blob: 905053fef0b72864b06089dc2a78d6e743ac235f [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
Michael Liao2faa0f32013-03-06 18:24:34 +0000151 ; Declare the string constant as a global constant.
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000153
Michael Liao2faa0f32013-03-06 18:24:34 +0000154 ; External declaration of the puts function
155 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000156
157 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000158 define i32 @main() { ; i32()*
159 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
Michael Liao2faa0f32013-03-06 18:24:34 +0000162 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000163 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000164 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000265 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
Michael Gottesmanf5735882013-01-31 05:48:48 +0000468A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000472initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000504By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000505variables defined within the module are not modified from their
506initial values before the start of the global initializer. This is
507true even for variables potentially accessible from outside the
508module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000509``@llvm.used``. This assumption may be suppressed by marking the
510variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000511
Sean Silvaf722b002012-12-07 10:36:55 +0000512An explicit alignment may be specified for a global, which must be a
513power of 2. If not present, or if the alignment is set to zero, the
514alignment of the global is set by the target to whatever it feels
515convenient. If an explicit alignment is specified, the global is forced
516to have exactly that alignment. Targets and optimizers are not allowed
517to over-align the global if the global has an assigned section. In this
518case, the extra alignment could be observable: for example, code could
519assume that the globals are densely packed in their section and try to
520iterate over them as an array, alignment padding would break this
521iteration.
522
523For example, the following defines a global in a numbered address space
524with an initializer, section, and alignment:
525
526.. code-block:: llvm
527
528 @G = addrspace(5) constant float 1.0, section "foo", align 4
529
530The following example defines a thread-local global with the
531``initialexec`` TLS model:
532
533.. code-block:: llvm
534
535 @G = thread_local(initialexec) global i32 0, align 4
536
537.. _functionstructure:
538
539Functions
540---------
541
542LLVM function definitions consist of the "``define``" keyword, an
543optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
544style <visibility>`, an optional :ref:`calling convention <callingconv>`,
545an optional ``unnamed_addr`` attribute, a return type, an optional
546:ref:`parameter attribute <paramattrs>` for the return type, a function
547name, a (possibly empty) argument list (each with optional :ref:`parameter
548attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
549an optional section, an optional alignment, an optional :ref:`garbage
550collector name <gc>`, an opening curly brace, a list of basic blocks,
551and a closing curly brace.
552
553LLVM function declarations consist of the "``declare``" keyword, an
554optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
555style <visibility>`, an optional :ref:`calling convention <callingconv>`,
556an optional ``unnamed_addr`` attribute, a return type, an optional
557:ref:`parameter attribute <paramattrs>` for the return type, a function
558name, a possibly empty list of arguments, an optional alignment, and an
559optional :ref:`garbage collector name <gc>`.
560
561A function definition contains a list of basic blocks, forming the CFG
562(Control Flow Graph) for the function. Each basic block may optionally
563start with a label (giving the basic block a symbol table entry),
564contains a list of instructions, and ends with a
565:ref:`terminator <terminators>` instruction (such as a branch or function
566return).
567
568The first basic block in a function is special in two ways: it is
569immediately executed on entrance to the function, and it is not allowed
570to have predecessor basic blocks (i.e. there can not be any branches to
571the entry block of a function). Because the block can have no
572predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
573
574LLVM allows an explicit section to be specified for functions. If the
575target supports it, it will emit functions to the section specified.
576
577An explicit alignment may be specified for a function. If not present,
578or if the alignment is set to zero, the alignment of the function is set
579by the target to whatever it feels convenient. If an explicit alignment
580is specified, the function is forced to have at least that much
581alignment. All alignments must be a power of 2.
582
583If the ``unnamed_addr`` attribute is given, the address is know to not
584be significant and two identical functions can be merged.
585
586Syntax::
587
588 define [linkage] [visibility]
589 [cconv] [ret attrs]
590 <ResultType> @<FunctionName> ([argument list])
591 [fn Attrs] [section "name"] [align N]
592 [gc] { ... }
593
594Aliases
595-------
596
597Aliases act as "second name" for the aliasee value (which can be either
598function, global variable, another alias or bitcast of global value).
599Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
600:ref:`visibility style <visibility>`.
601
602Syntax::
603
604 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
605
606.. _namedmetadatastructure:
607
608Named Metadata
609--------------
610
611Named metadata is a collection of metadata. :ref:`Metadata
612nodes <metadata>` (but not metadata strings) are the only valid
613operands for a named metadata.
614
615Syntax::
616
617 ; Some unnamed metadata nodes, which are referenced by the named metadata.
618 !0 = metadata !{metadata !"zero"}
619 !1 = metadata !{metadata !"one"}
620 !2 = metadata !{metadata !"two"}
621 ; A named metadata.
622 !name = !{!0, !1, !2}
623
624.. _paramattrs:
625
626Parameter Attributes
627--------------------
628
629The return type and each parameter of a function type may have a set of
630*parameter attributes* associated with them. Parameter attributes are
631used to communicate additional information about the result or
632parameters of a function. Parameter attributes are considered to be part
633of the function, not of the function type, so functions with different
634parameter attributes can have the same function type.
635
636Parameter attributes are simple keywords that follow the type specified.
637If multiple parameter attributes are needed, they are space separated.
638For example:
639
640.. code-block:: llvm
641
642 declare i32 @printf(i8* noalias nocapture, ...)
643 declare i32 @atoi(i8 zeroext)
644 declare signext i8 @returns_signed_char()
645
646Note that any attributes for the function result (``nounwind``,
647``readonly``) come immediately after the argument list.
648
649Currently, only the following parameter attributes are defined:
650
651``zeroext``
652 This indicates to the code generator that the parameter or return
653 value should be zero-extended to the extent required by the target's
654 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
655 the caller (for a parameter) or the callee (for a return value).
656``signext``
657 This indicates to the code generator that the parameter or return
658 value should be sign-extended to the extent required by the target's
659 ABI (which is usually 32-bits) by the caller (for a parameter) or
660 the callee (for a return value).
661``inreg``
662 This indicates that this parameter or return value should be treated
663 in a special target-dependent fashion during while emitting code for
664 a function call or return (usually, by putting it in a register as
665 opposed to memory, though some targets use it to distinguish between
666 two different kinds of registers). Use of this attribute is
667 target-specific.
668``byval``
669 This indicates that the pointer parameter should really be passed by
670 value to the function. The attribute implies that a hidden copy of
671 the pointee is made between the caller and the callee, so the callee
672 is unable to modify the value in the caller. This attribute is only
673 valid on LLVM pointer arguments. It is generally used to pass
674 structs and arrays by value, but is also valid on pointers to
675 scalars. The copy is considered to belong to the caller not the
676 callee (for example, ``readonly`` functions should not write to
677 ``byval`` parameters). This is not a valid attribute for return
678 values.
679
680 The byval attribute also supports specifying an alignment with the
681 align attribute. It indicates the alignment of the stack slot to
682 form and the known alignment of the pointer specified to the call
683 site. If the alignment is not specified, then the code generator
684 makes a target-specific assumption.
685
686``sret``
687 This indicates that the pointer parameter specifies the address of a
688 structure that is the return value of the function in the source
689 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000690 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000691 not to trap and to be properly aligned. This may only be applied to
692 the first parameter. This is not a valid attribute for return
693 values.
694``noalias``
695 This indicates that pointer values `*based* <pointeraliasing>` on
696 the argument or return value do not alias pointer values which are
697 not *based* on it, ignoring certain "irrelevant" dependencies. For a
698 call to the parent function, dependencies between memory references
699 from before or after the call and from those during the call are
700 "irrelevant" to the ``noalias`` keyword for the arguments and return
701 value used in that call. The caller shares the responsibility with
702 the callee for ensuring that these requirements are met. For further
703 details, please see the discussion of the NoAlias response in `alias
704 analysis <AliasAnalysis.html#MustMayNo>`_.
705
706 Note that this definition of ``noalias`` is intentionally similar
707 to the definition of ``restrict`` in C99 for function arguments,
708 though it is slightly weaker.
709
710 For function return values, C99's ``restrict`` is not meaningful,
711 while LLVM's ``noalias`` is.
712``nocapture``
713 This indicates that the callee does not make any copies of the
714 pointer that outlive the callee itself. This is not a valid
715 attribute for return values.
716
717.. _nest:
718
719``nest``
720 This indicates that the pointer parameter can be excised using the
721 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
722 attribute for return values.
723
724.. _gc:
725
726Garbage Collector Names
727-----------------------
728
729Each function may specify a garbage collector name, which is simply a
730string:
731
732.. code-block:: llvm
733
734 define void @f() gc "name" { ... }
735
736The compiler declares the supported values of *name*. Specifying a
737collector which will cause the compiler to alter its output in order to
738support the named garbage collection algorithm.
739
Bill Wendling95ce4c22013-02-06 06:52:58 +0000740.. _attrgrp:
741
742Attribute Groups
743----------------
744
745Attribute groups are groups of attributes that are referenced by objects within
746the IR. They are important for keeping ``.ll`` files readable, because a lot of
747functions will use the same set of attributes. In the degenerative case of a
748``.ll`` file that corresponds to a single ``.c`` file, the single attribute
749group will capture the important command line flags used to build that file.
750
751An attribute group is a module-level object. To use an attribute group, an
752object references the attribute group's ID (e.g. ``#37``). An object may refer
753to more than one attribute group. In that situation, the attributes from the
754different groups are merged.
755
756Here is an example of attribute groups for a function that should always be
757inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
758
759.. code-block:: llvm
760
761 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000762 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000763
764 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000765 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000766
767 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
768 define void @f() #0 #1 { ... }
769
Sean Silvaf722b002012-12-07 10:36:55 +0000770.. _fnattrs:
771
772Function Attributes
773-------------------
774
775Function attributes are set to communicate additional information about
776a function. Function attributes are considered to be part of the
777function, not of the function type, so functions with different function
778attributes can have the same function type.
779
780Function attributes are simple keywords that follow the type specified.
781If multiple attributes are needed, they are space separated. For
782example:
783
784.. code-block:: llvm
785
786 define void @f() noinline { ... }
787 define void @f() alwaysinline { ... }
788 define void @f() alwaysinline optsize { ... }
789 define void @f() optsize { ... }
790
Sean Silvaf722b002012-12-07 10:36:55 +0000791``alignstack(<n>)``
792 This attribute indicates that, when emitting the prologue and
793 epilogue, the backend should forcibly align the stack pointer.
794 Specify the desired alignment, which must be a power of two, in
795 parentheses.
796``alwaysinline``
797 This attribute indicates that the inliner should attempt to inline
798 this function into callers whenever possible, ignoring any active
799 inlining size threshold for this caller.
800``nonlazybind``
801 This attribute suppresses lazy symbol binding for the function. This
802 may make calls to the function faster, at the cost of extra program
803 startup time if the function is not called during program startup.
804``inlinehint``
805 This attribute indicates that the source code contained a hint that
806 inlining this function is desirable (such as the "inline" keyword in
807 C/C++). It is just a hint; it imposes no requirements on the
808 inliner.
809``naked``
810 This attribute disables prologue / epilogue emission for the
811 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000812``nobuiltin``
813 This indicates that the callee function at a call site is not
814 recognized as a built-in function. LLVM will retain the original call
815 and not replace it with equivalent code based on the semantics of the
816 built-in function. This is only valid at call sites, not on function
817 declarations or definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000818``noduplicate``
819 This attribute indicates that calls to the function cannot be
820 duplicated. A call to a ``noduplicate`` function may be moved
821 within its parent function, but may not be duplicated within
822 its parent function.
823
824 A function containing a ``noduplicate`` call may still
825 be an inlining candidate, provided that the call is not
826 duplicated by inlining. That implies that the function has
827 internal linkage and only has one call site, so the original
828 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000829``noimplicitfloat``
830 This attributes disables implicit floating point instructions.
831``noinline``
832 This attribute indicates that the inliner should never inline this
833 function in any situation. This attribute may not be used together
834 with the ``alwaysinline`` attribute.
835``noredzone``
836 This attribute indicates that the code generator should not use a
837 red zone, even if the target-specific ABI normally permits it.
838``noreturn``
839 This function attribute indicates that the function never returns
840 normally. This produces undefined behavior at runtime if the
841 function ever does dynamically return.
842``nounwind``
843 This function attribute indicates that the function never returns
844 with an unwind or exceptional control flow. If the function does
845 unwind, its runtime behavior is undefined.
846``optsize``
847 This attribute suggests that optimization passes and code generator
848 passes make choices that keep the code size of this function low,
849 and otherwise do optimizations specifically to reduce code size.
850``readnone``
851 This attribute indicates that the function computes its result (or
852 decides to unwind an exception) based strictly on its arguments,
853 without dereferencing any pointer arguments or otherwise accessing
854 any mutable state (e.g. memory, control registers, etc) visible to
855 caller functions. It does not write through any pointer arguments
856 (including ``byval`` arguments) and never changes any state visible
857 to callers. This means that it cannot unwind exceptions by calling
858 the ``C++`` exception throwing methods.
859``readonly``
860 This attribute indicates that the function does not write through
861 any pointer arguments (including ``byval`` arguments) or otherwise
862 modify any state (e.g. memory, control registers, etc) visible to
863 caller functions. It may dereference pointer arguments and read
864 state that may be set in the caller. A readonly function always
865 returns the same value (or unwinds an exception identically) when
866 called with the same set of arguments and global state. It cannot
867 unwind an exception by calling the ``C++`` exception throwing
868 methods.
869``returns_twice``
870 This attribute indicates that this function can return twice. The C
871 ``setjmp`` is an example of such a function. The compiler disables
872 some optimizations (like tail calls) in the caller of these
873 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000874``sanitize_address``
875 This attribute indicates that AddressSanitizer checks
876 (dynamic address safety analysis) are enabled for this function.
877``sanitize_memory``
878 This attribute indicates that MemorySanitizer checks (dynamic detection
879 of accesses to uninitialized memory) are enabled for this function.
880``sanitize_thread``
881 This attribute indicates that ThreadSanitizer checks
882 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000883``ssp``
884 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000885 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000886 placed on the stack before the local variables that's checked upon
887 return from the function to see if it has been overwritten. A
888 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000889 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000890
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000891 - Character arrays larger than ``ssp-buffer-size`` (default 8).
892 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
893 - Calls to alloca() with variable sizes or constant sizes greater than
894 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000895
896 If a function that has an ``ssp`` attribute is inlined into a
897 function that doesn't have an ``ssp`` attribute, then the resulting
898 function will have an ``ssp`` attribute.
899``sspreq``
900 This attribute indicates that the function should *always* emit a
901 stack smashing protector. This overrides the ``ssp`` function
902 attribute.
903
904 If a function that has an ``sspreq`` attribute is inlined into a
905 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000906 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
907 an ``sspreq`` attribute.
908``sspstrong``
909 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000910 protector. This attribute causes a strong heuristic to be used when
911 determining if a function needs stack protectors. The strong heuristic
912 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000913
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000914 - Arrays of any size and type
915 - Aggregates containing an array of any size and type.
916 - Calls to alloca().
917 - Local variables that have had their address taken.
918
919 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000920
921 If a function that has an ``sspstrong`` attribute is inlined into a
922 function that doesn't have an ``sspstrong`` attribute, then the
923 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000924``uwtable``
925 This attribute indicates that the ABI being targeted requires that
926 an unwind table entry be produce for this function even if we can
927 show that no exceptions passes by it. This is normally the case for
928 the ELF x86-64 abi, but it can be disabled for some compilation
929 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000930
931.. _moduleasm:
932
933Module-Level Inline Assembly
934----------------------------
935
936Modules may contain "module-level inline asm" blocks, which corresponds
937to the GCC "file scope inline asm" blocks. These blocks are internally
938concatenated by LLVM and treated as a single unit, but may be separated
939in the ``.ll`` file if desired. The syntax is very simple:
940
941.. code-block:: llvm
942
943 module asm "inline asm code goes here"
944 module asm "more can go here"
945
946The strings can contain any character by escaping non-printable
947characters. The escape sequence used is simply "\\xx" where "xx" is the
948two digit hex code for the number.
949
950The inline asm code is simply printed to the machine code .s file when
951assembly code is generated.
952
953Data Layout
954-----------
955
956A module may specify a target specific data layout string that specifies
957how data is to be laid out in memory. The syntax for the data layout is
958simply:
959
960.. code-block:: llvm
961
962 target datalayout = "layout specification"
963
964The *layout specification* consists of a list of specifications
965separated by the minus sign character ('-'). Each specification starts
966with a letter and may include other information after the letter to
967define some aspect of the data layout. The specifications accepted are
968as follows:
969
970``E``
971 Specifies that the target lays out data in big-endian form. That is,
972 the bits with the most significance have the lowest address
973 location.
974``e``
975 Specifies that the target lays out data in little-endian form. That
976 is, the bits with the least significance have the lowest address
977 location.
978``S<size>``
979 Specifies the natural alignment of the stack in bits. Alignment
980 promotion of stack variables is limited to the natural stack
981 alignment to avoid dynamic stack realignment. The stack alignment
982 must be a multiple of 8-bits. If omitted, the natural stack
983 alignment defaults to "unspecified", which does not prevent any
984 alignment promotions.
985``p[n]:<size>:<abi>:<pref>``
986 This specifies the *size* of a pointer and its ``<abi>`` and
987 ``<pref>``\erred alignments for address space ``n``. All sizes are in
988 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
989 preceding ``:`` should be omitted too. The address space, ``n`` is
990 optional, and if not specified, denotes the default address space 0.
991 The value of ``n`` must be in the range [1,2^23).
992``i<size>:<abi>:<pref>``
993 This specifies the alignment for an integer type of a given bit
994 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
995``v<size>:<abi>:<pref>``
996 This specifies the alignment for a vector type of a given bit
997 ``<size>``.
998``f<size>:<abi>:<pref>``
999 This specifies the alignment for a floating point type of a given bit
1000 ``<size>``. Only values of ``<size>`` that are supported by the target
1001 will work. 32 (float) and 64 (double) are supported on all targets; 80
1002 or 128 (different flavors of long double) are also supported on some
1003 targets.
1004``a<size>:<abi>:<pref>``
1005 This specifies the alignment for an aggregate type of a given bit
1006 ``<size>``.
1007``s<size>:<abi>:<pref>``
1008 This specifies the alignment for a stack object of a given bit
1009 ``<size>``.
1010``n<size1>:<size2>:<size3>...``
1011 This specifies a set of native integer widths for the target CPU in
1012 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1013 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1014 this set are considered to support most general arithmetic operations
1015 efficiently.
1016
1017When constructing the data layout for a given target, LLVM starts with a
1018default set of specifications which are then (possibly) overridden by
1019the specifications in the ``datalayout`` keyword. The default
1020specifications are given in this list:
1021
1022- ``E`` - big endian
1023- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001024- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001025- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1026- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1027- ``i16:16:16`` - i16 is 16-bit aligned
1028- ``i32:32:32`` - i32 is 32-bit aligned
1029- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1030 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001031- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001032- ``f32:32:32`` - float is 32-bit aligned
1033- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001034- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001035- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1036- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001037- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001038
1039When LLVM is determining the alignment for a given type, it uses the
1040following rules:
1041
1042#. If the type sought is an exact match for one of the specifications,
1043 that specification is used.
1044#. If no match is found, and the type sought is an integer type, then
1045 the smallest integer type that is larger than the bitwidth of the
1046 sought type is used. If none of the specifications are larger than
1047 the bitwidth then the largest integer type is used. For example,
1048 given the default specifications above, the i7 type will use the
1049 alignment of i8 (next largest) while both i65 and i256 will use the
1050 alignment of i64 (largest specified).
1051#. If no match is found, and the type sought is a vector type, then the
1052 largest vector type that is smaller than the sought vector type will
1053 be used as a fall back. This happens because <128 x double> can be
1054 implemented in terms of 64 <2 x double>, for example.
1055
1056The function of the data layout string may not be what you expect.
1057Notably, this is not a specification from the frontend of what alignment
1058the code generator should use.
1059
1060Instead, if specified, the target data layout is required to match what
1061the ultimate *code generator* expects. This string is used by the
1062mid-level optimizers to improve code, and this only works if it matches
1063what the ultimate code generator uses. If you would like to generate IR
1064that does not embed this target-specific detail into the IR, then you
1065don't have to specify the string. This will disable some optimizations
1066that require precise layout information, but this also prevents those
1067optimizations from introducing target specificity into the IR.
1068
1069.. _pointeraliasing:
1070
1071Pointer Aliasing Rules
1072----------------------
1073
1074Any memory access must be done through a pointer value associated with
1075an address range of the memory access, otherwise the behavior is
1076undefined. Pointer values are associated with address ranges according
1077to the following rules:
1078
1079- A pointer value is associated with the addresses associated with any
1080 value it is *based* on.
1081- An address of a global variable is associated with the address range
1082 of the variable's storage.
1083- The result value of an allocation instruction is associated with the
1084 address range of the allocated storage.
1085- A null pointer in the default address-space is associated with no
1086 address.
1087- An integer constant other than zero or a pointer value returned from
1088 a function not defined within LLVM may be associated with address
1089 ranges allocated through mechanisms other than those provided by
1090 LLVM. Such ranges shall not overlap with any ranges of addresses
1091 allocated by mechanisms provided by LLVM.
1092
1093A pointer value is *based* on another pointer value according to the
1094following rules:
1095
1096- A pointer value formed from a ``getelementptr`` operation is *based*
1097 on the first operand of the ``getelementptr``.
1098- The result value of a ``bitcast`` is *based* on the operand of the
1099 ``bitcast``.
1100- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1101 values that contribute (directly or indirectly) to the computation of
1102 the pointer's value.
1103- The "*based* on" relationship is transitive.
1104
1105Note that this definition of *"based"* is intentionally similar to the
1106definition of *"based"* in C99, though it is slightly weaker.
1107
1108LLVM IR does not associate types with memory. The result type of a
1109``load`` merely indicates the size and alignment of the memory from
1110which to load, as well as the interpretation of the value. The first
1111operand type of a ``store`` similarly only indicates the size and
1112alignment of the store.
1113
1114Consequently, type-based alias analysis, aka TBAA, aka
1115``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1116:ref:`Metadata <metadata>` may be used to encode additional information
1117which specialized optimization passes may use to implement type-based
1118alias analysis.
1119
1120.. _volatile:
1121
1122Volatile Memory Accesses
1123------------------------
1124
1125Certain memory accesses, such as :ref:`load <i_load>`'s,
1126:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1127marked ``volatile``. The optimizers must not change the number of
1128volatile operations or change their order of execution relative to other
1129volatile operations. The optimizers *may* change the order of volatile
1130operations relative to non-volatile operations. This is not Java's
1131"volatile" and has no cross-thread synchronization behavior.
1132
Andrew Trick9a6dd022013-01-30 21:19:35 +00001133IR-level volatile loads and stores cannot safely be optimized into
1134llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1135flagged volatile. Likewise, the backend should never split or merge
1136target-legal volatile load/store instructions.
1137
Andrew Trick946317d2013-01-31 00:49:39 +00001138.. admonition:: Rationale
1139
1140 Platforms may rely on volatile loads and stores of natively supported
1141 data width to be executed as single instruction. For example, in C
1142 this holds for an l-value of volatile primitive type with native
1143 hardware support, but not necessarily for aggregate types. The
1144 frontend upholds these expectations, which are intentionally
1145 unspecified in the IR. The rules above ensure that IR transformation
1146 do not violate the frontend's contract with the language.
1147
Sean Silvaf722b002012-12-07 10:36:55 +00001148.. _memmodel:
1149
1150Memory Model for Concurrent Operations
1151--------------------------------------
1152
1153The LLVM IR does not define any way to start parallel threads of
1154execution or to register signal handlers. Nonetheless, there are
1155platform-specific ways to create them, and we define LLVM IR's behavior
1156in their presence. This model is inspired by the C++0x memory model.
1157
1158For a more informal introduction to this model, see the :doc:`Atomics`.
1159
1160We define a *happens-before* partial order as the least partial order
1161that
1162
1163- Is a superset of single-thread program order, and
1164- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1165 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1166 techniques, like pthread locks, thread creation, thread joining,
1167 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1168 Constraints <ordering>`).
1169
1170Note that program order does not introduce *happens-before* edges
1171between a thread and signals executing inside that thread.
1172
1173Every (defined) read operation (load instructions, memcpy, atomic
1174loads/read-modify-writes, etc.) R reads a series of bytes written by
1175(defined) write operations (store instructions, atomic
1176stores/read-modify-writes, memcpy, etc.). For the purposes of this
1177section, initialized globals are considered to have a write of the
1178initializer which is atomic and happens before any other read or write
1179of the memory in question. For each byte of a read R, R\ :sub:`byte`
1180may see any write to the same byte, except:
1181
1182- If write\ :sub:`1` happens before write\ :sub:`2`, and
1183 write\ :sub:`2` happens before R\ :sub:`byte`, then
1184 R\ :sub:`byte` does not see write\ :sub:`1`.
1185- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1186 R\ :sub:`byte` does not see write\ :sub:`3`.
1187
1188Given that definition, R\ :sub:`byte` is defined as follows:
1189
1190- If R is volatile, the result is target-dependent. (Volatile is
1191 supposed to give guarantees which can support ``sig_atomic_t`` in
1192 C/C++, and may be used for accesses to addresses which do not behave
1193 like normal memory. It does not generally provide cross-thread
1194 synchronization.)
1195- Otherwise, if there is no write to the same byte that happens before
1196 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1197- Otherwise, if R\ :sub:`byte` may see exactly one write,
1198 R\ :sub:`byte` returns the value written by that write.
1199- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1200 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1201 Memory Ordering Constraints <ordering>` section for additional
1202 constraints on how the choice is made.
1203- Otherwise R\ :sub:`byte` returns ``undef``.
1204
1205R returns the value composed of the series of bytes it read. This
1206implies that some bytes within the value may be ``undef`` **without**
1207the entire value being ``undef``. Note that this only defines the
1208semantics of the operation; it doesn't mean that targets will emit more
1209than one instruction to read the series of bytes.
1210
1211Note that in cases where none of the atomic intrinsics are used, this
1212model places only one restriction on IR transformations on top of what
1213is required for single-threaded execution: introducing a store to a byte
1214which might not otherwise be stored is not allowed in general.
1215(Specifically, in the case where another thread might write to and read
1216from an address, introducing a store can change a load that may see
1217exactly one write into a load that may see multiple writes.)
1218
1219.. _ordering:
1220
1221Atomic Memory Ordering Constraints
1222----------------------------------
1223
1224Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1225:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1226:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1227an ordering parameter that determines which other atomic instructions on
1228the same address they *synchronize with*. These semantics are borrowed
1229from Java and C++0x, but are somewhat more colloquial. If these
1230descriptions aren't precise enough, check those specs (see spec
1231references in the :doc:`atomics guide <Atomics>`).
1232:ref:`fence <i_fence>` instructions treat these orderings somewhat
1233differently since they don't take an address. See that instruction's
1234documentation for details.
1235
1236For a simpler introduction to the ordering constraints, see the
1237:doc:`Atomics`.
1238
1239``unordered``
1240 The set of values that can be read is governed by the happens-before
1241 partial order. A value cannot be read unless some operation wrote
1242 it. This is intended to provide a guarantee strong enough to model
1243 Java's non-volatile shared variables. This ordering cannot be
1244 specified for read-modify-write operations; it is not strong enough
1245 to make them atomic in any interesting way.
1246``monotonic``
1247 In addition to the guarantees of ``unordered``, there is a single
1248 total order for modifications by ``monotonic`` operations on each
1249 address. All modification orders must be compatible with the
1250 happens-before order. There is no guarantee that the modification
1251 orders can be combined to a global total order for the whole program
1252 (and this often will not be possible). The read in an atomic
1253 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1254 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1255 order immediately before the value it writes. If one atomic read
1256 happens before another atomic read of the same address, the later
1257 read must see the same value or a later value in the address's
1258 modification order. This disallows reordering of ``monotonic`` (or
1259 stronger) operations on the same address. If an address is written
1260 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1261 read that address repeatedly, the other threads must eventually see
1262 the write. This corresponds to the C++0x/C1x
1263 ``memory_order_relaxed``.
1264``acquire``
1265 In addition to the guarantees of ``monotonic``, a
1266 *synchronizes-with* edge may be formed with a ``release`` operation.
1267 This is intended to model C++'s ``memory_order_acquire``.
1268``release``
1269 In addition to the guarantees of ``monotonic``, if this operation
1270 writes a value which is subsequently read by an ``acquire``
1271 operation, it *synchronizes-with* that operation. (This isn't a
1272 complete description; see the C++0x definition of a release
1273 sequence.) This corresponds to the C++0x/C1x
1274 ``memory_order_release``.
1275``acq_rel`` (acquire+release)
1276 Acts as both an ``acquire`` and ``release`` operation on its
1277 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1278``seq_cst`` (sequentially consistent)
1279 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1280 operation which only reads, ``release`` for an operation which only
1281 writes), there is a global total order on all
1282 sequentially-consistent operations on all addresses, which is
1283 consistent with the *happens-before* partial order and with the
1284 modification orders of all the affected addresses. Each
1285 sequentially-consistent read sees the last preceding write to the
1286 same address in this global order. This corresponds to the C++0x/C1x
1287 ``memory_order_seq_cst`` and Java volatile.
1288
1289.. _singlethread:
1290
1291If an atomic operation is marked ``singlethread``, it only *synchronizes
1292with* or participates in modification and seq\_cst total orderings with
1293other operations running in the same thread (for example, in signal
1294handlers).
1295
1296.. _fastmath:
1297
1298Fast-Math Flags
1299---------------
1300
1301LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1302:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1303:ref:`frem <i_frem>`) have the following flags that can set to enable
1304otherwise unsafe floating point operations
1305
1306``nnan``
1307 No NaNs - Allow optimizations to assume the arguments and result are not
1308 NaN. Such optimizations are required to retain defined behavior over
1309 NaNs, but the value of the result is undefined.
1310
1311``ninf``
1312 No Infs - Allow optimizations to assume the arguments and result are not
1313 +/-Inf. Such optimizations are required to retain defined behavior over
1314 +/-Inf, but the value of the result is undefined.
1315
1316``nsz``
1317 No Signed Zeros - Allow optimizations to treat the sign of a zero
1318 argument or result as insignificant.
1319
1320``arcp``
1321 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1322 argument rather than perform division.
1323
1324``fast``
1325 Fast - Allow algebraically equivalent transformations that may
1326 dramatically change results in floating point (e.g. reassociate). This
1327 flag implies all the others.
1328
1329.. _typesystem:
1330
1331Type System
1332===========
1333
1334The LLVM type system is one of the most important features of the
1335intermediate representation. Being typed enables a number of
1336optimizations to be performed on the intermediate representation
1337directly, without having to do extra analyses on the side before the
1338transformation. A strong type system makes it easier to read the
1339generated code and enables novel analyses and transformations that are
1340not feasible to perform on normal three address code representations.
1341
1342Type Classifications
1343--------------------
1344
1345The types fall into a few useful classifications:
1346
1347
1348.. list-table::
1349 :header-rows: 1
1350
1351 * - Classification
1352 - Types
1353
1354 * - :ref:`integer <t_integer>`
1355 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1356 ``i64``, ...
1357
1358 * - :ref:`floating point <t_floating>`
1359 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1360 ``ppc_fp128``
1361
1362
1363 * - first class
1364
1365 .. _t_firstclass:
1366
1367 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1368 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1369 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1370 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1371
1372 * - :ref:`primitive <t_primitive>`
1373 - :ref:`label <t_label>`,
1374 :ref:`void <t_void>`,
1375 :ref:`integer <t_integer>`,
1376 :ref:`floating point <t_floating>`,
1377 :ref:`x86mmx <t_x86mmx>`,
1378 :ref:`metadata <t_metadata>`.
1379
1380 * - :ref:`derived <t_derived>`
1381 - :ref:`array <t_array>`,
1382 :ref:`function <t_function>`,
1383 :ref:`pointer <t_pointer>`,
1384 :ref:`structure <t_struct>`,
1385 :ref:`vector <t_vector>`,
1386 :ref:`opaque <t_opaque>`.
1387
1388The :ref:`first class <t_firstclass>` types are perhaps the most important.
1389Values of these types are the only ones which can be produced by
1390instructions.
1391
1392.. _t_primitive:
1393
1394Primitive Types
1395---------------
1396
1397The primitive types are the fundamental building blocks of the LLVM
1398system.
1399
1400.. _t_integer:
1401
1402Integer Type
1403^^^^^^^^^^^^
1404
1405Overview:
1406"""""""""
1407
1408The integer type is a very simple type that simply specifies an
1409arbitrary bit width for the integer type desired. Any bit width from 1
1410bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1411
1412Syntax:
1413"""""""
1414
1415::
1416
1417 iN
1418
1419The number of bits the integer will occupy is specified by the ``N``
1420value.
1421
1422Examples:
1423"""""""""
1424
1425+----------------+------------------------------------------------+
1426| ``i1`` | a single-bit integer. |
1427+----------------+------------------------------------------------+
1428| ``i32`` | a 32-bit integer. |
1429+----------------+------------------------------------------------+
1430| ``i1942652`` | a really big integer of over 1 million bits. |
1431+----------------+------------------------------------------------+
1432
1433.. _t_floating:
1434
1435Floating Point Types
1436^^^^^^^^^^^^^^^^^^^^
1437
1438.. list-table::
1439 :header-rows: 1
1440
1441 * - Type
1442 - Description
1443
1444 * - ``half``
1445 - 16-bit floating point value
1446
1447 * - ``float``
1448 - 32-bit floating point value
1449
1450 * - ``double``
1451 - 64-bit floating point value
1452
1453 * - ``fp128``
1454 - 128-bit floating point value (112-bit mantissa)
1455
1456 * - ``x86_fp80``
1457 - 80-bit floating point value (X87)
1458
1459 * - ``ppc_fp128``
1460 - 128-bit floating point value (two 64-bits)
1461
1462.. _t_x86mmx:
1463
1464X86mmx Type
1465^^^^^^^^^^^
1466
1467Overview:
1468"""""""""
1469
1470The x86mmx type represents a value held in an MMX register on an x86
1471machine. The operations allowed on it are quite limited: parameters and
1472return values, load and store, and bitcast. User-specified MMX
1473instructions are represented as intrinsic or asm calls with arguments
1474and/or results of this type. There are no arrays, vectors or constants
1475of this type.
1476
1477Syntax:
1478"""""""
1479
1480::
1481
1482 x86mmx
1483
1484.. _t_void:
1485
1486Void Type
1487^^^^^^^^^
1488
1489Overview:
1490"""""""""
1491
1492The void type does not represent any value and has no size.
1493
1494Syntax:
1495"""""""
1496
1497::
1498
1499 void
1500
1501.. _t_label:
1502
1503Label Type
1504^^^^^^^^^^
1505
1506Overview:
1507"""""""""
1508
1509The label type represents code labels.
1510
1511Syntax:
1512"""""""
1513
1514::
1515
1516 label
1517
1518.. _t_metadata:
1519
1520Metadata Type
1521^^^^^^^^^^^^^
1522
1523Overview:
1524"""""""""
1525
1526The metadata type represents embedded metadata. No derived types may be
1527created from metadata except for :ref:`function <t_function>` arguments.
1528
1529Syntax:
1530"""""""
1531
1532::
1533
1534 metadata
1535
1536.. _t_derived:
1537
1538Derived Types
1539-------------
1540
1541The real power in LLVM comes from the derived types in the system. This
1542is what allows a programmer to represent arrays, functions, pointers,
1543and other useful types. Each of these types contain one or more element
1544types which may be a primitive type, or another derived type. For
1545example, it is possible to have a two dimensional array, using an array
1546as the element type of another array.
1547
1548.. _t_aggregate:
1549
1550Aggregate Types
1551^^^^^^^^^^^^^^^
1552
1553Aggregate Types are a subset of derived types that can contain multiple
1554member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1555aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1556aggregate types.
1557
1558.. _t_array:
1559
1560Array Type
1561^^^^^^^^^^
1562
1563Overview:
1564"""""""""
1565
1566The array type is a very simple derived type that arranges elements
1567sequentially in memory. The array type requires a size (number of
1568elements) and an underlying data type.
1569
1570Syntax:
1571"""""""
1572
1573::
1574
1575 [<# elements> x <elementtype>]
1576
1577The number of elements is a constant integer value; ``elementtype`` may
1578be any type with a size.
1579
1580Examples:
1581"""""""""
1582
1583+------------------+--------------------------------------+
1584| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1585+------------------+--------------------------------------+
1586| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1587+------------------+--------------------------------------+
1588| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1589+------------------+--------------------------------------+
1590
1591Here are some examples of multidimensional arrays:
1592
1593+-----------------------------+----------------------------------------------------------+
1594| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1595+-----------------------------+----------------------------------------------------------+
1596| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1597+-----------------------------+----------------------------------------------------------+
1598| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1599+-----------------------------+----------------------------------------------------------+
1600
1601There is no restriction on indexing beyond the end of the array implied
1602by a static type (though there are restrictions on indexing beyond the
1603bounds of an allocated object in some cases). This means that
1604single-dimension 'variable sized array' addressing can be implemented in
1605LLVM with a zero length array type. An implementation of 'pascal style
1606arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1607example.
1608
1609.. _t_function:
1610
1611Function Type
1612^^^^^^^^^^^^^
1613
1614Overview:
1615"""""""""
1616
1617The function type can be thought of as a function signature. It consists
1618of a return type and a list of formal parameter types. The return type
1619of a function type is a first class type or a void type.
1620
1621Syntax:
1622"""""""
1623
1624::
1625
1626 <returntype> (<parameter list>)
1627
1628...where '``<parameter list>``' is a comma-separated list of type
1629specifiers. Optionally, the parameter list may include a type ``...``,
1630which indicates that the function takes a variable number of arguments.
1631Variable argument functions can access their arguments with the
1632:ref:`variable argument handling intrinsic <int_varargs>` functions.
1633'``<returntype>``' is any type except :ref:`label <t_label>`.
1634
1635Examples:
1636"""""""""
1637
1638+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1639| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1640+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001641| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001642+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1643| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1644+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1645| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1646+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1647
1648.. _t_struct:
1649
1650Structure Type
1651^^^^^^^^^^^^^^
1652
1653Overview:
1654"""""""""
1655
1656The structure type is used to represent a collection of data members
1657together in memory. The elements of a structure may be any type that has
1658a size.
1659
1660Structures in memory are accessed using '``load``' and '``store``' by
1661getting a pointer to a field with the '``getelementptr``' instruction.
1662Structures in registers are accessed using the '``extractvalue``' and
1663'``insertvalue``' instructions.
1664
1665Structures may optionally be "packed" structures, which indicate that
1666the alignment of the struct is one byte, and that there is no padding
1667between the elements. In non-packed structs, padding between field types
1668is inserted as defined by the DataLayout string in the module, which is
1669required to match what the underlying code generator expects.
1670
1671Structures can either be "literal" or "identified". A literal structure
1672is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1673identified types are always defined at the top level with a name.
1674Literal types are uniqued by their contents and can never be recursive
1675or opaque since there is no way to write one. Identified types can be
1676recursive, can be opaqued, and are never uniqued.
1677
1678Syntax:
1679"""""""
1680
1681::
1682
1683 %T1 = type { <type list> } ; Identified normal struct type
1684 %T2 = type <{ <type list> }> ; Identified packed struct type
1685
1686Examples:
1687"""""""""
1688
1689+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1690| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1691+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001692| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001693+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1694| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1695+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1696
1697.. _t_opaque:
1698
1699Opaque Structure Types
1700^^^^^^^^^^^^^^^^^^^^^^
1701
1702Overview:
1703"""""""""
1704
1705Opaque structure types are used to represent named structure types that
1706do not have a body specified. This corresponds (for example) to the C
1707notion of a forward declared structure.
1708
1709Syntax:
1710"""""""
1711
1712::
1713
1714 %X = type opaque
1715 %52 = type opaque
1716
1717Examples:
1718"""""""""
1719
1720+--------------+-------------------+
1721| ``opaque`` | An opaque type. |
1722+--------------+-------------------+
1723
1724.. _t_pointer:
1725
1726Pointer Type
1727^^^^^^^^^^^^
1728
1729Overview:
1730"""""""""
1731
1732The pointer type is used to specify memory locations. Pointers are
1733commonly used to reference objects in memory.
1734
1735Pointer types may have an optional address space attribute defining the
1736numbered address space where the pointed-to object resides. The default
1737address space is number zero. The semantics of non-zero address spaces
1738are target-specific.
1739
1740Note that LLVM does not permit pointers to void (``void*``) nor does it
1741permit pointers to labels (``label*``). Use ``i8*`` instead.
1742
1743Syntax:
1744"""""""
1745
1746::
1747
1748 <type> *
1749
1750Examples:
1751"""""""""
1752
1753+-------------------------+--------------------------------------------------------------------------------------------------------------+
1754| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1755+-------------------------+--------------------------------------------------------------------------------------------------------------+
1756| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1757+-------------------------+--------------------------------------------------------------------------------------------------------------+
1758| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1759+-------------------------+--------------------------------------------------------------------------------------------------------------+
1760
1761.. _t_vector:
1762
1763Vector Type
1764^^^^^^^^^^^
1765
1766Overview:
1767"""""""""
1768
1769A vector type is a simple derived type that represents a vector of
1770elements. Vector types are used when multiple primitive data are
1771operated in parallel using a single instruction (SIMD). A vector type
1772requires a size (number of elements) and an underlying primitive data
1773type. Vector types are considered :ref:`first class <t_firstclass>`.
1774
1775Syntax:
1776"""""""
1777
1778::
1779
1780 < <# elements> x <elementtype> >
1781
1782The number of elements is a constant integer value larger than 0;
1783elementtype may be any integer or floating point type, or a pointer to
1784these types. Vectors of size zero are not allowed.
1785
1786Examples:
1787"""""""""
1788
1789+-------------------+--------------------------------------------------+
1790| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1791+-------------------+--------------------------------------------------+
1792| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1793+-------------------+--------------------------------------------------+
1794| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1795+-------------------+--------------------------------------------------+
1796| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1797+-------------------+--------------------------------------------------+
1798
1799Constants
1800=========
1801
1802LLVM has several different basic types of constants. This section
1803describes them all and their syntax.
1804
1805Simple Constants
1806----------------
1807
1808**Boolean constants**
1809 The two strings '``true``' and '``false``' are both valid constants
1810 of the ``i1`` type.
1811**Integer constants**
1812 Standard integers (such as '4') are constants of the
1813 :ref:`integer <t_integer>` type. Negative numbers may be used with
1814 integer types.
1815**Floating point constants**
1816 Floating point constants use standard decimal notation (e.g.
1817 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1818 hexadecimal notation (see below). The assembler requires the exact
1819 decimal value of a floating-point constant. For example, the
1820 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1821 decimal in binary. Floating point constants must have a :ref:`floating
1822 point <t_floating>` type.
1823**Null pointer constants**
1824 The identifier '``null``' is recognized as a null pointer constant
1825 and must be of :ref:`pointer type <t_pointer>`.
1826
1827The one non-intuitive notation for constants is the hexadecimal form of
1828floating point constants. For example, the form
1829'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1830than) '``double 4.5e+15``'. The only time hexadecimal floating point
1831constants are required (and the only time that they are generated by the
1832disassembler) is when a floating point constant must be emitted but it
1833cannot be represented as a decimal floating point number in a reasonable
1834number of digits. For example, NaN's, infinities, and other special
1835values are represented in their IEEE hexadecimal format so that assembly
1836and disassembly do not cause any bits to change in the constants.
1837
1838When using the hexadecimal form, constants of types half, float, and
1839double are represented using the 16-digit form shown above (which
1840matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001841must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001842precision, respectively. Hexadecimal format is always used for long
1843double, and there are three forms of long double. The 80-bit format used
1844by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1845128-bit format used by PowerPC (two adjacent doubles) is represented by
1846``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1847represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1848supported target uses this format. Long doubles will only work if they
1849match the long double format on your target. The IEEE 16-bit format
1850(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1851digits. All hexadecimal formats are big-endian (sign bit at the left).
1852
1853There are no constants of type x86mmx.
1854
1855Complex Constants
1856-----------------
1857
1858Complex constants are a (potentially recursive) combination of simple
1859constants and smaller complex constants.
1860
1861**Structure constants**
1862 Structure constants are represented with notation similar to
1863 structure type definitions (a comma separated list of elements,
1864 surrounded by braces (``{}``)). For example:
1865 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1866 "``@G = external global i32``". Structure constants must have
1867 :ref:`structure type <t_struct>`, and the number and types of elements
1868 must match those specified by the type.
1869**Array constants**
1870 Array constants are represented with notation similar to array type
1871 definitions (a comma separated list of elements, surrounded by
1872 square brackets (``[]``)). For example:
1873 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1874 :ref:`array type <t_array>`, and the number and types of elements must
1875 match those specified by the type.
1876**Vector constants**
1877 Vector constants are represented with notation similar to vector
1878 type definitions (a comma separated list of elements, surrounded by
1879 less-than/greater-than's (``<>``)). For example:
1880 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1881 must have :ref:`vector type <t_vector>`, and the number and types of
1882 elements must match those specified by the type.
1883**Zero initialization**
1884 The string '``zeroinitializer``' can be used to zero initialize a
1885 value to zero of *any* type, including scalar and
1886 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1887 having to print large zero initializers (e.g. for large arrays) and
1888 is always exactly equivalent to using explicit zero initializers.
1889**Metadata node**
1890 A metadata node is a structure-like constant with :ref:`metadata
1891 type <t_metadata>`. For example:
1892 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1893 constants that are meant to be interpreted as part of the
1894 instruction stream, metadata is a place to attach additional
1895 information such as debug info.
1896
1897Global Variable and Function Addresses
1898--------------------------------------
1899
1900The addresses of :ref:`global variables <globalvars>` and
1901:ref:`functions <functionstructure>` are always implicitly valid
1902(link-time) constants. These constants are explicitly referenced when
1903the :ref:`identifier for the global <identifiers>` is used and always have
1904:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1905file:
1906
1907.. code-block:: llvm
1908
1909 @X = global i32 17
1910 @Y = global i32 42
1911 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1912
1913.. _undefvalues:
1914
1915Undefined Values
1916----------------
1917
1918The string '``undef``' can be used anywhere a constant is expected, and
1919indicates that the user of the value may receive an unspecified
1920bit-pattern. Undefined values may be of any type (other than '``label``'
1921or '``void``') and be used anywhere a constant is permitted.
1922
1923Undefined values are useful because they indicate to the compiler that
1924the program is well defined no matter what value is used. This gives the
1925compiler more freedom to optimize. Here are some examples of
1926(potentially surprising) transformations that are valid (in pseudo IR):
1927
1928.. code-block:: llvm
1929
1930 %A = add %X, undef
1931 %B = sub %X, undef
1932 %C = xor %X, undef
1933 Safe:
1934 %A = undef
1935 %B = undef
1936 %C = undef
1937
1938This is safe because all of the output bits are affected by the undef
1939bits. Any output bit can have a zero or one depending on the input bits.
1940
1941.. code-block:: llvm
1942
1943 %A = or %X, undef
1944 %B = and %X, undef
1945 Safe:
1946 %A = -1
1947 %B = 0
1948 Unsafe:
1949 %A = undef
1950 %B = undef
1951
1952These logical operations have bits that are not always affected by the
1953input. For example, if ``%X`` has a zero bit, then the output of the
1954'``and``' operation will always be a zero for that bit, no matter what
1955the corresponding bit from the '``undef``' is. As such, it is unsafe to
1956optimize or assume that the result of the '``and``' is '``undef``'.
1957However, it is safe to assume that all bits of the '``undef``' could be
19580, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1959all the bits of the '``undef``' operand to the '``or``' could be set,
1960allowing the '``or``' to be folded to -1.
1961
1962.. code-block:: llvm
1963
1964 %A = select undef, %X, %Y
1965 %B = select undef, 42, %Y
1966 %C = select %X, %Y, undef
1967 Safe:
1968 %A = %X (or %Y)
1969 %B = 42 (or %Y)
1970 %C = %Y
1971 Unsafe:
1972 %A = undef
1973 %B = undef
1974 %C = undef
1975
1976This set of examples shows that undefined '``select``' (and conditional
1977branch) conditions can go *either way*, but they have to come from one
1978of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1979both known to have a clear low bit, then ``%A`` would have to have a
1980cleared low bit. However, in the ``%C`` example, the optimizer is
1981allowed to assume that the '``undef``' operand could be the same as
1982``%Y``, allowing the whole '``select``' to be eliminated.
1983
1984.. code-block:: llvm
1985
1986 %A = xor undef, undef
1987
1988 %B = undef
1989 %C = xor %B, %B
1990
1991 %D = undef
1992 %E = icmp lt %D, 4
1993 %F = icmp gte %D, 4
1994
1995 Safe:
1996 %A = undef
1997 %B = undef
1998 %C = undef
1999 %D = undef
2000 %E = undef
2001 %F = undef
2002
2003This example points out that two '``undef``' operands are not
2004necessarily the same. This can be surprising to people (and also matches
2005C semantics) where they assume that "``X^X``" is always zero, even if
2006``X`` is undefined. This isn't true for a number of reasons, but the
2007short answer is that an '``undef``' "variable" can arbitrarily change
2008its value over its "live range". This is true because the variable
2009doesn't actually *have a live range*. Instead, the value is logically
2010read from arbitrary registers that happen to be around when needed, so
2011the value is not necessarily consistent over time. In fact, ``%A`` and
2012``%C`` need to have the same semantics or the core LLVM "replace all
2013uses with" concept would not hold.
2014
2015.. code-block:: llvm
2016
2017 %A = fdiv undef, %X
2018 %B = fdiv %X, undef
2019 Safe:
2020 %A = undef
2021 b: unreachable
2022
2023These examples show the crucial difference between an *undefined value*
2024and *undefined behavior*. An undefined value (like '``undef``') is
2025allowed to have an arbitrary bit-pattern. This means that the ``%A``
2026operation can be constant folded to '``undef``', because the '``undef``'
2027could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2028However, in the second example, we can make a more aggressive
2029assumption: because the ``undef`` is allowed to be an arbitrary value,
2030we are allowed to assume that it could be zero. Since a divide by zero
2031has *undefined behavior*, we are allowed to assume that the operation
2032does not execute at all. This allows us to delete the divide and all
2033code after it. Because the undefined operation "can't happen", the
2034optimizer can assume that it occurs in dead code.
2035
2036.. code-block:: llvm
2037
2038 a: store undef -> %X
2039 b: store %X -> undef
2040 Safe:
2041 a: <deleted>
2042 b: unreachable
2043
2044These examples reiterate the ``fdiv`` example: a store *of* an undefined
2045value can be assumed to not have any effect; we can assume that the
2046value is overwritten with bits that happen to match what was already
2047there. However, a store *to* an undefined location could clobber
2048arbitrary memory, therefore, it has undefined behavior.
2049
2050.. _poisonvalues:
2051
2052Poison Values
2053-------------
2054
2055Poison values are similar to :ref:`undef values <undefvalues>`, however
2056they also represent the fact that an instruction or constant expression
2057which cannot evoke side effects has nevertheless detected a condition
2058which results in undefined behavior.
2059
2060There is currently no way of representing a poison value in the IR; they
2061only exist when produced by operations such as :ref:`add <i_add>` with
2062the ``nsw`` flag.
2063
2064Poison value behavior is defined in terms of value *dependence*:
2065
2066- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2067- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2068 their dynamic predecessor basic block.
2069- Function arguments depend on the corresponding actual argument values
2070 in the dynamic callers of their functions.
2071- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2072 instructions that dynamically transfer control back to them.
2073- :ref:`Invoke <i_invoke>` instructions depend on the
2074 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2075 call instructions that dynamically transfer control back to them.
2076- Non-volatile loads and stores depend on the most recent stores to all
2077 of the referenced memory addresses, following the order in the IR
2078 (including loads and stores implied by intrinsics such as
2079 :ref:`@llvm.memcpy <int_memcpy>`.)
2080- An instruction with externally visible side effects depends on the
2081 most recent preceding instruction with externally visible side
2082 effects, following the order in the IR. (This includes :ref:`volatile
2083 operations <volatile>`.)
2084- An instruction *control-depends* on a :ref:`terminator
2085 instruction <terminators>` if the terminator instruction has
2086 multiple successors and the instruction is always executed when
2087 control transfers to one of the successors, and may not be executed
2088 when control is transferred to another.
2089- Additionally, an instruction also *control-depends* on a terminator
2090 instruction if the set of instructions it otherwise depends on would
2091 be different if the terminator had transferred control to a different
2092 successor.
2093- Dependence is transitive.
2094
2095Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2096with the additional affect that any instruction which has a *dependence*
2097on a poison value has undefined behavior.
2098
2099Here are some examples:
2100
2101.. code-block:: llvm
2102
2103 entry:
2104 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2105 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2106 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2107 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2108
2109 store i32 %poison, i32* @g ; Poison value stored to memory.
2110 %poison2 = load i32* @g ; Poison value loaded back from memory.
2111
2112 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2113
2114 %narrowaddr = bitcast i32* @g to i16*
2115 %wideaddr = bitcast i32* @g to i64*
2116 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2117 %poison4 = load i64* %wideaddr ; Returns a poison value.
2118
2119 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2120 br i1 %cmp, label %true, label %end ; Branch to either destination.
2121
2122 true:
2123 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2124 ; it has undefined behavior.
2125 br label %end
2126
2127 end:
2128 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2129 ; Both edges into this PHI are
2130 ; control-dependent on %cmp, so this
2131 ; always results in a poison value.
2132
2133 store volatile i32 0, i32* @g ; This would depend on the store in %true
2134 ; if %cmp is true, or the store in %entry
2135 ; otherwise, so this is undefined behavior.
2136
2137 br i1 %cmp, label %second_true, label %second_end
2138 ; The same branch again, but this time the
2139 ; true block doesn't have side effects.
2140
2141 second_true:
2142 ; No side effects!
2143 ret void
2144
2145 second_end:
2146 store volatile i32 0, i32* @g ; This time, the instruction always depends
2147 ; on the store in %end. Also, it is
2148 ; control-equivalent to %end, so this is
2149 ; well-defined (ignoring earlier undefined
2150 ; behavior in this example).
2151
2152.. _blockaddress:
2153
2154Addresses of Basic Blocks
2155-------------------------
2156
2157``blockaddress(@function, %block)``
2158
2159The '``blockaddress``' constant computes the address of the specified
2160basic block in the specified function, and always has an ``i8*`` type.
2161Taking the address of the entry block is illegal.
2162
2163This value only has defined behavior when used as an operand to the
2164':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2165against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002166undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002167no label is equal to the null pointer. This may be passed around as an
2168opaque pointer sized value as long as the bits are not inspected. This
2169allows ``ptrtoint`` and arithmetic to be performed on these values so
2170long as the original value is reconstituted before the ``indirectbr``
2171instruction.
2172
2173Finally, some targets may provide defined semantics when using the value
2174as the operand to an inline assembly, but that is target specific.
2175
2176Constant Expressions
2177--------------------
2178
2179Constant expressions are used to allow expressions involving other
2180constants to be used as constants. Constant expressions may be of any
2181:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2182that does not have side effects (e.g. load and call are not supported).
2183The following is the syntax for constant expressions:
2184
2185``trunc (CST to TYPE)``
2186 Truncate a constant to another type. The bit size of CST must be
2187 larger than the bit size of TYPE. Both types must be integers.
2188``zext (CST to TYPE)``
2189 Zero extend a constant to another type. The bit size of CST must be
2190 smaller than the bit size of TYPE. Both types must be integers.
2191``sext (CST to TYPE)``
2192 Sign extend a constant to another type. The bit size of CST must be
2193 smaller than the bit size of TYPE. Both types must be integers.
2194``fptrunc (CST to TYPE)``
2195 Truncate a floating point constant to another floating point type.
2196 The size of CST must be larger than the size of TYPE. Both types
2197 must be floating point.
2198``fpext (CST to TYPE)``
2199 Floating point extend a constant to another type. The size of CST
2200 must be smaller or equal to the size of TYPE. Both types must be
2201 floating point.
2202``fptoui (CST to TYPE)``
2203 Convert a floating point constant to the corresponding unsigned
2204 integer constant. TYPE must be a scalar or vector integer type. CST
2205 must be of scalar or vector floating point type. Both CST and TYPE
2206 must be scalars, or vectors of the same number of elements. If the
2207 value won't fit in the integer type, the results are undefined.
2208``fptosi (CST to TYPE)``
2209 Convert a floating point constant to the corresponding signed
2210 integer constant. TYPE must be a scalar or vector integer type. CST
2211 must be of scalar or vector floating point type. Both CST and TYPE
2212 must be scalars, or vectors of the same number of elements. If the
2213 value won't fit in the integer type, the results are undefined.
2214``uitofp (CST to TYPE)``
2215 Convert an unsigned integer constant to the corresponding floating
2216 point constant. TYPE must be a scalar or vector floating point type.
2217 CST must be of scalar or vector integer type. Both CST and TYPE must
2218 be scalars, or vectors of the same number of elements. If the value
2219 won't fit in the floating point type, the results are undefined.
2220``sitofp (CST to TYPE)``
2221 Convert a signed integer constant to the corresponding floating
2222 point constant. TYPE must be a scalar or vector floating point type.
2223 CST must be of scalar or vector integer type. Both CST and TYPE must
2224 be scalars, or vectors of the same number of elements. If the value
2225 won't fit in the floating point type, the results are undefined.
2226``ptrtoint (CST to TYPE)``
2227 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002228 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002229 pointer type. The ``CST`` value is zero extended, truncated, or
2230 unchanged to make it fit in ``TYPE``.
2231``inttoptr (CST to TYPE)``
2232 Convert an integer constant to a pointer constant. TYPE must be a
2233 pointer type. CST must be of integer type. The CST value is zero
2234 extended, truncated, or unchanged to make it fit in a pointer size.
2235 This one is *really* dangerous!
2236``bitcast (CST to TYPE)``
2237 Convert a constant, CST, to another TYPE. The constraints of the
2238 operands are the same as those for the :ref:`bitcast
2239 instruction <i_bitcast>`.
2240``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2241 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2242 constants. As with the :ref:`getelementptr <i_getelementptr>`
2243 instruction, the index list may have zero or more indexes, which are
2244 required to make sense for the type of "CSTPTR".
2245``select (COND, VAL1, VAL2)``
2246 Perform the :ref:`select operation <i_select>` on constants.
2247``icmp COND (VAL1, VAL2)``
2248 Performs the :ref:`icmp operation <i_icmp>` on constants.
2249``fcmp COND (VAL1, VAL2)``
2250 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2251``extractelement (VAL, IDX)``
2252 Perform the :ref:`extractelement operation <i_extractelement>` on
2253 constants.
2254``insertelement (VAL, ELT, IDX)``
2255 Perform the :ref:`insertelement operation <i_insertelement>` on
2256 constants.
2257``shufflevector (VEC1, VEC2, IDXMASK)``
2258 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2259 constants.
2260``extractvalue (VAL, IDX0, IDX1, ...)``
2261 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2262 constants. The index list is interpreted in a similar manner as
2263 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2264 least one index value must be specified.
2265``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2266 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2267 The index list is interpreted in a similar manner as indices in a
2268 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2269 value must be specified.
2270``OPCODE (LHS, RHS)``
2271 Perform the specified operation of the LHS and RHS constants. OPCODE
2272 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2273 binary <bitwiseops>` operations. The constraints on operands are
2274 the same as those for the corresponding instruction (e.g. no bitwise
2275 operations on floating point values are allowed).
2276
2277Other Values
2278============
2279
2280Inline Assembler Expressions
2281----------------------------
2282
2283LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2284Inline Assembly <moduleasm>`) through the use of a special value. This
2285value represents the inline assembler as a string (containing the
2286instructions to emit), a list of operand constraints (stored as a
2287string), a flag that indicates whether or not the inline asm expression
2288has side effects, and a flag indicating whether the function containing
2289the asm needs to align its stack conservatively. An example inline
2290assembler expression is:
2291
2292.. code-block:: llvm
2293
2294 i32 (i32) asm "bswap $0", "=r,r"
2295
2296Inline assembler expressions may **only** be used as the callee operand
2297of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2298Thus, typically we have:
2299
2300.. code-block:: llvm
2301
2302 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2303
2304Inline asms with side effects not visible in the constraint list must be
2305marked as having side effects. This is done through the use of the
2306'``sideeffect``' keyword, like so:
2307
2308.. code-block:: llvm
2309
2310 call void asm sideeffect "eieio", ""()
2311
2312In some cases inline asms will contain code that will not work unless
2313the stack is aligned in some way, such as calls or SSE instructions on
2314x86, yet will not contain code that does that alignment within the asm.
2315The compiler should make conservative assumptions about what the asm
2316might contain and should generate its usual stack alignment code in the
2317prologue if the '``alignstack``' keyword is present:
2318
2319.. code-block:: llvm
2320
2321 call void asm alignstack "eieio", ""()
2322
2323Inline asms also support using non-standard assembly dialects. The
2324assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2325the inline asm is using the Intel dialect. Currently, ATT and Intel are
2326the only supported dialects. An example is:
2327
2328.. code-block:: llvm
2329
2330 call void asm inteldialect "eieio", ""()
2331
2332If multiple keywords appear the '``sideeffect``' keyword must come
2333first, the '``alignstack``' keyword second and the '``inteldialect``'
2334keyword last.
2335
2336Inline Asm Metadata
2337^^^^^^^^^^^^^^^^^^^
2338
2339The call instructions that wrap inline asm nodes may have a
2340"``!srcloc``" MDNode attached to it that contains a list of constant
2341integers. If present, the code generator will use the integer as the
2342location cookie value when report errors through the ``LLVMContext``
2343error reporting mechanisms. This allows a front-end to correlate backend
2344errors that occur with inline asm back to the source code that produced
2345it. For example:
2346
2347.. code-block:: llvm
2348
2349 call void asm sideeffect "something bad", ""(), !srcloc !42
2350 ...
2351 !42 = !{ i32 1234567 }
2352
2353It is up to the front-end to make sense of the magic numbers it places
2354in the IR. If the MDNode contains multiple constants, the code generator
2355will use the one that corresponds to the line of the asm that the error
2356occurs on.
2357
2358.. _metadata:
2359
2360Metadata Nodes and Metadata Strings
2361-----------------------------------
2362
2363LLVM IR allows metadata to be attached to instructions in the program
2364that can convey extra information about the code to the optimizers and
2365code generator. One example application of metadata is source-level
2366debug information. There are two metadata primitives: strings and nodes.
2367All metadata has the ``metadata`` type and is identified in syntax by a
2368preceding exclamation point ('``!``').
2369
2370A metadata string is a string surrounded by double quotes. It can
2371contain any character by escaping non-printable characters with
2372"``\xx``" where "``xx``" is the two digit hex code. For example:
2373"``!"test\00"``".
2374
2375Metadata nodes are represented with notation similar to structure
2376constants (a comma separated list of elements, surrounded by braces and
2377preceded by an exclamation point). Metadata nodes can have any values as
2378their operand. For example:
2379
2380.. code-block:: llvm
2381
2382 !{ metadata !"test\00", i32 10}
2383
2384A :ref:`named metadata <namedmetadatastructure>` is a collection of
2385metadata nodes, which can be looked up in the module symbol table. For
2386example:
2387
2388.. code-block:: llvm
2389
2390 !foo = metadata !{!4, !3}
2391
2392Metadata can be used as function arguments. Here ``llvm.dbg.value``
2393function is using two metadata arguments:
2394
2395.. code-block:: llvm
2396
2397 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2398
2399Metadata can be attached with an instruction. Here metadata ``!21`` is
2400attached to the ``add`` instruction using the ``!dbg`` identifier:
2401
2402.. code-block:: llvm
2403
2404 %indvar.next = add i64 %indvar, 1, !dbg !21
2405
2406More information about specific metadata nodes recognized by the
2407optimizers and code generator is found below.
2408
2409'``tbaa``' Metadata
2410^^^^^^^^^^^^^^^^^^^
2411
2412In LLVM IR, memory does not have types, so LLVM's own type system is not
2413suitable for doing TBAA. Instead, metadata is added to the IR to
2414describe a type system of a higher level language. This can be used to
2415implement typical C/C++ TBAA, but it can also be used to implement
2416custom alias analysis behavior for other languages.
2417
2418The current metadata format is very simple. TBAA metadata nodes have up
2419to three fields, e.g.:
2420
2421.. code-block:: llvm
2422
2423 !0 = metadata !{ metadata !"an example type tree" }
2424 !1 = metadata !{ metadata !"int", metadata !0 }
2425 !2 = metadata !{ metadata !"float", metadata !0 }
2426 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2427
2428The first field is an identity field. It can be any value, usually a
2429metadata string, which uniquely identifies the type. The most important
2430name in the tree is the name of the root node. Two trees with different
2431root node names are entirely disjoint, even if they have leaves with
2432common names.
2433
2434The second field identifies the type's parent node in the tree, or is
2435null or omitted for a root node. A type is considered to alias all of
2436its descendants and all of its ancestors in the tree. Also, a type is
2437considered to alias all types in other trees, so that bitcode produced
2438from multiple front-ends is handled conservatively.
2439
2440If the third field is present, it's an integer which if equal to 1
2441indicates that the type is "constant" (meaning
2442``pointsToConstantMemory`` should return true; see `other useful
2443AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2444
2445'``tbaa.struct``' Metadata
2446^^^^^^^^^^^^^^^^^^^^^^^^^^
2447
2448The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2449aggregate assignment operations in C and similar languages, however it
2450is defined to copy a contiguous region of memory, which is more than
2451strictly necessary for aggregate types which contain holes due to
2452padding. Also, it doesn't contain any TBAA information about the fields
2453of the aggregate.
2454
2455``!tbaa.struct`` metadata can describe which memory subregions in a
2456memcpy are padding and what the TBAA tags of the struct are.
2457
2458The current metadata format is very simple. ``!tbaa.struct`` metadata
2459nodes are a list of operands which are in conceptual groups of three.
2460For each group of three, the first operand gives the byte offset of a
2461field in bytes, the second gives its size in bytes, and the third gives
2462its tbaa tag. e.g.:
2463
2464.. code-block:: llvm
2465
2466 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2467
2468This describes a struct with two fields. The first is at offset 0 bytes
2469with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2470and has size 4 bytes and has tbaa tag !2.
2471
2472Note that the fields need not be contiguous. In this example, there is a
24734 byte gap between the two fields. This gap represents padding which
2474does not carry useful data and need not be preserved.
2475
2476'``fpmath``' Metadata
2477^^^^^^^^^^^^^^^^^^^^^
2478
2479``fpmath`` metadata may be attached to any instruction of floating point
2480type. It can be used to express the maximum acceptable error in the
2481result of that instruction, in ULPs, thus potentially allowing the
2482compiler to use a more efficient but less accurate method of computing
2483it. ULP is defined as follows:
2484
2485 If ``x`` is a real number that lies between two finite consecutive
2486 floating-point numbers ``a`` and ``b``, without being equal to one
2487 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2488 distance between the two non-equal finite floating-point numbers
2489 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2490
2491The metadata node shall consist of a single positive floating point
2492number representing the maximum relative error, for example:
2493
2494.. code-block:: llvm
2495
2496 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2497
2498'``range``' Metadata
2499^^^^^^^^^^^^^^^^^^^^
2500
2501``range`` metadata may be attached only to loads of integer types. It
2502expresses the possible ranges the loaded value is in. The ranges are
2503represented with a flattened list of integers. The loaded value is known
2504to be in the union of the ranges defined by each consecutive pair. Each
2505pair has the following properties:
2506
2507- The type must match the type loaded by the instruction.
2508- The pair ``a,b`` represents the range ``[a,b)``.
2509- Both ``a`` and ``b`` are constants.
2510- The range is allowed to wrap.
2511- The range should not represent the full or empty set. That is,
2512 ``a!=b``.
2513
2514In addition, the pairs must be in signed order of the lower bound and
2515they must be non-contiguous.
2516
2517Examples:
2518
2519.. code-block:: llvm
2520
2521 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2522 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2523 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2524 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2525 ...
2526 !0 = metadata !{ i8 0, i8 2 }
2527 !1 = metadata !{ i8 255, i8 2 }
2528 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2529 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2530
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002531'``llvm.loop``'
2532^^^^^^^^^^^^^^^
2533
2534It is sometimes useful to attach information to loop constructs. Currently,
2535loop metadata is implemented as metadata attached to the branch instruction
2536in the loop latch block. This type of metadata refer to a metadata node that is
2537guaranteed to be separate for each loop. The loop-level metadata is prefixed
2538with ``llvm.loop``.
2539
2540The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002541itself to avoid merging it with any other identifier metadata, e.g.,
2542during module linkage or function inlining. That is, each loop should refer
2543to their own identification metadata even if they reside in separate functions.
2544The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002545constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002546
2547.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002548
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002549 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002550 !1 = metadata !{ metadata !1 }
2551
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002552
2553'``llvm.loop.parallel``' Metadata
2554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2555
2556This loop metadata can be used to communicate that a loop should be considered
2557a parallel loop. The semantics of parallel loops in this case is the one
2558with the strongest cross-iteration instruction ordering freedom: the
2559iterations in the loop can be considered completely independent of each
2560other (also known as embarrassingly parallel loops).
2561
2562This metadata can originate from a programming language with parallel loop
2563constructs. In such a case it is completely the programmer's responsibility
2564to ensure the instructions from the different iterations of the loop can be
2565executed in an arbitrary order, in parallel, or intertwined. No loop-carried
2566dependency checking at all must be expected from the compiler.
2567
2568In order to fulfill the LLVM requirement for metadata to be safely ignored,
2569it is important to ensure that a parallel loop is converted to
2570a sequential loop in case an optimization (agnostic of the parallel loop
2571semantics) converts the loop back to such. This happens when new memory
2572accesses that do not fulfill the requirement of free ordering across iterations
2573are added to the loop. Therefore, this metadata is required, but not
2574sufficient, to consider the loop at hand a parallel loop. For a loop
2575to be parallel, all its memory accessing instructions need to be
2576marked with the ``llvm.mem.parallel_loop_access`` metadata that refer
2577to the same loop identifier metadata that identify the loop at hand.
2578
2579'``llvm.mem``'
2580^^^^^^^^^^^^^^^
2581
2582Metadata types used to annotate memory accesses with information helpful
2583for optimizations are prefixed with ``llvm.mem``.
2584
2585'``llvm.mem.parallel_loop_access``' Metadata
2586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2587
2588For a loop to be parallel, in addition to using
2589the ``llvm.loop.parallel`` metadata to mark the loop latch branch instruction,
2590also all of the memory accessing instructions in the loop body need to be
2591marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2592is at least one memory accessing instruction not marked with the metadata,
2593the loop, despite it possibly using the ``llvm.loop.parallel`` metadata,
2594must be considered a sequential loop. This causes parallel loops to be
2595converted to sequential loops due to optimization passes that are unaware of
2596the parallel semantics and that insert new memory instructions to the loop
2597body.
2598
2599Example of a loop that is considered parallel due to its correct use of
2600both ``llvm.loop.parallel`` and ``llvm.mem.parallel_loop_access``
2601metadata types that refer to the same loop identifier metadata.
2602
2603.. code-block:: llvm
2604
2605 for.body:
2606 ...
2607 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2608 ...
2609 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2610 ...
2611 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop.parallel !0
2612
2613 for.end:
2614 ...
2615 !0 = metadata !{ metadata !0 }
2616
2617It is also possible to have nested parallel loops. In that case the
2618memory accesses refer to a list of loop identifier metadata nodes instead of
2619the loop identifier metadata node directly:
2620
2621.. code-block:: llvm
2622
2623 outer.for.body:
2624 ...
2625
2626 inner.for.body:
2627 ...
2628 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2629 ...
2630 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2631 ...
2632 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop.parallel !1
2633
2634 inner.for.end:
2635 ...
2636 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2637 ...
2638 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2639 ...
2640 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop.parallel !2
2641
2642 outer.for.end: ; preds = %for.body
2643 ...
2644 !0 = metadata !{ metadata !1, metadata !2 } ; a list of parallel loop identifiers
2645 !1 = metadata !{ metadata !1 } ; an identifier for the inner parallel loop
2646 !2 = metadata !{ metadata !2 } ; an identifier for the outer parallel loop
2647
2648
Sean Silvaf722b002012-12-07 10:36:55 +00002649Module Flags Metadata
2650=====================
2651
2652Information about the module as a whole is difficult to convey to LLVM's
2653subsystems. The LLVM IR isn't sufficient to transmit this information.
2654The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002655this. These flags are in the form of key / value pairs --- much like a
2656dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002657look it up.
2658
2659The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2660Each triplet has the following form:
2661
2662- The first element is a *behavior* flag, which specifies the behavior
2663 when two (or more) modules are merged together, and it encounters two
2664 (or more) metadata with the same ID. The supported behaviors are
2665 described below.
2666- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002667 metadata. Each module may only have one flag entry for each unique ID (not
2668 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002669- The third element is the value of the flag.
2670
2671When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002672``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2673each unique metadata ID string, there will be exactly one entry in the merged
2674modules ``llvm.module.flags`` metadata table, and the value for that entry will
2675be determined by the merge behavior flag, as described below. The only exception
2676is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002677
2678The following behaviors are supported:
2679
2680.. list-table::
2681 :header-rows: 1
2682 :widths: 10 90
2683
2684 * - Value
2685 - Behavior
2686
2687 * - 1
2688 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002689 Emits an error if two values disagree, otherwise the resulting value
2690 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002691
2692 * - 2
2693 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002694 Emits a warning if two values disagree. The result value will be the
2695 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002696
2697 * - 3
2698 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002699 Adds a requirement that another module flag be present and have a
2700 specified value after linking is performed. The value must be a
2701 metadata pair, where the first element of the pair is the ID of the
2702 module flag to be restricted, and the second element of the pair is
2703 the value the module flag should be restricted to. This behavior can
2704 be used to restrict the allowable results (via triggering of an
2705 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002706
2707 * - 4
2708 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002709 Uses the specified value, regardless of the behavior or value of the
2710 other module. If both modules specify **Override**, but the values
2711 differ, an error will be emitted.
2712
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002713 * - 5
2714 - **Append**
2715 Appends the two values, which are required to be metadata nodes.
2716
2717 * - 6
2718 - **AppendUnique**
2719 Appends the two values, which are required to be metadata
2720 nodes. However, duplicate entries in the second list are dropped
2721 during the append operation.
2722
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002723It is an error for a particular unique flag ID to have multiple behaviors,
2724except in the case of **Require** (which adds restrictions on another metadata
2725value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002726
2727An example of module flags:
2728
2729.. code-block:: llvm
2730
2731 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2732 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2733 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2734 !3 = metadata !{ i32 3, metadata !"qux",
2735 metadata !{
2736 metadata !"foo", i32 1
2737 }
2738 }
2739 !llvm.module.flags = !{ !0, !1, !2, !3 }
2740
2741- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2742 if two or more ``!"foo"`` flags are seen is to emit an error if their
2743 values are not equal.
2744
2745- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2746 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002747 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002748
2749- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2750 behavior if two or more ``!"qux"`` flags are seen is to emit a
2751 warning if their values are not equal.
2752
2753- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2754
2755 ::
2756
2757 metadata !{ metadata !"foo", i32 1 }
2758
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002759 The behavior is to emit an error if the ``llvm.module.flags`` does not
2760 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2761 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002762
2763Objective-C Garbage Collection Module Flags Metadata
2764----------------------------------------------------
2765
2766On the Mach-O platform, Objective-C stores metadata about garbage
2767collection in a special section called "image info". The metadata
2768consists of a version number and a bitmask specifying what types of
2769garbage collection are supported (if any) by the file. If two or more
2770modules are linked together their garbage collection metadata needs to
2771be merged rather than appended together.
2772
2773The Objective-C garbage collection module flags metadata consists of the
2774following key-value pairs:
2775
2776.. list-table::
2777 :header-rows: 1
2778 :widths: 30 70
2779
2780 * - Key
2781 - Value
2782
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002783 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002784 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002785
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002786 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002787 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002788 always 0.
2789
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002790 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002791 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002792 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2793 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2794 Objective-C ABI version 2.
2795
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002796 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002797 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002798 not. Valid values are 0, for no garbage collection, and 2, for garbage
2799 collection supported.
2800
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002801 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002802 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002803 If present, its value must be 6. This flag requires that the
2804 ``Objective-C Garbage Collection`` flag have the value 2.
2805
2806Some important flag interactions:
2807
2808- If a module with ``Objective-C Garbage Collection`` set to 0 is
2809 merged with a module with ``Objective-C Garbage Collection`` set to
2810 2, then the resulting module has the
2811 ``Objective-C Garbage Collection`` flag set to 0.
2812- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2813 merged with a module with ``Objective-C GC Only`` set to 6.
2814
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002815Automatic Linker Flags Module Flags Metadata
2816--------------------------------------------
2817
2818Some targets support embedding flags to the linker inside individual object
2819files. Typically this is used in conjunction with language extensions which
2820allow source files to explicitly declare the libraries they depend on, and have
2821these automatically be transmitted to the linker via object files.
2822
2823These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002824using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002825to be ``AppendUnique``, and the value for the key is expected to be a metadata
2826node which should be a list of other metadata nodes, each of which should be a
2827list of metadata strings defining linker options.
2828
2829For example, the following metadata section specifies two separate sets of
2830linker options, presumably to link against ``libz`` and the ``Cocoa``
2831framework::
2832
Michael Liao2faa0f32013-03-06 18:24:34 +00002833 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002834 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002835 metadata !{ metadata !"-lz" },
2836 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002837 !llvm.module.flags = !{ !0 }
2838
2839The metadata encoding as lists of lists of options, as opposed to a collapsed
2840list of options, is chosen so that the IR encoding can use multiple option
2841strings to specify e.g., a single library, while still having that specifier be
2842preserved as an atomic element that can be recognized by a target specific
2843assembly writer or object file emitter.
2844
2845Each individual option is required to be either a valid option for the target's
2846linker, or an option that is reserved by the target specific assembly writer or
2847object file emitter. No other aspect of these options is defined by the IR.
2848
Sean Silvaf722b002012-12-07 10:36:55 +00002849Intrinsic Global Variables
2850==========================
2851
2852LLVM has a number of "magic" global variables that contain data that
2853affect code generation or other IR semantics. These are documented here.
2854All globals of this sort should have a section specified as
2855"``llvm.metadata``". This section and all globals that start with
2856"``llvm.``" are reserved for use by LLVM.
2857
2858The '``llvm.used``' Global Variable
2859-----------------------------------
2860
2861The ``@llvm.used`` global is an array with i8\* element type which has
2862:ref:`appending linkage <linkage_appending>`. This array contains a list of
2863pointers to global variables and functions which may optionally have a
2864pointer cast formed of bitcast or getelementptr. For example, a legal
2865use of it is:
2866
2867.. code-block:: llvm
2868
2869 @X = global i8 4
2870 @Y = global i32 123
2871
2872 @llvm.used = appending global [2 x i8*] [
2873 i8* @X,
2874 i8* bitcast (i32* @Y to i8*)
2875 ], section "llvm.metadata"
2876
2877If a global variable appears in the ``@llvm.used`` list, then the
2878compiler, assembler, and linker are required to treat the symbol as if
2879there is a reference to the global that it cannot see. For example, if a
2880variable has internal linkage and no references other than that from the
2881``@llvm.used`` list, it cannot be deleted. This is commonly used to
2882represent references from inline asms and other things the compiler
2883cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2884
2885On some targets, the code generator must emit a directive to the
2886assembler or object file to prevent the assembler and linker from
2887molesting the symbol.
2888
2889The '``llvm.compiler.used``' Global Variable
2890--------------------------------------------
2891
2892The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2893directive, except that it only prevents the compiler from touching the
2894symbol. On targets that support it, this allows an intelligent linker to
2895optimize references to the symbol without being impeded as it would be
2896by ``@llvm.used``.
2897
2898This is a rare construct that should only be used in rare circumstances,
2899and should not be exposed to source languages.
2900
2901The '``llvm.global_ctors``' Global Variable
2902-------------------------------------------
2903
2904.. code-block:: llvm
2905
2906 %0 = type { i32, void ()* }
2907 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2908
2909The ``@llvm.global_ctors`` array contains a list of constructor
2910functions and associated priorities. The functions referenced by this
2911array will be called in ascending order of priority (i.e. lowest first)
2912when the module is loaded. The order of functions with the same priority
2913is not defined.
2914
2915The '``llvm.global_dtors``' Global Variable
2916-------------------------------------------
2917
2918.. code-block:: llvm
2919
2920 %0 = type { i32, void ()* }
2921 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2922
2923The ``@llvm.global_dtors`` array contains a list of destructor functions
2924and associated priorities. The functions referenced by this array will
2925be called in descending order of priority (i.e. highest first) when the
2926module is loaded. The order of functions with the same priority is not
2927defined.
2928
2929Instruction Reference
2930=====================
2931
2932The LLVM instruction set consists of several different classifications
2933of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2934instructions <binaryops>`, :ref:`bitwise binary
2935instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2936:ref:`other instructions <otherops>`.
2937
2938.. _terminators:
2939
2940Terminator Instructions
2941-----------------------
2942
2943As mentioned :ref:`previously <functionstructure>`, every basic block in a
2944program ends with a "Terminator" instruction, which indicates which
2945block should be executed after the current block is finished. These
2946terminator instructions typically yield a '``void``' value: they produce
2947control flow, not values (the one exception being the
2948':ref:`invoke <i_invoke>`' instruction).
2949
2950The terminator instructions are: ':ref:`ret <i_ret>`',
2951':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2952':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2953':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2954
2955.. _i_ret:
2956
2957'``ret``' Instruction
2958^^^^^^^^^^^^^^^^^^^^^
2959
2960Syntax:
2961"""""""
2962
2963::
2964
2965 ret <type> <value> ; Return a value from a non-void function
2966 ret void ; Return from void function
2967
2968Overview:
2969"""""""""
2970
2971The '``ret``' instruction is used to return control flow (and optionally
2972a value) from a function back to the caller.
2973
2974There are two forms of the '``ret``' instruction: one that returns a
2975value and then causes control flow, and one that just causes control
2976flow to occur.
2977
2978Arguments:
2979""""""""""
2980
2981The '``ret``' instruction optionally accepts a single argument, the
2982return value. The type of the return value must be a ':ref:`first
2983class <t_firstclass>`' type.
2984
2985A function is not :ref:`well formed <wellformed>` if it it has a non-void
2986return type and contains a '``ret``' instruction with no return value or
2987a return value with a type that does not match its type, or if it has a
2988void return type and contains a '``ret``' instruction with a return
2989value.
2990
2991Semantics:
2992""""""""""
2993
2994When the '``ret``' instruction is executed, control flow returns back to
2995the calling function's context. If the caller is a
2996":ref:`call <i_call>`" instruction, execution continues at the
2997instruction after the call. If the caller was an
2998":ref:`invoke <i_invoke>`" instruction, execution continues at the
2999beginning of the "normal" destination block. If the instruction returns
3000a value, that value shall set the call or invoke instruction's return
3001value.
3002
3003Example:
3004""""""""
3005
3006.. code-block:: llvm
3007
3008 ret i32 5 ; Return an integer value of 5
3009 ret void ; Return from a void function
3010 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3011
3012.. _i_br:
3013
3014'``br``' Instruction
3015^^^^^^^^^^^^^^^^^^^^
3016
3017Syntax:
3018"""""""
3019
3020::
3021
3022 br i1 <cond>, label <iftrue>, label <iffalse>
3023 br label <dest> ; Unconditional branch
3024
3025Overview:
3026"""""""""
3027
3028The '``br``' instruction is used to cause control flow to transfer to a
3029different basic block in the current function. There are two forms of
3030this instruction, corresponding to a conditional branch and an
3031unconditional branch.
3032
3033Arguments:
3034""""""""""
3035
3036The conditional branch form of the '``br``' instruction takes a single
3037'``i1``' value and two '``label``' values. The unconditional form of the
3038'``br``' instruction takes a single '``label``' value as a target.
3039
3040Semantics:
3041""""""""""
3042
3043Upon execution of a conditional '``br``' instruction, the '``i1``'
3044argument is evaluated. If the value is ``true``, control flows to the
3045'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3046to the '``iffalse``' ``label`` argument.
3047
3048Example:
3049""""""""
3050
3051.. code-block:: llvm
3052
3053 Test:
3054 %cond = icmp eq i32 %a, %b
3055 br i1 %cond, label %IfEqual, label %IfUnequal
3056 IfEqual:
3057 ret i32 1
3058 IfUnequal:
3059 ret i32 0
3060
3061.. _i_switch:
3062
3063'``switch``' Instruction
3064^^^^^^^^^^^^^^^^^^^^^^^^
3065
3066Syntax:
3067"""""""
3068
3069::
3070
3071 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3072
3073Overview:
3074"""""""""
3075
3076The '``switch``' instruction is used to transfer control flow to one of
3077several different places. It is a generalization of the '``br``'
3078instruction, allowing a branch to occur to one of many possible
3079destinations.
3080
3081Arguments:
3082""""""""""
3083
3084The '``switch``' instruction uses three parameters: an integer
3085comparison value '``value``', a default '``label``' destination, and an
3086array of pairs of comparison value constants and '``label``'s. The table
3087is not allowed to contain duplicate constant entries.
3088
3089Semantics:
3090""""""""""
3091
3092The ``switch`` instruction specifies a table of values and destinations.
3093When the '``switch``' instruction is executed, this table is searched
3094for the given value. If the value is found, control flow is transferred
3095to the corresponding destination; otherwise, control flow is transferred
3096to the default destination.
3097
3098Implementation:
3099"""""""""""""""
3100
3101Depending on properties of the target machine and the particular
3102``switch`` instruction, this instruction may be code generated in
3103different ways. For example, it could be generated as a series of
3104chained conditional branches or with a lookup table.
3105
3106Example:
3107""""""""
3108
3109.. code-block:: llvm
3110
3111 ; Emulate a conditional br instruction
3112 %Val = zext i1 %value to i32
3113 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3114
3115 ; Emulate an unconditional br instruction
3116 switch i32 0, label %dest [ ]
3117
3118 ; Implement a jump table:
3119 switch i32 %val, label %otherwise [ i32 0, label %onzero
3120 i32 1, label %onone
3121 i32 2, label %ontwo ]
3122
3123.. _i_indirectbr:
3124
3125'``indirectbr``' Instruction
3126^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3127
3128Syntax:
3129"""""""
3130
3131::
3132
3133 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3134
3135Overview:
3136"""""""""
3137
3138The '``indirectbr``' instruction implements an indirect branch to a
3139label within the current function, whose address is specified by
3140"``address``". Address must be derived from a
3141:ref:`blockaddress <blockaddress>` constant.
3142
3143Arguments:
3144""""""""""
3145
3146The '``address``' argument is the address of the label to jump to. The
3147rest of the arguments indicate the full set of possible destinations
3148that the address may point to. Blocks are allowed to occur multiple
3149times in the destination list, though this isn't particularly useful.
3150
3151This destination list is required so that dataflow analysis has an
3152accurate understanding of the CFG.
3153
3154Semantics:
3155""""""""""
3156
3157Control transfers to the block specified in the address argument. All
3158possible destination blocks must be listed in the label list, otherwise
3159this instruction has undefined behavior. This implies that jumps to
3160labels defined in other functions have undefined behavior as well.
3161
3162Implementation:
3163"""""""""""""""
3164
3165This is typically implemented with a jump through a register.
3166
3167Example:
3168""""""""
3169
3170.. code-block:: llvm
3171
3172 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3173
3174.. _i_invoke:
3175
3176'``invoke``' Instruction
3177^^^^^^^^^^^^^^^^^^^^^^^^
3178
3179Syntax:
3180"""""""
3181
3182::
3183
3184 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3185 to label <normal label> unwind label <exception label>
3186
3187Overview:
3188"""""""""
3189
3190The '``invoke``' instruction causes control to transfer to a specified
3191function, with the possibility of control flow transfer to either the
3192'``normal``' label or the '``exception``' label. If the callee function
3193returns with the "``ret``" instruction, control flow will return to the
3194"normal" label. If the callee (or any indirect callees) returns via the
3195":ref:`resume <i_resume>`" instruction or other exception handling
3196mechanism, control is interrupted and continued at the dynamically
3197nearest "exception" label.
3198
3199The '``exception``' label is a `landing
3200pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3201'``exception``' label is required to have the
3202":ref:`landingpad <i_landingpad>`" instruction, which contains the
3203information about the behavior of the program after unwinding happens,
3204as its first non-PHI instruction. The restrictions on the
3205"``landingpad``" instruction's tightly couples it to the "``invoke``"
3206instruction, so that the important information contained within the
3207"``landingpad``" instruction can't be lost through normal code motion.
3208
3209Arguments:
3210""""""""""
3211
3212This instruction requires several arguments:
3213
3214#. The optional "cconv" marker indicates which :ref:`calling
3215 convention <callingconv>` the call should use. If none is
3216 specified, the call defaults to using C calling conventions.
3217#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3218 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3219 are valid here.
3220#. '``ptr to function ty``': shall be the signature of the pointer to
3221 function value being invoked. In most cases, this is a direct
3222 function invocation, but indirect ``invoke``'s are just as possible,
3223 branching off an arbitrary pointer to function value.
3224#. '``function ptr val``': An LLVM value containing a pointer to a
3225 function to be invoked.
3226#. '``function args``': argument list whose types match the function
3227 signature argument types and parameter attributes. All arguments must
3228 be of :ref:`first class <t_firstclass>` type. If the function signature
3229 indicates the function accepts a variable number of arguments, the
3230 extra arguments can be specified.
3231#. '``normal label``': the label reached when the called function
3232 executes a '``ret``' instruction.
3233#. '``exception label``': the label reached when a callee returns via
3234 the :ref:`resume <i_resume>` instruction or other exception handling
3235 mechanism.
3236#. The optional :ref:`function attributes <fnattrs>` list. Only
3237 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3238 attributes are valid here.
3239
3240Semantics:
3241""""""""""
3242
3243This instruction is designed to operate as a standard '``call``'
3244instruction in most regards. The primary difference is that it
3245establishes an association with a label, which is used by the runtime
3246library to unwind the stack.
3247
3248This instruction is used in languages with destructors to ensure that
3249proper cleanup is performed in the case of either a ``longjmp`` or a
3250thrown exception. Additionally, this is important for implementation of
3251'``catch``' clauses in high-level languages that support them.
3252
3253For the purposes of the SSA form, the definition of the value returned
3254by the '``invoke``' instruction is deemed to occur on the edge from the
3255current block to the "normal" label. If the callee unwinds then no
3256return value is available.
3257
3258Example:
3259""""""""
3260
3261.. code-block:: llvm
3262
3263 %retval = invoke i32 @Test(i32 15) to label %Continue
3264 unwind label %TestCleanup ; {i32}:retval set
3265 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3266 unwind label %TestCleanup ; {i32}:retval set
3267
3268.. _i_resume:
3269
3270'``resume``' Instruction
3271^^^^^^^^^^^^^^^^^^^^^^^^
3272
3273Syntax:
3274"""""""
3275
3276::
3277
3278 resume <type> <value>
3279
3280Overview:
3281"""""""""
3282
3283The '``resume``' instruction is a terminator instruction that has no
3284successors.
3285
3286Arguments:
3287""""""""""
3288
3289The '``resume``' instruction requires one argument, which must have the
3290same type as the result of any '``landingpad``' instruction in the same
3291function.
3292
3293Semantics:
3294""""""""""
3295
3296The '``resume``' instruction resumes propagation of an existing
3297(in-flight) exception whose unwinding was interrupted with a
3298:ref:`landingpad <i_landingpad>` instruction.
3299
3300Example:
3301""""""""
3302
3303.. code-block:: llvm
3304
3305 resume { i8*, i32 } %exn
3306
3307.. _i_unreachable:
3308
3309'``unreachable``' Instruction
3310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3311
3312Syntax:
3313"""""""
3314
3315::
3316
3317 unreachable
3318
3319Overview:
3320"""""""""
3321
3322The '``unreachable``' instruction has no defined semantics. This
3323instruction is used to inform the optimizer that a particular portion of
3324the code is not reachable. This can be used to indicate that the code
3325after a no-return function cannot be reached, and other facts.
3326
3327Semantics:
3328""""""""""
3329
3330The '``unreachable``' instruction has no defined semantics.
3331
3332.. _binaryops:
3333
3334Binary Operations
3335-----------------
3336
3337Binary operators are used to do most of the computation in a program.
3338They require two operands of the same type, execute an operation on
3339them, and produce a single value. The operands might represent multiple
3340data, as is the case with the :ref:`vector <t_vector>` data type. The
3341result value has the same type as its operands.
3342
3343There are several different binary operators:
3344
3345.. _i_add:
3346
3347'``add``' Instruction
3348^^^^^^^^^^^^^^^^^^^^^
3349
3350Syntax:
3351"""""""
3352
3353::
3354
3355 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3356 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3357 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3358 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3359
3360Overview:
3361"""""""""
3362
3363The '``add``' instruction returns the sum of its two operands.
3364
3365Arguments:
3366""""""""""
3367
3368The two arguments to the '``add``' instruction must be
3369:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3370arguments must have identical types.
3371
3372Semantics:
3373""""""""""
3374
3375The value produced is the integer sum of the two operands.
3376
3377If the sum has unsigned overflow, the result returned is the
3378mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3379the result.
3380
3381Because LLVM integers use a two's complement representation, this
3382instruction is appropriate for both signed and unsigned integers.
3383
3384``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3385respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3386result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3387unsigned and/or signed overflow, respectively, occurs.
3388
3389Example:
3390""""""""
3391
3392.. code-block:: llvm
3393
3394 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3395
3396.. _i_fadd:
3397
3398'``fadd``' Instruction
3399^^^^^^^^^^^^^^^^^^^^^^
3400
3401Syntax:
3402"""""""
3403
3404::
3405
3406 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3407
3408Overview:
3409"""""""""
3410
3411The '``fadd``' instruction returns the sum of its two operands.
3412
3413Arguments:
3414""""""""""
3415
3416The two arguments to the '``fadd``' instruction must be :ref:`floating
3417point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3418Both arguments must have identical types.
3419
3420Semantics:
3421""""""""""
3422
3423The value produced is the floating point sum of the two operands. This
3424instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3425which are optimization hints to enable otherwise unsafe floating point
3426optimizations:
3427
3428Example:
3429""""""""
3430
3431.. code-block:: llvm
3432
3433 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3434
3435'``sub``' Instruction
3436^^^^^^^^^^^^^^^^^^^^^
3437
3438Syntax:
3439"""""""
3440
3441::
3442
3443 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3444 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3445 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3446 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3447
3448Overview:
3449"""""""""
3450
3451The '``sub``' instruction returns the difference of its two operands.
3452
3453Note that the '``sub``' instruction is used to represent the '``neg``'
3454instruction present in most other intermediate representations.
3455
3456Arguments:
3457""""""""""
3458
3459The two arguments to the '``sub``' instruction must be
3460:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3461arguments must have identical types.
3462
3463Semantics:
3464""""""""""
3465
3466The value produced is the integer difference of the two operands.
3467
3468If the difference has unsigned overflow, the result returned is the
3469mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3470the result.
3471
3472Because LLVM integers use a two's complement representation, this
3473instruction is appropriate for both signed and unsigned integers.
3474
3475``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3476respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3477result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3478unsigned and/or signed overflow, respectively, occurs.
3479
3480Example:
3481""""""""
3482
3483.. code-block:: llvm
3484
3485 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3486 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3487
3488.. _i_fsub:
3489
3490'``fsub``' Instruction
3491^^^^^^^^^^^^^^^^^^^^^^
3492
3493Syntax:
3494"""""""
3495
3496::
3497
3498 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3499
3500Overview:
3501"""""""""
3502
3503The '``fsub``' instruction returns the difference of its two operands.
3504
3505Note that the '``fsub``' instruction is used to represent the '``fneg``'
3506instruction present in most other intermediate representations.
3507
3508Arguments:
3509""""""""""
3510
3511The two arguments to the '``fsub``' instruction must be :ref:`floating
3512point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3513Both arguments must have identical types.
3514
3515Semantics:
3516""""""""""
3517
3518The value produced is the floating point difference of the two operands.
3519This instruction can also take any number of :ref:`fast-math
3520flags <fastmath>`, which are optimization hints to enable otherwise
3521unsafe floating point optimizations:
3522
3523Example:
3524""""""""
3525
3526.. code-block:: llvm
3527
3528 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3529 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3530
3531'``mul``' Instruction
3532^^^^^^^^^^^^^^^^^^^^^
3533
3534Syntax:
3535"""""""
3536
3537::
3538
3539 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3540 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3541 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3542 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3543
3544Overview:
3545"""""""""
3546
3547The '``mul``' instruction returns the product of its two operands.
3548
3549Arguments:
3550""""""""""
3551
3552The two arguments to the '``mul``' instruction must be
3553:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3554arguments must have identical types.
3555
3556Semantics:
3557""""""""""
3558
3559The value produced is the integer product of the two operands.
3560
3561If the result of the multiplication has unsigned overflow, the result
3562returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3563bit width of the result.
3564
3565Because LLVM integers use a two's complement representation, and the
3566result is the same width as the operands, this instruction returns the
3567correct result for both signed and unsigned integers. If a full product
3568(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3569sign-extended or zero-extended as appropriate to the width of the full
3570product.
3571
3572``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3573respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3574result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3575unsigned and/or signed overflow, respectively, occurs.
3576
3577Example:
3578""""""""
3579
3580.. code-block:: llvm
3581
3582 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3583
3584.. _i_fmul:
3585
3586'``fmul``' Instruction
3587^^^^^^^^^^^^^^^^^^^^^^
3588
3589Syntax:
3590"""""""
3591
3592::
3593
3594 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3595
3596Overview:
3597"""""""""
3598
3599The '``fmul``' instruction returns the product of its two operands.
3600
3601Arguments:
3602""""""""""
3603
3604The two arguments to the '``fmul``' instruction must be :ref:`floating
3605point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3606Both arguments must have identical types.
3607
3608Semantics:
3609""""""""""
3610
3611The value produced is the floating point product of the two operands.
3612This instruction can also take any number of :ref:`fast-math
3613flags <fastmath>`, which are optimization hints to enable otherwise
3614unsafe floating point optimizations:
3615
3616Example:
3617""""""""
3618
3619.. code-block:: llvm
3620
3621 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3622
3623'``udiv``' Instruction
3624^^^^^^^^^^^^^^^^^^^^^^
3625
3626Syntax:
3627"""""""
3628
3629::
3630
3631 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3632 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3633
3634Overview:
3635"""""""""
3636
3637The '``udiv``' instruction returns the quotient of its two operands.
3638
3639Arguments:
3640""""""""""
3641
3642The two arguments to the '``udiv``' instruction must be
3643:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3644arguments must have identical types.
3645
3646Semantics:
3647""""""""""
3648
3649The value produced is the unsigned integer quotient of the two operands.
3650
3651Note that unsigned integer division and signed integer division are
3652distinct operations; for signed integer division, use '``sdiv``'.
3653
3654Division by zero leads to undefined behavior.
3655
3656If the ``exact`` keyword is present, the result value of the ``udiv`` is
3657a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3658such, "((a udiv exact b) mul b) == a").
3659
3660Example:
3661""""""""
3662
3663.. code-block:: llvm
3664
3665 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3666
3667'``sdiv``' Instruction
3668^^^^^^^^^^^^^^^^^^^^^^
3669
3670Syntax:
3671"""""""
3672
3673::
3674
3675 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3676 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3677
3678Overview:
3679"""""""""
3680
3681The '``sdiv``' instruction returns the quotient of its two operands.
3682
3683Arguments:
3684""""""""""
3685
3686The two arguments to the '``sdiv``' instruction must be
3687:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3688arguments must have identical types.
3689
3690Semantics:
3691""""""""""
3692
3693The value produced is the signed integer quotient of the two operands
3694rounded towards zero.
3695
3696Note that signed integer division and unsigned integer division are
3697distinct operations; for unsigned integer division, use '``udiv``'.
3698
3699Division by zero leads to undefined behavior. Overflow also leads to
3700undefined behavior; this is a rare case, but can occur, for example, by
3701doing a 32-bit division of -2147483648 by -1.
3702
3703If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3704a :ref:`poison value <poisonvalues>` if the result would be rounded.
3705
3706Example:
3707""""""""
3708
3709.. code-block:: llvm
3710
3711 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3712
3713.. _i_fdiv:
3714
3715'``fdiv``' Instruction
3716^^^^^^^^^^^^^^^^^^^^^^
3717
3718Syntax:
3719"""""""
3720
3721::
3722
3723 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3724
3725Overview:
3726"""""""""
3727
3728The '``fdiv``' instruction returns the quotient of its two operands.
3729
3730Arguments:
3731""""""""""
3732
3733The two arguments to the '``fdiv``' instruction must be :ref:`floating
3734point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3735Both arguments must have identical types.
3736
3737Semantics:
3738""""""""""
3739
3740The value produced is the floating point quotient of the two operands.
3741This instruction can also take any number of :ref:`fast-math
3742flags <fastmath>`, which are optimization hints to enable otherwise
3743unsafe floating point optimizations:
3744
3745Example:
3746""""""""
3747
3748.. code-block:: llvm
3749
3750 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3751
3752'``urem``' Instruction
3753^^^^^^^^^^^^^^^^^^^^^^
3754
3755Syntax:
3756"""""""
3757
3758::
3759
3760 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3761
3762Overview:
3763"""""""""
3764
3765The '``urem``' instruction returns the remainder from the unsigned
3766division of its two arguments.
3767
3768Arguments:
3769""""""""""
3770
3771The two arguments to the '``urem``' instruction must be
3772:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3773arguments must have identical types.
3774
3775Semantics:
3776""""""""""
3777
3778This instruction returns the unsigned integer *remainder* of a division.
3779This instruction always performs an unsigned division to get the
3780remainder.
3781
3782Note that unsigned integer remainder and signed integer remainder are
3783distinct operations; for signed integer remainder, use '``srem``'.
3784
3785Taking the remainder of a division by zero leads to undefined behavior.
3786
3787Example:
3788""""""""
3789
3790.. code-block:: llvm
3791
3792 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3793
3794'``srem``' Instruction
3795^^^^^^^^^^^^^^^^^^^^^^
3796
3797Syntax:
3798"""""""
3799
3800::
3801
3802 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3803
3804Overview:
3805"""""""""
3806
3807The '``srem``' instruction returns the remainder from the signed
3808division of its two operands. This instruction can also take
3809:ref:`vector <t_vector>` versions of the values in which case the elements
3810must be integers.
3811
3812Arguments:
3813""""""""""
3814
3815The two arguments to the '``srem``' instruction must be
3816:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3817arguments must have identical types.
3818
3819Semantics:
3820""""""""""
3821
3822This instruction returns the *remainder* of a division (where the result
3823is either zero or has the same sign as the dividend, ``op1``), not the
3824*modulo* operator (where the result is either zero or has the same sign
3825as the divisor, ``op2``) of a value. For more information about the
3826difference, see `The Math
3827Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3828table of how this is implemented in various languages, please see
3829`Wikipedia: modulo
3830operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3831
3832Note that signed integer remainder and unsigned integer remainder are
3833distinct operations; for unsigned integer remainder, use '``urem``'.
3834
3835Taking the remainder of a division by zero leads to undefined behavior.
3836Overflow also leads to undefined behavior; this is a rare case, but can
3837occur, for example, by taking the remainder of a 32-bit division of
3838-2147483648 by -1. (The remainder doesn't actually overflow, but this
3839rule lets srem be implemented using instructions that return both the
3840result of the division and the remainder.)
3841
3842Example:
3843""""""""
3844
3845.. code-block:: llvm
3846
3847 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3848
3849.. _i_frem:
3850
3851'``frem``' Instruction
3852^^^^^^^^^^^^^^^^^^^^^^
3853
3854Syntax:
3855"""""""
3856
3857::
3858
3859 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3860
3861Overview:
3862"""""""""
3863
3864The '``frem``' instruction returns the remainder from the division of
3865its two operands.
3866
3867Arguments:
3868""""""""""
3869
3870The two arguments to the '``frem``' instruction must be :ref:`floating
3871point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3872Both arguments must have identical types.
3873
3874Semantics:
3875""""""""""
3876
3877This instruction returns the *remainder* of a division. The remainder
3878has the same sign as the dividend. This instruction can also take any
3879number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3880to enable otherwise unsafe floating point optimizations:
3881
3882Example:
3883""""""""
3884
3885.. code-block:: llvm
3886
3887 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3888
3889.. _bitwiseops:
3890
3891Bitwise Binary Operations
3892-------------------------
3893
3894Bitwise binary operators are used to do various forms of bit-twiddling
3895in a program. They are generally very efficient instructions and can
3896commonly be strength reduced from other instructions. They require two
3897operands of the same type, execute an operation on them, and produce a
3898single value. The resulting value is the same type as its operands.
3899
3900'``shl``' Instruction
3901^^^^^^^^^^^^^^^^^^^^^
3902
3903Syntax:
3904"""""""
3905
3906::
3907
3908 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3909 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3910 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3911 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3912
3913Overview:
3914"""""""""
3915
3916The '``shl``' instruction returns the first operand shifted to the left
3917a specified number of bits.
3918
3919Arguments:
3920""""""""""
3921
3922Both arguments to the '``shl``' instruction must be the same
3923:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3924'``op2``' is treated as an unsigned value.
3925
3926Semantics:
3927""""""""""
3928
3929The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3930where ``n`` is the width of the result. If ``op2`` is (statically or
3931dynamically) negative or equal to or larger than the number of bits in
3932``op1``, the result is undefined. If the arguments are vectors, each
3933vector element of ``op1`` is shifted by the corresponding shift amount
3934in ``op2``.
3935
3936If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3937value <poisonvalues>` if it shifts out any non-zero bits. If the
3938``nsw`` keyword is present, then the shift produces a :ref:`poison
3939value <poisonvalues>` if it shifts out any bits that disagree with the
3940resultant sign bit. As such, NUW/NSW have the same semantics as they
3941would if the shift were expressed as a mul instruction with the same
3942nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3943
3944Example:
3945""""""""
3946
3947.. code-block:: llvm
3948
3949 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3950 <result> = shl i32 4, 2 ; yields {i32}: 16
3951 <result> = shl i32 1, 10 ; yields {i32}: 1024
3952 <result> = shl i32 1, 32 ; undefined
3953 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3954
3955'``lshr``' Instruction
3956^^^^^^^^^^^^^^^^^^^^^^
3957
3958Syntax:
3959"""""""
3960
3961::
3962
3963 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3964 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3965
3966Overview:
3967"""""""""
3968
3969The '``lshr``' instruction (logical shift right) returns the first
3970operand shifted to the right a specified number of bits with zero fill.
3971
3972Arguments:
3973""""""""""
3974
3975Both arguments to the '``lshr``' instruction must be the same
3976:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3977'``op2``' is treated as an unsigned value.
3978
3979Semantics:
3980""""""""""
3981
3982This instruction always performs a logical shift right operation. The
3983most significant bits of the result will be filled with zero bits after
3984the shift. If ``op2`` is (statically or dynamically) equal to or larger
3985than the number of bits in ``op1``, the result is undefined. If the
3986arguments are vectors, each vector element of ``op1`` is shifted by the
3987corresponding shift amount in ``op2``.
3988
3989If the ``exact`` keyword is present, the result value of the ``lshr`` is
3990a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3991non-zero.
3992
3993Example:
3994""""""""
3995
3996.. code-block:: llvm
3997
3998 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3999 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4000 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Michael Liao2faa0f32013-03-06 18:24:34 +00004001 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
Sean Silvaf722b002012-12-07 10:36:55 +00004002 <result> = lshr i32 1, 32 ; undefined
4003 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4004
4005'``ashr``' Instruction
4006^^^^^^^^^^^^^^^^^^^^^^
4007
4008Syntax:
4009"""""""
4010
4011::
4012
4013 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4014 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4015
4016Overview:
4017"""""""""
4018
4019The '``ashr``' instruction (arithmetic shift right) returns the first
4020operand shifted to the right a specified number of bits with sign
4021extension.
4022
4023Arguments:
4024""""""""""
4025
4026Both arguments to the '``ashr``' instruction must be the same
4027:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4028'``op2``' is treated as an unsigned value.
4029
4030Semantics:
4031""""""""""
4032
4033This instruction always performs an arithmetic shift right operation,
4034The most significant bits of the result will be filled with the sign bit
4035of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4036than the number of bits in ``op1``, the result is undefined. If the
4037arguments are vectors, each vector element of ``op1`` is shifted by the
4038corresponding shift amount in ``op2``.
4039
4040If the ``exact`` keyword is present, the result value of the ``ashr`` is
4041a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4042non-zero.
4043
4044Example:
4045""""""""
4046
4047.. code-block:: llvm
4048
4049 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4050 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4051 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4052 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4053 <result> = ashr i32 1, 32 ; undefined
4054 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4055
4056'``and``' Instruction
4057^^^^^^^^^^^^^^^^^^^^^
4058
4059Syntax:
4060"""""""
4061
4062::
4063
4064 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4065
4066Overview:
4067"""""""""
4068
4069The '``and``' instruction returns the bitwise logical and of its two
4070operands.
4071
4072Arguments:
4073""""""""""
4074
4075The two arguments to the '``and``' instruction must be
4076:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4077arguments must have identical types.
4078
4079Semantics:
4080""""""""""
4081
4082The truth table used for the '``and``' instruction is:
4083
4084+-----+-----+-----+
4085| In0 | In1 | Out |
4086+-----+-----+-----+
4087| 0 | 0 | 0 |
4088+-----+-----+-----+
4089| 0 | 1 | 0 |
4090+-----+-----+-----+
4091| 1 | 0 | 0 |
4092+-----+-----+-----+
4093| 1 | 1 | 1 |
4094+-----+-----+-----+
4095
4096Example:
4097""""""""
4098
4099.. code-block:: llvm
4100
4101 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4102 <result> = and i32 15, 40 ; yields {i32}:result = 8
4103 <result> = and i32 4, 8 ; yields {i32}:result = 0
4104
4105'``or``' Instruction
4106^^^^^^^^^^^^^^^^^^^^
4107
4108Syntax:
4109"""""""
4110
4111::
4112
4113 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4114
4115Overview:
4116"""""""""
4117
4118The '``or``' instruction returns the bitwise logical inclusive or of its
4119two operands.
4120
4121Arguments:
4122""""""""""
4123
4124The two arguments to the '``or``' instruction must be
4125:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4126arguments must have identical types.
4127
4128Semantics:
4129""""""""""
4130
4131The truth table used for the '``or``' instruction is:
4132
4133+-----+-----+-----+
4134| In0 | In1 | Out |
4135+-----+-----+-----+
4136| 0 | 0 | 0 |
4137+-----+-----+-----+
4138| 0 | 1 | 1 |
4139+-----+-----+-----+
4140| 1 | 0 | 1 |
4141+-----+-----+-----+
4142| 1 | 1 | 1 |
4143+-----+-----+-----+
4144
4145Example:
4146""""""""
4147
4148::
4149
4150 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4151 <result> = or i32 15, 40 ; yields {i32}:result = 47
4152 <result> = or i32 4, 8 ; yields {i32}:result = 12
4153
4154'``xor``' Instruction
4155^^^^^^^^^^^^^^^^^^^^^
4156
4157Syntax:
4158"""""""
4159
4160::
4161
4162 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4163
4164Overview:
4165"""""""""
4166
4167The '``xor``' instruction returns the bitwise logical exclusive or of
4168its two operands. The ``xor`` is used to implement the "one's
4169complement" operation, which is the "~" operator in C.
4170
4171Arguments:
4172""""""""""
4173
4174The two arguments to the '``xor``' instruction must be
4175:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4176arguments must have identical types.
4177
4178Semantics:
4179""""""""""
4180
4181The truth table used for the '``xor``' instruction is:
4182
4183+-----+-----+-----+
4184| In0 | In1 | Out |
4185+-----+-----+-----+
4186| 0 | 0 | 0 |
4187+-----+-----+-----+
4188| 0 | 1 | 1 |
4189+-----+-----+-----+
4190| 1 | 0 | 1 |
4191+-----+-----+-----+
4192| 1 | 1 | 0 |
4193+-----+-----+-----+
4194
4195Example:
4196""""""""
4197
4198.. code-block:: llvm
4199
4200 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4201 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4202 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4203 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4204
4205Vector Operations
4206-----------------
4207
4208LLVM supports several instructions to represent vector operations in a
4209target-independent manner. These instructions cover the element-access
4210and vector-specific operations needed to process vectors effectively.
4211While LLVM does directly support these vector operations, many
4212sophisticated algorithms will want to use target-specific intrinsics to
4213take full advantage of a specific target.
4214
4215.. _i_extractelement:
4216
4217'``extractelement``' Instruction
4218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4219
4220Syntax:
4221"""""""
4222
4223::
4224
4225 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4226
4227Overview:
4228"""""""""
4229
4230The '``extractelement``' instruction extracts a single scalar element
4231from a vector at a specified index.
4232
4233Arguments:
4234""""""""""
4235
4236The first operand of an '``extractelement``' instruction is a value of
4237:ref:`vector <t_vector>` type. The second operand is an index indicating
4238the position from which to extract the element. The index may be a
4239variable.
4240
4241Semantics:
4242""""""""""
4243
4244The result is a scalar of the same type as the element type of ``val``.
4245Its value is the value at position ``idx`` of ``val``. If ``idx``
4246exceeds the length of ``val``, the results are undefined.
4247
4248Example:
4249""""""""
4250
4251.. code-block:: llvm
4252
4253 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4254
4255.. _i_insertelement:
4256
4257'``insertelement``' Instruction
4258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4259
4260Syntax:
4261"""""""
4262
4263::
4264
4265 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4266
4267Overview:
4268"""""""""
4269
4270The '``insertelement``' instruction inserts a scalar element into a
4271vector at a specified index.
4272
4273Arguments:
4274""""""""""
4275
4276The first operand of an '``insertelement``' instruction is a value of
4277:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4278type must equal the element type of the first operand. The third operand
4279is an index indicating the position at which to insert the value. The
4280index may be a variable.
4281
4282Semantics:
4283""""""""""
4284
4285The result is a vector of the same type as ``val``. Its element values
4286are those of ``val`` except at position ``idx``, where it gets the value
4287``elt``. If ``idx`` exceeds the length of ``val``, the results are
4288undefined.
4289
4290Example:
4291""""""""
4292
4293.. code-block:: llvm
4294
4295 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4296
4297.. _i_shufflevector:
4298
4299'``shufflevector``' Instruction
4300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4301
4302Syntax:
4303"""""""
4304
4305::
4306
4307 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4308
4309Overview:
4310"""""""""
4311
4312The '``shufflevector``' instruction constructs a permutation of elements
4313from two input vectors, returning a vector with the same element type as
4314the input and length that is the same as the shuffle mask.
4315
4316Arguments:
4317""""""""""
4318
4319The first two operands of a '``shufflevector``' instruction are vectors
4320with the same type. The third argument is a shuffle mask whose element
4321type is always 'i32'. The result of the instruction is a vector whose
4322length is the same as the shuffle mask and whose element type is the
4323same as the element type of the first two operands.
4324
4325The shuffle mask operand is required to be a constant vector with either
4326constant integer or undef values.
4327
4328Semantics:
4329""""""""""
4330
4331The elements of the two input vectors are numbered from left to right
4332across both of the vectors. The shuffle mask operand specifies, for each
4333element of the result vector, which element of the two input vectors the
4334result element gets. The element selector may be undef (meaning "don't
4335care") and the second operand may be undef if performing a shuffle from
4336only one vector.
4337
4338Example:
4339""""""""
4340
4341.. code-block:: llvm
4342
4343 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4344 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4345 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4346 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4347 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4348 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4349 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4350 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4351
4352Aggregate Operations
4353--------------------
4354
4355LLVM supports several instructions for working with
4356:ref:`aggregate <t_aggregate>` values.
4357
4358.. _i_extractvalue:
4359
4360'``extractvalue``' Instruction
4361^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4362
4363Syntax:
4364"""""""
4365
4366::
4367
4368 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4369
4370Overview:
4371"""""""""
4372
4373The '``extractvalue``' instruction extracts the value of a member field
4374from an :ref:`aggregate <t_aggregate>` value.
4375
4376Arguments:
4377""""""""""
4378
4379The first operand of an '``extractvalue``' instruction is a value of
4380:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4381constant indices to specify which value to extract in a similar manner
4382as indices in a '``getelementptr``' instruction.
4383
4384The major differences to ``getelementptr`` indexing are:
4385
4386- Since the value being indexed is not a pointer, the first index is
4387 omitted and assumed to be zero.
4388- At least one index must be specified.
4389- Not only struct indices but also array indices must be in bounds.
4390
4391Semantics:
4392""""""""""
4393
4394The result is the value at the position in the aggregate specified by
4395the index operands.
4396
4397Example:
4398""""""""
4399
4400.. code-block:: llvm
4401
4402 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4403
4404.. _i_insertvalue:
4405
4406'``insertvalue``' Instruction
4407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4408
4409Syntax:
4410"""""""
4411
4412::
4413
4414 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4415
4416Overview:
4417"""""""""
4418
4419The '``insertvalue``' instruction inserts a value into a member field in
4420an :ref:`aggregate <t_aggregate>` value.
4421
4422Arguments:
4423""""""""""
4424
4425The first operand of an '``insertvalue``' instruction is a value of
4426:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4427a first-class value to insert. The following operands are constant
4428indices indicating the position at which to insert the value in a
4429similar manner as indices in a '``extractvalue``' instruction. The value
4430to insert must have the same type as the value identified by the
4431indices.
4432
4433Semantics:
4434""""""""""
4435
4436The result is an aggregate of the same type as ``val``. Its value is
4437that of ``val`` except that the value at the position specified by the
4438indices is that of ``elt``.
4439
4440Example:
4441""""""""
4442
4443.. code-block:: llvm
4444
4445 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4446 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4447 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4448
4449.. _memoryops:
4450
4451Memory Access and Addressing Operations
4452---------------------------------------
4453
4454A key design point of an SSA-based representation is how it represents
4455memory. In LLVM, no memory locations are in SSA form, which makes things
4456very simple. This section describes how to read, write, and allocate
4457memory in LLVM.
4458
4459.. _i_alloca:
4460
4461'``alloca``' Instruction
4462^^^^^^^^^^^^^^^^^^^^^^^^
4463
4464Syntax:
4465"""""""
4466
4467::
4468
4469 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4470
4471Overview:
4472"""""""""
4473
4474The '``alloca``' instruction allocates memory on the stack frame of the
4475currently executing function, to be automatically released when this
4476function returns to its caller. The object is always allocated in the
4477generic address space (address space zero).
4478
4479Arguments:
4480""""""""""
4481
4482The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4483bytes of memory on the runtime stack, returning a pointer of the
4484appropriate type to the program. If "NumElements" is specified, it is
4485the number of elements allocated, otherwise "NumElements" is defaulted
4486to be one. If a constant alignment is specified, the value result of the
4487allocation is guaranteed to be aligned to at least that boundary. If not
4488specified, or if zero, the target can choose to align the allocation on
4489any convenient boundary compatible with the type.
4490
4491'``type``' may be any sized type.
4492
4493Semantics:
4494""""""""""
4495
4496Memory is allocated; a pointer is returned. The operation is undefined
4497if there is insufficient stack space for the allocation. '``alloca``'d
4498memory is automatically released when the function returns. The
4499'``alloca``' instruction is commonly used to represent automatic
4500variables that must have an address available. When the function returns
4501(either with the ``ret`` or ``resume`` instructions), the memory is
4502reclaimed. Allocating zero bytes is legal, but the result is undefined.
4503The order in which memory is allocated (ie., which way the stack grows)
4504is not specified.
4505
4506Example:
4507""""""""
4508
4509.. code-block:: llvm
4510
4511 %ptr = alloca i32 ; yields {i32*}:ptr
4512 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4513 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4514 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4515
4516.. _i_load:
4517
4518'``load``' Instruction
4519^^^^^^^^^^^^^^^^^^^^^^
4520
4521Syntax:
4522"""""""
4523
4524::
4525
4526 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4527 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4528 !<index> = !{ i32 1 }
4529
4530Overview:
4531"""""""""
4532
4533The '``load``' instruction is used to read from memory.
4534
4535Arguments:
4536""""""""""
4537
Eli Bendersky8c493382013-04-17 20:17:08 +00004538The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004539from which to load. The pointer must point to a :ref:`first
4540class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4541then the optimizer is not allowed to modify the number or order of
4542execution of this ``load`` with other :ref:`volatile
4543operations <volatile>`.
4544
4545If the ``load`` is marked as ``atomic``, it takes an extra
4546:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4547``release`` and ``acq_rel`` orderings are not valid on ``load``
4548instructions. Atomic loads produce :ref:`defined <memmodel>` results
4549when they may see multiple atomic stores. The type of the pointee must
4550be an integer type whose bit width is a power of two greater than or
4551equal to eight and less than or equal to a target-specific size limit.
4552``align`` must be explicitly specified on atomic loads, and the load has
4553undefined behavior if the alignment is not set to a value which is at
4554least the size in bytes of the pointee. ``!nontemporal`` does not have
4555any defined semantics for atomic loads.
4556
4557The optional constant ``align`` argument specifies the alignment of the
4558operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004559or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004560alignment for the target. It is the responsibility of the code emitter
4561to ensure that the alignment information is correct. Overestimating the
4562alignment results in undefined behavior. Underestimating the alignment
4563may produce less efficient code. An alignment of 1 is always safe.
4564
4565The optional ``!nontemporal`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004566metatadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004567``i32`` entry of value 1. The existence of the ``!nontemporal``
4568metatadata on the instruction tells the optimizer and code generator
4569that this load is not expected to be reused in the cache. The code
4570generator may select special instructions to save cache bandwidth, such
4571as the ``MOVNT`` instruction on x86.
4572
4573The optional ``!invariant.load`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004574metatadata name ``<index>`` corresponding to a metadata node with no
Sean Silvaf722b002012-12-07 10:36:55 +00004575entries. The existence of the ``!invariant.load`` metatadata on the
4576instruction tells the optimizer and code generator that this load
4577address points to memory which does not change value during program
4578execution. The optimizer may then move this load around, for example, by
4579hoisting it out of loops using loop invariant code motion.
4580
4581Semantics:
4582""""""""""
4583
4584The location of memory pointed to is loaded. If the value being loaded
4585is of scalar type then the number of bytes read does not exceed the
4586minimum number of bytes needed to hold all bits of the type. For
4587example, loading an ``i24`` reads at most three bytes. When loading a
4588value of a type like ``i20`` with a size that is not an integral number
4589of bytes, the result is undefined if the value was not originally
4590written using a store of the same type.
4591
4592Examples:
4593"""""""""
4594
4595.. code-block:: llvm
4596
4597 %ptr = alloca i32 ; yields {i32*}:ptr
4598 store i32 3, i32* %ptr ; yields {void}
4599 %val = load i32* %ptr ; yields {i32}:val = i32 3
4600
4601.. _i_store:
4602
4603'``store``' Instruction
4604^^^^^^^^^^^^^^^^^^^^^^^
4605
4606Syntax:
4607"""""""
4608
4609::
4610
4611 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4612 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4613
4614Overview:
4615"""""""""
4616
4617The '``store``' instruction is used to write to memory.
4618
4619Arguments:
4620""""""""""
4621
Eli Bendersky8952d902013-04-17 17:17:20 +00004622There are two arguments to the ``store`` instruction: a value to store
4623and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004624operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004625the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004626then the optimizer is not allowed to modify the number or order of
4627execution of this ``store`` with other :ref:`volatile
4628operations <volatile>`.
4629
4630If the ``store`` is marked as ``atomic``, it takes an extra
4631:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4632``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4633instructions. Atomic loads produce :ref:`defined <memmodel>` results
4634when they may see multiple atomic stores. The type of the pointee must
4635be an integer type whose bit width is a power of two greater than or
4636equal to eight and less than or equal to a target-specific size limit.
4637``align`` must be explicitly specified on atomic stores, and the store
4638has undefined behavior if the alignment is not set to a value which is
4639at least the size in bytes of the pointee. ``!nontemporal`` does not
4640have any defined semantics for atomic stores.
4641
Eli Bendersky8952d902013-04-17 17:17:20 +00004642The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004643operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004644or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004645alignment for the target. It is the responsibility of the code emitter
4646to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004647alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004648alignment may produce less efficient code. An alignment of 1 is always
4649safe.
4650
Eli Bendersky8952d902013-04-17 17:17:20 +00004651The optional ``!nontemporal`` metadata must reference a single metatadata
4652name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
4653value 1. The existence of the ``!nontemporal`` metatadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004654tells the optimizer and code generator that this load is not expected to
4655be reused in the cache. The code generator may select special
4656instructions to save cache bandwidth, such as the MOVNT instruction on
4657x86.
4658
4659Semantics:
4660""""""""""
4661
Eli Bendersky8952d902013-04-17 17:17:20 +00004662The contents of memory are updated to contain ``<value>`` at the
4663location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004664of scalar type then the number of bytes written does not exceed the
4665minimum number of bytes needed to hold all bits of the type. For
4666example, storing an ``i24`` writes at most three bytes. When writing a
4667value of a type like ``i20`` with a size that is not an integral number
4668of bytes, it is unspecified what happens to the extra bits that do not
4669belong to the type, but they will typically be overwritten.
4670
4671Example:
4672""""""""
4673
4674.. code-block:: llvm
4675
4676 %ptr = alloca i32 ; yields {i32*}:ptr
4677 store i32 3, i32* %ptr ; yields {void}
4678 %val = load i32* %ptr ; yields {i32}:val = i32 3
4679
4680.. _i_fence:
4681
4682'``fence``' Instruction
4683^^^^^^^^^^^^^^^^^^^^^^^
4684
4685Syntax:
4686"""""""
4687
4688::
4689
4690 fence [singlethread] <ordering> ; yields {void}
4691
4692Overview:
4693"""""""""
4694
4695The '``fence``' instruction is used to introduce happens-before edges
4696between operations.
4697
4698Arguments:
4699""""""""""
4700
4701'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4702defines what *synchronizes-with* edges they add. They can only be given
4703``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4704
4705Semantics:
4706""""""""""
4707
4708A fence A which has (at least) ``release`` ordering semantics
4709*synchronizes with* a fence B with (at least) ``acquire`` ordering
4710semantics if and only if there exist atomic operations X and Y, both
4711operating on some atomic object M, such that A is sequenced before X, X
4712modifies M (either directly or through some side effect of a sequence
4713headed by X), Y is sequenced before B, and Y observes M. This provides a
4714*happens-before* dependency between A and B. Rather than an explicit
4715``fence``, one (but not both) of the atomic operations X or Y might
4716provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4717still *synchronize-with* the explicit ``fence`` and establish the
4718*happens-before* edge.
4719
4720A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4721``acquire`` and ``release`` semantics specified above, participates in
4722the global program order of other ``seq_cst`` operations and/or fences.
4723
4724The optional ":ref:`singlethread <singlethread>`" argument specifies
4725that the fence only synchronizes with other fences in the same thread.
4726(This is useful for interacting with signal handlers.)
4727
4728Example:
4729""""""""
4730
4731.. code-block:: llvm
4732
4733 fence acquire ; yields {void}
4734 fence singlethread seq_cst ; yields {void}
4735
4736.. _i_cmpxchg:
4737
4738'``cmpxchg``' Instruction
4739^^^^^^^^^^^^^^^^^^^^^^^^^
4740
4741Syntax:
4742"""""""
4743
4744::
4745
4746 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4747
4748Overview:
4749"""""""""
4750
4751The '``cmpxchg``' instruction is used to atomically modify memory. It
4752loads a value in memory and compares it to a given value. If they are
4753equal, it stores a new value into the memory.
4754
4755Arguments:
4756""""""""""
4757
4758There are three arguments to the '``cmpxchg``' instruction: an address
4759to operate on, a value to compare to the value currently be at that
4760address, and a new value to place at that address if the compared values
4761are equal. The type of '<cmp>' must be an integer type whose bit width
4762is a power of two greater than or equal to eight and less than or equal
4763to a target-specific size limit. '<cmp>' and '<new>' must have the same
4764type, and the type of '<pointer>' must be a pointer to that type. If the
4765``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4766to modify the number or order of execution of this ``cmpxchg`` with
4767other :ref:`volatile operations <volatile>`.
4768
4769The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4770synchronizes with other atomic operations.
4771
4772The optional "``singlethread``" argument declares that the ``cmpxchg``
4773is only atomic with respect to code (usually signal handlers) running in
4774the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4775respect to all other code in the system.
4776
4777The pointer passed into cmpxchg must have alignment greater than or
4778equal to the size in memory of the operand.
4779
4780Semantics:
4781""""""""""
4782
4783The contents of memory at the location specified by the '``<pointer>``'
4784operand is read and compared to '``<cmp>``'; if the read value is the
4785equal, '``<new>``' is written. The original value at the location is
4786returned.
4787
4788A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4789of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4790atomic load with an ordering parameter determined by dropping any
4791``release`` part of the ``cmpxchg``'s ordering.
4792
4793Example:
4794""""""""
4795
4796.. code-block:: llvm
4797
4798 entry:
4799 %orig = atomic load i32* %ptr unordered ; yields {i32}
4800 br label %loop
4801
4802 loop:
4803 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4804 %squared = mul i32 %cmp, %cmp
4805 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4806 %success = icmp eq i32 %cmp, %old
4807 br i1 %success, label %done, label %loop
4808
4809 done:
4810 ...
4811
4812.. _i_atomicrmw:
4813
4814'``atomicrmw``' Instruction
4815^^^^^^^^^^^^^^^^^^^^^^^^^^^
4816
4817Syntax:
4818"""""""
4819
4820::
4821
4822 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4823
4824Overview:
4825"""""""""
4826
4827The '``atomicrmw``' instruction is used to atomically modify memory.
4828
4829Arguments:
4830""""""""""
4831
4832There are three arguments to the '``atomicrmw``' instruction: an
4833operation to apply, an address whose value to modify, an argument to the
4834operation. The operation must be one of the following keywords:
4835
4836- xchg
4837- add
4838- sub
4839- and
4840- nand
4841- or
4842- xor
4843- max
4844- min
4845- umax
4846- umin
4847
4848The type of '<value>' must be an integer type whose bit width is a power
4849of two greater than or equal to eight and less than or equal to a
4850target-specific size limit. The type of the '``<pointer>``' operand must
4851be a pointer to that type. If the ``atomicrmw`` is marked as
4852``volatile``, then the optimizer is not allowed to modify the number or
4853order of execution of this ``atomicrmw`` with other :ref:`volatile
4854operations <volatile>`.
4855
4856Semantics:
4857""""""""""
4858
4859The contents of memory at the location specified by the '``<pointer>``'
4860operand are atomically read, modified, and written back. The original
4861value at the location is returned. The modification is specified by the
4862operation argument:
4863
4864- xchg: ``*ptr = val``
4865- add: ``*ptr = *ptr + val``
4866- sub: ``*ptr = *ptr - val``
4867- and: ``*ptr = *ptr & val``
4868- nand: ``*ptr = ~(*ptr & val)``
4869- or: ``*ptr = *ptr | val``
4870- xor: ``*ptr = *ptr ^ val``
4871- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4872- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4873- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4874 comparison)
4875- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4876 comparison)
4877
4878Example:
4879""""""""
4880
4881.. code-block:: llvm
4882
4883 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4884
4885.. _i_getelementptr:
4886
4887'``getelementptr``' Instruction
4888^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4889
4890Syntax:
4891"""""""
4892
4893::
4894
4895 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4896 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4897 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4898
4899Overview:
4900"""""""""
4901
4902The '``getelementptr``' instruction is used to get the address of a
4903subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4904address calculation only and does not access memory.
4905
4906Arguments:
4907""""""""""
4908
4909The first argument is always a pointer or a vector of pointers, and
4910forms the basis of the calculation. The remaining arguments are indices
4911that indicate which of the elements of the aggregate object are indexed.
4912The interpretation of each index is dependent on the type being indexed
4913into. The first index always indexes the pointer value given as the
4914first argument, the second index indexes a value of the type pointed to
4915(not necessarily the value directly pointed to, since the first index
4916can be non-zero), etc. The first type indexed into must be a pointer
4917value, subsequent types can be arrays, vectors, and structs. Note that
4918subsequent types being indexed into can never be pointers, since that
4919would require loading the pointer before continuing calculation.
4920
4921The type of each index argument depends on the type it is indexing into.
4922When indexing into a (optionally packed) structure, only ``i32`` integer
4923**constants** are allowed (when using a vector of indices they must all
4924be the **same** ``i32`` integer constant). When indexing into an array,
4925pointer or vector, integers of any width are allowed, and they are not
4926required to be constant. These integers are treated as signed values
4927where relevant.
4928
4929For example, let's consider a C code fragment and how it gets compiled
4930to LLVM:
4931
4932.. code-block:: c
4933
4934 struct RT {
4935 char A;
4936 int B[10][20];
4937 char C;
4938 };
4939 struct ST {
4940 int X;
4941 double Y;
4942 struct RT Z;
4943 };
4944
4945 int *foo(struct ST *s) {
4946 return &s[1].Z.B[5][13];
4947 }
4948
4949The LLVM code generated by Clang is:
4950
4951.. code-block:: llvm
4952
4953 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4954 %struct.ST = type { i32, double, %struct.RT }
4955
4956 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4957 entry:
4958 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4959 ret i32* %arrayidx
4960 }
4961
4962Semantics:
4963""""""""""
4964
4965In the example above, the first index is indexing into the
4966'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4967= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4968indexes into the third element of the structure, yielding a
4969'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4970structure. The third index indexes into the second element of the
4971structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4972dimensions of the array are subscripted into, yielding an '``i32``'
4973type. The '``getelementptr``' instruction returns a pointer to this
4974element, thus computing a value of '``i32*``' type.
4975
4976Note that it is perfectly legal to index partially through a structure,
4977returning a pointer to an inner element. Because of this, the LLVM code
4978for the given testcase is equivalent to:
4979
4980.. code-block:: llvm
4981
4982 define i32* @foo(%struct.ST* %s) {
4983 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4984 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4985 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4986 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4987 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4988 ret i32* %t5
4989 }
4990
4991If the ``inbounds`` keyword is present, the result value of the
4992``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4993pointer is not an *in bounds* address of an allocated object, or if any
4994of the addresses that would be formed by successive addition of the
4995offsets implied by the indices to the base address with infinitely
4996precise signed arithmetic are not an *in bounds* address of that
4997allocated object. The *in bounds* addresses for an allocated object are
4998all the addresses that point into the object, plus the address one byte
4999past the end. In cases where the base is a vector of pointers the
5000``inbounds`` keyword applies to each of the computations element-wise.
5001
5002If the ``inbounds`` keyword is not present, the offsets are added to the
5003base address with silently-wrapping two's complement arithmetic. If the
5004offsets have a different width from the pointer, they are sign-extended
5005or truncated to the width of the pointer. The result value of the
5006``getelementptr`` may be outside the object pointed to by the base
5007pointer. The result value may not necessarily be used to access memory
5008though, even if it happens to point into allocated storage. See the
5009:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5010information.
5011
5012The getelementptr instruction is often confusing. For some more insight
5013into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5014
5015Example:
5016""""""""
5017
5018.. code-block:: llvm
5019
5020 ; yields [12 x i8]*:aptr
5021 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5022 ; yields i8*:vptr
5023 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5024 ; yields i8*:eptr
5025 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5026 ; yields i32*:iptr
5027 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5028
5029In cases where the pointer argument is a vector of pointers, each index
5030must be a vector with the same number of elements. For example:
5031
5032.. code-block:: llvm
5033
5034 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5035
5036Conversion Operations
5037---------------------
5038
5039The instructions in this category are the conversion instructions
5040(casting) which all take a single operand and a type. They perform
5041various bit conversions on the operand.
5042
5043'``trunc .. to``' Instruction
5044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5045
5046Syntax:
5047"""""""
5048
5049::
5050
5051 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5052
5053Overview:
5054"""""""""
5055
5056The '``trunc``' instruction truncates its operand to the type ``ty2``.
5057
5058Arguments:
5059""""""""""
5060
5061The '``trunc``' instruction takes a value to trunc, and a type to trunc
5062it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5063of the same number of integers. The bit size of the ``value`` must be
5064larger than the bit size of the destination type, ``ty2``. Equal sized
5065types are not allowed.
5066
5067Semantics:
5068""""""""""
5069
5070The '``trunc``' instruction truncates the high order bits in ``value``
5071and converts the remaining bits to ``ty2``. Since the source size must
5072be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5073It will always truncate bits.
5074
5075Example:
5076""""""""
5077
5078.. code-block:: llvm
5079
5080 %X = trunc i32 257 to i8 ; yields i8:1
5081 %Y = trunc i32 123 to i1 ; yields i1:true
5082 %Z = trunc i32 122 to i1 ; yields i1:false
5083 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5084
5085'``zext .. to``' Instruction
5086^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5087
5088Syntax:
5089"""""""
5090
5091::
5092
5093 <result> = zext <ty> <value> to <ty2> ; yields ty2
5094
5095Overview:
5096"""""""""
5097
5098The '``zext``' instruction zero extends its operand to type ``ty2``.
5099
5100Arguments:
5101""""""""""
5102
5103The '``zext``' instruction takes a value to cast, and a type to cast it
5104to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5105the same number of integers. The bit size of the ``value`` must be
5106smaller than the bit size of the destination type, ``ty2``.
5107
5108Semantics:
5109""""""""""
5110
5111The ``zext`` fills the high order bits of the ``value`` with zero bits
5112until it reaches the size of the destination type, ``ty2``.
5113
5114When zero extending from i1, the result will always be either 0 or 1.
5115
5116Example:
5117""""""""
5118
5119.. code-block:: llvm
5120
5121 %X = zext i32 257 to i64 ; yields i64:257
5122 %Y = zext i1 true to i32 ; yields i32:1
5123 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5124
5125'``sext .. to``' Instruction
5126^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5127
5128Syntax:
5129"""""""
5130
5131::
5132
5133 <result> = sext <ty> <value> to <ty2> ; yields ty2
5134
5135Overview:
5136"""""""""
5137
5138The '``sext``' sign extends ``value`` to the type ``ty2``.
5139
5140Arguments:
5141""""""""""
5142
5143The '``sext``' instruction takes a value to cast, and a type to cast it
5144to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5145the same number of integers. The bit size of the ``value`` must be
5146smaller than the bit size of the destination type, ``ty2``.
5147
5148Semantics:
5149""""""""""
5150
5151The '``sext``' instruction performs a sign extension by copying the sign
5152bit (highest order bit) of the ``value`` until it reaches the bit size
5153of the type ``ty2``.
5154
5155When sign extending from i1, the extension always results in -1 or 0.
5156
5157Example:
5158""""""""
5159
5160.. code-block:: llvm
5161
5162 %X = sext i8 -1 to i16 ; yields i16 :65535
5163 %Y = sext i1 true to i32 ; yields i32:-1
5164 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5165
5166'``fptrunc .. to``' Instruction
5167^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5168
5169Syntax:
5170"""""""
5171
5172::
5173
5174 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5175
5176Overview:
5177"""""""""
5178
5179The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5180
5181Arguments:
5182""""""""""
5183
5184The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5185value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5186The size of ``value`` must be larger than the size of ``ty2``. This
5187implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5188
5189Semantics:
5190""""""""""
5191
5192The '``fptrunc``' instruction truncates a ``value`` from a larger
5193:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5194point <t_floating>` type. If the value cannot fit within the
5195destination type, ``ty2``, then the results are undefined.
5196
5197Example:
5198""""""""
5199
5200.. code-block:: llvm
5201
5202 %X = fptrunc double 123.0 to float ; yields float:123.0
5203 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5204
5205'``fpext .. to``' Instruction
5206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5207
5208Syntax:
5209"""""""
5210
5211::
5212
5213 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5214
5215Overview:
5216"""""""""
5217
5218The '``fpext``' extends a floating point ``value`` to a larger floating
5219point value.
5220
5221Arguments:
5222""""""""""
5223
5224The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5225``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5226to. The source type must be smaller than the destination type.
5227
5228Semantics:
5229""""""""""
5230
5231The '``fpext``' instruction extends the ``value`` from a smaller
5232:ref:`floating point <t_floating>` type to a larger :ref:`floating
5233point <t_floating>` type. The ``fpext`` cannot be used to make a
5234*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5235*no-op cast* for a floating point cast.
5236
5237Example:
5238""""""""
5239
5240.. code-block:: llvm
5241
5242 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5243 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5244
5245'``fptoui .. to``' Instruction
5246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5247
5248Syntax:
5249"""""""
5250
5251::
5252
5253 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5254
5255Overview:
5256"""""""""
5257
5258The '``fptoui``' converts a floating point ``value`` to its unsigned
5259integer equivalent of type ``ty2``.
5260
5261Arguments:
5262""""""""""
5263
5264The '``fptoui``' instruction takes a value to cast, which must be a
5265scalar or vector :ref:`floating point <t_floating>` value, and a type to
5266cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5267``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5268type with the same number of elements as ``ty``
5269
5270Semantics:
5271""""""""""
5272
5273The '``fptoui``' instruction converts its :ref:`floating
5274point <t_floating>` operand into the nearest (rounding towards zero)
5275unsigned integer value. If the value cannot fit in ``ty2``, the results
5276are undefined.
5277
5278Example:
5279""""""""
5280
5281.. code-block:: llvm
5282
5283 %X = fptoui double 123.0 to i32 ; yields i32:123
5284 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5285 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5286
5287'``fptosi .. to``' Instruction
5288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5289
5290Syntax:
5291"""""""
5292
5293::
5294
5295 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5296
5297Overview:
5298"""""""""
5299
5300The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5301``value`` to type ``ty2``.
5302
5303Arguments:
5304""""""""""
5305
5306The '``fptosi``' instruction takes a value to cast, which must be a
5307scalar or vector :ref:`floating point <t_floating>` value, and a type to
5308cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5309``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5310type with the same number of elements as ``ty``
5311
5312Semantics:
5313""""""""""
5314
5315The '``fptosi``' instruction converts its :ref:`floating
5316point <t_floating>` operand into the nearest (rounding towards zero)
5317signed integer value. If the value cannot fit in ``ty2``, the results
5318are undefined.
5319
5320Example:
5321""""""""
5322
5323.. code-block:: llvm
5324
5325 %X = fptosi double -123.0 to i32 ; yields i32:-123
5326 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5327 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5328
5329'``uitofp .. to``' Instruction
5330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5331
5332Syntax:
5333"""""""
5334
5335::
5336
5337 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5338
5339Overview:
5340"""""""""
5341
5342The '``uitofp``' instruction regards ``value`` as an unsigned integer
5343and converts that value to the ``ty2`` type.
5344
5345Arguments:
5346""""""""""
5347
5348The '``uitofp``' instruction takes a value to cast, which must be a
5349scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5350``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5351``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5352type with the same number of elements as ``ty``
5353
5354Semantics:
5355""""""""""
5356
5357The '``uitofp``' instruction interprets its operand as an unsigned
5358integer quantity and converts it to the corresponding floating point
5359value. If the value cannot fit in the floating point value, the results
5360are undefined.
5361
5362Example:
5363""""""""
5364
5365.. code-block:: llvm
5366
5367 %X = uitofp i32 257 to float ; yields float:257.0
5368 %Y = uitofp i8 -1 to double ; yields double:255.0
5369
5370'``sitofp .. to``' Instruction
5371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5372
5373Syntax:
5374"""""""
5375
5376::
5377
5378 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5379
5380Overview:
5381"""""""""
5382
5383The '``sitofp``' instruction regards ``value`` as a signed integer and
5384converts that value to the ``ty2`` type.
5385
5386Arguments:
5387""""""""""
5388
5389The '``sitofp``' instruction takes a value to cast, which must be a
5390scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5391``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5392``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5393type with the same number of elements as ``ty``
5394
5395Semantics:
5396""""""""""
5397
5398The '``sitofp``' instruction interprets its operand as a signed integer
5399quantity and converts it to the corresponding floating point value. If
5400the value cannot fit in the floating point value, the results are
5401undefined.
5402
5403Example:
5404""""""""
5405
5406.. code-block:: llvm
5407
5408 %X = sitofp i32 257 to float ; yields float:257.0
5409 %Y = sitofp i8 -1 to double ; yields double:-1.0
5410
5411.. _i_ptrtoint:
5412
5413'``ptrtoint .. to``' Instruction
5414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5415
5416Syntax:
5417"""""""
5418
5419::
5420
5421 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5422
5423Overview:
5424"""""""""
5425
5426The '``ptrtoint``' instruction converts the pointer or a vector of
5427pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5428
5429Arguments:
5430""""""""""
5431
5432The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5433a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5434type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5435a vector of integers type.
5436
5437Semantics:
5438""""""""""
5439
5440The '``ptrtoint``' instruction converts ``value`` to integer type
5441``ty2`` by interpreting the pointer value as an integer and either
5442truncating or zero extending that value to the size of the integer type.
5443If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5444``value`` is larger than ``ty2`` then a truncation is done. If they are
5445the same size, then nothing is done (*no-op cast*) other than a type
5446change.
5447
5448Example:
5449""""""""
5450
5451.. code-block:: llvm
5452
5453 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5454 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5455 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5456
5457.. _i_inttoptr:
5458
5459'``inttoptr .. to``' Instruction
5460^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5461
5462Syntax:
5463"""""""
5464
5465::
5466
5467 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5468
5469Overview:
5470"""""""""
5471
5472The '``inttoptr``' instruction converts an integer ``value`` to a
5473pointer type, ``ty2``.
5474
5475Arguments:
5476""""""""""
5477
5478The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5479cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5480type.
5481
5482Semantics:
5483""""""""""
5484
5485The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5486applying either a zero extension or a truncation depending on the size
5487of the integer ``value``. If ``value`` is larger than the size of a
5488pointer then a truncation is done. If ``value`` is smaller than the size
5489of a pointer then a zero extension is done. If they are the same size,
5490nothing is done (*no-op cast*).
5491
5492Example:
5493""""""""
5494
5495.. code-block:: llvm
5496
5497 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5498 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5499 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5500 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5501
5502.. _i_bitcast:
5503
5504'``bitcast .. to``' Instruction
5505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5506
5507Syntax:
5508"""""""
5509
5510::
5511
5512 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5513
5514Overview:
5515"""""""""
5516
5517The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5518changing any bits.
5519
5520Arguments:
5521""""""""""
5522
5523The '``bitcast``' instruction takes a value to cast, which must be a
5524non-aggregate first class value, and a type to cast it to, which must
5525also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5526sizes of ``value`` and the destination type, ``ty2``, must be identical.
5527If the source type is a pointer, the destination type must also be a
5528pointer. This instruction supports bitwise conversion of vectors to
5529integers and to vectors of other types (as long as they have the same
5530size).
5531
5532Semantics:
5533""""""""""
5534
5535The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5536always a *no-op cast* because no bits change with this conversion. The
5537conversion is done as if the ``value`` had been stored to memory and
5538read back as type ``ty2``. Pointer (or vector of pointers) types may
5539only be converted to other pointer (or vector of pointers) types with
5540this instruction. To convert pointers to other types, use the
5541:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5542first.
5543
5544Example:
5545""""""""
5546
5547.. code-block:: llvm
5548
5549 %X = bitcast i8 255 to i8 ; yields i8 :-1
5550 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5551 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5552 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5553
5554.. _otherops:
5555
5556Other Operations
5557----------------
5558
5559The instructions in this category are the "miscellaneous" instructions,
5560which defy better classification.
5561
5562.. _i_icmp:
5563
5564'``icmp``' Instruction
5565^^^^^^^^^^^^^^^^^^^^^^
5566
5567Syntax:
5568"""""""
5569
5570::
5571
5572 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5573
5574Overview:
5575"""""""""
5576
5577The '``icmp``' instruction returns a boolean value or a vector of
5578boolean values based on comparison of its two integer, integer vector,
5579pointer, or pointer vector operands.
5580
5581Arguments:
5582""""""""""
5583
5584The '``icmp``' instruction takes three operands. The first operand is
5585the condition code indicating the kind of comparison to perform. It is
5586not a value, just a keyword. The possible condition code are:
5587
5588#. ``eq``: equal
5589#. ``ne``: not equal
5590#. ``ugt``: unsigned greater than
5591#. ``uge``: unsigned greater or equal
5592#. ``ult``: unsigned less than
5593#. ``ule``: unsigned less or equal
5594#. ``sgt``: signed greater than
5595#. ``sge``: signed greater or equal
5596#. ``slt``: signed less than
5597#. ``sle``: signed less or equal
5598
5599The remaining two arguments must be :ref:`integer <t_integer>` or
5600:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5601must also be identical types.
5602
5603Semantics:
5604""""""""""
5605
5606The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5607code given as ``cond``. The comparison performed always yields either an
5608:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5609
5610#. ``eq``: yields ``true`` if the operands are equal, ``false``
5611 otherwise. No sign interpretation is necessary or performed.
5612#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5613 otherwise. No sign interpretation is necessary or performed.
5614#. ``ugt``: interprets the operands as unsigned values and yields
5615 ``true`` if ``op1`` is greater than ``op2``.
5616#. ``uge``: interprets the operands as unsigned values and yields
5617 ``true`` if ``op1`` is greater than or equal to ``op2``.
5618#. ``ult``: interprets the operands as unsigned values and yields
5619 ``true`` if ``op1`` is less than ``op2``.
5620#. ``ule``: interprets the operands as unsigned values and yields
5621 ``true`` if ``op1`` is less than or equal to ``op2``.
5622#. ``sgt``: interprets the operands as signed values and yields ``true``
5623 if ``op1`` is greater than ``op2``.
5624#. ``sge``: interprets the operands as signed values and yields ``true``
5625 if ``op1`` is greater than or equal to ``op2``.
5626#. ``slt``: interprets the operands as signed values and yields ``true``
5627 if ``op1`` is less than ``op2``.
5628#. ``sle``: interprets the operands as signed values and yields ``true``
5629 if ``op1`` is less than or equal to ``op2``.
5630
5631If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5632are compared as if they were integers.
5633
5634If the operands are integer vectors, then they are compared element by
5635element. The result is an ``i1`` vector with the same number of elements
5636as the values being compared. Otherwise, the result is an ``i1``.
5637
5638Example:
5639""""""""
5640
5641.. code-block:: llvm
5642
5643 <result> = icmp eq i32 4, 5 ; yields: result=false
5644 <result> = icmp ne float* %X, %X ; yields: result=false
5645 <result> = icmp ult i16 4, 5 ; yields: result=true
5646 <result> = icmp sgt i16 4, 5 ; yields: result=false
5647 <result> = icmp ule i16 -4, 5 ; yields: result=false
5648 <result> = icmp sge i16 4, 5 ; yields: result=false
5649
5650Note that the code generator does not yet support vector types with the
5651``icmp`` instruction.
5652
5653.. _i_fcmp:
5654
5655'``fcmp``' Instruction
5656^^^^^^^^^^^^^^^^^^^^^^
5657
5658Syntax:
5659"""""""
5660
5661::
5662
5663 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5664
5665Overview:
5666"""""""""
5667
5668The '``fcmp``' instruction returns a boolean value or vector of boolean
5669values based on comparison of its operands.
5670
5671If the operands are floating point scalars, then the result type is a
5672boolean (:ref:`i1 <t_integer>`).
5673
5674If the operands are floating point vectors, then the result type is a
5675vector of boolean with the same number of elements as the operands being
5676compared.
5677
5678Arguments:
5679""""""""""
5680
5681The '``fcmp``' instruction takes three operands. The first operand is
5682the condition code indicating the kind of comparison to perform. It is
5683not a value, just a keyword. The possible condition code are:
5684
5685#. ``false``: no comparison, always returns false
5686#. ``oeq``: ordered and equal
5687#. ``ogt``: ordered and greater than
5688#. ``oge``: ordered and greater than or equal
5689#. ``olt``: ordered and less than
5690#. ``ole``: ordered and less than or equal
5691#. ``one``: ordered and not equal
5692#. ``ord``: ordered (no nans)
5693#. ``ueq``: unordered or equal
5694#. ``ugt``: unordered or greater than
5695#. ``uge``: unordered or greater than or equal
5696#. ``ult``: unordered or less than
5697#. ``ule``: unordered or less than or equal
5698#. ``une``: unordered or not equal
5699#. ``uno``: unordered (either nans)
5700#. ``true``: no comparison, always returns true
5701
5702*Ordered* means that neither operand is a QNAN while *unordered* means
5703that either operand may be a QNAN.
5704
5705Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5706point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5707type. They must have identical types.
5708
5709Semantics:
5710""""""""""
5711
5712The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5713condition code given as ``cond``. If the operands are vectors, then the
5714vectors are compared element by element. Each comparison performed
5715always yields an :ref:`i1 <t_integer>` result, as follows:
5716
5717#. ``false``: always yields ``false``, regardless of operands.
5718#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5719 is equal to ``op2``.
5720#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5721 is greater than ``op2``.
5722#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5723 is greater than or equal to ``op2``.
5724#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5725 is less than ``op2``.
5726#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5727 is less than or equal to ``op2``.
5728#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5729 is not equal to ``op2``.
5730#. ``ord``: yields ``true`` if both operands are not a QNAN.
5731#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5732 equal to ``op2``.
5733#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5734 greater than ``op2``.
5735#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5736 greater than or equal to ``op2``.
5737#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5738 less than ``op2``.
5739#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5740 less than or equal to ``op2``.
5741#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5742 not equal to ``op2``.
5743#. ``uno``: yields ``true`` if either operand is a QNAN.
5744#. ``true``: always yields ``true``, regardless of operands.
5745
5746Example:
5747""""""""
5748
5749.. code-block:: llvm
5750
5751 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5752 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5753 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5754 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5755
5756Note that the code generator does not yet support vector types with the
5757``fcmp`` instruction.
5758
5759.. _i_phi:
5760
5761'``phi``' Instruction
5762^^^^^^^^^^^^^^^^^^^^^
5763
5764Syntax:
5765"""""""
5766
5767::
5768
5769 <result> = phi <ty> [ <val0>, <label0>], ...
5770
5771Overview:
5772"""""""""
5773
5774The '``phi``' instruction is used to implement the φ node in the SSA
5775graph representing the function.
5776
5777Arguments:
5778""""""""""
5779
5780The type of the incoming values is specified with the first type field.
5781After this, the '``phi``' instruction takes a list of pairs as
5782arguments, with one pair for each predecessor basic block of the current
5783block. Only values of :ref:`first class <t_firstclass>` type may be used as
5784the value arguments to the PHI node. Only labels may be used as the
5785label arguments.
5786
5787There must be no non-phi instructions between the start of a basic block
5788and the PHI instructions: i.e. PHI instructions must be first in a basic
5789block.
5790
5791For the purposes of the SSA form, the use of each incoming value is
5792deemed to occur on the edge from the corresponding predecessor block to
5793the current block (but after any definition of an '``invoke``'
5794instruction's return value on the same edge).
5795
5796Semantics:
5797""""""""""
5798
5799At runtime, the '``phi``' instruction logically takes on the value
5800specified by the pair corresponding to the predecessor basic block that
5801executed just prior to the current block.
5802
5803Example:
5804""""""""
5805
5806.. code-block:: llvm
5807
5808 Loop: ; Infinite loop that counts from 0 on up...
5809 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5810 %nextindvar = add i32 %indvar, 1
5811 br label %Loop
5812
5813.. _i_select:
5814
5815'``select``' Instruction
5816^^^^^^^^^^^^^^^^^^^^^^^^
5817
5818Syntax:
5819"""""""
5820
5821::
5822
5823 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5824
5825 selty is either i1 or {<N x i1>}
5826
5827Overview:
5828"""""""""
5829
5830The '``select``' instruction is used to choose one value based on a
5831condition, without branching.
5832
5833Arguments:
5834""""""""""
5835
5836The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5837values indicating the condition, and two values of the same :ref:`first
5838class <t_firstclass>` type. If the val1/val2 are vectors and the
5839condition is a scalar, then entire vectors are selected, not individual
5840elements.
5841
5842Semantics:
5843""""""""""
5844
5845If the condition is an i1 and it evaluates to 1, the instruction returns
5846the first value argument; otherwise, it returns the second value
5847argument.
5848
5849If the condition is a vector of i1, then the value arguments must be
5850vectors of the same size, and the selection is done element by element.
5851
5852Example:
5853""""""""
5854
5855.. code-block:: llvm
5856
5857 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5858
5859.. _i_call:
5860
5861'``call``' Instruction
5862^^^^^^^^^^^^^^^^^^^^^^
5863
5864Syntax:
5865"""""""
5866
5867::
5868
5869 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5870
5871Overview:
5872"""""""""
5873
5874The '``call``' instruction represents a simple function call.
5875
5876Arguments:
5877""""""""""
5878
5879This instruction requires several arguments:
5880
5881#. The optional "tail" marker indicates that the callee function does
5882 not access any allocas or varargs in the caller. Note that calls may
5883 be marked "tail" even if they do not occur before a
5884 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5885 function call is eligible for tail call optimization, but `might not
5886 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5887 The code generator may optimize calls marked "tail" with either 1)
5888 automatic `sibling call
5889 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5890 callee have matching signatures, or 2) forced tail call optimization
5891 when the following extra requirements are met:
5892
5893 - Caller and callee both have the calling convention ``fastcc``.
5894 - The call is in tail position (ret immediately follows call and ret
5895 uses value of call or is void).
5896 - Option ``-tailcallopt`` is enabled, or
5897 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5898 - `Platform specific constraints are
5899 met. <CodeGenerator.html#tailcallopt>`_
5900
5901#. The optional "cconv" marker indicates which :ref:`calling
5902 convention <callingconv>` the call should use. If none is
5903 specified, the call defaults to using C calling conventions. The
5904 calling convention of the call must match the calling convention of
5905 the target function, or else the behavior is undefined.
5906#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5907 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5908 are valid here.
5909#. '``ty``': the type of the call instruction itself which is also the
5910 type of the return value. Functions that return no value are marked
5911 ``void``.
5912#. '``fnty``': shall be the signature of the pointer to function value
5913 being invoked. The argument types must match the types implied by
5914 this signature. This type can be omitted if the function is not
5915 varargs and if the function type does not return a pointer to a
5916 function.
5917#. '``fnptrval``': An LLVM value containing a pointer to a function to
5918 be invoked. In most cases, this is a direct function invocation, but
5919 indirect ``call``'s are just as possible, calling an arbitrary pointer
5920 to function value.
5921#. '``function args``': argument list whose types match the function
5922 signature argument types and parameter attributes. All arguments must
5923 be of :ref:`first class <t_firstclass>` type. If the function signature
5924 indicates the function accepts a variable number of arguments, the
5925 extra arguments can be specified.
5926#. The optional :ref:`function attributes <fnattrs>` list. Only
5927 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5928 attributes are valid here.
5929
5930Semantics:
5931""""""""""
5932
5933The '``call``' instruction is used to cause control flow to transfer to
5934a specified function, with its incoming arguments bound to the specified
5935values. Upon a '``ret``' instruction in the called function, control
5936flow continues with the instruction after the function call, and the
5937return value of the function is bound to the result argument.
5938
5939Example:
5940""""""""
5941
5942.. code-block:: llvm
5943
5944 %retval = call i32 @test(i32 %argc)
5945 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5946 %X = tail call i32 @foo() ; yields i32
5947 %Y = tail call fastcc i32 @foo() ; yields i32
5948 call void %foo(i8 97 signext)
5949
5950 %struct.A = type { i32, i8 }
5951 %r = call %struct.A @foo() ; yields { 32, i8 }
5952 %gr = extractvalue %struct.A %r, 0 ; yields i32
5953 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5954 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5955 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5956
5957llvm treats calls to some functions with names and arguments that match
5958the standard C99 library as being the C99 library functions, and may
5959perform optimizations or generate code for them under that assumption.
5960This is something we'd like to change in the future to provide better
5961support for freestanding environments and non-C-based languages.
5962
5963.. _i_va_arg:
5964
5965'``va_arg``' Instruction
5966^^^^^^^^^^^^^^^^^^^^^^^^
5967
5968Syntax:
5969"""""""
5970
5971::
5972
5973 <resultval> = va_arg <va_list*> <arglist>, <argty>
5974
5975Overview:
5976"""""""""
5977
5978The '``va_arg``' instruction is used to access arguments passed through
5979the "variable argument" area of a function call. It is used to implement
5980the ``va_arg`` macro in C.
5981
5982Arguments:
5983""""""""""
5984
5985This instruction takes a ``va_list*`` value and the type of the
5986argument. It returns a value of the specified argument type and
5987increments the ``va_list`` to point to the next argument. The actual
5988type of ``va_list`` is target specific.
5989
5990Semantics:
5991""""""""""
5992
5993The '``va_arg``' instruction loads an argument of the specified type
5994from the specified ``va_list`` and causes the ``va_list`` to point to
5995the next argument. For more information, see the variable argument
5996handling :ref:`Intrinsic Functions <int_varargs>`.
5997
5998It is legal for this instruction to be called in a function which does
5999not take a variable number of arguments, for example, the ``vfprintf``
6000function.
6001
6002``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6003function <intrinsics>` because it takes a type as an argument.
6004
6005Example:
6006""""""""
6007
6008See the :ref:`variable argument processing <int_varargs>` section.
6009
6010Note that the code generator does not yet fully support va\_arg on many
6011targets. Also, it does not currently support va\_arg with aggregate
6012types on any target.
6013
6014.. _i_landingpad:
6015
6016'``landingpad``' Instruction
6017^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6018
6019Syntax:
6020"""""""
6021
6022::
6023
6024 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6025 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6026
6027 <clause> := catch <type> <value>
6028 <clause> := filter <array constant type> <array constant>
6029
6030Overview:
6031"""""""""
6032
6033The '``landingpad``' instruction is used by `LLVM's exception handling
6034system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006035is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006036code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6037defines values supplied by the personality function (``pers_fn``) upon
6038re-entry to the function. The ``resultval`` has the type ``resultty``.
6039
6040Arguments:
6041""""""""""
6042
6043This instruction takes a ``pers_fn`` value. This is the personality
6044function associated with the unwinding mechanism. The optional
6045``cleanup`` flag indicates that the landing pad block is a cleanup.
6046
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006047A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006048contains the global variable representing the "type" that may be caught
6049or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6050clause takes an array constant as its argument. Use
6051"``[0 x i8**] undef``" for a filter which cannot throw. The
6052'``landingpad``' instruction must contain *at least* one ``clause`` or
6053the ``cleanup`` flag.
6054
6055Semantics:
6056""""""""""
6057
6058The '``landingpad``' instruction defines the values which are set by the
6059personality function (``pers_fn``) upon re-entry to the function, and
6060therefore the "result type" of the ``landingpad`` instruction. As with
6061calling conventions, how the personality function results are
6062represented in LLVM IR is target specific.
6063
6064The clauses are applied in order from top to bottom. If two
6065``landingpad`` instructions are merged together through inlining, the
6066clauses from the calling function are appended to the list of clauses.
6067When the call stack is being unwound due to an exception being thrown,
6068the exception is compared against each ``clause`` in turn. If it doesn't
6069match any of the clauses, and the ``cleanup`` flag is not set, then
6070unwinding continues further up the call stack.
6071
6072The ``landingpad`` instruction has several restrictions:
6073
6074- A landing pad block is a basic block which is the unwind destination
6075 of an '``invoke``' instruction.
6076- A landing pad block must have a '``landingpad``' instruction as its
6077 first non-PHI instruction.
6078- There can be only one '``landingpad``' instruction within the landing
6079 pad block.
6080- A basic block that is not a landing pad block may not include a
6081 '``landingpad``' instruction.
6082- All '``landingpad``' instructions in a function must have the same
6083 personality function.
6084
6085Example:
6086""""""""
6087
6088.. code-block:: llvm
6089
6090 ;; A landing pad which can catch an integer.
6091 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6092 catch i8** @_ZTIi
6093 ;; A landing pad that is a cleanup.
6094 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6095 cleanup
6096 ;; A landing pad which can catch an integer and can only throw a double.
6097 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6098 catch i8** @_ZTIi
6099 filter [1 x i8**] [@_ZTId]
6100
6101.. _intrinsics:
6102
6103Intrinsic Functions
6104===================
6105
6106LLVM supports the notion of an "intrinsic function". These functions
6107have well known names and semantics and are required to follow certain
6108restrictions. Overall, these intrinsics represent an extension mechanism
6109for the LLVM language that does not require changing all of the
6110transformations in LLVM when adding to the language (or the bitcode
6111reader/writer, the parser, etc...).
6112
6113Intrinsic function names must all start with an "``llvm.``" prefix. This
6114prefix is reserved in LLVM for intrinsic names; thus, function names may
6115not begin with this prefix. Intrinsic functions must always be external
6116functions: you cannot define the body of intrinsic functions. Intrinsic
6117functions may only be used in call or invoke instructions: it is illegal
6118to take the address of an intrinsic function. Additionally, because
6119intrinsic functions are part of the LLVM language, it is required if any
6120are added that they be documented here.
6121
6122Some intrinsic functions can be overloaded, i.e., the intrinsic
6123represents a family of functions that perform the same operation but on
6124different data types. Because LLVM can represent over 8 million
6125different integer types, overloading is used commonly to allow an
6126intrinsic function to operate on any integer type. One or more of the
6127argument types or the result type can be overloaded to accept any
6128integer type. Argument types may also be defined as exactly matching a
6129previous argument's type or the result type. This allows an intrinsic
6130function which accepts multiple arguments, but needs all of them to be
6131of the same type, to only be overloaded with respect to a single
6132argument or the result.
6133
6134Overloaded intrinsics will have the names of its overloaded argument
6135types encoded into its function name, each preceded by a period. Only
6136those types which are overloaded result in a name suffix. Arguments
6137whose type is matched against another type do not. For example, the
6138``llvm.ctpop`` function can take an integer of any width and returns an
6139integer of exactly the same integer width. This leads to a family of
6140functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6141``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6142overloaded, and only one type suffix is required. Because the argument's
6143type is matched against the return type, it does not require its own
6144name suffix.
6145
6146To learn how to add an intrinsic function, please see the `Extending
6147LLVM Guide <ExtendingLLVM.html>`_.
6148
6149.. _int_varargs:
6150
6151Variable Argument Handling Intrinsics
6152-------------------------------------
6153
6154Variable argument support is defined in LLVM with the
6155:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6156functions. These functions are related to the similarly named macros
6157defined in the ``<stdarg.h>`` header file.
6158
6159All of these functions operate on arguments that use a target-specific
6160value type "``va_list``". The LLVM assembly language reference manual
6161does not define what this type is, so all transformations should be
6162prepared to handle these functions regardless of the type used.
6163
6164This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6165variable argument handling intrinsic functions are used.
6166
6167.. code-block:: llvm
6168
6169 define i32 @test(i32 %X, ...) {
6170 ; Initialize variable argument processing
6171 %ap = alloca i8*
6172 %ap2 = bitcast i8** %ap to i8*
6173 call void @llvm.va_start(i8* %ap2)
6174
6175 ; Read a single integer argument
6176 %tmp = va_arg i8** %ap, i32
6177
6178 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6179 %aq = alloca i8*
6180 %aq2 = bitcast i8** %aq to i8*
6181 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6182 call void @llvm.va_end(i8* %aq2)
6183
6184 ; Stop processing of arguments.
6185 call void @llvm.va_end(i8* %ap2)
6186 ret i32 %tmp
6187 }
6188
6189 declare void @llvm.va_start(i8*)
6190 declare void @llvm.va_copy(i8*, i8*)
6191 declare void @llvm.va_end(i8*)
6192
6193.. _int_va_start:
6194
6195'``llvm.va_start``' Intrinsic
6196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6197
6198Syntax:
6199"""""""
6200
6201::
6202
6203 declare void %llvm.va_start(i8* <arglist>)
6204
6205Overview:
6206"""""""""
6207
6208The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6209subsequent use by ``va_arg``.
6210
6211Arguments:
6212""""""""""
6213
6214The argument is a pointer to a ``va_list`` element to initialize.
6215
6216Semantics:
6217""""""""""
6218
6219The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6220available in C. In a target-dependent way, it initializes the
6221``va_list`` element to which the argument points, so that the next call
6222to ``va_arg`` will produce the first variable argument passed to the
6223function. Unlike the C ``va_start`` macro, this intrinsic does not need
6224to know the last argument of the function as the compiler can figure
6225that out.
6226
6227'``llvm.va_end``' Intrinsic
6228^^^^^^^^^^^^^^^^^^^^^^^^^^^
6229
6230Syntax:
6231"""""""
6232
6233::
6234
6235 declare void @llvm.va_end(i8* <arglist>)
6236
6237Overview:
6238"""""""""
6239
6240The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6241initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6242
6243Arguments:
6244""""""""""
6245
6246The argument is a pointer to a ``va_list`` to destroy.
6247
6248Semantics:
6249""""""""""
6250
6251The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6252available in C. In a target-dependent way, it destroys the ``va_list``
6253element to which the argument points. Calls to
6254:ref:`llvm.va_start <int_va_start>` and
6255:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6256``llvm.va_end``.
6257
6258.. _int_va_copy:
6259
6260'``llvm.va_copy``' Intrinsic
6261^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6262
6263Syntax:
6264"""""""
6265
6266::
6267
6268 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6269
6270Overview:
6271"""""""""
6272
6273The '``llvm.va_copy``' intrinsic copies the current argument position
6274from the source argument list to the destination argument list.
6275
6276Arguments:
6277""""""""""
6278
6279The first argument is a pointer to a ``va_list`` element to initialize.
6280The second argument is a pointer to a ``va_list`` element to copy from.
6281
6282Semantics:
6283""""""""""
6284
6285The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6286available in C. In a target-dependent way, it copies the source
6287``va_list`` element into the destination ``va_list`` element. This
6288intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6289arbitrarily complex and require, for example, memory allocation.
6290
6291Accurate Garbage Collection Intrinsics
6292--------------------------------------
6293
6294LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6295(GC) requires the implementation and generation of these intrinsics.
6296These intrinsics allow identification of :ref:`GC roots on the
6297stack <int_gcroot>`, as well as garbage collector implementations that
6298require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6299Front-ends for type-safe garbage collected languages should generate
6300these intrinsics to make use of the LLVM garbage collectors. For more
6301details, see `Accurate Garbage Collection with
6302LLVM <GarbageCollection.html>`_.
6303
6304The garbage collection intrinsics only operate on objects in the generic
6305address space (address space zero).
6306
6307.. _int_gcroot:
6308
6309'``llvm.gcroot``' Intrinsic
6310^^^^^^^^^^^^^^^^^^^^^^^^^^^
6311
6312Syntax:
6313"""""""
6314
6315::
6316
6317 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6318
6319Overview:
6320"""""""""
6321
6322The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6323the code generator, and allows some metadata to be associated with it.
6324
6325Arguments:
6326""""""""""
6327
6328The first argument specifies the address of a stack object that contains
6329the root pointer. The second pointer (which must be either a constant or
6330a global value address) contains the meta-data to be associated with the
6331root.
6332
6333Semantics:
6334""""""""""
6335
6336At runtime, a call to this intrinsic stores a null pointer into the
6337"ptrloc" location. At compile-time, the code generator generates
6338information to allow the runtime to find the pointer at GC safe points.
6339The '``llvm.gcroot``' intrinsic may only be used in a function which
6340:ref:`specifies a GC algorithm <gc>`.
6341
6342.. _int_gcread:
6343
6344'``llvm.gcread``' Intrinsic
6345^^^^^^^^^^^^^^^^^^^^^^^^^^^
6346
6347Syntax:
6348"""""""
6349
6350::
6351
6352 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6353
6354Overview:
6355"""""""""
6356
6357The '``llvm.gcread``' intrinsic identifies reads of references from heap
6358locations, allowing garbage collector implementations that require read
6359barriers.
6360
6361Arguments:
6362""""""""""
6363
6364The second argument is the address to read from, which should be an
6365address allocated from the garbage collector. The first object is a
6366pointer to the start of the referenced object, if needed by the language
6367runtime (otherwise null).
6368
6369Semantics:
6370""""""""""
6371
6372The '``llvm.gcread``' intrinsic has the same semantics as a load
6373instruction, but may be replaced with substantially more complex code by
6374the garbage collector runtime, as needed. The '``llvm.gcread``'
6375intrinsic may only be used in a function which :ref:`specifies a GC
6376algorithm <gc>`.
6377
6378.. _int_gcwrite:
6379
6380'``llvm.gcwrite``' Intrinsic
6381^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6382
6383Syntax:
6384"""""""
6385
6386::
6387
6388 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6389
6390Overview:
6391"""""""""
6392
6393The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6394locations, allowing garbage collector implementations that require write
6395barriers (such as generational or reference counting collectors).
6396
6397Arguments:
6398""""""""""
6399
6400The first argument is the reference to store, the second is the start of
6401the object to store it to, and the third is the address of the field of
6402Obj to store to. If the runtime does not require a pointer to the
6403object, Obj may be null.
6404
6405Semantics:
6406""""""""""
6407
6408The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6409instruction, but may be replaced with substantially more complex code by
6410the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6411intrinsic may only be used in a function which :ref:`specifies a GC
6412algorithm <gc>`.
6413
6414Code Generator Intrinsics
6415-------------------------
6416
6417These intrinsics are provided by LLVM to expose special features that
6418may only be implemented with code generator support.
6419
6420'``llvm.returnaddress``' Intrinsic
6421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6422
6423Syntax:
6424"""""""
6425
6426::
6427
6428 declare i8 *@llvm.returnaddress(i32 <level>)
6429
6430Overview:
6431"""""""""
6432
6433The '``llvm.returnaddress``' intrinsic attempts to compute a
6434target-specific value indicating the return address of the current
6435function or one of its callers.
6436
6437Arguments:
6438""""""""""
6439
6440The argument to this intrinsic indicates which function to return the
6441address for. Zero indicates the calling function, one indicates its
6442caller, etc. The argument is **required** to be a constant integer
6443value.
6444
6445Semantics:
6446""""""""""
6447
6448The '``llvm.returnaddress``' intrinsic either returns a pointer
6449indicating the return address of the specified call frame, or zero if it
6450cannot be identified. The value returned by this intrinsic is likely to
6451be incorrect or 0 for arguments other than zero, so it should only be
6452used for debugging purposes.
6453
6454Note that calling this intrinsic does not prevent function inlining or
6455other aggressive transformations, so the value returned may not be that
6456of the obvious source-language caller.
6457
6458'``llvm.frameaddress``' Intrinsic
6459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6460
6461Syntax:
6462"""""""
6463
6464::
6465
6466 declare i8* @llvm.frameaddress(i32 <level>)
6467
6468Overview:
6469"""""""""
6470
6471The '``llvm.frameaddress``' intrinsic attempts to return the
6472target-specific frame pointer value for the specified stack frame.
6473
6474Arguments:
6475""""""""""
6476
6477The argument to this intrinsic indicates which function to return the
6478frame pointer for. Zero indicates the calling function, one indicates
6479its caller, etc. The argument is **required** to be a constant integer
6480value.
6481
6482Semantics:
6483""""""""""
6484
6485The '``llvm.frameaddress``' intrinsic either returns a pointer
6486indicating the frame address of the specified call frame, or zero if it
6487cannot be identified. The value returned by this intrinsic is likely to
6488be incorrect or 0 for arguments other than zero, so it should only be
6489used for debugging purposes.
6490
6491Note that calling this intrinsic does not prevent function inlining or
6492other aggressive transformations, so the value returned may not be that
6493of the obvious source-language caller.
6494
6495.. _int_stacksave:
6496
6497'``llvm.stacksave``' Intrinsic
6498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6499
6500Syntax:
6501"""""""
6502
6503::
6504
6505 declare i8* @llvm.stacksave()
6506
6507Overview:
6508"""""""""
6509
6510The '``llvm.stacksave``' intrinsic is used to remember the current state
6511of the function stack, for use with
6512:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6513implementing language features like scoped automatic variable sized
6514arrays in C99.
6515
6516Semantics:
6517""""""""""
6518
6519This intrinsic returns a opaque pointer value that can be passed to
6520:ref:`llvm.stackrestore <int_stackrestore>`. When an
6521``llvm.stackrestore`` intrinsic is executed with a value saved from
6522``llvm.stacksave``, it effectively restores the state of the stack to
6523the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6524practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6525were allocated after the ``llvm.stacksave`` was executed.
6526
6527.. _int_stackrestore:
6528
6529'``llvm.stackrestore``' Intrinsic
6530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6531
6532Syntax:
6533"""""""
6534
6535::
6536
6537 declare void @llvm.stackrestore(i8* %ptr)
6538
6539Overview:
6540"""""""""
6541
6542The '``llvm.stackrestore``' intrinsic is used to restore the state of
6543the function stack to the state it was in when the corresponding
6544:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6545useful for implementing language features like scoped automatic variable
6546sized arrays in C99.
6547
6548Semantics:
6549""""""""""
6550
6551See the description for :ref:`llvm.stacksave <int_stacksave>`.
6552
6553'``llvm.prefetch``' Intrinsic
6554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6555
6556Syntax:
6557"""""""
6558
6559::
6560
6561 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6562
6563Overview:
6564"""""""""
6565
6566The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6567insert a prefetch instruction if supported; otherwise, it is a noop.
6568Prefetches have no effect on the behavior of the program but can change
6569its performance characteristics.
6570
6571Arguments:
6572""""""""""
6573
6574``address`` is the address to be prefetched, ``rw`` is the specifier
6575determining if the fetch should be for a read (0) or write (1), and
6576``locality`` is a temporal locality specifier ranging from (0) - no
6577locality, to (3) - extremely local keep in cache. The ``cache type``
6578specifies whether the prefetch is performed on the data (1) or
6579instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6580arguments must be constant integers.
6581
6582Semantics:
6583""""""""""
6584
6585This intrinsic does not modify the behavior of the program. In
6586particular, prefetches cannot trap and do not produce a value. On
6587targets that support this intrinsic, the prefetch can provide hints to
6588the processor cache for better performance.
6589
6590'``llvm.pcmarker``' Intrinsic
6591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6592
6593Syntax:
6594"""""""
6595
6596::
6597
6598 declare void @llvm.pcmarker(i32 <id>)
6599
6600Overview:
6601"""""""""
6602
6603The '``llvm.pcmarker``' intrinsic is a method to export a Program
6604Counter (PC) in a region of code to simulators and other tools. The
6605method is target specific, but it is expected that the marker will use
6606exported symbols to transmit the PC of the marker. The marker makes no
6607guarantees that it will remain with any specific instruction after
6608optimizations. It is possible that the presence of a marker will inhibit
6609optimizations. The intended use is to be inserted after optimizations to
6610allow correlations of simulation runs.
6611
6612Arguments:
6613""""""""""
6614
6615``id`` is a numerical id identifying the marker.
6616
6617Semantics:
6618""""""""""
6619
6620This intrinsic does not modify the behavior of the program. Backends
6621that do not support this intrinsic may ignore it.
6622
6623'``llvm.readcyclecounter``' Intrinsic
6624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6625
6626Syntax:
6627"""""""
6628
6629::
6630
6631 declare i64 @llvm.readcyclecounter()
6632
6633Overview:
6634"""""""""
6635
6636The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6637counter register (or similar low latency, high accuracy clocks) on those
6638targets that support it. On X86, it should map to RDTSC. On Alpha, it
6639should map to RPCC. As the backing counters overflow quickly (on the
6640order of 9 seconds on alpha), this should only be used for small
6641timings.
6642
6643Semantics:
6644""""""""""
6645
6646When directly supported, reading the cycle counter should not modify any
6647memory. Implementations are allowed to either return a application
6648specific value or a system wide value. On backends without support, this
6649is lowered to a constant 0.
6650
6651Standard C Library Intrinsics
6652-----------------------------
6653
6654LLVM provides intrinsics for a few important standard C library
6655functions. These intrinsics allow source-language front-ends to pass
6656information about the alignment of the pointer arguments to the code
6657generator, providing opportunity for more efficient code generation.
6658
6659.. _int_memcpy:
6660
6661'``llvm.memcpy``' Intrinsic
6662^^^^^^^^^^^^^^^^^^^^^^^^^^^
6663
6664Syntax:
6665"""""""
6666
6667This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6668integer bit width and for different address spaces. Not all targets
6669support all bit widths however.
6670
6671::
6672
6673 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6674 i32 <len>, i32 <align>, i1 <isvolatile>)
6675 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6676 i64 <len>, i32 <align>, i1 <isvolatile>)
6677
6678Overview:
6679"""""""""
6680
6681The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6682source location to the destination location.
6683
6684Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6685intrinsics do not return a value, takes extra alignment/isvolatile
6686arguments and the pointers can be in specified address spaces.
6687
6688Arguments:
6689""""""""""
6690
6691The first argument is a pointer to the destination, the second is a
6692pointer to the source. The third argument is an integer argument
6693specifying the number of bytes to copy, the fourth argument is the
6694alignment of the source and destination locations, and the fifth is a
6695boolean indicating a volatile access.
6696
6697If the call to this intrinsic has an alignment value that is not 0 or 1,
6698then the caller guarantees that both the source and destination pointers
6699are aligned to that boundary.
6700
6701If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6702a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6703very cleanly specified and it is unwise to depend on it.
6704
6705Semantics:
6706""""""""""
6707
6708The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6709source location to the destination location, which are not allowed to
6710overlap. It copies "len" bytes of memory over. If the argument is known
6711to be aligned to some boundary, this can be specified as the fourth
6712argument, otherwise it should be set to 0 or 1.
6713
6714'``llvm.memmove``' Intrinsic
6715^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6716
6717Syntax:
6718"""""""
6719
6720This is an overloaded intrinsic. You can use llvm.memmove on any integer
6721bit width and for different address space. Not all targets support all
6722bit widths however.
6723
6724::
6725
6726 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6727 i32 <len>, i32 <align>, i1 <isvolatile>)
6728 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6729 i64 <len>, i32 <align>, i1 <isvolatile>)
6730
6731Overview:
6732"""""""""
6733
6734The '``llvm.memmove.*``' intrinsics move a block of memory from the
6735source location to the destination location. It is similar to the
6736'``llvm.memcpy``' intrinsic but allows the two memory locations to
6737overlap.
6738
6739Note that, unlike the standard libc function, the ``llvm.memmove.*``
6740intrinsics do not return a value, takes extra alignment/isvolatile
6741arguments and the pointers can be in specified address spaces.
6742
6743Arguments:
6744""""""""""
6745
6746The first argument is a pointer to the destination, the second is a
6747pointer to the source. The third argument is an integer argument
6748specifying the number of bytes to copy, the fourth argument is the
6749alignment of the source and destination locations, and the fifth is a
6750boolean indicating a volatile access.
6751
6752If the call to this intrinsic has an alignment value that is not 0 or 1,
6753then the caller guarantees that the source and destination pointers are
6754aligned to that boundary.
6755
6756If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6757is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6758not very cleanly specified and it is unwise to depend on it.
6759
6760Semantics:
6761""""""""""
6762
6763The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6764source location to the destination location, which may overlap. It
6765copies "len" bytes of memory over. If the argument is known to be
6766aligned to some boundary, this can be specified as the fourth argument,
6767otherwise it should be set to 0 or 1.
6768
6769'``llvm.memset.*``' Intrinsics
6770^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6771
6772Syntax:
6773"""""""
6774
6775This is an overloaded intrinsic. You can use llvm.memset on any integer
6776bit width and for different address spaces. However, not all targets
6777support all bit widths.
6778
6779::
6780
6781 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6782 i32 <len>, i32 <align>, i1 <isvolatile>)
6783 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6784 i64 <len>, i32 <align>, i1 <isvolatile>)
6785
6786Overview:
6787"""""""""
6788
6789The '``llvm.memset.*``' intrinsics fill a block of memory with a
6790particular byte value.
6791
6792Note that, unlike the standard libc function, the ``llvm.memset``
6793intrinsic does not return a value and takes extra alignment/volatile
6794arguments. Also, the destination can be in an arbitrary address space.
6795
6796Arguments:
6797""""""""""
6798
6799The first argument is a pointer to the destination to fill, the second
6800is the byte value with which to fill it, the third argument is an
6801integer argument specifying the number of bytes to fill, and the fourth
6802argument is the known alignment of the destination location.
6803
6804If the call to this intrinsic has an alignment value that is not 0 or 1,
6805then the caller guarantees that the destination pointer is aligned to
6806that boundary.
6807
6808If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6809a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6810very cleanly specified and it is unwise to depend on it.
6811
6812Semantics:
6813""""""""""
6814
6815The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6816at the destination location. If the argument is known to be aligned to
6817some boundary, this can be specified as the fourth argument, otherwise
6818it should be set to 0 or 1.
6819
6820'``llvm.sqrt.*``' Intrinsic
6821^^^^^^^^^^^^^^^^^^^^^^^^^^^
6822
6823Syntax:
6824"""""""
6825
6826This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6827floating point or vector of floating point type. Not all targets support
6828all types however.
6829
6830::
6831
6832 declare float @llvm.sqrt.f32(float %Val)
6833 declare double @llvm.sqrt.f64(double %Val)
6834 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6835 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6836 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6837
6838Overview:
6839"""""""""
6840
6841The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6842returning the same value as the libm '``sqrt``' functions would. Unlike
6843``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6844negative numbers other than -0.0 (which allows for better optimization,
6845because there is no need to worry about errno being set).
6846``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6847
6848Arguments:
6849""""""""""
6850
6851The argument and return value are floating point numbers of the same
6852type.
6853
6854Semantics:
6855""""""""""
6856
6857This function returns the sqrt of the specified operand if it is a
6858nonnegative floating point number.
6859
6860'``llvm.powi.*``' Intrinsic
6861^^^^^^^^^^^^^^^^^^^^^^^^^^^
6862
6863Syntax:
6864"""""""
6865
6866This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6867floating point or vector of floating point type. Not all targets support
6868all types however.
6869
6870::
6871
6872 declare float @llvm.powi.f32(float %Val, i32 %power)
6873 declare double @llvm.powi.f64(double %Val, i32 %power)
6874 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6875 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6876 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6877
6878Overview:
6879"""""""""
6880
6881The '``llvm.powi.*``' intrinsics return the first operand raised to the
6882specified (positive or negative) power. The order of evaluation of
6883multiplications is not defined. When a vector of floating point type is
6884used, the second argument remains a scalar integer value.
6885
6886Arguments:
6887""""""""""
6888
6889The second argument is an integer power, and the first is a value to
6890raise to that power.
6891
6892Semantics:
6893""""""""""
6894
6895This function returns the first value raised to the second power with an
6896unspecified sequence of rounding operations.
6897
6898'``llvm.sin.*``' Intrinsic
6899^^^^^^^^^^^^^^^^^^^^^^^^^^
6900
6901Syntax:
6902"""""""
6903
6904This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6905floating point or vector of floating point type. Not all targets support
6906all types however.
6907
6908::
6909
6910 declare float @llvm.sin.f32(float %Val)
6911 declare double @llvm.sin.f64(double %Val)
6912 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6913 declare fp128 @llvm.sin.f128(fp128 %Val)
6914 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6915
6916Overview:
6917"""""""""
6918
6919The '``llvm.sin.*``' intrinsics return the sine of the operand.
6920
6921Arguments:
6922""""""""""
6923
6924The argument and return value are floating point numbers of the same
6925type.
6926
6927Semantics:
6928""""""""""
6929
6930This function returns the sine of the specified operand, returning the
6931same values as the libm ``sin`` functions would, and handles error
6932conditions in the same way.
6933
6934'``llvm.cos.*``' Intrinsic
6935^^^^^^^^^^^^^^^^^^^^^^^^^^
6936
6937Syntax:
6938"""""""
6939
6940This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6941floating point or vector of floating point type. Not all targets support
6942all types however.
6943
6944::
6945
6946 declare float @llvm.cos.f32(float %Val)
6947 declare double @llvm.cos.f64(double %Val)
6948 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6949 declare fp128 @llvm.cos.f128(fp128 %Val)
6950 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6951
6952Overview:
6953"""""""""
6954
6955The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6956
6957Arguments:
6958""""""""""
6959
6960The argument and return value are floating point numbers of the same
6961type.
6962
6963Semantics:
6964""""""""""
6965
6966This function returns the cosine of the specified operand, returning the
6967same values as the libm ``cos`` functions would, and handles error
6968conditions in the same way.
6969
6970'``llvm.pow.*``' Intrinsic
6971^^^^^^^^^^^^^^^^^^^^^^^^^^
6972
6973Syntax:
6974"""""""
6975
6976This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6977floating point or vector of floating point type. Not all targets support
6978all types however.
6979
6980::
6981
6982 declare float @llvm.pow.f32(float %Val, float %Power)
6983 declare double @llvm.pow.f64(double %Val, double %Power)
6984 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6985 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6986 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6987
6988Overview:
6989"""""""""
6990
6991The '``llvm.pow.*``' intrinsics return the first operand raised to the
6992specified (positive or negative) power.
6993
6994Arguments:
6995""""""""""
6996
6997The second argument is a floating point power, and the first is a value
6998to raise to that power.
6999
7000Semantics:
7001""""""""""
7002
7003This function returns the first value raised to the second power,
7004returning the same values as the libm ``pow`` functions would, and
7005handles error conditions in the same way.
7006
7007'``llvm.exp.*``' Intrinsic
7008^^^^^^^^^^^^^^^^^^^^^^^^^^
7009
7010Syntax:
7011"""""""
7012
7013This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7014floating point or vector of floating point type. Not all targets support
7015all types however.
7016
7017::
7018
7019 declare float @llvm.exp.f32(float %Val)
7020 declare double @llvm.exp.f64(double %Val)
7021 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7022 declare fp128 @llvm.exp.f128(fp128 %Val)
7023 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7024
7025Overview:
7026"""""""""
7027
7028The '``llvm.exp.*``' intrinsics perform the exp function.
7029
7030Arguments:
7031""""""""""
7032
7033The argument and return value are floating point numbers of the same
7034type.
7035
7036Semantics:
7037""""""""""
7038
7039This function returns the same values as the libm ``exp`` functions
7040would, and handles error conditions in the same way.
7041
7042'``llvm.exp2.*``' Intrinsic
7043^^^^^^^^^^^^^^^^^^^^^^^^^^^
7044
7045Syntax:
7046"""""""
7047
7048This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7049floating point or vector of floating point type. Not all targets support
7050all types however.
7051
7052::
7053
7054 declare float @llvm.exp2.f32(float %Val)
7055 declare double @llvm.exp2.f64(double %Val)
7056 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7057 declare fp128 @llvm.exp2.f128(fp128 %Val)
7058 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7059
7060Overview:
7061"""""""""
7062
7063The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7064
7065Arguments:
7066""""""""""
7067
7068The argument and return value are floating point numbers of the same
7069type.
7070
7071Semantics:
7072""""""""""
7073
7074This function returns the same values as the libm ``exp2`` functions
7075would, and handles error conditions in the same way.
7076
7077'``llvm.log.*``' Intrinsic
7078^^^^^^^^^^^^^^^^^^^^^^^^^^
7079
7080Syntax:
7081"""""""
7082
7083This is an overloaded intrinsic. You can use ``llvm.log`` on any
7084floating point or vector of floating point type. Not all targets support
7085all types however.
7086
7087::
7088
7089 declare float @llvm.log.f32(float %Val)
7090 declare double @llvm.log.f64(double %Val)
7091 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7092 declare fp128 @llvm.log.f128(fp128 %Val)
7093 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7094
7095Overview:
7096"""""""""
7097
7098The '``llvm.log.*``' intrinsics perform the log function.
7099
7100Arguments:
7101""""""""""
7102
7103The argument and return value are floating point numbers of the same
7104type.
7105
7106Semantics:
7107""""""""""
7108
7109This function returns the same values as the libm ``log`` functions
7110would, and handles error conditions in the same way.
7111
7112'``llvm.log10.*``' Intrinsic
7113^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7114
7115Syntax:
7116"""""""
7117
7118This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7119floating point or vector of floating point type. Not all targets support
7120all types however.
7121
7122::
7123
7124 declare float @llvm.log10.f32(float %Val)
7125 declare double @llvm.log10.f64(double %Val)
7126 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7127 declare fp128 @llvm.log10.f128(fp128 %Val)
7128 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7129
7130Overview:
7131"""""""""
7132
7133The '``llvm.log10.*``' intrinsics perform the log10 function.
7134
7135Arguments:
7136""""""""""
7137
7138The argument and return value are floating point numbers of the same
7139type.
7140
7141Semantics:
7142""""""""""
7143
7144This function returns the same values as the libm ``log10`` functions
7145would, and handles error conditions in the same way.
7146
7147'``llvm.log2.*``' Intrinsic
7148^^^^^^^^^^^^^^^^^^^^^^^^^^^
7149
7150Syntax:
7151"""""""
7152
7153This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7154floating point or vector of floating point type. Not all targets support
7155all types however.
7156
7157::
7158
7159 declare float @llvm.log2.f32(float %Val)
7160 declare double @llvm.log2.f64(double %Val)
7161 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7162 declare fp128 @llvm.log2.f128(fp128 %Val)
7163 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7164
7165Overview:
7166"""""""""
7167
7168The '``llvm.log2.*``' intrinsics perform the log2 function.
7169
7170Arguments:
7171""""""""""
7172
7173The argument and return value are floating point numbers of the same
7174type.
7175
7176Semantics:
7177""""""""""
7178
7179This function returns the same values as the libm ``log2`` functions
7180would, and handles error conditions in the same way.
7181
7182'``llvm.fma.*``' Intrinsic
7183^^^^^^^^^^^^^^^^^^^^^^^^^^
7184
7185Syntax:
7186"""""""
7187
7188This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7189floating point or vector of floating point type. Not all targets support
7190all types however.
7191
7192::
7193
7194 declare float @llvm.fma.f32(float %a, float %b, float %c)
7195 declare double @llvm.fma.f64(double %a, double %b, double %c)
7196 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7197 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7198 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7199
7200Overview:
7201"""""""""
7202
7203The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7204operation.
7205
7206Arguments:
7207""""""""""
7208
7209The argument and return value are floating point numbers of the same
7210type.
7211
7212Semantics:
7213""""""""""
7214
7215This function returns the same values as the libm ``fma`` functions
7216would.
7217
7218'``llvm.fabs.*``' Intrinsic
7219^^^^^^^^^^^^^^^^^^^^^^^^^^^
7220
7221Syntax:
7222"""""""
7223
7224This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7225floating point or vector of floating point type. Not all targets support
7226all types however.
7227
7228::
7229
7230 declare float @llvm.fabs.f32(float %Val)
7231 declare double @llvm.fabs.f64(double %Val)
7232 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7233 declare fp128 @llvm.fabs.f128(fp128 %Val)
7234 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7235
7236Overview:
7237"""""""""
7238
7239The '``llvm.fabs.*``' intrinsics return the absolute value of the
7240operand.
7241
7242Arguments:
7243""""""""""
7244
7245The argument and return value are floating point numbers of the same
7246type.
7247
7248Semantics:
7249""""""""""
7250
7251This function returns the same values as the libm ``fabs`` functions
7252would, and handles error conditions in the same way.
7253
7254'``llvm.floor.*``' Intrinsic
7255^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7256
7257Syntax:
7258"""""""
7259
7260This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7261floating point or vector of floating point type. Not all targets support
7262all types however.
7263
7264::
7265
7266 declare float @llvm.floor.f32(float %Val)
7267 declare double @llvm.floor.f64(double %Val)
7268 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7269 declare fp128 @llvm.floor.f128(fp128 %Val)
7270 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7271
7272Overview:
7273"""""""""
7274
7275The '``llvm.floor.*``' intrinsics return the floor of the operand.
7276
7277Arguments:
7278""""""""""
7279
7280The argument and return value are floating point numbers of the same
7281type.
7282
7283Semantics:
7284""""""""""
7285
7286This function returns the same values as the libm ``floor`` functions
7287would, and handles error conditions in the same way.
7288
7289'``llvm.ceil.*``' Intrinsic
7290^^^^^^^^^^^^^^^^^^^^^^^^^^^
7291
7292Syntax:
7293"""""""
7294
7295This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7296floating point or vector of floating point type. Not all targets support
7297all types however.
7298
7299::
7300
7301 declare float @llvm.ceil.f32(float %Val)
7302 declare double @llvm.ceil.f64(double %Val)
7303 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7304 declare fp128 @llvm.ceil.f128(fp128 %Val)
7305 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7306
7307Overview:
7308"""""""""
7309
7310The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7311
7312Arguments:
7313""""""""""
7314
7315The argument and return value are floating point numbers of the same
7316type.
7317
7318Semantics:
7319""""""""""
7320
7321This function returns the same values as the libm ``ceil`` functions
7322would, and handles error conditions in the same way.
7323
7324'``llvm.trunc.*``' Intrinsic
7325^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7326
7327Syntax:
7328"""""""
7329
7330This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7331floating point or vector of floating point type. Not all targets support
7332all types however.
7333
7334::
7335
7336 declare float @llvm.trunc.f32(float %Val)
7337 declare double @llvm.trunc.f64(double %Val)
7338 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7339 declare fp128 @llvm.trunc.f128(fp128 %Val)
7340 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7341
7342Overview:
7343"""""""""
7344
7345The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7346nearest integer not larger in magnitude than the operand.
7347
7348Arguments:
7349""""""""""
7350
7351The argument and return value are floating point numbers of the same
7352type.
7353
7354Semantics:
7355""""""""""
7356
7357This function returns the same values as the libm ``trunc`` functions
7358would, and handles error conditions in the same way.
7359
7360'``llvm.rint.*``' Intrinsic
7361^^^^^^^^^^^^^^^^^^^^^^^^^^^
7362
7363Syntax:
7364"""""""
7365
7366This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7367floating point or vector of floating point type. Not all targets support
7368all types however.
7369
7370::
7371
7372 declare float @llvm.rint.f32(float %Val)
7373 declare double @llvm.rint.f64(double %Val)
7374 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7375 declare fp128 @llvm.rint.f128(fp128 %Val)
7376 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7377
7378Overview:
7379"""""""""
7380
7381The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7382nearest integer. It may raise an inexact floating-point exception if the
7383operand isn't an integer.
7384
7385Arguments:
7386""""""""""
7387
7388The argument and return value are floating point numbers of the same
7389type.
7390
7391Semantics:
7392""""""""""
7393
7394This function returns the same values as the libm ``rint`` functions
7395would, and handles error conditions in the same way.
7396
7397'``llvm.nearbyint.*``' Intrinsic
7398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7399
7400Syntax:
7401"""""""
7402
7403This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7404floating point or vector of floating point type. Not all targets support
7405all types however.
7406
7407::
7408
7409 declare float @llvm.nearbyint.f32(float %Val)
7410 declare double @llvm.nearbyint.f64(double %Val)
7411 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7412 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7413 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7414
7415Overview:
7416"""""""""
7417
7418The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7419nearest integer.
7420
7421Arguments:
7422""""""""""
7423
7424The argument and return value are floating point numbers of the same
7425type.
7426
7427Semantics:
7428""""""""""
7429
7430This function returns the same values as the libm ``nearbyint``
7431functions would, and handles error conditions in the same way.
7432
7433Bit Manipulation Intrinsics
7434---------------------------
7435
7436LLVM provides intrinsics for a few important bit manipulation
7437operations. These allow efficient code generation for some algorithms.
7438
7439'``llvm.bswap.*``' Intrinsics
7440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7441
7442Syntax:
7443"""""""
7444
7445This is an overloaded intrinsic function. You can use bswap on any
7446integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7447
7448::
7449
7450 declare i16 @llvm.bswap.i16(i16 <id>)
7451 declare i32 @llvm.bswap.i32(i32 <id>)
7452 declare i64 @llvm.bswap.i64(i64 <id>)
7453
7454Overview:
7455"""""""""
7456
7457The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7458values with an even number of bytes (positive multiple of 16 bits).
7459These are useful for performing operations on data that is not in the
7460target's native byte order.
7461
7462Semantics:
7463""""""""""
7464
7465The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7466and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7467intrinsic returns an i32 value that has the four bytes of the input i32
7468swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7469returned i32 will have its bytes in 3, 2, 1, 0 order. The
7470``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7471concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7472respectively).
7473
7474'``llvm.ctpop.*``' Intrinsic
7475^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7476
7477Syntax:
7478"""""""
7479
7480This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7481bit width, or on any vector with integer elements. Not all targets
7482support all bit widths or vector types, however.
7483
7484::
7485
7486 declare i8 @llvm.ctpop.i8(i8 <src>)
7487 declare i16 @llvm.ctpop.i16(i16 <src>)
7488 declare i32 @llvm.ctpop.i32(i32 <src>)
7489 declare i64 @llvm.ctpop.i64(i64 <src>)
7490 declare i256 @llvm.ctpop.i256(i256 <src>)
7491 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7492
7493Overview:
7494"""""""""
7495
7496The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7497in a value.
7498
7499Arguments:
7500""""""""""
7501
7502The only argument is the value to be counted. The argument may be of any
7503integer type, or a vector with integer elements. The return type must
7504match the argument type.
7505
7506Semantics:
7507""""""""""
7508
7509The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7510each element of a vector.
7511
7512'``llvm.ctlz.*``' Intrinsic
7513^^^^^^^^^^^^^^^^^^^^^^^^^^^
7514
7515Syntax:
7516"""""""
7517
7518This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7519integer bit width, or any vector whose elements are integers. Not all
7520targets support all bit widths or vector types, however.
7521
7522::
7523
7524 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7525 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7526 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7527 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7528 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7529 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7530
7531Overview:
7532"""""""""
7533
7534The '``llvm.ctlz``' family of intrinsic functions counts the number of
7535leading zeros in a variable.
7536
7537Arguments:
7538""""""""""
7539
7540The first argument is the value to be counted. This argument may be of
7541any integer type, or a vectory with integer element type. The return
7542type must match the first argument type.
7543
7544The second argument must be a constant and is a flag to indicate whether
7545the intrinsic should ensure that a zero as the first argument produces a
7546defined result. Historically some architectures did not provide a
7547defined result for zero values as efficiently, and many algorithms are
7548now predicated on avoiding zero-value inputs.
7549
7550Semantics:
7551""""""""""
7552
7553The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7554zeros in a variable, or within each element of the vector. If
7555``src == 0`` then the result is the size in bits of the type of ``src``
7556if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7557``llvm.ctlz(i32 2) = 30``.
7558
7559'``llvm.cttz.*``' Intrinsic
7560^^^^^^^^^^^^^^^^^^^^^^^^^^^
7561
7562Syntax:
7563"""""""
7564
7565This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7566integer bit width, or any vector of integer elements. Not all targets
7567support all bit widths or vector types, however.
7568
7569::
7570
7571 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7572 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7573 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7574 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7575 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7576 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7577
7578Overview:
7579"""""""""
7580
7581The '``llvm.cttz``' family of intrinsic functions counts the number of
7582trailing zeros.
7583
7584Arguments:
7585""""""""""
7586
7587The first argument is the value to be counted. This argument may be of
7588any integer type, or a vectory with integer element type. The return
7589type must match the first argument type.
7590
7591The second argument must be a constant and is a flag to indicate whether
7592the intrinsic should ensure that a zero as the first argument produces a
7593defined result. Historically some architectures did not provide a
7594defined result for zero values as efficiently, and many algorithms are
7595now predicated on avoiding zero-value inputs.
7596
7597Semantics:
7598""""""""""
7599
7600The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7601zeros in a variable, or within each element of a vector. If ``src == 0``
7602then the result is the size in bits of the type of ``src`` if
7603``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7604``llvm.cttz(2) = 1``.
7605
7606Arithmetic with Overflow Intrinsics
7607-----------------------------------
7608
7609LLVM provides intrinsics for some arithmetic with overflow operations.
7610
7611'``llvm.sadd.with.overflow.*``' Intrinsics
7612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7613
7614Syntax:
7615"""""""
7616
7617This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7618on any integer bit width.
7619
7620::
7621
7622 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7623 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7624 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7625
7626Overview:
7627"""""""""
7628
7629The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7630a signed addition of the two arguments, and indicate whether an overflow
7631occurred during the signed summation.
7632
7633Arguments:
7634""""""""""
7635
7636The arguments (%a and %b) and the first element of the result structure
7637may be of integer types of any bit width, but they must have the same
7638bit width. The second element of the result structure must be of type
7639``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7640addition.
7641
7642Semantics:
7643""""""""""
7644
7645The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007646a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007647first element of which is the signed summation, and the second element
7648of which is a bit specifying if the signed summation resulted in an
7649overflow.
7650
7651Examples:
7652"""""""""
7653
7654.. code-block:: llvm
7655
7656 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7657 %sum = extractvalue {i32, i1} %res, 0
7658 %obit = extractvalue {i32, i1} %res, 1
7659 br i1 %obit, label %overflow, label %normal
7660
7661'``llvm.uadd.with.overflow.*``' Intrinsics
7662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7663
7664Syntax:
7665"""""""
7666
7667This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7668on any integer bit width.
7669
7670::
7671
7672 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7673 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7674 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7675
7676Overview:
7677"""""""""
7678
7679The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7680an unsigned addition of the two arguments, and indicate whether a carry
7681occurred during the unsigned summation.
7682
7683Arguments:
7684""""""""""
7685
7686The arguments (%a and %b) and the first element of the result structure
7687may be of integer types of any bit width, but they must have the same
7688bit width. The second element of the result structure must be of type
7689``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7690addition.
7691
7692Semantics:
7693""""""""""
7694
7695The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007696an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007697first element of which is the sum, and the second element of which is a
7698bit specifying if the unsigned summation resulted in a carry.
7699
7700Examples:
7701"""""""""
7702
7703.. code-block:: llvm
7704
7705 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7706 %sum = extractvalue {i32, i1} %res, 0
7707 %obit = extractvalue {i32, i1} %res, 1
7708 br i1 %obit, label %carry, label %normal
7709
7710'``llvm.ssub.with.overflow.*``' Intrinsics
7711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7712
7713Syntax:
7714"""""""
7715
7716This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7717on any integer bit width.
7718
7719::
7720
7721 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7722 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7723 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7724
7725Overview:
7726"""""""""
7727
7728The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7729a signed subtraction of the two arguments, and indicate whether an
7730overflow occurred during the signed subtraction.
7731
7732Arguments:
7733""""""""""
7734
7735The arguments (%a and %b) and the first element of the result structure
7736may be of integer types of any bit width, but they must have the same
7737bit width. The second element of the result structure must be of type
7738``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7739subtraction.
7740
7741Semantics:
7742""""""""""
7743
7744The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007745a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007746first element of which is the subtraction, and the second element of
7747which is a bit specifying if the signed subtraction resulted in an
7748overflow.
7749
7750Examples:
7751"""""""""
7752
7753.. code-block:: llvm
7754
7755 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7756 %sum = extractvalue {i32, i1} %res, 0
7757 %obit = extractvalue {i32, i1} %res, 1
7758 br i1 %obit, label %overflow, label %normal
7759
7760'``llvm.usub.with.overflow.*``' Intrinsics
7761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7762
7763Syntax:
7764"""""""
7765
7766This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7767on any integer bit width.
7768
7769::
7770
7771 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7772 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7773 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7774
7775Overview:
7776"""""""""
7777
7778The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7779an unsigned subtraction of the two arguments, and indicate whether an
7780overflow occurred during the unsigned subtraction.
7781
7782Arguments:
7783""""""""""
7784
7785The arguments (%a and %b) and the first element of the result structure
7786may be of integer types of any bit width, but they must have the same
7787bit width. The second element of the result structure must be of type
7788``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7789subtraction.
7790
7791Semantics:
7792""""""""""
7793
7794The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007795an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007796the first element of which is the subtraction, and the second element of
7797which is a bit specifying if the unsigned subtraction resulted in an
7798overflow.
7799
7800Examples:
7801"""""""""
7802
7803.. code-block:: llvm
7804
7805 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7806 %sum = extractvalue {i32, i1} %res, 0
7807 %obit = extractvalue {i32, i1} %res, 1
7808 br i1 %obit, label %overflow, label %normal
7809
7810'``llvm.smul.with.overflow.*``' Intrinsics
7811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7812
7813Syntax:
7814"""""""
7815
7816This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7817on any integer bit width.
7818
7819::
7820
7821 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7822 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7823 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7824
7825Overview:
7826"""""""""
7827
7828The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7829a signed multiplication of the two arguments, and indicate whether an
7830overflow occurred during the signed multiplication.
7831
7832Arguments:
7833""""""""""
7834
7835The arguments (%a and %b) and the first element of the result structure
7836may be of integer types of any bit width, but they must have the same
7837bit width. The second element of the result structure must be of type
7838``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7839multiplication.
7840
7841Semantics:
7842""""""""""
7843
7844The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007845a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007846the first element of which is the multiplication, and the second element
7847of which is a bit specifying if the signed multiplication resulted in an
7848overflow.
7849
7850Examples:
7851"""""""""
7852
7853.. code-block:: llvm
7854
7855 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7856 %sum = extractvalue {i32, i1} %res, 0
7857 %obit = extractvalue {i32, i1} %res, 1
7858 br i1 %obit, label %overflow, label %normal
7859
7860'``llvm.umul.with.overflow.*``' Intrinsics
7861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7862
7863Syntax:
7864"""""""
7865
7866This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7867on any integer bit width.
7868
7869::
7870
7871 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7872 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7873 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7874
7875Overview:
7876"""""""""
7877
7878The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7879a unsigned multiplication of the two arguments, and indicate whether an
7880overflow occurred during the unsigned multiplication.
7881
7882Arguments:
7883""""""""""
7884
7885The arguments (%a and %b) and the first element of the result structure
7886may be of integer types of any bit width, but they must have the same
7887bit width. The second element of the result structure must be of type
7888``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7889multiplication.
7890
7891Semantics:
7892""""""""""
7893
7894The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007895an unsigned multiplication of the two arguments. They return a structure ---
7896the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007897element of which is a bit specifying if the unsigned multiplication
7898resulted in an overflow.
7899
7900Examples:
7901"""""""""
7902
7903.. code-block:: llvm
7904
7905 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7906 %sum = extractvalue {i32, i1} %res, 0
7907 %obit = extractvalue {i32, i1} %res, 1
7908 br i1 %obit, label %overflow, label %normal
7909
7910Specialised Arithmetic Intrinsics
7911---------------------------------
7912
7913'``llvm.fmuladd.*``' Intrinsic
7914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7915
7916Syntax:
7917"""""""
7918
7919::
7920
7921 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7922 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7923
7924Overview:
7925"""""""""
7926
7927The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00007928expressions that can be fused if the code generator determines that (a) the
7929target instruction set has support for a fused operation, and (b) that the
7930fused operation is more efficient than the equivalent, separate pair of mul
7931and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00007932
7933Arguments:
7934""""""""""
7935
7936The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7937multiplicands, a and b, and an addend c.
7938
7939Semantics:
7940""""""""""
7941
7942The expression:
7943
7944::
7945
7946 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7947
7948is equivalent to the expression a \* b + c, except that rounding will
7949not be performed between the multiplication and addition steps if the
7950code generator fuses the operations. Fusion is not guaranteed, even if
7951the target platform supports it. If a fused multiply-add is required the
7952corresponding llvm.fma.\* intrinsic function should be used instead.
7953
7954Examples:
7955"""""""""
7956
7957.. code-block:: llvm
7958
7959 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7960
7961Half Precision Floating Point Intrinsics
7962----------------------------------------
7963
7964For most target platforms, half precision floating point is a
7965storage-only format. This means that it is a dense encoding (in memory)
7966but does not support computation in the format.
7967
7968This means that code must first load the half-precision floating point
7969value as an i16, then convert it to float with
7970:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7971then be performed on the float value (including extending to double
7972etc). To store the value back to memory, it is first converted to float
7973if needed, then converted to i16 with
7974:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7975i16 value.
7976
7977.. _int_convert_to_fp16:
7978
7979'``llvm.convert.to.fp16``' Intrinsic
7980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7981
7982Syntax:
7983"""""""
7984
7985::
7986
7987 declare i16 @llvm.convert.to.fp16(f32 %a)
7988
7989Overview:
7990"""""""""
7991
7992The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7993from single precision floating point format to half precision floating
7994point format.
7995
7996Arguments:
7997""""""""""
7998
7999The intrinsic function contains single argument - the value to be
8000converted.
8001
8002Semantics:
8003""""""""""
8004
8005The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8006from single precision floating point format to half precision floating
8007point format. The return value is an ``i16`` which contains the
8008converted number.
8009
8010Examples:
8011"""""""""
8012
8013.. code-block:: llvm
8014
8015 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8016 store i16 %res, i16* @x, align 2
8017
8018.. _int_convert_from_fp16:
8019
8020'``llvm.convert.from.fp16``' Intrinsic
8021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8022
8023Syntax:
8024"""""""
8025
8026::
8027
8028 declare f32 @llvm.convert.from.fp16(i16 %a)
8029
8030Overview:
8031"""""""""
8032
8033The '``llvm.convert.from.fp16``' intrinsic function performs a
8034conversion from half precision floating point format to single precision
8035floating point format.
8036
8037Arguments:
8038""""""""""
8039
8040The intrinsic function contains single argument - the value to be
8041converted.
8042
8043Semantics:
8044""""""""""
8045
8046The '``llvm.convert.from.fp16``' intrinsic function performs a
8047conversion from half single precision floating point format to single
8048precision floating point format. The input half-float value is
8049represented by an ``i16`` value.
8050
8051Examples:
8052"""""""""
8053
8054.. code-block:: llvm
8055
8056 %a = load i16* @x, align 2
8057 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8058
8059Debugger Intrinsics
8060-------------------
8061
8062The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8063prefix), are described in the `LLVM Source Level
8064Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8065document.
8066
8067Exception Handling Intrinsics
8068-----------------------------
8069
8070The LLVM exception handling intrinsics (which all start with
8071``llvm.eh.`` prefix), are described in the `LLVM Exception
8072Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8073
8074.. _int_trampoline:
8075
8076Trampoline Intrinsics
8077---------------------
8078
8079These intrinsics make it possible to excise one parameter, marked with
8080the :ref:`nest <nest>` attribute, from a function. The result is a
8081callable function pointer lacking the nest parameter - the caller does
8082not need to provide a value for it. Instead, the value to use is stored
8083in advance in a "trampoline", a block of memory usually allocated on the
8084stack, which also contains code to splice the nest value into the
8085argument list. This is used to implement the GCC nested function address
8086extension.
8087
8088For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8089then the resulting function pointer has signature ``i32 (i32, i32)*``.
8090It can be created as follows:
8091
8092.. code-block:: llvm
8093
8094 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8095 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8096 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8097 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8098 %fp = bitcast i8* %p to i32 (i32, i32)*
8099
8100The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8101``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8102
8103.. _int_it:
8104
8105'``llvm.init.trampoline``' Intrinsic
8106^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8107
8108Syntax:
8109"""""""
8110
8111::
8112
8113 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8114
8115Overview:
8116"""""""""
8117
8118This fills the memory pointed to by ``tramp`` with executable code,
8119turning it into a trampoline.
8120
8121Arguments:
8122""""""""""
8123
8124The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8125pointers. The ``tramp`` argument must point to a sufficiently large and
8126sufficiently aligned block of memory; this memory is written to by the
8127intrinsic. Note that the size and the alignment are target-specific -
8128LLVM currently provides no portable way of determining them, so a
8129front-end that generates this intrinsic needs to have some
8130target-specific knowledge. The ``func`` argument must hold a function
8131bitcast to an ``i8*``.
8132
8133Semantics:
8134""""""""""
8135
8136The block of memory pointed to by ``tramp`` is filled with target
8137dependent code, turning it into a function. Then ``tramp`` needs to be
8138passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8139be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8140function's signature is the same as that of ``func`` with any arguments
8141marked with the ``nest`` attribute removed. At most one such ``nest``
8142argument is allowed, and it must be of pointer type. Calling the new
8143function is equivalent to calling ``func`` with the same argument list,
8144but with ``nval`` used for the missing ``nest`` argument. If, after
8145calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8146modified, then the effect of any later call to the returned function
8147pointer is undefined.
8148
8149.. _int_at:
8150
8151'``llvm.adjust.trampoline``' Intrinsic
8152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8153
8154Syntax:
8155"""""""
8156
8157::
8158
8159 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8160
8161Overview:
8162"""""""""
8163
8164This performs any required machine-specific adjustment to the address of
8165a trampoline (passed as ``tramp``).
8166
8167Arguments:
8168""""""""""
8169
8170``tramp`` must point to a block of memory which already has trampoline
8171code filled in by a previous call to
8172:ref:`llvm.init.trampoline <int_it>`.
8173
8174Semantics:
8175""""""""""
8176
8177On some architectures the address of the code to be executed needs to be
8178different to the address where the trampoline is actually stored. This
8179intrinsic returns the executable address corresponding to ``tramp``
8180after performing the required machine specific adjustments. The pointer
8181returned can then be :ref:`bitcast and executed <int_trampoline>`.
8182
8183Memory Use Markers
8184------------------
8185
8186This class of intrinsics exists to information about the lifetime of
8187memory objects and ranges where variables are immutable.
8188
8189'``llvm.lifetime.start``' Intrinsic
8190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8191
8192Syntax:
8193"""""""
8194
8195::
8196
8197 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8198
8199Overview:
8200"""""""""
8201
8202The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8203object's lifetime.
8204
8205Arguments:
8206""""""""""
8207
8208The first argument is a constant integer representing the size of the
8209object, or -1 if it is variable sized. The second argument is a pointer
8210to the object.
8211
8212Semantics:
8213""""""""""
8214
8215This intrinsic indicates that before this point in the code, the value
8216of the memory pointed to by ``ptr`` is dead. This means that it is known
8217to never be used and has an undefined value. A load from the pointer
8218that precedes this intrinsic can be replaced with ``'undef'``.
8219
8220'``llvm.lifetime.end``' Intrinsic
8221^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8222
8223Syntax:
8224"""""""
8225
8226::
8227
8228 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8229
8230Overview:
8231"""""""""
8232
8233The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8234object's lifetime.
8235
8236Arguments:
8237""""""""""
8238
8239The first argument is a constant integer representing the size of the
8240object, or -1 if it is variable sized. The second argument is a pointer
8241to the object.
8242
8243Semantics:
8244""""""""""
8245
8246This intrinsic indicates that after this point in the code, the value of
8247the memory pointed to by ``ptr`` is dead. This means that it is known to
8248never be used and has an undefined value. Any stores into the memory
8249object following this intrinsic may be removed as dead.
8250
8251'``llvm.invariant.start``' Intrinsic
8252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8253
8254Syntax:
8255"""""""
8256
8257::
8258
8259 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8260
8261Overview:
8262"""""""""
8263
8264The '``llvm.invariant.start``' intrinsic specifies that the contents of
8265a memory object will not change.
8266
8267Arguments:
8268""""""""""
8269
8270The first argument is a constant integer representing the size of the
8271object, or -1 if it is variable sized. The second argument is a pointer
8272to the object.
8273
8274Semantics:
8275""""""""""
8276
8277This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8278the return value, the referenced memory location is constant and
8279unchanging.
8280
8281'``llvm.invariant.end``' Intrinsic
8282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8283
8284Syntax:
8285"""""""
8286
8287::
8288
8289 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8290
8291Overview:
8292"""""""""
8293
8294The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8295memory object are mutable.
8296
8297Arguments:
8298""""""""""
8299
8300The first argument is the matching ``llvm.invariant.start`` intrinsic.
8301The second argument is a constant integer representing the size of the
8302object, or -1 if it is variable sized and the third argument is a
8303pointer to the object.
8304
8305Semantics:
8306""""""""""
8307
8308This intrinsic indicates that the memory is mutable again.
8309
8310General Intrinsics
8311------------------
8312
8313This class of intrinsics is designed to be generic and has no specific
8314purpose.
8315
8316'``llvm.var.annotation``' Intrinsic
8317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8318
8319Syntax:
8320"""""""
8321
8322::
8323
8324 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8325
8326Overview:
8327"""""""""
8328
8329The '``llvm.var.annotation``' intrinsic.
8330
8331Arguments:
8332""""""""""
8333
8334The first argument is a pointer to a value, the second is a pointer to a
8335global string, the third is a pointer to a global string which is the
8336source file name, and the last argument is the line number.
8337
8338Semantics:
8339""""""""""
8340
8341This intrinsic allows annotation of local variables with arbitrary
8342strings. This can be useful for special purpose optimizations that want
8343to look for these annotations. These have no other defined use; they are
8344ignored by code generation and optimization.
8345
Michael Gottesman872b4e52013-03-26 00:34:27 +00008346'``llvm.ptr.annotation.*``' Intrinsic
8347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8348
8349Syntax:
8350"""""""
8351
8352This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8353pointer to an integer of any width. *NOTE* you must specify an address space for
8354the pointer. The identifier for the default address space is the integer
8355'``0``'.
8356
8357::
8358
8359 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8360 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8361 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8362 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8363 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8364
8365Overview:
8366"""""""""
8367
8368The '``llvm.ptr.annotation``' intrinsic.
8369
8370Arguments:
8371""""""""""
8372
8373The first argument is a pointer to an integer value of arbitrary bitwidth
8374(result of some expression), the second is a pointer to a global string, the
8375third is a pointer to a global string which is the source file name, and the
8376last argument is the line number. It returns the value of the first argument.
8377
8378Semantics:
8379""""""""""
8380
8381This intrinsic allows annotation of a pointer to an integer with arbitrary
8382strings. This can be useful for special purpose optimizations that want to look
8383for these annotations. These have no other defined use; they are ignored by code
8384generation and optimization.
8385
Sean Silvaf722b002012-12-07 10:36:55 +00008386'``llvm.annotation.*``' Intrinsic
8387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8388
8389Syntax:
8390"""""""
8391
8392This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8393any integer bit width.
8394
8395::
8396
8397 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8398 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8399 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8400 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8401 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8402
8403Overview:
8404"""""""""
8405
8406The '``llvm.annotation``' intrinsic.
8407
8408Arguments:
8409""""""""""
8410
8411The first argument is an integer value (result of some expression), the
8412second is a pointer to a global string, the third is a pointer to a
8413global string which is the source file name, and the last argument is
8414the line number. It returns the value of the first argument.
8415
8416Semantics:
8417""""""""""
8418
8419This intrinsic allows annotations to be put on arbitrary expressions
8420with arbitrary strings. This can be useful for special purpose
8421optimizations that want to look for these annotations. These have no
8422other defined use; they are ignored by code generation and optimization.
8423
8424'``llvm.trap``' Intrinsic
8425^^^^^^^^^^^^^^^^^^^^^^^^^
8426
8427Syntax:
8428"""""""
8429
8430::
8431
8432 declare void @llvm.trap() noreturn nounwind
8433
8434Overview:
8435"""""""""
8436
8437The '``llvm.trap``' intrinsic.
8438
8439Arguments:
8440""""""""""
8441
8442None.
8443
8444Semantics:
8445""""""""""
8446
8447This intrinsic is lowered to the target dependent trap instruction. If
8448the target does not have a trap instruction, this intrinsic will be
8449lowered to a call of the ``abort()`` function.
8450
8451'``llvm.debugtrap``' Intrinsic
8452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8453
8454Syntax:
8455"""""""
8456
8457::
8458
8459 declare void @llvm.debugtrap() nounwind
8460
8461Overview:
8462"""""""""
8463
8464The '``llvm.debugtrap``' intrinsic.
8465
8466Arguments:
8467""""""""""
8468
8469None.
8470
8471Semantics:
8472""""""""""
8473
8474This intrinsic is lowered to code which is intended to cause an
8475execution trap with the intention of requesting the attention of a
8476debugger.
8477
8478'``llvm.stackprotector``' Intrinsic
8479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8480
8481Syntax:
8482"""""""
8483
8484::
8485
8486 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8487
8488Overview:
8489"""""""""
8490
8491The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8492onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8493is placed on the stack before local variables.
8494
8495Arguments:
8496""""""""""
8497
8498The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8499The first argument is the value loaded from the stack guard
8500``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8501enough space to hold the value of the guard.
8502
8503Semantics:
8504""""""""""
8505
8506This intrinsic causes the prologue/epilogue inserter to force the
8507position of the ``AllocaInst`` stack slot to be before local variables
8508on the stack. This is to ensure that if a local variable on the stack is
8509overwritten, it will destroy the value of the guard. When the function
8510exits, the guard on the stack is checked against the original guard. If
8511they are different, then the program aborts by calling the
8512``__stack_chk_fail()`` function.
8513
8514'``llvm.objectsize``' Intrinsic
8515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8516
8517Syntax:
8518"""""""
8519
8520::
8521
8522 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8523 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8524
8525Overview:
8526"""""""""
8527
8528The ``llvm.objectsize`` intrinsic is designed to provide information to
8529the optimizers to determine at compile time whether a) an operation
8530(like memcpy) will overflow a buffer that corresponds to an object, or
8531b) that a runtime check for overflow isn't necessary. An object in this
8532context means an allocation of a specific class, structure, array, or
8533other object.
8534
8535Arguments:
8536""""""""""
8537
8538The ``llvm.objectsize`` intrinsic takes two arguments. The first
8539argument is a pointer to or into the ``object``. The second argument is
8540a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8541or -1 (if false) when the object size is unknown. The second argument
8542only accepts constants.
8543
8544Semantics:
8545""""""""""
8546
8547The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8548the size of the object concerned. If the size cannot be determined at
8549compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8550on the ``min`` argument).
8551
8552'``llvm.expect``' Intrinsic
8553^^^^^^^^^^^^^^^^^^^^^^^^^^^
8554
8555Syntax:
8556"""""""
8557
8558::
8559
8560 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8561 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8562
8563Overview:
8564"""""""""
8565
8566The ``llvm.expect`` intrinsic provides information about expected (the
8567most probable) value of ``val``, which can be used by optimizers.
8568
8569Arguments:
8570""""""""""
8571
8572The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8573a value. The second argument is an expected value, this needs to be a
8574constant value, variables are not allowed.
8575
8576Semantics:
8577""""""""""
8578
8579This intrinsic is lowered to the ``val``.
8580
8581'``llvm.donothing``' Intrinsic
8582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8583
8584Syntax:
8585"""""""
8586
8587::
8588
8589 declare void @llvm.donothing() nounwind readnone
8590
8591Overview:
8592"""""""""
8593
8594The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8595only intrinsic that can be called with an invoke instruction.
8596
8597Arguments:
8598""""""""""
8599
8600None.
8601
8602Semantics:
8603""""""""""
8604
8605This intrinsic does nothing, and it's removed by optimizers and ignored
8606by codegen.