685 if (llvm::isKnownNonNull(LHSPtr) && isa<ConstantPointerNull>(RHSPtr)) {
Bill Wendling798d0132012-03-10 18:20:55 +00001686 if (Pred == CmpInst::ICMP_EQ)
Bill Wendlingc17731d652012-03-10 17:56:03 +00001687 return ConstantInt::get(ITy, false);
Bill Wendling798d0132012-03-10 18:20:55 +00001688 else if (Pred == CmpInst::ICMP_NE)
Bill Wendlingc17731d652012-03-10 17:56:03 +00001689 return ConstantInt::get(ITy, true);
1690 }
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001691 } else if (isa<Argument>(LHSPtr)) {
Chandler Carruth84dfc322012-03-10 08:39:09 +00001692 RHSPtr = RHSPtr->stripInBoundsOffsets();
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001693 // An alloca can't be equal to an argument.
Bill Wendlingc17731d652012-03-10 17:56:03 +00001694 if (isa<AllocaInst>(RHSPtr)) {
Bill Wendling798d0132012-03-10 18:20:55 +00001695 if (Pred == CmpInst::ICMP_EQ)
Bill Wendlingc17731d652012-03-10 17:56:03 +00001696 return ConstantInt::get(ITy, false);
Bill Wendling798d0132012-03-10 18:20:55 +00001697 else if (Pred == CmpInst::ICMP_NE)
Bill Wendlingc17731d652012-03-10 17:56:03 +00001698 return ConstantInt::get(ITy, true);
1699 }
Chris Lattnerb053fc12012-02-20 00:42:49 +00001700 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001701
1702 // If we are comparing with zero then try hard since this is a common case.
1703 if (match(RHS, m_Zero())) {
1704 bool LHSKnownNonNegative, LHSKnownNegative;
1705 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00001706 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001707 case ICmpInst::ICMP_ULT:
Duncan Sandsf56138d2011-07-26 15:03:53 +00001708 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001709 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00001710 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001711 case ICmpInst::ICMP_EQ:
1712 case ICmpInst::ICMP_ULE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001713 if (isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001714 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001715 break;
1716 case ICmpInst::ICMP_NE:
1717 case ICmpInst::ICMP_UGT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001718 if (isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001719 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001720 break;
1721 case ICmpInst::ICMP_SLT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001722 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001723 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001724 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001725 if (LHSKnownNonNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001726 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001727 break;
1728 case ICmpInst::ICMP_SLE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001729 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001730 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001731 return getTrue(ITy);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001732 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001733 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001734 break;
1735 case ICmpInst::ICMP_SGE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001736 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001737 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001738 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001739 if (LHSKnownNonNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001740 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001741 break;
1742 case ICmpInst::ICMP_SGT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001743 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001744 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001745 return getFalse(ITy);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001746 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001747 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001748 break;
1749 }
1750 }
1751
1752 // See if we are doing a comparison with a constant integer.
Duncan Sands6dc91252011-01-13 08:56:29 +00001753 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
Nick Lewycky3a73e342011-03-04 07:00:57 +00001754 // Rule out tautological comparisons (eg., ult 0 or uge 0).
1755 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1756 if (RHS_CR.isEmptySet())
1757 return ConstantInt::getFalse(CI->getContext());
1758 if (RHS_CR.isFullSet())
1759 return ConstantInt::getTrue(CI->getContext());
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00001760
Nick Lewycky3a73e342011-03-04 07:00:57 +00001761 // Many binary operators with constant RHS have easy to compute constant
1762 // range. Use them to check whether the comparison is a tautology.
1763 uint32_t Width = CI->getBitWidth();
1764 APInt Lower = APInt(Width, 0);
1765 APInt Upper = APInt(Width, 0);
1766 ConstantInt *CI2;
1767 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1768 // 'urem x, CI2' produces [0, CI2).
1769 Upper = CI2->getValue();
1770 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1771 // 'srem x, CI2' produces (-|CI2|, |CI2|).
1772 Upper = CI2->getValue().abs();
1773 Lower = (-Upper) + 1;
Duncan Sandsc65c7472011-10-28 18:17:44 +00001774 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1775 // 'udiv CI2, x' produces [0, CI2].
Eli Friedman7781ae52011-11-08 21:08:02 +00001776 Upper = CI2->getValue() + 1;
Nick Lewycky3a73e342011-03-04 07:00:57 +00001777 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1778 // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1779 APInt NegOne = APInt::getAllOnesValue(Width);
1780 if (!CI2->isZero())
1781 Upper = NegOne.udiv(CI2->getValue()) + 1;
1782 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1783 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1784 APInt IntMin = APInt::getSignedMinValue(Width);
1785 APInt IntMax = APInt::getSignedMaxValue(Width);
1786 APInt Val = CI2->getValue().abs();
1787 if (!Val.isMinValue()) {
1788 Lower = IntMin.sdiv(Val);
1789 Upper = IntMax.sdiv(Val) + 1;
1790 }
1791 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1792 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1793 APInt NegOne = APInt::getAllOnesValue(Width);
1794 if (CI2->getValue().ult(Width))
1795 Upper = NegOne.lshr(CI2->getValue()) + 1;
1796 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1797 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1798 APInt IntMin = APInt::getSignedMinValue(Width);
1799 APInt IntMax = APInt::getSignedMaxValue(Width);
1800 if (CI2->getValue().ult(Width)) {
1801 Lower = IntMin.ashr(CI2->getValue());
1802 Upper = IntMax.ashr(CI2->getValue()) + 1;
1803 }
1804 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1805 // 'or x, CI2' produces [CI2, UINT_MAX].
1806 Lower = CI2->getValue();
1807 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1808 // 'and x, CI2' produces [0, CI2].
1809 Upper = CI2->getValue() + 1;
1810 }
1811 if (Lower != Upper) {
1812 ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1813 if (RHS_CR.contains(LHS_CR))
1814 return ConstantInt::getTrue(RHS->getContext());
1815 if (RHS_CR.inverse().contains(LHS_CR))
1816 return ConstantInt::getFalse(RHS->getContext());
1817 }
Duncan Sands6dc91252011-01-13 08:56:29 +00001818 }
1819
Duncan Sands9d32f602011-01-20 13:21:55 +00001820 // Compare of cast, for example (zext X) != 0 -> X != 0
1821 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1822 Instruction *LI = cast<CastInst>(LHS);
1823 Value *SrcOp = LI->getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001824 Type *SrcTy = SrcOp->getType();
1825 Type *DstTy = LI->getType();
Duncan Sands9d32f602011-01-20 13:21:55 +00001826
1827 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1828 // if the integer type is the same size as the pointer type.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001829 if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
1830 Q.TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
Duncan Sands9d32f602011-01-20 13:21:55 +00001831 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1832 // Transfer the cast to the constant.
1833 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1834 ConstantExpr::getIntToPtr(RHSC, SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001835 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001836 return V;
1837 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1838 if (RI->getOperand(0)->getType() == SrcTy)
1839 // Compare without the cast.
1840 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001841 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001842 return V;
1843 }
1844 }
1845
1846 if (isa<ZExtInst>(LHS)) {
1847 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1848 // same type.
1849 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1850 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1851 // Compare X and Y. Note that signed predicates become unsigned.
1852 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001853 SrcOp, RI->getOperand(0), Q,
Duncan Sands9d32f602011-01-20 13:21:55 +00001854 MaxRecurse-1))
1855 return V;
1856 }
1857 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1858 // too. If not, then try to deduce the result of the comparison.
1859 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1860 // Compute the constant that would happen if we truncated to SrcTy then
1861 // reextended to DstTy.
1862 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1863 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1864
1865 // If the re-extended constant didn't change then this is effectively
1866 // also a case of comparing two zero-extended values.
1867 if (RExt == CI && MaxRecurse)
1868 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001869 SrcOp, Trunc, Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001870 return V;
1871
1872 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1873 // there. Use this to work out the result of the comparison.
1874 if (RExt != CI) {
1875 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00001876 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sands9d32f602011-01-20 13:21:55 +00001877 // LHS <u RHS.
1878 case ICmpInst::ICMP_EQ:
1879 case ICmpInst::ICMP_UGT:
1880 case ICmpInst::ICMP_UGE:
1881 return ConstantInt::getFalse(CI->getContext());
1882
1883 case ICmpInst::ICMP_NE:
1884 case ICmpInst::ICMP_ULT:
1885 case ICmpInst::ICMP_ULE:
1886 return ConstantInt::getTrue(CI->getContext());
1887
1888 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
1889 // is non-negative then LHS <s RHS.
1890 case ICmpInst::ICMP_SGT:
1891 case ICmpInst::ICMP_SGE:
1892 return CI->getValue().isNegative() ?
1893 ConstantInt::getTrue(CI->getContext()) :
1894 ConstantInt::getFalse(CI->getContext());
1895
1896 case ICmpInst::ICMP_SLT:
1897 case ICmpInst::ICMP_SLE:
1898 return CI->getValue().isNegative() ?
1899 ConstantInt::getFalse(CI->getContext()) :
1900 ConstantInt::getTrue(CI->getContext());
1901 }
1902 }
1903 }
1904 }
1905
1906 if (isa<SExtInst>(LHS)) {
1907 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1908 // same type.
1909 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1910 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1911 // Compare X and Y. Note that the predicate does not change.
1912 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001913 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001914 return V;
1915 }
1916 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1917 // too. If not, then try to deduce the result of the comparison.
1918 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1919 // Compute the constant that would happen if we truncated to SrcTy then
1920 // reextended to DstTy.
1921 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1922 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1923
1924 // If the re-extended constant didn't change then this is effectively
1925 // also a case of comparing two sign-extended values.
1926 if (RExt == CI && MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001927 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001928 return V;
1929
1930 // Otherwise the upper bits of LHS are all equal, while RHS has varying
1931 // bits there. Use this to work out the result of the comparison.
1932 if (RExt != CI) {
1933 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00001934 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sands9d32f602011-01-20 13:21:55 +00001935 case ICmpInst::ICMP_EQ:
1936 return ConstantInt::getFalse(CI->getContext());
1937 case ICmpInst::ICMP_NE:
1938 return ConstantInt::getTrue(CI->getContext());
1939
1940 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
1941 // LHS >s RHS.
1942 case ICmpInst::ICMP_SGT:
1943 case ICmpInst::ICMP_SGE:
1944 return CI->getValue().isNegative() ?
1945 ConstantInt::getTrue(CI->getContext()) :
1946 ConstantInt::getFalse(CI->getContext());
1947 case ICmpInst::ICMP_SLT:
1948 case ICmpInst::ICMP_SLE:
1949 return CI->getValue().isNegative() ?
1950 ConstantInt::getFalse(CI->getContext()) :
1951 ConstantInt::getTrue(CI->getContext());
1952
1953 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
1954 // LHS >u RHS.
1955 case ICmpInst::ICMP_UGT:
1956 case ICmpInst::ICMP_UGE:
1957 // Comparison is true iff the LHS <s 0.
1958 if (MaxRecurse)
1959 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1960 Constant::getNullValue(SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001961 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001962 return V;
1963 break;
1964 case ICmpInst::ICMP_ULT:
1965 case ICmpInst::ICMP_ULE:
1966 // Comparison is true iff the LHS >=s 0.
1967 if (MaxRecurse)
1968 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1969 Constant::getNullValue(SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001970 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001971 return V;
1972 break;
1973 }
1974 }
1975 }
1976 }
1977 }
1978
Duncan Sands52fb8462011-02-13 17:15:40 +00001979 // Special logic for binary operators.
1980 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
1981 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
1982 if (MaxRecurse && (LBO || RBO)) {
Duncan Sands52fb8462011-02-13 17:15:40 +00001983 // Analyze the case when either LHS or RHS is an add instruction.
1984 Value *A = 0, *B = 0, *C = 0, *D = 0;
1985 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
1986 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
1987 if (LBO && LBO->getOpcode() == Instruction::Add) {
1988 A = LBO->getOperand(0); B = LBO->getOperand(1);
1989 NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
1990 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
1991 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
1992 }
1993 if (RBO && RBO->getOpcode() == Instruction::Add) {
1994 C = RBO->getOperand(0); D = RBO->getOperand(1);
1995 NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
1996 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
1997 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
1998 }
1999
2000 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2001 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2002 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2003 Constant::getNullValue(RHS->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002004 Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002005 return V;
2006
2007 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2008 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2009 if (Value *V = SimplifyICmpInst(Pred,
2010 Constant::getNullValue(LHS->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002011 C == LHS ? D : C, Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002012 return V;
2013
2014 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2015 if (A && C && (A == C || A == D || B == C || B == D) &&
2016 NoLHSWrapProblem && NoRHSWrapProblem) {
2017 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2018 Value *Y = (A == C || A == D) ? B : A;
2019 Value *Z = (C == A || C == B) ? D : C;
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002020 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002021 return V;
2022 }
2023 }
2024
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002025 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
Nick Lewycky78679272011-03-04 10:06:52 +00002026 bool KnownNonNegative, KnownNegative;
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002027 switch (Pred) {
2028 default:
2029 break;
Nick Lewycky78679272011-03-04 10:06:52 +00002030 case ICmpInst::ICMP_SGT:
2031 case ICmpInst::ICMP_SGE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002032 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky78679272011-03-04 10:06:52 +00002033 if (!KnownNonNegative)
2034 break;
2035 // fall-through
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002036 case ICmpInst::ICMP_EQ:
2037 case ICmpInst::ICMP_UGT:
2038 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002039 return getFalse(ITy);
Nick Lewycky78679272011-03-04 10:06:52 +00002040 case ICmpInst::ICMP_SLT:
2041 case ICmpInst::ICMP_SLE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002042 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky78679272011-03-04 10:06:52 +00002043 if (!KnownNonNegative)
2044 break;
2045 // fall-through
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002046 case ICmpInst::ICMP_NE:
2047 case ICmpInst::ICMP_ULT:
2048 case ICmpInst::ICMP_ULE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002049 return getTrue(ITy);
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002050 }
2051 }
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002052 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2053 bool KnownNonNegative, KnownNegative;
2054 switch (Pred) {
2055 default:
2056 break;
2057 case ICmpInst::ICMP_SGT:
2058 case ICmpInst::ICMP_SGE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002059 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002060 if (!KnownNonNegative)
2061 break;
2062 // fall-through
Nick Lewyckya0e2f382011-03-09 08:20:06 +00002063 case ICmpInst::ICMP_NE:
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002064 case ICmpInst::ICMP_UGT:
2065 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002066 return getTrue(ITy);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002067 case ICmpInst::ICMP_SLT:
2068 case ICmpInst::ICMP_SLE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002069 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002070 if (!KnownNonNegative)
2071 break;
2072 // fall-through
Nick Lewyckya0e2f382011-03-09 08:20:06 +00002073 case ICmpInst::ICMP_EQ:
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002074 case ICmpInst::ICMP_ULT:
2075 case ICmpInst::ICMP_ULE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002076 return getFalse(ITy);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002077 }
2078 }
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002079
Duncan Sandsc65c7472011-10-28 18:17:44 +00002080 // x udiv y <=u x.
2081 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2082 // icmp pred (X /u Y), X
2083 if (Pred == ICmpInst::ICMP_UGT)
2084 return getFalse(ITy);
2085 if (Pred == ICmpInst::ICMP_ULE)
2086 return getTrue(ITy);
2087 }
2088
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002089 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2090 LBO->getOperand(1) == RBO->getOperand(1)) {
2091 switch (LBO->getOpcode()) {
2092 default: break;
2093 case Instruction::UDiv:
2094 case Instruction::LShr:
2095 if (ICmpInst::isSigned(Pred))
2096 break;
2097 // fall-through
2098 case Instruction::SDiv:
2099 case Instruction::AShr:
Eli Friedmanb6e7cd62011-05-05 21:59:18 +00002100 if (!LBO->isExact() || !RBO->isExact())
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002101 break;
2102 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002103 RBO->getOperand(0), Q, MaxRecurse-1))
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002104 return V;
2105 break;
2106 case Instruction::Shl: {
Duncan Sandsc9d904e2011-08-04 10:02:21 +00002107 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002108 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2109 if (!NUW && !NSW)
2110 break;
2111 if (!NSW && ICmpInst::isSigned(Pred))
2112 break;
2113 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002114 RBO->getOperand(0), Q, MaxRecurse-1))
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002115 return V;
2116 break;
2117 }
2118 }
2119 }
2120
Duncan Sandsad206812011-05-03 19:53:10 +00002121 // Simplify comparisons involving max/min.
2122 Value *A, *B;
2123 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2124 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2125
Duncan Sands8140ad32011-05-04 16:05:05 +00002126 // Signed variants on "max(a,b)>=a -> true".
Duncan Sandsad206812011-05-03 19:53:10 +00002127 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2128 if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2129 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2130 // We analyze this as smax(A, B) pred A.
2131 P = Pred;
2132 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2133 (A == LHS || B == LHS)) {
2134 if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2135 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2136 // We analyze this as smax(A, B) swapped-pred A.
2137 P = CmpInst::getSwappedPredicate(Pred);
2138 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2139 (A == RHS || B == RHS)) {
2140 if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2141 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2142 // We analyze this as smax(-A, -B) swapped-pred -A.
2143 // Note that we do not need to actually form -A or -B thanks to EqP.
2144 P = CmpInst::getSwappedPredicate(Pred);
2145 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2146 (A == LHS || B == LHS)) {
2147 if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2148 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2149 // We analyze this as smax(-A, -B) pred -A.
2150 // Note that we do not need to actually form -A or -B thanks to EqP.
2151 P = Pred;
2152 }
2153 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2154 // Cases correspond to "max(A, B) p A".
2155 switch (P) {
2156 default:
2157 break;
2158 case CmpInst::ICMP_EQ:
2159 case CmpInst::ICMP_SLE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002160 // Equivalent to "A EqP B". This may be the same as the condition tested
2161 // in the max/min; if so, we can just return that.
2162 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2163 return V;
2164 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2165 return V;
2166 // Otherwise, see if "A EqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002167 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002168 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002169 return V;
2170 break;
2171 case CmpInst::ICMP_NE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002172 case CmpInst::ICMP_SGT: {
2173 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2174 // Equivalent to "A InvEqP B". This may be the same as the condition
2175 // tested in the max/min; if so, we can just return that.
2176 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2177 return V;
2178 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2179 return V;
2180 // Otherwise, see if "A InvEqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002181 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002182 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002183 return V;
2184 break;
Duncan Sandse864b5b2011-05-07 16:56:49 +00002185 }
Duncan Sandsad206812011-05-03 19:53:10 +00002186 case CmpInst::ICMP_SGE:
2187 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002188 return getTrue(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002189 case CmpInst::ICMP_SLT:
2190 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002191 return getFalse(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002192 }
2193 }
2194
Duncan Sands8140ad32011-05-04 16:05:05 +00002195 // Unsigned variants on "max(a,b)>=a -> true".
Duncan Sandsad206812011-05-03 19:53:10 +00002196 P = CmpInst::BAD_ICMP_PREDICATE;
2197 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2198 if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2199 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2200 // We analyze this as umax(A, B) pred A.
2201 P = Pred;
2202 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2203 (A == LHS || B == LHS)) {
2204 if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2205 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2206 // We analyze this as umax(A, B) swapped-pred A.
2207 P = CmpInst::getSwappedPredicate(Pred);
2208 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2209 (A == RHS || B == RHS)) {
2210 if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2211 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2212 // We analyze this as umax(-A, -B) swapped-pred -A.
2213 // Note that we do not need to actually form -A or -B thanks to EqP.
2214 P = CmpInst::getSwappedPredicate(Pred);
2215 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2216 (A == LHS || B == LHS)) {
2217 if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2218 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2219 // We analyze this as umax(-A, -B) pred -A.
2220 // Note that we do not need to actually form -A or -B thanks to EqP.
2221 P = Pred;
2222 }
2223 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2224 // Cases correspond to "max(A, B) p A".
2225 switch (P) {
2226 default:
2227 break;
2228 case CmpInst::ICMP_EQ:
2229 case CmpInst::ICMP_ULE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002230 // Equivalent to "A EqP B". This may be the same as the condition tested
2231 // in the max/min; if so, we can just return that.
2232 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2233 return V;
2234 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2235 return V;
2236 // Otherwise, see if "A EqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002237 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002238 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002239 return V;
2240 break;
2241 case CmpInst::ICMP_NE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002242 case CmpInst::ICMP_UGT: {
2243 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2244 // Equivalent to "A InvEqP B". This may be the same as the condition
2245 // tested in the max/min; if so, we can just return that.
2246 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2247 return V;
2248 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2249 return V;
2250 // Otherwise, see if "A InvEqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002251 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002252 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002253 return V;
2254 break;
Duncan Sandse864b5b2011-05-07 16:56:49 +00002255 }
Duncan Sandsad206812011-05-03 19:53:10 +00002256 case CmpInst::ICMP_UGE:
2257 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002258 return getTrue(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002259 case CmpInst::ICMP_ULT:
2260 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002261 return getFalse(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002262 }
2263 }
2264
Duncan Sands8140ad32011-05-04 16:05:05 +00002265 // Variants on "max(x,y) >= min(x,z)".
2266 Value *C, *D;
2267 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2268 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2269 (A == C || A == D || B == C || B == D)) {
2270 // max(x, ?) pred min(x, ?).
2271 if (Pred == CmpInst::ICMP_SGE)
2272 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002273 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002274 if (Pred == CmpInst::ICMP_SLT)
2275 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002276 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002277 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2278 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2279 (A == C || A == D || B == C || B == D)) {
2280 // min(x, ?) pred max(x, ?).
2281 if (Pred == CmpInst::ICMP_SLE)
2282 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002283 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002284 if (Pred == CmpInst::ICMP_SGT)
2285 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002286 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002287 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2288 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2289 (A == C || A == D || B == C || B == D)) {
2290 // max(x, ?) pred min(x, ?).
2291 if (Pred == CmpInst::ICMP_UGE)
2292 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002293 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002294 if (Pred == CmpInst::ICMP_ULT)
2295 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002296 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002297 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2298 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2299 (A == C || A == D || B == C || B == D)) {
2300 // min(x, ?) pred max(x, ?).
2301 if (Pred == CmpInst::ICMP_ULE)
2302 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002303 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002304 if (Pred == CmpInst::ICMP_UGT)
2305 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002306 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002307 }
2308
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00002309 // Simplify comparisons of GEPs.
2310 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2311 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2312 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2313 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2314 (ICmpInst::isEquality(Pred) ||
2315 (GLHS->isInBounds() && GRHS->isInBounds() &&
2316 Pred == ICmpInst::getSignedPredicate(Pred)))) {
2317 // The bases are equal and the indices are constant. Build a constant
2318 // expression GEP with the same indices and a null base pointer to see
2319 // what constant folding can make out of it.
2320 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2321 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2322 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2323
2324 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2325 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2326 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2327 }
2328 }
2329 }
2330
Duncan Sands1ac7c992010-11-07 16:12:23 +00002331 // If the comparison is with the result of a select instruction, check whether
2332 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002333 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002334 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002335 return V;
2336
2337 // If the comparison is with the result of a phi instruction, check whether
2338 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00002339 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002340 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00002341 return V;
Duncan Sands1ac7c992010-11-07 16:12:23 +00002342
Chris Lattner9f3c25a2009-11-09 22:57:59 +00002343 return 0;
2344}
2345
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002346Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Chad Rosier618c1db2011-12-01 03:08:23 +00002347 const TargetData *TD,
2348 const TargetLibraryInfo *TLI,
2349 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002350 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2351 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002352}
2353
Chris Lattner9dbb4292009-11-09 23:28:39 +00002354/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2355/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002356static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002357 const Query &Q, unsigned MaxRecurse) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00002358 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2359 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2360
Chris Lattnerd06094f2009-11-10 00:55:12 +00002361 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00002362 if (Constant *CRHS = dyn_cast<Constant>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002363 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
Duncan Sands12a86f52010-11-14 11:23:23 +00002364
Chris Lattnerd06094f2009-11-10 00:55:12 +00002365 // If we have a constant, make sure it is on the RHS.
2366 std::swap(LHS, RHS);
2367 Pred = CmpInst::getSwappedPredicate(Pred);
2368 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002369
Chris Lattner210c5d42009-11-09 23:55:12 +00002370 // Fold trivial predicates.
2371 if (Pred == FCmpInst::FCMP_FALSE)
2372 return ConstantInt::get(GetCompareTy(LHS), 0);
2373 if (Pred == FCmpInst::FCMP_TRUE)
2374 return ConstantInt::get(GetCompareTy(LHS), 1);
2375
Chris Lattner210c5d42009-11-09 23:55:12 +00002376 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
2377 return UndefValue::get(GetCompareTy(LHS));
2378
2379 // fcmp x,x -> true/false. Not all compares are foldable.
Duncan Sands124708d2011-01-01 20:08:02 +00002380 if (LHS == RHS) {
Chris Lattner210c5d42009-11-09 23:55:12 +00002381 if (CmpInst::isTrueWhenEqual(Pred))
2382 return ConstantInt::get(GetCompareTy(LHS), 1);
2383 if (CmpInst::isFalseWhenEqual(Pred))
2384 return ConstantInt::get(GetCompareTy(LHS), 0);
2385 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002386
Chris Lattner210c5d42009-11-09 23:55:12 +00002387 // Handle fcmp with constant RHS
2388 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2389 // If the constant is a nan, see if we can fold the comparison based on it.
2390 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2391 if (CFP->getValueAPF().isNaN()) {
2392 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
2393 return ConstantInt::getFalse(CFP->getContext());
2394 assert(FCmpInst::isUnordered(Pred) &&
2395 "Comparison must be either ordered or unordered!");
2396 // True if unordered.
2397 return ConstantInt::getTrue(CFP->getContext());
2398 }
Dan Gohman6b617a72010-02-22 04:06:03 +00002399 // Check whether the constant is an infinity.
2400 if (CFP->getValueAPF().isInfinity()) {
2401 if (CFP->getValueAPF().isNegative()) {
2402 switch (Pred) {
2403 case FCmpInst::FCMP_OLT:
2404 // No value is ordered and less than negative infinity.
2405 return ConstantInt::getFalse(CFP->getContext());
2406 case FCmpInst::FCMP_UGE:
2407 // All values are unordered with or at least negative infinity.
2408 return ConstantInt::getTrue(CFP->getContext());
2409 default:
2410 break;
2411 }
2412 } else {
2413 switch (Pred) {
2414 case FCmpInst::FCMP_OGT:
2415 // No value is ordered and greater than infinity.
2416 return ConstantInt::getFalse(CFP->getContext());
2417 case FCmpInst::FCMP_ULE:
2418 // All values are unordered with and at most infinity.
2419 return ConstantInt::getTrue(CFP->getContext());
2420 default:
2421 break;
2422 }
2423 }
2424 }
Chris Lattner210c5d42009-11-09 23:55:12 +00002425 }
2426 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002427
Duncan Sands92826de2010-11-07 16:46:25 +00002428 // If the comparison is with the result of a select instruction, check whether
2429 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002430 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002431 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002432 return V;
2433
2434 // If the comparison is with the result of a phi instruction, check whether
2435 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00002436 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002437 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00002438 return V;
Duncan Sands92826de2010-11-07 16:46:25 +00002439
Chris Lattner9dbb4292009-11-09 23:28:39 +00002440 return 0;
2441}
2442
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002443Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Chad Rosier618c1db2011-12-01 03:08:23 +00002444 const TargetData *TD,
2445 const TargetLibraryInfo *TLI,
2446 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002447 return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2448 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002449}
2450
Chris Lattner04754262010-04-20 05:32:14 +00002451/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2452/// the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002453static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2454 Value *FalseVal, const Query &Q,
2455 unsigned MaxRecurse) {
Chris Lattner04754262010-04-20 05:32:14 +00002456 // select true, X, Y -> X
2457 // select false, X, Y -> Y
2458 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2459 return CB->getZExtValue() ? TrueVal : FalseVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002460
Chris Lattner04754262010-04-20 05:32:14 +00002461 // select C, X, X -> X
Duncan Sands124708d2011-01-01 20:08:02 +00002462 if (TrueVal == FalseVal)
Chris Lattner04754262010-04-20 05:32:14 +00002463 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002464
Chris Lattner04754262010-04-20 05:32:14 +00002465 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
2466 if (isa<Constant>(TrueVal))
2467 return TrueVal;
2468 return FalseVal;
2469 }
Dan Gohman68c0dbc2011-07-01 01:03:43 +00002470 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
2471 return FalseVal;
2472 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
2473 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002474
Chris Lattner04754262010-04-20 05:32:14 +00002475 return 0;
2476}
2477
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002478Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
2479 const TargetData *TD,
2480 const TargetLibraryInfo *TLI,
2481 const DominatorTree *DT) {
2482 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2483 RecursionLimit);
2484}
2485
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002486/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2487/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002488static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
Duncan Sands85bbff62010-11-22 13:42:49 +00002489 // The type of the GEP pointer operand.
Nadav Rotem16087692011-12-05 06:29:09 +00002490 PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2491 // The GEP pointer operand is not a pointer, it's a vector of pointers.
2492 if (!PtrTy)
2493 return 0;
Duncan Sands85bbff62010-11-22 13:42:49 +00002494
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002495 // getelementptr P -> P.
Jay Foadb9b54eb2011-07-19 15:07:52 +00002496 if (Ops.size() == 1)
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002497 return Ops[0];
2498
Duncan Sands85bbff62010-11-22 13:42:49 +00002499 if (isa<UndefValue>(Ops[0])) {
2500 // Compute the (pointer) type returned by the GEP instruction.
Jay Foada9203102011-07-25 09:48:08 +00002501 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002502 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
Duncan Sands85bbff62010-11-22 13:42:49 +00002503 return UndefValue::get(GEPTy);
2504 }
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002505
Jay Foadb9b54eb2011-07-19 15:07:52 +00002506 if (Ops.size() == 2) {
Duncan Sandse60d79f2010-11-21 13:53:09 +00002507 // getelementptr P, 0 -> P.
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002508 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2509 if (C->isZero())
2510 return Ops[0];
Duncan Sandse60d79f2010-11-21 13:53:09 +00002511 // getelementptr P, N -> P if P points to a type of zero size.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002512 if (Q.TD) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002513 Type *Ty = PtrTy->getElementType();
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002514 if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
Duncan Sandse60d79f2010-11-21 13:53:09 +00002515 return Ops[0];
2516 }
2517 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002518
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002519 // Check to see if this is constant foldable.
Jay Foadb9b54eb2011-07-19 15:07:52 +00002520 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002521 if (!isa<Constant>(Ops[i]))
2522 return 0;
Duncan Sands12a86f52010-11-14 11:23:23 +00002523
Jay Foaddab3d292011-07-21 14:31:17 +00002524 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002525}
2526
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002527Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const TargetData *TD,
2528 const TargetLibraryInfo *TLI,
2529 const DominatorTree *DT) {
2530 return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2531}
2532
Duncan Sandsdabc2802011-09-05 06:52:48 +00002533/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2534/// can fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002535static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2536 ArrayRef<unsigned> Idxs, const Query &Q,
2537 unsigned) {
Duncan Sandsdabc2802011-09-05 06:52:48 +00002538 if (Constant *CAgg = dyn_cast<Constant>(Agg))
2539 if (Constant *CVal = dyn_cast<Constant>(Val))
2540 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2541
2542 // insertvalue x, undef, n -> x
2543 if (match(Val, m_Undef()))
2544 return Agg;
2545
2546 // insertvalue x, (extractvalue y, n), n
2547 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
Benjamin Kramerae707bd2011-09-05 18:16:19 +00002548 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2549 EV->getIndices() == Idxs) {
Duncan Sandsdabc2802011-09-05 06:52:48 +00002550 // insertvalue undef, (extractvalue y, n), n -> y
2551 if (match(Agg, m_Undef()))
2552 return EV->getAggregateOperand();
2553
2554 // insertvalue y, (extractvalue y, n), n -> y
2555 if (Agg == EV->getAggregateOperand())
2556 return Agg;
2557 }
2558
2559 return 0;
2560}
2561
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002562Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2563 ArrayRef<unsigned> Idxs,
2564 const TargetData *TD,
2565 const TargetLibraryInfo *TLI,
2566 const DominatorTree *DT) {
2567 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2568 RecursionLimit);
2569}
2570
Duncan Sandsff103412010-11-17 04:30:22 +00002571/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002572static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
Duncan Sandsff103412010-11-17 04:30:22 +00002573 // If all of the PHI's incoming values are the same then replace the PHI node
2574 // with the common value.
2575 Value *CommonValue = 0;
2576 bool HasUndefInput = false;
2577 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2578 Value *Incoming = PN->getIncomingValue(i);
2579 // If the incoming value is the phi node itself, it can safely be skipped.
2580 if (Incoming == PN) continue;
2581 if (isa<UndefValue>(Incoming)) {
2582 // Remember that we saw an undef value, but otherwise ignore them.
2583 HasUndefInput = true;
2584 continue;
2585 }
2586 if (CommonValue && Incoming != CommonValue)
2587 return 0; // Not the same, bail out.
2588 CommonValue = Incoming;
2589 }
2590
2591 // If CommonValue is null then all of the incoming values were either undef or
2592 // equal to the phi node itself.
2593 if (!CommonValue)
2594 return UndefValue::get(PN->getType());
2595
2596 // If we have a PHI node like phi(X, undef, X), where X is defined by some
2597 // instruction, we cannot return X as the result of the PHI node unless it
2598 // dominates the PHI block.
2599 if (HasUndefInput)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002600 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
Duncan Sandsff103412010-11-17 04:30:22 +00002601
2602 return CommonValue;
2603}
2604
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002605static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2606 if (Constant *C = dyn_cast<Constant>(Op))
2607 return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2608
2609 return 0;
2610}
2611
2612Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const TargetData *TD,
2613 const TargetLibraryInfo *TLI,
2614 const DominatorTree *DT) {
2615 return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2616}
2617
Chris Lattnerd06094f2009-11-10 00:55:12 +00002618//=== Helper functions for higher up the class hierarchy.
Chris Lattner9dbb4292009-11-09 23:28:39 +00002619
Chris Lattnerd06094f2009-11-10 00:55:12 +00002620/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2621/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002622static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002623 const Query &Q, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00002624 switch (Opcode) {
Chris Lattner81a0dc92011-02-09 17:15:04 +00002625 case Instruction::Add:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002626 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002627 Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002628 case Instruction::Sub:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002629 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002630 Q, MaxRecurse);
2631 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
2632 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2633 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2634 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2635 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2636 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2637 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002638 case Instruction::Shl:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002639 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002640 Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002641 case Instruction::LShr:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002642 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002643 case Instruction::AShr:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002644 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2645 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2646 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2647 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
Chris Lattnerd06094f2009-11-10 00:55:12 +00002648 default:
2649 if (Constant *CLHS = dyn_cast<Constant>(LHS))
2650 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2651 Constant *COps[] = {CLHS, CRHS};
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002652 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2653 Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00002654 }
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002655
Duncan Sands566edb02010-12-21 08:49:00 +00002656 // If the operation is associative, try some generic simplifications.
2657 if (Instruction::isAssociative(Opcode))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002658 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00002659 return V;
2660
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002661 // If the operation is with the result of a select instruction check whether
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002662 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002663 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002664 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002665 return V;
2666
2667 // If the operation is with the result of a phi instruction, check whether
2668 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002669 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002670 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002671 return V;
2672
Chris Lattnerd06094f2009-11-10 00:55:12 +00002673 return 0;
2674 }
2675}
Chris Lattner9dbb4292009-11-09 23:28:39 +00002676
Duncan Sands12a86f52010-11-14 11:23:23 +00002677Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Chad Rosier618c1db2011-12-01 03:08:23 +00002678 const TargetData *TD, const TargetLibraryInfo *TLI,
2679 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002680 return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
Chris Lattner9dbb4292009-11-09 23:28:39 +00002681}
2682
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002683/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2684/// fold the result.
2685static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002686 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002687 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002688 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2689 return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002690}
2691
2692Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Chad Rosier618c1db2011-12-01 03:08:23 +00002693 const TargetData *TD, const TargetLibraryInfo *TLI,
2694 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002695 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2696 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002697}
Chris Lattnere3453782009-11-10 01:08:51 +00002698
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002699static Value *SimplifyCallInst(CallInst *CI, const Query &) {
Dan Gohman71d05032011-11-04 18:32:42 +00002700 // call undef -> undef
2701 if (isa<UndefValue>(CI->getCalledValue()))
2702 return UndefValue::get(CI->getType());
2703
2704 return 0;
2705}
2706
Chris Lattnere3453782009-11-10 01:08:51 +00002707/// SimplifyInstruction - See if we can compute a simplified version of this
2708/// instruction. If not, this returns null.
Duncan Sandseff05812010-11-14 18:36:10 +00002709Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002710 const TargetLibraryInfo *TLI,
Duncan Sandseff05812010-11-14 18:36:10 +00002711 const DominatorTree *DT) {
Duncan Sandsd261dc62010-11-17 08:35:29 +00002712 Value *Result;
2713
Chris Lattnere3453782009-11-10 01:08:51 +00002714 switch (I->getOpcode()) {
2715 default:
Chad Rosier618c1db2011-12-01 03:08:23 +00002716 Result = ConstantFoldInstruction(I, TD, TLI);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002717 break;
Chris Lattner8aee8ef2009-11-27 17:42:22 +00002718 case Instruction::Add:
Duncan Sandsd261dc62010-11-17 08:35:29 +00002719 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2720 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2721 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002722 TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002723 break;
Duncan Sandsfea3b212010-12-15 14:07:39 +00002724 case Instruction::Sub:
2725 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2726 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2727 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002728 TD, TLI, DT);
Duncan Sandsfea3b212010-12-15 14:07:39 +00002729 break;
Duncan Sands82fdab32010-12-21 14:00:22 +00002730 case Instruction::Mul:
Chad Rosier618c1db2011-12-01 03:08:23 +00002731 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands82fdab32010-12-21 14:00:22 +00002732 break;
Duncan Sands593faa52011-01-28 16:51:11 +00002733 case Instruction::SDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00002734 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands593faa52011-01-28 16:51:11 +00002735 break;
2736 case Instruction::UDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00002737 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands593faa52011-01-28 16:51:11 +00002738 break;
Frits van Bommel1fca2c32011-01-29 15:26:31 +00002739 case Instruction::FDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00002740 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00002741 break;
Duncan Sandsf24ed772011-05-02 16:27:02 +00002742 case Instruction::SRem:
Chad Rosier618c1db2011-12-01 03:08:23 +00002743 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00002744 break;
2745 case Instruction::URem:
Chad Rosier618c1db2011-12-01 03:08:23 +00002746 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00002747 break;
2748 case Instruction::FRem:
Chad Rosier618c1db2011-12-01 03:08:23 +00002749 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00002750 break;
Duncan Sandsc43cee32011-01-14 00:37:45 +00002751 case Instruction::Shl:
Chris Lattner81a0dc92011-02-09 17:15:04 +00002752 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2753 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2754 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002755 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00002756 break;
2757 case Instruction::LShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00002758 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2759 cast<BinaryOperator>(I)->isExact(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002760 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00002761 break;
2762 case Instruction::AShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00002763 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2764 cast<BinaryOperator>(I)->isExact(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002765 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00002766 break;
Chris Lattnere3453782009-11-10 01:08:51 +00002767 case Instruction::And:
Chad Rosier618c1db2011-12-01 03:08:23 +00002768 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002769 break;
Chris Lattnere3453782009-11-10 01:08:51 +00002770 case Instruction::Or:
Chad Rosier618c1db2011-12-01 03:08:23 +00002771 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002772 break;
Duncan Sands2b749872010-11-17 18:52:15 +00002773 case Instruction::Xor:
Chad Rosier618c1db2011-12-01 03:08:23 +00002774 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands2b749872010-11-17 18:52:15 +00002775 break;
Chris Lattnere3453782009-11-10 01:08:51 +00002776 case Instruction::ICmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00002777 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002778 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002779 break;
Chris Lattnere3453782009-11-10 01:08:51 +00002780 case Instruction::FCmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00002781 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002782 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002783 break;
Chris Lattner04754262010-04-20 05:32:14 +00002784 case Instruction::Select:
Duncan Sandsd261dc62010-11-17 08:35:29 +00002785 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002786 I->getOperand(2), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002787 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002788 case Instruction::GetElementPtr: {
2789 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002790 Result = SimplifyGEPInst(Ops, TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002791 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002792 }
Duncan Sandsdabc2802011-09-05 06:52:48 +00002793 case Instruction::InsertValue: {
2794 InsertValueInst *IV = cast<InsertValueInst>(I);
2795 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
2796 IV->getInsertedValueOperand(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002797 IV->getIndices(), TD, TLI, DT);
Duncan Sandsdabc2802011-09-05 06:52:48 +00002798 break;
2799 }
Duncan Sandscd6636c2010-11-14 13:30:18 +00002800 case Instruction::PHI:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002801 Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
Duncan Sandsd261dc62010-11-17 08:35:29 +00002802 break;
Dan Gohman71d05032011-11-04 18:32:42 +00002803 case Instruction::Call:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002804 Result = SimplifyCallInst(cast<CallInst>(I), Query (TD, TLI, DT));
Dan Gohman71d05032011-11-04 18:32:42 +00002805 break;
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002806 case Instruction::Trunc:
2807 Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
2808 break;
Chris Lattnere3453782009-11-10 01:08:51 +00002809 }
Duncan Sandsd261dc62010-11-17 08:35:29 +00002810
2811 /// If called on unreachable code, the above logic may report that the
2812 /// instruction simplified to itself. Make life easier for users by
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00002813 /// detecting that case here, returning a safe value instead.
2814 return Result == I ? UndefValue::get(I->getType()) : Result;
Chris Lattnere3453782009-11-10 01:08:51 +00002815}
2816
Chris Lattner40d8c282009-11-10 22:26:15 +00002817/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
2818/// delete the From instruction. In addition to a basic RAUW, this does a
2819/// recursive simplification of the newly formed instructions. This catches
2820/// things where one simplification exposes other opportunities. This only
2821/// simplifies and deletes scalar operations, it does not change the CFG.
2822///
2823void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
Duncan Sandseff05812010-11-14 18:36:10 +00002824 const TargetData *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002825 const TargetLibraryInfo *TLI,
Duncan Sandseff05812010-11-14 18:36:10 +00002826 const DominatorTree *DT) {
Chris Lattner40d8c282009-11-10 22:26:15 +00002827 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
Duncan Sands12a86f52010-11-14 11:23:23 +00002828
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002829 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
2830 // we can know if it gets deleted out from under us or replaced in a
2831 // recursive simplification.
Chris Lattner40d8c282009-11-10 22:26:15 +00002832 WeakVH FromHandle(From);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002833 WeakVH ToHandle(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00002834
Chris Lattner40d8c282009-11-10 22:26:15 +00002835 while (!From->use_empty()) {
2836 // Update the instruction to use the new value.
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002837 Use &TheUse = From->use_begin().getUse();
2838 Instruction *User = cast<Instruction>(TheUse.getUser());
2839 TheUse = To;
2840
2841 // Check to see if the instruction can be folded due to the operand
2842 // replacement. For example changing (or X, Y) into (or X, -1) can replace
2843 // the 'or' with -1.
2844 Value *SimplifiedVal;
2845 {
2846 // Sanity check to make sure 'User' doesn't dangle across
2847 // SimplifyInstruction.
2848 AssertingVH<> UserHandle(User);
Duncan Sands12a86f52010-11-14 11:23:23 +00002849
Chad Rosier618c1db2011-12-01 03:08:23 +00002850 SimplifiedVal = SimplifyInstruction(User, TD, TLI, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002851 if (SimplifiedVal == 0) continue;
Chris Lattner40d8c282009-11-10 22:26:15 +00002852 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002853
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002854 // Recursively simplify this user to the new value.
Chad Rosier618c1db2011-12-01 03:08:23 +00002855 ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, TLI, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002856 From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
2857 To = ToHandle;
Duncan Sands12a86f52010-11-14 11:23:23 +00002858
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002859 assert(ToHandle && "To value deleted by recursive simplification?");
Duncan Sands12a86f52010-11-14 11:23:23 +00002860
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002861 // If the recursive simplification ended up revisiting and deleting
2862 // 'From' then we're done.
2863 if (From == 0)
2864 return;
Chris Lattner40d8c282009-11-10 22:26:15 +00002865 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002866
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002867 // If 'From' has value handles referring to it, do a real RAUW to update them.
2868 From->replaceAllUsesWith(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00002869
Chris Lattner40d8c282009-11-10 22:26:15 +00002870 From->eraseFromParent();
2871}