blob: f772db9be2078f0ecaa24a633e1af438be6dbe9c [file] [log] [blame]
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01001// Copyright 2012 the V8 project authors. All rights reserved.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_ARM)
31
32#include "bootstrapper.h"
33#include "code-stubs.h"
34#include "regexp-macro-assembler.h"
35
36namespace v8 {
37namespace internal {
38
39
40#define __ ACCESS_MASM(masm)
41
42static void EmitIdenticalObjectComparison(MacroAssembler* masm,
43 Label* slow,
Steve Block1e0659c2011-05-24 12:43:12 +010044 Condition cond,
Kristian Monsen80d68ea2010-09-08 11:05:35 +010045 bool never_nan_nan);
46static void EmitSmiNonsmiComparison(MacroAssembler* masm,
47 Register lhs,
48 Register rhs,
49 Label* lhs_not_nan,
50 Label* slow,
51 bool strict);
Steve Block1e0659c2011-05-24 12:43:12 +010052static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond);
Kristian Monsen80d68ea2010-09-08 11:05:35 +010053static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
54 Register lhs,
55 Register rhs);
56
57
Ben Murdoch257744e2011-11-30 15:57:28 +000058// Check if the operand is a heap number.
59static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
60 Register scratch1, Register scratch2,
61 Label* not_a_heap_number) {
62 __ ldr(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
63 __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
64 __ cmp(scratch1, scratch2);
65 __ b(ne, not_a_heap_number);
66}
67
68
Steve Block1e0659c2011-05-24 12:43:12 +010069void ToNumberStub::Generate(MacroAssembler* masm) {
70 // The ToNumber stub takes one argument in eax.
71 Label check_heap_number, call_builtin;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +000072 __ JumpIfNotSmi(r0, &check_heap_number);
Steve Block1e0659c2011-05-24 12:43:12 +010073 __ Ret();
74
75 __ bind(&check_heap_number);
Ben Murdoch257744e2011-11-30 15:57:28 +000076 EmitCheckForHeapNumber(masm, r0, r1, ip, &call_builtin);
Steve Block1e0659c2011-05-24 12:43:12 +010077 __ Ret();
78
79 __ bind(&call_builtin);
80 __ push(r0);
Ben Murdoch257744e2011-11-30 15:57:28 +000081 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +010082}
83
84
Kristian Monsen80d68ea2010-09-08 11:05:35 +010085void FastNewClosureStub::Generate(MacroAssembler* masm) {
86 // Create a new closure from the given function info in new
87 // space. Set the context to the current context in cp.
88 Label gc;
89
90 // Pop the function info from the stack.
91 __ pop(r3);
92
93 // Attempt to allocate new JSFunction in new space.
94 __ AllocateInNewSpace(JSFunction::kSize,
95 r0,
96 r1,
97 r2,
98 &gc,
99 TAG_OBJECT);
100
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000101 int map_index = (language_mode_ == CLASSIC_MODE)
102 ? Context::FUNCTION_MAP_INDEX
103 : Context::STRICT_MODE_FUNCTION_MAP_INDEX;
Steve Block44f0eee2011-05-26 01:26:41 +0100104
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100105 // Compute the function map in the current global context and set that
106 // as the map of the allocated object.
107 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
108 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
Steve Block44f0eee2011-05-26 01:26:41 +0100109 __ ldr(r2, MemOperand(r2, Context::SlotOffset(map_index)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100110 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
111
112 // Initialize the rest of the function. We don't have to update the
113 // write barrier because the allocated object is in new space.
114 __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
115 __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100116 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100117 __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
118 __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
119 __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
120 __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
121 __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
122 __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
Ben Murdochb0fe1622011-05-05 13:52:32 +0100123 __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset));
124
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100125 // Initialize the code pointer in the function to be the one
126 // found in the shared function info object.
127 __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
128 __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
129 __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
130
131 // Return result. The argument function info has been popped already.
132 __ Ret();
133
134 // Create a new closure through the slower runtime call.
135 __ bind(&gc);
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800136 __ LoadRoot(r4, Heap::kFalseValueRootIndex);
137 __ Push(cp, r3, r4);
138 __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100139}
140
141
142void FastNewContextStub::Generate(MacroAssembler* masm) {
143 // Try to allocate the context in new space.
144 Label gc;
145 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
146
147 // Attempt to allocate the context in new space.
148 __ AllocateInNewSpace(FixedArray::SizeFor(length),
149 r0,
150 r1,
151 r2,
152 &gc,
153 TAG_OBJECT);
154
155 // Load the function from the stack.
156 __ ldr(r3, MemOperand(sp, 0));
157
Ben Murdochc7cc0282012-03-05 14:35:55 +0000158 // Set up the object header.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +0100159 __ LoadRoot(r1, Heap::kFunctionContextMapRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100160 __ mov(r2, Operand(Smi::FromInt(length)));
161 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +0100162 __ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100163
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +0100164 // Set up the fixed slots, copy the global object from the previous context.
165 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100166 __ mov(r1, Operand(Smi::FromInt(0)));
167 __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000168 __ str(cp, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100169 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +0100170 __ str(r2, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100171
172 // Initialize the rest of the slots to undefined.
173 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
174 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
175 __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
176 }
177
178 // Remove the on-stack argument and return.
179 __ mov(cp, r0);
180 __ pop();
181 __ Ret();
182
183 // Need to collect. Call into runtime system.
184 __ bind(&gc);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000185 __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100186}
187
188
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000189void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
190 // Stack layout on entry:
191 //
192 // [sp]: function.
193 // [sp + kPointerSize]: serialized scope info
194
195 // Try to allocate the context in new space.
196 Label gc;
197 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
198 __ AllocateInNewSpace(FixedArray::SizeFor(length),
199 r0, r1, r2, &gc, TAG_OBJECT);
200
201 // Load the function from the stack.
202 __ ldr(r3, MemOperand(sp, 0));
203
204 // Load the serialized scope info from the stack.
205 __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
206
Ben Murdochc7cc0282012-03-05 14:35:55 +0000207 // Set up the object header.
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000208 __ LoadRoot(r2, Heap::kBlockContextMapRootIndex);
209 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
210 __ mov(r2, Operand(Smi::FromInt(length)));
211 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
212
213 // If this block context is nested in the global context we get a smi
214 // sentinel instead of a function. The block context should get the
215 // canonical empty function of the global context as its closure which
216 // we still have to look up.
217 Label after_sentinel;
218 __ JumpIfNotSmi(r3, &after_sentinel);
219 if (FLAG_debug_code) {
220 const char* message = "Expected 0 as a Smi sentinel";
221 __ cmp(r3, Operand::Zero());
222 __ Assert(eq, message);
223 }
224 __ ldr(r3, GlobalObjectOperand());
225 __ ldr(r3, FieldMemOperand(r3, GlobalObject::kGlobalContextOffset));
226 __ ldr(r3, ContextOperand(r3, Context::CLOSURE_INDEX));
227 __ bind(&after_sentinel);
228
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +0100229 // Set up the fixed slots, copy the global object from the previous context.
230 __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX));
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000231 __ str(r3, ContextOperand(r0, Context::CLOSURE_INDEX));
232 __ str(cp, ContextOperand(r0, Context::PREVIOUS_INDEX));
233 __ str(r1, ContextOperand(r0, Context::EXTENSION_INDEX));
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +0100234 __ str(r2, ContextOperand(r0, Context::GLOBAL_INDEX));
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000235
236 // Initialize the rest of the slots to the hole value.
237 __ LoadRoot(r1, Heap::kTheHoleValueRootIndex);
238 for (int i = 0; i < slots_; i++) {
239 __ str(r1, ContextOperand(r0, i + Context::MIN_CONTEXT_SLOTS));
240 }
241
242 // Remove the on-stack argument and return.
243 __ mov(cp, r0);
244 __ add(sp, sp, Operand(2 * kPointerSize));
245 __ Ret();
246
247 // Need to collect. Call into runtime system.
248 __ bind(&gc);
249 __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
250}
251
252
253static void GenerateFastCloneShallowArrayCommon(
254 MacroAssembler* masm,
255 int length,
256 FastCloneShallowArrayStub::Mode mode,
257 Label* fail) {
258 // Registers on entry:
259 //
260 // r3: boilerplate literal array.
261 ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);
262
263 // All sizes here are multiples of kPointerSize.
264 int elements_size = 0;
265 if (length > 0) {
266 elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
267 ? FixedDoubleArray::SizeFor(length)
268 : FixedArray::SizeFor(length);
269 }
270 int size = JSArray::kSize + elements_size;
271
272 // Allocate both the JS array and the elements array in one big
273 // allocation. This avoids multiple limit checks.
274 __ AllocateInNewSpace(size,
275 r0,
276 r1,
277 r2,
278 fail,
279 TAG_OBJECT);
280
281 // Copy the JS array part.
282 for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
283 if ((i != JSArray::kElementsOffset) || (length == 0)) {
284 __ ldr(r1, FieldMemOperand(r3, i));
285 __ str(r1, FieldMemOperand(r0, i));
286 }
287 }
288
289 if (length > 0) {
290 // Get hold of the elements array of the boilerplate and setup the
291 // elements pointer in the resulting object.
292 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
293 __ add(r2, r0, Operand(JSArray::kSize));
294 __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
295
296 // Copy the elements array.
297 ASSERT((elements_size % kPointerSize) == 0);
298 __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize);
299 }
300}
301
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100302void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
303 // Stack layout on entry:
304 //
305 // [sp]: constant elements.
306 // [sp + kPointerSize]: literal index.
307 // [sp + (2 * kPointerSize)]: literals array.
308
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100309 // Load boilerplate object into r3 and check if we need to create a
310 // boilerplate.
311 Label slow_case;
312 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
313 __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
314 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
315 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000316 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100317 __ b(eq, &slow_case);
318
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000319 FastCloneShallowArrayStub::Mode mode = mode_;
320 if (mode == CLONE_ANY_ELEMENTS) {
321 Label double_elements, check_fast_elements;
322 __ ldr(r0, FieldMemOperand(r3, JSArray::kElementsOffset));
323 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +0100324 __ CompareRoot(r0, Heap::kFixedCOWArrayMapRootIndex);
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000325 __ b(ne, &check_fast_elements);
326 GenerateFastCloneShallowArrayCommon(masm, 0,
327 COPY_ON_WRITE_ELEMENTS, &slow_case);
328 // Return and remove the on-stack parameters.
329 __ add(sp, sp, Operand(3 * kPointerSize));
330 __ Ret();
331
332 __ bind(&check_fast_elements);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +0100333 __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000334 __ b(ne, &double_elements);
335 GenerateFastCloneShallowArrayCommon(masm, length_,
336 CLONE_ELEMENTS, &slow_case);
337 // Return and remove the on-stack parameters.
338 __ add(sp, sp, Operand(3 * kPointerSize));
339 __ Ret();
340
341 __ bind(&double_elements);
342 mode = CLONE_DOUBLE_ELEMENTS;
343 // Fall through to generate the code to handle double elements.
344 }
345
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100346 if (FLAG_debug_code) {
347 const char* message;
348 Heap::RootListIndex expected_map_index;
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000349 if (mode == CLONE_ELEMENTS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100350 message = "Expected (writable) fixed array";
351 expected_map_index = Heap::kFixedArrayMapRootIndex;
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000352 } else if (mode == CLONE_DOUBLE_ELEMENTS) {
353 message = "Expected (writable) fixed double array";
354 expected_map_index = Heap::kFixedDoubleArrayMapRootIndex;
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100355 } else {
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000356 ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100357 message = "Expected copy-on-write fixed array";
358 expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
359 }
360 __ push(r3);
361 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
362 __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000363 __ CompareRoot(r3, expected_map_index);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100364 __ Assert(eq, message);
365 __ pop(r3);
366 }
367
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000368 GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100369
370 // Return and remove the on-stack parameters.
371 __ add(sp, sp, Operand(3 * kPointerSize));
372 __ Ret();
373
374 __ bind(&slow_case);
375 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
376}
377
378
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000379void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) {
380 // Stack layout on entry:
381 //
382 // [sp]: object literal flags.
383 // [sp + kPointerSize]: constant properties.
384 // [sp + (2 * kPointerSize)]: literal index.
385 // [sp + (3 * kPointerSize)]: literals array.
386
387 // Load boilerplate object into r3 and check if we need to create a
388 // boilerplate.
389 Label slow_case;
390 __ ldr(r3, MemOperand(sp, 3 * kPointerSize));
391 __ ldr(r0, MemOperand(sp, 2 * kPointerSize));
392 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
393 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
394 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
395 __ b(eq, &slow_case);
396
397 // Check that the boilerplate contains only fast properties and we can
398 // statically determine the instance size.
399 int size = JSObject::kHeaderSize + length_ * kPointerSize;
400 __ ldr(r0, FieldMemOperand(r3, HeapObject::kMapOffset));
401 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceSizeOffset));
402 __ cmp(r0, Operand(size >> kPointerSizeLog2));
403 __ b(ne, &slow_case);
404
405 // Allocate the JS object and copy header together with all in-object
406 // properties from the boilerplate.
407 __ AllocateInNewSpace(size, r0, r1, r2, &slow_case, TAG_OBJECT);
408 for (int i = 0; i < size; i += kPointerSize) {
409 __ ldr(r1, FieldMemOperand(r3, i));
410 __ str(r1, FieldMemOperand(r0, i));
411 }
412
413 // Return and remove the on-stack parameters.
414 __ add(sp, sp, Operand(4 * kPointerSize));
415 __ Ret();
416
417 __ bind(&slow_case);
418 __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1);
419}
420
421
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100422// Takes a Smi and converts to an IEEE 64 bit floating point value in two
423// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
424// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
425// scratch register. Destroys the source register. No GC occurs during this
426// stub so you don't have to set up the frame.
427class ConvertToDoubleStub : public CodeStub {
428 public:
429 ConvertToDoubleStub(Register result_reg_1,
430 Register result_reg_2,
431 Register source_reg,
432 Register scratch_reg)
433 : result1_(result_reg_1),
434 result2_(result_reg_2),
435 source_(source_reg),
436 zeros_(scratch_reg) { }
437
438 private:
439 Register result1_;
440 Register result2_;
441 Register source_;
442 Register zeros_;
443
444 // Minor key encoding in 16 bits.
445 class ModeBits: public BitField<OverwriteMode, 0, 2> {};
446 class OpBits: public BitField<Token::Value, 2, 14> {};
447
448 Major MajorKey() { return ConvertToDouble; }
449 int MinorKey() {
450 // Encode the parameters in a unique 16 bit value.
451 return result1_.code() +
452 (result2_.code() << 4) +
453 (source_.code() << 8) +
454 (zeros_.code() << 12);
455 }
456
457 void Generate(MacroAssembler* masm);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100458};
459
460
461void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100462 Register exponent = result1_;
463 Register mantissa = result2_;
Ben Murdoch8b112d22011-06-08 16:22:53 +0100464
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100465 Label not_special;
466 // Convert from Smi to integer.
467 __ mov(source_, Operand(source_, ASR, kSmiTagSize));
468 // Move sign bit from source to destination. This works because the sign bit
469 // in the exponent word of the double has the same position and polarity as
470 // the 2's complement sign bit in a Smi.
471 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
472 __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
473 // Subtract from 0 if source was negative.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100474 __ rsb(source_, source_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100475
476 // We have -1, 0 or 1, which we treat specially. Register source_ contains
477 // absolute value: it is either equal to 1 (special case of -1 and 1),
478 // greater than 1 (not a special case) or less than 1 (special case of 0).
479 __ cmp(source_, Operand(1));
480 __ b(gt, &not_special);
481
482 // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +0100483 const uint32_t exponent_word_for_1 =
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100484 HeapNumber::kExponentBias << HeapNumber::kExponentShift;
485 __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
486 // 1, 0 and -1 all have 0 for the second word.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100487 __ mov(mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100488 __ Ret();
489
490 __ bind(&not_special);
491 // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5.
492 // Gets the wrong answer for 0, but we already checked for that case above.
493 __ CountLeadingZeros(zeros_, source_, mantissa);
494 // Compute exponent and or it into the exponent register.
495 // We use mantissa as a scratch register here. Use a fudge factor to
496 // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
497 // that fit in the ARM's constant field.
498 int fudge = 0x400;
499 __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
500 __ add(mantissa, mantissa, Operand(fudge));
501 __ orr(exponent,
502 exponent,
503 Operand(mantissa, LSL, HeapNumber::kExponentShift));
504 // Shift up the source chopping the top bit off.
505 __ add(zeros_, zeros_, Operand(1));
506 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
507 __ mov(source_, Operand(source_, LSL, zeros_));
508 // Compute lower part of fraction (last 12 bits).
509 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
510 // And the top (top 20 bits).
511 __ orr(exponent,
512 exponent,
513 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
514 __ Ret();
515}
516
517
Steve Block1e0659c2011-05-24 12:43:12 +0100518void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
519 FloatingPointHelper::Destination destination,
520 Register scratch1,
521 Register scratch2) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100522 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +0100523 CpuFeatures::Scope scope(VFP3);
524 __ mov(scratch1, Operand(r0, ASR, kSmiTagSize));
525 __ vmov(d7.high(), scratch1);
526 __ vcvt_f64_s32(d7, d7.high());
527 __ mov(scratch1, Operand(r1, ASR, kSmiTagSize));
528 __ vmov(d6.high(), scratch1);
529 __ vcvt_f64_s32(d6, d6.high());
530 if (destination == kCoreRegisters) {
531 __ vmov(r2, r3, d7);
532 __ vmov(r0, r1, d6);
533 }
534 } else {
535 ASSERT(destination == kCoreRegisters);
536 // Write Smi from r0 to r3 and r2 in double format.
537 __ mov(scratch1, Operand(r0));
538 ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2);
539 __ push(lr);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000540 __ Call(stub1.GetCode());
Ben Murdoch8b112d22011-06-08 16:22:53 +0100541 // Write Smi from r1 to r1 and r0 in double format.
Steve Block1e0659c2011-05-24 12:43:12 +0100542 __ mov(scratch1, Operand(r1));
543 ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000544 __ Call(stub2.GetCode());
Steve Block1e0659c2011-05-24 12:43:12 +0100545 __ pop(lr);
546 }
547}
548
549
550void FloatingPointHelper::LoadOperands(
551 MacroAssembler* masm,
552 FloatingPointHelper::Destination destination,
553 Register heap_number_map,
554 Register scratch1,
555 Register scratch2,
556 Label* slow) {
557
558 // Load right operand (r0) to d6 or r2/r3.
559 LoadNumber(masm, destination,
560 r0, d7, r2, r3, heap_number_map, scratch1, scratch2, slow);
561
562 // Load left operand (r1) to d7 or r0/r1.
563 LoadNumber(masm, destination,
564 r1, d6, r0, r1, heap_number_map, scratch1, scratch2, slow);
565}
566
567
568void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
569 Destination destination,
570 Register object,
571 DwVfpRegister dst,
572 Register dst1,
573 Register dst2,
574 Register heap_number_map,
575 Register scratch1,
576 Register scratch2,
577 Label* not_number) {
578 if (FLAG_debug_code) {
579 __ AbortIfNotRootValue(heap_number_map,
580 Heap::kHeapNumberMapRootIndex,
581 "HeapNumberMap register clobbered.");
582 }
583
584 Label is_smi, done;
585
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +0100586 // Smi-check
587 __ UntagAndJumpIfSmi(scratch1, object, &is_smi);
588 // Heap number check
Steve Block1e0659c2011-05-24 12:43:12 +0100589 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
590
591 // Handle loading a double from a heap number.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100592 if (CpuFeatures::IsSupported(VFP3) &&
Steve Block44f0eee2011-05-26 01:26:41 +0100593 destination == kVFPRegisters) {
Steve Block1e0659c2011-05-24 12:43:12 +0100594 CpuFeatures::Scope scope(VFP3);
595 // Load the double from tagged HeapNumber to double register.
596 __ sub(scratch1, object, Operand(kHeapObjectTag));
597 __ vldr(dst, scratch1, HeapNumber::kValueOffset);
598 } else {
599 ASSERT(destination == kCoreRegisters);
600 // Load the double from heap number to dst1 and dst2 in double format.
601 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
602 }
603 __ jmp(&done);
604
605 // Handle loading a double from a smi.
606 __ bind(&is_smi);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100607 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +0100608 CpuFeatures::Scope scope(VFP3);
609 // Convert smi to double using VFP instructions.
Steve Block1e0659c2011-05-24 12:43:12 +0100610 __ vmov(dst.high(), scratch1);
611 __ vcvt_f64_s32(dst, dst.high());
612 if (destination == kCoreRegisters) {
613 // Load the converted smi to dst1 and dst2 in double format.
614 __ vmov(dst1, dst2, dst);
615 }
616 } else {
617 ASSERT(destination == kCoreRegisters);
618 // Write smi to dst1 and dst2 double format.
619 __ mov(scratch1, Operand(object));
620 ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
621 __ push(lr);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000622 __ Call(stub.GetCode());
Steve Block1e0659c2011-05-24 12:43:12 +0100623 __ pop(lr);
624 }
625
626 __ bind(&done);
627}
628
629
Steve Block44f0eee2011-05-26 01:26:41 +0100630void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
631 Register object,
632 Register dst,
633 Register heap_number_map,
634 Register scratch1,
635 Register scratch2,
636 Register scratch3,
637 DwVfpRegister double_scratch,
638 Label* not_number) {
Steve Block1e0659c2011-05-24 12:43:12 +0100639 if (FLAG_debug_code) {
640 __ AbortIfNotRootValue(heap_number_map,
641 Heap::kHeapNumberMapRootIndex,
642 "HeapNumberMap register clobbered.");
643 }
Steve Block44f0eee2011-05-26 01:26:41 +0100644 Label done;
645 Label not_in_int32_range;
646
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +0100647 __ UntagAndJumpIfSmi(dst, object, &done);
Steve Block1e0659c2011-05-24 12:43:12 +0100648 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
649 __ cmp(scratch1, heap_number_map);
Steve Block44f0eee2011-05-26 01:26:41 +0100650 __ b(ne, not_number);
651 __ ConvertToInt32(object,
652 dst,
653 scratch1,
654 scratch2,
655 double_scratch,
656 &not_in_int32_range);
Steve Block1e0659c2011-05-24 12:43:12 +0100657 __ jmp(&done);
Steve Block44f0eee2011-05-26 01:26:41 +0100658
659 __ bind(&not_in_int32_range);
660 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
661 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
662
663 __ EmitOutOfInt32RangeTruncate(dst,
664 scratch1,
665 scratch2,
666 scratch3);
Steve Block1e0659c2011-05-24 12:43:12 +0100667 __ bind(&done);
668}
669
670
Ben Murdoch257744e2011-11-30 15:57:28 +0000671void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
672 Register int_scratch,
673 Destination destination,
674 DwVfpRegister double_dst,
675 Register dst1,
676 Register dst2,
677 Register scratch2,
678 SwVfpRegister single_scratch) {
679 ASSERT(!int_scratch.is(scratch2));
680 ASSERT(!int_scratch.is(dst1));
681 ASSERT(!int_scratch.is(dst2));
682
683 Label done;
684
685 if (CpuFeatures::IsSupported(VFP3)) {
686 CpuFeatures::Scope scope(VFP3);
687 __ vmov(single_scratch, int_scratch);
688 __ vcvt_f64_s32(double_dst, single_scratch);
689 if (destination == kCoreRegisters) {
690 __ vmov(dst1, dst2, double_dst);
691 }
692 } else {
693 Label fewer_than_20_useful_bits;
694 // Expected output:
695 // | dst2 | dst1 |
696 // | s | exp | mantissa |
697
698 // Check for zero.
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000699 __ cmp(int_scratch, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +0000700 __ mov(dst2, int_scratch);
701 __ mov(dst1, int_scratch);
702 __ b(eq, &done);
703
704 // Preload the sign of the value.
705 __ and_(dst2, int_scratch, Operand(HeapNumber::kSignMask), SetCC);
706 // Get the absolute value of the object (as an unsigned integer).
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000707 __ rsb(int_scratch, int_scratch, Operand::Zero(), SetCC, mi);
Ben Murdoch257744e2011-11-30 15:57:28 +0000708
Ben Murdochc7cc0282012-03-05 14:35:55 +0000709 // Get mantissa[51:20].
Ben Murdoch257744e2011-11-30 15:57:28 +0000710
711 // Get the position of the first set bit.
712 __ CountLeadingZeros(dst1, int_scratch, scratch2);
713 __ rsb(dst1, dst1, Operand(31));
714
715 // Set the exponent.
716 __ add(scratch2, dst1, Operand(HeapNumber::kExponentBias));
717 __ Bfi(dst2, scratch2, scratch2,
718 HeapNumber::kExponentShift, HeapNumber::kExponentBits);
719
720 // Clear the first non null bit.
721 __ mov(scratch2, Operand(1));
722 __ bic(int_scratch, int_scratch, Operand(scratch2, LSL, dst1));
723
724 __ cmp(dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
725 // Get the number of bits to set in the lower part of the mantissa.
726 __ sub(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
727 __ b(mi, &fewer_than_20_useful_bits);
728 // Set the higher 20 bits of the mantissa.
729 __ orr(dst2, dst2, Operand(int_scratch, LSR, scratch2));
730 __ rsb(scratch2, scratch2, Operand(32));
731 __ mov(dst1, Operand(int_scratch, LSL, scratch2));
732 __ b(&done);
733
734 __ bind(&fewer_than_20_useful_bits);
735 __ rsb(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
736 __ mov(scratch2, Operand(int_scratch, LSL, scratch2));
737 __ orr(dst2, dst2, scratch2);
738 // Set dst1 to 0.
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000739 __ mov(dst1, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +0000740 }
741 __ bind(&done);
742}
743
744
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100745void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
746 Register object,
747 Destination destination,
748 DwVfpRegister double_dst,
749 Register dst1,
750 Register dst2,
751 Register heap_number_map,
752 Register scratch1,
753 Register scratch2,
754 SwVfpRegister single_scratch,
755 Label* not_int32) {
756 ASSERT(!scratch1.is(object) && !scratch2.is(object));
757 ASSERT(!scratch1.is(scratch2));
758 ASSERT(!heap_number_map.is(object) &&
759 !heap_number_map.is(scratch1) &&
760 !heap_number_map.is(scratch2));
761
762 Label done, obj_is_not_smi;
763
764 __ JumpIfNotSmi(object, &obj_is_not_smi);
765 __ SmiUntag(scratch1, object);
Ben Murdoch257744e2011-11-30 15:57:28 +0000766 ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2,
767 scratch2, single_scratch);
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100768 __ b(&done);
769
770 __ bind(&obj_is_not_smi);
771 if (FLAG_debug_code) {
772 __ AbortIfNotRootValue(heap_number_map,
773 Heap::kHeapNumberMapRootIndex,
774 "HeapNumberMap register clobbered.");
775 }
776 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
777
778 // Load the number.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100779 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100780 CpuFeatures::Scope scope(VFP3);
781 // Load the double value.
782 __ sub(scratch1, object, Operand(kHeapObjectTag));
783 __ vldr(double_dst, scratch1, HeapNumber::kValueOffset);
784
785 __ EmitVFPTruncate(kRoundToZero,
786 single_scratch,
787 double_dst,
788 scratch1,
789 scratch2,
790 kCheckForInexactConversion);
791
792 // Jump to not_int32 if the operation did not succeed.
793 __ b(ne, not_int32);
794
795 if (destination == kCoreRegisters) {
796 __ vmov(dst1, dst2, double_dst);
797 }
798
799 } else {
800 ASSERT(!scratch1.is(object) && !scratch2.is(object));
801 // Load the double value in the destination registers..
802 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
803
804 // Check for 0 and -0.
805 __ bic(scratch1, dst1, Operand(HeapNumber::kSignMask));
806 __ orr(scratch1, scratch1, Operand(dst2));
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000807 __ cmp(scratch1, Operand::Zero());
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100808 __ b(eq, &done);
809
810 // Check that the value can be exactly represented by a 32-bit integer.
811 // Jump to not_int32 if that's not the case.
812 DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
813
814 // dst1 and dst2 were trashed. Reload the double value.
815 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
816 }
817
818 __ bind(&done);
819}
820
821
822void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
823 Register object,
824 Register dst,
825 Register heap_number_map,
826 Register scratch1,
827 Register scratch2,
828 Register scratch3,
829 DwVfpRegister double_scratch,
830 Label* not_int32) {
831 ASSERT(!dst.is(object));
832 ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
833 ASSERT(!scratch1.is(scratch2) &&
834 !scratch1.is(scratch3) &&
835 !scratch2.is(scratch3));
836
837 Label done;
838
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +0100839 __ UntagAndJumpIfSmi(dst, object, &done);
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100840
841 if (FLAG_debug_code) {
842 __ AbortIfNotRootValue(heap_number_map,
843 Heap::kHeapNumberMapRootIndex,
844 "HeapNumberMap register clobbered.");
845 }
846 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
847
848 // Object is a heap number.
849 // Convert the floating point value to a 32-bit integer.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100850 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100851 CpuFeatures::Scope scope(VFP3);
852 SwVfpRegister single_scratch = double_scratch.low();
853 // Load the double value.
854 __ sub(scratch1, object, Operand(kHeapObjectTag));
855 __ vldr(double_scratch, scratch1, HeapNumber::kValueOffset);
856
857 __ EmitVFPTruncate(kRoundToZero,
858 single_scratch,
859 double_scratch,
860 scratch1,
861 scratch2,
862 kCheckForInexactConversion);
863
864 // Jump to not_int32 if the operation did not succeed.
865 __ b(ne, not_int32);
866 // Get the result in the destination register.
867 __ vmov(dst, single_scratch);
868
869 } else {
870 // Load the double value in the destination registers.
871 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
872 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
873
874 // Check for 0 and -0.
875 __ bic(dst, scratch1, Operand(HeapNumber::kSignMask));
876 __ orr(dst, scratch2, Operand(dst));
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000877 __ cmp(dst, Operand::Zero());
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100878 __ b(eq, &done);
879
880 DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
881
882 // Registers state after DoubleIs32BitInteger.
883 // dst: mantissa[51:20].
884 // scratch2: 1
885
886 // Shift back the higher bits of the mantissa.
887 __ mov(dst, Operand(dst, LSR, scratch3));
888 // Set the implicit first bit.
889 __ rsb(scratch3, scratch3, Operand(32));
890 __ orr(dst, dst, Operand(scratch2, LSL, scratch3));
891 // Set the sign.
892 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
893 __ tst(scratch1, Operand(HeapNumber::kSignMask));
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000894 __ rsb(dst, dst, Operand::Zero(), LeaveCC, mi);
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100895 }
896
897 __ bind(&done);
898}
899
900
901void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
902 Register src1,
903 Register src2,
904 Register dst,
905 Register scratch,
906 Label* not_int32) {
907 // Get exponent alone in scratch.
908 __ Ubfx(scratch,
909 src1,
910 HeapNumber::kExponentShift,
911 HeapNumber::kExponentBits);
912
913 // Substract the bias from the exponent.
914 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC);
915
916 // src1: higher (exponent) part of the double value.
917 // src2: lower (mantissa) part of the double value.
918 // scratch: unbiased exponent.
919
920 // Fast cases. Check for obvious non 32-bit integer values.
921 // Negative exponent cannot yield 32-bit integers.
922 __ b(mi, not_int32);
923 // Exponent greater than 31 cannot yield 32-bit integers.
924 // Also, a positive value with an exponent equal to 31 is outside of the
925 // signed 32-bit integer range.
926 // Another way to put it is that if (exponent - signbit) > 30 then the
927 // number cannot be represented as an int32.
928 Register tmp = dst;
929 __ sub(tmp, scratch, Operand(src1, LSR, 31));
930 __ cmp(tmp, Operand(30));
931 __ b(gt, not_int32);
932 // - Bits [21:0] in the mantissa are not null.
933 __ tst(src2, Operand(0x3fffff));
934 __ b(ne, not_int32);
935
936 // Otherwise the exponent needs to be big enough to shift left all the
937 // non zero bits left. So we need the (30 - exponent) last bits of the
938 // 31 higher bits of the mantissa to be null.
939 // Because bits [21:0] are null, we can check instead that the
Ben Murdochc7cc0282012-03-05 14:35:55 +0000940 // (32 - exponent) last bits of the 32 higher bits of the mantissa are null.
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100941
942 // Get the 32 higher bits of the mantissa in dst.
943 __ Ubfx(dst,
944 src2,
945 HeapNumber::kMantissaBitsInTopWord,
946 32 - HeapNumber::kMantissaBitsInTopWord);
947 __ orr(dst,
948 dst,
949 Operand(src1, LSL, HeapNumber::kNonMantissaBitsInTopWord));
950
951 // Create the mask and test the lower bits (of the higher bits).
952 __ rsb(scratch, scratch, Operand(32));
953 __ mov(src2, Operand(1));
954 __ mov(src1, Operand(src2, LSL, scratch));
955 __ sub(src1, src1, Operand(1));
956 __ tst(dst, src1);
957 __ b(ne, not_int32);
958}
959
960
961void FloatingPointHelper::CallCCodeForDoubleOperation(
962 MacroAssembler* masm,
963 Token::Value op,
964 Register heap_number_result,
965 Register scratch) {
966 // Using core registers:
967 // r0: Left value (least significant part of mantissa).
968 // r1: Left value (sign, exponent, top of mantissa).
969 // r2: Right value (least significant part of mantissa).
970 // r3: Right value (sign, exponent, top of mantissa).
971
972 // Assert that heap_number_result is callee-saved.
973 // We currently always use r5 to pass it.
974 ASSERT(heap_number_result.is(r5));
975
976 // Push the current return address before the C call. Return will be
977 // through pop(pc) below.
978 __ push(lr);
Ben Murdoch257744e2011-11-30 15:57:28 +0000979 __ PrepareCallCFunction(0, 2, scratch);
980 if (masm->use_eabi_hardfloat()) {
981 CpuFeatures::Scope scope(VFP3);
982 __ vmov(d0, r0, r1);
983 __ vmov(d1, r2, r3);
984 }
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000985 {
986 AllowExternalCallThatCantCauseGC scope(masm);
987 __ CallCFunction(
988 ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2);
989 }
Ben Murdoch8b112d22011-06-08 16:22:53 +0100990 // Store answer in the overwritable heap number. Double returned in
Ben Murdoch257744e2011-11-30 15:57:28 +0000991 // registers r0 and r1 or in d0.
992 if (masm->use_eabi_hardfloat()) {
993 CpuFeatures::Scope scope(VFP3);
994 __ vstr(d0,
995 FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
996 } else {
997 __ Strd(r0, r1, FieldMemOperand(heap_number_result,
998 HeapNumber::kValueOffset));
999 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001000 // Place heap_number_result in r0 and return to the pushed return address.
1001 __ mov(r0, Operand(heap_number_result));
1002 __ pop(pc);
1003}
1004
Steve Block1e0659c2011-05-24 12:43:12 +01001005
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001006bool WriteInt32ToHeapNumberStub::IsPregenerated() {
1007 // These variants are compiled ahead of time. See next method.
1008 if (the_int_.is(r1) && the_heap_number_.is(r0) && scratch_.is(r2)) {
1009 return true;
1010 }
1011 if (the_int_.is(r2) && the_heap_number_.is(r0) && scratch_.is(r3)) {
1012 return true;
1013 }
1014 // Other register combinations are generated as and when they are needed,
1015 // so it is unsafe to call them from stubs (we can't generate a stub while
1016 // we are generating a stub).
1017 return false;
1018}
1019
1020
1021void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime() {
1022 WriteInt32ToHeapNumberStub stub1(r1, r0, r2);
1023 WriteInt32ToHeapNumberStub stub2(r2, r0, r3);
1024 stub1.GetCode()->set_is_pregenerated(true);
1025 stub2.GetCode()->set_is_pregenerated(true);
1026}
1027
1028
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001029// See comment for class.
1030void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
1031 Label max_negative_int;
1032 // the_int_ has the answer which is a signed int32 but not a Smi.
1033 // We test for the special value that has a different exponent. This test
1034 // has the neat side effect of setting the flags according to the sign.
1035 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
1036 __ cmp(the_int_, Operand(0x80000000u));
1037 __ b(eq, &max_negative_int);
1038 // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
1039 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
1040 uint32_t non_smi_exponent =
1041 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
1042 __ mov(scratch_, Operand(non_smi_exponent));
1043 // Set the sign bit in scratch_ if the value was negative.
1044 __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
1045 // Subtract from 0 if the value was negative.
Iain Merrick9ac36c92010-09-13 15:29:50 +01001046 __ rsb(the_int_, the_int_, Operand(0, RelocInfo::NONE), LeaveCC, cs);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001047 // We should be masking the implict first digit of the mantissa away here,
1048 // but it just ends up combining harmlessly with the last digit of the
1049 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
1050 // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
1051 ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
1052 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
1053 __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
1054 __ str(scratch_, FieldMemOperand(the_heap_number_,
1055 HeapNumber::kExponentOffset));
1056 __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
1057 __ str(scratch_, FieldMemOperand(the_heap_number_,
1058 HeapNumber::kMantissaOffset));
1059 __ Ret();
1060
1061 __ bind(&max_negative_int);
1062 // The max negative int32 is stored as a positive number in the mantissa of
1063 // a double because it uses a sign bit instead of using two's complement.
1064 // The actual mantissa bits stored are all 0 because the implicit most
1065 // significant 1 bit is not stored.
1066 non_smi_exponent += 1 << HeapNumber::kExponentShift;
1067 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
1068 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
Iain Merrick9ac36c92010-09-13 15:29:50 +01001069 __ mov(ip, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001070 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
1071 __ Ret();
1072}
1073
1074
1075// Handle the case where the lhs and rhs are the same object.
1076// Equality is almost reflexive (everything but NaN), so this is a test
1077// for "identity and not NaN".
1078static void EmitIdenticalObjectComparison(MacroAssembler* masm,
1079 Label* slow,
Steve Block1e0659c2011-05-24 12:43:12 +01001080 Condition cond,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001081 bool never_nan_nan) {
1082 Label not_identical;
1083 Label heap_number, return_equal;
1084 __ cmp(r0, r1);
1085 __ b(ne, &not_identical);
1086
1087 // The two objects are identical. If we know that one of them isn't NaN then
1088 // we now know they test equal.
Steve Block1e0659c2011-05-24 12:43:12 +01001089 if (cond != eq || !never_nan_nan) {
Steve Block44f0eee2011-05-26 01:26:41 +01001090 // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001091 // so we do the second best thing - test it ourselves.
1092 // They are both equal and they are not both Smis so both of them are not
1093 // Smis. If it's not a heap number, then return equal.
Steve Block1e0659c2011-05-24 12:43:12 +01001094 if (cond == lt || cond == gt) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001095 __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001096 __ b(ge, slow);
1097 } else {
1098 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
1099 __ b(eq, &heap_number);
1100 // Comparing JS objects with <=, >= is complicated.
Steve Block1e0659c2011-05-24 12:43:12 +01001101 if (cond != eq) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001102 __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001103 __ b(ge, slow);
1104 // Normally here we fall through to return_equal, but undefined is
1105 // special: (undefined == undefined) == true, but
1106 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
Steve Block1e0659c2011-05-24 12:43:12 +01001107 if (cond == le || cond == ge) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001108 __ cmp(r4, Operand(ODDBALL_TYPE));
1109 __ b(ne, &return_equal);
1110 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
1111 __ cmp(r0, r2);
1112 __ b(ne, &return_equal);
Steve Block1e0659c2011-05-24 12:43:12 +01001113 if (cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001114 // undefined <= undefined should fail.
1115 __ mov(r0, Operand(GREATER));
1116 } else {
1117 // undefined >= undefined should fail.
1118 __ mov(r0, Operand(LESS));
1119 }
1120 __ Ret();
1121 }
1122 }
1123 }
1124 }
1125
1126 __ bind(&return_equal);
Steve Block1e0659c2011-05-24 12:43:12 +01001127 if (cond == lt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001128 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
Steve Block1e0659c2011-05-24 12:43:12 +01001129 } else if (cond == gt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001130 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
1131 } else {
1132 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
1133 }
1134 __ Ret();
1135
Steve Block1e0659c2011-05-24 12:43:12 +01001136 if (cond != eq || !never_nan_nan) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001137 // For less and greater we don't have to check for NaN since the result of
1138 // x < x is false regardless. For the others here is some code to check
1139 // for NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001140 if (cond != lt && cond != gt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001141 __ bind(&heap_number);
1142 // It is a heap number, so return non-equal if it's NaN and equal if it's
1143 // not NaN.
1144
1145 // The representation of NaN values has all exponent bits (52..62) set,
1146 // and not all mantissa bits (0..51) clear.
1147 // Read top bits of double representation (second word of value).
1148 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
1149 // Test that exponent bits are all set.
1150 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
1151 // NaNs have all-one exponents so they sign extend to -1.
1152 __ cmp(r3, Operand(-1));
1153 __ b(ne, &return_equal);
1154
1155 // Shift out flag and all exponent bits, retaining only mantissa.
1156 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
1157 // Or with all low-bits of mantissa.
1158 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
1159 __ orr(r0, r3, Operand(r2), SetCC);
1160 // For equal we already have the right value in r0: Return zero (equal)
1161 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
1162 // not (it's a NaN). For <= and >= we need to load r0 with the failing
1163 // value if it's a NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001164 if (cond != eq) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001165 // All-zero means Infinity means equal.
1166 __ Ret(eq);
Steve Block1e0659c2011-05-24 12:43:12 +01001167 if (cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001168 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
1169 } else {
1170 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
1171 }
1172 }
1173 __ Ret();
1174 }
1175 // No fall through here.
1176 }
1177
1178 __ bind(&not_identical);
1179}
1180
1181
1182// See comment at call site.
1183static void EmitSmiNonsmiComparison(MacroAssembler* masm,
1184 Register lhs,
1185 Register rhs,
1186 Label* lhs_not_nan,
1187 Label* slow,
1188 bool strict) {
1189 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1190 (lhs.is(r1) && rhs.is(r0)));
1191
1192 Label rhs_is_smi;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001193 __ JumpIfSmi(rhs, &rhs_is_smi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001194
1195 // Lhs is a Smi. Check whether the rhs is a heap number.
1196 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
1197 if (strict) {
1198 // If rhs is not a number and lhs is a Smi then strict equality cannot
1199 // succeed. Return non-equal
1200 // If rhs is r0 then there is already a non zero value in it.
1201 if (!rhs.is(r0)) {
1202 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1203 }
1204 __ Ret(ne);
1205 } else {
1206 // Smi compared non-strictly with a non-Smi non-heap-number. Call
1207 // the runtime.
1208 __ b(ne, slow);
1209 }
1210
1211 // Lhs is a smi, rhs is a number.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001212 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001213 // Convert lhs to a double in d7.
1214 CpuFeatures::Scope scope(VFP3);
1215 __ SmiToDoubleVFPRegister(lhs, d7, r7, s15);
1216 // Load the double from rhs, tagged HeapNumber r0, to d6.
1217 __ sub(r7, rhs, Operand(kHeapObjectTag));
1218 __ vldr(d6, r7, HeapNumber::kValueOffset);
1219 } else {
1220 __ push(lr);
1221 // Convert lhs to a double in r2, r3.
1222 __ mov(r7, Operand(lhs));
1223 ConvertToDoubleStub stub1(r3, r2, r7, r6);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001224 __ Call(stub1.GetCode());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001225 // Load rhs to a double in r0, r1.
1226 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1227 __ pop(lr);
1228 }
1229
1230 // We now have both loaded as doubles but we can skip the lhs nan check
1231 // since it's a smi.
1232 __ jmp(lhs_not_nan);
1233
1234 __ bind(&rhs_is_smi);
1235 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
1236 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
1237 if (strict) {
1238 // If lhs is not a number and rhs is a smi then strict equality cannot
1239 // succeed. Return non-equal.
1240 // If lhs is r0 then there is already a non zero value in it.
1241 if (!lhs.is(r0)) {
1242 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1243 }
1244 __ Ret(ne);
1245 } else {
1246 // Smi compared non-strictly with a non-smi non-heap-number. Call
1247 // the runtime.
1248 __ b(ne, slow);
1249 }
1250
1251 // Rhs is a smi, lhs is a heap number.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001252 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001253 CpuFeatures::Scope scope(VFP3);
1254 // Load the double from lhs, tagged HeapNumber r1, to d7.
1255 __ sub(r7, lhs, Operand(kHeapObjectTag));
1256 __ vldr(d7, r7, HeapNumber::kValueOffset);
1257 // Convert rhs to a double in d6 .
1258 __ SmiToDoubleVFPRegister(rhs, d6, r7, s13);
1259 } else {
1260 __ push(lr);
1261 // Load lhs to a double in r2, r3.
1262 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1263 // Convert rhs to a double in r0, r1.
1264 __ mov(r7, Operand(rhs));
1265 ConvertToDoubleStub stub2(r1, r0, r7, r6);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001266 __ Call(stub2.GetCode());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001267 __ pop(lr);
1268 }
1269 // Fall through to both_loaded_as_doubles.
1270}
1271
1272
Steve Block1e0659c2011-05-24 12:43:12 +01001273void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001274 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1275 Register rhs_exponent = exp_first ? r0 : r1;
1276 Register lhs_exponent = exp_first ? r2 : r3;
1277 Register rhs_mantissa = exp_first ? r1 : r0;
1278 Register lhs_mantissa = exp_first ? r3 : r2;
1279 Label one_is_nan, neither_is_nan;
1280
1281 __ Sbfx(r4,
1282 lhs_exponent,
1283 HeapNumber::kExponentShift,
1284 HeapNumber::kExponentBits);
1285 // NaNs have all-one exponents so they sign extend to -1.
1286 __ cmp(r4, Operand(-1));
1287 __ b(ne, lhs_not_nan);
1288 __ mov(r4,
1289 Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1290 SetCC);
1291 __ b(ne, &one_is_nan);
Iain Merrick9ac36c92010-09-13 15:29:50 +01001292 __ cmp(lhs_mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001293 __ b(ne, &one_is_nan);
1294
1295 __ bind(lhs_not_nan);
1296 __ Sbfx(r4,
1297 rhs_exponent,
1298 HeapNumber::kExponentShift,
1299 HeapNumber::kExponentBits);
1300 // NaNs have all-one exponents so they sign extend to -1.
1301 __ cmp(r4, Operand(-1));
1302 __ b(ne, &neither_is_nan);
1303 __ mov(r4,
1304 Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1305 SetCC);
1306 __ b(ne, &one_is_nan);
Iain Merrick9ac36c92010-09-13 15:29:50 +01001307 __ cmp(rhs_mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001308 __ b(eq, &neither_is_nan);
1309
1310 __ bind(&one_is_nan);
1311 // NaN comparisons always fail.
1312 // Load whatever we need in r0 to make the comparison fail.
Steve Block1e0659c2011-05-24 12:43:12 +01001313 if (cond == lt || cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001314 __ mov(r0, Operand(GREATER));
1315 } else {
1316 __ mov(r0, Operand(LESS));
1317 }
1318 __ Ret();
1319
1320 __ bind(&neither_is_nan);
1321}
1322
1323
1324// See comment at call site.
Steve Block1e0659c2011-05-24 12:43:12 +01001325static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm,
1326 Condition cond) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001327 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1328 Register rhs_exponent = exp_first ? r0 : r1;
1329 Register lhs_exponent = exp_first ? r2 : r3;
1330 Register rhs_mantissa = exp_first ? r1 : r0;
1331 Register lhs_mantissa = exp_first ? r3 : r2;
1332
1333 // r0, r1, r2, r3 have the two doubles. Neither is a NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001334 if (cond == eq) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001335 // Doubles are not equal unless they have the same bit pattern.
1336 // Exception: 0 and -0.
1337 __ cmp(rhs_mantissa, Operand(lhs_mantissa));
1338 __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
1339 // Return non-zero if the numbers are unequal.
1340 __ Ret(ne);
1341
1342 __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
1343 // If exponents are equal then return 0.
1344 __ Ret(eq);
1345
1346 // Exponents are unequal. The only way we can return that the numbers
1347 // are equal is if one is -0 and the other is 0. We already dealt
1348 // with the case where both are -0 or both are 0.
1349 // We start by seeing if the mantissas (that are equal) or the bottom
1350 // 31 bits of the rhs exponent are non-zero. If so we return not
1351 // equal.
1352 __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
1353 __ mov(r0, Operand(r4), LeaveCC, ne);
1354 __ Ret(ne);
1355 // Now they are equal if and only if the lhs exponent is zero in its
1356 // low 31 bits.
1357 __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
1358 __ Ret();
1359 } else {
1360 // Call a native function to do a comparison between two non-NaNs.
1361 // Call C routine that may not cause GC or other trouble.
1362 __ push(lr);
Ben Murdoch257744e2011-11-30 15:57:28 +00001363 __ PrepareCallCFunction(0, 2, r5);
1364 if (masm->use_eabi_hardfloat()) {
1365 CpuFeatures::Scope scope(VFP3);
1366 __ vmov(d0, r0, r1);
1367 __ vmov(d1, r2, r3);
1368 }
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001369
1370 AllowExternalCallThatCantCauseGC scope(masm);
Ben Murdoch257744e2011-11-30 15:57:28 +00001371 __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()),
1372 0, 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001373 __ pop(pc); // Return.
1374 }
1375}
1376
1377
1378// See comment at call site.
1379static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
1380 Register lhs,
1381 Register rhs) {
1382 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1383 (lhs.is(r1) && rhs.is(r0)));
1384
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001385 // If either operand is a JS object or an oddball value, then they are
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001386 // not equal since their pointers are different.
1387 // There is no test for undetectability in strict equality.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001388 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001389 Label first_non_object;
1390 // Get the type of the first operand into r2 and compare it with
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001391 // FIRST_SPEC_OBJECT_TYPE.
1392 __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001393 __ b(lt, &first_non_object);
1394
1395 // Return non-zero (r0 is not zero)
1396 Label return_not_equal;
1397 __ bind(&return_not_equal);
1398 __ Ret();
1399
1400 __ bind(&first_non_object);
1401 // Check for oddballs: true, false, null, undefined.
1402 __ cmp(r2, Operand(ODDBALL_TYPE));
1403 __ b(eq, &return_not_equal);
1404
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001405 __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001406 __ b(ge, &return_not_equal);
1407
1408 // Check for oddballs: true, false, null, undefined.
1409 __ cmp(r3, Operand(ODDBALL_TYPE));
1410 __ b(eq, &return_not_equal);
1411
1412 // Now that we have the types we might as well check for symbol-symbol.
1413 // Ensure that no non-strings have the symbol bit set.
1414 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
1415 STATIC_ASSERT(kSymbolTag != 0);
1416 __ and_(r2, r2, Operand(r3));
1417 __ tst(r2, Operand(kIsSymbolMask));
1418 __ b(ne, &return_not_equal);
1419}
1420
1421
1422// See comment at call site.
1423static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
1424 Register lhs,
1425 Register rhs,
1426 Label* both_loaded_as_doubles,
1427 Label* not_heap_numbers,
1428 Label* slow) {
1429 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1430 (lhs.is(r1) && rhs.is(r0)));
1431
1432 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
1433 __ b(ne, not_heap_numbers);
1434 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
1435 __ cmp(r2, r3);
1436 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
1437
1438 // Both are heap numbers. Load them up then jump to the code we have
1439 // for that.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001440 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001441 CpuFeatures::Scope scope(VFP3);
1442 __ sub(r7, rhs, Operand(kHeapObjectTag));
1443 __ vldr(d6, r7, HeapNumber::kValueOffset);
1444 __ sub(r7, lhs, Operand(kHeapObjectTag));
1445 __ vldr(d7, r7, HeapNumber::kValueOffset);
1446 } else {
1447 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1448 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1449 }
1450 __ jmp(both_loaded_as_doubles);
1451}
1452
1453
1454// Fast negative check for symbol-to-symbol equality.
1455static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
1456 Register lhs,
1457 Register rhs,
1458 Label* possible_strings,
1459 Label* not_both_strings) {
1460 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1461 (lhs.is(r1) && rhs.is(r0)));
1462
1463 // r2 is object type of rhs.
1464 // Ensure that no non-strings have the symbol bit set.
1465 Label object_test;
1466 STATIC_ASSERT(kSymbolTag != 0);
1467 __ tst(r2, Operand(kIsNotStringMask));
1468 __ b(ne, &object_test);
1469 __ tst(r2, Operand(kIsSymbolMask));
1470 __ b(eq, possible_strings);
1471 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
1472 __ b(ge, not_both_strings);
1473 __ tst(r3, Operand(kIsSymbolMask));
1474 __ b(eq, possible_strings);
1475
1476 // Both are symbols. We already checked they weren't the same pointer
1477 // so they are not equal.
1478 __ mov(r0, Operand(NOT_EQUAL));
1479 __ Ret();
1480
1481 __ bind(&object_test);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001482 __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001483 __ b(lt, not_both_strings);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001484 __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001485 __ b(lt, not_both_strings);
1486 // If both objects are undetectable, they are equal. Otherwise, they
1487 // are not equal, since they are different objects and an object is not
1488 // equal to undefined.
1489 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
1490 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
1491 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
1492 __ and_(r0, r2, Operand(r3));
1493 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
1494 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
1495 __ Ret();
1496}
1497
1498
1499void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
1500 Register object,
1501 Register result,
1502 Register scratch1,
1503 Register scratch2,
1504 Register scratch3,
1505 bool object_is_smi,
1506 Label* not_found) {
1507 // Use of registers. Register result is used as a temporary.
1508 Register number_string_cache = result;
1509 Register mask = scratch3;
1510
1511 // Load the number string cache.
1512 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
1513
1514 // Make the hash mask from the length of the number string cache. It
1515 // contains two elements (number and string) for each cache entry.
1516 __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
1517 // Divide length by two (length is a smi).
1518 __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
1519 __ sub(mask, mask, Operand(1)); // Make mask.
1520
1521 // Calculate the entry in the number string cache. The hash value in the
1522 // number string cache for smis is just the smi value, and the hash for
1523 // doubles is the xor of the upper and lower words. See
1524 // Heap::GetNumberStringCache.
Steve Block44f0eee2011-05-26 01:26:41 +01001525 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001526 Label is_smi;
1527 Label load_result_from_cache;
1528 if (!object_is_smi) {
Steve Block1e0659c2011-05-24 12:43:12 +01001529 __ JumpIfSmi(object, &is_smi);
Ben Murdoch8b112d22011-06-08 16:22:53 +01001530 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001531 CpuFeatures::Scope scope(VFP3);
1532 __ CheckMap(object,
1533 scratch1,
1534 Heap::kHeapNumberMapRootIndex,
1535 not_found,
Ben Murdoch257744e2011-11-30 15:57:28 +00001536 DONT_DO_SMI_CHECK);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001537
1538 STATIC_ASSERT(8 == kDoubleSize);
1539 __ add(scratch1,
1540 object,
1541 Operand(HeapNumber::kValueOffset - kHeapObjectTag));
1542 __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
1543 __ eor(scratch1, scratch1, Operand(scratch2));
1544 __ and_(scratch1, scratch1, Operand(mask));
1545
1546 // Calculate address of entry in string cache: each entry consists
1547 // of two pointer sized fields.
1548 __ add(scratch1,
1549 number_string_cache,
1550 Operand(scratch1, LSL, kPointerSizeLog2 + 1));
1551
1552 Register probe = mask;
1553 __ ldr(probe,
1554 FieldMemOperand(scratch1, FixedArray::kHeaderSize));
Steve Block1e0659c2011-05-24 12:43:12 +01001555 __ JumpIfSmi(probe, not_found);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001556 __ sub(scratch2, object, Operand(kHeapObjectTag));
1557 __ vldr(d0, scratch2, HeapNumber::kValueOffset);
1558 __ sub(probe, probe, Operand(kHeapObjectTag));
1559 __ vldr(d1, probe, HeapNumber::kValueOffset);
Ben Murdochb8e0da22011-05-16 14:20:40 +01001560 __ VFPCompareAndSetFlags(d0, d1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001561 __ b(ne, not_found); // The cache did not contain this value.
1562 __ b(&load_result_from_cache);
1563 } else {
1564 __ b(not_found);
1565 }
1566 }
1567
1568 __ bind(&is_smi);
1569 Register scratch = scratch1;
1570 __ and_(scratch, mask, Operand(object, ASR, 1));
1571 // Calculate address of entry in string cache: each entry consists
1572 // of two pointer sized fields.
1573 __ add(scratch,
1574 number_string_cache,
1575 Operand(scratch, LSL, kPointerSizeLog2 + 1));
1576
1577 // Check if the entry is the smi we are looking for.
1578 Register probe = mask;
1579 __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
1580 __ cmp(object, probe);
1581 __ b(ne, not_found);
1582
1583 // Get the result from the cache.
1584 __ bind(&load_result_from_cache);
1585 __ ldr(result,
1586 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01001587 __ IncrementCounter(isolate->counters()->number_to_string_native(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001588 1,
1589 scratch1,
1590 scratch2);
1591}
1592
1593
1594void NumberToStringStub::Generate(MacroAssembler* masm) {
1595 Label runtime;
1596
1597 __ ldr(r1, MemOperand(sp, 0));
1598
1599 // Generate code to lookup number in the number string cache.
1600 GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
1601 __ add(sp, sp, Operand(1 * kPointerSize));
1602 __ Ret();
1603
1604 __ bind(&runtime);
1605 // Handle number to string in the runtime system if not found in the cache.
1606 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
1607}
1608
1609
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001610// On entry lhs_ and rhs_ are the values to be compared.
1611// On exit r0 is 0, positive or negative to indicate the result of
1612// the comparison.
1613void CompareStub::Generate(MacroAssembler* masm) {
1614 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
1615 (lhs_.is(r1) && rhs_.is(r0)));
1616
1617 Label slow; // Call builtin.
1618 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
1619
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001620 if (include_smi_compare_) {
1621 Label not_two_smis, smi_done;
1622 __ orr(r2, r1, r0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001623 __ JumpIfNotSmi(r2, &not_two_smis);
Ben Murdochf87a2032010-10-22 12:50:53 +01001624 __ mov(r1, Operand(r1, ASR, 1));
1625 __ sub(r0, r1, Operand(r0, ASR, 1));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001626 __ Ret();
1627 __ bind(&not_two_smis);
1628 } else if (FLAG_debug_code) {
1629 __ orr(r2, r1, r0);
1630 __ tst(r2, Operand(kSmiTagMask));
Steve Block1e0659c2011-05-24 12:43:12 +01001631 __ Assert(ne, "CompareStub: unexpected smi operands.");
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001632 }
1633
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001634 // NOTICE! This code is only reached after a smi-fast-case check, so
1635 // it is certain that at least one operand isn't a smi.
1636
1637 // Handle the case where the objects are identical. Either returns the answer
1638 // or goes to slow. Only falls through if the objects were not identical.
1639 EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
1640
1641 // If either is a Smi (we know that not both are), then they can only
1642 // be strictly equal if the other is a HeapNumber.
1643 STATIC_ASSERT(kSmiTag == 0);
1644 ASSERT_EQ(0, Smi::FromInt(0));
1645 __ and_(r2, lhs_, Operand(rhs_));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001646 __ JumpIfNotSmi(r2, &not_smis);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001647 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
1648 // 1) Return the answer.
1649 // 2) Go to slow.
1650 // 3) Fall through to both_loaded_as_doubles.
1651 // 4) Jump to lhs_not_nan.
1652 // In cases 3 and 4 we have found out we were dealing with a number-number
1653 // comparison. If VFP3 is supported the double values of the numbers have
1654 // been loaded into d7 and d6. Otherwise, the double values have been loaded
1655 // into r0, r1, r2, and r3.
1656 EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_);
1657
1658 __ bind(&both_loaded_as_doubles);
1659 // The arguments have been converted to doubles and stored in d6 and d7, if
1660 // VFP3 is supported, or in r0, r1, r2, and r3.
Steve Block44f0eee2011-05-26 01:26:41 +01001661 Isolate* isolate = masm->isolate();
Ben Murdoch8b112d22011-06-08 16:22:53 +01001662 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001663 __ bind(&lhs_not_nan);
1664 CpuFeatures::Scope scope(VFP3);
1665 Label no_nan;
1666 // ARMv7 VFP3 instructions to implement double precision comparison.
Ben Murdochb8e0da22011-05-16 14:20:40 +01001667 __ VFPCompareAndSetFlags(d7, d6);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001668 Label nan;
1669 __ b(vs, &nan);
1670 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
1671 __ mov(r0, Operand(LESS), LeaveCC, lt);
1672 __ mov(r0, Operand(GREATER), LeaveCC, gt);
1673 __ Ret();
1674
1675 __ bind(&nan);
1676 // If one of the sides was a NaN then the v flag is set. Load r0 with
1677 // whatever it takes to make the comparison fail, since comparisons with NaN
1678 // always fail.
1679 if (cc_ == lt || cc_ == le) {
1680 __ mov(r0, Operand(GREATER));
1681 } else {
1682 __ mov(r0, Operand(LESS));
1683 }
1684 __ Ret();
1685 } else {
1686 // Checks for NaN in the doubles we have loaded. Can return the answer or
1687 // fall through if neither is a NaN. Also binds lhs_not_nan.
1688 EmitNanCheck(masm, &lhs_not_nan, cc_);
1689 // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
1690 // answer. Never falls through.
1691 EmitTwoNonNanDoubleComparison(masm, cc_);
1692 }
1693
1694 __ bind(&not_smis);
1695 // At this point we know we are dealing with two different objects,
1696 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
1697 if (strict_) {
1698 // This returns non-equal for some object types, or falls through if it
1699 // was not lucky.
1700 EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
1701 }
1702
1703 Label check_for_symbols;
1704 Label flat_string_check;
1705 // Check for heap-number-heap-number comparison. Can jump to slow case,
1706 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
1707 // that case. If the inputs are not doubles then jumps to check_for_symbols.
1708 // In this case r2 will contain the type of rhs_. Never falls through.
1709 EmitCheckForTwoHeapNumbers(masm,
1710 lhs_,
1711 rhs_,
1712 &both_loaded_as_doubles,
1713 &check_for_symbols,
1714 &flat_string_check);
1715
1716 __ bind(&check_for_symbols);
1717 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
1718 // symbols.
1719 if (cc_ == eq && !strict_) {
1720 // Returns an answer for two symbols or two detectable objects.
1721 // Otherwise jumps to string case or not both strings case.
1722 // Assumes that r2 is the type of rhs_ on entry.
1723 EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
1724 }
1725
1726 // Check for both being sequential ASCII strings, and inline if that is the
1727 // case.
1728 __ bind(&flat_string_check);
1729
1730 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow);
1731
Steve Block44f0eee2011-05-26 01:26:41 +01001732 __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3);
Ben Murdoch257744e2011-11-30 15:57:28 +00001733 if (cc_ == eq) {
1734 StringCompareStub::GenerateFlatAsciiStringEquals(masm,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001735 lhs_,
1736 rhs_,
1737 r2,
1738 r3,
Ben Murdoch257744e2011-11-30 15:57:28 +00001739 r4);
1740 } else {
1741 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
1742 lhs_,
1743 rhs_,
1744 r2,
1745 r3,
1746 r4,
1747 r5);
1748 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001749 // Never falls through to here.
1750
1751 __ bind(&slow);
1752
1753 __ Push(lhs_, rhs_);
1754 // Figure out which native to call and setup the arguments.
1755 Builtins::JavaScript native;
1756 if (cc_ == eq) {
1757 native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1758 } else {
1759 native = Builtins::COMPARE;
1760 int ncr; // NaN compare result
1761 if (cc_ == lt || cc_ == le) {
1762 ncr = GREATER;
1763 } else {
1764 ASSERT(cc_ == gt || cc_ == ge); // remaining cases
1765 ncr = LESS;
1766 }
1767 __ mov(r0, Operand(Smi::FromInt(ncr)));
1768 __ push(r0);
1769 }
1770
1771 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1772 // tagged as a small integer.
Ben Murdoch257744e2011-11-30 15:57:28 +00001773 __ InvokeBuiltin(native, JUMP_FUNCTION);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001774}
1775
1776
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001777// The stub expects its argument in the tos_ register and returns its result in
1778// it, too: zero for false, and a non-zero value for true.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001779void ToBooleanStub::Generate(MacroAssembler* masm) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001780 // This stub overrides SometimesSetsUpAFrame() to return false. That means
1781 // we cannot call anything that could cause a GC from this stub.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001782 // This stub uses VFP3 instructions.
Ben Murdoch257744e2011-11-30 15:57:28 +00001783 CpuFeatures::Scope scope(VFP3);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001784
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001785 Label patch;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001786 const Register map = r9.is(tos_) ? r7 : r9;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001787
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001788 // undefined -> false.
1789 CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
Ben Murdoch257744e2011-11-30 15:57:28 +00001790
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001791 // Boolean -> its value.
1792 CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
1793 CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
Ben Murdoch257744e2011-11-30 15:57:28 +00001794
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001795 // 'null' -> false.
1796 CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
Ben Murdoch257744e2011-11-30 15:57:28 +00001797
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001798 if (types_.Contains(SMI)) {
1799 // Smis: 0 -> false, all other -> true
1800 __ tst(tos_, Operand(kSmiTagMask));
1801 // tos_ contains the correct return value already
1802 __ Ret(eq);
1803 } else if (types_.NeedsMap()) {
1804 // If we need a map later and have a Smi -> patch.
1805 __ JumpIfSmi(tos_, &patch);
1806 }
Ben Murdochb0fe1622011-05-05 13:52:32 +01001807
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001808 if (types_.NeedsMap()) {
1809 __ ldr(map, FieldMemOperand(tos_, HeapObject::kMapOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001810
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001811 if (types_.CanBeUndetectable()) {
1812 __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
1813 __ tst(ip, Operand(1 << Map::kIsUndetectable));
1814 // Undetectable -> false.
1815 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
1816 __ Ret(ne);
1817 }
1818 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001819
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001820 if (types_.Contains(SPEC_OBJECT)) {
1821 // Spec object -> true.
1822 __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
1823 // tos_ contains the correct non-zero return value already.
1824 __ Ret(ge);
1825 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001826
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001827 if (types_.Contains(STRING)) {
1828 // String value -> false iff empty.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001829 __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001830 __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset), lt);
1831 __ Ret(lt); // the string length is OK as the return value
1832 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001833
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001834 if (types_.Contains(HEAP_NUMBER)) {
1835 // Heap number -> false iff +0, -0, or NaN.
1836 Label not_heap_number;
1837 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
1838 __ b(ne, &not_heap_number);
1839 __ vldr(d1, FieldMemOperand(tos_, HeapNumber::kValueOffset));
1840 __ VFPCompareAndSetFlags(d1, 0.0);
1841 // "tos_" is a register, and contains a non zero value by default.
1842 // Hence we only need to overwrite "tos_" with zero to return false for
1843 // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
1844 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq); // for FP_ZERO
1845 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, vs); // for FP_NAN
1846 __ Ret();
1847 __ bind(&not_heap_number);
1848 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001849
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001850 __ bind(&patch);
1851 GenerateTypeTransition(masm);
1852}
1853
1854
1855void ToBooleanStub::CheckOddball(MacroAssembler* masm,
1856 Type type,
1857 Heap::RootListIndex value,
1858 bool result) {
1859 if (types_.Contains(type)) {
1860 // If we see an expected oddball, return its ToBoolean value tos_.
1861 __ LoadRoot(ip, value);
1862 __ cmp(tos_, ip);
1863 // The value of a root is never NULL, so we can avoid loading a non-null
1864 // value into tos_ when we want to return 'true'.
1865 if (!result) {
1866 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq);
1867 }
1868 __ Ret(eq);
1869 }
1870}
1871
1872
1873void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
1874 if (!tos_.is(r3)) {
1875 __ mov(r3, Operand(tos_));
1876 }
1877 __ mov(r2, Operand(Smi::FromInt(tos_.code())));
1878 __ mov(r1, Operand(Smi::FromInt(types_.ToByte())));
1879 __ Push(r3, r2, r1);
1880 // Patch the caller to an appropriate specialized stub and return the
1881 // operation result to the caller of the stub.
1882 __ TailCallExternalReference(
1883 ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
1884 3,
1885 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001886}
1887
1888
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001889void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
1890 // We don't allow a GC during a store buffer overflow so there is no need to
1891 // store the registers in any particular way, but we do have to store and
1892 // restore them.
1893 __ stm(db_w, sp, kCallerSaved | lr.bit());
1894 if (save_doubles_ == kSaveFPRegs) {
1895 CpuFeatures::Scope scope(VFP3);
1896 __ sub(sp, sp, Operand(kDoubleSize * DwVfpRegister::kNumRegisters));
1897 for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
1898 DwVfpRegister reg = DwVfpRegister::from_code(i);
1899 __ vstr(reg, MemOperand(sp, i * kDoubleSize));
1900 }
1901 }
1902 const int argument_count = 1;
1903 const int fp_argument_count = 0;
1904 const Register scratch = r1;
1905
1906 AllowExternalCallThatCantCauseGC scope(masm);
1907 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
1908 __ mov(r0, Operand(ExternalReference::isolate_address()));
1909 __ CallCFunction(
1910 ExternalReference::store_buffer_overflow_function(masm->isolate()),
1911 argument_count);
1912 if (save_doubles_ == kSaveFPRegs) {
1913 CpuFeatures::Scope scope(VFP3);
1914 for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
1915 DwVfpRegister reg = DwVfpRegister::from_code(i);
1916 __ vldr(reg, MemOperand(sp, i * kDoubleSize));
1917 }
1918 __ add(sp, sp, Operand(kDoubleSize * DwVfpRegister::kNumRegisters));
1919 }
1920 __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0).
1921}
1922
1923
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001924void UnaryOpStub::PrintName(StringStream* stream) {
Ben Murdoch257744e2011-11-30 15:57:28 +00001925 const char* op_name = Token::Name(op_);
1926 const char* overwrite_name = NULL; // Make g++ happy.
1927 switch (mode_) {
1928 case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
1929 case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
1930 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001931 stream->Add("UnaryOpStub_%s_%s_%s",
1932 op_name,
1933 overwrite_name,
1934 UnaryOpIC::GetName(operand_type_));
Ben Murdoch257744e2011-11-30 15:57:28 +00001935}
1936
1937
1938// TODO(svenpanne): Use virtual functions instead of switch.
1939void UnaryOpStub::Generate(MacroAssembler* masm) {
1940 switch (operand_type_) {
1941 case UnaryOpIC::UNINITIALIZED:
1942 GenerateTypeTransition(masm);
1943 break;
1944 case UnaryOpIC::SMI:
1945 GenerateSmiStub(masm);
1946 break;
1947 case UnaryOpIC::HEAP_NUMBER:
1948 GenerateHeapNumberStub(masm);
1949 break;
1950 case UnaryOpIC::GENERIC:
1951 GenerateGenericStub(masm);
1952 break;
1953 }
1954}
1955
1956
1957void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001958 __ mov(r3, Operand(r0)); // the operand
1959 __ mov(r2, Operand(Smi::FromInt(op_)));
1960 __ mov(r1, Operand(Smi::FromInt(mode_)));
Ben Murdoch257744e2011-11-30 15:57:28 +00001961 __ mov(r0, Operand(Smi::FromInt(operand_type_)));
Ben Murdoch257744e2011-11-30 15:57:28 +00001962 __ Push(r3, r2, r1, r0);
1963
1964 __ TailCallExternalReference(
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001965 ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
Ben Murdoch257744e2011-11-30 15:57:28 +00001966}
1967
1968
1969// TODO(svenpanne): Use virtual functions instead of switch.
1970void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
1971 switch (op_) {
1972 case Token::SUB:
1973 GenerateSmiStubSub(masm);
1974 break;
1975 case Token::BIT_NOT:
1976 GenerateSmiStubBitNot(masm);
1977 break;
1978 default:
1979 UNREACHABLE();
1980 }
1981}
1982
1983
1984void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
1985 Label non_smi, slow;
1986 GenerateSmiCodeSub(masm, &non_smi, &slow);
1987 __ bind(&non_smi);
1988 __ bind(&slow);
1989 GenerateTypeTransition(masm);
1990}
1991
1992
1993void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
1994 Label non_smi;
1995 GenerateSmiCodeBitNot(masm, &non_smi);
1996 __ bind(&non_smi);
1997 GenerateTypeTransition(masm);
1998}
1999
2000
2001void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
2002 Label* non_smi,
2003 Label* slow) {
2004 __ JumpIfNotSmi(r0, non_smi);
2005
2006 // The result of negating zero or the smallest negative smi is not a smi.
2007 __ bic(ip, r0, Operand(0x80000000), SetCC);
2008 __ b(eq, slow);
2009
2010 // Return '0 - value'.
2011 __ rsb(r0, r0, Operand(0, RelocInfo::NONE));
2012 __ Ret();
2013}
2014
2015
2016void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
2017 Label* non_smi) {
2018 __ JumpIfNotSmi(r0, non_smi);
2019
2020 // Flip bits and revert inverted smi-tag.
2021 __ mvn(r0, Operand(r0));
2022 __ bic(r0, r0, Operand(kSmiTagMask));
2023 __ Ret();
2024}
2025
2026
2027// TODO(svenpanne): Use virtual functions instead of switch.
2028void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
2029 switch (op_) {
2030 case Token::SUB:
2031 GenerateHeapNumberStubSub(masm);
2032 break;
2033 case Token::BIT_NOT:
2034 GenerateHeapNumberStubBitNot(masm);
2035 break;
2036 default:
2037 UNREACHABLE();
2038 }
2039}
2040
2041
2042void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
2043 Label non_smi, slow, call_builtin;
2044 GenerateSmiCodeSub(masm, &non_smi, &call_builtin);
2045 __ bind(&non_smi);
2046 GenerateHeapNumberCodeSub(masm, &slow);
2047 __ bind(&slow);
2048 GenerateTypeTransition(masm);
2049 __ bind(&call_builtin);
2050 GenerateGenericCodeFallback(masm);
2051}
2052
2053
2054void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) {
2055 Label non_smi, slow;
2056 GenerateSmiCodeBitNot(masm, &non_smi);
2057 __ bind(&non_smi);
2058 GenerateHeapNumberCodeBitNot(masm, &slow);
2059 __ bind(&slow);
2060 GenerateTypeTransition(masm);
2061}
2062
2063void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
2064 Label* slow) {
2065 EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
2066 // r0 is a heap number. Get a new heap number in r1.
2067 if (mode_ == UNARY_OVERWRITE) {
2068 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
2069 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
2070 __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
2071 } else {
2072 Label slow_allocate_heapnumber, heapnumber_allocated;
2073 __ AllocateHeapNumber(r1, r2, r3, r6, &slow_allocate_heapnumber);
2074 __ jmp(&heapnumber_allocated);
2075
2076 __ bind(&slow_allocate_heapnumber);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00002077 {
2078 FrameScope scope(masm, StackFrame::INTERNAL);
2079 __ push(r0);
2080 __ CallRuntime(Runtime::kNumberAlloc, 0);
2081 __ mov(r1, Operand(r0));
2082 __ pop(r0);
2083 }
Ben Murdoch257744e2011-11-30 15:57:28 +00002084
2085 __ bind(&heapnumber_allocated);
2086 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
2087 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
2088 __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
2089 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
2090 __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
2091 __ mov(r0, Operand(r1));
2092 }
2093 __ Ret();
2094}
2095
2096
2097void UnaryOpStub::GenerateHeapNumberCodeBitNot(
2098 MacroAssembler* masm, Label* slow) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002099 Label impossible;
2100
Ben Murdoch257744e2011-11-30 15:57:28 +00002101 EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
2102 // Convert the heap number is r0 to an untagged integer in r1.
2103 __ ConvertToInt32(r0, r1, r2, r3, d0, slow);
2104
2105 // Do the bitwise operation and check if the result fits in a smi.
2106 Label try_float;
2107 __ mvn(r1, Operand(r1));
2108 __ add(r2, r1, Operand(0x40000000), SetCC);
2109 __ b(mi, &try_float);
2110
2111 // Tag the result as a smi and we're done.
2112 __ mov(r0, Operand(r1, LSL, kSmiTagSize));
2113 __ Ret();
2114
2115 // Try to store the result in a heap number.
2116 __ bind(&try_float);
2117 if (mode_ == UNARY_NO_OVERWRITE) {
2118 Label slow_allocate_heapnumber, heapnumber_allocated;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002119 // Allocate a new heap number without zapping r0, which we need if it fails.
2120 __ AllocateHeapNumber(r2, r3, r4, r6, &slow_allocate_heapnumber);
Ben Murdoch257744e2011-11-30 15:57:28 +00002121 __ jmp(&heapnumber_allocated);
2122
2123 __ bind(&slow_allocate_heapnumber);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00002124 {
2125 FrameScope scope(masm, StackFrame::INTERNAL);
2126 __ push(r0); // Push the heap number, not the untagged int32.
2127 __ CallRuntime(Runtime::kNumberAlloc, 0);
2128 __ mov(r2, r0); // Move the new heap number into r2.
2129 // Get the heap number into r0, now that the new heap number is in r2.
2130 __ pop(r0);
2131 }
Ben Murdoch257744e2011-11-30 15:57:28 +00002132
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002133 // Convert the heap number in r0 to an untagged integer in r1.
2134 // This can't go slow-case because it's the same number we already
2135 // converted once again.
2136 __ ConvertToInt32(r0, r1, r3, r4, d0, &impossible);
2137 __ mvn(r1, Operand(r1));
2138
Ben Murdoch257744e2011-11-30 15:57:28 +00002139 __ bind(&heapnumber_allocated);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002140 __ mov(r0, r2); // Move newly allocated heap number to r0.
Ben Murdoch257744e2011-11-30 15:57:28 +00002141 }
2142
2143 if (CpuFeatures::IsSupported(VFP3)) {
2144 // Convert the int32 in r1 to the heap number in r0. r2 is corrupted.
2145 CpuFeatures::Scope scope(VFP3);
2146 __ vmov(s0, r1);
2147 __ vcvt_f64_s32(d0, s0);
2148 __ sub(r2, r0, Operand(kHeapObjectTag));
2149 __ vstr(d0, r2, HeapNumber::kValueOffset);
2150 __ Ret();
2151 } else {
2152 // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
2153 // have to set up a frame.
2154 WriteInt32ToHeapNumberStub stub(r1, r0, r2);
2155 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2156 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002157
2158 __ bind(&impossible);
2159 if (FLAG_debug_code) {
2160 __ stop("Incorrect assumption in bit-not stub");
2161 }
Ben Murdoch257744e2011-11-30 15:57:28 +00002162}
2163
2164
2165// TODO(svenpanne): Use virtual functions instead of switch.
2166void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
2167 switch (op_) {
2168 case Token::SUB:
2169 GenerateGenericStubSub(masm);
2170 break;
2171 case Token::BIT_NOT:
2172 GenerateGenericStubBitNot(masm);
2173 break;
2174 default:
2175 UNREACHABLE();
2176 }
2177}
2178
2179
2180void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
2181 Label non_smi, slow;
2182 GenerateSmiCodeSub(masm, &non_smi, &slow);
2183 __ bind(&non_smi);
2184 GenerateHeapNumberCodeSub(masm, &slow);
2185 __ bind(&slow);
2186 GenerateGenericCodeFallback(masm);
2187}
2188
2189
2190void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
2191 Label non_smi, slow;
2192 GenerateSmiCodeBitNot(masm, &non_smi);
2193 __ bind(&non_smi);
2194 GenerateHeapNumberCodeBitNot(masm, &slow);
2195 __ bind(&slow);
2196 GenerateGenericCodeFallback(masm);
2197}
2198
2199
2200void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) {
2201 // Handle the slow case by jumping to the JavaScript builtin.
2202 __ push(r0);
2203 switch (op_) {
2204 case Token::SUB:
2205 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
2206 break;
2207 case Token::BIT_NOT:
2208 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
2209 break;
2210 default:
2211 UNREACHABLE();
2212 }
2213}
2214
2215
Ben Murdoch257744e2011-11-30 15:57:28 +00002216void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002217 Label get_result;
2218
2219 __ Push(r1, r0);
2220
2221 __ mov(r2, Operand(Smi::FromInt(MinorKey())));
2222 __ mov(r1, Operand(Smi::FromInt(op_)));
2223 __ mov(r0, Operand(Smi::FromInt(operands_type_)));
2224 __ Push(r2, r1, r0);
2225
2226 __ TailCallExternalReference(
Ben Murdoch257744e2011-11-30 15:57:28 +00002227 ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
Steve Block44f0eee2011-05-26 01:26:41 +01002228 masm->isolate()),
Steve Block1e0659c2011-05-24 12:43:12 +01002229 5,
2230 1);
2231}
2232
2233
Ben Murdoch257744e2011-11-30 15:57:28 +00002234void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
Steve Block1e0659c2011-05-24 12:43:12 +01002235 MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01002236 UNIMPLEMENTED();
Steve Block1e0659c2011-05-24 12:43:12 +01002237}
2238
2239
Ben Murdoch257744e2011-11-30 15:57:28 +00002240void BinaryOpStub::Generate(MacroAssembler* masm) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00002241 // Explicitly allow generation of nested stubs. It is safe here because
2242 // generation code does not use any raw pointers.
2243 AllowStubCallsScope allow_stub_calls(masm, true);
2244
Steve Block1e0659c2011-05-24 12:43:12 +01002245 switch (operands_type_) {
Ben Murdoch257744e2011-11-30 15:57:28 +00002246 case BinaryOpIC::UNINITIALIZED:
Steve Block1e0659c2011-05-24 12:43:12 +01002247 GenerateTypeTransition(masm);
2248 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002249 case BinaryOpIC::SMI:
Steve Block1e0659c2011-05-24 12:43:12 +01002250 GenerateSmiStub(masm);
2251 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002252 case BinaryOpIC::INT32:
Steve Block1e0659c2011-05-24 12:43:12 +01002253 GenerateInt32Stub(masm);
2254 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002255 case BinaryOpIC::HEAP_NUMBER:
Steve Block1e0659c2011-05-24 12:43:12 +01002256 GenerateHeapNumberStub(masm);
2257 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002258 case BinaryOpIC::ODDBALL:
Steve Block44f0eee2011-05-26 01:26:41 +01002259 GenerateOddballStub(masm);
2260 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002261 case BinaryOpIC::BOTH_STRING:
2262 GenerateBothStringStub(masm);
2263 break;
2264 case BinaryOpIC::STRING:
Steve Block1e0659c2011-05-24 12:43:12 +01002265 GenerateStringStub(masm);
2266 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002267 case BinaryOpIC::GENERIC:
Steve Block1e0659c2011-05-24 12:43:12 +01002268 GenerateGeneric(masm);
2269 break;
2270 default:
2271 UNREACHABLE();
2272 }
2273}
2274
2275
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002276void BinaryOpStub::PrintName(StringStream* stream) {
Steve Block1e0659c2011-05-24 12:43:12 +01002277 const char* op_name = Token::Name(op_);
2278 const char* overwrite_name;
2279 switch (mode_) {
2280 case NO_OVERWRITE: overwrite_name = "Alloc"; break;
2281 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
2282 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
2283 default: overwrite_name = "UnknownOverwrite"; break;
2284 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002285 stream->Add("BinaryOpStub_%s_%s_%s",
2286 op_name,
2287 overwrite_name,
2288 BinaryOpIC::GetName(operands_type_));
Steve Block1e0659c2011-05-24 12:43:12 +01002289}
2290
2291
Ben Murdoch257744e2011-11-30 15:57:28 +00002292void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002293 Register left = r1;
2294 Register right = r0;
2295 Register scratch1 = r7;
2296 Register scratch2 = r9;
2297
2298 ASSERT(right.is(r0));
2299 STATIC_ASSERT(kSmiTag == 0);
2300
2301 Label not_smi_result;
2302 switch (op_) {
2303 case Token::ADD:
2304 __ add(right, left, Operand(right), SetCC); // Add optimistically.
2305 __ Ret(vc);
2306 __ sub(right, right, Operand(left)); // Revert optimistic add.
2307 break;
2308 case Token::SUB:
2309 __ sub(right, left, Operand(right), SetCC); // Subtract optimistically.
2310 __ Ret(vc);
2311 __ sub(right, left, Operand(right)); // Revert optimistic subtract.
2312 break;
2313 case Token::MUL:
2314 // Remove tag from one of the operands. This way the multiplication result
2315 // will be a smi if it fits the smi range.
2316 __ SmiUntag(ip, right);
2317 // Do multiplication
2318 // scratch1 = lower 32 bits of ip * left.
2319 // scratch2 = higher 32 bits of ip * left.
2320 __ smull(scratch1, scratch2, left, ip);
2321 // Check for overflowing the smi range - no overflow if higher 33 bits of
2322 // the result are identical.
2323 __ mov(ip, Operand(scratch1, ASR, 31));
2324 __ cmp(ip, Operand(scratch2));
2325 __ b(ne, &not_smi_result);
2326 // Go slow on zero result to handle -0.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01002327 __ cmp(scratch1, Operand(0));
Steve Block1e0659c2011-05-24 12:43:12 +01002328 __ mov(right, Operand(scratch1), LeaveCC, ne);
2329 __ Ret(ne);
2330 // We need -0 if we were multiplying a negative number with 0 to get 0.
2331 // We know one of them was zero.
2332 __ add(scratch2, right, Operand(left), SetCC);
2333 __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
2334 __ Ret(pl); // Return smi 0 if the non-zero one was positive.
2335 // We fall through here if we multiplied a negative number with 0, because
2336 // that would mean we should produce -0.
2337 break;
2338 case Token::DIV:
2339 // Check for power of two on the right hand side.
2340 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
2341 // Check for positive and no remainder (scratch1 contains right - 1).
2342 __ orr(scratch2, scratch1, Operand(0x80000000u));
2343 __ tst(left, scratch2);
2344 __ b(ne, &not_smi_result);
2345
2346 // Perform division by shifting.
2347 __ CountLeadingZeros(scratch1, scratch1, scratch2);
2348 __ rsb(scratch1, scratch1, Operand(31));
2349 __ mov(right, Operand(left, LSR, scratch1));
2350 __ Ret();
2351 break;
2352 case Token::MOD:
2353 // Check for two positive smis.
2354 __ orr(scratch1, left, Operand(right));
2355 __ tst(scratch1, Operand(0x80000000u | kSmiTagMask));
2356 __ b(ne, &not_smi_result);
2357
2358 // Check for power of two on the right hand side.
2359 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
2360
2361 // Perform modulus by masking.
2362 __ and_(right, left, Operand(scratch1));
2363 __ Ret();
2364 break;
2365 case Token::BIT_OR:
2366 __ orr(right, left, Operand(right));
2367 __ Ret();
2368 break;
2369 case Token::BIT_AND:
2370 __ and_(right, left, Operand(right));
2371 __ Ret();
2372 break;
2373 case Token::BIT_XOR:
2374 __ eor(right, left, Operand(right));
2375 __ Ret();
2376 break;
2377 case Token::SAR:
2378 // Remove tags from right operand.
2379 __ GetLeastBitsFromSmi(scratch1, right, 5);
2380 __ mov(right, Operand(left, ASR, scratch1));
2381 // Smi tag result.
2382 __ bic(right, right, Operand(kSmiTagMask));
2383 __ Ret();
2384 break;
2385 case Token::SHR:
2386 // Remove tags from operands. We can't do this on a 31 bit number
2387 // because then the 0s get shifted into bit 30 instead of bit 31.
2388 __ SmiUntag(scratch1, left);
2389 __ GetLeastBitsFromSmi(scratch2, right, 5);
2390 __ mov(scratch1, Operand(scratch1, LSR, scratch2));
2391 // Unsigned shift is not allowed to produce a negative number, so
2392 // check the sign bit and the sign bit after Smi tagging.
2393 __ tst(scratch1, Operand(0xc0000000));
2394 __ b(ne, &not_smi_result);
2395 // Smi tag result.
2396 __ SmiTag(right, scratch1);
2397 __ Ret();
2398 break;
2399 case Token::SHL:
2400 // Remove tags from operands.
2401 __ SmiUntag(scratch1, left);
2402 __ GetLeastBitsFromSmi(scratch2, right, 5);
2403 __ mov(scratch1, Operand(scratch1, LSL, scratch2));
2404 // Check that the signed result fits in a Smi.
2405 __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
2406 __ b(mi, &not_smi_result);
2407 __ SmiTag(right, scratch1);
2408 __ Ret();
2409 break;
2410 default:
2411 UNREACHABLE();
2412 }
2413 __ bind(&not_smi_result);
2414}
2415
2416
Ben Murdoch257744e2011-11-30 15:57:28 +00002417void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
2418 bool smi_operands,
2419 Label* not_numbers,
2420 Label* gc_required) {
Steve Block1e0659c2011-05-24 12:43:12 +01002421 Register left = r1;
2422 Register right = r0;
2423 Register scratch1 = r7;
2424 Register scratch2 = r9;
Steve Block44f0eee2011-05-26 01:26:41 +01002425 Register scratch3 = r4;
Steve Block1e0659c2011-05-24 12:43:12 +01002426
2427 ASSERT(smi_operands || (not_numbers != NULL));
2428 if (smi_operands && FLAG_debug_code) {
2429 __ AbortIfNotSmi(left);
2430 __ AbortIfNotSmi(right);
2431 }
2432
2433 Register heap_number_map = r6;
2434 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2435
2436 switch (op_) {
2437 case Token::ADD:
2438 case Token::SUB:
2439 case Token::MUL:
2440 case Token::DIV:
2441 case Token::MOD: {
2442 // Load left and right operands into d6 and d7 or r0/r1 and r2/r3
2443 // depending on whether VFP3 is available or not.
2444 FloatingPointHelper::Destination destination =
Ben Murdoch8b112d22011-06-08 16:22:53 +01002445 CpuFeatures::IsSupported(VFP3) &&
Steve Block44f0eee2011-05-26 01:26:41 +01002446 op_ != Token::MOD ?
Steve Block1e0659c2011-05-24 12:43:12 +01002447 FloatingPointHelper::kVFPRegisters :
2448 FloatingPointHelper::kCoreRegisters;
2449
2450 // Allocate new heap number for result.
2451 Register result = r5;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002452 GenerateHeapResultAllocation(
2453 masm, result, heap_number_map, scratch1, scratch2, gc_required);
Steve Block1e0659c2011-05-24 12:43:12 +01002454
2455 // Load the operands.
2456 if (smi_operands) {
2457 FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
2458 } else {
2459 FloatingPointHelper::LoadOperands(masm,
2460 destination,
2461 heap_number_map,
2462 scratch1,
2463 scratch2,
2464 not_numbers);
2465 }
2466
2467 // Calculate the result.
2468 if (destination == FloatingPointHelper::kVFPRegisters) {
2469 // Using VFP registers:
2470 // d6: Left value
2471 // d7: Right value
2472 CpuFeatures::Scope scope(VFP3);
2473 switch (op_) {
2474 case Token::ADD:
2475 __ vadd(d5, d6, d7);
2476 break;
2477 case Token::SUB:
2478 __ vsub(d5, d6, d7);
2479 break;
2480 case Token::MUL:
2481 __ vmul(d5, d6, d7);
2482 break;
2483 case Token::DIV:
2484 __ vdiv(d5, d6, d7);
2485 break;
2486 default:
2487 UNREACHABLE();
2488 }
2489
2490 __ sub(r0, result, Operand(kHeapObjectTag));
2491 __ vstr(d5, r0, HeapNumber::kValueOffset);
2492 __ add(r0, r0, Operand(kHeapObjectTag));
2493 __ Ret();
2494 } else {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002495 // Call the C function to handle the double operation.
2496 FloatingPointHelper::CallCCodeForDoubleOperation(masm,
2497 op_,
2498 result,
2499 scratch1);
Ben Murdoch8b112d22011-06-08 16:22:53 +01002500 if (FLAG_debug_code) {
2501 __ stop("Unreachable code.");
2502 }
Steve Block1e0659c2011-05-24 12:43:12 +01002503 }
2504 break;
2505 }
2506 case Token::BIT_OR:
2507 case Token::BIT_XOR:
2508 case Token::BIT_AND:
2509 case Token::SAR:
2510 case Token::SHR:
2511 case Token::SHL: {
2512 if (smi_operands) {
2513 __ SmiUntag(r3, left);
2514 __ SmiUntag(r2, right);
2515 } else {
2516 // Convert operands to 32-bit integers. Right in r2 and left in r3.
Steve Block44f0eee2011-05-26 01:26:41 +01002517 FloatingPointHelper::ConvertNumberToInt32(masm,
2518 left,
2519 r3,
2520 heap_number_map,
2521 scratch1,
2522 scratch2,
2523 scratch3,
2524 d0,
2525 not_numbers);
2526 FloatingPointHelper::ConvertNumberToInt32(masm,
2527 right,
2528 r2,
2529 heap_number_map,
2530 scratch1,
2531 scratch2,
2532 scratch3,
2533 d0,
2534 not_numbers);
Steve Block1e0659c2011-05-24 12:43:12 +01002535 }
2536
2537 Label result_not_a_smi;
2538 switch (op_) {
2539 case Token::BIT_OR:
2540 __ orr(r2, r3, Operand(r2));
2541 break;
2542 case Token::BIT_XOR:
2543 __ eor(r2, r3, Operand(r2));
2544 break;
2545 case Token::BIT_AND:
2546 __ and_(r2, r3, Operand(r2));
2547 break;
2548 case Token::SAR:
2549 // Use only the 5 least significant bits of the shift count.
Steve Block1e0659c2011-05-24 12:43:12 +01002550 __ GetLeastBitsFromInt32(r2, r2, 5);
2551 __ mov(r2, Operand(r3, ASR, r2));
2552 break;
2553 case Token::SHR:
2554 // Use only the 5 least significant bits of the shift count.
2555 __ GetLeastBitsFromInt32(r2, r2, 5);
2556 __ mov(r2, Operand(r3, LSR, r2), SetCC);
2557 // SHR is special because it is required to produce a positive answer.
2558 // The code below for writing into heap numbers isn't capable of
2559 // writing the register as an unsigned int so we go to slow case if we
2560 // hit this case.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002561 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +01002562 __ b(mi, &result_not_a_smi);
2563 } else {
2564 __ b(mi, not_numbers);
2565 }
2566 break;
2567 case Token::SHL:
2568 // Use only the 5 least significant bits of the shift count.
2569 __ GetLeastBitsFromInt32(r2, r2, 5);
2570 __ mov(r2, Operand(r3, LSL, r2));
2571 break;
2572 default:
2573 UNREACHABLE();
2574 }
2575
2576 // Check that the *signed* result fits in a smi.
2577 __ add(r3, r2, Operand(0x40000000), SetCC);
2578 __ b(mi, &result_not_a_smi);
2579 __ SmiTag(r0, r2);
2580 __ Ret();
2581
2582 // Allocate new heap number for result.
2583 __ bind(&result_not_a_smi);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002584 Register result = r5;
2585 if (smi_operands) {
2586 __ AllocateHeapNumber(
2587 result, scratch1, scratch2, heap_number_map, gc_required);
2588 } else {
2589 GenerateHeapResultAllocation(
2590 masm, result, heap_number_map, scratch1, scratch2, gc_required);
2591 }
Steve Block1e0659c2011-05-24 12:43:12 +01002592
2593 // r2: Answer as signed int32.
2594 // r5: Heap number to write answer into.
2595
2596 // Nothing can go wrong now, so move the heap number to r0, which is the
2597 // result.
2598 __ mov(r0, Operand(r5));
2599
Ben Murdoch8b112d22011-06-08 16:22:53 +01002600 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +01002601 // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As
2602 // mentioned above SHR needs to always produce a positive result.
2603 CpuFeatures::Scope scope(VFP3);
2604 __ vmov(s0, r2);
2605 if (op_ == Token::SHR) {
2606 __ vcvt_f64_u32(d0, s0);
2607 } else {
2608 __ vcvt_f64_s32(d0, s0);
2609 }
2610 __ sub(r3, r0, Operand(kHeapObjectTag));
2611 __ vstr(d0, r3, HeapNumber::kValueOffset);
2612 __ Ret();
2613 } else {
2614 // Tail call that writes the int32 in r2 to the heap number in r0, using
2615 // r3 as scratch. r0 is preserved and returned.
2616 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
2617 __ TailCallStub(&stub);
2618 }
2619 break;
2620 }
2621 default:
2622 UNREACHABLE();
2623 }
2624}
2625
2626
2627// Generate the smi code. If the operation on smis are successful this return is
2628// generated. If the result is not a smi and heap number allocation is not
2629// requested the code falls through. If number allocation is requested but a
2630// heap number cannot be allocated the code jumps to the lable gc_required.
Ben Murdoch257744e2011-11-30 15:57:28 +00002631void BinaryOpStub::GenerateSmiCode(
2632 MacroAssembler* masm,
Ben Murdoch8b112d22011-06-08 16:22:53 +01002633 Label* use_runtime,
Steve Block1e0659c2011-05-24 12:43:12 +01002634 Label* gc_required,
2635 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
2636 Label not_smis;
2637
2638 Register left = r1;
2639 Register right = r0;
2640 Register scratch1 = r7;
Steve Block1e0659c2011-05-24 12:43:12 +01002641
2642 // Perform combined smi check on both operands.
2643 __ orr(scratch1, left, Operand(right));
2644 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002645 __ JumpIfNotSmi(scratch1, &not_smis);
Steve Block1e0659c2011-05-24 12:43:12 +01002646
2647 // If the smi-smi operation results in a smi return is generated.
2648 GenerateSmiSmiOperation(masm);
2649
2650 // If heap number results are possible generate the result in an allocated
2651 // heap number.
2652 if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002653 GenerateFPOperation(masm, true, use_runtime, gc_required);
Steve Block1e0659c2011-05-24 12:43:12 +01002654 }
2655 __ bind(&not_smis);
2656}
2657
2658
Ben Murdoch257744e2011-11-30 15:57:28 +00002659void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002660 Label not_smis, call_runtime;
2661
Ben Murdoch257744e2011-11-30 15:57:28 +00002662 if (result_type_ == BinaryOpIC::UNINITIALIZED ||
2663 result_type_ == BinaryOpIC::SMI) {
Steve Block1e0659c2011-05-24 12:43:12 +01002664 // Only allow smi results.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002665 GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS);
Steve Block1e0659c2011-05-24 12:43:12 +01002666 } else {
2667 // Allow heap number result and don't make a transition if a heap number
2668 // cannot be allocated.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002669 GenerateSmiCode(masm,
2670 &call_runtime,
2671 &call_runtime,
2672 ALLOW_HEAPNUMBER_RESULTS);
Steve Block1e0659c2011-05-24 12:43:12 +01002673 }
2674
2675 // Code falls through if the result is not returned as either a smi or heap
2676 // number.
2677 GenerateTypeTransition(masm);
2678
2679 __ bind(&call_runtime);
2680 GenerateCallRuntime(masm);
2681}
2682
2683
Ben Murdoch257744e2011-11-30 15:57:28 +00002684void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
2685 ASSERT(operands_type_ == BinaryOpIC::STRING);
Steve Block1e0659c2011-05-24 12:43:12 +01002686 ASSERT(op_ == Token::ADD);
2687 // Try to add arguments as strings, otherwise, transition to the generic
Ben Murdoch257744e2011-11-30 15:57:28 +00002688 // BinaryOpIC type.
Steve Block1e0659c2011-05-24 12:43:12 +01002689 GenerateAddStrings(masm);
2690 GenerateTypeTransition(masm);
2691}
2692
2693
Ben Murdoch257744e2011-11-30 15:57:28 +00002694void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
2695 Label call_runtime;
2696 ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
2697 ASSERT(op_ == Token::ADD);
2698 // If both arguments are strings, call the string add stub.
2699 // Otherwise, do a transition.
2700
2701 // Registers containing left and right operands respectively.
2702 Register left = r1;
2703 Register right = r0;
2704
2705 // Test if left operand is a string.
2706 __ JumpIfSmi(left, &call_runtime);
2707 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
2708 __ b(ge, &call_runtime);
2709
2710 // Test if right operand is a string.
2711 __ JumpIfSmi(right, &call_runtime);
2712 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
2713 __ b(ge, &call_runtime);
2714
2715 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
2716 GenerateRegisterArgsPush(masm);
2717 __ TailCallStub(&string_add_stub);
2718
2719 __ bind(&call_runtime);
2720 GenerateTypeTransition(masm);
2721}
2722
2723
2724void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
2725 ASSERT(operands_type_ == BinaryOpIC::INT32);
Steve Block1e0659c2011-05-24 12:43:12 +01002726
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002727 Register left = r1;
2728 Register right = r0;
2729 Register scratch1 = r7;
2730 Register scratch2 = r9;
2731 DwVfpRegister double_scratch = d0;
2732 SwVfpRegister single_scratch = s3;
2733
2734 Register heap_number_result = no_reg;
2735 Register heap_number_map = r6;
2736 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2737
2738 Label call_runtime;
2739 // Labels for type transition, used for wrong input or output types.
2740 // Both label are currently actually bound to the same position. We use two
2741 // different label to differentiate the cause leading to type transition.
2742 Label transition;
2743
2744 // Smi-smi fast case.
2745 Label skip;
2746 __ orr(scratch1, left, right);
2747 __ JumpIfNotSmi(scratch1, &skip);
2748 GenerateSmiSmiOperation(masm);
2749 // Fall through if the result is not a smi.
2750 __ bind(&skip);
2751
2752 switch (op_) {
2753 case Token::ADD:
2754 case Token::SUB:
2755 case Token::MUL:
2756 case Token::DIV:
2757 case Token::MOD: {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002758 // Load both operands and check that they are 32-bit integer.
2759 // Jump to type transition if they are not. The registers r0 and r1 (right
2760 // and left) are preserved for the runtime call.
2761 FloatingPointHelper::Destination destination =
2762 (CpuFeatures::IsSupported(VFP3) && op_ != Token::MOD)
2763 ? FloatingPointHelper::kVFPRegisters
2764 : FloatingPointHelper::kCoreRegisters;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002765
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002766 FloatingPointHelper::LoadNumberAsInt32Double(masm,
2767 right,
2768 destination,
2769 d7,
2770 r2,
2771 r3,
2772 heap_number_map,
2773 scratch1,
2774 scratch2,
2775 s0,
2776 &transition);
2777 FloatingPointHelper::LoadNumberAsInt32Double(masm,
2778 left,
2779 destination,
2780 d6,
2781 r4,
2782 r5,
2783 heap_number_map,
2784 scratch1,
2785 scratch2,
2786 s0,
2787 &transition);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002788
2789 if (destination == FloatingPointHelper::kVFPRegisters) {
2790 CpuFeatures::Scope scope(VFP3);
2791 Label return_heap_number;
2792 switch (op_) {
2793 case Token::ADD:
2794 __ vadd(d5, d6, d7);
2795 break;
2796 case Token::SUB:
2797 __ vsub(d5, d6, d7);
2798 break;
2799 case Token::MUL:
2800 __ vmul(d5, d6, d7);
2801 break;
2802 case Token::DIV:
2803 __ vdiv(d5, d6, d7);
2804 break;
2805 default:
2806 UNREACHABLE();
2807 }
2808
2809 if (op_ != Token::DIV) {
2810 // These operations produce an integer result.
2811 // Try to return a smi if we can.
2812 // Otherwise return a heap number if allowed, or jump to type
2813 // transition.
2814
2815 __ EmitVFPTruncate(kRoundToZero,
2816 single_scratch,
2817 d5,
2818 scratch1,
2819 scratch2);
2820
Ben Murdoch257744e2011-11-30 15:57:28 +00002821 if (result_type_ <= BinaryOpIC::INT32) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002822 // If the ne condition is set, result does
2823 // not fit in a 32-bit integer.
2824 __ b(ne, &transition);
2825 }
2826
2827 // Check if the result fits in a smi.
2828 __ vmov(scratch1, single_scratch);
2829 __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
2830 // If not try to return a heap number.
2831 __ b(mi, &return_heap_number);
Steve Block44f0eee2011-05-26 01:26:41 +01002832 // Check for minus zero. Return heap number for minus zero.
2833 Label not_zero;
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002834 __ cmp(scratch1, Operand::Zero());
Steve Block44f0eee2011-05-26 01:26:41 +01002835 __ b(ne, &not_zero);
2836 __ vmov(scratch2, d5.high());
2837 __ tst(scratch2, Operand(HeapNumber::kSignMask));
2838 __ b(ne, &return_heap_number);
2839 __ bind(&not_zero);
2840
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002841 // Tag the result and return.
2842 __ SmiTag(r0, scratch1);
2843 __ Ret();
Steve Block44f0eee2011-05-26 01:26:41 +01002844 } else {
2845 // DIV just falls through to allocating a heap number.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002846 }
2847
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002848 __ bind(&return_heap_number);
2849 // Return a heap number, or fall through to type transition or runtime
2850 // call if we can't.
2851 if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER
2852 : BinaryOpIC::INT32)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002853 // We are using vfp registers so r5 is available.
2854 heap_number_result = r5;
2855 GenerateHeapResultAllocation(masm,
2856 heap_number_result,
2857 heap_number_map,
2858 scratch1,
2859 scratch2,
2860 &call_runtime);
2861 __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
2862 __ vstr(d5, r0, HeapNumber::kValueOffset);
2863 __ mov(r0, heap_number_result);
2864 __ Ret();
2865 }
2866
2867 // A DIV operation expecting an integer result falls through
2868 // to type transition.
2869
2870 } else {
2871 // We preserved r0 and r1 to be able to call runtime.
2872 // Save the left value on the stack.
2873 __ Push(r5, r4);
2874
Steve Block053d10c2011-06-13 19:13:29 +01002875 Label pop_and_call_runtime;
2876
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002877 // Allocate a heap number to store the result.
2878 heap_number_result = r5;
2879 GenerateHeapResultAllocation(masm,
2880 heap_number_result,
2881 heap_number_map,
2882 scratch1,
2883 scratch2,
Steve Block053d10c2011-06-13 19:13:29 +01002884 &pop_and_call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002885
2886 // Load the left value from the value saved on the stack.
2887 __ Pop(r1, r0);
2888
2889 // Call the C function to handle the double operation.
2890 FloatingPointHelper::CallCCodeForDoubleOperation(
2891 masm, op_, heap_number_result, scratch1);
Ben Murdoch8b112d22011-06-08 16:22:53 +01002892 if (FLAG_debug_code) {
2893 __ stop("Unreachable code.");
2894 }
Steve Block053d10c2011-06-13 19:13:29 +01002895
2896 __ bind(&pop_and_call_runtime);
2897 __ Drop(2);
2898 __ b(&call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002899 }
2900
2901 break;
2902 }
2903
2904 case Token::BIT_OR:
2905 case Token::BIT_XOR:
2906 case Token::BIT_AND:
2907 case Token::SAR:
2908 case Token::SHR:
2909 case Token::SHL: {
2910 Label return_heap_number;
2911 Register scratch3 = r5;
2912 // Convert operands to 32-bit integers. Right in r2 and left in r3. The
2913 // registers r0 and r1 (right and left) are preserved for the runtime
2914 // call.
2915 FloatingPointHelper::LoadNumberAsInt32(masm,
2916 left,
2917 r3,
2918 heap_number_map,
2919 scratch1,
2920 scratch2,
2921 scratch3,
2922 d0,
2923 &transition);
2924 FloatingPointHelper::LoadNumberAsInt32(masm,
2925 right,
2926 r2,
2927 heap_number_map,
2928 scratch1,
2929 scratch2,
2930 scratch3,
2931 d0,
2932 &transition);
2933
2934 // The ECMA-262 standard specifies that, for shift operations, only the
2935 // 5 least significant bits of the shift value should be used.
2936 switch (op_) {
2937 case Token::BIT_OR:
2938 __ orr(r2, r3, Operand(r2));
2939 break;
2940 case Token::BIT_XOR:
2941 __ eor(r2, r3, Operand(r2));
2942 break;
2943 case Token::BIT_AND:
2944 __ and_(r2, r3, Operand(r2));
2945 break;
2946 case Token::SAR:
2947 __ and_(r2, r2, Operand(0x1f));
2948 __ mov(r2, Operand(r3, ASR, r2));
2949 break;
2950 case Token::SHR:
2951 __ and_(r2, r2, Operand(0x1f));
2952 __ mov(r2, Operand(r3, LSR, r2), SetCC);
2953 // SHR is special because it is required to produce a positive answer.
2954 // We only get a negative result if the shift value (r2) is 0.
2955 // This result cannot be respresented as a signed 32-bit integer, try
2956 // to return a heap number if we can.
2957 // The non vfp3 code does not support this special case, so jump to
2958 // runtime if we don't support it.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002959 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoch257744e2011-11-30 15:57:28 +00002960 __ b(mi, (result_type_ <= BinaryOpIC::INT32)
2961 ? &transition
2962 : &return_heap_number);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002963 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00002964 __ b(mi, (result_type_ <= BinaryOpIC::INT32)
2965 ? &transition
2966 : &call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002967 }
2968 break;
2969 case Token::SHL:
2970 __ and_(r2, r2, Operand(0x1f));
2971 __ mov(r2, Operand(r3, LSL, r2));
2972 break;
2973 default:
2974 UNREACHABLE();
2975 }
2976
2977 // Check if the result fits in a smi.
2978 __ add(scratch1, r2, Operand(0x40000000), SetCC);
2979 // If not try to return a heap number. (We know the result is an int32.)
2980 __ b(mi, &return_heap_number);
2981 // Tag the result and return.
2982 __ SmiTag(r0, r2);
2983 __ Ret();
2984
2985 __ bind(&return_heap_number);
Ben Murdoch8b112d22011-06-08 16:22:53 +01002986 heap_number_result = r5;
2987 GenerateHeapResultAllocation(masm,
2988 heap_number_result,
2989 heap_number_map,
2990 scratch1,
2991 scratch2,
2992 &call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002993
Ben Murdoch8b112d22011-06-08 16:22:53 +01002994 if (CpuFeatures::IsSupported(VFP3)) {
2995 CpuFeatures::Scope scope(VFP3);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002996 if (op_ != Token::SHR) {
2997 // Convert the result to a floating point value.
2998 __ vmov(double_scratch.low(), r2);
2999 __ vcvt_f64_s32(double_scratch, double_scratch.low());
3000 } else {
3001 // The result must be interpreted as an unsigned 32-bit integer.
3002 __ vmov(double_scratch.low(), r2);
3003 __ vcvt_f64_u32(double_scratch, double_scratch.low());
3004 }
3005
3006 // Store the result.
3007 __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
3008 __ vstr(double_scratch, r0, HeapNumber::kValueOffset);
3009 __ mov(r0, heap_number_result);
3010 __ Ret();
3011 } else {
3012 // Tail call that writes the int32 in r2 to the heap number in r0, using
3013 // r3 as scratch. r0 is preserved and returned.
Ben Murdoch8b112d22011-06-08 16:22:53 +01003014 __ mov(r0, r5);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003015 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
3016 __ TailCallStub(&stub);
3017 }
3018
3019 break;
3020 }
3021
3022 default:
3023 UNREACHABLE();
3024 }
3025
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003026 // We never expect DIV to yield an integer result, so we always generate
3027 // type transition code for DIV operations expecting an integer result: the
3028 // code will fall through to this type transition.
3029 if (transition.is_linked() ||
3030 ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003031 __ bind(&transition);
3032 GenerateTypeTransition(masm);
3033 }
3034
3035 __ bind(&call_runtime);
3036 GenerateCallRuntime(masm);
Steve Block1e0659c2011-05-24 12:43:12 +01003037}
3038
3039
Ben Murdoch257744e2011-11-30 15:57:28 +00003040void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
Steve Block44f0eee2011-05-26 01:26:41 +01003041 Label call_runtime;
3042
3043 if (op_ == Token::ADD) {
3044 // Handle string addition here, because it is the only operation
3045 // that does not do a ToNumber conversion on the operands.
3046 GenerateAddStrings(masm);
3047 }
3048
3049 // Convert oddball arguments to numbers.
3050 Label check, done;
3051 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
3052 __ b(ne, &check);
3053 if (Token::IsBitOp(op_)) {
3054 __ mov(r1, Operand(Smi::FromInt(0)));
3055 } else {
3056 __ LoadRoot(r1, Heap::kNanValueRootIndex);
3057 }
3058 __ jmp(&done);
3059 __ bind(&check);
3060 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
3061 __ b(ne, &done);
3062 if (Token::IsBitOp(op_)) {
3063 __ mov(r0, Operand(Smi::FromInt(0)));
3064 } else {
3065 __ LoadRoot(r0, Heap::kNanValueRootIndex);
3066 }
3067 __ bind(&done);
3068
3069 GenerateHeapNumberStub(masm);
3070}
3071
3072
Ben Murdoch257744e2011-11-30 15:57:28 +00003073void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
Steve Block44f0eee2011-05-26 01:26:41 +01003074 Label call_runtime;
3075 GenerateFPOperation(masm, false, &call_runtime, &call_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01003076
3077 __ bind(&call_runtime);
3078 GenerateCallRuntime(masm);
3079}
3080
3081
Ben Murdoch257744e2011-11-30 15:57:28 +00003082void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003083 Label call_runtime, call_string_add_or_runtime;
Steve Block1e0659c2011-05-24 12:43:12 +01003084
Ben Murdoch8b112d22011-06-08 16:22:53 +01003085 GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
Steve Block1e0659c2011-05-24 12:43:12 +01003086
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003087 GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01003088
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003089 __ bind(&call_string_add_or_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01003090 if (op_ == Token::ADD) {
3091 GenerateAddStrings(masm);
3092 }
3093
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003094 __ bind(&call_runtime);
3095 GenerateCallRuntime(masm);
Steve Block1e0659c2011-05-24 12:43:12 +01003096}
3097
3098
Ben Murdoch257744e2011-11-30 15:57:28 +00003099void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01003100 ASSERT(op_ == Token::ADD);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003101 Label left_not_string, call_runtime;
Steve Block1e0659c2011-05-24 12:43:12 +01003102
3103 Register left = r1;
3104 Register right = r0;
Steve Block1e0659c2011-05-24 12:43:12 +01003105
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003106 // Check if left argument is a string.
3107 __ JumpIfSmi(left, &left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01003108 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003109 __ b(ge, &left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01003110
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003111 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
3112 GenerateRegisterArgsPush(masm);
3113 __ TailCallStub(&string_add_left_stub);
3114
3115 // Left operand is not a string, test right.
3116 __ bind(&left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01003117 __ JumpIfSmi(right, &call_runtime);
3118 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
3119 __ b(ge, &call_runtime);
3120
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003121 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
Steve Block1e0659c2011-05-24 12:43:12 +01003122 GenerateRegisterArgsPush(masm);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003123 __ TailCallStub(&string_add_right_stub);
Steve Block1e0659c2011-05-24 12:43:12 +01003124
3125 // At least one argument is not a string.
3126 __ bind(&call_runtime);
3127}
3128
3129
Ben Murdoch257744e2011-11-30 15:57:28 +00003130void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01003131 GenerateRegisterArgsPush(masm);
3132 switch (op_) {
3133 case Token::ADD:
Ben Murdoch257744e2011-11-30 15:57:28 +00003134 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003135 break;
3136 case Token::SUB:
Ben Murdoch257744e2011-11-30 15:57:28 +00003137 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003138 break;
3139 case Token::MUL:
Ben Murdoch257744e2011-11-30 15:57:28 +00003140 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003141 break;
3142 case Token::DIV:
Ben Murdoch257744e2011-11-30 15:57:28 +00003143 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003144 break;
3145 case Token::MOD:
Ben Murdoch257744e2011-11-30 15:57:28 +00003146 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003147 break;
3148 case Token::BIT_OR:
Ben Murdoch257744e2011-11-30 15:57:28 +00003149 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003150 break;
3151 case Token::BIT_AND:
Ben Murdoch257744e2011-11-30 15:57:28 +00003152 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003153 break;
3154 case Token::BIT_XOR:
Ben Murdoch257744e2011-11-30 15:57:28 +00003155 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003156 break;
3157 case Token::SAR:
Ben Murdoch257744e2011-11-30 15:57:28 +00003158 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003159 break;
3160 case Token::SHR:
Ben Murdoch257744e2011-11-30 15:57:28 +00003161 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003162 break;
3163 case Token::SHL:
Ben Murdoch257744e2011-11-30 15:57:28 +00003164 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003165 break;
3166 default:
3167 UNREACHABLE();
3168 }
3169}
3170
3171
Ben Murdoch257744e2011-11-30 15:57:28 +00003172void BinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm,
3173 Register result,
3174 Register heap_number_map,
3175 Register scratch1,
3176 Register scratch2,
3177 Label* gc_required) {
Steve Block1e0659c2011-05-24 12:43:12 +01003178 // Code below will scratch result if allocation fails. To keep both arguments
3179 // intact for the runtime call result cannot be one of these.
3180 ASSERT(!result.is(r0) && !result.is(r1));
3181
3182 if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
3183 Label skip_allocation, allocated;
3184 Register overwritable_operand = mode_ == OVERWRITE_LEFT ? r1 : r0;
3185 // If the overwritable operand is already an object, we skip the
3186 // allocation of a heap number.
3187 __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
3188 // Allocate a heap number for the result.
3189 __ AllocateHeapNumber(
3190 result, scratch1, scratch2, heap_number_map, gc_required);
3191 __ b(&allocated);
3192 __ bind(&skip_allocation);
3193 // Use object holding the overwritable operand for result.
3194 __ mov(result, Operand(overwritable_operand));
3195 __ bind(&allocated);
3196 } else {
3197 ASSERT(mode_ == NO_OVERWRITE);
3198 __ AllocateHeapNumber(
3199 result, scratch1, scratch2, heap_number_map, gc_required);
3200 }
3201}
3202
3203
Ben Murdoch257744e2011-11-30 15:57:28 +00003204void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01003205 __ Push(r1, r0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003206}
3207
3208
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003209void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003210 // Untagged case: double input in d2, double result goes
3211 // into d2.
3212 // Tagged case: tagged input on top of stack and in r0,
3213 // tagged result (heap number) goes into r0.
3214
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003215 Label input_not_smi;
3216 Label loaded;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003217 Label calculate;
3218 Label invalid_cache;
3219 const Register scratch0 = r9;
3220 const Register scratch1 = r7;
3221 const Register cache_entry = r0;
3222 const bool tagged = (argument_type_ == TAGGED);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003223
Ben Murdoch8b112d22011-06-08 16:22:53 +01003224 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003225 CpuFeatures::Scope scope(VFP3);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003226 if (tagged) {
3227 // Argument is a number and is on stack and in r0.
3228 // Load argument and check if it is a smi.
3229 __ JumpIfNotSmi(r0, &input_not_smi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003230
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003231 // Input is a smi. Convert to double and load the low and high words
3232 // of the double into r2, r3.
3233 __ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
3234 __ b(&loaded);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003235
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003236 __ bind(&input_not_smi);
3237 // Check if input is a HeapNumber.
3238 __ CheckMap(r0,
3239 r1,
3240 Heap::kHeapNumberMapRootIndex,
3241 &calculate,
Ben Murdoch257744e2011-11-30 15:57:28 +00003242 DONT_DO_SMI_CHECK);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003243 // Input is a HeapNumber. Load it to a double register and store the
3244 // low and high words into r2, r3.
3245 __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset));
3246 __ vmov(r2, r3, d0);
3247 } else {
3248 // Input is untagged double in d2. Output goes to d2.
3249 __ vmov(r2, r3, d2);
3250 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003251 __ bind(&loaded);
3252 // r2 = low 32 bits of double value
3253 // r3 = high 32 bits of double value
3254 // Compute hash (the shifts are arithmetic):
3255 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
3256 __ eor(r1, r2, Operand(r3));
3257 __ eor(r1, r1, Operand(r1, ASR, 16));
3258 __ eor(r1, r1, Operand(r1, ASR, 8));
Steve Block44f0eee2011-05-26 01:26:41 +01003259 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
3260 __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003261
3262 // r2 = low 32 bits of double value.
3263 // r3 = high 32 bits of double value.
3264 // r1 = TranscendentalCache::hash(double value).
Steve Block44f0eee2011-05-26 01:26:41 +01003265 Isolate* isolate = masm->isolate();
3266 ExternalReference cache_array =
3267 ExternalReference::transcendental_cache_array_address(isolate);
3268 __ mov(cache_entry, Operand(cache_array));
3269 // cache_entry points to cache array.
3270 int cache_array_index
3271 = type_ * sizeof(isolate->transcendental_cache()->caches_[0]);
3272 __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003273 // r0 points to the cache for the type type_.
3274 // If NULL, the cache hasn't been initialized yet, so go through runtime.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003275 __ cmp(cache_entry, Operand(0, RelocInfo::NONE));
3276 __ b(eq, &invalid_cache);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003277
3278#ifdef DEBUG
3279 // Check that the layout of cache elements match expectations.
Steve Block44f0eee2011-05-26 01:26:41 +01003280 { TranscendentalCache::SubCache::Element test_elem[2];
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003281 char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
3282 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
3283 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
3284 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
3285 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
3286 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
3287 CHECK_EQ(0, elem_in0 - elem_start);
3288 CHECK_EQ(kIntSize, elem_in1 - elem_start);
3289 CHECK_EQ(2 * kIntSize, elem_out - elem_start);
3290 }
3291#endif
3292
3293 // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
3294 __ add(r1, r1, Operand(r1, LSL, 1));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003295 __ add(cache_entry, cache_entry, Operand(r1, LSL, 2));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003296 // Check if cache matches: Double value is stored in uint32_t[2] array.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003297 __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003298 __ cmp(r2, r4);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003299 __ cmp(r3, r5, eq);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003300 __ b(ne, &calculate);
3301 // Cache hit. Load result, cleanup and return.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003302 Counters* counters = masm->isolate()->counters();
3303 __ IncrementCounter(
3304 counters->transcendental_cache_hit(), 1, scratch0, scratch1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003305 if (tagged) {
3306 // Pop input value from stack and load result into r0.
3307 __ pop();
3308 __ mov(r0, Operand(r6));
3309 } else {
3310 // Load result into d2.
3311 __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
3312 }
3313 __ Ret();
Ben Murdoch8b112d22011-06-08 16:22:53 +01003314 } // if (CpuFeatures::IsSupported(VFP3))
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003315
3316 __ bind(&calculate);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003317 Counters* counters = masm->isolate()->counters();
3318 __ IncrementCounter(
3319 counters->transcendental_cache_miss(), 1, scratch0, scratch1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003320 if (tagged) {
3321 __ bind(&invalid_cache);
Steve Block44f0eee2011-05-26 01:26:41 +01003322 ExternalReference runtime_function =
3323 ExternalReference(RuntimeFunction(), masm->isolate());
3324 __ TailCallExternalReference(runtime_function, 1, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003325 } else {
Ben Murdoch8b112d22011-06-08 16:22:53 +01003326 if (!CpuFeatures::IsSupported(VFP3)) UNREACHABLE();
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003327 CpuFeatures::Scope scope(VFP3);
3328
3329 Label no_update;
3330 Label skip_cache;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003331
3332 // Call C function to calculate the result and update the cache.
3333 // Register r0 holds precalculated cache entry address; preserve
3334 // it on the stack and pop it into register cache_entry after the
3335 // call.
3336 __ push(cache_entry);
3337 GenerateCallCFunction(masm, scratch0);
3338 __ GetCFunctionDoubleResult(d2);
3339
3340 // Try to update the cache. If we cannot allocate a
3341 // heap number, we return the result without updating.
3342 __ pop(cache_entry);
3343 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
3344 __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update);
3345 __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
3346 __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit());
3347 __ Ret();
3348
3349 __ bind(&invalid_cache);
3350 // The cache is invalid. Call runtime which will recreate the
3351 // cache.
3352 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
3353 __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache);
3354 __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003355 {
3356 FrameScope scope(masm, StackFrame::INTERNAL);
3357 __ push(r0);
3358 __ CallRuntime(RuntimeFunction(), 1);
3359 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003360 __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
3361 __ Ret();
3362
3363 __ bind(&skip_cache);
3364 // Call C function to calculate the result and answer directly
3365 // without updating the cache.
3366 GenerateCallCFunction(masm, scratch0);
3367 __ GetCFunctionDoubleResult(d2);
3368 __ bind(&no_update);
3369
3370 // We return the value in d2 without adding it to the cache, but
3371 // we cause a scavenging GC so that future allocations will succeed.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003372 {
3373 FrameScope scope(masm, StackFrame::INTERNAL);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003374
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003375 // Allocate an aligned object larger than a HeapNumber.
3376 ASSERT(4 * kPointerSize >= HeapNumber::kSize);
3377 __ mov(scratch0, Operand(4 * kPointerSize));
3378 __ push(scratch0);
3379 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
3380 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003381 __ Ret();
3382 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003383}
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003384
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003385
3386void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
3387 Register scratch) {
Steve Block44f0eee2011-05-26 01:26:41 +01003388 Isolate* isolate = masm->isolate();
3389
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003390 __ push(lr);
Ben Murdoch257744e2011-11-30 15:57:28 +00003391 __ PrepareCallCFunction(0, 1, scratch);
3392 if (masm->use_eabi_hardfloat()) {
3393 __ vmov(d0, d2);
3394 } else {
3395 __ vmov(r0, r1, d2);
3396 }
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003397 AllowExternalCallThatCantCauseGC scope(masm);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003398 switch (type_) {
3399 case TranscendentalCache::SIN:
Ben Murdoch257744e2011-11-30 15:57:28 +00003400 __ CallCFunction(ExternalReference::math_sin_double_function(isolate),
3401 0, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003402 break;
3403 case TranscendentalCache::COS:
Ben Murdoch257744e2011-11-30 15:57:28 +00003404 __ CallCFunction(ExternalReference::math_cos_double_function(isolate),
3405 0, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003406 break;
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003407 case TranscendentalCache::TAN:
3408 __ CallCFunction(ExternalReference::math_tan_double_function(isolate),
3409 0, 1);
3410 break;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003411 case TranscendentalCache::LOG:
Ben Murdoch257744e2011-11-30 15:57:28 +00003412 __ CallCFunction(ExternalReference::math_log_double_function(isolate),
3413 0, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003414 break;
3415 default:
3416 UNIMPLEMENTED();
3417 break;
3418 }
3419 __ pop(lr);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003420}
3421
3422
3423Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
3424 switch (type_) {
3425 // Add more cases when necessary.
3426 case TranscendentalCache::SIN: return Runtime::kMath_sin;
3427 case TranscendentalCache::COS: return Runtime::kMath_cos;
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003428 case TranscendentalCache::TAN: return Runtime::kMath_tan;
Ben Murdochb0fe1622011-05-05 13:52:32 +01003429 case TranscendentalCache::LOG: return Runtime::kMath_log;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003430 default:
3431 UNIMPLEMENTED();
3432 return Runtime::kAbort;
3433 }
3434}
3435
3436
3437void StackCheckStub::Generate(MacroAssembler* masm) {
Ben Murdochf87a2032010-10-22 12:50:53 +01003438 __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003439}
3440
3441
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003442void InterruptStub::Generate(MacroAssembler* masm) {
3443 __ TailCallRuntime(Runtime::kInterrupt, 0, 1);
3444}
3445
3446
Steve Block44f0eee2011-05-26 01:26:41 +01003447void MathPowStub::Generate(MacroAssembler* masm) {
Ben Murdochc7cc0282012-03-05 14:35:55 +00003448 CpuFeatures::Scope vfp3_scope(VFP3);
3449 const Register base = r1;
3450 const Register exponent = r2;
3451 const Register heapnumbermap = r5;
3452 const Register heapnumber = r0;
3453 const DoubleRegister double_base = d1;
3454 const DoubleRegister double_exponent = d2;
3455 const DoubleRegister double_result = d3;
3456 const DoubleRegister double_scratch = d0;
3457 const SwVfpRegister single_scratch = s0;
3458 const Register scratch = r9;
3459 const Register scratch2 = r7;
Steve Block44f0eee2011-05-26 01:26:41 +01003460
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003461 Label call_runtime, done, int_exponent;
Ben Murdochc7cc0282012-03-05 14:35:55 +00003462 if (exponent_type_ == ON_STACK) {
3463 Label base_is_smi, unpack_exponent;
3464 // The exponent and base are supplied as arguments on the stack.
3465 // This can only happen if the stub is called from non-optimized code.
3466 // Load input parameters from stack to double registers.
Steve Block44f0eee2011-05-26 01:26:41 +01003467 __ ldr(base, MemOperand(sp, 1 * kPointerSize));
3468 __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
3469
Ben Murdochc7cc0282012-03-05 14:35:55 +00003470 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
Steve Block44f0eee2011-05-26 01:26:41 +01003471
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003472 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
Steve Block44f0eee2011-05-26 01:26:41 +01003473 __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
3474 __ cmp(scratch, heapnumbermap);
3475 __ b(ne, &call_runtime);
Steve Block44f0eee2011-05-26 01:26:41 +01003476
Ben Murdochc7cc0282012-03-05 14:35:55 +00003477 __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
3478 __ jmp(&unpack_exponent);
3479
3480 __ bind(&base_is_smi);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003481 __ vmov(single_scratch, scratch);
Ben Murdochc7cc0282012-03-05 14:35:55 +00003482 __ vcvt_f64_s32(double_base, single_scratch);
3483 __ bind(&unpack_exponent);
3484
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003485 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
Steve Block44f0eee2011-05-26 01:26:41 +01003486
Steve Block44f0eee2011-05-26 01:26:41 +01003487 __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
3488 __ cmp(scratch, heapnumbermap);
3489 __ b(ne, &call_runtime);
Steve Block44f0eee2011-05-26 01:26:41 +01003490 __ vldr(double_exponent,
3491 FieldMemOperand(exponent, HeapNumber::kValueOffset));
Ben Murdochc7cc0282012-03-05 14:35:55 +00003492 } else if (exponent_type_ == TAGGED) {
3493 // Base is already in double_base.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003494 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
Steve Block44f0eee2011-05-26 01:26:41 +01003495
Ben Murdochc7cc0282012-03-05 14:35:55 +00003496 __ vldr(double_exponent,
3497 FieldMemOperand(exponent, HeapNumber::kValueOffset));
3498 }
3499
3500 if (exponent_type_ != INTEGER) {
3501 Label int_exponent_convert;
3502 // Detect integer exponents stored as double.
3503 __ vcvt_u32_f64(single_scratch, double_exponent);
3504 // We do not check for NaN or Infinity here because comparing numbers on
3505 // ARM correctly distinguishes NaNs. We end up calling the built-in.
3506 __ vcvt_f64_u32(double_scratch, single_scratch);
3507 __ VFPCompareAndSetFlags(double_scratch, double_exponent);
3508 __ b(eq, &int_exponent_convert);
3509
3510 if (exponent_type_ == ON_STACK) {
3511 // Detect square root case. Crankshaft detects constant +/-0.5 at
3512 // compile time and uses DoMathPowHalf instead. We then skip this check
3513 // for non-constant cases of +/-0.5 as these hardly occur.
3514 Label not_plus_half;
3515
3516 // Test for 0.5.
3517 __ vmov(double_scratch, 0.5);
3518 __ VFPCompareAndSetFlags(double_exponent, double_scratch);
3519 __ b(ne, &not_plus_half);
3520
3521 // Calculates square root of base. Check for the special case of
3522 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
3523 __ vmov(double_scratch, -V8_INFINITY);
3524 __ VFPCompareAndSetFlags(double_base, double_scratch);
3525 __ vneg(double_result, double_scratch, eq);
3526 __ b(eq, &done);
3527
3528 // Add +0 to convert -0 to +0.
3529 __ vadd(double_scratch, double_base, kDoubleRegZero);
3530 __ vsqrt(double_result, double_scratch);
3531 __ jmp(&done);
3532
3533 __ bind(&not_plus_half);
3534 __ vmov(double_scratch, -0.5);
3535 __ VFPCompareAndSetFlags(double_exponent, double_scratch);
3536 __ b(ne, &call_runtime);
3537
3538 // Calculates square root of base. Check for the special case of
3539 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
3540 __ vmov(double_scratch, -V8_INFINITY);
3541 __ VFPCompareAndSetFlags(double_base, double_scratch);
3542 __ vmov(double_result, kDoubleRegZero, eq);
3543 __ b(eq, &done);
3544
3545 // Add +0 to convert -0 to +0.
3546 __ vadd(double_scratch, double_base, kDoubleRegZero);
3547 __ vmov(double_result, 1);
3548 __ vsqrt(double_scratch, double_scratch);
3549 __ vdiv(double_result, double_result, double_scratch);
3550 __ jmp(&done);
3551 }
3552
Steve Block44f0eee2011-05-26 01:26:41 +01003553 __ push(lr);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003554 {
3555 AllowExternalCallThatCantCauseGC scope(masm);
Ben Murdochc7cc0282012-03-05 14:35:55 +00003556 __ PrepareCallCFunction(0, 2, scratch);
3557 __ SetCallCDoubleArguments(double_base, double_exponent);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003558 __ CallCFunction(
3559 ExternalReference::power_double_double_function(masm->isolate()),
3560 0, 2);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003561 }
Ben Murdochc7cc0282012-03-05 14:35:55 +00003562 __ pop(lr);
3563 __ GetCFunctionDoubleResult(double_result);
3564 __ jmp(&done);
3565
3566 __ bind(&int_exponent_convert);
3567 __ vcvt_u32_f64(single_scratch, double_exponent);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003568 __ vmov(scratch, single_scratch);
Steve Block44f0eee2011-05-26 01:26:41 +01003569 }
3570
Ben Murdochc7cc0282012-03-05 14:35:55 +00003571 // Calculate power with integer exponent.
3572 __ bind(&int_exponent);
3573
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003574 // Get two copies of exponent in the registers scratch and exponent.
3575 if (exponent_type_ == INTEGER) {
3576 __ mov(scratch, exponent);
3577 } else {
3578 // Exponent has previously been stored into scratch as untagged integer.
3579 __ mov(exponent, scratch);
3580 }
Ben Murdochc7cc0282012-03-05 14:35:55 +00003581 __ vmov(double_scratch, double_base); // Back up base.
3582 __ vmov(double_result, 1.0);
3583
3584 // Get absolute value of exponent.
3585 __ cmp(scratch, Operand(0));
3586 __ mov(scratch2, Operand(0), LeaveCC, mi);
3587 __ sub(scratch, scratch2, scratch, LeaveCC, mi);
3588
3589 Label while_true;
3590 __ bind(&while_true);
3591 __ mov(scratch, Operand(scratch, ASR, 1), SetCC);
3592 __ vmul(double_result, double_result, double_scratch, cs);
3593 __ vmul(double_scratch, double_scratch, double_scratch, ne);
3594 __ b(ne, &while_true);
3595
3596 __ cmp(exponent, Operand(0));
3597 __ b(ge, &done);
3598 __ vmov(double_scratch, 1.0);
3599 __ vdiv(double_result, double_scratch, double_result);
3600 // Test whether result is zero. Bail out to check for subnormal result.
3601 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
3602 __ VFPCompareAndSetFlags(double_result, 0.0);
3603 __ b(ne, &done);
3604 // double_exponent may not containe the exponent value if the input was a
3605 // smi. We set it with exponent value before bailing out.
3606 __ vmov(single_scratch, exponent);
3607 __ vcvt_f64_s32(double_exponent, single_scratch);
3608
3609 // Returning or bailing out.
3610 Counters* counters = masm->isolate()->counters();
3611 if (exponent_type_ == ON_STACK) {
3612 // The arguments are still on the stack.
3613 __ bind(&call_runtime);
3614 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
3615
3616 // The stub is called from non-optimized code, which expects the result
3617 // as heap number in exponent.
3618 __ bind(&done);
3619 __ AllocateHeapNumber(
3620 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
3621 __ vstr(double_result,
3622 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
3623 ASSERT(heapnumber.is(r0));
3624 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
3625 __ Ret(2);
3626 } else {
3627 __ push(lr);
3628 {
3629 AllowExternalCallThatCantCauseGC scope(masm);
3630 __ PrepareCallCFunction(0, 2, scratch);
3631 __ SetCallCDoubleArguments(double_base, double_exponent);
3632 __ CallCFunction(
3633 ExternalReference::power_double_double_function(masm->isolate()),
3634 0, 2);
3635 }
3636 __ pop(lr);
3637 __ GetCFunctionDoubleResult(double_result);
3638
3639 __ bind(&done);
3640 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
3641 __ Ret();
3642 }
Steve Block44f0eee2011-05-26 01:26:41 +01003643}
3644
3645
3646bool CEntryStub::NeedsImmovableCode() {
3647 return true;
3648}
3649
3650
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003651bool CEntryStub::IsPregenerated() {
3652 return (!save_doubles_ || ISOLATE->fp_stubs_generated()) &&
3653 result_size_ == 1;
3654}
3655
3656
3657void CodeStub::GenerateStubsAheadOfTime() {
3658 CEntryStub::GenerateAheadOfTime();
3659 WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime();
3660 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime();
3661 RecordWriteStub::GenerateFixedRegStubsAheadOfTime();
3662}
3663
3664
3665void CodeStub::GenerateFPStubs() {
3666 CEntryStub save_doubles(1, kSaveFPRegs);
3667 Handle<Code> code = save_doubles.GetCode();
3668 code->set_is_pregenerated(true);
3669 StoreBufferOverflowStub stub(kSaveFPRegs);
3670 stub.GetCode()->set_is_pregenerated(true);
3671 code->GetIsolate()->set_fp_stubs_generated(true);
3672}
3673
3674
3675void CEntryStub::GenerateAheadOfTime() {
3676 CEntryStub stub(1, kDontSaveFPRegs);
3677 Handle<Code> code = stub.GetCode();
3678 code->set_is_pregenerated(true);
3679}
3680
3681
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003682void CEntryStub::GenerateCore(MacroAssembler* masm,
3683 Label* throw_normal_exception,
3684 Label* throw_termination_exception,
3685 Label* throw_out_of_memory_exception,
3686 bool do_gc,
Steve Block1e0659c2011-05-24 12:43:12 +01003687 bool always_allocate) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003688 // r0: result parameter for PerformGC, if any
3689 // r4: number of arguments including receiver (C callee-saved)
3690 // r5: pointer to builtin function (C callee-saved)
3691 // r6: pointer to the first argument (C callee-saved)
Steve Block44f0eee2011-05-26 01:26:41 +01003692 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003693
3694 if (do_gc) {
3695 // Passing r0.
Ben Murdoch257744e2011-11-30 15:57:28 +00003696 __ PrepareCallCFunction(1, 0, r1);
3697 __ CallCFunction(ExternalReference::perform_gc_function(isolate),
3698 1, 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003699 }
3700
3701 ExternalReference scope_depth =
Steve Block44f0eee2011-05-26 01:26:41 +01003702 ExternalReference::heap_always_allocate_scope_depth(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003703 if (always_allocate) {
3704 __ mov(r0, Operand(scope_depth));
3705 __ ldr(r1, MemOperand(r0));
3706 __ add(r1, r1, Operand(1));
3707 __ str(r1, MemOperand(r0));
3708 }
3709
3710 // Call C built-in.
3711 // r0 = argc, r1 = argv
3712 __ mov(r0, Operand(r4));
3713 __ mov(r1, Operand(r6));
3714
Steve Block1e0659c2011-05-24 12:43:12 +01003715#if defined(V8_HOST_ARCH_ARM)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003716 int frame_alignment = MacroAssembler::ActivationFrameAlignment();
3717 int frame_alignment_mask = frame_alignment - 1;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003718 if (FLAG_debug_code) {
3719 if (frame_alignment > kPointerSize) {
3720 Label alignment_as_expected;
3721 ASSERT(IsPowerOf2(frame_alignment));
Steve Block1e0659c2011-05-24 12:43:12 +01003722 __ tst(sp, Operand(frame_alignment_mask));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003723 __ b(eq, &alignment_as_expected);
3724 // Don't use Check here, as it will call Runtime_Abort re-entering here.
3725 __ stop("Unexpected alignment");
3726 __ bind(&alignment_as_expected);
3727 }
3728 }
3729#endif
3730
Steve Block44f0eee2011-05-26 01:26:41 +01003731 __ mov(r2, Operand(ExternalReference::isolate_address()));
3732
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003733 // To let the GC traverse the return address of the exit frames, we need to
3734 // know where the return address is. The CEntryStub is unmovable, so
3735 // we can store the address on the stack to be able to find it again and
3736 // we never have to restore it, because it will not change.
Steve Block1e0659c2011-05-24 12:43:12 +01003737 // Compute the return address in lr to return to after the jump below. Pc is
3738 // already at '+ 8' from the current instruction but return is after three
3739 // instructions so add another 4 to pc to get the return address.
3740 masm->add(lr, pc, Operand(4));
3741 __ str(lr, MemOperand(sp, 0));
3742 masm->Jump(r5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003743
3744 if (always_allocate) {
3745 // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
3746 // though (contain the result).
3747 __ mov(r2, Operand(scope_depth));
3748 __ ldr(r3, MemOperand(r2));
3749 __ sub(r3, r3, Operand(1));
3750 __ str(r3, MemOperand(r2));
3751 }
3752
3753 // check for failure result
3754 Label failure_returned;
3755 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
3756 // Lower 2 bits of r2 are 0 iff r0 has failure tag.
3757 __ add(r2, r0, Operand(1));
3758 __ tst(r2, Operand(kFailureTagMask));
3759 __ b(eq, &failure_returned);
3760
3761 // Exit C frame and return.
3762 // r0:r1: result
3763 // sp: stack pointer
3764 // fp: frame pointer
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003765 // Callee-saved register r4 still holds argc.
3766 __ LeaveExitFrame(save_doubles_, r4);
3767 __ mov(pc, lr);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003768
3769 // check if we should retry or throw exception
3770 Label retry;
3771 __ bind(&failure_returned);
3772 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
3773 __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
3774 __ b(eq, &retry);
3775
3776 // Special handling of out of memory exceptions.
3777 Failure* out_of_memory = Failure::OutOfMemoryException();
3778 __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
3779 __ b(eq, throw_out_of_memory_exception);
3780
3781 // Retrieve the pending exception and clear the variable.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003782 __ mov(r3, Operand(isolate->factory()->the_hole_value()));
Ben Murdoch589d6972011-11-30 16:04:58 +00003783 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
Steve Block44f0eee2011-05-26 01:26:41 +01003784 isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003785 __ ldr(r0, MemOperand(ip));
3786 __ str(r3, MemOperand(ip));
3787
3788 // Special handling of termination exceptions which are uncatchable
3789 // by javascript code.
Steve Block44f0eee2011-05-26 01:26:41 +01003790 __ cmp(r0, Operand(isolate->factory()->termination_exception()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003791 __ b(eq, throw_termination_exception);
3792
3793 // Handle normal exception.
3794 __ jmp(throw_normal_exception);
3795
3796 __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
3797}
3798
3799
3800void CEntryStub::Generate(MacroAssembler* masm) {
3801 // Called from JavaScript; parameters are on stack as if calling JS function
3802 // r0: number of arguments including receiver
3803 // r1: pointer to builtin function
3804 // fp: frame pointer (restored after C call)
3805 // sp: stack pointer (restored as callee's sp after C call)
3806 // cp: current context (C callee-saved)
3807
3808 // Result returned in r0 or r0+r1 by default.
3809
3810 // NOTE: Invocations of builtins may return failure objects
3811 // instead of a proper result. The builtin entry handles
3812 // this by performing a garbage collection and retrying the
3813 // builtin once.
3814
Steve Block1e0659c2011-05-24 12:43:12 +01003815 // Compute the argv pointer in a callee-saved register.
3816 __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
3817 __ sub(r6, r6, Operand(kPointerSize));
3818
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003819 // Enter the exit frame that transitions from JavaScript to C++.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003820 FrameScope scope(masm, StackFrame::MANUAL);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003821 __ EnterExitFrame(save_doubles_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003822
Ben Murdochc7cc0282012-03-05 14:35:55 +00003823 // Set up argc and the builtin function in callee-saved registers.
Steve Block1e0659c2011-05-24 12:43:12 +01003824 __ mov(r4, Operand(r0));
3825 __ mov(r5, Operand(r1));
3826
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003827 // r4: number of arguments (C callee-saved)
3828 // r5: pointer to builtin function (C callee-saved)
3829 // r6: pointer to first argument (C callee-saved)
3830
3831 Label throw_normal_exception;
3832 Label throw_termination_exception;
3833 Label throw_out_of_memory_exception;
3834
3835 // Call into the runtime system.
3836 GenerateCore(masm,
3837 &throw_normal_exception,
3838 &throw_termination_exception,
3839 &throw_out_of_memory_exception,
3840 false,
Steve Block1e0659c2011-05-24 12:43:12 +01003841 false);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003842
3843 // Do space-specific GC and retry runtime call.
3844 GenerateCore(masm,
3845 &throw_normal_exception,
3846 &throw_termination_exception,
3847 &throw_out_of_memory_exception,
3848 true,
Steve Block1e0659c2011-05-24 12:43:12 +01003849 false);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003850
3851 // Do full GC and retry runtime call one final time.
3852 Failure* failure = Failure::InternalError();
3853 __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
3854 GenerateCore(masm,
3855 &throw_normal_exception,
3856 &throw_termination_exception,
3857 &throw_out_of_memory_exception,
3858 true,
Steve Block1e0659c2011-05-24 12:43:12 +01003859 true);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003860
3861 __ bind(&throw_out_of_memory_exception);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003862 // Set external caught exception to false.
3863 Isolate* isolate = masm->isolate();
3864 ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
3865 isolate);
3866 __ mov(r0, Operand(false, RelocInfo::NONE));
3867 __ mov(r2, Operand(external_caught));
3868 __ str(r0, MemOperand(r2));
3869
3870 // Set pending exception and r0 to out of memory exception.
3871 Failure* out_of_memory = Failure::OutOfMemoryException();
3872 __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
3873 __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
3874 isolate)));
3875 __ str(r0, MemOperand(r2));
3876 // Fall through to the next label.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003877
3878 __ bind(&throw_termination_exception);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003879 __ ThrowUncatchable(r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003880
3881 __ bind(&throw_normal_exception);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003882 __ Throw(r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003883}
3884
3885
3886void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
3887 // r0: code entry
3888 // r1: function
3889 // r2: receiver
3890 // r3: argc
3891 // [sp+0]: argv
3892
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003893 Label invoke, handler_entry, exit;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003894
3895 // Called from C, so do not pop argc and args on exit (preserve sp)
3896 // No need to save register-passed args
3897 // Save callee-saved registers (incl. cp and fp), sp, and lr
3898 __ stm(db_w, sp, kCalleeSaved | lr.bit());
3899
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003900 if (CpuFeatures::IsSupported(VFP3)) {
3901 CpuFeatures::Scope scope(VFP3);
3902 // Save callee-saved vfp registers.
3903 __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003904 // Set up the reserved register for 0.0.
3905 __ vmov(kDoubleRegZero, 0.0);
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003906 }
3907
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003908 // Get address of argv, see stm above.
3909 // r0: code entry
3910 // r1: function
3911 // r2: receiver
3912 // r3: argc
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003913
Ben Murdochc7cc0282012-03-05 14:35:55 +00003914 // Set up argv in r4.
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003915 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
3916 if (CpuFeatures::IsSupported(VFP3)) {
3917 offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
3918 }
3919 __ ldr(r4, MemOperand(sp, offset_to_argv));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003920
3921 // Push a frame with special values setup to mark it as an entry frame.
3922 // r0: code entry
3923 // r1: function
3924 // r2: receiver
3925 // r3: argc
3926 // r4: argv
Steve Block44f0eee2011-05-26 01:26:41 +01003927 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003928 __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
3929 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
3930 __ mov(r7, Operand(Smi::FromInt(marker)));
3931 __ mov(r6, Operand(Smi::FromInt(marker)));
Steve Block44f0eee2011-05-26 01:26:41 +01003932 __ mov(r5,
Ben Murdoch589d6972011-11-30 16:04:58 +00003933 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003934 __ ldr(r5, MemOperand(r5));
3935 __ Push(r8, r7, r6, r5);
3936
Ben Murdochc7cc0282012-03-05 14:35:55 +00003937 // Set up frame pointer for the frame to be pushed.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003938 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
3939
Ben Murdochb0fe1622011-05-05 13:52:32 +01003940 // If this is the outermost JS call, set js_entry_sp value.
Steve Block053d10c2011-06-13 19:13:29 +01003941 Label non_outermost_js;
Ben Murdoch589d6972011-11-30 16:04:58 +00003942 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003943 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
3944 __ ldr(r6, MemOperand(r5));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00003945 __ cmp(r6, Operand::Zero());
Steve Block053d10c2011-06-13 19:13:29 +01003946 __ b(ne, &non_outermost_js);
3947 __ str(fp, MemOperand(r5));
3948 __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
3949 Label cont;
3950 __ b(&cont);
3951 __ bind(&non_outermost_js);
3952 __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
3953 __ bind(&cont);
3954 __ push(ip);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003955
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003956 // Jump to a faked try block that does the invoke, with a faked catch
3957 // block that sets the pending exception.
3958 __ jmp(&invoke);
3959 __ bind(&handler_entry);
3960 handler_offset_ = handler_entry.pos();
3961 // Caught exception: Store result (exception) in the pending exception
3962 // field in the JSEnv and return a failure sentinel. Coming in here the
3963 // fp will be invalid because the PushTryHandler below sets it to 0 to
3964 // signal the existence of the JSEntry frame.
Ben Murdoch589d6972011-11-30 16:04:58 +00003965 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
Steve Block44f0eee2011-05-26 01:26:41 +01003966 isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003967 __ str(r0, MemOperand(ip));
3968 __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
3969 __ b(&exit);
3970
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003971 // Invoke: Link this frame into the handler chain. There's only one
3972 // handler block in this code object, so its index is 0.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003973 __ bind(&invoke);
3974 // Must preserve r0-r4, r5-r7 are available.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01003975 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003976 // If an exception not caught by another handler occurs, this handler
3977 // returns control to the code after the bl(&invoke) above, which
3978 // restores all kCalleeSaved registers (including cp and fp) to their
3979 // saved values before returning a failure to C.
3980
3981 // Clear any pending exceptions.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003982 __ mov(r5, Operand(isolate->factory()->the_hole_value()));
Ben Murdoch589d6972011-11-30 16:04:58 +00003983 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
Steve Block44f0eee2011-05-26 01:26:41 +01003984 isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003985 __ str(r5, MemOperand(ip));
3986
3987 // Invoke the function by calling through JS entry trampoline builtin.
3988 // Notice that we cannot store a reference to the trampoline code directly in
3989 // this stub, because runtime stubs are not traversed when doing GC.
3990
3991 // Expected registers by Builtins::JSEntryTrampoline
3992 // r0: code entry
3993 // r1: function
3994 // r2: receiver
3995 // r3: argc
3996 // r4: argv
3997 if (is_construct) {
Steve Block44f0eee2011-05-26 01:26:41 +01003998 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
3999 isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004000 __ mov(ip, Operand(construct_entry));
4001 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01004002 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004003 __ mov(ip, Operand(entry));
4004 }
4005 __ ldr(ip, MemOperand(ip)); // deref address
4006
4007 // Branch and link to JSEntryTrampoline. We don't use the double underscore
4008 // macro for the add instruction because we don't want the coverage tool
4009 // inserting instructions here after we read the pc.
4010 __ mov(lr, Operand(pc));
4011 masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
4012
Steve Block053d10c2011-06-13 19:13:29 +01004013 // Unlink this frame from the handler chain.
4014 __ PopTryHandler();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004015
4016 __ bind(&exit); // r0 holds result
Steve Block053d10c2011-06-13 19:13:29 +01004017 // Check if the current stack frame is marked as the outermost JS frame.
4018 Label non_outermost_js_2;
4019 __ pop(r5);
4020 __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
4021 __ b(ne, &non_outermost_js_2);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004022 __ mov(r6, Operand::Zero());
Steve Block053d10c2011-06-13 19:13:29 +01004023 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
4024 __ str(r6, MemOperand(r5));
4025 __ bind(&non_outermost_js_2);
Steve Block053d10c2011-06-13 19:13:29 +01004026
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004027 // Restore the top frame descriptors from the stack.
4028 __ pop(r3);
Steve Block44f0eee2011-05-26 01:26:41 +01004029 __ mov(ip,
Ben Murdoch589d6972011-11-30 16:04:58 +00004030 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004031 __ str(r3, MemOperand(ip));
4032
4033 // Reset the stack to the callee saved registers.
4034 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
4035
4036 // Restore callee-saved registers and return.
4037#ifdef DEBUG
4038 if (FLAG_debug_code) {
4039 __ mov(lr, Operand(pc));
4040 }
4041#endif
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01004042
4043 if (CpuFeatures::IsSupported(VFP3)) {
4044 CpuFeatures::Scope scope(VFP3);
4045 // Restore callee-saved vfp registers.
4046 __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
4047 }
4048
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004049 __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
4050}
4051
4052
Steve Block1e0659c2011-05-24 12:43:12 +01004053// Uses registers r0 to r4.
4054// Expected input (depending on whether args are in registers or on the stack):
4055// * object: r0 or at sp + 1 * kPointerSize.
4056// * function: r1 or at sp.
4057//
4058// An inlined call site may have been generated before calling this stub.
4059// In this case the offset to the inline site to patch is passed on the stack,
4060// in the safepoint slot for register r4.
4061// (See LCodeGen::DoInstanceOfKnownGlobal)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004062void InstanceofStub::Generate(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01004063 // Call site inlining and patching implies arguments in registers.
4064 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
4065 // ReturnTrueFalse is only implemented for inlined call sites.
4066 ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
4067
Ben Murdochb0fe1622011-05-05 13:52:32 +01004068 // Fixed register usage throughout the stub:
Steve Block9fac8402011-05-12 15:51:54 +01004069 const Register object = r0; // Object (lhs).
Steve Block1e0659c2011-05-24 12:43:12 +01004070 Register map = r3; // Map of the object.
Steve Block9fac8402011-05-12 15:51:54 +01004071 const Register function = r1; // Function (rhs).
Ben Murdochb0fe1622011-05-05 13:52:32 +01004072 const Register prototype = r4; // Prototype of the function.
Steve Block1e0659c2011-05-24 12:43:12 +01004073 const Register inline_site = r9;
Ben Murdochb0fe1622011-05-05 13:52:32 +01004074 const Register scratch = r2;
Steve Block1e0659c2011-05-24 12:43:12 +01004075
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004076 const int32_t kDeltaToLoadBoolResult = 4 * kPointerSize;
Steve Block1e0659c2011-05-24 12:43:12 +01004077
Ben Murdochb0fe1622011-05-05 13:52:32 +01004078 Label slow, loop, is_instance, is_not_instance, not_js_object;
Steve Block1e0659c2011-05-24 12:43:12 +01004079
Ben Murdoch086aeea2011-05-13 15:57:08 +01004080 if (!HasArgsInRegisters()) {
Steve Block9fac8402011-05-12 15:51:54 +01004081 __ ldr(object, MemOperand(sp, 1 * kPointerSize));
4082 __ ldr(function, MemOperand(sp, 0));
Ben Murdochb0fe1622011-05-05 13:52:32 +01004083 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004084
Ben Murdochb0fe1622011-05-05 13:52:32 +01004085 // Check that the left hand is a JS object and load map.
Steve Block1e0659c2011-05-24 12:43:12 +01004086 __ JumpIfSmi(object, &not_js_object);
Steve Block9fac8402011-05-12 15:51:54 +01004087 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004088
Steve Block1e0659c2011-05-24 12:43:12 +01004089 // If there is a call site cache don't look in the global cache, but do the
4090 // real lookup and update the call site cache.
4091 if (!HasCallSiteInlineCheck()) {
4092 Label miss;
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01004093 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
Steve Block1e0659c2011-05-24 12:43:12 +01004094 __ b(ne, &miss);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01004095 __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
Steve Block1e0659c2011-05-24 12:43:12 +01004096 __ b(ne, &miss);
4097 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4098 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004099
Steve Block1e0659c2011-05-24 12:43:12 +01004100 __ bind(&miss);
4101 }
4102
4103 // Get the prototype of the function.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004104 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004105
4106 // Check that the function prototype is a JS object.
Steve Block1e0659c2011-05-24 12:43:12 +01004107 __ JumpIfSmi(prototype, &slow);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004108 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004109
Steve Block1e0659c2011-05-24 12:43:12 +01004110 // Update the global instanceof or call site inlined cache with the current
4111 // map and function. The cached answer will be set when it is known below.
4112 if (!HasCallSiteInlineCheck()) {
4113 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
4114 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
4115 } else {
4116 ASSERT(HasArgsInRegisters());
4117 // Patch the (relocated) inlined map check.
4118
4119 // The offset was stored in r4 safepoint slot.
4120 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004121 __ LoadFromSafepointRegisterSlot(scratch, r4);
Steve Block1e0659c2011-05-24 12:43:12 +01004122 __ sub(inline_site, lr, scratch);
4123 // Get the map location in scratch and patch it.
4124 __ GetRelocatedValueLocation(inline_site, scratch);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004125 __ ldr(scratch, MemOperand(scratch));
4126 __ str(map, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
Steve Block1e0659c2011-05-24 12:43:12 +01004127 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004128
4129 // Register mapping: r3 is object map and r4 is function prototype.
4130 // Get prototype of object into r2.
Ben Murdochb0fe1622011-05-05 13:52:32 +01004131 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004132
Steve Block1e0659c2011-05-24 12:43:12 +01004133 // We don't need map any more. Use it as a scratch register.
4134 Register scratch2 = map;
4135 map = no_reg;
4136
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004137 // Loop through the prototype chain looking for the function prototype.
Steve Block1e0659c2011-05-24 12:43:12 +01004138 __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004139 __ bind(&loop);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004140 __ cmp(scratch, Operand(prototype));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004141 __ b(eq, &is_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01004142 __ cmp(scratch, scratch2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004143 __ b(eq, &is_not_instance);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004144 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
4145 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004146 __ jmp(&loop);
4147
4148 __ bind(&is_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01004149 if (!HasCallSiteInlineCheck()) {
4150 __ mov(r0, Operand(Smi::FromInt(0)));
4151 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4152 } else {
4153 // Patch the call site to return true.
4154 __ LoadRoot(r0, Heap::kTrueValueRootIndex);
4155 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4156 // Get the boolean result location in scratch and patch it.
4157 __ GetRelocatedValueLocation(inline_site, scratch);
4158 __ str(r0, MemOperand(scratch));
4159
4160 if (!ReturnTrueFalseObject()) {
4161 __ mov(r0, Operand(Smi::FromInt(0)));
4162 }
4163 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01004164 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004165
4166 __ bind(&is_not_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01004167 if (!HasCallSiteInlineCheck()) {
4168 __ mov(r0, Operand(Smi::FromInt(1)));
4169 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4170 } else {
4171 // Patch the call site to return false.
4172 __ LoadRoot(r0, Heap::kFalseValueRootIndex);
4173 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4174 // Get the boolean result location in scratch and patch it.
4175 __ GetRelocatedValueLocation(inline_site, scratch);
4176 __ str(r0, MemOperand(scratch));
4177
4178 if (!ReturnTrueFalseObject()) {
4179 __ mov(r0, Operand(Smi::FromInt(1)));
4180 }
4181 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01004182 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004183
4184 Label object_not_null, object_not_null_or_smi;
4185 __ bind(&not_js_object);
4186 // Before null, smi and string value checks, check that the rhs is a function
4187 // as for a non-function rhs an exception needs to be thrown.
Steve Block1e0659c2011-05-24 12:43:12 +01004188 __ JumpIfSmi(function, &slow);
4189 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004190 __ b(ne, &slow);
4191
4192 // Null is not instance of anything.
Ben Murdoch257744e2011-11-30 15:57:28 +00004193 __ cmp(scratch, Operand(masm->isolate()->factory()->null_value()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01004194 __ b(ne, &object_not_null);
4195 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004196 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004197
4198 __ bind(&object_not_null);
4199 // Smi values are not instances of anything.
Steve Block1e0659c2011-05-24 12:43:12 +01004200 __ JumpIfNotSmi(object, &object_not_null_or_smi);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004201 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004202 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004203
4204 __ bind(&object_not_null_or_smi);
4205 // String values are not instances of anything.
4206 __ IsObjectJSStringType(object, scratch, &slow);
4207 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004208 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004209
4210 // Slow-case. Tail call builtin.
Ben Murdoch086aeea2011-05-13 15:57:08 +01004211 __ bind(&slow);
Steve Block1e0659c2011-05-24 12:43:12 +01004212 if (!ReturnTrueFalseObject()) {
4213 if (HasArgsInRegisters()) {
4214 __ Push(r0, r1);
4215 }
Ben Murdoch257744e2011-11-30 15:57:28 +00004216 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01004217 } else {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004218 {
4219 FrameScope scope(masm, StackFrame::INTERNAL);
4220 __ Push(r0, r1);
4221 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
4222 }
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004223 __ cmp(r0, Operand::Zero());
Steve Block1e0659c2011-05-24 12:43:12 +01004224 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
4225 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
4226 __ Ret(HasArgsInRegisters() ? 0 : 2);
4227 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004228}
4229
4230
Steve Block1e0659c2011-05-24 12:43:12 +01004231Register InstanceofStub::left() { return r0; }
4232
4233
4234Register InstanceofStub::right() { return r1; }
4235
4236
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004237void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
4238 // The displacement is the offset of the last parameter (if any)
4239 // relative to the frame pointer.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01004240 const int kDisplacement =
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004241 StandardFrameConstants::kCallerSPOffset - kPointerSize;
4242
4243 // Check that the key is a smi.
4244 Label slow;
Steve Block1e0659c2011-05-24 12:43:12 +01004245 __ JumpIfNotSmi(r1, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004246
4247 // Check if the calling frame is an arguments adaptor frame.
4248 Label adaptor;
4249 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4250 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
4251 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4252 __ b(eq, &adaptor);
4253
4254 // Check index against formal parameters count limit passed in
4255 // through register r0. Use unsigned comparison to get negative
4256 // check for free.
4257 __ cmp(r1, r0);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004258 __ b(hs, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004259
4260 // Read the argument from the stack and return it.
4261 __ sub(r3, r0, r1);
4262 __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
4263 __ ldr(r0, MemOperand(r3, kDisplacement));
4264 __ Jump(lr);
4265
4266 // Arguments adaptor case: Check index against actual arguments
4267 // limit found in the arguments adaptor frame. Use unsigned
4268 // comparison to get negative check for free.
4269 __ bind(&adaptor);
4270 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4271 __ cmp(r1, r0);
4272 __ b(cs, &slow);
4273
4274 // Read the argument from the adaptor frame and return it.
4275 __ sub(r3, r0, r1);
4276 __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
4277 __ ldr(r0, MemOperand(r3, kDisplacement));
4278 __ Jump(lr);
4279
4280 // Slow-case: Handle non-smi or out-of-bounds access to arguments
4281 // by calling the runtime system.
4282 __ bind(&slow);
4283 __ push(r1);
4284 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
4285}
4286
4287
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004288void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004289 // sp[0] : number of parameters
4290 // sp[4] : receiver displacement
4291 // sp[8] : function
4292
4293 // Check if the calling frame is an arguments adaptor frame.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004294 Label runtime;
4295 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4296 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
4297 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4298 __ b(ne, &runtime);
4299
4300 // Patch the arguments.length and the parameters pointer in the current frame.
4301 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4302 __ str(r2, MemOperand(sp, 0 * kPointerSize));
4303 __ add(r3, r3, Operand(r2, LSL, 1));
4304 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4305 __ str(r3, MemOperand(sp, 1 * kPointerSize));
4306
4307 __ bind(&runtime);
4308 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4309}
4310
4311
4312void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
4313 // Stack layout:
4314 // sp[0] : number of parameters (tagged)
4315 // sp[4] : address of receiver argument
4316 // sp[8] : function
4317 // Registers used over whole function:
4318 // r6 : allocated object (tagged)
4319 // r9 : mapped parameter count (tagged)
4320
4321 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
4322 // r1 = parameter count (tagged)
4323
4324 // Check if the calling frame is an arguments adaptor frame.
4325 Label runtime;
4326 Label adaptor_frame, try_allocate;
4327 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4328 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
4329 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4330 __ b(eq, &adaptor_frame);
4331
4332 // No adaptor, parameter count = argument count.
4333 __ mov(r2, r1);
4334 __ b(&try_allocate);
4335
4336 // We have an adaptor frame. Patch the parameters pointer.
4337 __ bind(&adaptor_frame);
4338 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4339 __ add(r3, r3, Operand(r2, LSL, 1));
4340 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4341 __ str(r3, MemOperand(sp, 1 * kPointerSize));
4342
4343 // r1 = parameter count (tagged)
4344 // r2 = argument count (tagged)
4345 // Compute the mapped parameter count = min(r1, r2) in r1.
4346 __ cmp(r1, Operand(r2));
4347 __ mov(r1, Operand(r2), LeaveCC, gt);
4348
4349 __ bind(&try_allocate);
4350
4351 // Compute the sizes of backing store, parameter map, and arguments object.
4352 // 1. Parameter map, has 2 extra words containing context and backing store.
4353 const int kParameterMapHeaderSize =
4354 FixedArray::kHeaderSize + 2 * kPointerSize;
4355 // If there are no mapped parameters, we do not need the parameter_map.
4356 __ cmp(r1, Operand(Smi::FromInt(0)));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004357 __ mov(r9, Operand::Zero(), LeaveCC, eq);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004358 __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
4359 __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
4360
4361 // 2. Backing store.
4362 __ add(r9, r9, Operand(r2, LSL, 1));
4363 __ add(r9, r9, Operand(FixedArray::kHeaderSize));
4364
4365 // 3. Arguments object.
4366 __ add(r9, r9, Operand(Heap::kArgumentsObjectSize));
4367
4368 // Do the allocation of all three objects in one go.
4369 __ AllocateInNewSpace(r9, r0, r3, r4, &runtime, TAG_OBJECT);
4370
4371 // r0 = address of new object(s) (tagged)
4372 // r2 = argument count (tagged)
4373 // Get the arguments boilerplate from the current (global) context into r4.
4374 const int kNormalOffset =
4375 Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
4376 const int kAliasedOffset =
4377 Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
4378
4379 __ ldr(r4, MemOperand(r8, Context::SlotOffset(Context::GLOBAL_INDEX)));
4380 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004381 __ cmp(r1, Operand::Zero());
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004382 __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
4383 __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
4384
4385 // r0 = address of new object (tagged)
4386 // r1 = mapped parameter count (tagged)
4387 // r2 = argument count (tagged)
4388 // r4 = address of boilerplate object (tagged)
4389 // Copy the JS object part.
4390 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
4391 __ ldr(r3, FieldMemOperand(r4, i));
4392 __ str(r3, FieldMemOperand(r0, i));
4393 }
4394
Ben Murdochc7cc0282012-03-05 14:35:55 +00004395 // Set up the callee in-object property.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004396 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
4397 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
4398 const int kCalleeOffset = JSObject::kHeaderSize +
4399 Heap::kArgumentsCalleeIndex * kPointerSize;
4400 __ str(r3, FieldMemOperand(r0, kCalleeOffset));
4401
4402 // Use the length (smi tagged) and set that as an in-object property too.
4403 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
4404 const int kLengthOffset = JSObject::kHeaderSize +
4405 Heap::kArgumentsLengthIndex * kPointerSize;
4406 __ str(r2, FieldMemOperand(r0, kLengthOffset));
4407
Ben Murdochc7cc0282012-03-05 14:35:55 +00004408 // Set up the elements pointer in the allocated arguments object.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004409 // If we allocated a parameter map, r4 will point there, otherwise
4410 // it will point to the backing store.
4411 __ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
4412 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
4413
4414 // r0 = address of new object (tagged)
4415 // r1 = mapped parameter count (tagged)
4416 // r2 = argument count (tagged)
4417 // r4 = address of parameter map or backing store (tagged)
4418 // Initialize parameter map. If there are no mapped arguments, we're done.
4419 Label skip_parameter_map;
4420 __ cmp(r1, Operand(Smi::FromInt(0)));
4421 // Move backing store address to r3, because it is
4422 // expected there when filling in the unmapped arguments.
4423 __ mov(r3, r4, LeaveCC, eq);
4424 __ b(eq, &skip_parameter_map);
4425
4426 __ LoadRoot(r6, Heap::kNonStrictArgumentsElementsMapRootIndex);
4427 __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
4428 __ add(r6, r1, Operand(Smi::FromInt(2)));
4429 __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
4430 __ str(r8, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
4431 __ add(r6, r4, Operand(r1, LSL, 1));
4432 __ add(r6, r6, Operand(kParameterMapHeaderSize));
4433 __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
4434
4435 // Copy the parameter slots and the holes in the arguments.
4436 // We need to fill in mapped_parameter_count slots. They index the context,
4437 // where parameters are stored in reverse order, at
4438 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
4439 // The mapped parameter thus need to get indices
4440 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
4441 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
4442 // We loop from right to left.
4443 Label parameters_loop, parameters_test;
4444 __ mov(r6, r1);
4445 __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
4446 __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
4447 __ sub(r9, r9, Operand(r1));
4448 __ LoadRoot(r7, Heap::kTheHoleValueRootIndex);
4449 __ add(r3, r4, Operand(r6, LSL, 1));
4450 __ add(r3, r3, Operand(kParameterMapHeaderSize));
4451
4452 // r6 = loop variable (tagged)
4453 // r1 = mapping index (tagged)
4454 // r3 = address of backing store (tagged)
4455 // r4 = address of parameter map (tagged)
4456 // r5 = temporary scratch (a.o., for address calculation)
4457 // r7 = the hole value
4458 __ jmp(&parameters_test);
4459
4460 __ bind(&parameters_loop);
4461 __ sub(r6, r6, Operand(Smi::FromInt(1)));
4462 __ mov(r5, Operand(r6, LSL, 1));
4463 __ add(r5, r5, Operand(kParameterMapHeaderSize - kHeapObjectTag));
4464 __ str(r9, MemOperand(r4, r5));
4465 __ sub(r5, r5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
4466 __ str(r7, MemOperand(r3, r5));
4467 __ add(r9, r9, Operand(Smi::FromInt(1)));
4468 __ bind(&parameters_test);
4469 __ cmp(r6, Operand(Smi::FromInt(0)));
4470 __ b(ne, &parameters_loop);
4471
4472 __ bind(&skip_parameter_map);
4473 // r2 = argument count (tagged)
4474 // r3 = address of backing store (tagged)
4475 // r5 = scratch
4476 // Copy arguments header and remaining slots (if there are any).
4477 __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
4478 __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
4479 __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
4480
4481 Label arguments_loop, arguments_test;
4482 __ mov(r9, r1);
4483 __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
4484 __ sub(r4, r4, Operand(r9, LSL, 1));
4485 __ jmp(&arguments_test);
4486
4487 __ bind(&arguments_loop);
4488 __ sub(r4, r4, Operand(kPointerSize));
4489 __ ldr(r6, MemOperand(r4, 0));
4490 __ add(r5, r3, Operand(r9, LSL, 1));
4491 __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
4492 __ add(r9, r9, Operand(Smi::FromInt(1)));
4493
4494 __ bind(&arguments_test);
4495 __ cmp(r9, Operand(r2));
4496 __ b(lt, &arguments_loop);
4497
4498 // Return and remove the on-stack parameters.
4499 __ add(sp, sp, Operand(3 * kPointerSize));
4500 __ Ret();
4501
4502 // Do the runtime call to allocate the arguments object.
Ben Murdochc7cc0282012-03-05 14:35:55 +00004503 // r2 = argument count (tagged)
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004504 __ bind(&runtime);
4505 __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
4506 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4507}
4508
4509
4510void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
4511 // sp[0] : number of parameters
4512 // sp[4] : receiver displacement
4513 // sp[8] : function
4514 // Check if the calling frame is an arguments adaptor frame.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004515 Label adaptor_frame, try_allocate, runtime;
4516 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4517 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
4518 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4519 __ b(eq, &adaptor_frame);
4520
4521 // Get the length from the frame.
4522 __ ldr(r1, MemOperand(sp, 0));
4523 __ b(&try_allocate);
4524
4525 // Patch the arguments.length and the parameters pointer.
4526 __ bind(&adaptor_frame);
4527 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4528 __ str(r1, MemOperand(sp, 0));
4529 __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
4530 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4531 __ str(r3, MemOperand(sp, 1 * kPointerSize));
4532
4533 // Try the new space allocation. Start out with computing the size
4534 // of the arguments object and the elements array in words.
4535 Label add_arguments_object;
4536 __ bind(&try_allocate);
Iain Merrick9ac36c92010-09-13 15:29:50 +01004537 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004538 __ b(eq, &add_arguments_object);
4539 __ mov(r1, Operand(r1, LSR, kSmiTagSize));
4540 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
4541 __ bind(&add_arguments_object);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004542 __ add(r1, r1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004543
4544 // Do the allocation of both objects in one go.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004545 __ AllocateInNewSpace(r1,
4546 r0,
4547 r2,
4548 r3,
4549 &runtime,
4550 static_cast<AllocationFlags>(TAG_OBJECT |
4551 SIZE_IN_WORDS));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004552
4553 // Get the arguments boilerplate from the current (global) context.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004554 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4555 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004556 __ ldr(r4, MemOperand(r4, Context::SlotOffset(
4557 Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004558
4559 // Copy the JS object part.
4560 __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize);
4561
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004562 // Get the length (smi tagged) and set that as an in-object property too.
Steve Block44f0eee2011-05-26 01:26:41 +01004563 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004564 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01004565 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004566 Heap::kArgumentsLengthIndex * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004567
4568 // If there are no actual arguments, we're done.
4569 Label done;
Iain Merrick9ac36c92010-09-13 15:29:50 +01004570 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004571 __ b(eq, &done);
4572
4573 // Get the parameters pointer from the stack.
4574 __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
4575
Ben Murdochc7cc0282012-03-05 14:35:55 +00004576 // Set up the elements pointer in the allocated arguments object and
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004577 // initialize the header in the elements fixed array.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004578 __ add(r4, r0, Operand(Heap::kArgumentsObjectSizeStrict));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004579 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
4580 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
4581 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
4582 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004583 // Untag the length for the loop.
4584 __ mov(r1, Operand(r1, LSR, kSmiTagSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004585
4586 // Copy the fixed array slots.
4587 Label loop;
Ben Murdochc7cc0282012-03-05 14:35:55 +00004588 // Set up r4 to point to the first array slot.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004589 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4590 __ bind(&loop);
4591 // Pre-decrement r2 with kPointerSize on each iteration.
4592 // Pre-decrement in order to skip receiver.
4593 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
4594 // Post-increment r4 with kPointerSize on each iteration.
4595 __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
4596 __ sub(r1, r1, Operand(1));
Iain Merrick9ac36c92010-09-13 15:29:50 +01004597 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004598 __ b(ne, &loop);
4599
4600 // Return and remove the on-stack parameters.
4601 __ bind(&done);
4602 __ add(sp, sp, Operand(3 * kPointerSize));
4603 __ Ret();
4604
4605 // Do the runtime call to allocate the arguments object.
4606 __ bind(&runtime);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004607 __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004608}
4609
4610
4611void RegExpExecStub::Generate(MacroAssembler* masm) {
4612 // Just jump directly to runtime if native RegExp is not selected at compile
4613 // time or if regexp entry in generated code is turned off runtime switch or
4614 // at compilation.
4615#ifdef V8_INTERPRETED_REGEXP
4616 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
4617#else // V8_INTERPRETED_REGEXP
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004618
4619 // Stack frame on entry.
4620 // sp[0]: last_match_info (expected JSArray)
4621 // sp[4]: previous index
4622 // sp[8]: subject string
4623 // sp[12]: JSRegExp object
4624
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01004625 const int kLastMatchInfoOffset = 0 * kPointerSize;
4626 const int kPreviousIndexOffset = 1 * kPointerSize;
4627 const int kSubjectOffset = 2 * kPointerSize;
4628 const int kJSRegExpOffset = 3 * kPointerSize;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004629
4630 Label runtime, invoke_regexp;
4631
4632 // Allocation of registers for this function. These are in callee save
4633 // registers and will be preserved by the call to the native RegExp code, as
4634 // this code is called using the normal C calling convention. When calling
4635 // directly from generated code the native RegExp code will not do a GC and
4636 // therefore the content of these registers are safe to use after the call.
4637 Register subject = r4;
4638 Register regexp_data = r5;
4639 Register last_match_info_elements = r6;
4640
4641 // Ensure that a RegExp stack is allocated.
Steve Block44f0eee2011-05-26 01:26:41 +01004642 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004643 ExternalReference address_of_regexp_stack_memory_address =
Steve Block44f0eee2011-05-26 01:26:41 +01004644 ExternalReference::address_of_regexp_stack_memory_address(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004645 ExternalReference address_of_regexp_stack_memory_size =
Steve Block44f0eee2011-05-26 01:26:41 +01004646 ExternalReference::address_of_regexp_stack_memory_size(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004647 __ mov(r0, Operand(address_of_regexp_stack_memory_size));
4648 __ ldr(r0, MemOperand(r0, 0));
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01004649 __ cmp(r0, Operand(0));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004650 __ b(eq, &runtime);
4651
4652 // Check that the first argument is a JSRegExp object.
4653 __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
4654 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004655 __ JumpIfSmi(r0, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004656 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
4657 __ b(ne, &runtime);
4658
4659 // Check that the RegExp has been compiled (data contains a fixed array).
4660 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
4661 if (FLAG_debug_code) {
4662 __ tst(regexp_data, Operand(kSmiTagMask));
Steve Block1e0659c2011-05-24 12:43:12 +01004663 __ Check(ne, "Unexpected type for RegExp data, FixedArray expected");
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004664 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
4665 __ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
4666 }
4667
4668 // regexp_data: RegExp data (FixedArray)
4669 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
4670 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
4671 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
4672 __ b(ne, &runtime);
4673
4674 // regexp_data: RegExp data (FixedArray)
4675 // Check that the number of captures fit in the static offsets vector buffer.
4676 __ ldr(r2,
4677 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
4678 // Calculate number of capture registers (number_of_captures + 1) * 2. This
4679 // uses the asumption that smis are 2 * their untagged value.
4680 STATIC_ASSERT(kSmiTag == 0);
4681 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4682 __ add(r2, r2, Operand(2)); // r2 was a smi.
4683 // Check that the static offsets vector buffer is large enough.
4684 __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
4685 __ b(hi, &runtime);
4686
4687 // r2: Number of capture registers
4688 // regexp_data: RegExp data (FixedArray)
4689 // Check that the second argument is a string.
4690 __ ldr(subject, MemOperand(sp, kSubjectOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004691 __ JumpIfSmi(subject, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004692 Condition is_string = masm->IsObjectStringType(subject, r0);
4693 __ b(NegateCondition(is_string), &runtime);
4694 // Get the length of the string to r3.
4695 __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset));
4696
4697 // r2: Number of capture registers
4698 // r3: Length of subject string as a smi
4699 // subject: Subject string
4700 // regexp_data: RegExp data (FixedArray)
4701 // Check that the third argument is a positive smi less than the subject
4702 // string length. A negative value will be greater (unsigned comparison).
4703 __ ldr(r0, MemOperand(sp, kPreviousIndexOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004704 __ JumpIfNotSmi(r0, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004705 __ cmp(r3, Operand(r0));
4706 __ b(ls, &runtime);
4707
4708 // r2: Number of capture registers
4709 // subject: Subject string
4710 // regexp_data: RegExp data (FixedArray)
4711 // Check that the fourth object is a JSArray object.
4712 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004713 __ JumpIfSmi(r0, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004714 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
4715 __ b(ne, &runtime);
4716 // Check that the JSArray is in fast case.
4717 __ ldr(last_match_info_elements,
4718 FieldMemOperand(r0, JSArray::kElementsOffset));
4719 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01004720 __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004721 __ b(ne, &runtime);
4722 // Check that the last match info has space for the capture registers and the
4723 // additional information.
4724 __ ldr(r0,
4725 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
4726 __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead));
4727 __ cmp(r2, Operand(r0, ASR, kSmiTagSize));
4728 __ b(gt, &runtime);
4729
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004730 // Reset offset for possibly sliced string.
4731 __ mov(r9, Operand(0));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004732 // subject: Subject string
4733 // regexp_data: RegExp data (FixedArray)
4734 // Check the representation and encoding of the subject string.
4735 Label seq_string;
4736 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
4737 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004738 // First check for flat string. None of the following string type tests will
4739 // succeed if subject is not a string or a short external string.
4740 __ and_(r1,
4741 r0,
4742 Operand(kIsNotStringMask |
4743 kStringRepresentationMask |
4744 kShortExternalStringMask),
4745 SetCC);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004746 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
4747 __ b(eq, &seq_string);
4748
4749 // subject: Subject string
4750 // regexp_data: RegExp data (FixedArray)
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004751 // r1: whether subject is a string and if yes, its string representation
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004752 // Check for flat cons string or sliced string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004753 // A flat cons string is a cons string where the second part is the empty
4754 // string. In that case the subject string is just the first part of the cons
4755 // string. Also in this case the first part of the cons string is known to be
4756 // a sequential string or an external string.
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004757 // In the case of a sliced string its offset has to be taken into account.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004758 Label cons_string, external_string, check_encoding;
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004759 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
4760 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004761 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
4762 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004763 __ cmp(r1, Operand(kExternalStringTag));
4764 __ b(lt, &cons_string);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004765 __ b(eq, &external_string);
4766
4767 // Catch non-string subject or short external string.
4768 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
4769 __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
4770 __ b(ne, &runtime);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004771
4772 // String is sliced.
4773 __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
4774 __ mov(r9, Operand(r9, ASR, kSmiTagSize));
4775 __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
4776 // r9: offset of sliced string, smi-tagged.
4777 __ jmp(&check_encoding);
4778 // String is a cons string, check whether it is flat.
4779 __ bind(&cons_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004780 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004781 __ CompareRoot(r0, Heap::kEmptyStringRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004782 __ b(ne, &runtime);
4783 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004784 // Is first part of cons or parent of slice a flat string?
4785 __ bind(&check_encoding);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004786 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
4787 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004788 STATIC_ASSERT(kSeqStringTag == 0);
4789 __ tst(r0, Operand(kStringRepresentationMask));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004790 __ b(ne, &external_string);
4791
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004792 __ bind(&seq_string);
4793 // subject: Subject string
4794 // regexp_data: RegExp data (FixedArray)
4795 // r0: Instance type of subject string
4796 STATIC_ASSERT(4 == kAsciiStringTag);
4797 STATIC_ASSERT(kTwoByteStringTag == 0);
4798 // Find the code object based on the assumptions above.
4799 __ and_(r0, r0, Operand(kStringEncodingMask));
4800 __ mov(r3, Operand(r0, ASR, 2), SetCC);
4801 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
4802 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
4803
4804 // Check that the irregexp code has been generated for the actual string
4805 // encoding. If it has, the field contains a code object otherwise it contains
Ben Murdoch257744e2011-11-30 15:57:28 +00004806 // a smi (code flushing support).
4807 __ JumpIfSmi(r7, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004808
Steve Block44f0eee2011-05-26 01:26:41 +01004809 // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004810 // r7: code
4811 // subject: Subject string
4812 // regexp_data: RegExp data (FixedArray)
4813 // Load used arguments before starting to push arguments for call to native
4814 // RegExp code to avoid handling changing stack height.
4815 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
4816 __ mov(r1, Operand(r1, ASR, kSmiTagSize));
4817
4818 // r1: previous index
Steve Block44f0eee2011-05-26 01:26:41 +01004819 // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004820 // r7: code
4821 // subject: Subject string
4822 // regexp_data: RegExp data (FixedArray)
4823 // All checks done. Now push arguments for native regexp code.
Steve Block44f0eee2011-05-26 01:26:41 +01004824 __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004825
Steve Block44f0eee2011-05-26 01:26:41 +01004826 // Isolates: note we add an additional parameter here (isolate pointer).
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01004827 const int kRegExpExecuteArguments = 8;
4828 const int kParameterRegisters = 4;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004829 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004830
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004831 // Stack pointer now points to cell where return address is to be written.
4832 // Arguments are before that on the stack or in registers.
4833
Steve Block44f0eee2011-05-26 01:26:41 +01004834 // Argument 8 (sp[16]): Pass current isolate address.
4835 __ mov(r0, Operand(ExternalReference::isolate_address()));
4836 __ str(r0, MemOperand(sp, 4 * kPointerSize));
4837
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004838 // Argument 7 (sp[12]): Indicate that this is a direct call from JavaScript.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004839 __ mov(r0, Operand(1));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004840 __ str(r0, MemOperand(sp, 3 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004841
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004842 // Argument 6 (sp[8]): Start (high end) of backtracking stack memory area.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004843 __ mov(r0, Operand(address_of_regexp_stack_memory_address));
4844 __ ldr(r0, MemOperand(r0, 0));
4845 __ mov(r2, Operand(address_of_regexp_stack_memory_size));
4846 __ ldr(r2, MemOperand(r2, 0));
4847 __ add(r0, r0, Operand(r2));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004848 __ str(r0, MemOperand(sp, 2 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004849
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004850 // Argument 5 (sp[4]): static offsets vector buffer.
Steve Block44f0eee2011-05-26 01:26:41 +01004851 __ mov(r0,
4852 Operand(ExternalReference::address_of_static_offsets_vector(isolate)));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004853 __ str(r0, MemOperand(sp, 1 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004854
4855 // For arguments 4 and 3 get string length, calculate start of string data and
4856 // calculate the shift of the index (0 for ASCII and 1 for two byte).
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004857 __ add(r8, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004858 __ eor(r3, r3, Operand(1));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004859 // Load the length from the original subject string from the previous stack
4860 // frame. Therefore we have to use fp, which points exactly to two pointer
4861 // sizes below the previous sp. (Because creating a new stack frame pushes
4862 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
Ben Murdoch589d6972011-11-30 16:04:58 +00004863 __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004864 // If slice offset is not 0, load the length from the original sliced string.
4865 // Argument 4, r3: End of string data
4866 // Argument 3, r2: Start of string data
4867 // Prepare start and end index of the input.
4868 __ add(r9, r8, Operand(r9, LSL, r3));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004869 __ add(r2, r9, Operand(r1, LSL, r3));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004870
Ben Murdoch589d6972011-11-30 16:04:58 +00004871 __ ldr(r8, FieldMemOperand(subject, String::kLengthOffset));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004872 __ mov(r8, Operand(r8, ASR, kSmiTagSize));
4873 __ add(r3, r9, Operand(r8, LSL, r3));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004874
4875 // Argument 2 (r1): Previous index.
4876 // Already there
4877
4878 // Argument 1 (r0): Subject string.
Ben Murdoch589d6972011-11-30 16:04:58 +00004879 __ mov(r0, subject);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004880
4881 // Locate the code entry and call it.
4882 __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004883 DirectCEntryStub stub;
4884 stub.GenerateCall(masm, r7);
4885
4886 __ LeaveExitFrame(false, no_reg);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004887
4888 // r0: result
4889 // subject: subject string (callee saved)
4890 // regexp_data: RegExp data (callee saved)
4891 // last_match_info_elements: Last match info elements (callee saved)
4892
4893 // Check the result.
4894 Label success;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004895
Ben Murdoch589d6972011-11-30 16:04:58 +00004896 __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004897 __ b(eq, &success);
4898 Label failure;
Ben Murdoch589d6972011-11-30 16:04:58 +00004899 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004900 __ b(eq, &failure);
Ben Murdoch589d6972011-11-30 16:04:58 +00004901 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004902 // If not exception it can only be retry. Handle that in the runtime system.
4903 __ b(ne, &runtime);
4904 // Result must now be exception. If there is no pending exception already a
4905 // stack overflow (on the backtrack stack) was detected in RegExp code but
4906 // haven't created the exception yet. Handle that in the runtime system.
4907 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004908 __ mov(r1, Operand(isolate->factory()->the_hole_value()));
Ben Murdoch589d6972011-11-30 16:04:58 +00004909 __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
Steve Block44f0eee2011-05-26 01:26:41 +01004910 isolate)));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004911 __ ldr(r0, MemOperand(r2, 0));
Ben Murdoch589d6972011-11-30 16:04:58 +00004912 __ cmp(r0, r1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004913 __ b(eq, &runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004914
4915 __ str(r1, MemOperand(r2, 0)); // Clear pending exception.
4916
4917 // Check if the exception is a termination. If so, throw as uncatchable.
Ben Murdoch589d6972011-11-30 16:04:58 +00004918 __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
4919
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004920 Label termination_exception;
4921 __ b(eq, &termination_exception);
4922
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01004923 __ Throw(r0);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004924
4925 __ bind(&termination_exception);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01004926 __ ThrowUncatchable(r0);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004927
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004928 __ bind(&failure);
4929 // For failure and exception return null.
Ben Murdoch257744e2011-11-30 15:57:28 +00004930 __ mov(r0, Operand(masm->isolate()->factory()->null_value()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004931 __ add(sp, sp, Operand(4 * kPointerSize));
4932 __ Ret();
4933
4934 // Process the result from the native regexp code.
4935 __ bind(&success);
4936 __ ldr(r1,
4937 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
4938 // Calculate number of capture registers (number_of_captures + 1) * 2.
4939 STATIC_ASSERT(kSmiTag == 0);
4940 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4941 __ add(r1, r1, Operand(2)); // r1 was a smi.
4942
4943 // r1: number of capture registers
4944 // r4: subject string
4945 // Store the capture count.
4946 __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi.
4947 __ str(r2, FieldMemOperand(last_match_info_elements,
4948 RegExpImpl::kLastCaptureCountOffset));
4949 // Store last subject and last input.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004950 __ str(subject,
4951 FieldMemOperand(last_match_info_elements,
4952 RegExpImpl::kLastSubjectOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004953 __ mov(r2, subject);
4954 __ RecordWriteField(last_match_info_elements,
4955 RegExpImpl::kLastSubjectOffset,
4956 r2,
4957 r7,
4958 kLRHasNotBeenSaved,
4959 kDontSaveFPRegs);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004960 __ str(subject,
4961 FieldMemOperand(last_match_info_elements,
4962 RegExpImpl::kLastInputOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004963 __ RecordWriteField(last_match_info_elements,
4964 RegExpImpl::kLastInputOffset,
4965 subject,
4966 r7,
4967 kLRHasNotBeenSaved,
4968 kDontSaveFPRegs);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004969
4970 // Get the static offsets vector filled by the native regexp code.
4971 ExternalReference address_of_static_offsets_vector =
Steve Block44f0eee2011-05-26 01:26:41 +01004972 ExternalReference::address_of_static_offsets_vector(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004973 __ mov(r2, Operand(address_of_static_offsets_vector));
4974
4975 // r1: number of capture registers
4976 // r2: offsets vector
4977 Label next_capture, done;
4978 // Capture register counter starts from number of capture registers and
4979 // counts down until wraping after zero.
4980 __ add(r0,
4981 last_match_info_elements,
4982 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
4983 __ bind(&next_capture);
4984 __ sub(r1, r1, Operand(1), SetCC);
4985 __ b(mi, &done);
4986 // Read the value from the static offsets vector buffer.
4987 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
4988 // Store the smi value in the last match info.
4989 __ mov(r3, Operand(r3, LSL, kSmiTagSize));
4990 __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
4991 __ jmp(&next_capture);
4992 __ bind(&done);
4993
4994 // Return last match info.
4995 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
4996 __ add(sp, sp, Operand(4 * kPointerSize));
4997 __ Ret();
4998
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004999 // External string. Short external strings have already been ruled out.
5000 // r0: scratch
5001 __ bind(&external_string);
5002 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
5003 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
5004 if (FLAG_debug_code) {
5005 // Assert that we do not have a cons or slice (indirect strings) here.
5006 // Sequential strings have already been ruled out.
5007 __ tst(r0, Operand(kIsIndirectStringMask));
5008 __ Assert(eq, "external string expected, but not found");
5009 }
5010 __ ldr(subject,
5011 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
5012 // Move the pointer so that offset-wise, it looks like a sequential string.
5013 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
5014 __ sub(subject,
5015 subject,
5016 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5017 __ jmp(&seq_string);
5018
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005019 // Do the runtime call to execute the regexp.
5020 __ bind(&runtime);
5021 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
5022#endif // V8_INTERPRETED_REGEXP
5023}
5024
5025
Ben Murdochb0fe1622011-05-05 13:52:32 +01005026void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
5027 const int kMaxInlineLength = 100;
5028 Label slowcase;
5029 Label done;
Ben Murdoch257744e2011-11-30 15:57:28 +00005030 Factory* factory = masm->isolate()->factory();
5031
Ben Murdochb0fe1622011-05-05 13:52:32 +01005032 __ ldr(r1, MemOperand(sp, kPointerSize * 2));
5033 STATIC_ASSERT(kSmiTag == 0);
5034 STATIC_ASSERT(kSmiTagSize == 1);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005035 __ JumpIfNotSmi(r1, &slowcase);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005036 __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
5037 __ b(hi, &slowcase);
5038 // Smi-tagging is equivalent to multiplying by 2.
5039 // Allocate RegExpResult followed by FixedArray with size in ebx.
5040 // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
5041 // Elements: [Map][Length][..elements..]
5042 // Size of JSArray with two in-object properties and the header of a
5043 // FixedArray.
5044 int objects_size =
5045 (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
5046 __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize));
5047 __ add(r2, r5, Operand(objects_size));
5048 __ AllocateInNewSpace(
5049 r2, // In: Size, in words.
5050 r0, // Out: Start of allocation (tagged).
5051 r3, // Scratch register.
5052 r4, // Scratch register.
5053 &slowcase,
5054 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
5055 // r0: Start of allocated area, object-tagged.
5056 // r1: Number of elements in array, as smi.
5057 // r5: Number of elements, untagged.
5058
5059 // Set JSArray map to global.regexp_result_map().
5060 // Set empty properties FixedArray.
5061 // Set elements to point to FixedArray allocated right after the JSArray.
5062 // Interleave operations for better latency.
5063 __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX));
5064 __ add(r3, r0, Operand(JSRegExpResult::kSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00005065 __ mov(r4, Operand(factory->empty_fixed_array()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01005066 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
5067 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
5068 __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
5069 __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
5070 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
5071
5072 // Set input, index and length fields from arguments.
5073 __ ldr(r1, MemOperand(sp, kPointerSize * 0));
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005074 __ ldr(r2, MemOperand(sp, kPointerSize * 1));
5075 __ ldr(r6, MemOperand(sp, kPointerSize * 2));
Ben Murdochb0fe1622011-05-05 13:52:32 +01005076 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005077 __ str(r2, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
5078 __ str(r6, FieldMemOperand(r0, JSArray::kLengthOffset));
Ben Murdochb0fe1622011-05-05 13:52:32 +01005079
5080 // Fill out the elements FixedArray.
5081 // r0: JSArray, tagged.
5082 // r3: FixedArray, tagged.
5083 // r5: Number of elements in array, untagged.
5084
5085 // Set map.
Ben Murdoch257744e2011-11-30 15:57:28 +00005086 __ mov(r2, Operand(factory->fixed_array_map()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01005087 __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
5088 // Set FixedArray length.
5089 __ mov(r6, Operand(r5, LSL, kSmiTagSize));
5090 __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
5091 // Fill contents of fixed-array with the-hole.
Ben Murdoch257744e2011-11-30 15:57:28 +00005092 __ mov(r2, Operand(factory->the_hole_value()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01005093 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
5094 // Fill fixed array elements with hole.
5095 // r0: JSArray, tagged.
5096 // r2: the hole.
5097 // r3: Start of elements in FixedArray.
5098 // r5: Number of elements to fill.
5099 Label loop;
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005100 __ cmp(r5, Operand(0));
Ben Murdochb0fe1622011-05-05 13:52:32 +01005101 __ bind(&loop);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005102 __ b(le, &done); // Jump if r5 is negative or zero.
Ben Murdochb0fe1622011-05-05 13:52:32 +01005103 __ sub(r5, r5, Operand(1), SetCC);
5104 __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
5105 __ jmp(&loop);
5106
5107 __ bind(&done);
5108 __ add(sp, sp, Operand(3 * kPointerSize));
5109 __ Ret();
5110
5111 __ bind(&slowcase);
5112 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
5113}
5114
5115
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005116static void GenerateRecordCallTarget(MacroAssembler* masm) {
5117 // Cache the called function in a global property cell. Cache states
5118 // are uninitialized, monomorphic (indicated by a JSFunction), and
5119 // megamorphic.
5120 // r1 : the function to call
5121 // r2 : cache cell for call target
5122 Label done;
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005123
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005124 ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
5125 masm->isolate()->heap()->undefined_value());
5126 ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()),
5127 masm->isolate()->heap()->the_hole_value());
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005128
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005129 // Load the cache state into r3.
5130 __ ldr(r3, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005131
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005132 // A monomorphic cache hit or an already megamorphic state: invoke the
5133 // function without changing the state.
5134 __ cmp(r3, r1);
5135 __ b(eq, &done);
5136 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
5137 __ b(eq, &done);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005138
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005139 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
5140 // megamorphic.
5141 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
5142 // MegamorphicSentinel is an immortal immovable object (undefined) so no
5143 // write-barrier is needed.
5144 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex, ne);
5145 __ str(ip, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset), ne);
5146
5147 // An uninitialized cache is patched with the function.
5148 __ str(r1, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset), eq);
5149 // No need for a write barrier here - cells are rescanned.
5150
5151 __ bind(&done);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005152}
5153
5154
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005155void CallFunctionStub::Generate(MacroAssembler* masm) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005156 // r1 : the function to call
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005157 // r2 : cache cell for call target
Ben Murdoch589d6972011-11-30 16:04:58 +00005158 Label slow, non_function;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005159
Ben Murdoch257744e2011-11-30 15:57:28 +00005160 // The receiver might implicitly be the global object. This is
5161 // indicated by passing the hole as the receiver to the call
5162 // function stub.
5163 if (ReceiverMightBeImplicit()) {
5164 Label call;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005165 // Get the receiver from the stack.
5166 // function, receiver [, arguments]
Ben Murdoch257744e2011-11-30 15:57:28 +00005167 __ ldr(r4, MemOperand(sp, argc_ * kPointerSize));
5168 // Call as function is indicated with the hole.
5169 __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
5170 __ b(ne, &call);
5171 // Patch the receiver on the stack with the global receiver object.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005172 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
5173 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
5174 __ str(r2, MemOperand(sp, argc_ * kPointerSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00005175 __ bind(&call);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005176 }
5177
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005178 // Check that the function is really a JavaScript function.
5179 // r1: pushed function (to be verified)
Ben Murdoch589d6972011-11-30 16:04:58 +00005180 __ JumpIfSmi(r1, &non_function);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005181 // Get the map of the function object.
5182 __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
5183 __ b(ne, &slow);
5184
5185 // Fast-case: Invoke the function now.
5186 // r1: pushed function
5187 ParameterCount actual(argc_);
Ben Murdoch257744e2011-11-30 15:57:28 +00005188
5189 if (ReceiverMightBeImplicit()) {
5190 Label call_as_function;
5191 __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
5192 __ b(eq, &call_as_function);
5193 __ InvokeFunction(r1,
5194 actual,
5195 JUMP_FUNCTION,
5196 NullCallWrapper(),
5197 CALL_AS_METHOD);
5198 __ bind(&call_as_function);
5199 }
5200 __ InvokeFunction(r1,
5201 actual,
5202 JUMP_FUNCTION,
5203 NullCallWrapper(),
5204 CALL_AS_FUNCTION);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005205
5206 // Slow-case: Non-function called.
5207 __ bind(&slow);
Ben Murdoch589d6972011-11-30 16:04:58 +00005208 // Check for function proxy.
5209 __ cmp(r2, Operand(JS_FUNCTION_PROXY_TYPE));
5210 __ b(ne, &non_function);
5211 __ push(r1); // put proxy as additional argument
5212 __ mov(r0, Operand(argc_ + 1, RelocInfo::NONE));
5213 __ mov(r2, Operand(0, RelocInfo::NONE));
5214 __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005215 __ SetCallKind(r5, CALL_AS_METHOD);
Ben Murdoch589d6972011-11-30 16:04:58 +00005216 {
5217 Handle<Code> adaptor =
5218 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
5219 __ Jump(adaptor, RelocInfo::CODE_TARGET);
5220 }
5221
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005222 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
5223 // of the original receiver from the call site).
Ben Murdoch589d6972011-11-30 16:04:58 +00005224 __ bind(&non_function);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005225 __ str(r1, MemOperand(sp, argc_ * kPointerSize));
Ben Murdochc7cc0282012-03-05 14:35:55 +00005226 __ mov(r0, Operand(argc_)); // Set up the number of arguments.
Iain Merrick9ac36c92010-09-13 15:29:50 +01005227 __ mov(r2, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005228 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005229 __ SetCallKind(r5, CALL_AS_METHOD);
Steve Block44f0eee2011-05-26 01:26:41 +01005230 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005231 RelocInfo::CODE_TARGET);
5232}
5233
5234
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005235void CallConstructStub::Generate(MacroAssembler* masm) {
5236 // r0 : number of arguments
5237 // r1 : the function to call
5238 // r2 : cache cell for call target
5239 Label slow, non_function_call;
5240
5241 // Check that the function is not a smi.
5242 __ JumpIfSmi(r1, &non_function_call);
5243 // Check that the function is a JSFunction.
5244 __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
5245 __ b(ne, &slow);
5246
5247 if (RecordCallTarget()) {
5248 GenerateRecordCallTarget(masm);
5249 }
5250
5251 // Jump to the function-specific construct stub.
5252 __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
5253 __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset));
5254 __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
5255
5256 // r0: number of arguments
5257 // r1: called object
5258 // r3: object type
5259 Label do_call;
5260 __ bind(&slow);
5261 __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE));
5262 __ b(ne, &non_function_call);
5263 __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
5264 __ jmp(&do_call);
5265
5266 __ bind(&non_function_call);
5267 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
5268 __ bind(&do_call);
5269 // Set expected number of arguments to zero (not changing r0).
5270 __ mov(r2, Operand(0, RelocInfo::NONE));
5271 __ SetCallKind(r5, CALL_AS_METHOD);
5272 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
5273 RelocInfo::CODE_TARGET);
5274}
5275
5276
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005277// Unfortunately you have to run without snapshots to see most of these
5278// names in the profile since most compare stubs end up in the snapshot.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005279void CompareStub::PrintName(StringStream* stream) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005280 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
5281 (lhs_.is(r1) && rhs_.is(r0)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005282 const char* cc_name;
5283 switch (cc_) {
5284 case lt: cc_name = "LT"; break;
5285 case gt: cc_name = "GT"; break;
5286 case le: cc_name = "LE"; break;
5287 case ge: cc_name = "GE"; break;
5288 case eq: cc_name = "EQ"; break;
5289 case ne: cc_name = "NE"; break;
5290 default: cc_name = "UnknownCondition"; break;
5291 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005292 bool is_equality = cc_ == eq || cc_ == ne;
5293 stream->Add("CompareStub_%s", cc_name);
5294 stream->Add(lhs_.is(r0) ? "_r0" : "_r1");
5295 stream->Add(rhs_.is(r0) ? "_r0" : "_r1");
5296 if (strict_ && is_equality) stream->Add("_STRICT");
5297 if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
5298 if (!include_number_compare_) stream->Add("_NO_NUMBER");
5299 if (!include_smi_compare_) stream->Add("_NO_SMI");
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005300}
5301
5302
5303int CompareStub::MinorKey() {
5304 // Encode the three parameters in a unique 16 bit value. To avoid duplicate
5305 // stubs the never NaN NaN condition is only taken into account if the
5306 // condition is equals.
5307 ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12));
5308 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
5309 (lhs_.is(r1) && rhs_.is(r0)));
5310 return ConditionField::encode(static_cast<unsigned>(cc_) >> 28)
5311 | RegisterField::encode(lhs_.is(r0))
5312 | StrictField::encode(strict_)
5313 | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005314 | IncludeNumberCompareField::encode(include_number_compare_)
5315 | IncludeSmiCompareField::encode(include_smi_compare_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005316}
5317
5318
5319// StringCharCodeAtGenerator
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005320void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
5321 Label flat_string;
5322 Label ascii_string;
5323 Label got_char_code;
Ben Murdoch69a99ed2011-11-30 16:03:39 +00005324 Label sliced_string;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005325
5326 // If the receiver is a smi trigger the non-string case.
Steve Block1e0659c2011-05-24 12:43:12 +01005327 __ JumpIfSmi(object_, receiver_not_string_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005328
5329 // Fetch the instance type of the receiver into result register.
5330 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5331 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5332 // If the receiver is not a string trigger the non-string case.
5333 __ tst(result_, Operand(kIsNotStringMask));
5334 __ b(ne, receiver_not_string_);
5335
5336 // If the index is non-smi trigger the non-smi case.
Steve Block1e0659c2011-05-24 12:43:12 +01005337 __ JumpIfNotSmi(index_, &index_not_smi_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005338 __ bind(&got_smi_index_);
5339
5340 // Check for index out of range.
5341 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005342 __ cmp(ip, Operand(index_));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005343 __ b(ls, index_out_of_range_);
5344
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005345 __ mov(index_, Operand(index_, ASR, kSmiTagSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005346
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005347 StringCharLoadGenerator::Generate(masm,
5348 object_,
5349 index_,
5350 result_,
5351 &call_runtime_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005352
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005353 __ mov(result_, Operand(result_, LSL, kSmiTagSize));
5354 __ bind(&exit_);
5355}
5356
5357
5358void StringCharCodeAtGenerator::GenerateSlow(
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005359 MacroAssembler* masm,
5360 const RuntimeCallHelper& call_helper) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005361 __ Abort("Unexpected fallthrough to CharCodeAt slow case");
5362
5363 // Index is not a smi.
5364 __ bind(&index_not_smi_);
5365 // If index is a heap number, try converting it to an integer.
5366 __ CheckMap(index_,
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005367 result_,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005368 Heap::kHeapNumberMapRootIndex,
5369 index_not_number_,
Ben Murdoch257744e2011-11-30 15:57:28 +00005370 DONT_DO_SMI_CHECK);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005371 call_helper.BeforeCall(masm);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005372 __ push(object_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005373 __ push(index_); // Consumed by runtime conversion function.
5374 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
5375 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
5376 } else {
5377 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
5378 // NumberToSmi discards numbers that are not exact integers.
5379 __ CallRuntime(Runtime::kNumberToSmi, 1);
5380 }
5381 // Save the conversion result before the pop instructions below
5382 // have a chance to overwrite it.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005383 __ Move(index_, r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005384 __ pop(object_);
5385 // Reload the instance type.
5386 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5387 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5388 call_helper.AfterCall(masm);
5389 // If index is still not a smi, it must be out of range.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005390 __ JumpIfNotSmi(index_, index_out_of_range_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005391 // Otherwise, return to the fast path.
5392 __ jmp(&got_smi_index_);
5393
5394 // Call runtime. We get here when the receiver is a string and the
5395 // index is a number, but the code of getting the actual character
5396 // is too complex (e.g., when the string needs to be flattened).
5397 __ bind(&call_runtime_);
5398 call_helper.BeforeCall(masm);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005399 __ mov(index_, Operand(index_, LSL, kSmiTagSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005400 __ Push(object_, index_);
5401 __ CallRuntime(Runtime::kStringCharCodeAt, 2);
5402 __ Move(result_, r0);
5403 call_helper.AfterCall(masm);
5404 __ jmp(&exit_);
5405
5406 __ Abort("Unexpected fallthrough from CharCodeAt slow case");
5407}
5408
5409
5410// -------------------------------------------------------------------------
5411// StringCharFromCodeGenerator
5412
5413void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
5414 // Fast case of Heap::LookupSingleCharacterStringFromCode.
5415 STATIC_ASSERT(kSmiTag == 0);
5416 STATIC_ASSERT(kSmiShiftSize == 0);
5417 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
5418 __ tst(code_,
5419 Operand(kSmiTagMask |
5420 ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
Steve Block1e0659c2011-05-24 12:43:12 +01005421 __ b(ne, &slow_case_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005422
5423 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
Steve Block44f0eee2011-05-26 01:26:41 +01005424 // At this point code register contains smi tagged ASCII char code.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005425 STATIC_ASSERT(kSmiTag == 0);
5426 __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
5427 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005428 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005429 __ b(eq, &slow_case_);
5430 __ bind(&exit_);
5431}
5432
5433
5434void StringCharFromCodeGenerator::GenerateSlow(
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005435 MacroAssembler* masm,
5436 const RuntimeCallHelper& call_helper) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005437 __ Abort("Unexpected fallthrough to CharFromCode slow case");
5438
5439 __ bind(&slow_case_);
5440 call_helper.BeforeCall(masm);
5441 __ push(code_);
5442 __ CallRuntime(Runtime::kCharFromCode, 1);
5443 __ Move(result_, r0);
5444 call_helper.AfterCall(masm);
5445 __ jmp(&exit_);
5446
5447 __ Abort("Unexpected fallthrough from CharFromCode slow case");
5448}
5449
5450
5451// -------------------------------------------------------------------------
5452// StringCharAtGenerator
5453
5454void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
5455 char_code_at_generator_.GenerateFast(masm);
5456 char_from_code_generator_.GenerateFast(masm);
5457}
5458
5459
5460void StringCharAtGenerator::GenerateSlow(
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005461 MacroAssembler* masm,
5462 const RuntimeCallHelper& call_helper) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005463 char_code_at_generator_.GenerateSlow(masm, call_helper);
5464 char_from_code_generator_.GenerateSlow(masm, call_helper);
5465}
5466
5467
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005468void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
5469 Register dest,
5470 Register src,
5471 Register count,
5472 Register scratch,
5473 bool ascii) {
5474 Label loop;
5475 Label done;
5476 // This loop just copies one character at a time, as it is only used for very
5477 // short strings.
5478 if (!ascii) {
5479 __ add(count, count, Operand(count), SetCC);
5480 } else {
Iain Merrick9ac36c92010-09-13 15:29:50 +01005481 __ cmp(count, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005482 }
5483 __ b(eq, &done);
5484
5485 __ bind(&loop);
5486 __ ldrb(scratch, MemOperand(src, 1, PostIndex));
5487 // Perform sub between load and dependent store to get the load time to
5488 // complete.
5489 __ sub(count, count, Operand(1), SetCC);
5490 __ strb(scratch, MemOperand(dest, 1, PostIndex));
5491 // last iteration.
5492 __ b(gt, &loop);
5493
5494 __ bind(&done);
5495}
5496
5497
5498enum CopyCharactersFlags {
5499 COPY_ASCII = 1,
5500 DEST_ALWAYS_ALIGNED = 2
5501};
5502
5503
5504void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
5505 Register dest,
5506 Register src,
5507 Register count,
5508 Register scratch1,
5509 Register scratch2,
5510 Register scratch3,
5511 Register scratch4,
5512 Register scratch5,
5513 int flags) {
5514 bool ascii = (flags & COPY_ASCII) != 0;
5515 bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
5516
5517 if (dest_always_aligned && FLAG_debug_code) {
5518 // Check that destination is actually word aligned if the flag says
5519 // that it is.
5520 __ tst(dest, Operand(kPointerAlignmentMask));
5521 __ Check(eq, "Destination of copy not aligned.");
5522 }
5523
5524 const int kReadAlignment = 4;
5525 const int kReadAlignmentMask = kReadAlignment - 1;
5526 // Ensure that reading an entire aligned word containing the last character
5527 // of a string will not read outside the allocated area (because we pad up
5528 // to kObjectAlignment).
5529 STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
5530 // Assumes word reads and writes are little endian.
5531 // Nothing to do for zero characters.
5532 Label done;
5533 if (!ascii) {
5534 __ add(count, count, Operand(count), SetCC);
5535 } else {
Iain Merrick9ac36c92010-09-13 15:29:50 +01005536 __ cmp(count, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005537 }
5538 __ b(eq, &done);
5539
5540 // Assume that you cannot read (or write) unaligned.
5541 Label byte_loop;
5542 // Must copy at least eight bytes, otherwise just do it one byte at a time.
5543 __ cmp(count, Operand(8));
5544 __ add(count, dest, Operand(count));
5545 Register limit = count; // Read until src equals this.
5546 __ b(lt, &byte_loop);
5547
5548 if (!dest_always_aligned) {
5549 // Align dest by byte copying. Copies between zero and three bytes.
5550 __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
5551 Label dest_aligned;
5552 __ b(eq, &dest_aligned);
5553 __ cmp(scratch4, Operand(2));
5554 __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
5555 __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
5556 __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
5557 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5558 __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
5559 __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
5560 __ bind(&dest_aligned);
5561 }
5562
5563 Label simple_loop;
5564
5565 __ sub(scratch4, dest, Operand(src));
5566 __ and_(scratch4, scratch4, Operand(0x03), SetCC);
5567 __ b(eq, &simple_loop);
5568 // Shift register is number of bits in a source word that
5569 // must be combined with bits in the next source word in order
5570 // to create a destination word.
5571
5572 // Complex loop for src/dst that are not aligned the same way.
5573 {
5574 Label loop;
5575 __ mov(scratch4, Operand(scratch4, LSL, 3));
5576 Register left_shift = scratch4;
5577 __ and_(src, src, Operand(~3)); // Round down to load previous word.
5578 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
5579 // Store the "shift" most significant bits of scratch in the least
5580 // signficant bits (i.e., shift down by (32-shift)).
5581 __ rsb(scratch2, left_shift, Operand(32));
5582 Register right_shift = scratch2;
5583 __ mov(scratch1, Operand(scratch1, LSR, right_shift));
5584
5585 __ bind(&loop);
5586 __ ldr(scratch3, MemOperand(src, 4, PostIndex));
5587 __ sub(scratch5, limit, Operand(dest));
5588 __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
5589 __ str(scratch1, MemOperand(dest, 4, PostIndex));
5590 __ mov(scratch1, Operand(scratch3, LSR, right_shift));
5591 // Loop if four or more bytes left to copy.
5592 // Compare to eight, because we did the subtract before increasing dst.
5593 __ sub(scratch5, scratch5, Operand(8), SetCC);
5594 __ b(ge, &loop);
5595 }
5596 // There is now between zero and three bytes left to copy (negative that
5597 // number is in scratch5), and between one and three bytes already read into
5598 // scratch1 (eight times that number in scratch4). We may have read past
5599 // the end of the string, but because objects are aligned, we have not read
5600 // past the end of the object.
5601 // Find the minimum of remaining characters to move and preloaded characters
5602 // and write those as bytes.
5603 __ add(scratch5, scratch5, Operand(4), SetCC);
5604 __ b(eq, &done);
5605 __ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
5606 // Move minimum of bytes read and bytes left to copy to scratch4.
5607 __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
5608 // Between one and three (value in scratch5) characters already read into
5609 // scratch ready to write.
5610 __ cmp(scratch5, Operand(2));
5611 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5612 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
5613 __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
5614 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
5615 __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
5616 // Copy any remaining bytes.
5617 __ b(&byte_loop);
5618
5619 // Simple loop.
5620 // Copy words from src to dst, until less than four bytes left.
5621 // Both src and dest are word aligned.
5622 __ bind(&simple_loop);
5623 {
5624 Label loop;
5625 __ bind(&loop);
5626 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
5627 __ sub(scratch3, limit, Operand(dest));
5628 __ str(scratch1, MemOperand(dest, 4, PostIndex));
5629 // Compare to 8, not 4, because we do the substraction before increasing
5630 // dest.
5631 __ cmp(scratch3, Operand(8));
5632 __ b(ge, &loop);
5633 }
5634
5635 // Copy bytes from src to dst until dst hits limit.
5636 __ bind(&byte_loop);
5637 __ cmp(dest, Operand(limit));
5638 __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
5639 __ b(ge, &done);
5640 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5641 __ b(&byte_loop);
5642
5643 __ bind(&done);
5644}
5645
5646
5647void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
5648 Register c1,
5649 Register c2,
5650 Register scratch1,
5651 Register scratch2,
5652 Register scratch3,
5653 Register scratch4,
5654 Register scratch5,
5655 Label* not_found) {
5656 // Register scratch3 is the general scratch register in this function.
5657 Register scratch = scratch3;
5658
5659 // Make sure that both characters are not digits as such strings has a
5660 // different hash algorithm. Don't try to look for these in the symbol table.
5661 Label not_array_index;
5662 __ sub(scratch, c1, Operand(static_cast<int>('0')));
5663 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
5664 __ b(hi, &not_array_index);
5665 __ sub(scratch, c2, Operand(static_cast<int>('0')));
5666 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
5667
5668 // If check failed combine both characters into single halfword.
5669 // This is required by the contract of the method: code at the
5670 // not_found branch expects this combination in c1 register
5671 __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
5672 __ b(ls, not_found);
5673
5674 __ bind(&not_array_index);
5675 // Calculate the two character string hash.
5676 Register hash = scratch1;
5677 StringHelper::GenerateHashInit(masm, hash, c1);
5678 StringHelper::GenerateHashAddCharacter(masm, hash, c2);
5679 StringHelper::GenerateHashGetHash(masm, hash);
5680
5681 // Collect the two characters in a register.
5682 Register chars = c1;
5683 __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
5684
5685 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5686 // hash: hash of two character string.
5687
5688 // Load symbol table
5689 // Load address of first element of the symbol table.
5690 Register symbol_table = c2;
5691 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
5692
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005693 Register undefined = scratch4;
5694 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
5695
5696 // Calculate capacity mask from the symbol table capacity.
5697 Register mask = scratch2;
5698 __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
5699 __ mov(mask, Operand(mask, ASR, 1));
5700 __ sub(mask, mask, Operand(1));
5701
5702 // Calculate untagged address of the first element of the symbol table.
5703 Register first_symbol_table_element = symbol_table;
5704 __ add(first_symbol_table_element, symbol_table,
5705 Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
5706
5707 // Registers
5708 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5709 // hash: hash of two character string
5710 // mask: capacity mask
5711 // first_symbol_table_element: address of the first element of
5712 // the symbol table
Steve Block44f0eee2011-05-26 01:26:41 +01005713 // undefined: the undefined object
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005714 // scratch: -
5715
5716 // Perform a number of probes in the symbol table.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005717 const int kProbes = 4;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005718 Label found_in_symbol_table;
5719 Label next_probe[kProbes];
Ben Murdoch692be652012-01-10 18:47:50 +00005720 Register candidate = scratch5; // Scratch register contains candidate.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005721 for (int i = 0; i < kProbes; i++) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005722 // Calculate entry in symbol table.
5723 if (i > 0) {
5724 __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
5725 } else {
5726 __ mov(candidate, hash);
5727 }
5728
5729 __ and_(candidate, candidate, Operand(mask));
5730
5731 // Load the entry from the symble table.
5732 STATIC_ASSERT(SymbolTable::kEntrySize == 1);
5733 __ ldr(candidate,
5734 MemOperand(first_symbol_table_element,
5735 candidate,
5736 LSL,
5737 kPointerSizeLog2));
5738
5739 // If entry is undefined no string with this hash can be found.
Steve Block44f0eee2011-05-26 01:26:41 +01005740 Label is_string;
5741 __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE);
5742 __ b(ne, &is_string);
5743
5744 __ cmp(undefined, candidate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005745 __ b(eq, not_found);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005746 // Must be the hole (deleted entry).
Steve Block44f0eee2011-05-26 01:26:41 +01005747 if (FLAG_debug_code) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005748 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
Steve Block44f0eee2011-05-26 01:26:41 +01005749 __ cmp(ip, candidate);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005750 __ Assert(eq, "oddball in symbol table is not undefined or the hole");
Steve Block44f0eee2011-05-26 01:26:41 +01005751 }
5752 __ jmp(&next_probe[i]);
5753
5754 __ bind(&is_string);
5755
5756 // Check that the candidate is a non-external ASCII string. The instance
5757 // type is still in the scratch register from the CompareObjectType
5758 // operation.
5759 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005760
5761 // If length is not 2 the string is not a candidate.
5762 __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
5763 __ cmp(scratch, Operand(Smi::FromInt(2)));
5764 __ b(ne, &next_probe[i]);
5765
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005766 // Check if the two characters match.
5767 // Assumes that word load is little endian.
5768 __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
5769 __ cmp(chars, scratch);
5770 __ b(eq, &found_in_symbol_table);
5771 __ bind(&next_probe[i]);
5772 }
5773
5774 // No matching 2 character string found by probing.
5775 __ jmp(not_found);
5776
5777 // Scratch register contains result when we fall through to here.
Ben Murdoch692be652012-01-10 18:47:50 +00005778 Register result = candidate;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005779 __ bind(&found_in_symbol_table);
5780 __ Move(r0, result);
5781}
5782
5783
5784void StringHelper::GenerateHashInit(MacroAssembler* masm,
5785 Register hash,
5786 Register character) {
5787 // hash = character + (character << 10);
Ben Murdochc7cc0282012-03-05 14:35:55 +00005788 __ LoadRoot(hash, Heap::kHashSeedRootIndex);
5789 // Untag smi seed and add the character.
5790 __ add(hash, character, Operand(hash, LSR, kSmiTagSize));
5791 // hash += hash << 10;
5792 __ add(hash, hash, Operand(hash, LSL, 10));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005793 // hash ^= hash >> 6;
Ben Murdoch692be652012-01-10 18:47:50 +00005794 __ eor(hash, hash, Operand(hash, LSR, 6));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005795}
5796
5797
5798void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
5799 Register hash,
5800 Register character) {
5801 // hash += character;
5802 __ add(hash, hash, Operand(character));
5803 // hash += hash << 10;
5804 __ add(hash, hash, Operand(hash, LSL, 10));
5805 // hash ^= hash >> 6;
Ben Murdoch692be652012-01-10 18:47:50 +00005806 __ eor(hash, hash, Operand(hash, LSR, 6));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005807}
5808
5809
5810void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
5811 Register hash) {
5812 // hash += hash << 3;
5813 __ add(hash, hash, Operand(hash, LSL, 3));
5814 // hash ^= hash >> 11;
Ben Murdoch692be652012-01-10 18:47:50 +00005815 __ eor(hash, hash, Operand(hash, LSR, 11));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005816 // hash += hash << 15;
Ben Murdochc7cc0282012-03-05 14:35:55 +00005817 __ add(hash, hash, Operand(hash, LSL, 15));
Ben Murdoch692be652012-01-10 18:47:50 +00005818
Ben Murdochc7cc0282012-03-05 14:35:55 +00005819 __ and_(hash, hash, Operand(String::kHashBitMask), SetCC);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005820
5821 // if (hash == 0) hash = 27;
Ben Murdochc7cc0282012-03-05 14:35:55 +00005822 __ mov(hash, Operand(StringHasher::kZeroHash), LeaveCC, eq);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005823}
5824
5825
5826void SubStringStub::Generate(MacroAssembler* masm) {
5827 Label runtime;
5828
5829 // Stack frame on entry.
5830 // lr: return address
5831 // sp[0]: to
5832 // sp[4]: from
5833 // sp[8]: string
5834
5835 // This stub is called from the native-call %_SubString(...), so
5836 // nothing can be assumed about the arguments. It is tested that:
5837 // "string" is a sequential string,
5838 // both "from" and "to" are smis, and
5839 // 0 <= from <= to <= string.length.
5840 // If any of these assumptions fail, we call the runtime system.
5841
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005842 const int kToOffset = 0 * kPointerSize;
5843 const int kFromOffset = 1 * kPointerSize;
5844 const int kStringOffset = 2 * kPointerSize;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005845
Ben Murdochc7cc0282012-03-05 14:35:55 +00005846 __ Ldrd(r2, r3, MemOperand(sp, kToOffset));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005847 STATIC_ASSERT(kFromOffset == kToOffset + 4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005848 STATIC_ASSERT(kSmiTag == 0);
5849 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00005850
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005851 // I.e., arithmetic shift right by one un-smi-tags.
Ben Murdochc7cc0282012-03-05 14:35:55 +00005852 __ mov(r2, Operand(r2, ASR, 1), SetCC);
5853 __ mov(r3, Operand(r3, ASR, 1), SetCC, cc);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005854 // If either to or from had the smi tag bit set, then carry is set now.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005855 __ b(cs, &runtime); // Either "from" or "to" is not a smi.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005856 // We want to bailout to runtime here if From is negative. In that case, the
5857 // next instruction is not executed and we fall through to bailing out to
5858 // runtime. pl is the opposite of mi.
Ben Murdochc7cc0282012-03-05 14:35:55 +00005859 // Both r2 and r3 are untagged integers.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005860 __ sub(r2, r2, Operand(r3), SetCC, pl);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005861 __ b(mi, &runtime); // Fail if from > to.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005862
Ben Murdochc7cc0282012-03-05 14:35:55 +00005863 // Make sure first argument is a string.
Ben Murdoch589d6972011-11-30 16:04:58 +00005864 __ ldr(r0, MemOperand(sp, kStringOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005865 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch589d6972011-11-30 16:04:58 +00005866 __ JumpIfSmi(r0, &runtime);
5867 Condition is_string = masm->IsObjectStringType(r0, r1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005868 __ b(NegateCondition(is_string), &runtime);
5869
Ben Murdoch589d6972011-11-30 16:04:58 +00005870 // Short-cut for the case of trivial substring.
5871 Label return_r0;
5872 // r0: original string
5873 // r2: result string length
5874 __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
5875 __ cmp(r2, Operand(r4, ASR, 1));
5876 __ b(eq, &return_r0);
5877
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005878 Label result_longer_than_two;
Ben Murdochc7cc0282012-03-05 14:35:55 +00005879 // Check for special case of two character ASCII string, in which case
5880 // we do a lookup in the symbol table first.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005881 __ cmp(r2, Operand(2));
5882 __ b(gt, &result_longer_than_two);
Ben Murdochc7cc0282012-03-05 14:35:55 +00005883 __ b(lt, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005884
Ben Murdochc7cc0282012-03-05 14:35:55 +00005885 __ JumpIfInstanceTypeIsNotSequentialAscii(r1, r1, &runtime);
5886
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005887 // Get the two characters forming the sub string.
Ben Murdoch589d6972011-11-30 16:04:58 +00005888 __ add(r0, r0, Operand(r3));
5889 __ ldrb(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
5890 __ ldrb(r4, FieldMemOperand(r0, SeqAsciiString::kHeaderSize + 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005891
5892 // Try to lookup two character string in symbol table.
5893 Label make_two_character_string;
5894 StringHelper::GenerateTwoCharacterSymbolTableProbe(
5895 masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string);
Ben Murdoch589d6972011-11-30 16:04:58 +00005896 __ jmp(&return_r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005897
5898 // r2: result string length.
5899 // r3: two characters combined into halfword in little endian byte order.
5900 __ bind(&make_two_character_string);
5901 __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime);
5902 __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
Ben Murdoch589d6972011-11-30 16:04:58 +00005903 __ jmp(&return_r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005904
5905 __ bind(&result_longer_than_two);
Ben Murdochc7cc0282012-03-05 14:35:55 +00005906 // Deal with different string types: update the index if necessary
5907 // and put the underlying string into r5.
5908 // r0: original string
5909 // r1: instance type
5910 // r2: length
5911 // r3: from index (untagged)
5912 Label underlying_unpacked, sliced_string, seq_or_external_string;
5913 // If the string is not indirect, it can only be sequential or external.
5914 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
5915 STATIC_ASSERT(kIsIndirectStringMask != 0);
5916 __ tst(r1, Operand(kIsIndirectStringMask));
5917 __ b(eq, &seq_or_external_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005918
Ben Murdochc7cc0282012-03-05 14:35:55 +00005919 __ tst(r1, Operand(kSlicedNotConsMask));
5920 __ b(ne, &sliced_string);
5921 // Cons string. Check whether it is flat, then fetch first part.
5922 __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
5923 __ CompareRoot(r5, Heap::kEmptyStringRootIndex);
5924 __ b(ne, &runtime);
5925 __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
5926 // Update instance type.
5927 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
5928 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
5929 __ jmp(&underlying_unpacked);
Ben Murdoch589d6972011-11-30 16:04:58 +00005930
Ben Murdochc7cc0282012-03-05 14:35:55 +00005931 __ bind(&sliced_string);
5932 // Sliced string. Fetch parent and correct start index by offset.
Ben Murdochc7cc0282012-03-05 14:35:55 +00005933 __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005934 __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset));
5935 __ add(r3, r3, Operand(r4, ASR, 1)); // Add offset to index.
Ben Murdochc7cc0282012-03-05 14:35:55 +00005936 // Update instance type.
5937 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
5938 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
5939 __ jmp(&underlying_unpacked);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005940
Ben Murdochc7cc0282012-03-05 14:35:55 +00005941 __ bind(&seq_or_external_string);
5942 // Sequential or external string. Just move string to the expected register.
5943 __ mov(r5, r0);
5944
5945 __ bind(&underlying_unpacked);
5946
5947 if (FLAG_string_slices) {
5948 Label copy_routine;
5949 // r5: underlying subject string
5950 // r1: instance type of underlying subject string
5951 // r2: length
5952 // r3: adjusted start index (untagged)
5953 __ cmp(r2, Operand(SlicedString::kMinLength));
5954 // Short slice. Copy instead of slicing.
5955 __ b(lt, &copy_routine);
5956 // Allocate new sliced string. At this point we do not reload the instance
5957 // type including the string encoding because we simply rely on the info
5958 // provided by the original string. It does not matter if the original
5959 // string's encoding is wrong because we always have to recheck encoding of
5960 // the newly created string's parent anyways due to externalized strings.
5961 Label two_byte_slice, set_slice_header;
5962 STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
5963 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
5964 __ tst(r1, Operand(kStringEncodingMask));
5965 __ b(eq, &two_byte_slice);
5966 __ AllocateAsciiSlicedString(r0, r2, r6, r7, &runtime);
5967 __ jmp(&set_slice_header);
5968 __ bind(&two_byte_slice);
5969 __ AllocateTwoByteSlicedString(r0, r2, r6, r7, &runtime);
5970 __ bind(&set_slice_header);
5971 __ mov(r3, Operand(r3, LSL, 1));
Ben Murdochc7cc0282012-03-05 14:35:55 +00005972 __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01005973 __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
Ben Murdochc7cc0282012-03-05 14:35:55 +00005974 __ jmp(&return_r0);
5975
5976 __ bind(&copy_routine);
5977 }
5978
5979 // r5: underlying subject string
5980 // r1: instance type of underlying subject string
5981 // r2: length
5982 // r3: adjusted start index (untagged)
5983 Label two_byte_sequential, sequential_string, allocate_result;
5984 STATIC_ASSERT(kExternalStringTag != 0);
5985 STATIC_ASSERT(kSeqStringTag == 0);
5986 __ tst(r1, Operand(kExternalStringTag));
5987 __ b(eq, &sequential_string);
5988
5989 // Handle external string.
5990 // Rule out short external strings.
5991 STATIC_CHECK(kShortExternalStringTag != 0);
5992 __ tst(r1, Operand(kShortExternalStringTag));
5993 __ b(ne, &runtime);
5994 __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
5995 // r5 already points to the first character of underlying string.
5996 __ jmp(&allocate_result);
5997
5998 __ bind(&sequential_string);
5999 // Locate first character of underlying subject string.
6000 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
6001 __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6002
6003 __ bind(&allocate_result);
6004 // Sequential acii string. Allocate the result.
6005 STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0);
6006 __ tst(r1, Operand(kStringEncodingMask));
6007 __ b(eq, &two_byte_sequential);
6008
6009 // Allocate and copy the resulting ASCII string.
6010 __ AllocateAsciiString(r0, r2, r4, r6, r7, &runtime);
6011
6012 // Locate first character of substring to copy.
6013 __ add(r5, r5, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006014 // Locate first character of result.
6015 __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006016
Ben Murdoch589d6972011-11-30 16:04:58 +00006017 // r0: result string
6018 // r1: first character of result string
6019 // r2: result string length
6020 // r5: first character of substring to copy
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006021 STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
6022 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
6023 COPY_ASCII | DEST_ALWAYS_ALIGNED);
Ben Murdoch589d6972011-11-30 16:04:58 +00006024 __ jmp(&return_r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006025
Ben Murdochc7cc0282012-03-05 14:35:55 +00006026 // Allocate and copy the resulting two-byte string.
6027 __ bind(&two_byte_sequential);
6028 __ AllocateTwoByteString(r0, r2, r4, r6, r7, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006029
Ben Murdochc7cc0282012-03-05 14:35:55 +00006030 // Locate first character of substring to copy.
Ben Murdoch589d6972011-11-30 16:04:58 +00006031 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
Ben Murdochc7cc0282012-03-05 14:35:55 +00006032 __ add(r5, r5, Operand(r3, LSL, 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006033 // Locate first character of result.
6034 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
Ben Murdoch589d6972011-11-30 16:04:58 +00006035
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006036 // r0: result string.
6037 // r1: first character of result.
6038 // r2: result length.
Ben Murdoch589d6972011-11-30 16:04:58 +00006039 // r5: first character of substring to copy.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006040 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006041 StringHelper::GenerateCopyCharactersLong(
6042 masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED);
Ben Murdoch589d6972011-11-30 16:04:58 +00006043
6044 __ bind(&return_r0);
Ben Murdochc7cc0282012-03-05 14:35:55 +00006045 Counters* counters = masm->isolate()->counters();
Steve Block44f0eee2011-05-26 01:26:41 +01006046 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006047 __ add(sp, sp, Operand(3 * kPointerSize));
6048 __ Ret();
6049
6050 // Just jump to runtime to create the sub string.
6051 __ bind(&runtime);
6052 __ TailCallRuntime(Runtime::kSubString, 3, 1);
6053}
6054
6055
Ben Murdoch257744e2011-11-30 15:57:28 +00006056void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
6057 Register left,
6058 Register right,
6059 Register scratch1,
6060 Register scratch2,
6061 Register scratch3) {
6062 Register length = scratch1;
6063
6064 // Compare lengths.
6065 Label strings_not_equal, check_zero_length;
6066 __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
6067 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
6068 __ cmp(length, scratch2);
6069 __ b(eq, &check_zero_length);
6070 __ bind(&strings_not_equal);
6071 __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
6072 __ Ret();
6073
6074 // Check if the length is zero.
6075 Label compare_chars;
6076 __ bind(&check_zero_length);
6077 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006078 __ cmp(length, Operand(0));
Ben Murdoch257744e2011-11-30 15:57:28 +00006079 __ b(ne, &compare_chars);
6080 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
6081 __ Ret();
6082
6083 // Compare characters.
6084 __ bind(&compare_chars);
6085 GenerateAsciiCharsCompareLoop(masm,
6086 left, right, length, scratch2, scratch3,
6087 &strings_not_equal);
6088
6089 // Characters are equal.
6090 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
6091 __ Ret();
6092}
6093
6094
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006095void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
6096 Register left,
6097 Register right,
6098 Register scratch1,
6099 Register scratch2,
6100 Register scratch3,
6101 Register scratch4) {
Ben Murdoch257744e2011-11-30 15:57:28 +00006102 Label result_not_equal, compare_lengths;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006103 // Find minimum length and length difference.
6104 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
6105 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
6106 __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
6107 Register length_delta = scratch3;
6108 __ mov(scratch1, scratch2, LeaveCC, gt);
6109 Register min_length = scratch1;
6110 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006111 __ cmp(min_length, Operand(0));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006112 __ b(eq, &compare_lengths);
6113
Ben Murdoch257744e2011-11-30 15:57:28 +00006114 // Compare loop.
6115 GenerateAsciiCharsCompareLoop(masm,
6116 left, right, min_length, scratch2, scratch4,
6117 &result_not_equal);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006118
Ben Murdoch257744e2011-11-30 15:57:28 +00006119 // Compare lengths - strings up to min-length are equal.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006120 __ bind(&compare_lengths);
6121 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
Ben Murdoch257744e2011-11-30 15:57:28 +00006122 // Use length_delta as result if it's zero.
6123 __ mov(r0, Operand(length_delta), SetCC);
6124 __ bind(&result_not_equal);
6125 // Conditionally update the result based either on length_delta or
6126 // the last comparion performed in the loop above.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006127 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
6128 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
6129 __ Ret();
6130}
6131
6132
Ben Murdoch257744e2011-11-30 15:57:28 +00006133void StringCompareStub::GenerateAsciiCharsCompareLoop(
6134 MacroAssembler* masm,
6135 Register left,
6136 Register right,
6137 Register length,
6138 Register scratch1,
6139 Register scratch2,
6140 Label* chars_not_equal) {
6141 // Change index to run from -length to -1 by adding length to string
6142 // start. This means that loop ends when index reaches zero, which
6143 // doesn't need an additional compare.
6144 __ SmiUntag(length);
6145 __ add(scratch1, length,
6146 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6147 __ add(left, left, Operand(scratch1));
6148 __ add(right, right, Operand(scratch1));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006149 __ rsb(length, length, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +00006150 Register index = length; // index = -length;
6151
6152 // Compare loop.
6153 Label loop;
6154 __ bind(&loop);
6155 __ ldrb(scratch1, MemOperand(left, index));
6156 __ ldrb(scratch2, MemOperand(right, index));
6157 __ cmp(scratch1, scratch2);
6158 __ b(ne, chars_not_equal);
6159 __ add(index, index, Operand(1), SetCC);
6160 __ b(ne, &loop);
6161}
6162
6163
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006164void StringCompareStub::Generate(MacroAssembler* masm) {
6165 Label runtime;
6166
Steve Block44f0eee2011-05-26 01:26:41 +01006167 Counters* counters = masm->isolate()->counters();
6168
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006169 // Stack frame on entry.
6170 // sp[0]: right string
6171 // sp[4]: left string
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006172 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006173
6174 Label not_same;
6175 __ cmp(r0, r1);
6176 __ b(ne, &not_same);
6177 STATIC_ASSERT(EQUAL == 0);
6178 STATIC_ASSERT(kSmiTag == 0);
6179 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
Steve Block44f0eee2011-05-26 01:26:41 +01006180 __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006181 __ add(sp, sp, Operand(2 * kPointerSize));
6182 __ Ret();
6183
6184 __ bind(&not_same);
6185
Steve Block44f0eee2011-05-26 01:26:41 +01006186 // Check that both objects are sequential ASCII strings.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006187 __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006188
Steve Block44f0eee2011-05-26 01:26:41 +01006189 // Compare flat ASCII strings natively. Remove arguments from stack first.
6190 __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006191 __ add(sp, sp, Operand(2 * kPointerSize));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006192 GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006193
6194 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
6195 // tagged as a small integer.
6196 __ bind(&runtime);
6197 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
6198}
6199
6200
6201void StringAddStub::Generate(MacroAssembler* masm) {
Ben Murdochc7cc0282012-03-05 14:35:55 +00006202 Label call_runtime, call_builtin;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006203 Builtins::JavaScript builtin_id = Builtins::ADD;
6204
Steve Block44f0eee2011-05-26 01:26:41 +01006205 Counters* counters = masm->isolate()->counters();
6206
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006207 // Stack on entry:
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006208 // sp[0]: second argument (right).
6209 // sp[4]: first argument (left).
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006210
6211 // Load the two arguments.
6212 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument.
6213 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
6214
6215 // Make sure that both arguments are strings if not known in advance.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006216 if (flags_ == NO_STRING_ADD_FLAGS) {
Ben Murdochc7cc0282012-03-05 14:35:55 +00006217 __ JumpIfEitherSmi(r0, r1, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006218 // Load instance types.
6219 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6220 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6221 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6222 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6223 STATIC_ASSERT(kStringTag == 0);
6224 // If either is not a string, go to runtime.
6225 __ tst(r4, Operand(kIsNotStringMask));
6226 __ tst(r5, Operand(kIsNotStringMask), eq);
Ben Murdochc7cc0282012-03-05 14:35:55 +00006227 __ b(ne, &call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006228 } else {
6229 // Here at least one of the arguments is definitely a string.
6230 // We convert the one that is not known to be a string.
6231 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
6232 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
6233 GenerateConvertArgument(
6234 masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin);
6235 builtin_id = Builtins::STRING_ADD_RIGHT;
6236 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
6237 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
6238 GenerateConvertArgument(
6239 masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin);
6240 builtin_id = Builtins::STRING_ADD_LEFT;
6241 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006242 }
6243
6244 // Both arguments are strings.
6245 // r0: first string
6246 // r1: second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006247 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6248 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006249 {
6250 Label strings_not_empty;
6251 // Check if either of the strings are empty. In that case return the other.
6252 __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
6253 __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
6254 STATIC_ASSERT(kSmiTag == 0);
6255 __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
6256 __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
6257 STATIC_ASSERT(kSmiTag == 0);
6258 // Else test if second string is empty.
6259 __ cmp(r3, Operand(Smi::FromInt(0)), ne);
6260 __ b(ne, &strings_not_empty); // If either string was empty, return r0.
6261
Steve Block44f0eee2011-05-26 01:26:41 +01006262 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006263 __ add(sp, sp, Operand(2 * kPointerSize));
6264 __ Ret();
6265
6266 __ bind(&strings_not_empty);
6267 }
6268
6269 __ mov(r2, Operand(r2, ASR, kSmiTagSize));
6270 __ mov(r3, Operand(r3, ASR, kSmiTagSize));
6271 // Both strings are non-empty.
6272 // r0: first string
6273 // r1: second string
6274 // r2: length of first string
6275 // r3: length of second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006276 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6277 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006278 // Look at the length of the result of adding the two strings.
6279 Label string_add_flat_result, longer_than_two;
6280 // Adding two lengths can't overflow.
6281 STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
6282 __ add(r6, r2, Operand(r3));
Steve Block44f0eee2011-05-26 01:26:41 +01006283 // Use the symbol table when adding two one character strings, as it
6284 // helps later optimizations to return a symbol here.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006285 __ cmp(r6, Operand(2));
6286 __ b(ne, &longer_than_two);
6287
Steve Block44f0eee2011-05-26 01:26:41 +01006288 // Check that both strings are non-external ASCII strings.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006289 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006290 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6291 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6292 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6293 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6294 }
6295 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
Ben Murdochc7cc0282012-03-05 14:35:55 +00006296 &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006297
6298 // Get the two characters forming the sub string.
6299 __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
6300 __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize));
6301
6302 // Try to lookup two character string in symbol table. If it is not found
6303 // just allocate a new one.
6304 Label make_two_character_string;
6305 StringHelper::GenerateTwoCharacterSymbolTableProbe(
6306 masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
Steve Block44f0eee2011-05-26 01:26:41 +01006307 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006308 __ add(sp, sp, Operand(2 * kPointerSize));
6309 __ Ret();
6310
6311 __ bind(&make_two_character_string);
6312 // Resulting string has length 2 and first chars of two strings
6313 // are combined into single halfword in r2 register.
6314 // So we can fill resulting string without two loops by a single
6315 // halfword store instruction (which assumes that processor is
6316 // in a little endian mode)
6317 __ mov(r6, Operand(2));
Ben Murdochc7cc0282012-03-05 14:35:55 +00006318 __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006319 __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
Steve Block44f0eee2011-05-26 01:26:41 +01006320 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006321 __ add(sp, sp, Operand(2 * kPointerSize));
6322 __ Ret();
6323
6324 __ bind(&longer_than_two);
6325 // Check if resulting string will be flat.
Ben Murdochc7cc0282012-03-05 14:35:55 +00006326 __ cmp(r6, Operand(ConsString::kMinLength));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006327 __ b(lt, &string_add_flat_result);
6328 // Handle exceptionally long strings in the runtime system.
6329 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
6330 ASSERT(IsPowerOf2(String::kMaxLength + 1));
6331 // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
6332 __ cmp(r6, Operand(String::kMaxLength + 1));
Ben Murdochc7cc0282012-03-05 14:35:55 +00006333 __ b(hs, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006334
6335 // If result is not supposed to be flat, allocate a cons string object.
Steve Block44f0eee2011-05-26 01:26:41 +01006336 // If both strings are ASCII the result is an ASCII cons string.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006337 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006338 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6339 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6340 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6341 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6342 }
6343 Label non_ascii, allocated, ascii_data;
6344 STATIC_ASSERT(kTwoByteStringTag == 0);
6345 __ tst(r4, Operand(kStringEncodingMask));
6346 __ tst(r5, Operand(kStringEncodingMask), ne);
6347 __ b(eq, &non_ascii);
6348
6349 // Allocate an ASCII cons string.
6350 __ bind(&ascii_data);
Ben Murdochc7cc0282012-03-05 14:35:55 +00006351 __ AllocateAsciiConsString(r7, r6, r4, r5, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006352 __ bind(&allocated);
6353 // Fill the fields of the cons string.
6354 __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
6355 __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
6356 __ mov(r0, Operand(r7));
Steve Block44f0eee2011-05-26 01:26:41 +01006357 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006358 __ add(sp, sp, Operand(2 * kPointerSize));
6359 __ Ret();
6360
6361 __ bind(&non_ascii);
6362 // At least one of the strings is two-byte. Check whether it happens
Steve Block44f0eee2011-05-26 01:26:41 +01006363 // to contain only ASCII characters.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006364 // r4: first instance type.
6365 // r5: second instance type.
6366 __ tst(r4, Operand(kAsciiDataHintMask));
6367 __ tst(r5, Operand(kAsciiDataHintMask), ne);
6368 __ b(ne, &ascii_data);
6369 __ eor(r4, r4, Operand(r5));
6370 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
6371 __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
6372 __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
6373 __ b(eq, &ascii_data);
6374
6375 // Allocate a two byte cons string.
Ben Murdochc7cc0282012-03-05 14:35:55 +00006376 __ AllocateTwoByteConsString(r7, r6, r4, r5, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006377 __ jmp(&allocated);
6378
Ben Murdochc7cc0282012-03-05 14:35:55 +00006379 // We cannot encounter sliced strings or cons strings here since:
6380 STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
6381 // Handle creating a flat result from either external or sequential strings.
6382 // Locate the first characters' locations.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006383 // r0: first string
6384 // r1: second string
6385 // r2: length of first string
6386 // r3: length of second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006387 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6388 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006389 // r6: sum of lengths.
Ben Murdochc7cc0282012-03-05 14:35:55 +00006390 Label first_prepared, second_prepared;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006391 __ bind(&string_add_flat_result);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006392 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006393 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6394 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6395 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6396 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6397 }
Ben Murdochc7cc0282012-03-05 14:35:55 +00006398
6399 // Check whether both strings have same encoding
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006400 __ eor(r7, r4, Operand(r5));
6401 __ tst(r7, Operand(kStringEncodingMask));
Ben Murdochc7cc0282012-03-05 14:35:55 +00006402 __ b(ne, &call_runtime);
6403
6404 STATIC_ASSERT(kSeqStringTag == 0);
6405 __ tst(r4, Operand(kStringRepresentationMask));
6406 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
6407 __ add(r7,
6408 r0,
6409 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag),
6410 LeaveCC,
6411 eq);
6412 __ b(eq, &first_prepared);
6413 // External string: rule out short external string and load string resource.
6414 STATIC_ASSERT(kShortExternalStringTag != 0);
6415 __ tst(r4, Operand(kShortExternalStringMask));
6416 __ b(ne, &call_runtime);
6417 __ ldr(r7, FieldMemOperand(r0, ExternalString::kResourceDataOffset));
6418 __ bind(&first_prepared);
6419
6420 STATIC_ASSERT(kSeqStringTag == 0);
6421 __ tst(r5, Operand(kStringRepresentationMask));
6422 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
6423 __ add(r1,
6424 r1,
6425 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag),
6426 LeaveCC,
6427 eq);
6428 __ b(eq, &second_prepared);
6429 // External string: rule out short external string and load string resource.
6430 STATIC_ASSERT(kShortExternalStringTag != 0);
6431 __ tst(r5, Operand(kShortExternalStringMask));
6432 __ b(ne, &call_runtime);
6433 __ ldr(r1, FieldMemOperand(r1, ExternalString::kResourceDataOffset));
6434 __ bind(&second_prepared);
6435
6436 Label non_ascii_string_add_flat_result;
6437 // r7: first character of first string
6438 // r1: first character of second string
6439 // r2: length of first string.
6440 // r3: length of second string.
6441 // r6: sum of lengths.
6442 // Both strings have the same encoding.
6443 STATIC_ASSERT(kTwoByteStringTag == 0);
6444 __ tst(r5, Operand(kStringEncodingMask));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006445 __ b(eq, &non_ascii_string_add_flat_result);
6446
Ben Murdochc7cc0282012-03-05 14:35:55 +00006447 __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
6448 __ add(r6, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6449 // r0: result string.
6450 // r7: first character of first string.
6451 // r1: first character of second string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006452 // r2: length of first string.
6453 // r3: length of second string.
6454 // r6: first character of result.
Ben Murdochc7cc0282012-03-05 14:35:55 +00006455 StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, true);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006456 // r6: next character of result.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006457 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
Steve Block44f0eee2011-05-26 01:26:41 +01006458 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006459 __ add(sp, sp, Operand(2 * kPointerSize));
6460 __ Ret();
6461
6462 __ bind(&non_ascii_string_add_flat_result);
Ben Murdochc7cc0282012-03-05 14:35:55 +00006463 __ AllocateTwoByteString(r0, r6, r4, r5, r9, &call_runtime);
6464 __ add(r6, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6465 // r0: result string.
6466 // r7: first character of first string.
6467 // r1: first character of second string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006468 // r2: length of first string.
6469 // r3: length of second string.
6470 // r6: first character of result.
Ben Murdochc7cc0282012-03-05 14:35:55 +00006471 StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, false);
6472 // r6: next character of result.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006473 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
Steve Block44f0eee2011-05-26 01:26:41 +01006474 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006475 __ add(sp, sp, Operand(2 * kPointerSize));
6476 __ Ret();
6477
6478 // Just jump to runtime to add the two strings.
Ben Murdochc7cc0282012-03-05 14:35:55 +00006479 __ bind(&call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006480 __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006481
6482 if (call_builtin.is_linked()) {
6483 __ bind(&call_builtin);
Ben Murdoch257744e2011-11-30 15:57:28 +00006484 __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006485 }
6486}
6487
6488
6489void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
6490 int stack_offset,
6491 Register arg,
6492 Register scratch1,
6493 Register scratch2,
6494 Register scratch3,
6495 Register scratch4,
6496 Label* slow) {
6497 // First check if the argument is already a string.
6498 Label not_string, done;
6499 __ JumpIfSmi(arg, &not_string);
6500 __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE);
6501 __ b(lt, &done);
6502
6503 // Check the number to string cache.
6504 Label not_cached;
6505 __ bind(&not_string);
6506 // Puts the cached result into scratch1.
6507 NumberToStringStub::GenerateLookupNumberStringCache(masm,
6508 arg,
6509 scratch1,
6510 scratch2,
6511 scratch3,
6512 scratch4,
6513 false,
6514 &not_cached);
6515 __ mov(arg, scratch1);
6516 __ str(arg, MemOperand(sp, stack_offset));
6517 __ jmp(&done);
6518
6519 // Check if the argument is a safe string wrapper.
6520 __ bind(&not_cached);
6521 __ JumpIfSmi(arg, slow);
6522 __ CompareObjectType(
6523 arg, scratch1, scratch2, JS_VALUE_TYPE); // map -> scratch1.
6524 __ b(ne, slow);
6525 __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
6526 __ and_(scratch2,
6527 scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
6528 __ cmp(scratch2,
6529 Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
6530 __ b(ne, slow);
6531 __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset));
6532 __ str(arg, MemOperand(sp, stack_offset));
6533
6534 __ bind(&done);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006535}
6536
6537
Ben Murdochb0fe1622011-05-05 13:52:32 +01006538void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
6539 ASSERT(state_ == CompareIC::SMIS);
6540 Label miss;
6541 __ orr(r2, r1, r0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00006542 __ JumpIfNotSmi(r2, &miss);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006543
6544 if (GetCondition() == eq) {
6545 // For equality we do not care about the sign of the result.
6546 __ sub(r0, r0, r1, SetCC);
6547 } else {
Steve Block1e0659c2011-05-24 12:43:12 +01006548 // Untag before subtracting to avoid handling overflow.
6549 __ SmiUntag(r1);
6550 __ sub(r0, r1, SmiUntagOperand(r0));
Ben Murdochb0fe1622011-05-05 13:52:32 +01006551 }
6552 __ Ret();
6553
6554 __ bind(&miss);
6555 GenerateMiss(masm);
6556}
6557
6558
6559void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
6560 ASSERT(state_ == CompareIC::HEAP_NUMBERS);
6561
6562 Label generic_stub;
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006563 Label unordered, maybe_undefined1, maybe_undefined2;
Ben Murdochb0fe1622011-05-05 13:52:32 +01006564 Label miss;
6565 __ and_(r2, r1, Operand(r0));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00006566 __ JumpIfSmi(r2, &generic_stub);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006567
6568 __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006569 __ b(ne, &maybe_undefined1);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006570 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006571 __ b(ne, &maybe_undefined2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006572
6573 // Inlining the double comparison and falling back to the general compare
6574 // stub if NaN is involved or VFP3 is unsupported.
Ben Murdoch8b112d22011-06-08 16:22:53 +01006575 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01006576 CpuFeatures::Scope scope(VFP3);
6577
6578 // Load left and right operand
6579 __ sub(r2, r1, Operand(kHeapObjectTag));
6580 __ vldr(d0, r2, HeapNumber::kValueOffset);
6581 __ sub(r2, r0, Operand(kHeapObjectTag));
6582 __ vldr(d1, r2, HeapNumber::kValueOffset);
6583
6584 // Compare operands
Ben Murdochb8e0da22011-05-16 14:20:40 +01006585 __ VFPCompareAndSetFlags(d0, d1);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006586
6587 // Don't base result on status bits when a NaN is involved.
6588 __ b(vs, &unordered);
6589
6590 // Return a result of -1, 0, or 1, based on status bits.
6591 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
6592 __ mov(r0, Operand(LESS), LeaveCC, lt);
6593 __ mov(r0, Operand(GREATER), LeaveCC, gt);
6594 __ Ret();
Ben Murdochb0fe1622011-05-05 13:52:32 +01006595 }
6596
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006597 __ bind(&unordered);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006598 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0);
6599 __ bind(&generic_stub);
6600 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
6601
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006602 __ bind(&maybe_undefined1);
6603 if (Token::IsOrderedRelationalCompareOp(op_)) {
6604 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
6605 __ b(ne, &miss);
6606 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
6607 __ b(ne, &maybe_undefined2);
6608 __ jmp(&unordered);
6609 }
6610
6611 __ bind(&maybe_undefined2);
6612 if (Token::IsOrderedRelationalCompareOp(op_)) {
6613 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
6614 __ b(eq, &unordered);
6615 }
6616
Ben Murdochb0fe1622011-05-05 13:52:32 +01006617 __ bind(&miss);
6618 GenerateMiss(masm);
6619}
6620
6621
Ben Murdoch257744e2011-11-30 15:57:28 +00006622void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
6623 ASSERT(state_ == CompareIC::SYMBOLS);
6624 Label miss;
6625
6626 // Registers containing left and right operands respectively.
6627 Register left = r1;
6628 Register right = r0;
6629 Register tmp1 = r2;
6630 Register tmp2 = r3;
6631
6632 // Check that both operands are heap objects.
6633 __ JumpIfEitherSmi(left, right, &miss);
6634
6635 // Check that both operands are symbols.
6636 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
6637 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
6638 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
6639 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
6640 STATIC_ASSERT(kSymbolTag != 0);
6641 __ and_(tmp1, tmp1, Operand(tmp2));
6642 __ tst(tmp1, Operand(kIsSymbolMask));
6643 __ b(eq, &miss);
6644
6645 // Symbols are compared by identity.
6646 __ cmp(left, right);
6647 // Make sure r0 is non-zero. At this point input operands are
6648 // guaranteed to be non-zero.
6649 ASSERT(right.is(r0));
6650 STATIC_ASSERT(EQUAL == 0);
6651 STATIC_ASSERT(kSmiTag == 0);
6652 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
6653 __ Ret();
6654
6655 __ bind(&miss);
6656 GenerateMiss(masm);
6657}
6658
6659
6660void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
6661 ASSERT(state_ == CompareIC::STRINGS);
6662 Label miss;
6663
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006664 bool equality = Token::IsEqualityOp(op_);
6665
Ben Murdoch257744e2011-11-30 15:57:28 +00006666 // Registers containing left and right operands respectively.
6667 Register left = r1;
6668 Register right = r0;
6669 Register tmp1 = r2;
6670 Register tmp2 = r3;
6671 Register tmp3 = r4;
6672 Register tmp4 = r5;
6673
6674 // Check that both operands are heap objects.
6675 __ JumpIfEitherSmi(left, right, &miss);
6676
6677 // Check that both operands are strings. This leaves the instance
6678 // types loaded in tmp1 and tmp2.
6679 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
6680 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
6681 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
6682 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
6683 STATIC_ASSERT(kNotStringTag != 0);
6684 __ orr(tmp3, tmp1, tmp2);
6685 __ tst(tmp3, Operand(kIsNotStringMask));
6686 __ b(ne, &miss);
6687
6688 // Fast check for identical strings.
6689 __ cmp(left, right);
6690 STATIC_ASSERT(EQUAL == 0);
6691 STATIC_ASSERT(kSmiTag == 0);
6692 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
6693 __ Ret(eq);
6694
6695 // Handle not identical strings.
6696
6697 // Check that both strings are symbols. If they are, we're done
6698 // because we already know they are not identical.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006699 if (equality) {
6700 ASSERT(GetCondition() == eq);
6701 STATIC_ASSERT(kSymbolTag != 0);
6702 __ and_(tmp3, tmp1, Operand(tmp2));
6703 __ tst(tmp3, Operand(kIsSymbolMask));
6704 // Make sure r0 is non-zero. At this point input operands are
6705 // guaranteed to be non-zero.
6706 ASSERT(right.is(r0));
6707 __ Ret(ne);
6708 }
Ben Murdoch257744e2011-11-30 15:57:28 +00006709
6710 // Check that both strings are sequential ASCII.
6711 Label runtime;
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006712 __ JumpIfBothInstanceTypesAreNotSequentialAscii(
6713 tmp1, tmp2, tmp3, tmp4, &runtime);
Ben Murdoch257744e2011-11-30 15:57:28 +00006714
6715 // Compare flat ASCII strings. Returns when done.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006716 if (equality) {
6717 StringCompareStub::GenerateFlatAsciiStringEquals(
6718 masm, left, right, tmp1, tmp2, tmp3);
6719 } else {
6720 StringCompareStub::GenerateCompareFlatAsciiStrings(
6721 masm, left, right, tmp1, tmp2, tmp3, tmp4);
6722 }
Ben Murdoch257744e2011-11-30 15:57:28 +00006723
6724 // Handle more complex cases in runtime.
6725 __ bind(&runtime);
6726 __ Push(left, right);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006727 if (equality) {
6728 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
6729 } else {
6730 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
6731 }
Ben Murdoch257744e2011-11-30 15:57:28 +00006732
6733 __ bind(&miss);
6734 GenerateMiss(masm);
6735}
6736
6737
Ben Murdochb0fe1622011-05-05 13:52:32 +01006738void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
6739 ASSERT(state_ == CompareIC::OBJECTS);
6740 Label miss;
6741 __ and_(r2, r1, Operand(r0));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00006742 __ JumpIfSmi(r2, &miss);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006743
6744 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
6745 __ b(ne, &miss);
6746 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
6747 __ b(ne, &miss);
6748
6749 ASSERT(GetCondition() == eq);
6750 __ sub(r0, r0, Operand(r1));
6751 __ Ret();
6752
6753 __ bind(&miss);
6754 GenerateMiss(masm);
6755}
6756
6757
Ben Murdochc7cc0282012-03-05 14:35:55 +00006758void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
6759 Label miss;
6760 __ and_(r2, r1, Operand(r0));
6761 __ JumpIfSmi(r2, &miss);
6762 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
6763 __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
6764 __ cmp(r2, Operand(known_map_));
6765 __ b(ne, &miss);
6766 __ cmp(r3, Operand(known_map_));
6767 __ b(ne, &miss);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006768
Ben Murdochc7cc0282012-03-05 14:35:55 +00006769 __ sub(r0, r0, Operand(r1));
6770 __ Ret();
6771
6772 __ bind(&miss);
6773 GenerateMiss(masm);
6774}
6775
6776
6777
6778void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006779 {
Ben Murdochc7cc0282012-03-05 14:35:55 +00006780 // Call the runtime system in a fresh internal frame.
6781 ExternalReference miss =
6782 ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
6783
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006784 FrameScope scope(masm, StackFrame::INTERNAL);
6785 __ Push(r1, r0);
Ben Murdochc7cc0282012-03-05 14:35:55 +00006786 __ push(lr);
6787 __ Push(r1, r0);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006788 __ mov(ip, Operand(Smi::FromInt(op_)));
6789 __ push(ip);
6790 __ CallExternalReference(miss, 3);
Ben Murdochc7cc0282012-03-05 14:35:55 +00006791 // Compute the entry point of the rewritten stub.
6792 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
6793 // Restore registers.
6794 __ pop(lr);
6795 __ pop(r0);
6796 __ pop(r1);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006797 }
Ben Murdochc7cc0282012-03-05 14:35:55 +00006798
Ben Murdochb0fe1622011-05-05 13:52:32 +01006799 __ Jump(r2);
6800}
6801
6802
Steve Block1e0659c2011-05-24 12:43:12 +01006803void DirectCEntryStub::Generate(MacroAssembler* masm) {
6804 __ ldr(pc, MemOperand(sp, 0));
6805}
6806
6807
6808void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006809 ExternalReference function) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006810 __ mov(r2, Operand(function));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006811 GenerateCall(masm, r2);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006812}
6813
6814
6815void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
6816 Register target) {
Steve Block1e0659c2011-05-24 12:43:12 +01006817 __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
6818 RelocInfo::CODE_TARGET));
6819 // Push return address (accessible to GC through exit frame pc).
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006820 // Note that using pc with str is deprecated.
6821 Label start;
6822 __ bind(&start);
6823 __ add(ip, pc, Operand(Assembler::kInstrSize));
6824 __ str(ip, MemOperand(sp, 0));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006825 __ Jump(target); // Call the C++ function.
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006826 ASSERT_EQ(Assembler::kInstrSize + Assembler::kPcLoadDelta,
6827 masm->SizeOfCodeGeneratedSince(&start));
Steve Block1e0659c2011-05-24 12:43:12 +01006828}
6829
6830
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006831void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
6832 Label* miss,
6833 Label* done,
6834 Register receiver,
6835 Register properties,
6836 Handle<String> name,
6837 Register scratch0) {
Ben Murdoch257744e2011-11-30 15:57:28 +00006838 // If names of slots in range from 1 to kProbes - 1 for the hash value are
6839 // not equal to the name and kProbes-th slot is not used (its name is the
6840 // undefined value), it guarantees the hash table doesn't contain the
6841 // property. It's true even if some slots represent deleted properties
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006842 // (their names are the hole value).
Ben Murdoch257744e2011-11-30 15:57:28 +00006843 for (int i = 0; i < kInlinedProbes; i++) {
6844 // scratch0 points to properties hash.
6845 // Compute the masked index: (hash + i + i * i) & mask.
6846 Register index = scratch0;
6847 // Capacity is smi 2^n.
6848 __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
6849 __ sub(index, index, Operand(1));
6850 __ and_(index, index, Operand(
6851 Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
6852
6853 // Scale the index by multiplying by the entry size.
6854 ASSERT(StringDictionary::kEntrySize == 3);
6855 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
6856
6857 Register entity_name = scratch0;
6858 // Having undefined at this place means the name is not contained.
6859 ASSERT_EQ(kSmiTagSize, 1);
6860 Register tmp = properties;
6861 __ add(tmp, properties, Operand(index, LSL, 1));
6862 __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
6863
6864 ASSERT(!tmp.is(entity_name));
6865 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
6866 __ cmp(entity_name, tmp);
6867 __ b(eq, done);
6868
6869 if (i != kInlinedProbes - 1) {
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006870 // Load the hole ready for use below:
6871 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
6872
Ben Murdoch257744e2011-11-30 15:57:28 +00006873 // Stop if found the property.
6874 __ cmp(entity_name, Operand(Handle<String>(name)));
6875 __ b(eq, miss);
6876
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006877 Label the_hole;
6878 __ cmp(entity_name, tmp);
6879 __ b(eq, &the_hole);
6880
Ben Murdoch257744e2011-11-30 15:57:28 +00006881 // Check if the entry name is not a symbol.
6882 __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
6883 __ ldrb(entity_name,
6884 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
6885 __ tst(entity_name, Operand(kIsSymbolMask));
6886 __ b(eq, miss);
6887
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006888 __ bind(&the_hole);
6889
Ben Murdoch257744e2011-11-30 15:57:28 +00006890 // Restore the properties.
6891 __ ldr(properties,
6892 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
6893 }
6894 }
6895
6896 const int spill_mask =
6897 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
6898 r2.bit() | r1.bit() | r0.bit());
6899
6900 __ stm(db_w, sp, spill_mask);
6901 __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
6902 __ mov(r1, Operand(Handle<String>(name)));
6903 StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006904 __ CallStub(&stub);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006905 __ cmp(r0, Operand(0));
Ben Murdoch257744e2011-11-30 15:57:28 +00006906 __ ldm(ia_w, sp, spill_mask);
6907
6908 __ b(eq, done);
6909 __ b(ne, miss);
Ben Murdoch257744e2011-11-30 15:57:28 +00006910}
6911
6912
6913// Probe the string dictionary in the |elements| register. Jump to the
6914// |done| label if a property with the given name is found. Jump to
6915// the |miss| label otherwise.
6916// If lookup was successful |scratch2| will be equal to elements + 4 * index.
6917void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
6918 Label* miss,
6919 Label* done,
6920 Register elements,
6921 Register name,
6922 Register scratch1,
6923 Register scratch2) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006924 ASSERT(!elements.is(scratch1));
6925 ASSERT(!elements.is(scratch2));
6926 ASSERT(!name.is(scratch1));
6927 ASSERT(!name.is(scratch2));
6928
Ben Murdoch257744e2011-11-30 15:57:28 +00006929 // Assert that name contains a string.
6930 if (FLAG_debug_code) __ AbortIfNotString(name);
6931
6932 // Compute the capacity mask.
6933 __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
6934 __ mov(scratch1, Operand(scratch1, ASR, kSmiTagSize)); // convert smi to int
6935 __ sub(scratch1, scratch1, Operand(1));
6936
6937 // Generate an unrolled loop that performs a few probes before
6938 // giving up. Measurements done on Gmail indicate that 2 probes
6939 // cover ~93% of loads from dictionaries.
6940 for (int i = 0; i < kInlinedProbes; i++) {
6941 // Compute the masked index: (hash + i + i * i) & mask.
6942 __ ldr(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
6943 if (i > 0) {
6944 // Add the probe offset (i + i * i) left shifted to avoid right shifting
6945 // the hash in a separate instruction. The value hash + i + i * i is right
6946 // shifted in the following and instruction.
6947 ASSERT(StringDictionary::GetProbeOffset(i) <
6948 1 << (32 - String::kHashFieldOffset));
6949 __ add(scratch2, scratch2, Operand(
6950 StringDictionary::GetProbeOffset(i) << String::kHashShift));
6951 }
6952 __ and_(scratch2, scratch1, Operand(scratch2, LSR, String::kHashShift));
6953
6954 // Scale the index by multiplying by the element size.
6955 ASSERT(StringDictionary::kEntrySize == 3);
6956 // scratch2 = scratch2 * 3.
6957 __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
6958
6959 // Check if the key is identical to the name.
6960 __ add(scratch2, elements, Operand(scratch2, LSL, 2));
6961 __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
6962 __ cmp(name, Operand(ip));
6963 __ b(eq, done);
6964 }
6965
6966 const int spill_mask =
6967 (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
6968 r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
6969 ~(scratch1.bit() | scratch2.bit());
6970
6971 __ stm(db_w, sp, spill_mask);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006972 if (name.is(r0)) {
6973 ASSERT(!elements.is(r1));
6974 __ Move(r1, name);
6975 __ Move(r0, elements);
6976 } else {
6977 __ Move(r0, elements);
6978 __ Move(r1, name);
6979 }
Ben Murdoch257744e2011-11-30 15:57:28 +00006980 StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
6981 __ CallStub(&stub);
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01006982 __ cmp(r0, Operand(0));
Ben Murdoch257744e2011-11-30 15:57:28 +00006983 __ mov(scratch2, Operand(r2));
6984 __ ldm(ia_w, sp, spill_mask);
6985
6986 __ b(ne, done);
6987 __ b(eq, miss);
6988}
6989
6990
6991void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006992 // This stub overrides SometimesSetsUpAFrame() to return false. That means
6993 // we cannot call anything that could cause a GC from this stub.
Ben Murdoch257744e2011-11-30 15:57:28 +00006994 // Registers:
6995 // result: StringDictionary to probe
6996 // r1: key
6997 // : StringDictionary to probe.
6998 // index_: will hold an index of entry if lookup is successful.
6999 // might alias with result_.
7000 // Returns:
7001 // result_ is zero if lookup failed, non zero otherwise.
7002
7003 Register result = r0;
7004 Register dictionary = r0;
7005 Register key = r1;
7006 Register index = r2;
7007 Register mask = r3;
7008 Register hash = r4;
7009 Register undefined = r5;
7010 Register entry_key = r6;
7011
7012 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
7013
7014 __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
7015 __ mov(mask, Operand(mask, ASR, kSmiTagSize));
7016 __ sub(mask, mask, Operand(1));
7017
7018 __ ldr(hash, FieldMemOperand(key, String::kHashFieldOffset));
7019
7020 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
7021
7022 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
7023 // Compute the masked index: (hash + i + i * i) & mask.
7024 // Capacity is smi 2^n.
7025 if (i > 0) {
7026 // Add the probe offset (i + i * i) left shifted to avoid right shifting
7027 // the hash in a separate instruction. The value hash + i + i * i is right
7028 // shifted in the following and instruction.
7029 ASSERT(StringDictionary::GetProbeOffset(i) <
7030 1 << (32 - String::kHashFieldOffset));
7031 __ add(index, hash, Operand(
7032 StringDictionary::GetProbeOffset(i) << String::kHashShift));
7033 } else {
7034 __ mov(index, Operand(hash));
7035 }
7036 __ and_(index, mask, Operand(index, LSR, String::kHashShift));
7037
7038 // Scale the index by multiplying by the entry size.
7039 ASSERT(StringDictionary::kEntrySize == 3);
7040 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
7041
7042 ASSERT_EQ(kSmiTagSize, 1);
7043 __ add(index, dictionary, Operand(index, LSL, 2));
7044 __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
7045
7046 // Having undefined at this place means the name is not contained.
7047 __ cmp(entry_key, Operand(undefined));
7048 __ b(eq, &not_in_dictionary);
7049
7050 // Stop if found the property.
7051 __ cmp(entry_key, Operand(key));
7052 __ b(eq, &in_dictionary);
7053
7054 if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
7055 // Check if the entry name is not a symbol.
7056 __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
7057 __ ldrb(entry_key,
7058 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
7059 __ tst(entry_key, Operand(kIsSymbolMask));
7060 __ b(eq, &maybe_in_dictionary);
7061 }
7062 }
7063
7064 __ bind(&maybe_in_dictionary);
7065 // If we are doing negative lookup then probing failure should be
7066 // treated as a lookup success. For positive lookup probing failure
7067 // should be treated as lookup failure.
7068 if (mode_ == POSITIVE_LOOKUP) {
Ben Murdoch69a99ed2011-11-30 16:03:39 +00007069 __ mov(result, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +00007070 __ Ret();
7071 }
7072
7073 __ bind(&in_dictionary);
7074 __ mov(result, Operand(1));
7075 __ Ret();
7076
7077 __ bind(&not_in_dictionary);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00007078 __ mov(result, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +00007079 __ Ret();
7080}
7081
7082
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007083struct AheadOfTimeWriteBarrierStubList {
7084 Register object, value, address;
7085 RememberedSetAction action;
7086};
7087
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007088#define REG(Name) { kRegister_ ## Name ## _Code }
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007089
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007090static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007091 // Used in RegExpExecStub.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007092 { REG(r6), REG(r4), REG(r7), EMIT_REMEMBERED_SET },
7093 { REG(r6), REG(r2), REG(r7), EMIT_REMEMBERED_SET },
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007094 // Used in CompileArrayPushCall.
7095 // Also used in StoreIC::GenerateNormal via GenerateDictionaryStore.
7096 // Also used in KeyedStoreIC::GenerateGeneric.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007097 { REG(r3), REG(r4), REG(r5), EMIT_REMEMBERED_SET },
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007098 // Used in CompileStoreGlobal.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007099 { REG(r4), REG(r1), REG(r2), OMIT_REMEMBERED_SET },
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007100 // Used in StoreStubCompiler::CompileStoreField via GenerateStoreField.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007101 { REG(r1), REG(r2), REG(r3), EMIT_REMEMBERED_SET },
7102 { REG(r3), REG(r2), REG(r1), EMIT_REMEMBERED_SET },
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007103 // Used in KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007104 { REG(r2), REG(r1), REG(r3), EMIT_REMEMBERED_SET },
7105 { REG(r3), REG(r1), REG(r2), EMIT_REMEMBERED_SET },
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007106 // KeyedStoreStubCompiler::GenerateStoreFastElement.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007107 { REG(r3), REG(r2), REG(r4), EMIT_REMEMBERED_SET },
7108 { REG(r2), REG(r3), REG(r4), EMIT_REMEMBERED_SET },
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007109 // ElementsTransitionGenerator::GenerateSmiOnlyToObject
7110 // and ElementsTransitionGenerator::GenerateSmiOnlyToDouble
7111 // and ElementsTransitionGenerator::GenerateDoubleToObject
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007112 { REG(r2), REG(r3), REG(r9), EMIT_REMEMBERED_SET },
7113 { REG(r2), REG(r3), REG(r9), OMIT_REMEMBERED_SET },
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007114 // ElementsTransitionGenerator::GenerateDoubleToObject
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007115 { REG(r6), REG(r2), REG(r0), EMIT_REMEMBERED_SET },
7116 { REG(r2), REG(r6), REG(r9), EMIT_REMEMBERED_SET },
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007117 // StoreArrayLiteralElementStub::Generate
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007118 { REG(r5), REG(r0), REG(r6), EMIT_REMEMBERED_SET },
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007119 // Null termination.
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007120 { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET}
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007121};
7122
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007123#undef REG
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007124
7125bool RecordWriteStub::IsPregenerated() {
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007126 for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007127 !entry->object.is(no_reg);
7128 entry++) {
7129 if (object_.is(entry->object) &&
7130 value_.is(entry->value) &&
7131 address_.is(entry->address) &&
7132 remembered_set_action_ == entry->action &&
7133 save_fp_regs_mode_ == kDontSaveFPRegs) {
7134 return true;
7135 }
7136 }
7137 return false;
7138}
7139
7140
7141bool StoreBufferOverflowStub::IsPregenerated() {
7142 return save_doubles_ == kDontSaveFPRegs || ISOLATE->fp_stubs_generated();
7143}
7144
7145
7146void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
7147 StoreBufferOverflowStub stub1(kDontSaveFPRegs);
7148 stub1.GetCode()->set_is_pregenerated(true);
7149}
7150
7151
7152void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007153 for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007154 !entry->object.is(no_reg);
7155 entry++) {
7156 RecordWriteStub stub(entry->object,
7157 entry->value,
7158 entry->address,
7159 entry->action,
7160 kDontSaveFPRegs);
7161 stub.GetCode()->set_is_pregenerated(true);
7162 }
7163}
7164
7165
7166// Takes the input in 3 registers: address_ value_ and object_. A pointer to
7167// the value has just been written into the object, now this stub makes sure
7168// we keep the GC informed. The word in the object where the value has been
7169// written is in the address register.
7170void RecordWriteStub::Generate(MacroAssembler* masm) {
7171 Label skip_to_incremental_noncompacting;
7172 Label skip_to_incremental_compacting;
7173
7174 // The first two instructions are generated with labels so as to get the
7175 // offset fixed up correctly by the bind(Label*) call. We patch it back and
7176 // forth between a compare instructions (a nop in this position) and the
7177 // real branch when we start and stop incremental heap marking.
7178 // See RecordWriteStub::Patch for details.
7179 __ b(&skip_to_incremental_noncompacting);
7180 __ b(&skip_to_incremental_compacting);
7181
7182 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
7183 __ RememberedSetHelper(object_,
7184 address_,
7185 value_,
7186 save_fp_regs_mode_,
7187 MacroAssembler::kReturnAtEnd);
7188 }
7189 __ Ret();
7190
7191 __ bind(&skip_to_incremental_noncompacting);
7192 GenerateIncremental(masm, INCREMENTAL);
7193
7194 __ bind(&skip_to_incremental_compacting);
7195 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
7196
7197 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
7198 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
7199 ASSERT(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
7200 ASSERT(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
7201 PatchBranchIntoNop(masm, 0);
7202 PatchBranchIntoNop(masm, Assembler::kInstrSize);
7203}
7204
7205
7206void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
7207 regs_.Save(masm);
7208
7209 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
7210 Label dont_need_remembered_set;
7211
7212 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
7213 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
7214 regs_.scratch0(),
7215 &dont_need_remembered_set);
7216
7217 __ CheckPageFlag(regs_.object(),
7218 regs_.scratch0(),
7219 1 << MemoryChunk::SCAN_ON_SCAVENGE,
7220 ne,
7221 &dont_need_remembered_set);
7222
7223 // First notify the incremental marker if necessary, then update the
7224 // remembered set.
7225 CheckNeedsToInformIncrementalMarker(
7226 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
7227 InformIncrementalMarker(masm, mode);
7228 regs_.Restore(masm);
7229 __ RememberedSetHelper(object_,
7230 address_,
7231 value_,
7232 save_fp_regs_mode_,
7233 MacroAssembler::kReturnAtEnd);
7234
7235 __ bind(&dont_need_remembered_set);
7236 }
7237
7238 CheckNeedsToInformIncrementalMarker(
7239 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
7240 InformIncrementalMarker(masm, mode);
7241 regs_.Restore(masm);
7242 __ Ret();
7243}
7244
7245
7246void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
7247 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
7248 int argument_count = 3;
7249 __ PrepareCallCFunction(argument_count, regs_.scratch0());
7250 Register address =
7251 r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
7252 ASSERT(!address.is(regs_.object()));
7253 ASSERT(!address.is(r0));
7254 __ Move(address, regs_.address());
7255 __ Move(r0, regs_.object());
7256 if (mode == INCREMENTAL_COMPACTION) {
7257 __ Move(r1, address);
7258 } else {
7259 ASSERT(mode == INCREMENTAL);
7260 __ ldr(r1, MemOperand(address, 0));
7261 }
7262 __ mov(r2, Operand(ExternalReference::isolate_address()));
7263
7264 AllowExternalCallThatCantCauseGC scope(masm);
7265 if (mode == INCREMENTAL_COMPACTION) {
7266 __ CallCFunction(
7267 ExternalReference::incremental_evacuation_record_write_function(
7268 masm->isolate()),
7269 argument_count);
7270 } else {
7271 ASSERT(mode == INCREMENTAL);
7272 __ CallCFunction(
7273 ExternalReference::incremental_marking_record_write_function(
7274 masm->isolate()),
7275 argument_count);
7276 }
7277 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
7278}
7279
7280
7281void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
7282 MacroAssembler* masm,
7283 OnNoNeedToInformIncrementalMarker on_no_need,
7284 Mode mode) {
7285 Label on_black;
7286 Label need_incremental;
7287 Label need_incremental_pop_scratch;
7288
7289 // Let's look at the color of the object: If it is not black we don't have
7290 // to inform the incremental marker.
7291 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
7292
7293 regs_.Restore(masm);
7294 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
7295 __ RememberedSetHelper(object_,
7296 address_,
7297 value_,
7298 save_fp_regs_mode_,
7299 MacroAssembler::kReturnAtEnd);
7300 } else {
7301 __ Ret();
7302 }
7303
7304 __ bind(&on_black);
7305
7306 // Get the value from the slot.
7307 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
7308
7309 if (mode == INCREMENTAL_COMPACTION) {
7310 Label ensure_not_white;
7311
7312 __ CheckPageFlag(regs_.scratch0(), // Contains value.
7313 regs_.scratch1(), // Scratch.
7314 MemoryChunk::kEvacuationCandidateMask,
7315 eq,
7316 &ensure_not_white);
7317
7318 __ CheckPageFlag(regs_.object(),
7319 regs_.scratch1(), // Scratch.
7320 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
7321 eq,
7322 &need_incremental);
7323
7324 __ bind(&ensure_not_white);
7325 }
7326
7327 // We need extra registers for this, so we push the object and the address
7328 // register temporarily.
7329 __ Push(regs_.object(), regs_.address());
7330 __ EnsureNotWhite(regs_.scratch0(), // The value.
7331 regs_.scratch1(), // Scratch.
7332 regs_.object(), // Scratch.
7333 regs_.address(), // Scratch.
7334 &need_incremental_pop_scratch);
7335 __ Pop(regs_.object(), regs_.address());
7336
7337 regs_.Restore(masm);
7338 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
7339 __ RememberedSetHelper(object_,
7340 address_,
7341 value_,
7342 save_fp_regs_mode_,
7343 MacroAssembler::kReturnAtEnd);
7344 } else {
7345 __ Ret();
7346 }
7347
7348 __ bind(&need_incremental_pop_scratch);
7349 __ Pop(regs_.object(), regs_.address());
7350
7351 __ bind(&need_incremental);
7352
7353 // Fall through when we need to inform the incremental marker.
7354}
7355
7356
7357void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
7358 // ----------- S t a t e -------------
7359 // -- r0 : element value to store
7360 // -- r1 : array literal
7361 // -- r2 : map of array literal
7362 // -- r3 : element index as smi
7363 // -- r4 : array literal index in function as smi
7364 // -----------------------------------
7365
7366 Label element_done;
7367 Label double_elements;
7368 Label smi_element;
7369 Label slow_elements;
7370 Label fast_elements;
7371
7372 __ CheckFastElements(r2, r5, &double_elements);
7373 // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS
7374 __ JumpIfSmi(r0, &smi_element);
7375 __ CheckFastSmiOnlyElements(r2, r5, &fast_elements);
7376
7377 // Store into the array literal requires a elements transition. Call into
7378 // the runtime.
7379 __ bind(&slow_elements);
7380 // call.
7381 __ Push(r1, r3, r0);
7382 __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
7383 __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
7384 __ Push(r5, r4);
7385 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
7386
7387 // Array literal has ElementsKind of FAST_ELEMENTS and value is an object.
7388 __ bind(&fast_elements);
7389 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
7390 __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
7391 __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
7392 __ str(r0, MemOperand(r6, 0));
7393 // Update the write barrier for the array store.
7394 __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
7395 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
7396 __ Ret();
7397
7398 // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or
7399 // FAST_ELEMENTS, and value is Smi.
7400 __ bind(&smi_element);
7401 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
7402 __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
7403 __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
7404 __ Ret();
7405
7406 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
7407 __ bind(&double_elements);
7408 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
Ben Murdoch5d4cdbf2012-04-11 10:23:59 +01007409 __ StoreNumberToDoubleElements(r0, r3, r1, r5, r6, r7, r9, r2,
Ben Murdoch592a9fc2012-03-05 11:04:45 +00007410 &slow_elements);
7411 __ Ret();
7412}
7413
Kristian Monsen80d68ea2010-09-08 11:05:35 +01007414#undef __
7415
7416} } // namespace v8::internal
7417
7418#endif // V8_TARGET_ARCH_ARM