blob: c33df5cf770842d05d73095f8ad1c2e7ce67548f [file] [log] [blame]
Steve Block1e0659c2011-05-24 12:43:12 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_ARM)
31
32#include "bootstrapper.h"
33#include "code-stubs.h"
34#include "regexp-macro-assembler.h"
35
36namespace v8 {
37namespace internal {
38
39
40#define __ ACCESS_MASM(masm)
41
42static void EmitIdenticalObjectComparison(MacroAssembler* masm,
43 Label* slow,
Steve Block1e0659c2011-05-24 12:43:12 +010044 Condition cond,
Kristian Monsen80d68ea2010-09-08 11:05:35 +010045 bool never_nan_nan);
46static void EmitSmiNonsmiComparison(MacroAssembler* masm,
47 Register lhs,
48 Register rhs,
49 Label* lhs_not_nan,
50 Label* slow,
51 bool strict);
Steve Block1e0659c2011-05-24 12:43:12 +010052static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond);
Kristian Monsen80d68ea2010-09-08 11:05:35 +010053static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
54 Register lhs,
55 Register rhs);
56
57
Ben Murdoch257744e2011-11-30 15:57:28 +000058// Check if the operand is a heap number.
59static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
60 Register scratch1, Register scratch2,
61 Label* not_a_heap_number) {
62 __ ldr(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
63 __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
64 __ cmp(scratch1, scratch2);
65 __ b(ne, not_a_heap_number);
66}
67
68
Steve Block1e0659c2011-05-24 12:43:12 +010069void ToNumberStub::Generate(MacroAssembler* masm) {
70 // The ToNumber stub takes one argument in eax.
71 Label check_heap_number, call_builtin;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +000072 __ JumpIfNotSmi(r0, &check_heap_number);
Steve Block1e0659c2011-05-24 12:43:12 +010073 __ Ret();
74
75 __ bind(&check_heap_number);
Ben Murdoch257744e2011-11-30 15:57:28 +000076 EmitCheckForHeapNumber(masm, r0, r1, ip, &call_builtin);
Steve Block1e0659c2011-05-24 12:43:12 +010077 __ Ret();
78
79 __ bind(&call_builtin);
80 __ push(r0);
Ben Murdoch257744e2011-11-30 15:57:28 +000081 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +010082}
83
84
Kristian Monsen80d68ea2010-09-08 11:05:35 +010085void FastNewClosureStub::Generate(MacroAssembler* masm) {
86 // Create a new closure from the given function info in new
87 // space. Set the context to the current context in cp.
88 Label gc;
89
90 // Pop the function info from the stack.
91 __ pop(r3);
92
93 // Attempt to allocate new JSFunction in new space.
94 __ AllocateInNewSpace(JSFunction::kSize,
95 r0,
96 r1,
97 r2,
98 &gc,
99 TAG_OBJECT);
100
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000101 int map_index = (language_mode_ == CLASSIC_MODE)
102 ? Context::FUNCTION_MAP_INDEX
103 : Context::STRICT_MODE_FUNCTION_MAP_INDEX;
Steve Block44f0eee2011-05-26 01:26:41 +0100104
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100105 // Compute the function map in the current global context and set that
106 // as the map of the allocated object.
107 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
108 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
Steve Block44f0eee2011-05-26 01:26:41 +0100109 __ ldr(r2, MemOperand(r2, Context::SlotOffset(map_index)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100110 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
111
112 // Initialize the rest of the function. We don't have to update the
113 // write barrier because the allocated object is in new space.
114 __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
115 __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100116 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100117 __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
118 __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
119 __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
120 __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
121 __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
122 __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
Ben Murdochb0fe1622011-05-05 13:52:32 +0100123 __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset));
124
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100125
126 // Initialize the code pointer in the function to be the one
127 // found in the shared function info object.
128 __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
129 __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
130 __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
131
132 // Return result. The argument function info has been popped already.
133 __ Ret();
134
135 // Create a new closure through the slower runtime call.
136 __ bind(&gc);
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800137 __ LoadRoot(r4, Heap::kFalseValueRootIndex);
138 __ Push(cp, r3, r4);
139 __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100140}
141
142
143void FastNewContextStub::Generate(MacroAssembler* masm) {
144 // Try to allocate the context in new space.
145 Label gc;
146 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
147
148 // Attempt to allocate the context in new space.
149 __ AllocateInNewSpace(FixedArray::SizeFor(length),
150 r0,
151 r1,
152 r2,
153 &gc,
154 TAG_OBJECT);
155
156 // Load the function from the stack.
157 __ ldr(r3, MemOperand(sp, 0));
158
Ben Murdochc7cc0282012-03-05 14:35:55 +0000159 // Set up the object header.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000160 __ LoadRoot(r2, Heap::kFunctionContextMapRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100161 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
162 __ mov(r2, Operand(Smi::FromInt(length)));
163 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
164
Ben Murdochc7cc0282012-03-05 14:35:55 +0000165 // Set up the fixed slots.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100166 __ mov(r1, Operand(Smi::FromInt(0)));
167 __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000168 __ str(cp, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100169 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
170
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000171 // Copy the global object from the previous context.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100172 __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
173 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX)));
174
175 // Initialize the rest of the slots to undefined.
176 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
177 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
178 __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
179 }
180
181 // Remove the on-stack argument and return.
182 __ mov(cp, r0);
183 __ pop();
184 __ Ret();
185
186 // Need to collect. Call into runtime system.
187 __ bind(&gc);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000188 __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100189}
190
191
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000192void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
193 // Stack layout on entry:
194 //
195 // [sp]: function.
196 // [sp + kPointerSize]: serialized scope info
197
198 // Try to allocate the context in new space.
199 Label gc;
200 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
201 __ AllocateInNewSpace(FixedArray::SizeFor(length),
202 r0, r1, r2, &gc, TAG_OBJECT);
203
204 // Load the function from the stack.
205 __ ldr(r3, MemOperand(sp, 0));
206
207 // Load the serialized scope info from the stack.
208 __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
209
Ben Murdochc7cc0282012-03-05 14:35:55 +0000210 // Set up the object header.
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000211 __ LoadRoot(r2, Heap::kBlockContextMapRootIndex);
212 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
213 __ mov(r2, Operand(Smi::FromInt(length)));
214 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
215
216 // If this block context is nested in the global context we get a smi
217 // sentinel instead of a function. The block context should get the
218 // canonical empty function of the global context as its closure which
219 // we still have to look up.
220 Label after_sentinel;
221 __ JumpIfNotSmi(r3, &after_sentinel);
222 if (FLAG_debug_code) {
223 const char* message = "Expected 0 as a Smi sentinel";
224 __ cmp(r3, Operand::Zero());
225 __ Assert(eq, message);
226 }
227 __ ldr(r3, GlobalObjectOperand());
228 __ ldr(r3, FieldMemOperand(r3, GlobalObject::kGlobalContextOffset));
229 __ ldr(r3, ContextOperand(r3, Context::CLOSURE_INDEX));
230 __ bind(&after_sentinel);
231
Ben Murdochc7cc0282012-03-05 14:35:55 +0000232 // Set up the fixed slots.
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000233 __ str(r3, ContextOperand(r0, Context::CLOSURE_INDEX));
234 __ str(cp, ContextOperand(r0, Context::PREVIOUS_INDEX));
235 __ str(r1, ContextOperand(r0, Context::EXTENSION_INDEX));
236
237 // Copy the global object from the previous context.
238 __ ldr(r1, ContextOperand(cp, Context::GLOBAL_INDEX));
239 __ str(r1, ContextOperand(r0, Context::GLOBAL_INDEX));
240
241 // Initialize the rest of the slots to the hole value.
242 __ LoadRoot(r1, Heap::kTheHoleValueRootIndex);
243 for (int i = 0; i < slots_; i++) {
244 __ str(r1, ContextOperand(r0, i + Context::MIN_CONTEXT_SLOTS));
245 }
246
247 // Remove the on-stack argument and return.
248 __ mov(cp, r0);
249 __ add(sp, sp, Operand(2 * kPointerSize));
250 __ Ret();
251
252 // Need to collect. Call into runtime system.
253 __ bind(&gc);
254 __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
255}
256
257
258static void GenerateFastCloneShallowArrayCommon(
259 MacroAssembler* masm,
260 int length,
261 FastCloneShallowArrayStub::Mode mode,
262 Label* fail) {
263 // Registers on entry:
264 //
265 // r3: boilerplate literal array.
266 ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);
267
268 // All sizes here are multiples of kPointerSize.
269 int elements_size = 0;
270 if (length > 0) {
271 elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
272 ? FixedDoubleArray::SizeFor(length)
273 : FixedArray::SizeFor(length);
274 }
275 int size = JSArray::kSize + elements_size;
276
277 // Allocate both the JS array and the elements array in one big
278 // allocation. This avoids multiple limit checks.
279 __ AllocateInNewSpace(size,
280 r0,
281 r1,
282 r2,
283 fail,
284 TAG_OBJECT);
285
286 // Copy the JS array part.
287 for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
288 if ((i != JSArray::kElementsOffset) || (length == 0)) {
289 __ ldr(r1, FieldMemOperand(r3, i));
290 __ str(r1, FieldMemOperand(r0, i));
291 }
292 }
293
294 if (length > 0) {
295 // Get hold of the elements array of the boilerplate and setup the
296 // elements pointer in the resulting object.
297 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
298 __ add(r2, r0, Operand(JSArray::kSize));
299 __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
300
301 // Copy the elements array.
302 ASSERT((elements_size % kPointerSize) == 0);
303 __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize);
304 }
305}
306
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100307void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
308 // Stack layout on entry:
309 //
310 // [sp]: constant elements.
311 // [sp + kPointerSize]: literal index.
312 // [sp + (2 * kPointerSize)]: literals array.
313
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100314 // Load boilerplate object into r3 and check if we need to create a
315 // boilerplate.
316 Label slow_case;
317 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
318 __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
319 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
320 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000321 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100322 __ b(eq, &slow_case);
323
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000324 FastCloneShallowArrayStub::Mode mode = mode_;
325 if (mode == CLONE_ANY_ELEMENTS) {
326 Label double_elements, check_fast_elements;
327 __ ldr(r0, FieldMemOperand(r3, JSArray::kElementsOffset));
328 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
329 __ LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
330 __ cmp(r0, ip);
331 __ b(ne, &check_fast_elements);
332 GenerateFastCloneShallowArrayCommon(masm, 0,
333 COPY_ON_WRITE_ELEMENTS, &slow_case);
334 // Return and remove the on-stack parameters.
335 __ add(sp, sp, Operand(3 * kPointerSize));
336 __ Ret();
337
338 __ bind(&check_fast_elements);
339 __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
340 __ cmp(r0, ip);
341 __ b(ne, &double_elements);
342 GenerateFastCloneShallowArrayCommon(masm, length_,
343 CLONE_ELEMENTS, &slow_case);
344 // Return and remove the on-stack parameters.
345 __ add(sp, sp, Operand(3 * kPointerSize));
346 __ Ret();
347
348 __ bind(&double_elements);
349 mode = CLONE_DOUBLE_ELEMENTS;
350 // Fall through to generate the code to handle double elements.
351 }
352
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100353 if (FLAG_debug_code) {
354 const char* message;
355 Heap::RootListIndex expected_map_index;
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000356 if (mode == CLONE_ELEMENTS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100357 message = "Expected (writable) fixed array";
358 expected_map_index = Heap::kFixedArrayMapRootIndex;
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000359 } else if (mode == CLONE_DOUBLE_ELEMENTS) {
360 message = "Expected (writable) fixed double array";
361 expected_map_index = Heap::kFixedDoubleArrayMapRootIndex;
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100362 } else {
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000363 ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100364 message = "Expected copy-on-write fixed array";
365 expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
366 }
367 __ push(r3);
368 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
369 __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000370 __ CompareRoot(r3, expected_map_index);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100371 __ Assert(eq, message);
372 __ pop(r3);
373 }
374
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000375 GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100376
377 // Return and remove the on-stack parameters.
378 __ add(sp, sp, Operand(3 * kPointerSize));
379 __ Ret();
380
381 __ bind(&slow_case);
382 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
383}
384
385
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000386void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) {
387 // Stack layout on entry:
388 //
389 // [sp]: object literal flags.
390 // [sp + kPointerSize]: constant properties.
391 // [sp + (2 * kPointerSize)]: literal index.
392 // [sp + (3 * kPointerSize)]: literals array.
393
394 // Load boilerplate object into r3 and check if we need to create a
395 // boilerplate.
396 Label slow_case;
397 __ ldr(r3, MemOperand(sp, 3 * kPointerSize));
398 __ ldr(r0, MemOperand(sp, 2 * kPointerSize));
399 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
400 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
401 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
402 __ b(eq, &slow_case);
403
404 // Check that the boilerplate contains only fast properties and we can
405 // statically determine the instance size.
406 int size = JSObject::kHeaderSize + length_ * kPointerSize;
407 __ ldr(r0, FieldMemOperand(r3, HeapObject::kMapOffset));
408 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceSizeOffset));
409 __ cmp(r0, Operand(size >> kPointerSizeLog2));
410 __ b(ne, &slow_case);
411
412 // Allocate the JS object and copy header together with all in-object
413 // properties from the boilerplate.
414 __ AllocateInNewSpace(size, r0, r1, r2, &slow_case, TAG_OBJECT);
415 for (int i = 0; i < size; i += kPointerSize) {
416 __ ldr(r1, FieldMemOperand(r3, i));
417 __ str(r1, FieldMemOperand(r0, i));
418 }
419
420 // Return and remove the on-stack parameters.
421 __ add(sp, sp, Operand(4 * kPointerSize));
422 __ Ret();
423
424 __ bind(&slow_case);
425 __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1);
426}
427
428
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100429// Takes a Smi and converts to an IEEE 64 bit floating point value in two
430// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
431// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
432// scratch register. Destroys the source register. No GC occurs during this
433// stub so you don't have to set up the frame.
434class ConvertToDoubleStub : public CodeStub {
435 public:
436 ConvertToDoubleStub(Register result_reg_1,
437 Register result_reg_2,
438 Register source_reg,
439 Register scratch_reg)
440 : result1_(result_reg_1),
441 result2_(result_reg_2),
442 source_(source_reg),
443 zeros_(scratch_reg) { }
444
445 private:
446 Register result1_;
447 Register result2_;
448 Register source_;
449 Register zeros_;
450
451 // Minor key encoding in 16 bits.
452 class ModeBits: public BitField<OverwriteMode, 0, 2> {};
453 class OpBits: public BitField<Token::Value, 2, 14> {};
454
455 Major MajorKey() { return ConvertToDouble; }
456 int MinorKey() {
457 // Encode the parameters in a unique 16 bit value.
458 return result1_.code() +
459 (result2_.code() << 4) +
460 (source_.code() << 8) +
461 (zeros_.code() << 12);
462 }
463
464 void Generate(MacroAssembler* masm);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100465};
466
467
468void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100469 Register exponent = result1_;
470 Register mantissa = result2_;
Ben Murdoch8b112d22011-06-08 16:22:53 +0100471
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100472 Label not_special;
473 // Convert from Smi to integer.
474 __ mov(source_, Operand(source_, ASR, kSmiTagSize));
475 // Move sign bit from source to destination. This works because the sign bit
476 // in the exponent word of the double has the same position and polarity as
477 // the 2's complement sign bit in a Smi.
478 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
479 __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
480 // Subtract from 0 if source was negative.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100481 __ rsb(source_, source_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100482
483 // We have -1, 0 or 1, which we treat specially. Register source_ contains
484 // absolute value: it is either equal to 1 (special case of -1 and 1),
485 // greater than 1 (not a special case) or less than 1 (special case of 0).
486 __ cmp(source_, Operand(1));
487 __ b(gt, &not_special);
488
489 // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
490 static const uint32_t exponent_word_for_1 =
491 HeapNumber::kExponentBias << HeapNumber::kExponentShift;
492 __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
493 // 1, 0 and -1 all have 0 for the second word.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100494 __ mov(mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100495 __ Ret();
496
497 __ bind(&not_special);
498 // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5.
499 // Gets the wrong answer for 0, but we already checked for that case above.
500 __ CountLeadingZeros(zeros_, source_, mantissa);
501 // Compute exponent and or it into the exponent register.
502 // We use mantissa as a scratch register here. Use a fudge factor to
503 // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
504 // that fit in the ARM's constant field.
505 int fudge = 0x400;
506 __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
507 __ add(mantissa, mantissa, Operand(fudge));
508 __ orr(exponent,
509 exponent,
510 Operand(mantissa, LSL, HeapNumber::kExponentShift));
511 // Shift up the source chopping the top bit off.
512 __ add(zeros_, zeros_, Operand(1));
513 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
514 __ mov(source_, Operand(source_, LSL, zeros_));
515 // Compute lower part of fraction (last 12 bits).
516 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
517 // And the top (top 20 bits).
518 __ orr(exponent,
519 exponent,
520 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
521 __ Ret();
522}
523
524
Steve Block1e0659c2011-05-24 12:43:12 +0100525void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
526 FloatingPointHelper::Destination destination,
527 Register scratch1,
528 Register scratch2) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100529 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +0100530 CpuFeatures::Scope scope(VFP3);
531 __ mov(scratch1, Operand(r0, ASR, kSmiTagSize));
532 __ vmov(d7.high(), scratch1);
533 __ vcvt_f64_s32(d7, d7.high());
534 __ mov(scratch1, Operand(r1, ASR, kSmiTagSize));
535 __ vmov(d6.high(), scratch1);
536 __ vcvt_f64_s32(d6, d6.high());
537 if (destination == kCoreRegisters) {
538 __ vmov(r2, r3, d7);
539 __ vmov(r0, r1, d6);
540 }
541 } else {
542 ASSERT(destination == kCoreRegisters);
543 // Write Smi from r0 to r3 and r2 in double format.
544 __ mov(scratch1, Operand(r0));
545 ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2);
546 __ push(lr);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000547 __ Call(stub1.GetCode());
Ben Murdoch8b112d22011-06-08 16:22:53 +0100548 // Write Smi from r1 to r1 and r0 in double format.
Steve Block1e0659c2011-05-24 12:43:12 +0100549 __ mov(scratch1, Operand(r1));
550 ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000551 __ Call(stub2.GetCode());
Steve Block1e0659c2011-05-24 12:43:12 +0100552 __ pop(lr);
553 }
554}
555
556
557void FloatingPointHelper::LoadOperands(
558 MacroAssembler* masm,
559 FloatingPointHelper::Destination destination,
560 Register heap_number_map,
561 Register scratch1,
562 Register scratch2,
563 Label* slow) {
564
565 // Load right operand (r0) to d6 or r2/r3.
566 LoadNumber(masm, destination,
567 r0, d7, r2, r3, heap_number_map, scratch1, scratch2, slow);
568
569 // Load left operand (r1) to d7 or r0/r1.
570 LoadNumber(masm, destination,
571 r1, d6, r0, r1, heap_number_map, scratch1, scratch2, slow);
572}
573
574
575void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
576 Destination destination,
577 Register object,
578 DwVfpRegister dst,
579 Register dst1,
580 Register dst2,
581 Register heap_number_map,
582 Register scratch1,
583 Register scratch2,
584 Label* not_number) {
585 if (FLAG_debug_code) {
586 __ AbortIfNotRootValue(heap_number_map,
587 Heap::kHeapNumberMapRootIndex,
588 "HeapNumberMap register clobbered.");
589 }
590
591 Label is_smi, done;
592
593 __ JumpIfSmi(object, &is_smi);
594 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
595
596 // Handle loading a double from a heap number.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100597 if (CpuFeatures::IsSupported(VFP3) &&
Steve Block44f0eee2011-05-26 01:26:41 +0100598 destination == kVFPRegisters) {
Steve Block1e0659c2011-05-24 12:43:12 +0100599 CpuFeatures::Scope scope(VFP3);
600 // Load the double from tagged HeapNumber to double register.
601 __ sub(scratch1, object, Operand(kHeapObjectTag));
602 __ vldr(dst, scratch1, HeapNumber::kValueOffset);
603 } else {
604 ASSERT(destination == kCoreRegisters);
605 // Load the double from heap number to dst1 and dst2 in double format.
606 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
607 }
608 __ jmp(&done);
609
610 // Handle loading a double from a smi.
611 __ bind(&is_smi);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100612 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +0100613 CpuFeatures::Scope scope(VFP3);
614 // Convert smi to double using VFP instructions.
615 __ SmiUntag(scratch1, object);
616 __ vmov(dst.high(), scratch1);
617 __ vcvt_f64_s32(dst, dst.high());
618 if (destination == kCoreRegisters) {
619 // Load the converted smi to dst1 and dst2 in double format.
620 __ vmov(dst1, dst2, dst);
621 }
622 } else {
623 ASSERT(destination == kCoreRegisters);
624 // Write smi to dst1 and dst2 double format.
625 __ mov(scratch1, Operand(object));
626 ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
627 __ push(lr);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000628 __ Call(stub.GetCode());
Steve Block1e0659c2011-05-24 12:43:12 +0100629 __ pop(lr);
630 }
631
632 __ bind(&done);
633}
634
635
Steve Block44f0eee2011-05-26 01:26:41 +0100636void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
637 Register object,
638 Register dst,
639 Register heap_number_map,
640 Register scratch1,
641 Register scratch2,
642 Register scratch3,
643 DwVfpRegister double_scratch,
644 Label* not_number) {
Steve Block1e0659c2011-05-24 12:43:12 +0100645 if (FLAG_debug_code) {
646 __ AbortIfNotRootValue(heap_number_map,
647 Heap::kHeapNumberMapRootIndex,
648 "HeapNumberMap register clobbered.");
649 }
Steve Block44f0eee2011-05-26 01:26:41 +0100650 Label is_smi;
651 Label done;
652 Label not_in_int32_range;
653
Steve Block1e0659c2011-05-24 12:43:12 +0100654 __ JumpIfSmi(object, &is_smi);
655 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
656 __ cmp(scratch1, heap_number_map);
Steve Block44f0eee2011-05-26 01:26:41 +0100657 __ b(ne, not_number);
658 __ ConvertToInt32(object,
659 dst,
660 scratch1,
661 scratch2,
662 double_scratch,
663 &not_in_int32_range);
Steve Block1e0659c2011-05-24 12:43:12 +0100664 __ jmp(&done);
Steve Block44f0eee2011-05-26 01:26:41 +0100665
666 __ bind(&not_in_int32_range);
667 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
668 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
669
670 __ EmitOutOfInt32RangeTruncate(dst,
671 scratch1,
672 scratch2,
673 scratch3);
674 __ jmp(&done);
675
Steve Block1e0659c2011-05-24 12:43:12 +0100676 __ bind(&is_smi);
677 __ SmiUntag(dst, object);
678 __ bind(&done);
679}
680
681
Ben Murdoch257744e2011-11-30 15:57:28 +0000682void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
683 Register int_scratch,
684 Destination destination,
685 DwVfpRegister double_dst,
686 Register dst1,
687 Register dst2,
688 Register scratch2,
689 SwVfpRegister single_scratch) {
690 ASSERT(!int_scratch.is(scratch2));
691 ASSERT(!int_scratch.is(dst1));
692 ASSERT(!int_scratch.is(dst2));
693
694 Label done;
695
696 if (CpuFeatures::IsSupported(VFP3)) {
697 CpuFeatures::Scope scope(VFP3);
698 __ vmov(single_scratch, int_scratch);
699 __ vcvt_f64_s32(double_dst, single_scratch);
700 if (destination == kCoreRegisters) {
701 __ vmov(dst1, dst2, double_dst);
702 }
703 } else {
704 Label fewer_than_20_useful_bits;
705 // Expected output:
706 // | dst2 | dst1 |
707 // | s | exp | mantissa |
708
709 // Check for zero.
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000710 __ cmp(int_scratch, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +0000711 __ mov(dst2, int_scratch);
712 __ mov(dst1, int_scratch);
713 __ b(eq, &done);
714
715 // Preload the sign of the value.
716 __ and_(dst2, int_scratch, Operand(HeapNumber::kSignMask), SetCC);
717 // Get the absolute value of the object (as an unsigned integer).
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000718 __ rsb(int_scratch, int_scratch, Operand::Zero(), SetCC, mi);
Ben Murdoch257744e2011-11-30 15:57:28 +0000719
Ben Murdochc7cc0282012-03-05 14:35:55 +0000720 // Get mantissa[51:20].
Ben Murdoch257744e2011-11-30 15:57:28 +0000721
722 // Get the position of the first set bit.
723 __ CountLeadingZeros(dst1, int_scratch, scratch2);
724 __ rsb(dst1, dst1, Operand(31));
725
726 // Set the exponent.
727 __ add(scratch2, dst1, Operand(HeapNumber::kExponentBias));
728 __ Bfi(dst2, scratch2, scratch2,
729 HeapNumber::kExponentShift, HeapNumber::kExponentBits);
730
731 // Clear the first non null bit.
732 __ mov(scratch2, Operand(1));
733 __ bic(int_scratch, int_scratch, Operand(scratch2, LSL, dst1));
734
735 __ cmp(dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
736 // Get the number of bits to set in the lower part of the mantissa.
737 __ sub(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
738 __ b(mi, &fewer_than_20_useful_bits);
739 // Set the higher 20 bits of the mantissa.
740 __ orr(dst2, dst2, Operand(int_scratch, LSR, scratch2));
741 __ rsb(scratch2, scratch2, Operand(32));
742 __ mov(dst1, Operand(int_scratch, LSL, scratch2));
743 __ b(&done);
744
745 __ bind(&fewer_than_20_useful_bits);
746 __ rsb(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
747 __ mov(scratch2, Operand(int_scratch, LSL, scratch2));
748 __ orr(dst2, dst2, scratch2);
749 // Set dst1 to 0.
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000750 __ mov(dst1, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +0000751 }
752 __ bind(&done);
753}
754
755
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100756void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
757 Register object,
758 Destination destination,
759 DwVfpRegister double_dst,
760 Register dst1,
761 Register dst2,
762 Register heap_number_map,
763 Register scratch1,
764 Register scratch2,
765 SwVfpRegister single_scratch,
766 Label* not_int32) {
767 ASSERT(!scratch1.is(object) && !scratch2.is(object));
768 ASSERT(!scratch1.is(scratch2));
769 ASSERT(!heap_number_map.is(object) &&
770 !heap_number_map.is(scratch1) &&
771 !heap_number_map.is(scratch2));
772
773 Label done, obj_is_not_smi;
774
775 __ JumpIfNotSmi(object, &obj_is_not_smi);
776 __ SmiUntag(scratch1, object);
Ben Murdoch257744e2011-11-30 15:57:28 +0000777 ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2,
778 scratch2, single_scratch);
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100779 __ b(&done);
780
781 __ bind(&obj_is_not_smi);
782 if (FLAG_debug_code) {
783 __ AbortIfNotRootValue(heap_number_map,
784 Heap::kHeapNumberMapRootIndex,
785 "HeapNumberMap register clobbered.");
786 }
787 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
788
789 // Load the number.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100790 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100791 CpuFeatures::Scope scope(VFP3);
792 // Load the double value.
793 __ sub(scratch1, object, Operand(kHeapObjectTag));
794 __ vldr(double_dst, scratch1, HeapNumber::kValueOffset);
795
796 __ EmitVFPTruncate(kRoundToZero,
797 single_scratch,
798 double_dst,
799 scratch1,
800 scratch2,
801 kCheckForInexactConversion);
802
803 // Jump to not_int32 if the operation did not succeed.
804 __ b(ne, not_int32);
805
806 if (destination == kCoreRegisters) {
807 __ vmov(dst1, dst2, double_dst);
808 }
809
810 } else {
811 ASSERT(!scratch1.is(object) && !scratch2.is(object));
812 // Load the double value in the destination registers..
813 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
814
815 // Check for 0 and -0.
816 __ bic(scratch1, dst1, Operand(HeapNumber::kSignMask));
817 __ orr(scratch1, scratch1, Operand(dst2));
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000818 __ cmp(scratch1, Operand::Zero());
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100819 __ b(eq, &done);
820
821 // Check that the value can be exactly represented by a 32-bit integer.
822 // Jump to not_int32 if that's not the case.
823 DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
824
825 // dst1 and dst2 were trashed. Reload the double value.
826 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
827 }
828
829 __ bind(&done);
830}
831
832
833void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
834 Register object,
835 Register dst,
836 Register heap_number_map,
837 Register scratch1,
838 Register scratch2,
839 Register scratch3,
840 DwVfpRegister double_scratch,
841 Label* not_int32) {
842 ASSERT(!dst.is(object));
843 ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
844 ASSERT(!scratch1.is(scratch2) &&
845 !scratch1.is(scratch3) &&
846 !scratch2.is(scratch3));
847
848 Label done;
849
850 // Untag the object into the destination register.
851 __ SmiUntag(dst, object);
852 // Just return if the object is a smi.
853 __ JumpIfSmi(object, &done);
854
855 if (FLAG_debug_code) {
856 __ AbortIfNotRootValue(heap_number_map,
857 Heap::kHeapNumberMapRootIndex,
858 "HeapNumberMap register clobbered.");
859 }
860 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
861
862 // Object is a heap number.
863 // Convert the floating point value to a 32-bit integer.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100864 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100865 CpuFeatures::Scope scope(VFP3);
866 SwVfpRegister single_scratch = double_scratch.low();
867 // Load the double value.
868 __ sub(scratch1, object, Operand(kHeapObjectTag));
869 __ vldr(double_scratch, scratch1, HeapNumber::kValueOffset);
870
871 __ EmitVFPTruncate(kRoundToZero,
872 single_scratch,
873 double_scratch,
874 scratch1,
875 scratch2,
876 kCheckForInexactConversion);
877
878 // Jump to not_int32 if the operation did not succeed.
879 __ b(ne, not_int32);
880 // Get the result in the destination register.
881 __ vmov(dst, single_scratch);
882
883 } else {
884 // Load the double value in the destination registers.
885 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
886 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
887
888 // Check for 0 and -0.
889 __ bic(dst, scratch1, Operand(HeapNumber::kSignMask));
890 __ orr(dst, scratch2, Operand(dst));
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000891 __ cmp(dst, Operand::Zero());
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100892 __ b(eq, &done);
893
894 DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
895
896 // Registers state after DoubleIs32BitInteger.
897 // dst: mantissa[51:20].
898 // scratch2: 1
899
900 // Shift back the higher bits of the mantissa.
901 __ mov(dst, Operand(dst, LSR, scratch3));
902 // Set the implicit first bit.
903 __ rsb(scratch3, scratch3, Operand(32));
904 __ orr(dst, dst, Operand(scratch2, LSL, scratch3));
905 // Set the sign.
906 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
907 __ tst(scratch1, Operand(HeapNumber::kSignMask));
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000908 __ rsb(dst, dst, Operand::Zero(), LeaveCC, mi);
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100909 }
910
911 __ bind(&done);
912}
913
914
915void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
916 Register src1,
917 Register src2,
918 Register dst,
919 Register scratch,
920 Label* not_int32) {
921 // Get exponent alone in scratch.
922 __ Ubfx(scratch,
923 src1,
924 HeapNumber::kExponentShift,
925 HeapNumber::kExponentBits);
926
927 // Substract the bias from the exponent.
928 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC);
929
930 // src1: higher (exponent) part of the double value.
931 // src2: lower (mantissa) part of the double value.
932 // scratch: unbiased exponent.
933
934 // Fast cases. Check for obvious non 32-bit integer values.
935 // Negative exponent cannot yield 32-bit integers.
936 __ b(mi, not_int32);
937 // Exponent greater than 31 cannot yield 32-bit integers.
938 // Also, a positive value with an exponent equal to 31 is outside of the
939 // signed 32-bit integer range.
940 // Another way to put it is that if (exponent - signbit) > 30 then the
941 // number cannot be represented as an int32.
942 Register tmp = dst;
943 __ sub(tmp, scratch, Operand(src1, LSR, 31));
944 __ cmp(tmp, Operand(30));
945 __ b(gt, not_int32);
946 // - Bits [21:0] in the mantissa are not null.
947 __ tst(src2, Operand(0x3fffff));
948 __ b(ne, not_int32);
949
950 // Otherwise the exponent needs to be big enough to shift left all the
951 // non zero bits left. So we need the (30 - exponent) last bits of the
952 // 31 higher bits of the mantissa to be null.
953 // Because bits [21:0] are null, we can check instead that the
Ben Murdochc7cc0282012-03-05 14:35:55 +0000954 // (32 - exponent) last bits of the 32 higher bits of the mantissa are null.
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100955
956 // Get the 32 higher bits of the mantissa in dst.
957 __ Ubfx(dst,
958 src2,
959 HeapNumber::kMantissaBitsInTopWord,
960 32 - HeapNumber::kMantissaBitsInTopWord);
961 __ orr(dst,
962 dst,
963 Operand(src1, LSL, HeapNumber::kNonMantissaBitsInTopWord));
964
965 // Create the mask and test the lower bits (of the higher bits).
966 __ rsb(scratch, scratch, Operand(32));
967 __ mov(src2, Operand(1));
968 __ mov(src1, Operand(src2, LSL, scratch));
969 __ sub(src1, src1, Operand(1));
970 __ tst(dst, src1);
971 __ b(ne, not_int32);
972}
973
974
975void FloatingPointHelper::CallCCodeForDoubleOperation(
976 MacroAssembler* masm,
977 Token::Value op,
978 Register heap_number_result,
979 Register scratch) {
980 // Using core registers:
981 // r0: Left value (least significant part of mantissa).
982 // r1: Left value (sign, exponent, top of mantissa).
983 // r2: Right value (least significant part of mantissa).
984 // r3: Right value (sign, exponent, top of mantissa).
985
986 // Assert that heap_number_result is callee-saved.
987 // We currently always use r5 to pass it.
988 ASSERT(heap_number_result.is(r5));
989
990 // Push the current return address before the C call. Return will be
991 // through pop(pc) below.
992 __ push(lr);
Ben Murdoch257744e2011-11-30 15:57:28 +0000993 __ PrepareCallCFunction(0, 2, scratch);
994 if (masm->use_eabi_hardfloat()) {
995 CpuFeatures::Scope scope(VFP3);
996 __ vmov(d0, r0, r1);
997 __ vmov(d1, r2, r3);
998 }
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000999 {
1000 AllowExternalCallThatCantCauseGC scope(masm);
1001 __ CallCFunction(
1002 ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2);
1003 }
Ben Murdoch8b112d22011-06-08 16:22:53 +01001004 // Store answer in the overwritable heap number. Double returned in
Ben Murdoch257744e2011-11-30 15:57:28 +00001005 // registers r0 and r1 or in d0.
1006 if (masm->use_eabi_hardfloat()) {
1007 CpuFeatures::Scope scope(VFP3);
1008 __ vstr(d0,
1009 FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
1010 } else {
1011 __ Strd(r0, r1, FieldMemOperand(heap_number_result,
1012 HeapNumber::kValueOffset));
1013 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001014 // Place heap_number_result in r0 and return to the pushed return address.
1015 __ mov(r0, Operand(heap_number_result));
1016 __ pop(pc);
1017}
1018
Steve Block1e0659c2011-05-24 12:43:12 +01001019
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001020bool WriteInt32ToHeapNumberStub::IsPregenerated() {
1021 // These variants are compiled ahead of time. See next method.
1022 if (the_int_.is(r1) && the_heap_number_.is(r0) && scratch_.is(r2)) {
1023 return true;
1024 }
1025 if (the_int_.is(r2) && the_heap_number_.is(r0) && scratch_.is(r3)) {
1026 return true;
1027 }
1028 // Other register combinations are generated as and when they are needed,
1029 // so it is unsafe to call them from stubs (we can't generate a stub while
1030 // we are generating a stub).
1031 return false;
1032}
1033
1034
1035void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime() {
1036 WriteInt32ToHeapNumberStub stub1(r1, r0, r2);
1037 WriteInt32ToHeapNumberStub stub2(r2, r0, r3);
1038 stub1.GetCode()->set_is_pregenerated(true);
1039 stub2.GetCode()->set_is_pregenerated(true);
1040}
1041
1042
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001043// See comment for class.
1044void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
1045 Label max_negative_int;
1046 // the_int_ has the answer which is a signed int32 but not a Smi.
1047 // We test for the special value that has a different exponent. This test
1048 // has the neat side effect of setting the flags according to the sign.
1049 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
1050 __ cmp(the_int_, Operand(0x80000000u));
1051 __ b(eq, &max_negative_int);
1052 // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
1053 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
1054 uint32_t non_smi_exponent =
1055 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
1056 __ mov(scratch_, Operand(non_smi_exponent));
1057 // Set the sign bit in scratch_ if the value was negative.
1058 __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
1059 // Subtract from 0 if the value was negative.
Iain Merrick9ac36c92010-09-13 15:29:50 +01001060 __ rsb(the_int_, the_int_, Operand(0, RelocInfo::NONE), LeaveCC, cs);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001061 // We should be masking the implict first digit of the mantissa away here,
1062 // but it just ends up combining harmlessly with the last digit of the
1063 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
1064 // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
1065 ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
1066 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
1067 __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
1068 __ str(scratch_, FieldMemOperand(the_heap_number_,
1069 HeapNumber::kExponentOffset));
1070 __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
1071 __ str(scratch_, FieldMemOperand(the_heap_number_,
1072 HeapNumber::kMantissaOffset));
1073 __ Ret();
1074
1075 __ bind(&max_negative_int);
1076 // The max negative int32 is stored as a positive number in the mantissa of
1077 // a double because it uses a sign bit instead of using two's complement.
1078 // The actual mantissa bits stored are all 0 because the implicit most
1079 // significant 1 bit is not stored.
1080 non_smi_exponent += 1 << HeapNumber::kExponentShift;
1081 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
1082 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
Iain Merrick9ac36c92010-09-13 15:29:50 +01001083 __ mov(ip, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001084 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
1085 __ Ret();
1086}
1087
1088
1089// Handle the case where the lhs and rhs are the same object.
1090// Equality is almost reflexive (everything but NaN), so this is a test
1091// for "identity and not NaN".
1092static void EmitIdenticalObjectComparison(MacroAssembler* masm,
1093 Label* slow,
Steve Block1e0659c2011-05-24 12:43:12 +01001094 Condition cond,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001095 bool never_nan_nan) {
1096 Label not_identical;
1097 Label heap_number, return_equal;
1098 __ cmp(r0, r1);
1099 __ b(ne, &not_identical);
1100
1101 // The two objects are identical. If we know that one of them isn't NaN then
1102 // we now know they test equal.
Steve Block1e0659c2011-05-24 12:43:12 +01001103 if (cond != eq || !never_nan_nan) {
Steve Block44f0eee2011-05-26 01:26:41 +01001104 // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001105 // so we do the second best thing - test it ourselves.
1106 // They are both equal and they are not both Smis so both of them are not
1107 // Smis. If it's not a heap number, then return equal.
Steve Block1e0659c2011-05-24 12:43:12 +01001108 if (cond == lt || cond == gt) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001109 __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001110 __ b(ge, slow);
1111 } else {
1112 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
1113 __ b(eq, &heap_number);
1114 // Comparing JS objects with <=, >= is complicated.
Steve Block1e0659c2011-05-24 12:43:12 +01001115 if (cond != eq) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001116 __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001117 __ b(ge, slow);
1118 // Normally here we fall through to return_equal, but undefined is
1119 // special: (undefined == undefined) == true, but
1120 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
Steve Block1e0659c2011-05-24 12:43:12 +01001121 if (cond == le || cond == ge) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001122 __ cmp(r4, Operand(ODDBALL_TYPE));
1123 __ b(ne, &return_equal);
1124 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
1125 __ cmp(r0, r2);
1126 __ b(ne, &return_equal);
Steve Block1e0659c2011-05-24 12:43:12 +01001127 if (cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001128 // undefined <= undefined should fail.
1129 __ mov(r0, Operand(GREATER));
1130 } else {
1131 // undefined >= undefined should fail.
1132 __ mov(r0, Operand(LESS));
1133 }
1134 __ Ret();
1135 }
1136 }
1137 }
1138 }
1139
1140 __ bind(&return_equal);
Steve Block1e0659c2011-05-24 12:43:12 +01001141 if (cond == lt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001142 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
Steve Block1e0659c2011-05-24 12:43:12 +01001143 } else if (cond == gt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001144 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
1145 } else {
1146 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
1147 }
1148 __ Ret();
1149
Steve Block1e0659c2011-05-24 12:43:12 +01001150 if (cond != eq || !never_nan_nan) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001151 // For less and greater we don't have to check for NaN since the result of
1152 // x < x is false regardless. For the others here is some code to check
1153 // for NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001154 if (cond != lt && cond != gt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001155 __ bind(&heap_number);
1156 // It is a heap number, so return non-equal if it's NaN and equal if it's
1157 // not NaN.
1158
1159 // The representation of NaN values has all exponent bits (52..62) set,
1160 // and not all mantissa bits (0..51) clear.
1161 // Read top bits of double representation (second word of value).
1162 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
1163 // Test that exponent bits are all set.
1164 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
1165 // NaNs have all-one exponents so they sign extend to -1.
1166 __ cmp(r3, Operand(-1));
1167 __ b(ne, &return_equal);
1168
1169 // Shift out flag and all exponent bits, retaining only mantissa.
1170 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
1171 // Or with all low-bits of mantissa.
1172 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
1173 __ orr(r0, r3, Operand(r2), SetCC);
1174 // For equal we already have the right value in r0: Return zero (equal)
1175 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
1176 // not (it's a NaN). For <= and >= we need to load r0 with the failing
1177 // value if it's a NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001178 if (cond != eq) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001179 // All-zero means Infinity means equal.
1180 __ Ret(eq);
Steve Block1e0659c2011-05-24 12:43:12 +01001181 if (cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001182 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
1183 } else {
1184 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
1185 }
1186 }
1187 __ Ret();
1188 }
1189 // No fall through here.
1190 }
1191
1192 __ bind(&not_identical);
1193}
1194
1195
1196// See comment at call site.
1197static void EmitSmiNonsmiComparison(MacroAssembler* masm,
1198 Register lhs,
1199 Register rhs,
1200 Label* lhs_not_nan,
1201 Label* slow,
1202 bool strict) {
1203 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1204 (lhs.is(r1) && rhs.is(r0)));
1205
1206 Label rhs_is_smi;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001207 __ JumpIfSmi(rhs, &rhs_is_smi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001208
1209 // Lhs is a Smi. Check whether the rhs is a heap number.
1210 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
1211 if (strict) {
1212 // If rhs is not a number and lhs is a Smi then strict equality cannot
1213 // succeed. Return non-equal
1214 // If rhs is r0 then there is already a non zero value in it.
1215 if (!rhs.is(r0)) {
1216 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1217 }
1218 __ Ret(ne);
1219 } else {
1220 // Smi compared non-strictly with a non-Smi non-heap-number. Call
1221 // the runtime.
1222 __ b(ne, slow);
1223 }
1224
1225 // Lhs is a smi, rhs is a number.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001226 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001227 // Convert lhs to a double in d7.
1228 CpuFeatures::Scope scope(VFP3);
1229 __ SmiToDoubleVFPRegister(lhs, d7, r7, s15);
1230 // Load the double from rhs, tagged HeapNumber r0, to d6.
1231 __ sub(r7, rhs, Operand(kHeapObjectTag));
1232 __ vldr(d6, r7, HeapNumber::kValueOffset);
1233 } else {
1234 __ push(lr);
1235 // Convert lhs to a double in r2, r3.
1236 __ mov(r7, Operand(lhs));
1237 ConvertToDoubleStub stub1(r3, r2, r7, r6);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001238 __ Call(stub1.GetCode());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001239 // Load rhs to a double in r0, r1.
1240 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1241 __ pop(lr);
1242 }
1243
1244 // We now have both loaded as doubles but we can skip the lhs nan check
1245 // since it's a smi.
1246 __ jmp(lhs_not_nan);
1247
1248 __ bind(&rhs_is_smi);
1249 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
1250 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
1251 if (strict) {
1252 // If lhs is not a number and rhs is a smi then strict equality cannot
1253 // succeed. Return non-equal.
1254 // If lhs is r0 then there is already a non zero value in it.
1255 if (!lhs.is(r0)) {
1256 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1257 }
1258 __ Ret(ne);
1259 } else {
1260 // Smi compared non-strictly with a non-smi non-heap-number. Call
1261 // the runtime.
1262 __ b(ne, slow);
1263 }
1264
1265 // Rhs is a smi, lhs is a heap number.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001266 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001267 CpuFeatures::Scope scope(VFP3);
1268 // Load the double from lhs, tagged HeapNumber r1, to d7.
1269 __ sub(r7, lhs, Operand(kHeapObjectTag));
1270 __ vldr(d7, r7, HeapNumber::kValueOffset);
1271 // Convert rhs to a double in d6 .
1272 __ SmiToDoubleVFPRegister(rhs, d6, r7, s13);
1273 } else {
1274 __ push(lr);
1275 // Load lhs to a double in r2, r3.
1276 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1277 // Convert rhs to a double in r0, r1.
1278 __ mov(r7, Operand(rhs));
1279 ConvertToDoubleStub stub2(r1, r0, r7, r6);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001280 __ Call(stub2.GetCode());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001281 __ pop(lr);
1282 }
1283 // Fall through to both_loaded_as_doubles.
1284}
1285
1286
Steve Block1e0659c2011-05-24 12:43:12 +01001287void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001288 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1289 Register rhs_exponent = exp_first ? r0 : r1;
1290 Register lhs_exponent = exp_first ? r2 : r3;
1291 Register rhs_mantissa = exp_first ? r1 : r0;
1292 Register lhs_mantissa = exp_first ? r3 : r2;
1293 Label one_is_nan, neither_is_nan;
1294
1295 __ Sbfx(r4,
1296 lhs_exponent,
1297 HeapNumber::kExponentShift,
1298 HeapNumber::kExponentBits);
1299 // NaNs have all-one exponents so they sign extend to -1.
1300 __ cmp(r4, Operand(-1));
1301 __ b(ne, lhs_not_nan);
1302 __ mov(r4,
1303 Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1304 SetCC);
1305 __ b(ne, &one_is_nan);
Iain Merrick9ac36c92010-09-13 15:29:50 +01001306 __ cmp(lhs_mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001307 __ b(ne, &one_is_nan);
1308
1309 __ bind(lhs_not_nan);
1310 __ Sbfx(r4,
1311 rhs_exponent,
1312 HeapNumber::kExponentShift,
1313 HeapNumber::kExponentBits);
1314 // NaNs have all-one exponents so they sign extend to -1.
1315 __ cmp(r4, Operand(-1));
1316 __ b(ne, &neither_is_nan);
1317 __ mov(r4,
1318 Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1319 SetCC);
1320 __ b(ne, &one_is_nan);
Iain Merrick9ac36c92010-09-13 15:29:50 +01001321 __ cmp(rhs_mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001322 __ b(eq, &neither_is_nan);
1323
1324 __ bind(&one_is_nan);
1325 // NaN comparisons always fail.
1326 // Load whatever we need in r0 to make the comparison fail.
Steve Block1e0659c2011-05-24 12:43:12 +01001327 if (cond == lt || cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001328 __ mov(r0, Operand(GREATER));
1329 } else {
1330 __ mov(r0, Operand(LESS));
1331 }
1332 __ Ret();
1333
1334 __ bind(&neither_is_nan);
1335}
1336
1337
1338// See comment at call site.
Steve Block1e0659c2011-05-24 12:43:12 +01001339static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm,
1340 Condition cond) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001341 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1342 Register rhs_exponent = exp_first ? r0 : r1;
1343 Register lhs_exponent = exp_first ? r2 : r3;
1344 Register rhs_mantissa = exp_first ? r1 : r0;
1345 Register lhs_mantissa = exp_first ? r3 : r2;
1346
1347 // r0, r1, r2, r3 have the two doubles. Neither is a NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001348 if (cond == eq) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001349 // Doubles are not equal unless they have the same bit pattern.
1350 // Exception: 0 and -0.
1351 __ cmp(rhs_mantissa, Operand(lhs_mantissa));
1352 __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
1353 // Return non-zero if the numbers are unequal.
1354 __ Ret(ne);
1355
1356 __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
1357 // If exponents are equal then return 0.
1358 __ Ret(eq);
1359
1360 // Exponents are unequal. The only way we can return that the numbers
1361 // are equal is if one is -0 and the other is 0. We already dealt
1362 // with the case where both are -0 or both are 0.
1363 // We start by seeing if the mantissas (that are equal) or the bottom
1364 // 31 bits of the rhs exponent are non-zero. If so we return not
1365 // equal.
1366 __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
1367 __ mov(r0, Operand(r4), LeaveCC, ne);
1368 __ Ret(ne);
1369 // Now they are equal if and only if the lhs exponent is zero in its
1370 // low 31 bits.
1371 __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
1372 __ Ret();
1373 } else {
1374 // Call a native function to do a comparison between two non-NaNs.
1375 // Call C routine that may not cause GC or other trouble.
1376 __ push(lr);
Ben Murdoch257744e2011-11-30 15:57:28 +00001377 __ PrepareCallCFunction(0, 2, r5);
1378 if (masm->use_eabi_hardfloat()) {
1379 CpuFeatures::Scope scope(VFP3);
1380 __ vmov(d0, r0, r1);
1381 __ vmov(d1, r2, r3);
1382 }
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001383
1384 AllowExternalCallThatCantCauseGC scope(masm);
Ben Murdoch257744e2011-11-30 15:57:28 +00001385 __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()),
1386 0, 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001387 __ pop(pc); // Return.
1388 }
1389}
1390
1391
1392// See comment at call site.
1393static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
1394 Register lhs,
1395 Register rhs) {
1396 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1397 (lhs.is(r1) && rhs.is(r0)));
1398
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001399 // If either operand is a JS object or an oddball value, then they are
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001400 // not equal since their pointers are different.
1401 // There is no test for undetectability in strict equality.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001402 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001403 Label first_non_object;
1404 // Get the type of the first operand into r2 and compare it with
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001405 // FIRST_SPEC_OBJECT_TYPE.
1406 __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001407 __ b(lt, &first_non_object);
1408
1409 // Return non-zero (r0 is not zero)
1410 Label return_not_equal;
1411 __ bind(&return_not_equal);
1412 __ Ret();
1413
1414 __ bind(&first_non_object);
1415 // Check for oddballs: true, false, null, undefined.
1416 __ cmp(r2, Operand(ODDBALL_TYPE));
1417 __ b(eq, &return_not_equal);
1418
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001419 __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001420 __ b(ge, &return_not_equal);
1421
1422 // Check for oddballs: true, false, null, undefined.
1423 __ cmp(r3, Operand(ODDBALL_TYPE));
1424 __ b(eq, &return_not_equal);
1425
1426 // Now that we have the types we might as well check for symbol-symbol.
1427 // Ensure that no non-strings have the symbol bit set.
1428 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
1429 STATIC_ASSERT(kSymbolTag != 0);
1430 __ and_(r2, r2, Operand(r3));
1431 __ tst(r2, Operand(kIsSymbolMask));
1432 __ b(ne, &return_not_equal);
1433}
1434
1435
1436// See comment at call site.
1437static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
1438 Register lhs,
1439 Register rhs,
1440 Label* both_loaded_as_doubles,
1441 Label* not_heap_numbers,
1442 Label* slow) {
1443 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1444 (lhs.is(r1) && rhs.is(r0)));
1445
1446 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
1447 __ b(ne, not_heap_numbers);
1448 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
1449 __ cmp(r2, r3);
1450 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
1451
1452 // Both are heap numbers. Load them up then jump to the code we have
1453 // for that.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001454 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001455 CpuFeatures::Scope scope(VFP3);
1456 __ sub(r7, rhs, Operand(kHeapObjectTag));
1457 __ vldr(d6, r7, HeapNumber::kValueOffset);
1458 __ sub(r7, lhs, Operand(kHeapObjectTag));
1459 __ vldr(d7, r7, HeapNumber::kValueOffset);
1460 } else {
1461 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1462 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1463 }
1464 __ jmp(both_loaded_as_doubles);
1465}
1466
1467
1468// Fast negative check for symbol-to-symbol equality.
1469static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
1470 Register lhs,
1471 Register rhs,
1472 Label* possible_strings,
1473 Label* not_both_strings) {
1474 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1475 (lhs.is(r1) && rhs.is(r0)));
1476
1477 // r2 is object type of rhs.
1478 // Ensure that no non-strings have the symbol bit set.
1479 Label object_test;
1480 STATIC_ASSERT(kSymbolTag != 0);
1481 __ tst(r2, Operand(kIsNotStringMask));
1482 __ b(ne, &object_test);
1483 __ tst(r2, Operand(kIsSymbolMask));
1484 __ b(eq, possible_strings);
1485 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
1486 __ b(ge, not_both_strings);
1487 __ tst(r3, Operand(kIsSymbolMask));
1488 __ b(eq, possible_strings);
1489
1490 // Both are symbols. We already checked they weren't the same pointer
1491 // so they are not equal.
1492 __ mov(r0, Operand(NOT_EQUAL));
1493 __ Ret();
1494
1495 __ bind(&object_test);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001496 __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001497 __ b(lt, not_both_strings);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001498 __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001499 __ b(lt, not_both_strings);
1500 // If both objects are undetectable, they are equal. Otherwise, they
1501 // are not equal, since they are different objects and an object is not
1502 // equal to undefined.
1503 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
1504 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
1505 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
1506 __ and_(r0, r2, Operand(r3));
1507 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
1508 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
1509 __ Ret();
1510}
1511
1512
1513void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
1514 Register object,
1515 Register result,
1516 Register scratch1,
1517 Register scratch2,
1518 Register scratch3,
1519 bool object_is_smi,
1520 Label* not_found) {
1521 // Use of registers. Register result is used as a temporary.
1522 Register number_string_cache = result;
1523 Register mask = scratch3;
1524
1525 // Load the number string cache.
1526 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
1527
1528 // Make the hash mask from the length of the number string cache. It
1529 // contains two elements (number and string) for each cache entry.
1530 __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
1531 // Divide length by two (length is a smi).
1532 __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
1533 __ sub(mask, mask, Operand(1)); // Make mask.
1534
1535 // Calculate the entry in the number string cache. The hash value in the
1536 // number string cache for smis is just the smi value, and the hash for
1537 // doubles is the xor of the upper and lower words. See
1538 // Heap::GetNumberStringCache.
Steve Block44f0eee2011-05-26 01:26:41 +01001539 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001540 Label is_smi;
1541 Label load_result_from_cache;
1542 if (!object_is_smi) {
Steve Block1e0659c2011-05-24 12:43:12 +01001543 __ JumpIfSmi(object, &is_smi);
Ben Murdoch8b112d22011-06-08 16:22:53 +01001544 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001545 CpuFeatures::Scope scope(VFP3);
1546 __ CheckMap(object,
1547 scratch1,
1548 Heap::kHeapNumberMapRootIndex,
1549 not_found,
Ben Murdoch257744e2011-11-30 15:57:28 +00001550 DONT_DO_SMI_CHECK);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001551
1552 STATIC_ASSERT(8 == kDoubleSize);
1553 __ add(scratch1,
1554 object,
1555 Operand(HeapNumber::kValueOffset - kHeapObjectTag));
1556 __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
1557 __ eor(scratch1, scratch1, Operand(scratch2));
1558 __ and_(scratch1, scratch1, Operand(mask));
1559
1560 // Calculate address of entry in string cache: each entry consists
1561 // of two pointer sized fields.
1562 __ add(scratch1,
1563 number_string_cache,
1564 Operand(scratch1, LSL, kPointerSizeLog2 + 1));
1565
1566 Register probe = mask;
1567 __ ldr(probe,
1568 FieldMemOperand(scratch1, FixedArray::kHeaderSize));
Steve Block1e0659c2011-05-24 12:43:12 +01001569 __ JumpIfSmi(probe, not_found);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001570 __ sub(scratch2, object, Operand(kHeapObjectTag));
1571 __ vldr(d0, scratch2, HeapNumber::kValueOffset);
1572 __ sub(probe, probe, Operand(kHeapObjectTag));
1573 __ vldr(d1, probe, HeapNumber::kValueOffset);
Ben Murdochb8e0da22011-05-16 14:20:40 +01001574 __ VFPCompareAndSetFlags(d0, d1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001575 __ b(ne, not_found); // The cache did not contain this value.
1576 __ b(&load_result_from_cache);
1577 } else {
1578 __ b(not_found);
1579 }
1580 }
1581
1582 __ bind(&is_smi);
1583 Register scratch = scratch1;
1584 __ and_(scratch, mask, Operand(object, ASR, 1));
1585 // Calculate address of entry in string cache: each entry consists
1586 // of two pointer sized fields.
1587 __ add(scratch,
1588 number_string_cache,
1589 Operand(scratch, LSL, kPointerSizeLog2 + 1));
1590
1591 // Check if the entry is the smi we are looking for.
1592 Register probe = mask;
1593 __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
1594 __ cmp(object, probe);
1595 __ b(ne, not_found);
1596
1597 // Get the result from the cache.
1598 __ bind(&load_result_from_cache);
1599 __ ldr(result,
1600 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01001601 __ IncrementCounter(isolate->counters()->number_to_string_native(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001602 1,
1603 scratch1,
1604 scratch2);
1605}
1606
1607
1608void NumberToStringStub::Generate(MacroAssembler* masm) {
1609 Label runtime;
1610
1611 __ ldr(r1, MemOperand(sp, 0));
1612
1613 // Generate code to lookup number in the number string cache.
1614 GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
1615 __ add(sp, sp, Operand(1 * kPointerSize));
1616 __ Ret();
1617
1618 __ bind(&runtime);
1619 // Handle number to string in the runtime system if not found in the cache.
1620 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
1621}
1622
1623
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001624// On entry lhs_ and rhs_ are the values to be compared.
1625// On exit r0 is 0, positive or negative to indicate the result of
1626// the comparison.
1627void CompareStub::Generate(MacroAssembler* masm) {
1628 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
1629 (lhs_.is(r1) && rhs_.is(r0)));
1630
1631 Label slow; // Call builtin.
1632 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
1633
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001634 if (include_smi_compare_) {
1635 Label not_two_smis, smi_done;
1636 __ orr(r2, r1, r0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001637 __ JumpIfNotSmi(r2, &not_two_smis);
Ben Murdochf87a2032010-10-22 12:50:53 +01001638 __ mov(r1, Operand(r1, ASR, 1));
1639 __ sub(r0, r1, Operand(r0, ASR, 1));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001640 __ Ret();
1641 __ bind(&not_two_smis);
1642 } else if (FLAG_debug_code) {
1643 __ orr(r2, r1, r0);
1644 __ tst(r2, Operand(kSmiTagMask));
Steve Block1e0659c2011-05-24 12:43:12 +01001645 __ Assert(ne, "CompareStub: unexpected smi operands.");
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001646 }
1647
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001648 // NOTICE! This code is only reached after a smi-fast-case check, so
1649 // it is certain that at least one operand isn't a smi.
1650
1651 // Handle the case where the objects are identical. Either returns the answer
1652 // or goes to slow. Only falls through if the objects were not identical.
1653 EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
1654
1655 // If either is a Smi (we know that not both are), then they can only
1656 // be strictly equal if the other is a HeapNumber.
1657 STATIC_ASSERT(kSmiTag == 0);
1658 ASSERT_EQ(0, Smi::FromInt(0));
1659 __ and_(r2, lhs_, Operand(rhs_));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001660 __ JumpIfNotSmi(r2, &not_smis);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001661 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
1662 // 1) Return the answer.
1663 // 2) Go to slow.
1664 // 3) Fall through to both_loaded_as_doubles.
1665 // 4) Jump to lhs_not_nan.
1666 // In cases 3 and 4 we have found out we were dealing with a number-number
1667 // comparison. If VFP3 is supported the double values of the numbers have
1668 // been loaded into d7 and d6. Otherwise, the double values have been loaded
1669 // into r0, r1, r2, and r3.
1670 EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_);
1671
1672 __ bind(&both_loaded_as_doubles);
1673 // The arguments have been converted to doubles and stored in d6 and d7, if
1674 // VFP3 is supported, or in r0, r1, r2, and r3.
Steve Block44f0eee2011-05-26 01:26:41 +01001675 Isolate* isolate = masm->isolate();
Ben Murdoch8b112d22011-06-08 16:22:53 +01001676 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001677 __ bind(&lhs_not_nan);
1678 CpuFeatures::Scope scope(VFP3);
1679 Label no_nan;
1680 // ARMv7 VFP3 instructions to implement double precision comparison.
Ben Murdochb8e0da22011-05-16 14:20:40 +01001681 __ VFPCompareAndSetFlags(d7, d6);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001682 Label nan;
1683 __ b(vs, &nan);
1684 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
1685 __ mov(r0, Operand(LESS), LeaveCC, lt);
1686 __ mov(r0, Operand(GREATER), LeaveCC, gt);
1687 __ Ret();
1688
1689 __ bind(&nan);
1690 // If one of the sides was a NaN then the v flag is set. Load r0 with
1691 // whatever it takes to make the comparison fail, since comparisons with NaN
1692 // always fail.
1693 if (cc_ == lt || cc_ == le) {
1694 __ mov(r0, Operand(GREATER));
1695 } else {
1696 __ mov(r0, Operand(LESS));
1697 }
1698 __ Ret();
1699 } else {
1700 // Checks for NaN in the doubles we have loaded. Can return the answer or
1701 // fall through if neither is a NaN. Also binds lhs_not_nan.
1702 EmitNanCheck(masm, &lhs_not_nan, cc_);
1703 // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
1704 // answer. Never falls through.
1705 EmitTwoNonNanDoubleComparison(masm, cc_);
1706 }
1707
1708 __ bind(&not_smis);
1709 // At this point we know we are dealing with two different objects,
1710 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
1711 if (strict_) {
1712 // This returns non-equal for some object types, or falls through if it
1713 // was not lucky.
1714 EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
1715 }
1716
1717 Label check_for_symbols;
1718 Label flat_string_check;
1719 // Check for heap-number-heap-number comparison. Can jump to slow case,
1720 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
1721 // that case. If the inputs are not doubles then jumps to check_for_symbols.
1722 // In this case r2 will contain the type of rhs_. Never falls through.
1723 EmitCheckForTwoHeapNumbers(masm,
1724 lhs_,
1725 rhs_,
1726 &both_loaded_as_doubles,
1727 &check_for_symbols,
1728 &flat_string_check);
1729
1730 __ bind(&check_for_symbols);
1731 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
1732 // symbols.
1733 if (cc_ == eq && !strict_) {
1734 // Returns an answer for two symbols or two detectable objects.
1735 // Otherwise jumps to string case or not both strings case.
1736 // Assumes that r2 is the type of rhs_ on entry.
1737 EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
1738 }
1739
1740 // Check for both being sequential ASCII strings, and inline if that is the
1741 // case.
1742 __ bind(&flat_string_check);
1743
1744 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow);
1745
Steve Block44f0eee2011-05-26 01:26:41 +01001746 __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3);
Ben Murdoch257744e2011-11-30 15:57:28 +00001747 if (cc_ == eq) {
1748 StringCompareStub::GenerateFlatAsciiStringEquals(masm,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001749 lhs_,
1750 rhs_,
1751 r2,
1752 r3,
Ben Murdoch257744e2011-11-30 15:57:28 +00001753 r4);
1754 } else {
1755 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
1756 lhs_,
1757 rhs_,
1758 r2,
1759 r3,
1760 r4,
1761 r5);
1762 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001763 // Never falls through to here.
1764
1765 __ bind(&slow);
1766
1767 __ Push(lhs_, rhs_);
1768 // Figure out which native to call and setup the arguments.
1769 Builtins::JavaScript native;
1770 if (cc_ == eq) {
1771 native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1772 } else {
1773 native = Builtins::COMPARE;
1774 int ncr; // NaN compare result
1775 if (cc_ == lt || cc_ == le) {
1776 ncr = GREATER;
1777 } else {
1778 ASSERT(cc_ == gt || cc_ == ge); // remaining cases
1779 ncr = LESS;
1780 }
1781 __ mov(r0, Operand(Smi::FromInt(ncr)));
1782 __ push(r0);
1783 }
1784
1785 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1786 // tagged as a small integer.
Ben Murdoch257744e2011-11-30 15:57:28 +00001787 __ InvokeBuiltin(native, JUMP_FUNCTION);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001788}
1789
1790
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001791// The stub expects its argument in the tos_ register and returns its result in
1792// it, too: zero for false, and a non-zero value for true.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001793void ToBooleanStub::Generate(MacroAssembler* masm) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001794 // This stub overrides SometimesSetsUpAFrame() to return false. That means
1795 // we cannot call anything that could cause a GC from this stub.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001796 // This stub uses VFP3 instructions.
Ben Murdoch257744e2011-11-30 15:57:28 +00001797 CpuFeatures::Scope scope(VFP3);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001798
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001799 Label patch;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001800 const Register map = r9.is(tos_) ? r7 : r9;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001801
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001802 // undefined -> false.
1803 CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
Ben Murdoch257744e2011-11-30 15:57:28 +00001804
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001805 // Boolean -> its value.
1806 CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
1807 CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
Ben Murdoch257744e2011-11-30 15:57:28 +00001808
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001809 // 'null' -> false.
1810 CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
Ben Murdoch257744e2011-11-30 15:57:28 +00001811
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001812 if (types_.Contains(SMI)) {
1813 // Smis: 0 -> false, all other -> true
1814 __ tst(tos_, Operand(kSmiTagMask));
1815 // tos_ contains the correct return value already
1816 __ Ret(eq);
1817 } else if (types_.NeedsMap()) {
1818 // If we need a map later and have a Smi -> patch.
1819 __ JumpIfSmi(tos_, &patch);
1820 }
Ben Murdochb0fe1622011-05-05 13:52:32 +01001821
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001822 if (types_.NeedsMap()) {
1823 __ ldr(map, FieldMemOperand(tos_, HeapObject::kMapOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001824
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001825 if (types_.CanBeUndetectable()) {
1826 __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
1827 __ tst(ip, Operand(1 << Map::kIsUndetectable));
1828 // Undetectable -> false.
1829 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
1830 __ Ret(ne);
1831 }
1832 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001833
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001834 if (types_.Contains(SPEC_OBJECT)) {
1835 // Spec object -> true.
1836 __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
1837 // tos_ contains the correct non-zero return value already.
1838 __ Ret(ge);
1839 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001840
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001841 if (types_.Contains(STRING)) {
1842 // String value -> false iff empty.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001843 __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001844 __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset), lt);
1845 __ Ret(lt); // the string length is OK as the return value
1846 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001847
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001848 if (types_.Contains(HEAP_NUMBER)) {
1849 // Heap number -> false iff +0, -0, or NaN.
1850 Label not_heap_number;
1851 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
1852 __ b(ne, &not_heap_number);
1853 __ vldr(d1, FieldMemOperand(tos_, HeapNumber::kValueOffset));
1854 __ VFPCompareAndSetFlags(d1, 0.0);
1855 // "tos_" is a register, and contains a non zero value by default.
1856 // Hence we only need to overwrite "tos_" with zero to return false for
1857 // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
1858 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq); // for FP_ZERO
1859 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, vs); // for FP_NAN
1860 __ Ret();
1861 __ bind(&not_heap_number);
1862 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001863
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001864 __ bind(&patch);
1865 GenerateTypeTransition(masm);
1866}
1867
1868
1869void ToBooleanStub::CheckOddball(MacroAssembler* masm,
1870 Type type,
1871 Heap::RootListIndex value,
1872 bool result) {
1873 if (types_.Contains(type)) {
1874 // If we see an expected oddball, return its ToBoolean value tos_.
1875 __ LoadRoot(ip, value);
1876 __ cmp(tos_, ip);
1877 // The value of a root is never NULL, so we can avoid loading a non-null
1878 // value into tos_ when we want to return 'true'.
1879 if (!result) {
1880 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq);
1881 }
1882 __ Ret(eq);
1883 }
1884}
1885
1886
1887void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
1888 if (!tos_.is(r3)) {
1889 __ mov(r3, Operand(tos_));
1890 }
1891 __ mov(r2, Operand(Smi::FromInt(tos_.code())));
1892 __ mov(r1, Operand(Smi::FromInt(types_.ToByte())));
1893 __ Push(r3, r2, r1);
1894 // Patch the caller to an appropriate specialized stub and return the
1895 // operation result to the caller of the stub.
1896 __ TailCallExternalReference(
1897 ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
1898 3,
1899 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001900}
1901
1902
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001903void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
1904 // We don't allow a GC during a store buffer overflow so there is no need to
1905 // store the registers in any particular way, but we do have to store and
1906 // restore them.
1907 __ stm(db_w, sp, kCallerSaved | lr.bit());
1908 if (save_doubles_ == kSaveFPRegs) {
1909 CpuFeatures::Scope scope(VFP3);
1910 __ sub(sp, sp, Operand(kDoubleSize * DwVfpRegister::kNumRegisters));
1911 for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
1912 DwVfpRegister reg = DwVfpRegister::from_code(i);
1913 __ vstr(reg, MemOperand(sp, i * kDoubleSize));
1914 }
1915 }
1916 const int argument_count = 1;
1917 const int fp_argument_count = 0;
1918 const Register scratch = r1;
1919
1920 AllowExternalCallThatCantCauseGC scope(masm);
1921 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
1922 __ mov(r0, Operand(ExternalReference::isolate_address()));
1923 __ CallCFunction(
1924 ExternalReference::store_buffer_overflow_function(masm->isolate()),
1925 argument_count);
1926 if (save_doubles_ == kSaveFPRegs) {
1927 CpuFeatures::Scope scope(VFP3);
1928 for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
1929 DwVfpRegister reg = DwVfpRegister::from_code(i);
1930 __ vldr(reg, MemOperand(sp, i * kDoubleSize));
1931 }
1932 __ add(sp, sp, Operand(kDoubleSize * DwVfpRegister::kNumRegisters));
1933 }
1934 __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0).
1935}
1936
1937
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001938void UnaryOpStub::PrintName(StringStream* stream) {
Ben Murdoch257744e2011-11-30 15:57:28 +00001939 const char* op_name = Token::Name(op_);
1940 const char* overwrite_name = NULL; // Make g++ happy.
1941 switch (mode_) {
1942 case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
1943 case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
1944 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001945 stream->Add("UnaryOpStub_%s_%s_%s",
1946 op_name,
1947 overwrite_name,
1948 UnaryOpIC::GetName(operand_type_));
Ben Murdoch257744e2011-11-30 15:57:28 +00001949}
1950
1951
1952// TODO(svenpanne): Use virtual functions instead of switch.
1953void UnaryOpStub::Generate(MacroAssembler* masm) {
1954 switch (operand_type_) {
1955 case UnaryOpIC::UNINITIALIZED:
1956 GenerateTypeTransition(masm);
1957 break;
1958 case UnaryOpIC::SMI:
1959 GenerateSmiStub(masm);
1960 break;
1961 case UnaryOpIC::HEAP_NUMBER:
1962 GenerateHeapNumberStub(masm);
1963 break;
1964 case UnaryOpIC::GENERIC:
1965 GenerateGenericStub(masm);
1966 break;
1967 }
1968}
1969
1970
1971void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001972 __ mov(r3, Operand(r0)); // the operand
1973 __ mov(r2, Operand(Smi::FromInt(op_)));
1974 __ mov(r1, Operand(Smi::FromInt(mode_)));
Ben Murdoch257744e2011-11-30 15:57:28 +00001975 __ mov(r0, Operand(Smi::FromInt(operand_type_)));
Ben Murdoch257744e2011-11-30 15:57:28 +00001976 __ Push(r3, r2, r1, r0);
1977
1978 __ TailCallExternalReference(
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001979 ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
Ben Murdoch257744e2011-11-30 15:57:28 +00001980}
1981
1982
1983// TODO(svenpanne): Use virtual functions instead of switch.
1984void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
1985 switch (op_) {
1986 case Token::SUB:
1987 GenerateSmiStubSub(masm);
1988 break;
1989 case Token::BIT_NOT:
1990 GenerateSmiStubBitNot(masm);
1991 break;
1992 default:
1993 UNREACHABLE();
1994 }
1995}
1996
1997
1998void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
1999 Label non_smi, slow;
2000 GenerateSmiCodeSub(masm, &non_smi, &slow);
2001 __ bind(&non_smi);
2002 __ bind(&slow);
2003 GenerateTypeTransition(masm);
2004}
2005
2006
2007void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
2008 Label non_smi;
2009 GenerateSmiCodeBitNot(masm, &non_smi);
2010 __ bind(&non_smi);
2011 GenerateTypeTransition(masm);
2012}
2013
2014
2015void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
2016 Label* non_smi,
2017 Label* slow) {
2018 __ JumpIfNotSmi(r0, non_smi);
2019
2020 // The result of negating zero or the smallest negative smi is not a smi.
2021 __ bic(ip, r0, Operand(0x80000000), SetCC);
2022 __ b(eq, slow);
2023
2024 // Return '0 - value'.
2025 __ rsb(r0, r0, Operand(0, RelocInfo::NONE));
2026 __ Ret();
2027}
2028
2029
2030void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
2031 Label* non_smi) {
2032 __ JumpIfNotSmi(r0, non_smi);
2033
2034 // Flip bits and revert inverted smi-tag.
2035 __ mvn(r0, Operand(r0));
2036 __ bic(r0, r0, Operand(kSmiTagMask));
2037 __ Ret();
2038}
2039
2040
2041// TODO(svenpanne): Use virtual functions instead of switch.
2042void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
2043 switch (op_) {
2044 case Token::SUB:
2045 GenerateHeapNumberStubSub(masm);
2046 break;
2047 case Token::BIT_NOT:
2048 GenerateHeapNumberStubBitNot(masm);
2049 break;
2050 default:
2051 UNREACHABLE();
2052 }
2053}
2054
2055
2056void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
2057 Label non_smi, slow, call_builtin;
2058 GenerateSmiCodeSub(masm, &non_smi, &call_builtin);
2059 __ bind(&non_smi);
2060 GenerateHeapNumberCodeSub(masm, &slow);
2061 __ bind(&slow);
2062 GenerateTypeTransition(masm);
2063 __ bind(&call_builtin);
2064 GenerateGenericCodeFallback(masm);
2065}
2066
2067
2068void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) {
2069 Label non_smi, slow;
2070 GenerateSmiCodeBitNot(masm, &non_smi);
2071 __ bind(&non_smi);
2072 GenerateHeapNumberCodeBitNot(masm, &slow);
2073 __ bind(&slow);
2074 GenerateTypeTransition(masm);
2075}
2076
2077void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
2078 Label* slow) {
2079 EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
2080 // r0 is a heap number. Get a new heap number in r1.
2081 if (mode_ == UNARY_OVERWRITE) {
2082 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
2083 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
2084 __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
2085 } else {
2086 Label slow_allocate_heapnumber, heapnumber_allocated;
2087 __ AllocateHeapNumber(r1, r2, r3, r6, &slow_allocate_heapnumber);
2088 __ jmp(&heapnumber_allocated);
2089
2090 __ bind(&slow_allocate_heapnumber);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00002091 {
2092 FrameScope scope(masm, StackFrame::INTERNAL);
2093 __ push(r0);
2094 __ CallRuntime(Runtime::kNumberAlloc, 0);
2095 __ mov(r1, Operand(r0));
2096 __ pop(r0);
2097 }
Ben Murdoch257744e2011-11-30 15:57:28 +00002098
2099 __ bind(&heapnumber_allocated);
2100 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
2101 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
2102 __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
2103 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
2104 __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
2105 __ mov(r0, Operand(r1));
2106 }
2107 __ Ret();
2108}
2109
2110
2111void UnaryOpStub::GenerateHeapNumberCodeBitNot(
2112 MacroAssembler* masm, Label* slow) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002113 Label impossible;
2114
Ben Murdoch257744e2011-11-30 15:57:28 +00002115 EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
2116 // Convert the heap number is r0 to an untagged integer in r1.
2117 __ ConvertToInt32(r0, r1, r2, r3, d0, slow);
2118
2119 // Do the bitwise operation and check if the result fits in a smi.
2120 Label try_float;
2121 __ mvn(r1, Operand(r1));
2122 __ add(r2, r1, Operand(0x40000000), SetCC);
2123 __ b(mi, &try_float);
2124
2125 // Tag the result as a smi and we're done.
2126 __ mov(r0, Operand(r1, LSL, kSmiTagSize));
2127 __ Ret();
2128
2129 // Try to store the result in a heap number.
2130 __ bind(&try_float);
2131 if (mode_ == UNARY_NO_OVERWRITE) {
2132 Label slow_allocate_heapnumber, heapnumber_allocated;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002133 // Allocate a new heap number without zapping r0, which we need if it fails.
2134 __ AllocateHeapNumber(r2, r3, r4, r6, &slow_allocate_heapnumber);
Ben Murdoch257744e2011-11-30 15:57:28 +00002135 __ jmp(&heapnumber_allocated);
2136
2137 __ bind(&slow_allocate_heapnumber);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00002138 {
2139 FrameScope scope(masm, StackFrame::INTERNAL);
2140 __ push(r0); // Push the heap number, not the untagged int32.
2141 __ CallRuntime(Runtime::kNumberAlloc, 0);
2142 __ mov(r2, r0); // Move the new heap number into r2.
2143 // Get the heap number into r0, now that the new heap number is in r2.
2144 __ pop(r0);
2145 }
Ben Murdoch257744e2011-11-30 15:57:28 +00002146
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002147 // Convert the heap number in r0 to an untagged integer in r1.
2148 // This can't go slow-case because it's the same number we already
2149 // converted once again.
2150 __ ConvertToInt32(r0, r1, r3, r4, d0, &impossible);
2151 __ mvn(r1, Operand(r1));
2152
Ben Murdoch257744e2011-11-30 15:57:28 +00002153 __ bind(&heapnumber_allocated);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002154 __ mov(r0, r2); // Move newly allocated heap number to r0.
Ben Murdoch257744e2011-11-30 15:57:28 +00002155 }
2156
2157 if (CpuFeatures::IsSupported(VFP3)) {
2158 // Convert the int32 in r1 to the heap number in r0. r2 is corrupted.
2159 CpuFeatures::Scope scope(VFP3);
2160 __ vmov(s0, r1);
2161 __ vcvt_f64_s32(d0, s0);
2162 __ sub(r2, r0, Operand(kHeapObjectTag));
2163 __ vstr(d0, r2, HeapNumber::kValueOffset);
2164 __ Ret();
2165 } else {
2166 // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
2167 // have to set up a frame.
2168 WriteInt32ToHeapNumberStub stub(r1, r0, r2);
2169 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2170 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002171
2172 __ bind(&impossible);
2173 if (FLAG_debug_code) {
2174 __ stop("Incorrect assumption in bit-not stub");
2175 }
Ben Murdoch257744e2011-11-30 15:57:28 +00002176}
2177
2178
2179// TODO(svenpanne): Use virtual functions instead of switch.
2180void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
2181 switch (op_) {
2182 case Token::SUB:
2183 GenerateGenericStubSub(masm);
2184 break;
2185 case Token::BIT_NOT:
2186 GenerateGenericStubBitNot(masm);
2187 break;
2188 default:
2189 UNREACHABLE();
2190 }
2191}
2192
2193
2194void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
2195 Label non_smi, slow;
2196 GenerateSmiCodeSub(masm, &non_smi, &slow);
2197 __ bind(&non_smi);
2198 GenerateHeapNumberCodeSub(masm, &slow);
2199 __ bind(&slow);
2200 GenerateGenericCodeFallback(masm);
2201}
2202
2203
2204void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
2205 Label non_smi, slow;
2206 GenerateSmiCodeBitNot(masm, &non_smi);
2207 __ bind(&non_smi);
2208 GenerateHeapNumberCodeBitNot(masm, &slow);
2209 __ bind(&slow);
2210 GenerateGenericCodeFallback(masm);
2211}
2212
2213
2214void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) {
2215 // Handle the slow case by jumping to the JavaScript builtin.
2216 __ push(r0);
2217 switch (op_) {
2218 case Token::SUB:
2219 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
2220 break;
2221 case Token::BIT_NOT:
2222 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
2223 break;
2224 default:
2225 UNREACHABLE();
2226 }
2227}
2228
2229
Ben Murdoch257744e2011-11-30 15:57:28 +00002230void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002231 Label get_result;
2232
2233 __ Push(r1, r0);
2234
2235 __ mov(r2, Operand(Smi::FromInt(MinorKey())));
2236 __ mov(r1, Operand(Smi::FromInt(op_)));
2237 __ mov(r0, Operand(Smi::FromInt(operands_type_)));
2238 __ Push(r2, r1, r0);
2239
2240 __ TailCallExternalReference(
Ben Murdoch257744e2011-11-30 15:57:28 +00002241 ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
Steve Block44f0eee2011-05-26 01:26:41 +01002242 masm->isolate()),
Steve Block1e0659c2011-05-24 12:43:12 +01002243 5,
2244 1);
2245}
2246
2247
Ben Murdoch257744e2011-11-30 15:57:28 +00002248void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
Steve Block1e0659c2011-05-24 12:43:12 +01002249 MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01002250 UNIMPLEMENTED();
Steve Block1e0659c2011-05-24 12:43:12 +01002251}
2252
2253
Ben Murdoch257744e2011-11-30 15:57:28 +00002254void BinaryOpStub::Generate(MacroAssembler* masm) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00002255 // Explicitly allow generation of nested stubs. It is safe here because
2256 // generation code does not use any raw pointers.
2257 AllowStubCallsScope allow_stub_calls(masm, true);
2258
Steve Block1e0659c2011-05-24 12:43:12 +01002259 switch (operands_type_) {
Ben Murdoch257744e2011-11-30 15:57:28 +00002260 case BinaryOpIC::UNINITIALIZED:
Steve Block1e0659c2011-05-24 12:43:12 +01002261 GenerateTypeTransition(masm);
2262 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002263 case BinaryOpIC::SMI:
Steve Block1e0659c2011-05-24 12:43:12 +01002264 GenerateSmiStub(masm);
2265 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002266 case BinaryOpIC::INT32:
Steve Block1e0659c2011-05-24 12:43:12 +01002267 GenerateInt32Stub(masm);
2268 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002269 case BinaryOpIC::HEAP_NUMBER:
Steve Block1e0659c2011-05-24 12:43:12 +01002270 GenerateHeapNumberStub(masm);
2271 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002272 case BinaryOpIC::ODDBALL:
Steve Block44f0eee2011-05-26 01:26:41 +01002273 GenerateOddballStub(masm);
2274 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002275 case BinaryOpIC::BOTH_STRING:
2276 GenerateBothStringStub(masm);
2277 break;
2278 case BinaryOpIC::STRING:
Steve Block1e0659c2011-05-24 12:43:12 +01002279 GenerateStringStub(masm);
2280 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002281 case BinaryOpIC::GENERIC:
Steve Block1e0659c2011-05-24 12:43:12 +01002282 GenerateGeneric(masm);
2283 break;
2284 default:
2285 UNREACHABLE();
2286 }
2287}
2288
2289
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002290void BinaryOpStub::PrintName(StringStream* stream) {
Steve Block1e0659c2011-05-24 12:43:12 +01002291 const char* op_name = Token::Name(op_);
2292 const char* overwrite_name;
2293 switch (mode_) {
2294 case NO_OVERWRITE: overwrite_name = "Alloc"; break;
2295 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
2296 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
2297 default: overwrite_name = "UnknownOverwrite"; break;
2298 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002299 stream->Add("BinaryOpStub_%s_%s_%s",
2300 op_name,
2301 overwrite_name,
2302 BinaryOpIC::GetName(operands_type_));
Steve Block1e0659c2011-05-24 12:43:12 +01002303}
2304
2305
Ben Murdoch257744e2011-11-30 15:57:28 +00002306void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002307 Register left = r1;
2308 Register right = r0;
2309 Register scratch1 = r7;
2310 Register scratch2 = r9;
2311
2312 ASSERT(right.is(r0));
2313 STATIC_ASSERT(kSmiTag == 0);
2314
2315 Label not_smi_result;
2316 switch (op_) {
2317 case Token::ADD:
2318 __ add(right, left, Operand(right), SetCC); // Add optimistically.
2319 __ Ret(vc);
2320 __ sub(right, right, Operand(left)); // Revert optimistic add.
2321 break;
2322 case Token::SUB:
2323 __ sub(right, left, Operand(right), SetCC); // Subtract optimistically.
2324 __ Ret(vc);
2325 __ sub(right, left, Operand(right)); // Revert optimistic subtract.
2326 break;
2327 case Token::MUL:
2328 // Remove tag from one of the operands. This way the multiplication result
2329 // will be a smi if it fits the smi range.
2330 __ SmiUntag(ip, right);
2331 // Do multiplication
2332 // scratch1 = lower 32 bits of ip * left.
2333 // scratch2 = higher 32 bits of ip * left.
2334 __ smull(scratch1, scratch2, left, ip);
2335 // Check for overflowing the smi range - no overflow if higher 33 bits of
2336 // the result are identical.
2337 __ mov(ip, Operand(scratch1, ASR, 31));
2338 __ cmp(ip, Operand(scratch2));
2339 __ b(ne, &not_smi_result);
2340 // Go slow on zero result to handle -0.
2341 __ tst(scratch1, Operand(scratch1));
2342 __ mov(right, Operand(scratch1), LeaveCC, ne);
2343 __ Ret(ne);
2344 // We need -0 if we were multiplying a negative number with 0 to get 0.
2345 // We know one of them was zero.
2346 __ add(scratch2, right, Operand(left), SetCC);
2347 __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
2348 __ Ret(pl); // Return smi 0 if the non-zero one was positive.
2349 // We fall through here if we multiplied a negative number with 0, because
2350 // that would mean we should produce -0.
2351 break;
2352 case Token::DIV:
2353 // Check for power of two on the right hand side.
2354 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
2355 // Check for positive and no remainder (scratch1 contains right - 1).
2356 __ orr(scratch2, scratch1, Operand(0x80000000u));
2357 __ tst(left, scratch2);
2358 __ b(ne, &not_smi_result);
2359
2360 // Perform division by shifting.
2361 __ CountLeadingZeros(scratch1, scratch1, scratch2);
2362 __ rsb(scratch1, scratch1, Operand(31));
2363 __ mov(right, Operand(left, LSR, scratch1));
2364 __ Ret();
2365 break;
2366 case Token::MOD:
2367 // Check for two positive smis.
2368 __ orr(scratch1, left, Operand(right));
2369 __ tst(scratch1, Operand(0x80000000u | kSmiTagMask));
2370 __ b(ne, &not_smi_result);
2371
2372 // Check for power of two on the right hand side.
2373 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
2374
2375 // Perform modulus by masking.
2376 __ and_(right, left, Operand(scratch1));
2377 __ Ret();
2378 break;
2379 case Token::BIT_OR:
2380 __ orr(right, left, Operand(right));
2381 __ Ret();
2382 break;
2383 case Token::BIT_AND:
2384 __ and_(right, left, Operand(right));
2385 __ Ret();
2386 break;
2387 case Token::BIT_XOR:
2388 __ eor(right, left, Operand(right));
2389 __ Ret();
2390 break;
2391 case Token::SAR:
2392 // Remove tags from right operand.
2393 __ GetLeastBitsFromSmi(scratch1, right, 5);
2394 __ mov(right, Operand(left, ASR, scratch1));
2395 // Smi tag result.
2396 __ bic(right, right, Operand(kSmiTagMask));
2397 __ Ret();
2398 break;
2399 case Token::SHR:
2400 // Remove tags from operands. We can't do this on a 31 bit number
2401 // because then the 0s get shifted into bit 30 instead of bit 31.
2402 __ SmiUntag(scratch1, left);
2403 __ GetLeastBitsFromSmi(scratch2, right, 5);
2404 __ mov(scratch1, Operand(scratch1, LSR, scratch2));
2405 // Unsigned shift is not allowed to produce a negative number, so
2406 // check the sign bit and the sign bit after Smi tagging.
2407 __ tst(scratch1, Operand(0xc0000000));
2408 __ b(ne, &not_smi_result);
2409 // Smi tag result.
2410 __ SmiTag(right, scratch1);
2411 __ Ret();
2412 break;
2413 case Token::SHL:
2414 // Remove tags from operands.
2415 __ SmiUntag(scratch1, left);
2416 __ GetLeastBitsFromSmi(scratch2, right, 5);
2417 __ mov(scratch1, Operand(scratch1, LSL, scratch2));
2418 // Check that the signed result fits in a Smi.
2419 __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
2420 __ b(mi, &not_smi_result);
2421 __ SmiTag(right, scratch1);
2422 __ Ret();
2423 break;
2424 default:
2425 UNREACHABLE();
2426 }
2427 __ bind(&not_smi_result);
2428}
2429
2430
Ben Murdoch257744e2011-11-30 15:57:28 +00002431void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
2432 bool smi_operands,
2433 Label* not_numbers,
2434 Label* gc_required) {
Steve Block1e0659c2011-05-24 12:43:12 +01002435 Register left = r1;
2436 Register right = r0;
2437 Register scratch1 = r7;
2438 Register scratch2 = r9;
Steve Block44f0eee2011-05-26 01:26:41 +01002439 Register scratch3 = r4;
Steve Block1e0659c2011-05-24 12:43:12 +01002440
2441 ASSERT(smi_operands || (not_numbers != NULL));
2442 if (smi_operands && FLAG_debug_code) {
2443 __ AbortIfNotSmi(left);
2444 __ AbortIfNotSmi(right);
2445 }
2446
2447 Register heap_number_map = r6;
2448 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2449
2450 switch (op_) {
2451 case Token::ADD:
2452 case Token::SUB:
2453 case Token::MUL:
2454 case Token::DIV:
2455 case Token::MOD: {
2456 // Load left and right operands into d6 and d7 or r0/r1 and r2/r3
2457 // depending on whether VFP3 is available or not.
2458 FloatingPointHelper::Destination destination =
Ben Murdoch8b112d22011-06-08 16:22:53 +01002459 CpuFeatures::IsSupported(VFP3) &&
Steve Block44f0eee2011-05-26 01:26:41 +01002460 op_ != Token::MOD ?
Steve Block1e0659c2011-05-24 12:43:12 +01002461 FloatingPointHelper::kVFPRegisters :
2462 FloatingPointHelper::kCoreRegisters;
2463
2464 // Allocate new heap number for result.
2465 Register result = r5;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002466 GenerateHeapResultAllocation(
2467 masm, result, heap_number_map, scratch1, scratch2, gc_required);
Steve Block1e0659c2011-05-24 12:43:12 +01002468
2469 // Load the operands.
2470 if (smi_operands) {
2471 FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
2472 } else {
2473 FloatingPointHelper::LoadOperands(masm,
2474 destination,
2475 heap_number_map,
2476 scratch1,
2477 scratch2,
2478 not_numbers);
2479 }
2480
2481 // Calculate the result.
2482 if (destination == FloatingPointHelper::kVFPRegisters) {
2483 // Using VFP registers:
2484 // d6: Left value
2485 // d7: Right value
2486 CpuFeatures::Scope scope(VFP3);
2487 switch (op_) {
2488 case Token::ADD:
2489 __ vadd(d5, d6, d7);
2490 break;
2491 case Token::SUB:
2492 __ vsub(d5, d6, d7);
2493 break;
2494 case Token::MUL:
2495 __ vmul(d5, d6, d7);
2496 break;
2497 case Token::DIV:
2498 __ vdiv(d5, d6, d7);
2499 break;
2500 default:
2501 UNREACHABLE();
2502 }
2503
2504 __ sub(r0, result, Operand(kHeapObjectTag));
2505 __ vstr(d5, r0, HeapNumber::kValueOffset);
2506 __ add(r0, r0, Operand(kHeapObjectTag));
2507 __ Ret();
2508 } else {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002509 // Call the C function to handle the double operation.
2510 FloatingPointHelper::CallCCodeForDoubleOperation(masm,
2511 op_,
2512 result,
2513 scratch1);
Ben Murdoch8b112d22011-06-08 16:22:53 +01002514 if (FLAG_debug_code) {
2515 __ stop("Unreachable code.");
2516 }
Steve Block1e0659c2011-05-24 12:43:12 +01002517 }
2518 break;
2519 }
2520 case Token::BIT_OR:
2521 case Token::BIT_XOR:
2522 case Token::BIT_AND:
2523 case Token::SAR:
2524 case Token::SHR:
2525 case Token::SHL: {
2526 if (smi_operands) {
2527 __ SmiUntag(r3, left);
2528 __ SmiUntag(r2, right);
2529 } else {
2530 // Convert operands to 32-bit integers. Right in r2 and left in r3.
Steve Block44f0eee2011-05-26 01:26:41 +01002531 FloatingPointHelper::ConvertNumberToInt32(masm,
2532 left,
2533 r3,
2534 heap_number_map,
2535 scratch1,
2536 scratch2,
2537 scratch3,
2538 d0,
2539 not_numbers);
2540 FloatingPointHelper::ConvertNumberToInt32(masm,
2541 right,
2542 r2,
2543 heap_number_map,
2544 scratch1,
2545 scratch2,
2546 scratch3,
2547 d0,
2548 not_numbers);
Steve Block1e0659c2011-05-24 12:43:12 +01002549 }
2550
2551 Label result_not_a_smi;
2552 switch (op_) {
2553 case Token::BIT_OR:
2554 __ orr(r2, r3, Operand(r2));
2555 break;
2556 case Token::BIT_XOR:
2557 __ eor(r2, r3, Operand(r2));
2558 break;
2559 case Token::BIT_AND:
2560 __ and_(r2, r3, Operand(r2));
2561 break;
2562 case Token::SAR:
2563 // Use only the 5 least significant bits of the shift count.
Steve Block1e0659c2011-05-24 12:43:12 +01002564 __ GetLeastBitsFromInt32(r2, r2, 5);
2565 __ mov(r2, Operand(r3, ASR, r2));
2566 break;
2567 case Token::SHR:
2568 // Use only the 5 least significant bits of the shift count.
2569 __ GetLeastBitsFromInt32(r2, r2, 5);
2570 __ mov(r2, Operand(r3, LSR, r2), SetCC);
2571 // SHR is special because it is required to produce a positive answer.
2572 // The code below for writing into heap numbers isn't capable of
2573 // writing the register as an unsigned int so we go to slow case if we
2574 // hit this case.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002575 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +01002576 __ b(mi, &result_not_a_smi);
2577 } else {
2578 __ b(mi, not_numbers);
2579 }
2580 break;
2581 case Token::SHL:
2582 // Use only the 5 least significant bits of the shift count.
2583 __ GetLeastBitsFromInt32(r2, r2, 5);
2584 __ mov(r2, Operand(r3, LSL, r2));
2585 break;
2586 default:
2587 UNREACHABLE();
2588 }
2589
2590 // Check that the *signed* result fits in a smi.
2591 __ add(r3, r2, Operand(0x40000000), SetCC);
2592 __ b(mi, &result_not_a_smi);
2593 __ SmiTag(r0, r2);
2594 __ Ret();
2595
2596 // Allocate new heap number for result.
2597 __ bind(&result_not_a_smi);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002598 Register result = r5;
2599 if (smi_operands) {
2600 __ AllocateHeapNumber(
2601 result, scratch1, scratch2, heap_number_map, gc_required);
2602 } else {
2603 GenerateHeapResultAllocation(
2604 masm, result, heap_number_map, scratch1, scratch2, gc_required);
2605 }
Steve Block1e0659c2011-05-24 12:43:12 +01002606
2607 // r2: Answer as signed int32.
2608 // r5: Heap number to write answer into.
2609
2610 // Nothing can go wrong now, so move the heap number to r0, which is the
2611 // result.
2612 __ mov(r0, Operand(r5));
2613
Ben Murdoch8b112d22011-06-08 16:22:53 +01002614 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +01002615 // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As
2616 // mentioned above SHR needs to always produce a positive result.
2617 CpuFeatures::Scope scope(VFP3);
2618 __ vmov(s0, r2);
2619 if (op_ == Token::SHR) {
2620 __ vcvt_f64_u32(d0, s0);
2621 } else {
2622 __ vcvt_f64_s32(d0, s0);
2623 }
2624 __ sub(r3, r0, Operand(kHeapObjectTag));
2625 __ vstr(d0, r3, HeapNumber::kValueOffset);
2626 __ Ret();
2627 } else {
2628 // Tail call that writes the int32 in r2 to the heap number in r0, using
2629 // r3 as scratch. r0 is preserved and returned.
2630 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
2631 __ TailCallStub(&stub);
2632 }
2633 break;
2634 }
2635 default:
2636 UNREACHABLE();
2637 }
2638}
2639
2640
2641// Generate the smi code. If the operation on smis are successful this return is
2642// generated. If the result is not a smi and heap number allocation is not
2643// requested the code falls through. If number allocation is requested but a
2644// heap number cannot be allocated the code jumps to the lable gc_required.
Ben Murdoch257744e2011-11-30 15:57:28 +00002645void BinaryOpStub::GenerateSmiCode(
2646 MacroAssembler* masm,
Ben Murdoch8b112d22011-06-08 16:22:53 +01002647 Label* use_runtime,
Steve Block1e0659c2011-05-24 12:43:12 +01002648 Label* gc_required,
2649 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
2650 Label not_smis;
2651
2652 Register left = r1;
2653 Register right = r0;
2654 Register scratch1 = r7;
Steve Block1e0659c2011-05-24 12:43:12 +01002655
2656 // Perform combined smi check on both operands.
2657 __ orr(scratch1, left, Operand(right));
2658 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002659 __ JumpIfNotSmi(scratch1, &not_smis);
Steve Block1e0659c2011-05-24 12:43:12 +01002660
2661 // If the smi-smi operation results in a smi return is generated.
2662 GenerateSmiSmiOperation(masm);
2663
2664 // If heap number results are possible generate the result in an allocated
2665 // heap number.
2666 if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002667 GenerateFPOperation(masm, true, use_runtime, gc_required);
Steve Block1e0659c2011-05-24 12:43:12 +01002668 }
2669 __ bind(&not_smis);
2670}
2671
2672
Ben Murdoch257744e2011-11-30 15:57:28 +00002673void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002674 Label not_smis, call_runtime;
2675
Ben Murdoch257744e2011-11-30 15:57:28 +00002676 if (result_type_ == BinaryOpIC::UNINITIALIZED ||
2677 result_type_ == BinaryOpIC::SMI) {
Steve Block1e0659c2011-05-24 12:43:12 +01002678 // Only allow smi results.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002679 GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS);
Steve Block1e0659c2011-05-24 12:43:12 +01002680 } else {
2681 // Allow heap number result and don't make a transition if a heap number
2682 // cannot be allocated.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002683 GenerateSmiCode(masm,
2684 &call_runtime,
2685 &call_runtime,
2686 ALLOW_HEAPNUMBER_RESULTS);
Steve Block1e0659c2011-05-24 12:43:12 +01002687 }
2688
2689 // Code falls through if the result is not returned as either a smi or heap
2690 // number.
2691 GenerateTypeTransition(masm);
2692
2693 __ bind(&call_runtime);
2694 GenerateCallRuntime(masm);
2695}
2696
2697
Ben Murdoch257744e2011-11-30 15:57:28 +00002698void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
2699 ASSERT(operands_type_ == BinaryOpIC::STRING);
Steve Block1e0659c2011-05-24 12:43:12 +01002700 ASSERT(op_ == Token::ADD);
2701 // Try to add arguments as strings, otherwise, transition to the generic
Ben Murdoch257744e2011-11-30 15:57:28 +00002702 // BinaryOpIC type.
Steve Block1e0659c2011-05-24 12:43:12 +01002703 GenerateAddStrings(masm);
2704 GenerateTypeTransition(masm);
2705}
2706
2707
Ben Murdoch257744e2011-11-30 15:57:28 +00002708void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
2709 Label call_runtime;
2710 ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
2711 ASSERT(op_ == Token::ADD);
2712 // If both arguments are strings, call the string add stub.
2713 // Otherwise, do a transition.
2714
2715 // Registers containing left and right operands respectively.
2716 Register left = r1;
2717 Register right = r0;
2718
2719 // Test if left operand is a string.
2720 __ JumpIfSmi(left, &call_runtime);
2721 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
2722 __ b(ge, &call_runtime);
2723
2724 // Test if right operand is a string.
2725 __ JumpIfSmi(right, &call_runtime);
2726 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
2727 __ b(ge, &call_runtime);
2728
2729 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
2730 GenerateRegisterArgsPush(masm);
2731 __ TailCallStub(&string_add_stub);
2732
2733 __ bind(&call_runtime);
2734 GenerateTypeTransition(masm);
2735}
2736
2737
2738void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
2739 ASSERT(operands_type_ == BinaryOpIC::INT32);
Steve Block1e0659c2011-05-24 12:43:12 +01002740
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002741 Register left = r1;
2742 Register right = r0;
2743 Register scratch1 = r7;
2744 Register scratch2 = r9;
2745 DwVfpRegister double_scratch = d0;
2746 SwVfpRegister single_scratch = s3;
2747
2748 Register heap_number_result = no_reg;
2749 Register heap_number_map = r6;
2750 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2751
2752 Label call_runtime;
2753 // Labels for type transition, used for wrong input or output types.
2754 // Both label are currently actually bound to the same position. We use two
2755 // different label to differentiate the cause leading to type transition.
2756 Label transition;
2757
2758 // Smi-smi fast case.
2759 Label skip;
2760 __ orr(scratch1, left, right);
2761 __ JumpIfNotSmi(scratch1, &skip);
2762 GenerateSmiSmiOperation(masm);
2763 // Fall through if the result is not a smi.
2764 __ bind(&skip);
2765
2766 switch (op_) {
2767 case Token::ADD:
2768 case Token::SUB:
2769 case Token::MUL:
2770 case Token::DIV:
2771 case Token::MOD: {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002772 // Load both operands and check that they are 32-bit integer.
2773 // Jump to type transition if they are not. The registers r0 and r1 (right
2774 // and left) are preserved for the runtime call.
2775 FloatingPointHelper::Destination destination =
2776 (CpuFeatures::IsSupported(VFP3) && op_ != Token::MOD)
2777 ? FloatingPointHelper::kVFPRegisters
2778 : FloatingPointHelper::kCoreRegisters;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002779
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002780 FloatingPointHelper::LoadNumberAsInt32Double(masm,
2781 right,
2782 destination,
2783 d7,
2784 r2,
2785 r3,
2786 heap_number_map,
2787 scratch1,
2788 scratch2,
2789 s0,
2790 &transition);
2791 FloatingPointHelper::LoadNumberAsInt32Double(masm,
2792 left,
2793 destination,
2794 d6,
2795 r4,
2796 r5,
2797 heap_number_map,
2798 scratch1,
2799 scratch2,
2800 s0,
2801 &transition);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002802
2803 if (destination == FloatingPointHelper::kVFPRegisters) {
2804 CpuFeatures::Scope scope(VFP3);
2805 Label return_heap_number;
2806 switch (op_) {
2807 case Token::ADD:
2808 __ vadd(d5, d6, d7);
2809 break;
2810 case Token::SUB:
2811 __ vsub(d5, d6, d7);
2812 break;
2813 case Token::MUL:
2814 __ vmul(d5, d6, d7);
2815 break;
2816 case Token::DIV:
2817 __ vdiv(d5, d6, d7);
2818 break;
2819 default:
2820 UNREACHABLE();
2821 }
2822
2823 if (op_ != Token::DIV) {
2824 // These operations produce an integer result.
2825 // Try to return a smi if we can.
2826 // Otherwise return a heap number if allowed, or jump to type
2827 // transition.
2828
2829 __ EmitVFPTruncate(kRoundToZero,
2830 single_scratch,
2831 d5,
2832 scratch1,
2833 scratch2);
2834
Ben Murdoch257744e2011-11-30 15:57:28 +00002835 if (result_type_ <= BinaryOpIC::INT32) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002836 // If the ne condition is set, result does
2837 // not fit in a 32-bit integer.
2838 __ b(ne, &transition);
2839 }
2840
2841 // Check if the result fits in a smi.
2842 __ vmov(scratch1, single_scratch);
2843 __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
2844 // If not try to return a heap number.
2845 __ b(mi, &return_heap_number);
Steve Block44f0eee2011-05-26 01:26:41 +01002846 // Check for minus zero. Return heap number for minus zero.
2847 Label not_zero;
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002848 __ cmp(scratch1, Operand::Zero());
Steve Block44f0eee2011-05-26 01:26:41 +01002849 __ b(ne, &not_zero);
2850 __ vmov(scratch2, d5.high());
2851 __ tst(scratch2, Operand(HeapNumber::kSignMask));
2852 __ b(ne, &return_heap_number);
2853 __ bind(&not_zero);
2854
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002855 // Tag the result and return.
2856 __ SmiTag(r0, scratch1);
2857 __ Ret();
Steve Block44f0eee2011-05-26 01:26:41 +01002858 } else {
2859 // DIV just falls through to allocating a heap number.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002860 }
2861
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002862 __ bind(&return_heap_number);
2863 // Return a heap number, or fall through to type transition or runtime
2864 // call if we can't.
2865 if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER
2866 : BinaryOpIC::INT32)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002867 // We are using vfp registers so r5 is available.
2868 heap_number_result = r5;
2869 GenerateHeapResultAllocation(masm,
2870 heap_number_result,
2871 heap_number_map,
2872 scratch1,
2873 scratch2,
2874 &call_runtime);
2875 __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
2876 __ vstr(d5, r0, HeapNumber::kValueOffset);
2877 __ mov(r0, heap_number_result);
2878 __ Ret();
2879 }
2880
2881 // A DIV operation expecting an integer result falls through
2882 // to type transition.
2883
2884 } else {
2885 // We preserved r0 and r1 to be able to call runtime.
2886 // Save the left value on the stack.
2887 __ Push(r5, r4);
2888
Steve Block053d10c2011-06-13 19:13:29 +01002889 Label pop_and_call_runtime;
2890
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002891 // Allocate a heap number to store the result.
2892 heap_number_result = r5;
2893 GenerateHeapResultAllocation(masm,
2894 heap_number_result,
2895 heap_number_map,
2896 scratch1,
2897 scratch2,
Steve Block053d10c2011-06-13 19:13:29 +01002898 &pop_and_call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002899
2900 // Load the left value from the value saved on the stack.
2901 __ Pop(r1, r0);
2902
2903 // Call the C function to handle the double operation.
2904 FloatingPointHelper::CallCCodeForDoubleOperation(
2905 masm, op_, heap_number_result, scratch1);
Ben Murdoch8b112d22011-06-08 16:22:53 +01002906 if (FLAG_debug_code) {
2907 __ stop("Unreachable code.");
2908 }
Steve Block053d10c2011-06-13 19:13:29 +01002909
2910 __ bind(&pop_and_call_runtime);
2911 __ Drop(2);
2912 __ b(&call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002913 }
2914
2915 break;
2916 }
2917
2918 case Token::BIT_OR:
2919 case Token::BIT_XOR:
2920 case Token::BIT_AND:
2921 case Token::SAR:
2922 case Token::SHR:
2923 case Token::SHL: {
2924 Label return_heap_number;
2925 Register scratch3 = r5;
2926 // Convert operands to 32-bit integers. Right in r2 and left in r3. The
2927 // registers r0 and r1 (right and left) are preserved for the runtime
2928 // call.
2929 FloatingPointHelper::LoadNumberAsInt32(masm,
2930 left,
2931 r3,
2932 heap_number_map,
2933 scratch1,
2934 scratch2,
2935 scratch3,
2936 d0,
2937 &transition);
2938 FloatingPointHelper::LoadNumberAsInt32(masm,
2939 right,
2940 r2,
2941 heap_number_map,
2942 scratch1,
2943 scratch2,
2944 scratch3,
2945 d0,
2946 &transition);
2947
2948 // The ECMA-262 standard specifies that, for shift operations, only the
2949 // 5 least significant bits of the shift value should be used.
2950 switch (op_) {
2951 case Token::BIT_OR:
2952 __ orr(r2, r3, Operand(r2));
2953 break;
2954 case Token::BIT_XOR:
2955 __ eor(r2, r3, Operand(r2));
2956 break;
2957 case Token::BIT_AND:
2958 __ and_(r2, r3, Operand(r2));
2959 break;
2960 case Token::SAR:
2961 __ and_(r2, r2, Operand(0x1f));
2962 __ mov(r2, Operand(r3, ASR, r2));
2963 break;
2964 case Token::SHR:
2965 __ and_(r2, r2, Operand(0x1f));
2966 __ mov(r2, Operand(r3, LSR, r2), SetCC);
2967 // SHR is special because it is required to produce a positive answer.
2968 // We only get a negative result if the shift value (r2) is 0.
2969 // This result cannot be respresented as a signed 32-bit integer, try
2970 // to return a heap number if we can.
2971 // The non vfp3 code does not support this special case, so jump to
2972 // runtime if we don't support it.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002973 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoch257744e2011-11-30 15:57:28 +00002974 __ b(mi, (result_type_ <= BinaryOpIC::INT32)
2975 ? &transition
2976 : &return_heap_number);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002977 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00002978 __ b(mi, (result_type_ <= BinaryOpIC::INT32)
2979 ? &transition
2980 : &call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002981 }
2982 break;
2983 case Token::SHL:
2984 __ and_(r2, r2, Operand(0x1f));
2985 __ mov(r2, Operand(r3, LSL, r2));
2986 break;
2987 default:
2988 UNREACHABLE();
2989 }
2990
2991 // Check if the result fits in a smi.
2992 __ add(scratch1, r2, Operand(0x40000000), SetCC);
2993 // If not try to return a heap number. (We know the result is an int32.)
2994 __ b(mi, &return_heap_number);
2995 // Tag the result and return.
2996 __ SmiTag(r0, r2);
2997 __ Ret();
2998
2999 __ bind(&return_heap_number);
Ben Murdoch8b112d22011-06-08 16:22:53 +01003000 heap_number_result = r5;
3001 GenerateHeapResultAllocation(masm,
3002 heap_number_result,
3003 heap_number_map,
3004 scratch1,
3005 scratch2,
3006 &call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003007
Ben Murdoch8b112d22011-06-08 16:22:53 +01003008 if (CpuFeatures::IsSupported(VFP3)) {
3009 CpuFeatures::Scope scope(VFP3);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003010 if (op_ != Token::SHR) {
3011 // Convert the result to a floating point value.
3012 __ vmov(double_scratch.low(), r2);
3013 __ vcvt_f64_s32(double_scratch, double_scratch.low());
3014 } else {
3015 // The result must be interpreted as an unsigned 32-bit integer.
3016 __ vmov(double_scratch.low(), r2);
3017 __ vcvt_f64_u32(double_scratch, double_scratch.low());
3018 }
3019
3020 // Store the result.
3021 __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
3022 __ vstr(double_scratch, r0, HeapNumber::kValueOffset);
3023 __ mov(r0, heap_number_result);
3024 __ Ret();
3025 } else {
3026 // Tail call that writes the int32 in r2 to the heap number in r0, using
3027 // r3 as scratch. r0 is preserved and returned.
Ben Murdoch8b112d22011-06-08 16:22:53 +01003028 __ mov(r0, r5);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003029 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
3030 __ TailCallStub(&stub);
3031 }
3032
3033 break;
3034 }
3035
3036 default:
3037 UNREACHABLE();
3038 }
3039
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003040 // We never expect DIV to yield an integer result, so we always generate
3041 // type transition code for DIV operations expecting an integer result: the
3042 // code will fall through to this type transition.
3043 if (transition.is_linked() ||
3044 ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003045 __ bind(&transition);
3046 GenerateTypeTransition(masm);
3047 }
3048
3049 __ bind(&call_runtime);
3050 GenerateCallRuntime(masm);
Steve Block1e0659c2011-05-24 12:43:12 +01003051}
3052
3053
Ben Murdoch257744e2011-11-30 15:57:28 +00003054void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
Steve Block44f0eee2011-05-26 01:26:41 +01003055 Label call_runtime;
3056
3057 if (op_ == Token::ADD) {
3058 // Handle string addition here, because it is the only operation
3059 // that does not do a ToNumber conversion on the operands.
3060 GenerateAddStrings(masm);
3061 }
3062
3063 // Convert oddball arguments to numbers.
3064 Label check, done;
3065 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
3066 __ b(ne, &check);
3067 if (Token::IsBitOp(op_)) {
3068 __ mov(r1, Operand(Smi::FromInt(0)));
3069 } else {
3070 __ LoadRoot(r1, Heap::kNanValueRootIndex);
3071 }
3072 __ jmp(&done);
3073 __ bind(&check);
3074 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
3075 __ b(ne, &done);
3076 if (Token::IsBitOp(op_)) {
3077 __ mov(r0, Operand(Smi::FromInt(0)));
3078 } else {
3079 __ LoadRoot(r0, Heap::kNanValueRootIndex);
3080 }
3081 __ bind(&done);
3082
3083 GenerateHeapNumberStub(masm);
3084}
3085
3086
Ben Murdoch257744e2011-11-30 15:57:28 +00003087void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
Steve Block44f0eee2011-05-26 01:26:41 +01003088 Label call_runtime;
3089 GenerateFPOperation(masm, false, &call_runtime, &call_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01003090
3091 __ bind(&call_runtime);
3092 GenerateCallRuntime(masm);
3093}
3094
3095
Ben Murdoch257744e2011-11-30 15:57:28 +00003096void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003097 Label call_runtime, call_string_add_or_runtime;
Steve Block1e0659c2011-05-24 12:43:12 +01003098
Ben Murdoch8b112d22011-06-08 16:22:53 +01003099 GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
Steve Block1e0659c2011-05-24 12:43:12 +01003100
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003101 GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01003102
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003103 __ bind(&call_string_add_or_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01003104 if (op_ == Token::ADD) {
3105 GenerateAddStrings(masm);
3106 }
3107
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003108 __ bind(&call_runtime);
3109 GenerateCallRuntime(masm);
Steve Block1e0659c2011-05-24 12:43:12 +01003110}
3111
3112
Ben Murdoch257744e2011-11-30 15:57:28 +00003113void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01003114 ASSERT(op_ == Token::ADD);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003115 Label left_not_string, call_runtime;
Steve Block1e0659c2011-05-24 12:43:12 +01003116
3117 Register left = r1;
3118 Register right = r0;
Steve Block1e0659c2011-05-24 12:43:12 +01003119
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003120 // Check if left argument is a string.
3121 __ JumpIfSmi(left, &left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01003122 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003123 __ b(ge, &left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01003124
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003125 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
3126 GenerateRegisterArgsPush(masm);
3127 __ TailCallStub(&string_add_left_stub);
3128
3129 // Left operand is not a string, test right.
3130 __ bind(&left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01003131 __ JumpIfSmi(right, &call_runtime);
3132 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
3133 __ b(ge, &call_runtime);
3134
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003135 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
Steve Block1e0659c2011-05-24 12:43:12 +01003136 GenerateRegisterArgsPush(masm);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003137 __ TailCallStub(&string_add_right_stub);
Steve Block1e0659c2011-05-24 12:43:12 +01003138
3139 // At least one argument is not a string.
3140 __ bind(&call_runtime);
3141}
3142
3143
Ben Murdoch257744e2011-11-30 15:57:28 +00003144void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01003145 GenerateRegisterArgsPush(masm);
3146 switch (op_) {
3147 case Token::ADD:
Ben Murdoch257744e2011-11-30 15:57:28 +00003148 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003149 break;
3150 case Token::SUB:
Ben Murdoch257744e2011-11-30 15:57:28 +00003151 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003152 break;
3153 case Token::MUL:
Ben Murdoch257744e2011-11-30 15:57:28 +00003154 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003155 break;
3156 case Token::DIV:
Ben Murdoch257744e2011-11-30 15:57:28 +00003157 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003158 break;
3159 case Token::MOD:
Ben Murdoch257744e2011-11-30 15:57:28 +00003160 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003161 break;
3162 case Token::BIT_OR:
Ben Murdoch257744e2011-11-30 15:57:28 +00003163 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003164 break;
3165 case Token::BIT_AND:
Ben Murdoch257744e2011-11-30 15:57:28 +00003166 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003167 break;
3168 case Token::BIT_XOR:
Ben Murdoch257744e2011-11-30 15:57:28 +00003169 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003170 break;
3171 case Token::SAR:
Ben Murdoch257744e2011-11-30 15:57:28 +00003172 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003173 break;
3174 case Token::SHR:
Ben Murdoch257744e2011-11-30 15:57:28 +00003175 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003176 break;
3177 case Token::SHL:
Ben Murdoch257744e2011-11-30 15:57:28 +00003178 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003179 break;
3180 default:
3181 UNREACHABLE();
3182 }
3183}
3184
3185
Ben Murdoch257744e2011-11-30 15:57:28 +00003186void BinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm,
3187 Register result,
3188 Register heap_number_map,
3189 Register scratch1,
3190 Register scratch2,
3191 Label* gc_required) {
Steve Block1e0659c2011-05-24 12:43:12 +01003192 // Code below will scratch result if allocation fails. To keep both arguments
3193 // intact for the runtime call result cannot be one of these.
3194 ASSERT(!result.is(r0) && !result.is(r1));
3195
3196 if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
3197 Label skip_allocation, allocated;
3198 Register overwritable_operand = mode_ == OVERWRITE_LEFT ? r1 : r0;
3199 // If the overwritable operand is already an object, we skip the
3200 // allocation of a heap number.
3201 __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
3202 // Allocate a heap number for the result.
3203 __ AllocateHeapNumber(
3204 result, scratch1, scratch2, heap_number_map, gc_required);
3205 __ b(&allocated);
3206 __ bind(&skip_allocation);
3207 // Use object holding the overwritable operand for result.
3208 __ mov(result, Operand(overwritable_operand));
3209 __ bind(&allocated);
3210 } else {
3211 ASSERT(mode_ == NO_OVERWRITE);
3212 __ AllocateHeapNumber(
3213 result, scratch1, scratch2, heap_number_map, gc_required);
3214 }
3215}
3216
3217
Ben Murdoch257744e2011-11-30 15:57:28 +00003218void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01003219 __ Push(r1, r0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003220}
3221
3222
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003223void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003224 // Untagged case: double input in d2, double result goes
3225 // into d2.
3226 // Tagged case: tagged input on top of stack and in r0,
3227 // tagged result (heap number) goes into r0.
3228
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003229 Label input_not_smi;
3230 Label loaded;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003231 Label calculate;
3232 Label invalid_cache;
3233 const Register scratch0 = r9;
3234 const Register scratch1 = r7;
3235 const Register cache_entry = r0;
3236 const bool tagged = (argument_type_ == TAGGED);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003237
Ben Murdoch8b112d22011-06-08 16:22:53 +01003238 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003239 CpuFeatures::Scope scope(VFP3);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003240 if (tagged) {
3241 // Argument is a number and is on stack and in r0.
3242 // Load argument and check if it is a smi.
3243 __ JumpIfNotSmi(r0, &input_not_smi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003244
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003245 // Input is a smi. Convert to double and load the low and high words
3246 // of the double into r2, r3.
3247 __ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
3248 __ b(&loaded);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003249
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003250 __ bind(&input_not_smi);
3251 // Check if input is a HeapNumber.
3252 __ CheckMap(r0,
3253 r1,
3254 Heap::kHeapNumberMapRootIndex,
3255 &calculate,
Ben Murdoch257744e2011-11-30 15:57:28 +00003256 DONT_DO_SMI_CHECK);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003257 // Input is a HeapNumber. Load it to a double register and store the
3258 // low and high words into r2, r3.
3259 __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset));
3260 __ vmov(r2, r3, d0);
3261 } else {
3262 // Input is untagged double in d2. Output goes to d2.
3263 __ vmov(r2, r3, d2);
3264 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003265 __ bind(&loaded);
3266 // r2 = low 32 bits of double value
3267 // r3 = high 32 bits of double value
3268 // Compute hash (the shifts are arithmetic):
3269 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
3270 __ eor(r1, r2, Operand(r3));
3271 __ eor(r1, r1, Operand(r1, ASR, 16));
3272 __ eor(r1, r1, Operand(r1, ASR, 8));
Steve Block44f0eee2011-05-26 01:26:41 +01003273 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
3274 __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003275
3276 // r2 = low 32 bits of double value.
3277 // r3 = high 32 bits of double value.
3278 // r1 = TranscendentalCache::hash(double value).
Steve Block44f0eee2011-05-26 01:26:41 +01003279 Isolate* isolate = masm->isolate();
3280 ExternalReference cache_array =
3281 ExternalReference::transcendental_cache_array_address(isolate);
3282 __ mov(cache_entry, Operand(cache_array));
3283 // cache_entry points to cache array.
3284 int cache_array_index
3285 = type_ * sizeof(isolate->transcendental_cache()->caches_[0]);
3286 __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003287 // r0 points to the cache for the type type_.
3288 // If NULL, the cache hasn't been initialized yet, so go through runtime.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003289 __ cmp(cache_entry, Operand(0, RelocInfo::NONE));
3290 __ b(eq, &invalid_cache);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003291
3292#ifdef DEBUG
3293 // Check that the layout of cache elements match expectations.
Steve Block44f0eee2011-05-26 01:26:41 +01003294 { TranscendentalCache::SubCache::Element test_elem[2];
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003295 char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
3296 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
3297 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
3298 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
3299 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
3300 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
3301 CHECK_EQ(0, elem_in0 - elem_start);
3302 CHECK_EQ(kIntSize, elem_in1 - elem_start);
3303 CHECK_EQ(2 * kIntSize, elem_out - elem_start);
3304 }
3305#endif
3306
3307 // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
3308 __ add(r1, r1, Operand(r1, LSL, 1));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003309 __ add(cache_entry, cache_entry, Operand(r1, LSL, 2));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003310 // Check if cache matches: Double value is stored in uint32_t[2] array.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003311 __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003312 __ cmp(r2, r4);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003313 __ b(ne, &calculate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003314 __ cmp(r3, r5);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003315 __ b(ne, &calculate);
3316 // Cache hit. Load result, cleanup and return.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003317 Counters* counters = masm->isolate()->counters();
3318 __ IncrementCounter(
3319 counters->transcendental_cache_hit(), 1, scratch0, scratch1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003320 if (tagged) {
3321 // Pop input value from stack and load result into r0.
3322 __ pop();
3323 __ mov(r0, Operand(r6));
3324 } else {
3325 // Load result into d2.
3326 __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
3327 }
3328 __ Ret();
Ben Murdoch8b112d22011-06-08 16:22:53 +01003329 } // if (CpuFeatures::IsSupported(VFP3))
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003330
3331 __ bind(&calculate);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003332 Counters* counters = masm->isolate()->counters();
3333 __ IncrementCounter(
3334 counters->transcendental_cache_miss(), 1, scratch0, scratch1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003335 if (tagged) {
3336 __ bind(&invalid_cache);
Steve Block44f0eee2011-05-26 01:26:41 +01003337 ExternalReference runtime_function =
3338 ExternalReference(RuntimeFunction(), masm->isolate());
3339 __ TailCallExternalReference(runtime_function, 1, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003340 } else {
Ben Murdoch8b112d22011-06-08 16:22:53 +01003341 if (!CpuFeatures::IsSupported(VFP3)) UNREACHABLE();
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003342 CpuFeatures::Scope scope(VFP3);
3343
3344 Label no_update;
3345 Label skip_cache;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003346
3347 // Call C function to calculate the result and update the cache.
3348 // Register r0 holds precalculated cache entry address; preserve
3349 // it on the stack and pop it into register cache_entry after the
3350 // call.
3351 __ push(cache_entry);
3352 GenerateCallCFunction(masm, scratch0);
3353 __ GetCFunctionDoubleResult(d2);
3354
3355 // Try to update the cache. If we cannot allocate a
3356 // heap number, we return the result without updating.
3357 __ pop(cache_entry);
3358 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
3359 __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update);
3360 __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
3361 __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit());
3362 __ Ret();
3363
3364 __ bind(&invalid_cache);
3365 // The cache is invalid. Call runtime which will recreate the
3366 // cache.
3367 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
3368 __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache);
3369 __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003370 {
3371 FrameScope scope(masm, StackFrame::INTERNAL);
3372 __ push(r0);
3373 __ CallRuntime(RuntimeFunction(), 1);
3374 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003375 __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
3376 __ Ret();
3377
3378 __ bind(&skip_cache);
3379 // Call C function to calculate the result and answer directly
3380 // without updating the cache.
3381 GenerateCallCFunction(masm, scratch0);
3382 __ GetCFunctionDoubleResult(d2);
3383 __ bind(&no_update);
3384
3385 // We return the value in d2 without adding it to the cache, but
3386 // we cause a scavenging GC so that future allocations will succeed.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003387 {
3388 FrameScope scope(masm, StackFrame::INTERNAL);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003389
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003390 // Allocate an aligned object larger than a HeapNumber.
3391 ASSERT(4 * kPointerSize >= HeapNumber::kSize);
3392 __ mov(scratch0, Operand(4 * kPointerSize));
3393 __ push(scratch0);
3394 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
3395 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003396 __ Ret();
3397 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003398}
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003399
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003400
3401void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
3402 Register scratch) {
Steve Block44f0eee2011-05-26 01:26:41 +01003403 Isolate* isolate = masm->isolate();
3404
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003405 __ push(lr);
Ben Murdoch257744e2011-11-30 15:57:28 +00003406 __ PrepareCallCFunction(0, 1, scratch);
3407 if (masm->use_eabi_hardfloat()) {
3408 __ vmov(d0, d2);
3409 } else {
3410 __ vmov(r0, r1, d2);
3411 }
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003412 AllowExternalCallThatCantCauseGC scope(masm);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003413 switch (type_) {
3414 case TranscendentalCache::SIN:
Ben Murdoch257744e2011-11-30 15:57:28 +00003415 __ CallCFunction(ExternalReference::math_sin_double_function(isolate),
3416 0, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003417 break;
3418 case TranscendentalCache::COS:
Ben Murdoch257744e2011-11-30 15:57:28 +00003419 __ CallCFunction(ExternalReference::math_cos_double_function(isolate),
3420 0, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003421 break;
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003422 case TranscendentalCache::TAN:
3423 __ CallCFunction(ExternalReference::math_tan_double_function(isolate),
3424 0, 1);
3425 break;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003426 case TranscendentalCache::LOG:
Ben Murdoch257744e2011-11-30 15:57:28 +00003427 __ CallCFunction(ExternalReference::math_log_double_function(isolate),
3428 0, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003429 break;
3430 default:
3431 UNIMPLEMENTED();
3432 break;
3433 }
3434 __ pop(lr);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003435}
3436
3437
3438Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
3439 switch (type_) {
3440 // Add more cases when necessary.
3441 case TranscendentalCache::SIN: return Runtime::kMath_sin;
3442 case TranscendentalCache::COS: return Runtime::kMath_cos;
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003443 case TranscendentalCache::TAN: return Runtime::kMath_tan;
Ben Murdochb0fe1622011-05-05 13:52:32 +01003444 case TranscendentalCache::LOG: return Runtime::kMath_log;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003445 default:
3446 UNIMPLEMENTED();
3447 return Runtime::kAbort;
3448 }
3449}
3450
3451
3452void StackCheckStub::Generate(MacroAssembler* masm) {
Ben Murdochf87a2032010-10-22 12:50:53 +01003453 __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003454}
3455
3456
Steve Block44f0eee2011-05-26 01:26:41 +01003457void MathPowStub::Generate(MacroAssembler* masm) {
Ben Murdochc7cc0282012-03-05 14:35:55 +00003458 CpuFeatures::Scope vfp3_scope(VFP3);
3459 const Register base = r1;
3460 const Register exponent = r2;
3461 const Register heapnumbermap = r5;
3462 const Register heapnumber = r0;
3463 const DoubleRegister double_base = d1;
3464 const DoubleRegister double_exponent = d2;
3465 const DoubleRegister double_result = d3;
3466 const DoubleRegister double_scratch = d0;
3467 const SwVfpRegister single_scratch = s0;
3468 const Register scratch = r9;
3469 const Register scratch2 = r7;
Steve Block44f0eee2011-05-26 01:26:41 +01003470
Ben Murdochc7cc0282012-03-05 14:35:55 +00003471 Label call_runtime, done, exponent_not_smi, int_exponent;
3472 if (exponent_type_ == ON_STACK) {
3473 Label base_is_smi, unpack_exponent;
3474 // The exponent and base are supplied as arguments on the stack.
3475 // This can only happen if the stub is called from non-optimized code.
3476 // Load input parameters from stack to double registers.
Steve Block44f0eee2011-05-26 01:26:41 +01003477 __ ldr(base, MemOperand(sp, 1 * kPointerSize));
3478 __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
3479
Ben Murdochc7cc0282012-03-05 14:35:55 +00003480 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
Steve Block44f0eee2011-05-26 01:26:41 +01003481
Ben Murdochc7cc0282012-03-05 14:35:55 +00003482 __ JumpIfSmi(base, &base_is_smi);
Steve Block44f0eee2011-05-26 01:26:41 +01003483 __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
3484 __ cmp(scratch, heapnumbermap);
3485 __ b(ne, &call_runtime);
Steve Block44f0eee2011-05-26 01:26:41 +01003486
Ben Murdochc7cc0282012-03-05 14:35:55 +00003487 __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
3488 __ jmp(&unpack_exponent);
3489
3490 __ bind(&base_is_smi);
3491 __ SmiUntag(base);
3492 __ vmov(single_scratch, base);
3493 __ vcvt_f64_s32(double_base, single_scratch);
3494 __ bind(&unpack_exponent);
3495
Steve Block44f0eee2011-05-26 01:26:41 +01003496 __ JumpIfNotSmi(exponent, &exponent_not_smi);
3497 __ SmiUntag(exponent);
Ben Murdochc7cc0282012-03-05 14:35:55 +00003498 __ jmp(&int_exponent);
Steve Block44f0eee2011-05-26 01:26:41 +01003499
3500 __ bind(&exponent_not_smi);
3501 __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
3502 __ cmp(scratch, heapnumbermap);
3503 __ b(ne, &call_runtime);
Steve Block44f0eee2011-05-26 01:26:41 +01003504 __ vldr(double_exponent,
3505 FieldMemOperand(exponent, HeapNumber::kValueOffset));
Ben Murdochc7cc0282012-03-05 14:35:55 +00003506 } else if (exponent_type_ == TAGGED) {
3507 // Base is already in double_base.
3508 __ JumpIfNotSmi(exponent, &exponent_not_smi);
3509 __ SmiUntag(exponent);
3510 __ jmp(&int_exponent);
Steve Block44f0eee2011-05-26 01:26:41 +01003511
Ben Murdochc7cc0282012-03-05 14:35:55 +00003512 __ bind(&exponent_not_smi);
3513 __ vldr(double_exponent,
3514 FieldMemOperand(exponent, HeapNumber::kValueOffset));
3515 }
3516
3517 if (exponent_type_ != INTEGER) {
3518 Label int_exponent_convert;
3519 // Detect integer exponents stored as double.
3520 __ vcvt_u32_f64(single_scratch, double_exponent);
3521 // We do not check for NaN or Infinity here because comparing numbers on
3522 // ARM correctly distinguishes NaNs. We end up calling the built-in.
3523 __ vcvt_f64_u32(double_scratch, single_scratch);
3524 __ VFPCompareAndSetFlags(double_scratch, double_exponent);
3525 __ b(eq, &int_exponent_convert);
3526
3527 if (exponent_type_ == ON_STACK) {
3528 // Detect square root case. Crankshaft detects constant +/-0.5 at
3529 // compile time and uses DoMathPowHalf instead. We then skip this check
3530 // for non-constant cases of +/-0.5 as these hardly occur.
3531 Label not_plus_half;
3532
3533 // Test for 0.5.
3534 __ vmov(double_scratch, 0.5);
3535 __ VFPCompareAndSetFlags(double_exponent, double_scratch);
3536 __ b(ne, &not_plus_half);
3537
3538 // Calculates square root of base. Check for the special case of
3539 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
3540 __ vmov(double_scratch, -V8_INFINITY);
3541 __ VFPCompareAndSetFlags(double_base, double_scratch);
3542 __ vneg(double_result, double_scratch, eq);
3543 __ b(eq, &done);
3544
3545 // Add +0 to convert -0 to +0.
3546 __ vadd(double_scratch, double_base, kDoubleRegZero);
3547 __ vsqrt(double_result, double_scratch);
3548 __ jmp(&done);
3549
3550 __ bind(&not_plus_half);
3551 __ vmov(double_scratch, -0.5);
3552 __ VFPCompareAndSetFlags(double_exponent, double_scratch);
3553 __ b(ne, &call_runtime);
3554
3555 // Calculates square root of base. Check for the special case of
3556 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
3557 __ vmov(double_scratch, -V8_INFINITY);
3558 __ VFPCompareAndSetFlags(double_base, double_scratch);
3559 __ vmov(double_result, kDoubleRegZero, eq);
3560 __ b(eq, &done);
3561
3562 // Add +0 to convert -0 to +0.
3563 __ vadd(double_scratch, double_base, kDoubleRegZero);
3564 __ vmov(double_result, 1);
3565 __ vsqrt(double_scratch, double_scratch);
3566 __ vdiv(double_result, double_result, double_scratch);
3567 __ jmp(&done);
3568 }
3569
Steve Block44f0eee2011-05-26 01:26:41 +01003570 __ push(lr);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003571 {
3572 AllowExternalCallThatCantCauseGC scope(masm);
Ben Murdochc7cc0282012-03-05 14:35:55 +00003573 __ PrepareCallCFunction(0, 2, scratch);
3574 __ SetCallCDoubleArguments(double_base, double_exponent);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003575 __ CallCFunction(
3576 ExternalReference::power_double_double_function(masm->isolate()),
3577 0, 2);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003578 }
Ben Murdochc7cc0282012-03-05 14:35:55 +00003579 __ pop(lr);
3580 __ GetCFunctionDoubleResult(double_result);
3581 __ jmp(&done);
3582
3583 __ bind(&int_exponent_convert);
3584 __ vcvt_u32_f64(single_scratch, double_exponent);
3585 __ vmov(exponent, single_scratch);
Steve Block44f0eee2011-05-26 01:26:41 +01003586 }
3587
Ben Murdochc7cc0282012-03-05 14:35:55 +00003588 // Calculate power with integer exponent.
3589 __ bind(&int_exponent);
3590
3591 __ mov(scratch, exponent); // Back up exponent.
3592 __ vmov(double_scratch, double_base); // Back up base.
3593 __ vmov(double_result, 1.0);
3594
3595 // Get absolute value of exponent.
3596 __ cmp(scratch, Operand(0));
3597 __ mov(scratch2, Operand(0), LeaveCC, mi);
3598 __ sub(scratch, scratch2, scratch, LeaveCC, mi);
3599
3600 Label while_true;
3601 __ bind(&while_true);
3602 __ mov(scratch, Operand(scratch, ASR, 1), SetCC);
3603 __ vmul(double_result, double_result, double_scratch, cs);
3604 __ vmul(double_scratch, double_scratch, double_scratch, ne);
3605 __ b(ne, &while_true);
3606
3607 __ cmp(exponent, Operand(0));
3608 __ b(ge, &done);
3609 __ vmov(double_scratch, 1.0);
3610 __ vdiv(double_result, double_scratch, double_result);
3611 // Test whether result is zero. Bail out to check for subnormal result.
3612 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
3613 __ VFPCompareAndSetFlags(double_result, 0.0);
3614 __ b(ne, &done);
3615 // double_exponent may not containe the exponent value if the input was a
3616 // smi. We set it with exponent value before bailing out.
3617 __ vmov(single_scratch, exponent);
3618 __ vcvt_f64_s32(double_exponent, single_scratch);
3619
3620 // Returning or bailing out.
3621 Counters* counters = masm->isolate()->counters();
3622 if (exponent_type_ == ON_STACK) {
3623 // The arguments are still on the stack.
3624 __ bind(&call_runtime);
3625 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
3626
3627 // The stub is called from non-optimized code, which expects the result
3628 // as heap number in exponent.
3629 __ bind(&done);
3630 __ AllocateHeapNumber(
3631 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
3632 __ vstr(double_result,
3633 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
3634 ASSERT(heapnumber.is(r0));
3635 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
3636 __ Ret(2);
3637 } else {
3638 __ push(lr);
3639 {
3640 AllowExternalCallThatCantCauseGC scope(masm);
3641 __ PrepareCallCFunction(0, 2, scratch);
3642 __ SetCallCDoubleArguments(double_base, double_exponent);
3643 __ CallCFunction(
3644 ExternalReference::power_double_double_function(masm->isolate()),
3645 0, 2);
3646 }
3647 __ pop(lr);
3648 __ GetCFunctionDoubleResult(double_result);
3649
3650 __ bind(&done);
3651 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
3652 __ Ret();
3653 }
Steve Block44f0eee2011-05-26 01:26:41 +01003654}
3655
3656
3657bool CEntryStub::NeedsImmovableCode() {
3658 return true;
3659}
3660
3661
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003662bool CEntryStub::IsPregenerated() {
3663 return (!save_doubles_ || ISOLATE->fp_stubs_generated()) &&
3664 result_size_ == 1;
3665}
3666
3667
3668void CodeStub::GenerateStubsAheadOfTime() {
3669 CEntryStub::GenerateAheadOfTime();
3670 WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime();
3671 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime();
3672 RecordWriteStub::GenerateFixedRegStubsAheadOfTime();
3673}
3674
3675
3676void CodeStub::GenerateFPStubs() {
3677 CEntryStub save_doubles(1, kSaveFPRegs);
3678 Handle<Code> code = save_doubles.GetCode();
3679 code->set_is_pregenerated(true);
3680 StoreBufferOverflowStub stub(kSaveFPRegs);
3681 stub.GetCode()->set_is_pregenerated(true);
3682 code->GetIsolate()->set_fp_stubs_generated(true);
3683}
3684
3685
3686void CEntryStub::GenerateAheadOfTime() {
3687 CEntryStub stub(1, kDontSaveFPRegs);
3688 Handle<Code> code = stub.GetCode();
3689 code->set_is_pregenerated(true);
3690}
3691
3692
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003693void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003694 __ Throw(r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003695}
3696
3697
3698void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
3699 UncatchableExceptionType type) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003700 __ ThrowUncatchable(type, r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003701}
3702
3703
3704void CEntryStub::GenerateCore(MacroAssembler* masm,
3705 Label* throw_normal_exception,
3706 Label* throw_termination_exception,
3707 Label* throw_out_of_memory_exception,
3708 bool do_gc,
Steve Block1e0659c2011-05-24 12:43:12 +01003709 bool always_allocate) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003710 // r0: result parameter for PerformGC, if any
3711 // r4: number of arguments including receiver (C callee-saved)
3712 // r5: pointer to builtin function (C callee-saved)
3713 // r6: pointer to the first argument (C callee-saved)
Steve Block44f0eee2011-05-26 01:26:41 +01003714 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003715
3716 if (do_gc) {
3717 // Passing r0.
Ben Murdoch257744e2011-11-30 15:57:28 +00003718 __ PrepareCallCFunction(1, 0, r1);
3719 __ CallCFunction(ExternalReference::perform_gc_function(isolate),
3720 1, 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003721 }
3722
3723 ExternalReference scope_depth =
Steve Block44f0eee2011-05-26 01:26:41 +01003724 ExternalReference::heap_always_allocate_scope_depth(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003725 if (always_allocate) {
3726 __ mov(r0, Operand(scope_depth));
3727 __ ldr(r1, MemOperand(r0));
3728 __ add(r1, r1, Operand(1));
3729 __ str(r1, MemOperand(r0));
3730 }
3731
3732 // Call C built-in.
3733 // r0 = argc, r1 = argv
3734 __ mov(r0, Operand(r4));
3735 __ mov(r1, Operand(r6));
3736
Steve Block1e0659c2011-05-24 12:43:12 +01003737#if defined(V8_HOST_ARCH_ARM)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003738 int frame_alignment = MacroAssembler::ActivationFrameAlignment();
3739 int frame_alignment_mask = frame_alignment - 1;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003740 if (FLAG_debug_code) {
3741 if (frame_alignment > kPointerSize) {
3742 Label alignment_as_expected;
3743 ASSERT(IsPowerOf2(frame_alignment));
Steve Block1e0659c2011-05-24 12:43:12 +01003744 __ tst(sp, Operand(frame_alignment_mask));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003745 __ b(eq, &alignment_as_expected);
3746 // Don't use Check here, as it will call Runtime_Abort re-entering here.
3747 __ stop("Unexpected alignment");
3748 __ bind(&alignment_as_expected);
3749 }
3750 }
3751#endif
3752
Steve Block44f0eee2011-05-26 01:26:41 +01003753 __ mov(r2, Operand(ExternalReference::isolate_address()));
3754
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003755 // To let the GC traverse the return address of the exit frames, we need to
3756 // know where the return address is. The CEntryStub is unmovable, so
3757 // we can store the address on the stack to be able to find it again and
3758 // we never have to restore it, because it will not change.
Steve Block1e0659c2011-05-24 12:43:12 +01003759 // Compute the return address in lr to return to after the jump below. Pc is
3760 // already at '+ 8' from the current instruction but return is after three
3761 // instructions so add another 4 to pc to get the return address.
3762 masm->add(lr, pc, Operand(4));
3763 __ str(lr, MemOperand(sp, 0));
3764 masm->Jump(r5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003765
3766 if (always_allocate) {
3767 // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
3768 // though (contain the result).
3769 __ mov(r2, Operand(scope_depth));
3770 __ ldr(r3, MemOperand(r2));
3771 __ sub(r3, r3, Operand(1));
3772 __ str(r3, MemOperand(r2));
3773 }
3774
3775 // check for failure result
3776 Label failure_returned;
3777 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
3778 // Lower 2 bits of r2 are 0 iff r0 has failure tag.
3779 __ add(r2, r0, Operand(1));
3780 __ tst(r2, Operand(kFailureTagMask));
3781 __ b(eq, &failure_returned);
3782
3783 // Exit C frame and return.
3784 // r0:r1: result
3785 // sp: stack pointer
3786 // fp: frame pointer
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003787 // Callee-saved register r4 still holds argc.
3788 __ LeaveExitFrame(save_doubles_, r4);
3789 __ mov(pc, lr);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003790
3791 // check if we should retry or throw exception
3792 Label retry;
3793 __ bind(&failure_returned);
3794 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
3795 __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
3796 __ b(eq, &retry);
3797
3798 // Special handling of out of memory exceptions.
3799 Failure* out_of_memory = Failure::OutOfMemoryException();
3800 __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
3801 __ b(eq, throw_out_of_memory_exception);
3802
3803 // Retrieve the pending exception and clear the variable.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003804 __ mov(r3, Operand(isolate->factory()->the_hole_value()));
Ben Murdoch589d6972011-11-30 16:04:58 +00003805 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
Steve Block44f0eee2011-05-26 01:26:41 +01003806 isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003807 __ ldr(r0, MemOperand(ip));
3808 __ str(r3, MemOperand(ip));
3809
3810 // Special handling of termination exceptions which are uncatchable
3811 // by javascript code.
Steve Block44f0eee2011-05-26 01:26:41 +01003812 __ cmp(r0, Operand(isolate->factory()->termination_exception()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003813 __ b(eq, throw_termination_exception);
3814
3815 // Handle normal exception.
3816 __ jmp(throw_normal_exception);
3817
3818 __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
3819}
3820
3821
3822void CEntryStub::Generate(MacroAssembler* masm) {
3823 // Called from JavaScript; parameters are on stack as if calling JS function
3824 // r0: number of arguments including receiver
3825 // r1: pointer to builtin function
3826 // fp: frame pointer (restored after C call)
3827 // sp: stack pointer (restored as callee's sp after C call)
3828 // cp: current context (C callee-saved)
3829
3830 // Result returned in r0 or r0+r1 by default.
3831
3832 // NOTE: Invocations of builtins may return failure objects
3833 // instead of a proper result. The builtin entry handles
3834 // this by performing a garbage collection and retrying the
3835 // builtin once.
3836
Steve Block1e0659c2011-05-24 12:43:12 +01003837 // Compute the argv pointer in a callee-saved register.
3838 __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
3839 __ sub(r6, r6, Operand(kPointerSize));
3840
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003841 // Enter the exit frame that transitions from JavaScript to C++.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003842 FrameScope scope(masm, StackFrame::MANUAL);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003843 __ EnterExitFrame(save_doubles_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003844
Ben Murdochc7cc0282012-03-05 14:35:55 +00003845 // Set up argc and the builtin function in callee-saved registers.
Steve Block1e0659c2011-05-24 12:43:12 +01003846 __ mov(r4, Operand(r0));
3847 __ mov(r5, Operand(r1));
3848
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003849 // r4: number of arguments (C callee-saved)
3850 // r5: pointer to builtin function (C callee-saved)
3851 // r6: pointer to first argument (C callee-saved)
3852
3853 Label throw_normal_exception;
3854 Label throw_termination_exception;
3855 Label throw_out_of_memory_exception;
3856
3857 // Call into the runtime system.
3858 GenerateCore(masm,
3859 &throw_normal_exception,
3860 &throw_termination_exception,
3861 &throw_out_of_memory_exception,
3862 false,
Steve Block1e0659c2011-05-24 12:43:12 +01003863 false);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003864
3865 // Do space-specific GC and retry runtime call.
3866 GenerateCore(masm,
3867 &throw_normal_exception,
3868 &throw_termination_exception,
3869 &throw_out_of_memory_exception,
3870 true,
Steve Block1e0659c2011-05-24 12:43:12 +01003871 false);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003872
3873 // Do full GC and retry runtime call one final time.
3874 Failure* failure = Failure::InternalError();
3875 __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
3876 GenerateCore(masm,
3877 &throw_normal_exception,
3878 &throw_termination_exception,
3879 &throw_out_of_memory_exception,
3880 true,
Steve Block1e0659c2011-05-24 12:43:12 +01003881 true);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003882
3883 __ bind(&throw_out_of_memory_exception);
3884 GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
3885
3886 __ bind(&throw_termination_exception);
3887 GenerateThrowUncatchable(masm, TERMINATION);
3888
3889 __ bind(&throw_normal_exception);
3890 GenerateThrowTOS(masm);
3891}
3892
3893
3894void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
3895 // r0: code entry
3896 // r1: function
3897 // r2: receiver
3898 // r3: argc
3899 // [sp+0]: argv
3900
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003901 Label invoke, handler_entry, exit;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003902
3903 // Called from C, so do not pop argc and args on exit (preserve sp)
3904 // No need to save register-passed args
3905 // Save callee-saved registers (incl. cp and fp), sp, and lr
3906 __ stm(db_w, sp, kCalleeSaved | lr.bit());
3907
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003908 if (CpuFeatures::IsSupported(VFP3)) {
3909 CpuFeatures::Scope scope(VFP3);
3910 // Save callee-saved vfp registers.
3911 __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003912 // Set up the reserved register for 0.0.
3913 __ vmov(kDoubleRegZero, 0.0);
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003914 }
3915
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003916 // Get address of argv, see stm above.
3917 // r0: code entry
3918 // r1: function
3919 // r2: receiver
3920 // r3: argc
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003921
Ben Murdochc7cc0282012-03-05 14:35:55 +00003922 // Set up argv in r4.
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003923 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
3924 if (CpuFeatures::IsSupported(VFP3)) {
3925 offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
3926 }
3927 __ ldr(r4, MemOperand(sp, offset_to_argv));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003928
3929 // Push a frame with special values setup to mark it as an entry frame.
3930 // r0: code entry
3931 // r1: function
3932 // r2: receiver
3933 // r3: argc
3934 // r4: argv
Steve Block44f0eee2011-05-26 01:26:41 +01003935 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003936 __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
3937 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
3938 __ mov(r7, Operand(Smi::FromInt(marker)));
3939 __ mov(r6, Operand(Smi::FromInt(marker)));
Steve Block44f0eee2011-05-26 01:26:41 +01003940 __ mov(r5,
Ben Murdoch589d6972011-11-30 16:04:58 +00003941 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003942 __ ldr(r5, MemOperand(r5));
3943 __ Push(r8, r7, r6, r5);
3944
Ben Murdochc7cc0282012-03-05 14:35:55 +00003945 // Set up frame pointer for the frame to be pushed.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003946 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
3947
Ben Murdochb0fe1622011-05-05 13:52:32 +01003948 // If this is the outermost JS call, set js_entry_sp value.
Steve Block053d10c2011-06-13 19:13:29 +01003949 Label non_outermost_js;
Ben Murdoch589d6972011-11-30 16:04:58 +00003950 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003951 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
3952 __ ldr(r6, MemOperand(r5));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00003953 __ cmp(r6, Operand::Zero());
Steve Block053d10c2011-06-13 19:13:29 +01003954 __ b(ne, &non_outermost_js);
3955 __ str(fp, MemOperand(r5));
3956 __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
3957 Label cont;
3958 __ b(&cont);
3959 __ bind(&non_outermost_js);
3960 __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
3961 __ bind(&cont);
3962 __ push(ip);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003963
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003964 // Jump to a faked try block that does the invoke, with a faked catch
3965 // block that sets the pending exception.
3966 __ jmp(&invoke);
3967 __ bind(&handler_entry);
3968 handler_offset_ = handler_entry.pos();
3969 // Caught exception: Store result (exception) in the pending exception
3970 // field in the JSEnv and return a failure sentinel. Coming in here the
3971 // fp will be invalid because the PushTryHandler below sets it to 0 to
3972 // signal the existence of the JSEntry frame.
Ben Murdoch589d6972011-11-30 16:04:58 +00003973 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
Steve Block44f0eee2011-05-26 01:26:41 +01003974 isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003975 __ str(r0, MemOperand(ip));
3976 __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
3977 __ b(&exit);
3978
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003979 // Invoke: Link this frame into the handler chain. There's only one
3980 // handler block in this code object, so its index is 0.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003981 __ bind(&invoke);
3982 // Must preserve r0-r4, r5-r7 are available.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003983 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER, 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003984 // If an exception not caught by another handler occurs, this handler
3985 // returns control to the code after the bl(&invoke) above, which
3986 // restores all kCalleeSaved registers (including cp and fp) to their
3987 // saved values before returning a failure to C.
3988
3989 // Clear any pending exceptions.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003990 __ mov(r5, Operand(isolate->factory()->the_hole_value()));
Ben Murdoch589d6972011-11-30 16:04:58 +00003991 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
Steve Block44f0eee2011-05-26 01:26:41 +01003992 isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003993 __ str(r5, MemOperand(ip));
3994
3995 // Invoke the function by calling through JS entry trampoline builtin.
3996 // Notice that we cannot store a reference to the trampoline code directly in
3997 // this stub, because runtime stubs are not traversed when doing GC.
3998
3999 // Expected registers by Builtins::JSEntryTrampoline
4000 // r0: code entry
4001 // r1: function
4002 // r2: receiver
4003 // r3: argc
4004 // r4: argv
4005 if (is_construct) {
Steve Block44f0eee2011-05-26 01:26:41 +01004006 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
4007 isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004008 __ mov(ip, Operand(construct_entry));
4009 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01004010 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004011 __ mov(ip, Operand(entry));
4012 }
4013 __ ldr(ip, MemOperand(ip)); // deref address
4014
4015 // Branch and link to JSEntryTrampoline. We don't use the double underscore
4016 // macro for the add instruction because we don't want the coverage tool
4017 // inserting instructions here after we read the pc.
4018 __ mov(lr, Operand(pc));
4019 masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
4020
Steve Block053d10c2011-06-13 19:13:29 +01004021 // Unlink this frame from the handler chain.
4022 __ PopTryHandler();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004023
4024 __ bind(&exit); // r0 holds result
Steve Block053d10c2011-06-13 19:13:29 +01004025 // Check if the current stack frame is marked as the outermost JS frame.
4026 Label non_outermost_js_2;
4027 __ pop(r5);
4028 __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
4029 __ b(ne, &non_outermost_js_2);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004030 __ mov(r6, Operand::Zero());
Steve Block053d10c2011-06-13 19:13:29 +01004031 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
4032 __ str(r6, MemOperand(r5));
4033 __ bind(&non_outermost_js_2);
Steve Block053d10c2011-06-13 19:13:29 +01004034
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004035 // Restore the top frame descriptors from the stack.
4036 __ pop(r3);
Steve Block44f0eee2011-05-26 01:26:41 +01004037 __ mov(ip,
Ben Murdoch589d6972011-11-30 16:04:58 +00004038 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004039 __ str(r3, MemOperand(ip));
4040
4041 // Reset the stack to the callee saved registers.
4042 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
4043
4044 // Restore callee-saved registers and return.
4045#ifdef DEBUG
4046 if (FLAG_debug_code) {
4047 __ mov(lr, Operand(pc));
4048 }
4049#endif
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01004050
4051 if (CpuFeatures::IsSupported(VFP3)) {
4052 CpuFeatures::Scope scope(VFP3);
4053 // Restore callee-saved vfp registers.
4054 __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
4055 }
4056
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004057 __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
4058}
4059
4060
Steve Block1e0659c2011-05-24 12:43:12 +01004061// Uses registers r0 to r4.
4062// Expected input (depending on whether args are in registers or on the stack):
4063// * object: r0 or at sp + 1 * kPointerSize.
4064// * function: r1 or at sp.
4065//
4066// An inlined call site may have been generated before calling this stub.
4067// In this case the offset to the inline site to patch is passed on the stack,
4068// in the safepoint slot for register r4.
4069// (See LCodeGen::DoInstanceOfKnownGlobal)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004070void InstanceofStub::Generate(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01004071 // Call site inlining and patching implies arguments in registers.
4072 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
4073 // ReturnTrueFalse is only implemented for inlined call sites.
4074 ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
4075
Ben Murdochb0fe1622011-05-05 13:52:32 +01004076 // Fixed register usage throughout the stub:
Steve Block9fac8402011-05-12 15:51:54 +01004077 const Register object = r0; // Object (lhs).
Steve Block1e0659c2011-05-24 12:43:12 +01004078 Register map = r3; // Map of the object.
Steve Block9fac8402011-05-12 15:51:54 +01004079 const Register function = r1; // Function (rhs).
Ben Murdochb0fe1622011-05-05 13:52:32 +01004080 const Register prototype = r4; // Prototype of the function.
Steve Block1e0659c2011-05-24 12:43:12 +01004081 const Register inline_site = r9;
Ben Murdochb0fe1622011-05-05 13:52:32 +01004082 const Register scratch = r2;
Steve Block1e0659c2011-05-24 12:43:12 +01004083
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004084 const int32_t kDeltaToLoadBoolResult = 4 * kPointerSize;
Steve Block1e0659c2011-05-24 12:43:12 +01004085
Ben Murdochb0fe1622011-05-05 13:52:32 +01004086 Label slow, loop, is_instance, is_not_instance, not_js_object;
Steve Block1e0659c2011-05-24 12:43:12 +01004087
Ben Murdoch086aeea2011-05-13 15:57:08 +01004088 if (!HasArgsInRegisters()) {
Steve Block9fac8402011-05-12 15:51:54 +01004089 __ ldr(object, MemOperand(sp, 1 * kPointerSize));
4090 __ ldr(function, MemOperand(sp, 0));
Ben Murdochb0fe1622011-05-05 13:52:32 +01004091 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004092
Ben Murdochb0fe1622011-05-05 13:52:32 +01004093 // Check that the left hand is a JS object and load map.
Steve Block1e0659c2011-05-24 12:43:12 +01004094 __ JumpIfSmi(object, &not_js_object);
Steve Block9fac8402011-05-12 15:51:54 +01004095 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004096
Steve Block1e0659c2011-05-24 12:43:12 +01004097 // If there is a call site cache don't look in the global cache, but do the
4098 // real lookup and update the call site cache.
4099 if (!HasCallSiteInlineCheck()) {
4100 Label miss;
4101 __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex);
4102 __ cmp(function, ip);
4103 __ b(ne, &miss);
4104 __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex);
4105 __ cmp(map, ip);
4106 __ b(ne, &miss);
4107 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4108 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004109
Steve Block1e0659c2011-05-24 12:43:12 +01004110 __ bind(&miss);
4111 }
4112
4113 // Get the prototype of the function.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004114 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004115
4116 // Check that the function prototype is a JS object.
Steve Block1e0659c2011-05-24 12:43:12 +01004117 __ JumpIfSmi(prototype, &slow);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004118 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004119
Steve Block1e0659c2011-05-24 12:43:12 +01004120 // Update the global instanceof or call site inlined cache with the current
4121 // map and function. The cached answer will be set when it is known below.
4122 if (!HasCallSiteInlineCheck()) {
4123 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
4124 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
4125 } else {
4126 ASSERT(HasArgsInRegisters());
4127 // Patch the (relocated) inlined map check.
4128
4129 // The offset was stored in r4 safepoint slot.
4130 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004131 __ LoadFromSafepointRegisterSlot(scratch, r4);
Steve Block1e0659c2011-05-24 12:43:12 +01004132 __ sub(inline_site, lr, scratch);
4133 // Get the map location in scratch and patch it.
4134 __ GetRelocatedValueLocation(inline_site, scratch);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004135 __ ldr(scratch, MemOperand(scratch));
4136 __ str(map, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
Steve Block1e0659c2011-05-24 12:43:12 +01004137 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004138
4139 // Register mapping: r3 is object map and r4 is function prototype.
4140 // Get prototype of object into r2.
Ben Murdochb0fe1622011-05-05 13:52:32 +01004141 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004142
Steve Block1e0659c2011-05-24 12:43:12 +01004143 // We don't need map any more. Use it as a scratch register.
4144 Register scratch2 = map;
4145 map = no_reg;
4146
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004147 // Loop through the prototype chain looking for the function prototype.
Steve Block1e0659c2011-05-24 12:43:12 +01004148 __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004149 __ bind(&loop);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004150 __ cmp(scratch, Operand(prototype));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004151 __ b(eq, &is_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01004152 __ cmp(scratch, scratch2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004153 __ b(eq, &is_not_instance);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004154 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
4155 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004156 __ jmp(&loop);
4157
4158 __ bind(&is_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01004159 if (!HasCallSiteInlineCheck()) {
4160 __ mov(r0, Operand(Smi::FromInt(0)));
4161 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4162 } else {
4163 // Patch the call site to return true.
4164 __ LoadRoot(r0, Heap::kTrueValueRootIndex);
4165 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4166 // Get the boolean result location in scratch and patch it.
4167 __ GetRelocatedValueLocation(inline_site, scratch);
4168 __ str(r0, MemOperand(scratch));
4169
4170 if (!ReturnTrueFalseObject()) {
4171 __ mov(r0, Operand(Smi::FromInt(0)));
4172 }
4173 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01004174 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004175
4176 __ bind(&is_not_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01004177 if (!HasCallSiteInlineCheck()) {
4178 __ mov(r0, Operand(Smi::FromInt(1)));
4179 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4180 } else {
4181 // Patch the call site to return false.
4182 __ LoadRoot(r0, Heap::kFalseValueRootIndex);
4183 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4184 // Get the boolean result location in scratch and patch it.
4185 __ GetRelocatedValueLocation(inline_site, scratch);
4186 __ str(r0, MemOperand(scratch));
4187
4188 if (!ReturnTrueFalseObject()) {
4189 __ mov(r0, Operand(Smi::FromInt(1)));
4190 }
4191 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01004192 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004193
4194 Label object_not_null, object_not_null_or_smi;
4195 __ bind(&not_js_object);
4196 // Before null, smi and string value checks, check that the rhs is a function
4197 // as for a non-function rhs an exception needs to be thrown.
Steve Block1e0659c2011-05-24 12:43:12 +01004198 __ JumpIfSmi(function, &slow);
4199 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004200 __ b(ne, &slow);
4201
4202 // Null is not instance of anything.
Ben Murdoch257744e2011-11-30 15:57:28 +00004203 __ cmp(scratch, Operand(masm->isolate()->factory()->null_value()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01004204 __ b(ne, &object_not_null);
4205 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004206 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004207
4208 __ bind(&object_not_null);
4209 // Smi values are not instances of anything.
Steve Block1e0659c2011-05-24 12:43:12 +01004210 __ JumpIfNotSmi(object, &object_not_null_or_smi);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004211 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004212 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004213
4214 __ bind(&object_not_null_or_smi);
4215 // String values are not instances of anything.
4216 __ IsObjectJSStringType(object, scratch, &slow);
4217 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004218 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004219
4220 // Slow-case. Tail call builtin.
Ben Murdoch086aeea2011-05-13 15:57:08 +01004221 __ bind(&slow);
Steve Block1e0659c2011-05-24 12:43:12 +01004222 if (!ReturnTrueFalseObject()) {
4223 if (HasArgsInRegisters()) {
4224 __ Push(r0, r1);
4225 }
Ben Murdoch257744e2011-11-30 15:57:28 +00004226 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01004227 } else {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004228 {
4229 FrameScope scope(masm, StackFrame::INTERNAL);
4230 __ Push(r0, r1);
4231 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
4232 }
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004233 __ cmp(r0, Operand::Zero());
Steve Block1e0659c2011-05-24 12:43:12 +01004234 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
4235 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
4236 __ Ret(HasArgsInRegisters() ? 0 : 2);
4237 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004238}
4239
4240
Steve Block1e0659c2011-05-24 12:43:12 +01004241Register InstanceofStub::left() { return r0; }
4242
4243
4244Register InstanceofStub::right() { return r1; }
4245
4246
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004247void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
4248 // The displacement is the offset of the last parameter (if any)
4249 // relative to the frame pointer.
4250 static const int kDisplacement =
4251 StandardFrameConstants::kCallerSPOffset - kPointerSize;
4252
4253 // Check that the key is a smi.
4254 Label slow;
Steve Block1e0659c2011-05-24 12:43:12 +01004255 __ JumpIfNotSmi(r1, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004256
4257 // Check if the calling frame is an arguments adaptor frame.
4258 Label adaptor;
4259 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4260 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
4261 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4262 __ b(eq, &adaptor);
4263
4264 // Check index against formal parameters count limit passed in
4265 // through register r0. Use unsigned comparison to get negative
4266 // check for free.
4267 __ cmp(r1, r0);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004268 __ b(hs, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004269
4270 // Read the argument from the stack and return it.
4271 __ sub(r3, r0, r1);
4272 __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
4273 __ ldr(r0, MemOperand(r3, kDisplacement));
4274 __ Jump(lr);
4275
4276 // Arguments adaptor case: Check index against actual arguments
4277 // limit found in the arguments adaptor frame. Use unsigned
4278 // comparison to get negative check for free.
4279 __ bind(&adaptor);
4280 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4281 __ cmp(r1, r0);
4282 __ b(cs, &slow);
4283
4284 // Read the argument from the adaptor frame and return it.
4285 __ sub(r3, r0, r1);
4286 __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
4287 __ ldr(r0, MemOperand(r3, kDisplacement));
4288 __ Jump(lr);
4289
4290 // Slow-case: Handle non-smi or out-of-bounds access to arguments
4291 // by calling the runtime system.
4292 __ bind(&slow);
4293 __ push(r1);
4294 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
4295}
4296
4297
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004298void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004299 // sp[0] : number of parameters
4300 // sp[4] : receiver displacement
4301 // sp[8] : function
4302
4303 // Check if the calling frame is an arguments adaptor frame.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004304 Label runtime;
4305 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4306 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
4307 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4308 __ b(ne, &runtime);
4309
4310 // Patch the arguments.length and the parameters pointer in the current frame.
4311 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4312 __ str(r2, MemOperand(sp, 0 * kPointerSize));
4313 __ add(r3, r3, Operand(r2, LSL, 1));
4314 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4315 __ str(r3, MemOperand(sp, 1 * kPointerSize));
4316
4317 __ bind(&runtime);
4318 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4319}
4320
4321
4322void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
4323 // Stack layout:
4324 // sp[0] : number of parameters (tagged)
4325 // sp[4] : address of receiver argument
4326 // sp[8] : function
4327 // Registers used over whole function:
4328 // r6 : allocated object (tagged)
4329 // r9 : mapped parameter count (tagged)
4330
4331 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
4332 // r1 = parameter count (tagged)
4333
4334 // Check if the calling frame is an arguments adaptor frame.
4335 Label runtime;
4336 Label adaptor_frame, try_allocate;
4337 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4338 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
4339 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4340 __ b(eq, &adaptor_frame);
4341
4342 // No adaptor, parameter count = argument count.
4343 __ mov(r2, r1);
4344 __ b(&try_allocate);
4345
4346 // We have an adaptor frame. Patch the parameters pointer.
4347 __ bind(&adaptor_frame);
4348 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4349 __ add(r3, r3, Operand(r2, LSL, 1));
4350 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4351 __ str(r3, MemOperand(sp, 1 * kPointerSize));
4352
4353 // r1 = parameter count (tagged)
4354 // r2 = argument count (tagged)
4355 // Compute the mapped parameter count = min(r1, r2) in r1.
4356 __ cmp(r1, Operand(r2));
4357 __ mov(r1, Operand(r2), LeaveCC, gt);
4358
4359 __ bind(&try_allocate);
4360
4361 // Compute the sizes of backing store, parameter map, and arguments object.
4362 // 1. Parameter map, has 2 extra words containing context and backing store.
4363 const int kParameterMapHeaderSize =
4364 FixedArray::kHeaderSize + 2 * kPointerSize;
4365 // If there are no mapped parameters, we do not need the parameter_map.
4366 __ cmp(r1, Operand(Smi::FromInt(0)));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004367 __ mov(r9, Operand::Zero(), LeaveCC, eq);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004368 __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
4369 __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
4370
4371 // 2. Backing store.
4372 __ add(r9, r9, Operand(r2, LSL, 1));
4373 __ add(r9, r9, Operand(FixedArray::kHeaderSize));
4374
4375 // 3. Arguments object.
4376 __ add(r9, r9, Operand(Heap::kArgumentsObjectSize));
4377
4378 // Do the allocation of all three objects in one go.
4379 __ AllocateInNewSpace(r9, r0, r3, r4, &runtime, TAG_OBJECT);
4380
4381 // r0 = address of new object(s) (tagged)
4382 // r2 = argument count (tagged)
4383 // Get the arguments boilerplate from the current (global) context into r4.
4384 const int kNormalOffset =
4385 Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
4386 const int kAliasedOffset =
4387 Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
4388
4389 __ ldr(r4, MemOperand(r8, Context::SlotOffset(Context::GLOBAL_INDEX)));
4390 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004391 __ cmp(r1, Operand::Zero());
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004392 __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
4393 __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
4394
4395 // r0 = address of new object (tagged)
4396 // r1 = mapped parameter count (tagged)
4397 // r2 = argument count (tagged)
4398 // r4 = address of boilerplate object (tagged)
4399 // Copy the JS object part.
4400 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
4401 __ ldr(r3, FieldMemOperand(r4, i));
4402 __ str(r3, FieldMemOperand(r0, i));
4403 }
4404
Ben Murdochc7cc0282012-03-05 14:35:55 +00004405 // Set up the callee in-object property.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004406 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
4407 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
4408 const int kCalleeOffset = JSObject::kHeaderSize +
4409 Heap::kArgumentsCalleeIndex * kPointerSize;
4410 __ str(r3, FieldMemOperand(r0, kCalleeOffset));
4411
4412 // Use the length (smi tagged) and set that as an in-object property too.
4413 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
4414 const int kLengthOffset = JSObject::kHeaderSize +
4415 Heap::kArgumentsLengthIndex * kPointerSize;
4416 __ str(r2, FieldMemOperand(r0, kLengthOffset));
4417
Ben Murdochc7cc0282012-03-05 14:35:55 +00004418 // Set up the elements pointer in the allocated arguments object.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004419 // If we allocated a parameter map, r4 will point there, otherwise
4420 // it will point to the backing store.
4421 __ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
4422 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
4423
4424 // r0 = address of new object (tagged)
4425 // r1 = mapped parameter count (tagged)
4426 // r2 = argument count (tagged)
4427 // r4 = address of parameter map or backing store (tagged)
4428 // Initialize parameter map. If there are no mapped arguments, we're done.
4429 Label skip_parameter_map;
4430 __ cmp(r1, Operand(Smi::FromInt(0)));
4431 // Move backing store address to r3, because it is
4432 // expected there when filling in the unmapped arguments.
4433 __ mov(r3, r4, LeaveCC, eq);
4434 __ b(eq, &skip_parameter_map);
4435
4436 __ LoadRoot(r6, Heap::kNonStrictArgumentsElementsMapRootIndex);
4437 __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
4438 __ add(r6, r1, Operand(Smi::FromInt(2)));
4439 __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
4440 __ str(r8, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
4441 __ add(r6, r4, Operand(r1, LSL, 1));
4442 __ add(r6, r6, Operand(kParameterMapHeaderSize));
4443 __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
4444
4445 // Copy the parameter slots and the holes in the arguments.
4446 // We need to fill in mapped_parameter_count slots. They index the context,
4447 // where parameters are stored in reverse order, at
4448 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
4449 // The mapped parameter thus need to get indices
4450 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
4451 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
4452 // We loop from right to left.
4453 Label parameters_loop, parameters_test;
4454 __ mov(r6, r1);
4455 __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
4456 __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
4457 __ sub(r9, r9, Operand(r1));
4458 __ LoadRoot(r7, Heap::kTheHoleValueRootIndex);
4459 __ add(r3, r4, Operand(r6, LSL, 1));
4460 __ add(r3, r3, Operand(kParameterMapHeaderSize));
4461
4462 // r6 = loop variable (tagged)
4463 // r1 = mapping index (tagged)
4464 // r3 = address of backing store (tagged)
4465 // r4 = address of parameter map (tagged)
4466 // r5 = temporary scratch (a.o., for address calculation)
4467 // r7 = the hole value
4468 __ jmp(&parameters_test);
4469
4470 __ bind(&parameters_loop);
4471 __ sub(r6, r6, Operand(Smi::FromInt(1)));
4472 __ mov(r5, Operand(r6, LSL, 1));
4473 __ add(r5, r5, Operand(kParameterMapHeaderSize - kHeapObjectTag));
4474 __ str(r9, MemOperand(r4, r5));
4475 __ sub(r5, r5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
4476 __ str(r7, MemOperand(r3, r5));
4477 __ add(r9, r9, Operand(Smi::FromInt(1)));
4478 __ bind(&parameters_test);
4479 __ cmp(r6, Operand(Smi::FromInt(0)));
4480 __ b(ne, &parameters_loop);
4481
4482 __ bind(&skip_parameter_map);
4483 // r2 = argument count (tagged)
4484 // r3 = address of backing store (tagged)
4485 // r5 = scratch
4486 // Copy arguments header and remaining slots (if there are any).
4487 __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
4488 __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
4489 __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
4490
4491 Label arguments_loop, arguments_test;
4492 __ mov(r9, r1);
4493 __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
4494 __ sub(r4, r4, Operand(r9, LSL, 1));
4495 __ jmp(&arguments_test);
4496
4497 __ bind(&arguments_loop);
4498 __ sub(r4, r4, Operand(kPointerSize));
4499 __ ldr(r6, MemOperand(r4, 0));
4500 __ add(r5, r3, Operand(r9, LSL, 1));
4501 __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
4502 __ add(r9, r9, Operand(Smi::FromInt(1)));
4503
4504 __ bind(&arguments_test);
4505 __ cmp(r9, Operand(r2));
4506 __ b(lt, &arguments_loop);
4507
4508 // Return and remove the on-stack parameters.
4509 __ add(sp, sp, Operand(3 * kPointerSize));
4510 __ Ret();
4511
4512 // Do the runtime call to allocate the arguments object.
Ben Murdochc7cc0282012-03-05 14:35:55 +00004513 // r2 = argument count (tagged)
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004514 __ bind(&runtime);
4515 __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
4516 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4517}
4518
4519
4520void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
4521 // sp[0] : number of parameters
4522 // sp[4] : receiver displacement
4523 // sp[8] : function
4524 // Check if the calling frame is an arguments adaptor frame.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004525 Label adaptor_frame, try_allocate, runtime;
4526 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4527 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
4528 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4529 __ b(eq, &adaptor_frame);
4530
4531 // Get the length from the frame.
4532 __ ldr(r1, MemOperand(sp, 0));
4533 __ b(&try_allocate);
4534
4535 // Patch the arguments.length and the parameters pointer.
4536 __ bind(&adaptor_frame);
4537 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4538 __ str(r1, MemOperand(sp, 0));
4539 __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
4540 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4541 __ str(r3, MemOperand(sp, 1 * kPointerSize));
4542
4543 // Try the new space allocation. Start out with computing the size
4544 // of the arguments object and the elements array in words.
4545 Label add_arguments_object;
4546 __ bind(&try_allocate);
Iain Merrick9ac36c92010-09-13 15:29:50 +01004547 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004548 __ b(eq, &add_arguments_object);
4549 __ mov(r1, Operand(r1, LSR, kSmiTagSize));
4550 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
4551 __ bind(&add_arguments_object);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004552 __ add(r1, r1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004553
4554 // Do the allocation of both objects in one go.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004555 __ AllocateInNewSpace(r1,
4556 r0,
4557 r2,
4558 r3,
4559 &runtime,
4560 static_cast<AllocationFlags>(TAG_OBJECT |
4561 SIZE_IN_WORDS));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004562
4563 // Get the arguments boilerplate from the current (global) context.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004564 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4565 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004566 __ ldr(r4, MemOperand(r4, Context::SlotOffset(
4567 Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004568
4569 // Copy the JS object part.
4570 __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize);
4571
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004572 // Get the length (smi tagged) and set that as an in-object property too.
Steve Block44f0eee2011-05-26 01:26:41 +01004573 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004574 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01004575 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004576 Heap::kArgumentsLengthIndex * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004577
4578 // If there are no actual arguments, we're done.
4579 Label done;
Iain Merrick9ac36c92010-09-13 15:29:50 +01004580 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004581 __ b(eq, &done);
4582
4583 // Get the parameters pointer from the stack.
4584 __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
4585
Ben Murdochc7cc0282012-03-05 14:35:55 +00004586 // Set up the elements pointer in the allocated arguments object and
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004587 // initialize the header in the elements fixed array.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004588 __ add(r4, r0, Operand(Heap::kArgumentsObjectSizeStrict));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004589 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
4590 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
4591 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
4592 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004593 // Untag the length for the loop.
4594 __ mov(r1, Operand(r1, LSR, kSmiTagSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004595
4596 // Copy the fixed array slots.
4597 Label loop;
Ben Murdochc7cc0282012-03-05 14:35:55 +00004598 // Set up r4 to point to the first array slot.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004599 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4600 __ bind(&loop);
4601 // Pre-decrement r2 with kPointerSize on each iteration.
4602 // Pre-decrement in order to skip receiver.
4603 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
4604 // Post-increment r4 with kPointerSize on each iteration.
4605 __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
4606 __ sub(r1, r1, Operand(1));
Iain Merrick9ac36c92010-09-13 15:29:50 +01004607 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004608 __ b(ne, &loop);
4609
4610 // Return and remove the on-stack parameters.
4611 __ bind(&done);
4612 __ add(sp, sp, Operand(3 * kPointerSize));
4613 __ Ret();
4614
4615 // Do the runtime call to allocate the arguments object.
4616 __ bind(&runtime);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004617 __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004618}
4619
4620
4621void RegExpExecStub::Generate(MacroAssembler* masm) {
4622 // Just jump directly to runtime if native RegExp is not selected at compile
4623 // time or if regexp entry in generated code is turned off runtime switch or
4624 // at compilation.
4625#ifdef V8_INTERPRETED_REGEXP
4626 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
4627#else // V8_INTERPRETED_REGEXP
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004628
4629 // Stack frame on entry.
4630 // sp[0]: last_match_info (expected JSArray)
4631 // sp[4]: previous index
4632 // sp[8]: subject string
4633 // sp[12]: JSRegExp object
4634
4635 static const int kLastMatchInfoOffset = 0 * kPointerSize;
4636 static const int kPreviousIndexOffset = 1 * kPointerSize;
4637 static const int kSubjectOffset = 2 * kPointerSize;
4638 static const int kJSRegExpOffset = 3 * kPointerSize;
4639
4640 Label runtime, invoke_regexp;
4641
4642 // Allocation of registers for this function. These are in callee save
4643 // registers and will be preserved by the call to the native RegExp code, as
4644 // this code is called using the normal C calling convention. When calling
4645 // directly from generated code the native RegExp code will not do a GC and
4646 // therefore the content of these registers are safe to use after the call.
4647 Register subject = r4;
4648 Register regexp_data = r5;
4649 Register last_match_info_elements = r6;
4650
4651 // Ensure that a RegExp stack is allocated.
Steve Block44f0eee2011-05-26 01:26:41 +01004652 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004653 ExternalReference address_of_regexp_stack_memory_address =
Steve Block44f0eee2011-05-26 01:26:41 +01004654 ExternalReference::address_of_regexp_stack_memory_address(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004655 ExternalReference address_of_regexp_stack_memory_size =
Steve Block44f0eee2011-05-26 01:26:41 +01004656 ExternalReference::address_of_regexp_stack_memory_size(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004657 __ mov(r0, Operand(address_of_regexp_stack_memory_size));
4658 __ ldr(r0, MemOperand(r0, 0));
4659 __ tst(r0, Operand(r0));
4660 __ b(eq, &runtime);
4661
4662 // Check that the first argument is a JSRegExp object.
4663 __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
4664 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004665 __ JumpIfSmi(r0, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004666 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
4667 __ b(ne, &runtime);
4668
4669 // Check that the RegExp has been compiled (data contains a fixed array).
4670 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
4671 if (FLAG_debug_code) {
4672 __ tst(regexp_data, Operand(kSmiTagMask));
Steve Block1e0659c2011-05-24 12:43:12 +01004673 __ Check(ne, "Unexpected type for RegExp data, FixedArray expected");
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004674 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
4675 __ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
4676 }
4677
4678 // regexp_data: RegExp data (FixedArray)
4679 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
4680 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
4681 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
4682 __ b(ne, &runtime);
4683
4684 // regexp_data: RegExp data (FixedArray)
4685 // Check that the number of captures fit in the static offsets vector buffer.
4686 __ ldr(r2,
4687 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
4688 // Calculate number of capture registers (number_of_captures + 1) * 2. This
4689 // uses the asumption that smis are 2 * their untagged value.
4690 STATIC_ASSERT(kSmiTag == 0);
4691 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4692 __ add(r2, r2, Operand(2)); // r2 was a smi.
4693 // Check that the static offsets vector buffer is large enough.
4694 __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
4695 __ b(hi, &runtime);
4696
4697 // r2: Number of capture registers
4698 // regexp_data: RegExp data (FixedArray)
4699 // Check that the second argument is a string.
4700 __ ldr(subject, MemOperand(sp, kSubjectOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004701 __ JumpIfSmi(subject, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004702 Condition is_string = masm->IsObjectStringType(subject, r0);
4703 __ b(NegateCondition(is_string), &runtime);
4704 // Get the length of the string to r3.
4705 __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset));
4706
4707 // r2: Number of capture registers
4708 // r3: Length of subject string as a smi
4709 // subject: Subject string
4710 // regexp_data: RegExp data (FixedArray)
4711 // Check that the third argument is a positive smi less than the subject
4712 // string length. A negative value will be greater (unsigned comparison).
4713 __ ldr(r0, MemOperand(sp, kPreviousIndexOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004714 __ JumpIfNotSmi(r0, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004715 __ cmp(r3, Operand(r0));
4716 __ b(ls, &runtime);
4717
4718 // r2: Number of capture registers
4719 // subject: Subject string
4720 // regexp_data: RegExp data (FixedArray)
4721 // Check that the fourth object is a JSArray object.
4722 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004723 __ JumpIfSmi(r0, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004724 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
4725 __ b(ne, &runtime);
4726 // Check that the JSArray is in fast case.
4727 __ ldr(last_match_info_elements,
4728 FieldMemOperand(r0, JSArray::kElementsOffset));
4729 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
4730 __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
4731 __ cmp(r0, ip);
4732 __ b(ne, &runtime);
4733 // Check that the last match info has space for the capture registers and the
4734 // additional information.
4735 __ ldr(r0,
4736 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
4737 __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead));
4738 __ cmp(r2, Operand(r0, ASR, kSmiTagSize));
4739 __ b(gt, &runtime);
4740
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004741 // Reset offset for possibly sliced string.
4742 __ mov(r9, Operand(0));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004743 // subject: Subject string
4744 // regexp_data: RegExp data (FixedArray)
4745 // Check the representation and encoding of the subject string.
4746 Label seq_string;
4747 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
4748 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004749 // First check for flat string. None of the following string type tests will
4750 // succeed if subject is not a string or a short external string.
4751 __ and_(r1,
4752 r0,
4753 Operand(kIsNotStringMask |
4754 kStringRepresentationMask |
4755 kShortExternalStringMask),
4756 SetCC);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004757 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
4758 __ b(eq, &seq_string);
4759
4760 // subject: Subject string
4761 // regexp_data: RegExp data (FixedArray)
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004762 // r1: whether subject is a string and if yes, its string representation
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004763 // Check for flat cons string or sliced string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004764 // A flat cons string is a cons string where the second part is the empty
4765 // string. In that case the subject string is just the first part of the cons
4766 // string. Also in this case the first part of the cons string is known to be
4767 // a sequential string or an external string.
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004768 // In the case of a sliced string its offset has to be taken into account.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004769 Label cons_string, external_string, check_encoding;
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004770 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
4771 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004772 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
4773 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004774 __ cmp(r1, Operand(kExternalStringTag));
4775 __ b(lt, &cons_string);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004776 __ b(eq, &external_string);
4777
4778 // Catch non-string subject or short external string.
4779 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
4780 __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
4781 __ b(ne, &runtime);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004782
4783 // String is sliced.
4784 __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
4785 __ mov(r9, Operand(r9, ASR, kSmiTagSize));
4786 __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
4787 // r9: offset of sliced string, smi-tagged.
4788 __ jmp(&check_encoding);
4789 // String is a cons string, check whether it is flat.
4790 __ bind(&cons_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004791 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004792 __ CompareRoot(r0, Heap::kEmptyStringRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004793 __ b(ne, &runtime);
4794 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004795 // Is first part of cons or parent of slice a flat string?
4796 __ bind(&check_encoding);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004797 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
4798 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004799 STATIC_ASSERT(kSeqStringTag == 0);
4800 __ tst(r0, Operand(kStringRepresentationMask));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004801 __ b(ne, &external_string);
4802
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004803 __ bind(&seq_string);
4804 // subject: Subject string
4805 // regexp_data: RegExp data (FixedArray)
4806 // r0: Instance type of subject string
4807 STATIC_ASSERT(4 == kAsciiStringTag);
4808 STATIC_ASSERT(kTwoByteStringTag == 0);
4809 // Find the code object based on the assumptions above.
4810 __ and_(r0, r0, Operand(kStringEncodingMask));
4811 __ mov(r3, Operand(r0, ASR, 2), SetCC);
4812 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
4813 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
4814
4815 // Check that the irregexp code has been generated for the actual string
4816 // encoding. If it has, the field contains a code object otherwise it contains
Ben Murdoch257744e2011-11-30 15:57:28 +00004817 // a smi (code flushing support).
4818 __ JumpIfSmi(r7, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004819
Steve Block44f0eee2011-05-26 01:26:41 +01004820 // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004821 // r7: code
4822 // subject: Subject string
4823 // regexp_data: RegExp data (FixedArray)
4824 // Load used arguments before starting to push arguments for call to native
4825 // RegExp code to avoid handling changing stack height.
4826 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
4827 __ mov(r1, Operand(r1, ASR, kSmiTagSize));
4828
4829 // r1: previous index
Steve Block44f0eee2011-05-26 01:26:41 +01004830 // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004831 // r7: code
4832 // subject: Subject string
4833 // regexp_data: RegExp data (FixedArray)
4834 // All checks done. Now push arguments for native regexp code.
Steve Block44f0eee2011-05-26 01:26:41 +01004835 __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004836
Steve Block44f0eee2011-05-26 01:26:41 +01004837 // Isolates: note we add an additional parameter here (isolate pointer).
4838 static const int kRegExpExecuteArguments = 8;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004839 static const int kParameterRegisters = 4;
4840 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004841
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004842 // Stack pointer now points to cell where return address is to be written.
4843 // Arguments are before that on the stack or in registers.
4844
Steve Block44f0eee2011-05-26 01:26:41 +01004845 // Argument 8 (sp[16]): Pass current isolate address.
4846 __ mov(r0, Operand(ExternalReference::isolate_address()));
4847 __ str(r0, MemOperand(sp, 4 * kPointerSize));
4848
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004849 // Argument 7 (sp[12]): Indicate that this is a direct call from JavaScript.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004850 __ mov(r0, Operand(1));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004851 __ str(r0, MemOperand(sp, 3 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004852
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004853 // Argument 6 (sp[8]): Start (high end) of backtracking stack memory area.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004854 __ mov(r0, Operand(address_of_regexp_stack_memory_address));
4855 __ ldr(r0, MemOperand(r0, 0));
4856 __ mov(r2, Operand(address_of_regexp_stack_memory_size));
4857 __ ldr(r2, MemOperand(r2, 0));
4858 __ add(r0, r0, Operand(r2));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004859 __ str(r0, MemOperand(sp, 2 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004860
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004861 // Argument 5 (sp[4]): static offsets vector buffer.
Steve Block44f0eee2011-05-26 01:26:41 +01004862 __ mov(r0,
4863 Operand(ExternalReference::address_of_static_offsets_vector(isolate)));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004864 __ str(r0, MemOperand(sp, 1 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004865
4866 // For arguments 4 and 3 get string length, calculate start of string data and
4867 // calculate the shift of the index (0 for ASCII and 1 for two byte).
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004868 __ add(r8, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004869 __ eor(r3, r3, Operand(1));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004870 // Load the length from the original subject string from the previous stack
4871 // frame. Therefore we have to use fp, which points exactly to two pointer
4872 // sizes below the previous sp. (Because creating a new stack frame pushes
4873 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
Ben Murdoch589d6972011-11-30 16:04:58 +00004874 __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004875 // If slice offset is not 0, load the length from the original sliced string.
4876 // Argument 4, r3: End of string data
4877 // Argument 3, r2: Start of string data
4878 // Prepare start and end index of the input.
4879 __ add(r9, r8, Operand(r9, LSL, r3));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004880 __ add(r2, r9, Operand(r1, LSL, r3));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004881
Ben Murdoch589d6972011-11-30 16:04:58 +00004882 __ ldr(r8, FieldMemOperand(subject, String::kLengthOffset));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004883 __ mov(r8, Operand(r8, ASR, kSmiTagSize));
4884 __ add(r3, r9, Operand(r8, LSL, r3));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004885
4886 // Argument 2 (r1): Previous index.
4887 // Already there
4888
4889 // Argument 1 (r0): Subject string.
Ben Murdoch589d6972011-11-30 16:04:58 +00004890 __ mov(r0, subject);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004891
4892 // Locate the code entry and call it.
4893 __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004894 DirectCEntryStub stub;
4895 stub.GenerateCall(masm, r7);
4896
4897 __ LeaveExitFrame(false, no_reg);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004898
4899 // r0: result
4900 // subject: subject string (callee saved)
4901 // regexp_data: RegExp data (callee saved)
4902 // last_match_info_elements: Last match info elements (callee saved)
4903
4904 // Check the result.
4905 Label success;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004906
Ben Murdoch589d6972011-11-30 16:04:58 +00004907 __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004908 __ b(eq, &success);
4909 Label failure;
Ben Murdoch589d6972011-11-30 16:04:58 +00004910 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004911 __ b(eq, &failure);
Ben Murdoch589d6972011-11-30 16:04:58 +00004912 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004913 // If not exception it can only be retry. Handle that in the runtime system.
4914 __ b(ne, &runtime);
4915 // Result must now be exception. If there is no pending exception already a
4916 // stack overflow (on the backtrack stack) was detected in RegExp code but
4917 // haven't created the exception yet. Handle that in the runtime system.
4918 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004919 __ mov(r1, Operand(isolate->factory()->the_hole_value()));
Ben Murdoch589d6972011-11-30 16:04:58 +00004920 __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
Steve Block44f0eee2011-05-26 01:26:41 +01004921 isolate)));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004922 __ ldr(r0, MemOperand(r2, 0));
Ben Murdoch589d6972011-11-30 16:04:58 +00004923 __ cmp(r0, r1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004924 __ b(eq, &runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004925
4926 __ str(r1, MemOperand(r2, 0)); // Clear pending exception.
4927
4928 // Check if the exception is a termination. If so, throw as uncatchable.
Ben Murdoch589d6972011-11-30 16:04:58 +00004929 __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
4930
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004931 Label termination_exception;
4932 __ b(eq, &termination_exception);
4933
Ben Murdoch589d6972011-11-30 16:04:58 +00004934 __ Throw(r0); // Expects thrown value in r0.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004935
4936 __ bind(&termination_exception);
4937 __ ThrowUncatchable(TERMINATION, r0); // Expects thrown value in r0.
4938
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004939 __ bind(&failure);
4940 // For failure and exception return null.
Ben Murdoch257744e2011-11-30 15:57:28 +00004941 __ mov(r0, Operand(masm->isolate()->factory()->null_value()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004942 __ add(sp, sp, Operand(4 * kPointerSize));
4943 __ Ret();
4944
4945 // Process the result from the native regexp code.
4946 __ bind(&success);
4947 __ ldr(r1,
4948 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
4949 // Calculate number of capture registers (number_of_captures + 1) * 2.
4950 STATIC_ASSERT(kSmiTag == 0);
4951 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4952 __ add(r1, r1, Operand(2)); // r1 was a smi.
4953
4954 // r1: number of capture registers
4955 // r4: subject string
4956 // Store the capture count.
4957 __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi.
4958 __ str(r2, FieldMemOperand(last_match_info_elements,
4959 RegExpImpl::kLastCaptureCountOffset));
4960 // Store last subject and last input.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004961 __ str(subject,
4962 FieldMemOperand(last_match_info_elements,
4963 RegExpImpl::kLastSubjectOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004964 __ mov(r2, subject);
4965 __ RecordWriteField(last_match_info_elements,
4966 RegExpImpl::kLastSubjectOffset,
4967 r2,
4968 r7,
4969 kLRHasNotBeenSaved,
4970 kDontSaveFPRegs);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004971 __ str(subject,
4972 FieldMemOperand(last_match_info_elements,
4973 RegExpImpl::kLastInputOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00004974 __ RecordWriteField(last_match_info_elements,
4975 RegExpImpl::kLastInputOffset,
4976 subject,
4977 r7,
4978 kLRHasNotBeenSaved,
4979 kDontSaveFPRegs);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004980
4981 // Get the static offsets vector filled by the native regexp code.
4982 ExternalReference address_of_static_offsets_vector =
Steve Block44f0eee2011-05-26 01:26:41 +01004983 ExternalReference::address_of_static_offsets_vector(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004984 __ mov(r2, Operand(address_of_static_offsets_vector));
4985
4986 // r1: number of capture registers
4987 // r2: offsets vector
4988 Label next_capture, done;
4989 // Capture register counter starts from number of capture registers and
4990 // counts down until wraping after zero.
4991 __ add(r0,
4992 last_match_info_elements,
4993 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
4994 __ bind(&next_capture);
4995 __ sub(r1, r1, Operand(1), SetCC);
4996 __ b(mi, &done);
4997 // Read the value from the static offsets vector buffer.
4998 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
4999 // Store the smi value in the last match info.
5000 __ mov(r3, Operand(r3, LSL, kSmiTagSize));
5001 __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
5002 __ jmp(&next_capture);
5003 __ bind(&done);
5004
5005 // Return last match info.
5006 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
5007 __ add(sp, sp, Operand(4 * kPointerSize));
5008 __ Ret();
5009
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005010 // External string. Short external strings have already been ruled out.
5011 // r0: scratch
5012 __ bind(&external_string);
5013 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
5014 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
5015 if (FLAG_debug_code) {
5016 // Assert that we do not have a cons or slice (indirect strings) here.
5017 // Sequential strings have already been ruled out.
5018 __ tst(r0, Operand(kIsIndirectStringMask));
5019 __ Assert(eq, "external string expected, but not found");
5020 }
5021 __ ldr(subject,
5022 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
5023 // Move the pointer so that offset-wise, it looks like a sequential string.
5024 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
5025 __ sub(subject,
5026 subject,
5027 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5028 __ jmp(&seq_string);
5029
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005030 // Do the runtime call to execute the regexp.
5031 __ bind(&runtime);
5032 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
5033#endif // V8_INTERPRETED_REGEXP
5034}
5035
5036
Ben Murdochb0fe1622011-05-05 13:52:32 +01005037void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
5038 const int kMaxInlineLength = 100;
5039 Label slowcase;
5040 Label done;
Ben Murdoch257744e2011-11-30 15:57:28 +00005041 Factory* factory = masm->isolate()->factory();
5042
Ben Murdochb0fe1622011-05-05 13:52:32 +01005043 __ ldr(r1, MemOperand(sp, kPointerSize * 2));
5044 STATIC_ASSERT(kSmiTag == 0);
5045 STATIC_ASSERT(kSmiTagSize == 1);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005046 __ JumpIfNotSmi(r1, &slowcase);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005047 __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
5048 __ b(hi, &slowcase);
5049 // Smi-tagging is equivalent to multiplying by 2.
5050 // Allocate RegExpResult followed by FixedArray with size in ebx.
5051 // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
5052 // Elements: [Map][Length][..elements..]
5053 // Size of JSArray with two in-object properties and the header of a
5054 // FixedArray.
5055 int objects_size =
5056 (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
5057 __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize));
5058 __ add(r2, r5, Operand(objects_size));
5059 __ AllocateInNewSpace(
5060 r2, // In: Size, in words.
5061 r0, // Out: Start of allocation (tagged).
5062 r3, // Scratch register.
5063 r4, // Scratch register.
5064 &slowcase,
5065 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
5066 // r0: Start of allocated area, object-tagged.
5067 // r1: Number of elements in array, as smi.
5068 // r5: Number of elements, untagged.
5069
5070 // Set JSArray map to global.regexp_result_map().
5071 // Set empty properties FixedArray.
5072 // Set elements to point to FixedArray allocated right after the JSArray.
5073 // Interleave operations for better latency.
5074 __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX));
5075 __ add(r3, r0, Operand(JSRegExpResult::kSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00005076 __ mov(r4, Operand(factory->empty_fixed_array()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01005077 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
5078 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
5079 __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
5080 __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
5081 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
5082
5083 // Set input, index and length fields from arguments.
5084 __ ldr(r1, MemOperand(sp, kPointerSize * 0));
5085 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
5086 __ ldr(r1, MemOperand(sp, kPointerSize * 1));
5087 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
5088 __ ldr(r1, MemOperand(sp, kPointerSize * 2));
5089 __ str(r1, FieldMemOperand(r0, JSArray::kLengthOffset));
5090
5091 // Fill out the elements FixedArray.
5092 // r0: JSArray, tagged.
5093 // r3: FixedArray, tagged.
5094 // r5: Number of elements in array, untagged.
5095
5096 // Set map.
Ben Murdoch257744e2011-11-30 15:57:28 +00005097 __ mov(r2, Operand(factory->fixed_array_map()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01005098 __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
5099 // Set FixedArray length.
5100 __ mov(r6, Operand(r5, LSL, kSmiTagSize));
5101 __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
5102 // Fill contents of fixed-array with the-hole.
Ben Murdoch257744e2011-11-30 15:57:28 +00005103 __ mov(r2, Operand(factory->the_hole_value()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01005104 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
5105 // Fill fixed array elements with hole.
5106 // r0: JSArray, tagged.
5107 // r2: the hole.
5108 // r3: Start of elements in FixedArray.
5109 // r5: Number of elements to fill.
5110 Label loop;
5111 __ tst(r5, Operand(r5));
5112 __ bind(&loop);
5113 __ b(le, &done); // Jump if r1 is negative or zero.
5114 __ sub(r5, r5, Operand(1), SetCC);
5115 __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
5116 __ jmp(&loop);
5117
5118 __ bind(&done);
5119 __ add(sp, sp, Operand(3 * kPointerSize));
5120 __ Ret();
5121
5122 __ bind(&slowcase);
5123 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
5124}
5125
5126
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005127void CallFunctionStub::FinishCode(Handle<Code> code) {
5128 code->set_has_function_cache(false);
5129}
5130
5131
5132void CallFunctionStub::Clear(Heap* heap, Address address) {
5133 UNREACHABLE();
5134}
5135
5136
5137Object* CallFunctionStub::GetCachedValue(Address address) {
5138 UNREACHABLE();
5139 return NULL;
5140}
5141
5142
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005143void CallFunctionStub::Generate(MacroAssembler* masm) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005144 // r1 : the function to call
Ben Murdoch589d6972011-11-30 16:04:58 +00005145 Label slow, non_function;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005146
Ben Murdoch257744e2011-11-30 15:57:28 +00005147 // The receiver might implicitly be the global object. This is
5148 // indicated by passing the hole as the receiver to the call
5149 // function stub.
5150 if (ReceiverMightBeImplicit()) {
5151 Label call;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005152 // Get the receiver from the stack.
5153 // function, receiver [, arguments]
Ben Murdoch257744e2011-11-30 15:57:28 +00005154 __ ldr(r4, MemOperand(sp, argc_ * kPointerSize));
5155 // Call as function is indicated with the hole.
5156 __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
5157 __ b(ne, &call);
5158 // Patch the receiver on the stack with the global receiver object.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005159 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
5160 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
5161 __ str(r2, MemOperand(sp, argc_ * kPointerSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00005162 __ bind(&call);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005163 }
5164
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005165 // Check that the function is really a JavaScript function.
5166 // r1: pushed function (to be verified)
Ben Murdoch589d6972011-11-30 16:04:58 +00005167 __ JumpIfSmi(r1, &non_function);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005168 // Get the map of the function object.
5169 __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
5170 __ b(ne, &slow);
5171
5172 // Fast-case: Invoke the function now.
5173 // r1: pushed function
5174 ParameterCount actual(argc_);
Ben Murdoch257744e2011-11-30 15:57:28 +00005175
5176 if (ReceiverMightBeImplicit()) {
5177 Label call_as_function;
5178 __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
5179 __ b(eq, &call_as_function);
5180 __ InvokeFunction(r1,
5181 actual,
5182 JUMP_FUNCTION,
5183 NullCallWrapper(),
5184 CALL_AS_METHOD);
5185 __ bind(&call_as_function);
5186 }
5187 __ InvokeFunction(r1,
5188 actual,
5189 JUMP_FUNCTION,
5190 NullCallWrapper(),
5191 CALL_AS_FUNCTION);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005192
5193 // Slow-case: Non-function called.
5194 __ bind(&slow);
Ben Murdoch589d6972011-11-30 16:04:58 +00005195 // Check for function proxy.
5196 __ cmp(r2, Operand(JS_FUNCTION_PROXY_TYPE));
5197 __ b(ne, &non_function);
5198 __ push(r1); // put proxy as additional argument
5199 __ mov(r0, Operand(argc_ + 1, RelocInfo::NONE));
5200 __ mov(r2, Operand(0, RelocInfo::NONE));
5201 __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005202 __ SetCallKind(r5, CALL_AS_METHOD);
Ben Murdoch589d6972011-11-30 16:04:58 +00005203 {
5204 Handle<Code> adaptor =
5205 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
5206 __ Jump(adaptor, RelocInfo::CODE_TARGET);
5207 }
5208
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005209 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
5210 // of the original receiver from the call site).
Ben Murdoch589d6972011-11-30 16:04:58 +00005211 __ bind(&non_function);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005212 __ str(r1, MemOperand(sp, argc_ * kPointerSize));
Ben Murdochc7cc0282012-03-05 14:35:55 +00005213 __ mov(r0, Operand(argc_)); // Set up the number of arguments.
Iain Merrick9ac36c92010-09-13 15:29:50 +01005214 __ mov(r2, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005215 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005216 __ SetCallKind(r5, CALL_AS_METHOD);
Steve Block44f0eee2011-05-26 01:26:41 +01005217 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005218 RelocInfo::CODE_TARGET);
5219}
5220
5221
5222// Unfortunately you have to run without snapshots to see most of these
5223// names in the profile since most compare stubs end up in the snapshot.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005224void CompareStub::PrintName(StringStream* stream) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005225 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
5226 (lhs_.is(r1) && rhs_.is(r0)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005227 const char* cc_name;
5228 switch (cc_) {
5229 case lt: cc_name = "LT"; break;
5230 case gt: cc_name = "GT"; break;
5231 case le: cc_name = "LE"; break;
5232 case ge: cc_name = "GE"; break;
5233 case eq: cc_name = "EQ"; break;
5234 case ne: cc_name = "NE"; break;
5235 default: cc_name = "UnknownCondition"; break;
5236 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005237 bool is_equality = cc_ == eq || cc_ == ne;
5238 stream->Add("CompareStub_%s", cc_name);
5239 stream->Add(lhs_.is(r0) ? "_r0" : "_r1");
5240 stream->Add(rhs_.is(r0) ? "_r0" : "_r1");
5241 if (strict_ && is_equality) stream->Add("_STRICT");
5242 if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
5243 if (!include_number_compare_) stream->Add("_NO_NUMBER");
5244 if (!include_smi_compare_) stream->Add("_NO_SMI");
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005245}
5246
5247
5248int CompareStub::MinorKey() {
5249 // Encode the three parameters in a unique 16 bit value. To avoid duplicate
5250 // stubs the never NaN NaN condition is only taken into account if the
5251 // condition is equals.
5252 ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12));
5253 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
5254 (lhs_.is(r1) && rhs_.is(r0)));
5255 return ConditionField::encode(static_cast<unsigned>(cc_) >> 28)
5256 | RegisterField::encode(lhs_.is(r0))
5257 | StrictField::encode(strict_)
5258 | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005259 | IncludeNumberCompareField::encode(include_number_compare_)
5260 | IncludeSmiCompareField::encode(include_smi_compare_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005261}
5262
5263
5264// StringCharCodeAtGenerator
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005265void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
5266 Label flat_string;
5267 Label ascii_string;
5268 Label got_char_code;
Ben Murdoch69a99ed2011-11-30 16:03:39 +00005269 Label sliced_string;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005270
5271 // If the receiver is a smi trigger the non-string case.
Steve Block1e0659c2011-05-24 12:43:12 +01005272 __ JumpIfSmi(object_, receiver_not_string_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005273
5274 // Fetch the instance type of the receiver into result register.
5275 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5276 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5277 // If the receiver is not a string trigger the non-string case.
5278 __ tst(result_, Operand(kIsNotStringMask));
5279 __ b(ne, receiver_not_string_);
5280
5281 // If the index is non-smi trigger the non-smi case.
Steve Block1e0659c2011-05-24 12:43:12 +01005282 __ JumpIfNotSmi(index_, &index_not_smi_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005283 __ bind(&got_smi_index_);
5284
5285 // Check for index out of range.
5286 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005287 __ cmp(ip, Operand(index_));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005288 __ b(ls, index_out_of_range_);
5289
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005290 __ mov(index_, Operand(index_, ASR, kSmiTagSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005291
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005292 StringCharLoadGenerator::Generate(masm,
5293 object_,
5294 index_,
5295 result_,
5296 &call_runtime_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005297
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005298 __ mov(result_, Operand(result_, LSL, kSmiTagSize));
5299 __ bind(&exit_);
5300}
5301
5302
5303void StringCharCodeAtGenerator::GenerateSlow(
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005304 MacroAssembler* masm,
5305 const RuntimeCallHelper& call_helper) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005306 __ Abort("Unexpected fallthrough to CharCodeAt slow case");
5307
5308 // Index is not a smi.
5309 __ bind(&index_not_smi_);
5310 // If index is a heap number, try converting it to an integer.
5311 __ CheckMap(index_,
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005312 result_,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005313 Heap::kHeapNumberMapRootIndex,
5314 index_not_number_,
Ben Murdoch257744e2011-11-30 15:57:28 +00005315 DONT_DO_SMI_CHECK);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005316 call_helper.BeforeCall(masm);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005317 __ push(object_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005318 __ push(index_); // Consumed by runtime conversion function.
5319 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
5320 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
5321 } else {
5322 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
5323 // NumberToSmi discards numbers that are not exact integers.
5324 __ CallRuntime(Runtime::kNumberToSmi, 1);
5325 }
5326 // Save the conversion result before the pop instructions below
5327 // have a chance to overwrite it.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005328 __ Move(index_, r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005329 __ pop(object_);
5330 // Reload the instance type.
5331 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5332 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5333 call_helper.AfterCall(masm);
5334 // If index is still not a smi, it must be out of range.
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005335 __ JumpIfNotSmi(index_, index_out_of_range_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005336 // Otherwise, return to the fast path.
5337 __ jmp(&got_smi_index_);
5338
5339 // Call runtime. We get here when the receiver is a string and the
5340 // index is a number, but the code of getting the actual character
5341 // is too complex (e.g., when the string needs to be flattened).
5342 __ bind(&call_runtime_);
5343 call_helper.BeforeCall(masm);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005344 __ mov(index_, Operand(index_, LSL, kSmiTagSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005345 __ Push(object_, index_);
5346 __ CallRuntime(Runtime::kStringCharCodeAt, 2);
5347 __ Move(result_, r0);
5348 call_helper.AfterCall(masm);
5349 __ jmp(&exit_);
5350
5351 __ Abort("Unexpected fallthrough from CharCodeAt slow case");
5352}
5353
5354
5355// -------------------------------------------------------------------------
5356// StringCharFromCodeGenerator
5357
5358void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
5359 // Fast case of Heap::LookupSingleCharacterStringFromCode.
5360 STATIC_ASSERT(kSmiTag == 0);
5361 STATIC_ASSERT(kSmiShiftSize == 0);
5362 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
5363 __ tst(code_,
5364 Operand(kSmiTagMask |
5365 ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
Steve Block1e0659c2011-05-24 12:43:12 +01005366 __ b(ne, &slow_case_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005367
5368 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
Steve Block44f0eee2011-05-26 01:26:41 +01005369 // At this point code register contains smi tagged ASCII char code.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005370 STATIC_ASSERT(kSmiTag == 0);
5371 __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
5372 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
5373 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
5374 __ cmp(result_, Operand(ip));
5375 __ b(eq, &slow_case_);
5376 __ bind(&exit_);
5377}
5378
5379
5380void StringCharFromCodeGenerator::GenerateSlow(
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005381 MacroAssembler* masm,
5382 const RuntimeCallHelper& call_helper) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005383 __ Abort("Unexpected fallthrough to CharFromCode slow case");
5384
5385 __ bind(&slow_case_);
5386 call_helper.BeforeCall(masm);
5387 __ push(code_);
5388 __ CallRuntime(Runtime::kCharFromCode, 1);
5389 __ Move(result_, r0);
5390 call_helper.AfterCall(masm);
5391 __ jmp(&exit_);
5392
5393 __ Abort("Unexpected fallthrough from CharFromCode slow case");
5394}
5395
5396
5397// -------------------------------------------------------------------------
5398// StringCharAtGenerator
5399
5400void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
5401 char_code_at_generator_.GenerateFast(masm);
5402 char_from_code_generator_.GenerateFast(masm);
5403}
5404
5405
5406void StringCharAtGenerator::GenerateSlow(
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005407 MacroAssembler* masm,
5408 const RuntimeCallHelper& call_helper) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005409 char_code_at_generator_.GenerateSlow(masm, call_helper);
5410 char_from_code_generator_.GenerateSlow(masm, call_helper);
5411}
5412
5413
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005414void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
5415 Register dest,
5416 Register src,
5417 Register count,
5418 Register scratch,
5419 bool ascii) {
5420 Label loop;
5421 Label done;
5422 // This loop just copies one character at a time, as it is only used for very
5423 // short strings.
5424 if (!ascii) {
5425 __ add(count, count, Operand(count), SetCC);
5426 } else {
Iain Merrick9ac36c92010-09-13 15:29:50 +01005427 __ cmp(count, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005428 }
5429 __ b(eq, &done);
5430
5431 __ bind(&loop);
5432 __ ldrb(scratch, MemOperand(src, 1, PostIndex));
5433 // Perform sub between load and dependent store to get the load time to
5434 // complete.
5435 __ sub(count, count, Operand(1), SetCC);
5436 __ strb(scratch, MemOperand(dest, 1, PostIndex));
5437 // last iteration.
5438 __ b(gt, &loop);
5439
5440 __ bind(&done);
5441}
5442
5443
5444enum CopyCharactersFlags {
5445 COPY_ASCII = 1,
5446 DEST_ALWAYS_ALIGNED = 2
5447};
5448
5449
5450void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
5451 Register dest,
5452 Register src,
5453 Register count,
5454 Register scratch1,
5455 Register scratch2,
5456 Register scratch3,
5457 Register scratch4,
5458 Register scratch5,
5459 int flags) {
5460 bool ascii = (flags & COPY_ASCII) != 0;
5461 bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
5462
5463 if (dest_always_aligned && FLAG_debug_code) {
5464 // Check that destination is actually word aligned if the flag says
5465 // that it is.
5466 __ tst(dest, Operand(kPointerAlignmentMask));
5467 __ Check(eq, "Destination of copy not aligned.");
5468 }
5469
5470 const int kReadAlignment = 4;
5471 const int kReadAlignmentMask = kReadAlignment - 1;
5472 // Ensure that reading an entire aligned word containing the last character
5473 // of a string will not read outside the allocated area (because we pad up
5474 // to kObjectAlignment).
5475 STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
5476 // Assumes word reads and writes are little endian.
5477 // Nothing to do for zero characters.
5478 Label done;
5479 if (!ascii) {
5480 __ add(count, count, Operand(count), SetCC);
5481 } else {
Iain Merrick9ac36c92010-09-13 15:29:50 +01005482 __ cmp(count, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005483 }
5484 __ b(eq, &done);
5485
5486 // Assume that you cannot read (or write) unaligned.
5487 Label byte_loop;
5488 // Must copy at least eight bytes, otherwise just do it one byte at a time.
5489 __ cmp(count, Operand(8));
5490 __ add(count, dest, Operand(count));
5491 Register limit = count; // Read until src equals this.
5492 __ b(lt, &byte_loop);
5493
5494 if (!dest_always_aligned) {
5495 // Align dest by byte copying. Copies between zero and three bytes.
5496 __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
5497 Label dest_aligned;
5498 __ b(eq, &dest_aligned);
5499 __ cmp(scratch4, Operand(2));
5500 __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
5501 __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
5502 __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
5503 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5504 __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
5505 __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
5506 __ bind(&dest_aligned);
5507 }
5508
5509 Label simple_loop;
5510
5511 __ sub(scratch4, dest, Operand(src));
5512 __ and_(scratch4, scratch4, Operand(0x03), SetCC);
5513 __ b(eq, &simple_loop);
5514 // Shift register is number of bits in a source word that
5515 // must be combined with bits in the next source word in order
5516 // to create a destination word.
5517
5518 // Complex loop for src/dst that are not aligned the same way.
5519 {
5520 Label loop;
5521 __ mov(scratch4, Operand(scratch4, LSL, 3));
5522 Register left_shift = scratch4;
5523 __ and_(src, src, Operand(~3)); // Round down to load previous word.
5524 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
5525 // Store the "shift" most significant bits of scratch in the least
5526 // signficant bits (i.e., shift down by (32-shift)).
5527 __ rsb(scratch2, left_shift, Operand(32));
5528 Register right_shift = scratch2;
5529 __ mov(scratch1, Operand(scratch1, LSR, right_shift));
5530
5531 __ bind(&loop);
5532 __ ldr(scratch3, MemOperand(src, 4, PostIndex));
5533 __ sub(scratch5, limit, Operand(dest));
5534 __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
5535 __ str(scratch1, MemOperand(dest, 4, PostIndex));
5536 __ mov(scratch1, Operand(scratch3, LSR, right_shift));
5537 // Loop if four or more bytes left to copy.
5538 // Compare to eight, because we did the subtract before increasing dst.
5539 __ sub(scratch5, scratch5, Operand(8), SetCC);
5540 __ b(ge, &loop);
5541 }
5542 // There is now between zero and three bytes left to copy (negative that
5543 // number is in scratch5), and between one and three bytes already read into
5544 // scratch1 (eight times that number in scratch4). We may have read past
5545 // the end of the string, but because objects are aligned, we have not read
5546 // past the end of the object.
5547 // Find the minimum of remaining characters to move and preloaded characters
5548 // and write those as bytes.
5549 __ add(scratch5, scratch5, Operand(4), SetCC);
5550 __ b(eq, &done);
5551 __ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
5552 // Move minimum of bytes read and bytes left to copy to scratch4.
5553 __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
5554 // Between one and three (value in scratch5) characters already read into
5555 // scratch ready to write.
5556 __ cmp(scratch5, Operand(2));
5557 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5558 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
5559 __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
5560 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
5561 __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
5562 // Copy any remaining bytes.
5563 __ b(&byte_loop);
5564
5565 // Simple loop.
5566 // Copy words from src to dst, until less than four bytes left.
5567 // Both src and dest are word aligned.
5568 __ bind(&simple_loop);
5569 {
5570 Label loop;
5571 __ bind(&loop);
5572 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
5573 __ sub(scratch3, limit, Operand(dest));
5574 __ str(scratch1, MemOperand(dest, 4, PostIndex));
5575 // Compare to 8, not 4, because we do the substraction before increasing
5576 // dest.
5577 __ cmp(scratch3, Operand(8));
5578 __ b(ge, &loop);
5579 }
5580
5581 // Copy bytes from src to dst until dst hits limit.
5582 __ bind(&byte_loop);
5583 __ cmp(dest, Operand(limit));
5584 __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
5585 __ b(ge, &done);
5586 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5587 __ b(&byte_loop);
5588
5589 __ bind(&done);
5590}
5591
5592
5593void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
5594 Register c1,
5595 Register c2,
5596 Register scratch1,
5597 Register scratch2,
5598 Register scratch3,
5599 Register scratch4,
5600 Register scratch5,
5601 Label* not_found) {
5602 // Register scratch3 is the general scratch register in this function.
5603 Register scratch = scratch3;
5604
5605 // Make sure that both characters are not digits as such strings has a
5606 // different hash algorithm. Don't try to look for these in the symbol table.
5607 Label not_array_index;
5608 __ sub(scratch, c1, Operand(static_cast<int>('0')));
5609 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
5610 __ b(hi, &not_array_index);
5611 __ sub(scratch, c2, Operand(static_cast<int>('0')));
5612 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
5613
5614 // If check failed combine both characters into single halfword.
5615 // This is required by the contract of the method: code at the
5616 // not_found branch expects this combination in c1 register
5617 __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
5618 __ b(ls, not_found);
5619
5620 __ bind(&not_array_index);
5621 // Calculate the two character string hash.
5622 Register hash = scratch1;
5623 StringHelper::GenerateHashInit(masm, hash, c1);
5624 StringHelper::GenerateHashAddCharacter(masm, hash, c2);
5625 StringHelper::GenerateHashGetHash(masm, hash);
5626
5627 // Collect the two characters in a register.
5628 Register chars = c1;
5629 __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
5630
5631 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5632 // hash: hash of two character string.
5633
5634 // Load symbol table
5635 // Load address of first element of the symbol table.
5636 Register symbol_table = c2;
5637 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
5638
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005639 Register undefined = scratch4;
5640 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
5641
5642 // Calculate capacity mask from the symbol table capacity.
5643 Register mask = scratch2;
5644 __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
5645 __ mov(mask, Operand(mask, ASR, 1));
5646 __ sub(mask, mask, Operand(1));
5647
5648 // Calculate untagged address of the first element of the symbol table.
5649 Register first_symbol_table_element = symbol_table;
5650 __ add(first_symbol_table_element, symbol_table,
5651 Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
5652
5653 // Registers
5654 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5655 // hash: hash of two character string
5656 // mask: capacity mask
5657 // first_symbol_table_element: address of the first element of
5658 // the symbol table
Steve Block44f0eee2011-05-26 01:26:41 +01005659 // undefined: the undefined object
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005660 // scratch: -
5661
5662 // Perform a number of probes in the symbol table.
5663 static const int kProbes = 4;
5664 Label found_in_symbol_table;
5665 Label next_probe[kProbes];
Ben Murdoch692be652012-01-10 18:47:50 +00005666 Register candidate = scratch5; // Scratch register contains candidate.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005667 for (int i = 0; i < kProbes; i++) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005668 // Calculate entry in symbol table.
5669 if (i > 0) {
5670 __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
5671 } else {
5672 __ mov(candidate, hash);
5673 }
5674
5675 __ and_(candidate, candidate, Operand(mask));
5676
5677 // Load the entry from the symble table.
5678 STATIC_ASSERT(SymbolTable::kEntrySize == 1);
5679 __ ldr(candidate,
5680 MemOperand(first_symbol_table_element,
5681 candidate,
5682 LSL,
5683 kPointerSizeLog2));
5684
5685 // If entry is undefined no string with this hash can be found.
Steve Block44f0eee2011-05-26 01:26:41 +01005686 Label is_string;
5687 __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE);
5688 __ b(ne, &is_string);
5689
5690 __ cmp(undefined, candidate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005691 __ b(eq, not_found);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005692 // Must be the hole (deleted entry).
Steve Block44f0eee2011-05-26 01:26:41 +01005693 if (FLAG_debug_code) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005694 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
Steve Block44f0eee2011-05-26 01:26:41 +01005695 __ cmp(ip, candidate);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00005696 __ Assert(eq, "oddball in symbol table is not undefined or the hole");
Steve Block44f0eee2011-05-26 01:26:41 +01005697 }
5698 __ jmp(&next_probe[i]);
5699
5700 __ bind(&is_string);
5701
5702 // Check that the candidate is a non-external ASCII string. The instance
5703 // type is still in the scratch register from the CompareObjectType
5704 // operation.
5705 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005706
5707 // If length is not 2 the string is not a candidate.
5708 __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
5709 __ cmp(scratch, Operand(Smi::FromInt(2)));
5710 __ b(ne, &next_probe[i]);
5711
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005712 // Check if the two characters match.
5713 // Assumes that word load is little endian.
5714 __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
5715 __ cmp(chars, scratch);
5716 __ b(eq, &found_in_symbol_table);
5717 __ bind(&next_probe[i]);
5718 }
5719
5720 // No matching 2 character string found by probing.
5721 __ jmp(not_found);
5722
5723 // Scratch register contains result when we fall through to here.
Ben Murdoch692be652012-01-10 18:47:50 +00005724 Register result = candidate;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005725 __ bind(&found_in_symbol_table);
5726 __ Move(r0, result);
5727}
5728
5729
5730void StringHelper::GenerateHashInit(MacroAssembler* masm,
5731 Register hash,
5732 Register character) {
5733 // hash = character + (character << 10);
Ben Murdochc7cc0282012-03-05 14:35:55 +00005734 __ LoadRoot(hash, Heap::kHashSeedRootIndex);
5735 // Untag smi seed and add the character.
5736 __ add(hash, character, Operand(hash, LSR, kSmiTagSize));
5737 // hash += hash << 10;
5738 __ add(hash, hash, Operand(hash, LSL, 10));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005739 // hash ^= hash >> 6;
Ben Murdoch692be652012-01-10 18:47:50 +00005740 __ eor(hash, hash, Operand(hash, LSR, 6));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005741}
5742
5743
5744void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
5745 Register hash,
5746 Register character) {
5747 // hash += character;
5748 __ add(hash, hash, Operand(character));
5749 // hash += hash << 10;
5750 __ add(hash, hash, Operand(hash, LSL, 10));
5751 // hash ^= hash >> 6;
Ben Murdoch692be652012-01-10 18:47:50 +00005752 __ eor(hash, hash, Operand(hash, LSR, 6));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005753}
5754
5755
5756void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
5757 Register hash) {
5758 // hash += hash << 3;
5759 __ add(hash, hash, Operand(hash, LSL, 3));
5760 // hash ^= hash >> 11;
Ben Murdoch692be652012-01-10 18:47:50 +00005761 __ eor(hash, hash, Operand(hash, LSR, 11));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005762 // hash += hash << 15;
Ben Murdochc7cc0282012-03-05 14:35:55 +00005763 __ add(hash, hash, Operand(hash, LSL, 15));
Ben Murdoch692be652012-01-10 18:47:50 +00005764
Ben Murdochc7cc0282012-03-05 14:35:55 +00005765 __ and_(hash, hash, Operand(String::kHashBitMask), SetCC);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005766
5767 // if (hash == 0) hash = 27;
Ben Murdochc7cc0282012-03-05 14:35:55 +00005768 __ mov(hash, Operand(StringHasher::kZeroHash), LeaveCC, eq);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005769}
5770
5771
5772void SubStringStub::Generate(MacroAssembler* masm) {
5773 Label runtime;
5774
5775 // Stack frame on entry.
5776 // lr: return address
5777 // sp[0]: to
5778 // sp[4]: from
5779 // sp[8]: string
5780
5781 // This stub is called from the native-call %_SubString(...), so
5782 // nothing can be assumed about the arguments. It is tested that:
5783 // "string" is a sequential string,
5784 // both "from" and "to" are smis, and
5785 // 0 <= from <= to <= string.length.
5786 // If any of these assumptions fail, we call the runtime system.
5787
5788 static const int kToOffset = 0 * kPointerSize;
5789 static const int kFromOffset = 1 * kPointerSize;
5790 static const int kStringOffset = 2 * kPointerSize;
5791
Ben Murdochc7cc0282012-03-05 14:35:55 +00005792 __ Ldrd(r2, r3, MemOperand(sp, kToOffset));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005793 STATIC_ASSERT(kFromOffset == kToOffset + 4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005794 STATIC_ASSERT(kSmiTag == 0);
5795 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00005796
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005797 // I.e., arithmetic shift right by one un-smi-tags.
Ben Murdochc7cc0282012-03-05 14:35:55 +00005798 __ mov(r2, Operand(r2, ASR, 1), SetCC);
5799 __ mov(r3, Operand(r3, ASR, 1), SetCC, cc);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005800 // If either to or from had the smi tag bit set, then carry is set now.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005801 __ b(cs, &runtime); // Either "from" or "to" is not a smi.
5802 __ b(mi, &runtime); // From is negative.
5803
Ben Murdochc7cc0282012-03-05 14:35:55 +00005804 // Both r2 and r3 are untagged integers.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005805 __ sub(r2, r2, Operand(r3), SetCC);
5806 __ b(mi, &runtime); // Fail if from > to.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005807
Ben Murdochc7cc0282012-03-05 14:35:55 +00005808 // Make sure first argument is a string.
Ben Murdoch589d6972011-11-30 16:04:58 +00005809 __ ldr(r0, MemOperand(sp, kStringOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005810 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch589d6972011-11-30 16:04:58 +00005811 __ JumpIfSmi(r0, &runtime);
5812 Condition is_string = masm->IsObjectStringType(r0, r1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005813 __ b(NegateCondition(is_string), &runtime);
5814
Ben Murdoch589d6972011-11-30 16:04:58 +00005815 // Short-cut for the case of trivial substring.
5816 Label return_r0;
5817 // r0: original string
5818 // r2: result string length
5819 __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
5820 __ cmp(r2, Operand(r4, ASR, 1));
5821 __ b(eq, &return_r0);
5822
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005823 Label result_longer_than_two;
Ben Murdochc7cc0282012-03-05 14:35:55 +00005824 // Check for special case of two character ASCII string, in which case
5825 // we do a lookup in the symbol table first.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005826 __ cmp(r2, Operand(2));
5827 __ b(gt, &result_longer_than_two);
Ben Murdochc7cc0282012-03-05 14:35:55 +00005828 __ b(lt, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005829
Ben Murdochc7cc0282012-03-05 14:35:55 +00005830 __ JumpIfInstanceTypeIsNotSequentialAscii(r1, r1, &runtime);
5831
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005832 // Get the two characters forming the sub string.
Ben Murdoch589d6972011-11-30 16:04:58 +00005833 __ add(r0, r0, Operand(r3));
5834 __ ldrb(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
5835 __ ldrb(r4, FieldMemOperand(r0, SeqAsciiString::kHeaderSize + 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005836
5837 // Try to lookup two character string in symbol table.
5838 Label make_two_character_string;
5839 StringHelper::GenerateTwoCharacterSymbolTableProbe(
5840 masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string);
Ben Murdoch589d6972011-11-30 16:04:58 +00005841 __ jmp(&return_r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005842
5843 // r2: result string length.
5844 // r3: two characters combined into halfword in little endian byte order.
5845 __ bind(&make_two_character_string);
5846 __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime);
5847 __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
Ben Murdoch589d6972011-11-30 16:04:58 +00005848 __ jmp(&return_r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005849
5850 __ bind(&result_longer_than_two);
Ben Murdochc7cc0282012-03-05 14:35:55 +00005851 // Deal with different string types: update the index if necessary
5852 // and put the underlying string into r5.
5853 // r0: original string
5854 // r1: instance type
5855 // r2: length
5856 // r3: from index (untagged)
5857 Label underlying_unpacked, sliced_string, seq_or_external_string;
5858 // If the string is not indirect, it can only be sequential or external.
5859 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
5860 STATIC_ASSERT(kIsIndirectStringMask != 0);
5861 __ tst(r1, Operand(kIsIndirectStringMask));
5862 __ b(eq, &seq_or_external_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005863
Ben Murdochc7cc0282012-03-05 14:35:55 +00005864 __ tst(r1, Operand(kSlicedNotConsMask));
5865 __ b(ne, &sliced_string);
5866 // Cons string. Check whether it is flat, then fetch first part.
5867 __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
5868 __ CompareRoot(r5, Heap::kEmptyStringRootIndex);
5869 __ b(ne, &runtime);
5870 __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
5871 // Update instance type.
5872 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
5873 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
5874 __ jmp(&underlying_unpacked);
Ben Murdoch589d6972011-11-30 16:04:58 +00005875
Ben Murdochc7cc0282012-03-05 14:35:55 +00005876 __ bind(&sliced_string);
5877 // Sliced string. Fetch parent and correct start index by offset.
5878 __ ldr(r5, FieldMemOperand(r0, SlicedString::kOffsetOffset));
5879 __ add(r3, r3, Operand(r5, ASR, 1));
5880 __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
5881 // Update instance type.
5882 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
5883 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
5884 __ jmp(&underlying_unpacked);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005885
Ben Murdochc7cc0282012-03-05 14:35:55 +00005886 __ bind(&seq_or_external_string);
5887 // Sequential or external string. Just move string to the expected register.
5888 __ mov(r5, r0);
5889
5890 __ bind(&underlying_unpacked);
5891
5892 if (FLAG_string_slices) {
5893 Label copy_routine;
5894 // r5: underlying subject string
5895 // r1: instance type of underlying subject string
5896 // r2: length
5897 // r3: adjusted start index (untagged)
5898 __ cmp(r2, Operand(SlicedString::kMinLength));
5899 // Short slice. Copy instead of slicing.
5900 __ b(lt, &copy_routine);
5901 // Allocate new sliced string. At this point we do not reload the instance
5902 // type including the string encoding because we simply rely on the info
5903 // provided by the original string. It does not matter if the original
5904 // string's encoding is wrong because we always have to recheck encoding of
5905 // the newly created string's parent anyways due to externalized strings.
5906 Label two_byte_slice, set_slice_header;
5907 STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
5908 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
5909 __ tst(r1, Operand(kStringEncodingMask));
5910 __ b(eq, &two_byte_slice);
5911 __ AllocateAsciiSlicedString(r0, r2, r6, r7, &runtime);
5912 __ jmp(&set_slice_header);
5913 __ bind(&two_byte_slice);
5914 __ AllocateTwoByteSlicedString(r0, r2, r6, r7, &runtime);
5915 __ bind(&set_slice_header);
5916 __ mov(r3, Operand(r3, LSL, 1));
5917 __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
5918 __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
5919 __ jmp(&return_r0);
5920
5921 __ bind(&copy_routine);
5922 }
5923
5924 // r5: underlying subject string
5925 // r1: instance type of underlying subject string
5926 // r2: length
5927 // r3: adjusted start index (untagged)
5928 Label two_byte_sequential, sequential_string, allocate_result;
5929 STATIC_ASSERT(kExternalStringTag != 0);
5930 STATIC_ASSERT(kSeqStringTag == 0);
5931 __ tst(r1, Operand(kExternalStringTag));
5932 __ b(eq, &sequential_string);
5933
5934 // Handle external string.
5935 // Rule out short external strings.
5936 STATIC_CHECK(kShortExternalStringTag != 0);
5937 __ tst(r1, Operand(kShortExternalStringTag));
5938 __ b(ne, &runtime);
5939 __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
5940 // r5 already points to the first character of underlying string.
5941 __ jmp(&allocate_result);
5942
5943 __ bind(&sequential_string);
5944 // Locate first character of underlying subject string.
5945 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
5946 __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5947
5948 __ bind(&allocate_result);
5949 // Sequential acii string. Allocate the result.
5950 STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0);
5951 __ tst(r1, Operand(kStringEncodingMask));
5952 __ b(eq, &two_byte_sequential);
5953
5954 // Allocate and copy the resulting ASCII string.
5955 __ AllocateAsciiString(r0, r2, r4, r6, r7, &runtime);
5956
5957 // Locate first character of substring to copy.
5958 __ add(r5, r5, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005959 // Locate first character of result.
5960 __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005961
Ben Murdoch589d6972011-11-30 16:04:58 +00005962 // r0: result string
5963 // r1: first character of result string
5964 // r2: result string length
5965 // r5: first character of substring to copy
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005966 STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
5967 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
5968 COPY_ASCII | DEST_ALWAYS_ALIGNED);
Ben Murdoch589d6972011-11-30 16:04:58 +00005969 __ jmp(&return_r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005970
Ben Murdochc7cc0282012-03-05 14:35:55 +00005971 // Allocate and copy the resulting two-byte string.
5972 __ bind(&two_byte_sequential);
5973 __ AllocateTwoByteString(r0, r2, r4, r6, r7, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005974
Ben Murdochc7cc0282012-03-05 14:35:55 +00005975 // Locate first character of substring to copy.
Ben Murdoch589d6972011-11-30 16:04:58 +00005976 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
Ben Murdochc7cc0282012-03-05 14:35:55 +00005977 __ add(r5, r5, Operand(r3, LSL, 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005978 // Locate first character of result.
5979 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
Ben Murdoch589d6972011-11-30 16:04:58 +00005980
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005981 // r0: result string.
5982 // r1: first character of result.
5983 // r2: result length.
Ben Murdoch589d6972011-11-30 16:04:58 +00005984 // r5: first character of substring to copy.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005985 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005986 StringHelper::GenerateCopyCharactersLong(
5987 masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED);
Ben Murdoch589d6972011-11-30 16:04:58 +00005988
5989 __ bind(&return_r0);
Ben Murdochc7cc0282012-03-05 14:35:55 +00005990 Counters* counters = masm->isolate()->counters();
Steve Block44f0eee2011-05-26 01:26:41 +01005991 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005992 __ add(sp, sp, Operand(3 * kPointerSize));
5993 __ Ret();
5994
5995 // Just jump to runtime to create the sub string.
5996 __ bind(&runtime);
5997 __ TailCallRuntime(Runtime::kSubString, 3, 1);
5998}
5999
6000
Ben Murdoch257744e2011-11-30 15:57:28 +00006001void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
6002 Register left,
6003 Register right,
6004 Register scratch1,
6005 Register scratch2,
6006 Register scratch3) {
6007 Register length = scratch1;
6008
6009 // Compare lengths.
6010 Label strings_not_equal, check_zero_length;
6011 __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
6012 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
6013 __ cmp(length, scratch2);
6014 __ b(eq, &check_zero_length);
6015 __ bind(&strings_not_equal);
6016 __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
6017 __ Ret();
6018
6019 // Check if the length is zero.
6020 Label compare_chars;
6021 __ bind(&check_zero_length);
6022 STATIC_ASSERT(kSmiTag == 0);
6023 __ tst(length, Operand(length));
6024 __ b(ne, &compare_chars);
6025 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
6026 __ Ret();
6027
6028 // Compare characters.
6029 __ bind(&compare_chars);
6030 GenerateAsciiCharsCompareLoop(masm,
6031 left, right, length, scratch2, scratch3,
6032 &strings_not_equal);
6033
6034 // Characters are equal.
6035 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
6036 __ Ret();
6037}
6038
6039
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006040void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
6041 Register left,
6042 Register right,
6043 Register scratch1,
6044 Register scratch2,
6045 Register scratch3,
6046 Register scratch4) {
Ben Murdoch257744e2011-11-30 15:57:28 +00006047 Label result_not_equal, compare_lengths;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006048 // Find minimum length and length difference.
6049 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
6050 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
6051 __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
6052 Register length_delta = scratch3;
6053 __ mov(scratch1, scratch2, LeaveCC, gt);
6054 Register min_length = scratch1;
6055 STATIC_ASSERT(kSmiTag == 0);
6056 __ tst(min_length, Operand(min_length));
6057 __ b(eq, &compare_lengths);
6058
Ben Murdoch257744e2011-11-30 15:57:28 +00006059 // Compare loop.
6060 GenerateAsciiCharsCompareLoop(masm,
6061 left, right, min_length, scratch2, scratch4,
6062 &result_not_equal);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006063
Ben Murdoch257744e2011-11-30 15:57:28 +00006064 // Compare lengths - strings up to min-length are equal.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006065 __ bind(&compare_lengths);
6066 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
Ben Murdoch257744e2011-11-30 15:57:28 +00006067 // Use length_delta as result if it's zero.
6068 __ mov(r0, Operand(length_delta), SetCC);
6069 __ bind(&result_not_equal);
6070 // Conditionally update the result based either on length_delta or
6071 // the last comparion performed in the loop above.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006072 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
6073 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
6074 __ Ret();
6075}
6076
6077
Ben Murdoch257744e2011-11-30 15:57:28 +00006078void StringCompareStub::GenerateAsciiCharsCompareLoop(
6079 MacroAssembler* masm,
6080 Register left,
6081 Register right,
6082 Register length,
6083 Register scratch1,
6084 Register scratch2,
6085 Label* chars_not_equal) {
6086 // Change index to run from -length to -1 by adding length to string
6087 // start. This means that loop ends when index reaches zero, which
6088 // doesn't need an additional compare.
6089 __ SmiUntag(length);
6090 __ add(scratch1, length,
6091 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6092 __ add(left, left, Operand(scratch1));
6093 __ add(right, right, Operand(scratch1));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006094 __ rsb(length, length, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +00006095 Register index = length; // index = -length;
6096
6097 // Compare loop.
6098 Label loop;
6099 __ bind(&loop);
6100 __ ldrb(scratch1, MemOperand(left, index));
6101 __ ldrb(scratch2, MemOperand(right, index));
6102 __ cmp(scratch1, scratch2);
6103 __ b(ne, chars_not_equal);
6104 __ add(index, index, Operand(1), SetCC);
6105 __ b(ne, &loop);
6106}
6107
6108
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006109void StringCompareStub::Generate(MacroAssembler* masm) {
6110 Label runtime;
6111
Steve Block44f0eee2011-05-26 01:26:41 +01006112 Counters* counters = masm->isolate()->counters();
6113
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006114 // Stack frame on entry.
6115 // sp[0]: right string
6116 // sp[4]: left string
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006117 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006118
6119 Label not_same;
6120 __ cmp(r0, r1);
6121 __ b(ne, &not_same);
6122 STATIC_ASSERT(EQUAL == 0);
6123 STATIC_ASSERT(kSmiTag == 0);
6124 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
Steve Block44f0eee2011-05-26 01:26:41 +01006125 __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006126 __ add(sp, sp, Operand(2 * kPointerSize));
6127 __ Ret();
6128
6129 __ bind(&not_same);
6130
Steve Block44f0eee2011-05-26 01:26:41 +01006131 // Check that both objects are sequential ASCII strings.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006132 __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006133
Steve Block44f0eee2011-05-26 01:26:41 +01006134 // Compare flat ASCII strings natively. Remove arguments from stack first.
6135 __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006136 __ add(sp, sp, Operand(2 * kPointerSize));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006137 GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006138
6139 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
6140 // tagged as a small integer.
6141 __ bind(&runtime);
6142 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
6143}
6144
6145
6146void StringAddStub::Generate(MacroAssembler* masm) {
Ben Murdochc7cc0282012-03-05 14:35:55 +00006147 Label call_runtime, call_builtin;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006148 Builtins::JavaScript builtin_id = Builtins::ADD;
6149
Steve Block44f0eee2011-05-26 01:26:41 +01006150 Counters* counters = masm->isolate()->counters();
6151
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006152 // Stack on entry:
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006153 // sp[0]: second argument (right).
6154 // sp[4]: first argument (left).
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006155
6156 // Load the two arguments.
6157 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument.
6158 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
6159
6160 // Make sure that both arguments are strings if not known in advance.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006161 if (flags_ == NO_STRING_ADD_FLAGS) {
Ben Murdochc7cc0282012-03-05 14:35:55 +00006162 __ JumpIfEitherSmi(r0, r1, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006163 // Load instance types.
6164 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6165 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6166 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6167 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6168 STATIC_ASSERT(kStringTag == 0);
6169 // If either is not a string, go to runtime.
6170 __ tst(r4, Operand(kIsNotStringMask));
6171 __ tst(r5, Operand(kIsNotStringMask), eq);
Ben Murdochc7cc0282012-03-05 14:35:55 +00006172 __ b(ne, &call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006173 } else {
6174 // Here at least one of the arguments is definitely a string.
6175 // We convert the one that is not known to be a string.
6176 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
6177 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
6178 GenerateConvertArgument(
6179 masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin);
6180 builtin_id = Builtins::STRING_ADD_RIGHT;
6181 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
6182 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
6183 GenerateConvertArgument(
6184 masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin);
6185 builtin_id = Builtins::STRING_ADD_LEFT;
6186 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006187 }
6188
6189 // Both arguments are strings.
6190 // r0: first string
6191 // r1: second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006192 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6193 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006194 {
6195 Label strings_not_empty;
6196 // Check if either of the strings are empty. In that case return the other.
6197 __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
6198 __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
6199 STATIC_ASSERT(kSmiTag == 0);
6200 __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
6201 __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
6202 STATIC_ASSERT(kSmiTag == 0);
6203 // Else test if second string is empty.
6204 __ cmp(r3, Operand(Smi::FromInt(0)), ne);
6205 __ b(ne, &strings_not_empty); // If either string was empty, return r0.
6206
Steve Block44f0eee2011-05-26 01:26:41 +01006207 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006208 __ add(sp, sp, Operand(2 * kPointerSize));
6209 __ Ret();
6210
6211 __ bind(&strings_not_empty);
6212 }
6213
6214 __ mov(r2, Operand(r2, ASR, kSmiTagSize));
6215 __ mov(r3, Operand(r3, ASR, kSmiTagSize));
6216 // Both strings are non-empty.
6217 // r0: first string
6218 // r1: second string
6219 // r2: length of first string
6220 // r3: length of second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006221 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6222 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006223 // Look at the length of the result of adding the two strings.
6224 Label string_add_flat_result, longer_than_two;
6225 // Adding two lengths can't overflow.
6226 STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
6227 __ add(r6, r2, Operand(r3));
Steve Block44f0eee2011-05-26 01:26:41 +01006228 // Use the symbol table when adding two one character strings, as it
6229 // helps later optimizations to return a symbol here.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006230 __ cmp(r6, Operand(2));
6231 __ b(ne, &longer_than_two);
6232
Steve Block44f0eee2011-05-26 01:26:41 +01006233 // Check that both strings are non-external ASCII strings.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006234 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006235 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6236 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6237 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6238 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6239 }
6240 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
Ben Murdochc7cc0282012-03-05 14:35:55 +00006241 &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006242
6243 // Get the two characters forming the sub string.
6244 __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
6245 __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize));
6246
6247 // Try to lookup two character string in symbol table. If it is not found
6248 // just allocate a new one.
6249 Label make_two_character_string;
6250 StringHelper::GenerateTwoCharacterSymbolTableProbe(
6251 masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
Steve Block44f0eee2011-05-26 01:26:41 +01006252 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006253 __ add(sp, sp, Operand(2 * kPointerSize));
6254 __ Ret();
6255
6256 __ bind(&make_two_character_string);
6257 // Resulting string has length 2 and first chars of two strings
6258 // are combined into single halfword in r2 register.
6259 // So we can fill resulting string without two loops by a single
6260 // halfword store instruction (which assumes that processor is
6261 // in a little endian mode)
6262 __ mov(r6, Operand(2));
Ben Murdochc7cc0282012-03-05 14:35:55 +00006263 __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006264 __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
Steve Block44f0eee2011-05-26 01:26:41 +01006265 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006266 __ add(sp, sp, Operand(2 * kPointerSize));
6267 __ Ret();
6268
6269 __ bind(&longer_than_two);
6270 // Check if resulting string will be flat.
Ben Murdochc7cc0282012-03-05 14:35:55 +00006271 __ cmp(r6, Operand(ConsString::kMinLength));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006272 __ b(lt, &string_add_flat_result);
6273 // Handle exceptionally long strings in the runtime system.
6274 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
6275 ASSERT(IsPowerOf2(String::kMaxLength + 1));
6276 // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
6277 __ cmp(r6, Operand(String::kMaxLength + 1));
Ben Murdochc7cc0282012-03-05 14:35:55 +00006278 __ b(hs, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006279
6280 // If result is not supposed to be flat, allocate a cons string object.
Steve Block44f0eee2011-05-26 01:26:41 +01006281 // If both strings are ASCII the result is an ASCII cons string.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006282 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006283 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6284 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6285 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6286 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6287 }
6288 Label non_ascii, allocated, ascii_data;
6289 STATIC_ASSERT(kTwoByteStringTag == 0);
6290 __ tst(r4, Operand(kStringEncodingMask));
6291 __ tst(r5, Operand(kStringEncodingMask), ne);
6292 __ b(eq, &non_ascii);
6293
6294 // Allocate an ASCII cons string.
6295 __ bind(&ascii_data);
Ben Murdochc7cc0282012-03-05 14:35:55 +00006296 __ AllocateAsciiConsString(r7, r6, r4, r5, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006297 __ bind(&allocated);
6298 // Fill the fields of the cons string.
6299 __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
6300 __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
6301 __ mov(r0, Operand(r7));
Steve Block44f0eee2011-05-26 01:26:41 +01006302 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006303 __ add(sp, sp, Operand(2 * kPointerSize));
6304 __ Ret();
6305
6306 __ bind(&non_ascii);
6307 // At least one of the strings is two-byte. Check whether it happens
Steve Block44f0eee2011-05-26 01:26:41 +01006308 // to contain only ASCII characters.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006309 // r4: first instance type.
6310 // r5: second instance type.
6311 __ tst(r4, Operand(kAsciiDataHintMask));
6312 __ tst(r5, Operand(kAsciiDataHintMask), ne);
6313 __ b(ne, &ascii_data);
6314 __ eor(r4, r4, Operand(r5));
6315 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
6316 __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
6317 __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
6318 __ b(eq, &ascii_data);
6319
6320 // Allocate a two byte cons string.
Ben Murdochc7cc0282012-03-05 14:35:55 +00006321 __ AllocateTwoByteConsString(r7, r6, r4, r5, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006322 __ jmp(&allocated);
6323
Ben Murdochc7cc0282012-03-05 14:35:55 +00006324 // We cannot encounter sliced strings or cons strings here since:
6325 STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
6326 // Handle creating a flat result from either external or sequential strings.
6327 // Locate the first characters' locations.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006328 // r0: first string
6329 // r1: second string
6330 // r2: length of first string
6331 // r3: length of second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006332 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6333 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006334 // r6: sum of lengths.
Ben Murdochc7cc0282012-03-05 14:35:55 +00006335 Label first_prepared, second_prepared;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006336 __ bind(&string_add_flat_result);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006337 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006338 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6339 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6340 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6341 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6342 }
Ben Murdochc7cc0282012-03-05 14:35:55 +00006343
6344 // Check whether both strings have same encoding
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006345 __ eor(r7, r4, Operand(r5));
6346 __ tst(r7, Operand(kStringEncodingMask));
Ben Murdochc7cc0282012-03-05 14:35:55 +00006347 __ b(ne, &call_runtime);
6348
6349 STATIC_ASSERT(kSeqStringTag == 0);
6350 __ tst(r4, Operand(kStringRepresentationMask));
6351 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
6352 __ add(r7,
6353 r0,
6354 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag),
6355 LeaveCC,
6356 eq);
6357 __ b(eq, &first_prepared);
6358 // External string: rule out short external string and load string resource.
6359 STATIC_ASSERT(kShortExternalStringTag != 0);
6360 __ tst(r4, Operand(kShortExternalStringMask));
6361 __ b(ne, &call_runtime);
6362 __ ldr(r7, FieldMemOperand(r0, ExternalString::kResourceDataOffset));
6363 __ bind(&first_prepared);
6364
6365 STATIC_ASSERT(kSeqStringTag == 0);
6366 __ tst(r5, Operand(kStringRepresentationMask));
6367 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
6368 __ add(r1,
6369 r1,
6370 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag),
6371 LeaveCC,
6372 eq);
6373 __ b(eq, &second_prepared);
6374 // External string: rule out short external string and load string resource.
6375 STATIC_ASSERT(kShortExternalStringTag != 0);
6376 __ tst(r5, Operand(kShortExternalStringMask));
6377 __ b(ne, &call_runtime);
6378 __ ldr(r1, FieldMemOperand(r1, ExternalString::kResourceDataOffset));
6379 __ bind(&second_prepared);
6380
6381 Label non_ascii_string_add_flat_result;
6382 // r7: first character of first string
6383 // r1: first character of second string
6384 // r2: length of first string.
6385 // r3: length of second string.
6386 // r6: sum of lengths.
6387 // Both strings have the same encoding.
6388 STATIC_ASSERT(kTwoByteStringTag == 0);
6389 __ tst(r5, Operand(kStringEncodingMask));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006390 __ b(eq, &non_ascii_string_add_flat_result);
6391
Ben Murdochc7cc0282012-03-05 14:35:55 +00006392 __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
6393 __ add(r6, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6394 // r0: result string.
6395 // r7: first character of first string.
6396 // r1: first character of second string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006397 // r2: length of first string.
6398 // r3: length of second string.
6399 // r6: first character of result.
Ben Murdochc7cc0282012-03-05 14:35:55 +00006400 StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, true);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006401 // r6: next character of result.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006402 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
Steve Block44f0eee2011-05-26 01:26:41 +01006403 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006404 __ add(sp, sp, Operand(2 * kPointerSize));
6405 __ Ret();
6406
6407 __ bind(&non_ascii_string_add_flat_result);
Ben Murdochc7cc0282012-03-05 14:35:55 +00006408 __ AllocateTwoByteString(r0, r6, r4, r5, r9, &call_runtime);
6409 __ add(r6, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6410 // r0: result string.
6411 // r7: first character of first string.
6412 // r1: first character of second string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006413 // r2: length of first string.
6414 // r3: length of second string.
6415 // r6: first character of result.
Ben Murdochc7cc0282012-03-05 14:35:55 +00006416 StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, false);
6417 // r6: next character of result.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006418 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
Steve Block44f0eee2011-05-26 01:26:41 +01006419 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006420 __ add(sp, sp, Operand(2 * kPointerSize));
6421 __ Ret();
6422
6423 // Just jump to runtime to add the two strings.
Ben Murdochc7cc0282012-03-05 14:35:55 +00006424 __ bind(&call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006425 __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006426
6427 if (call_builtin.is_linked()) {
6428 __ bind(&call_builtin);
Ben Murdoch257744e2011-11-30 15:57:28 +00006429 __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006430 }
6431}
6432
6433
6434void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
6435 int stack_offset,
6436 Register arg,
6437 Register scratch1,
6438 Register scratch2,
6439 Register scratch3,
6440 Register scratch4,
6441 Label* slow) {
6442 // First check if the argument is already a string.
6443 Label not_string, done;
6444 __ JumpIfSmi(arg, &not_string);
6445 __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE);
6446 __ b(lt, &done);
6447
6448 // Check the number to string cache.
6449 Label not_cached;
6450 __ bind(&not_string);
6451 // Puts the cached result into scratch1.
6452 NumberToStringStub::GenerateLookupNumberStringCache(masm,
6453 arg,
6454 scratch1,
6455 scratch2,
6456 scratch3,
6457 scratch4,
6458 false,
6459 &not_cached);
6460 __ mov(arg, scratch1);
6461 __ str(arg, MemOperand(sp, stack_offset));
6462 __ jmp(&done);
6463
6464 // Check if the argument is a safe string wrapper.
6465 __ bind(&not_cached);
6466 __ JumpIfSmi(arg, slow);
6467 __ CompareObjectType(
6468 arg, scratch1, scratch2, JS_VALUE_TYPE); // map -> scratch1.
6469 __ b(ne, slow);
6470 __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
6471 __ and_(scratch2,
6472 scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
6473 __ cmp(scratch2,
6474 Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
6475 __ b(ne, slow);
6476 __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset));
6477 __ str(arg, MemOperand(sp, stack_offset));
6478
6479 __ bind(&done);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006480}
6481
6482
Ben Murdochb0fe1622011-05-05 13:52:32 +01006483void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
6484 ASSERT(state_ == CompareIC::SMIS);
6485 Label miss;
6486 __ orr(r2, r1, r0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00006487 __ JumpIfNotSmi(r2, &miss);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006488
6489 if (GetCondition() == eq) {
6490 // For equality we do not care about the sign of the result.
6491 __ sub(r0, r0, r1, SetCC);
6492 } else {
Steve Block1e0659c2011-05-24 12:43:12 +01006493 // Untag before subtracting to avoid handling overflow.
6494 __ SmiUntag(r1);
6495 __ sub(r0, r1, SmiUntagOperand(r0));
Ben Murdochb0fe1622011-05-05 13:52:32 +01006496 }
6497 __ Ret();
6498
6499 __ bind(&miss);
6500 GenerateMiss(masm);
6501}
6502
6503
6504void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
6505 ASSERT(state_ == CompareIC::HEAP_NUMBERS);
6506
6507 Label generic_stub;
6508 Label unordered;
6509 Label miss;
6510 __ and_(r2, r1, Operand(r0));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00006511 __ JumpIfSmi(r2, &generic_stub);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006512
6513 __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE);
6514 __ b(ne, &miss);
6515 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
6516 __ b(ne, &miss);
6517
6518 // Inlining the double comparison and falling back to the general compare
6519 // stub if NaN is involved or VFP3 is unsupported.
Ben Murdoch8b112d22011-06-08 16:22:53 +01006520 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01006521 CpuFeatures::Scope scope(VFP3);
6522
6523 // Load left and right operand
6524 __ sub(r2, r1, Operand(kHeapObjectTag));
6525 __ vldr(d0, r2, HeapNumber::kValueOffset);
6526 __ sub(r2, r0, Operand(kHeapObjectTag));
6527 __ vldr(d1, r2, HeapNumber::kValueOffset);
6528
6529 // Compare operands
Ben Murdochb8e0da22011-05-16 14:20:40 +01006530 __ VFPCompareAndSetFlags(d0, d1);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006531
6532 // Don't base result on status bits when a NaN is involved.
6533 __ b(vs, &unordered);
6534
6535 // Return a result of -1, 0, or 1, based on status bits.
6536 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
6537 __ mov(r0, Operand(LESS), LeaveCC, lt);
6538 __ mov(r0, Operand(GREATER), LeaveCC, gt);
6539 __ Ret();
6540
6541 __ bind(&unordered);
6542 }
6543
6544 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0);
6545 __ bind(&generic_stub);
6546 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
6547
6548 __ bind(&miss);
6549 GenerateMiss(masm);
6550}
6551
6552
Ben Murdoch257744e2011-11-30 15:57:28 +00006553void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
6554 ASSERT(state_ == CompareIC::SYMBOLS);
6555 Label miss;
6556
6557 // Registers containing left and right operands respectively.
6558 Register left = r1;
6559 Register right = r0;
6560 Register tmp1 = r2;
6561 Register tmp2 = r3;
6562
6563 // Check that both operands are heap objects.
6564 __ JumpIfEitherSmi(left, right, &miss);
6565
6566 // Check that both operands are symbols.
6567 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
6568 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
6569 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
6570 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
6571 STATIC_ASSERT(kSymbolTag != 0);
6572 __ and_(tmp1, tmp1, Operand(tmp2));
6573 __ tst(tmp1, Operand(kIsSymbolMask));
6574 __ b(eq, &miss);
6575
6576 // Symbols are compared by identity.
6577 __ cmp(left, right);
6578 // Make sure r0 is non-zero. At this point input operands are
6579 // guaranteed to be non-zero.
6580 ASSERT(right.is(r0));
6581 STATIC_ASSERT(EQUAL == 0);
6582 STATIC_ASSERT(kSmiTag == 0);
6583 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
6584 __ Ret();
6585
6586 __ bind(&miss);
6587 GenerateMiss(masm);
6588}
6589
6590
6591void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
6592 ASSERT(state_ == CompareIC::STRINGS);
6593 Label miss;
6594
6595 // Registers containing left and right operands respectively.
6596 Register left = r1;
6597 Register right = r0;
6598 Register tmp1 = r2;
6599 Register tmp2 = r3;
6600 Register tmp3 = r4;
6601 Register tmp4 = r5;
6602
6603 // Check that both operands are heap objects.
6604 __ JumpIfEitherSmi(left, right, &miss);
6605
6606 // Check that both operands are strings. This leaves the instance
6607 // types loaded in tmp1 and tmp2.
6608 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
6609 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
6610 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
6611 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
6612 STATIC_ASSERT(kNotStringTag != 0);
6613 __ orr(tmp3, tmp1, tmp2);
6614 __ tst(tmp3, Operand(kIsNotStringMask));
6615 __ b(ne, &miss);
6616
6617 // Fast check for identical strings.
6618 __ cmp(left, right);
6619 STATIC_ASSERT(EQUAL == 0);
6620 STATIC_ASSERT(kSmiTag == 0);
6621 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
6622 __ Ret(eq);
6623
6624 // Handle not identical strings.
6625
6626 // Check that both strings are symbols. If they are, we're done
6627 // because we already know they are not identical.
6628 ASSERT(GetCondition() == eq);
6629 STATIC_ASSERT(kSymbolTag != 0);
6630 __ and_(tmp3, tmp1, Operand(tmp2));
6631 __ tst(tmp3, Operand(kIsSymbolMask));
6632 // Make sure r0 is non-zero. At this point input operands are
6633 // guaranteed to be non-zero.
6634 ASSERT(right.is(r0));
6635 __ Ret(ne);
6636
6637 // Check that both strings are sequential ASCII.
6638 Label runtime;
6639 __ JumpIfBothInstanceTypesAreNotSequentialAscii(tmp1, tmp2, tmp3, tmp4,
6640 &runtime);
6641
6642 // Compare flat ASCII strings. Returns when done.
6643 StringCompareStub::GenerateFlatAsciiStringEquals(
6644 masm, left, right, tmp1, tmp2, tmp3);
6645
6646 // Handle more complex cases in runtime.
6647 __ bind(&runtime);
6648 __ Push(left, right);
6649 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
6650
6651 __ bind(&miss);
6652 GenerateMiss(masm);
6653}
6654
6655
Ben Murdochb0fe1622011-05-05 13:52:32 +01006656void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
6657 ASSERT(state_ == CompareIC::OBJECTS);
6658 Label miss;
6659 __ and_(r2, r1, Operand(r0));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00006660 __ JumpIfSmi(r2, &miss);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006661
6662 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
6663 __ b(ne, &miss);
6664 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
6665 __ b(ne, &miss);
6666
6667 ASSERT(GetCondition() == eq);
6668 __ sub(r0, r0, Operand(r1));
6669 __ Ret();
6670
6671 __ bind(&miss);
6672 GenerateMiss(masm);
6673}
6674
6675
Ben Murdochc7cc0282012-03-05 14:35:55 +00006676void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
6677 Label miss;
6678 __ and_(r2, r1, Operand(r0));
6679 __ JumpIfSmi(r2, &miss);
6680 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
6681 __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
6682 __ cmp(r2, Operand(known_map_));
6683 __ b(ne, &miss);
6684 __ cmp(r3, Operand(known_map_));
6685 __ b(ne, &miss);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006686
Ben Murdochc7cc0282012-03-05 14:35:55 +00006687 __ sub(r0, r0, Operand(r1));
6688 __ Ret();
6689
6690 __ bind(&miss);
6691 GenerateMiss(masm);
6692}
6693
6694
6695
6696void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006697 {
Ben Murdochc7cc0282012-03-05 14:35:55 +00006698 // Call the runtime system in a fresh internal frame.
6699 ExternalReference miss =
6700 ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
6701
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006702 FrameScope scope(masm, StackFrame::INTERNAL);
6703 __ Push(r1, r0);
Ben Murdochc7cc0282012-03-05 14:35:55 +00006704 __ push(lr);
6705 __ Push(r1, r0);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006706 __ mov(ip, Operand(Smi::FromInt(op_)));
6707 __ push(ip);
6708 __ CallExternalReference(miss, 3);
Ben Murdochc7cc0282012-03-05 14:35:55 +00006709 // Compute the entry point of the rewritten stub.
6710 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
6711 // Restore registers.
6712 __ pop(lr);
6713 __ pop(r0);
6714 __ pop(r1);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006715 }
Ben Murdochc7cc0282012-03-05 14:35:55 +00006716
Ben Murdochb0fe1622011-05-05 13:52:32 +01006717 __ Jump(r2);
6718}
6719
6720
Steve Block1e0659c2011-05-24 12:43:12 +01006721void DirectCEntryStub::Generate(MacroAssembler* masm) {
6722 __ ldr(pc, MemOperand(sp, 0));
6723}
6724
6725
6726void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006727 ExternalReference function) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006728 __ mov(r2, Operand(function));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006729 GenerateCall(masm, r2);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006730}
6731
6732
6733void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
6734 Register target) {
Steve Block1e0659c2011-05-24 12:43:12 +01006735 __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
6736 RelocInfo::CODE_TARGET));
6737 // Push return address (accessible to GC through exit frame pc).
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006738 // Note that using pc with str is deprecated.
6739 Label start;
6740 __ bind(&start);
6741 __ add(ip, pc, Operand(Assembler::kInstrSize));
6742 __ str(ip, MemOperand(sp, 0));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006743 __ Jump(target); // Call the C++ function.
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006744 ASSERT_EQ(Assembler::kInstrSize + Assembler::kPcLoadDelta,
6745 masm->SizeOfCodeGeneratedSince(&start));
Steve Block1e0659c2011-05-24 12:43:12 +01006746}
6747
6748
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006749void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
6750 Label* miss,
6751 Label* done,
6752 Register receiver,
6753 Register properties,
6754 Handle<String> name,
6755 Register scratch0) {
Ben Murdoch257744e2011-11-30 15:57:28 +00006756 // If names of slots in range from 1 to kProbes - 1 for the hash value are
6757 // not equal to the name and kProbes-th slot is not used (its name is the
6758 // undefined value), it guarantees the hash table doesn't contain the
6759 // property. It's true even if some slots represent deleted properties
6760 // (their names are the null value).
6761 for (int i = 0; i < kInlinedProbes; i++) {
6762 // scratch0 points to properties hash.
6763 // Compute the masked index: (hash + i + i * i) & mask.
6764 Register index = scratch0;
6765 // Capacity is smi 2^n.
6766 __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
6767 __ sub(index, index, Operand(1));
6768 __ and_(index, index, Operand(
6769 Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
6770
6771 // Scale the index by multiplying by the entry size.
6772 ASSERT(StringDictionary::kEntrySize == 3);
6773 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
6774
6775 Register entity_name = scratch0;
6776 // Having undefined at this place means the name is not contained.
6777 ASSERT_EQ(kSmiTagSize, 1);
6778 Register tmp = properties;
6779 __ add(tmp, properties, Operand(index, LSL, 1));
6780 __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
6781
6782 ASSERT(!tmp.is(entity_name));
6783 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
6784 __ cmp(entity_name, tmp);
6785 __ b(eq, done);
6786
6787 if (i != kInlinedProbes - 1) {
6788 // Stop if found the property.
6789 __ cmp(entity_name, Operand(Handle<String>(name)));
6790 __ b(eq, miss);
6791
6792 // Check if the entry name is not a symbol.
6793 __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
6794 __ ldrb(entity_name,
6795 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
6796 __ tst(entity_name, Operand(kIsSymbolMask));
6797 __ b(eq, miss);
6798
6799 // Restore the properties.
6800 __ ldr(properties,
6801 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
6802 }
6803 }
6804
6805 const int spill_mask =
6806 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
6807 r2.bit() | r1.bit() | r0.bit());
6808
6809 __ stm(db_w, sp, spill_mask);
6810 __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
6811 __ mov(r1, Operand(Handle<String>(name)));
6812 StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006813 __ CallStub(&stub);
Ben Murdoch257744e2011-11-30 15:57:28 +00006814 __ tst(r0, Operand(r0));
6815 __ ldm(ia_w, sp, spill_mask);
6816
6817 __ b(eq, done);
6818 __ b(ne, miss);
Ben Murdoch257744e2011-11-30 15:57:28 +00006819}
6820
6821
6822// Probe the string dictionary in the |elements| register. Jump to the
6823// |done| label if a property with the given name is found. Jump to
6824// the |miss| label otherwise.
6825// If lookup was successful |scratch2| will be equal to elements + 4 * index.
6826void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
6827 Label* miss,
6828 Label* done,
6829 Register elements,
6830 Register name,
6831 Register scratch1,
6832 Register scratch2) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006833 ASSERT(!elements.is(scratch1));
6834 ASSERT(!elements.is(scratch2));
6835 ASSERT(!name.is(scratch1));
6836 ASSERT(!name.is(scratch2));
6837
Ben Murdoch257744e2011-11-30 15:57:28 +00006838 // Assert that name contains a string.
6839 if (FLAG_debug_code) __ AbortIfNotString(name);
6840
6841 // Compute the capacity mask.
6842 __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
6843 __ mov(scratch1, Operand(scratch1, ASR, kSmiTagSize)); // convert smi to int
6844 __ sub(scratch1, scratch1, Operand(1));
6845
6846 // Generate an unrolled loop that performs a few probes before
6847 // giving up. Measurements done on Gmail indicate that 2 probes
6848 // cover ~93% of loads from dictionaries.
6849 for (int i = 0; i < kInlinedProbes; i++) {
6850 // Compute the masked index: (hash + i + i * i) & mask.
6851 __ ldr(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
6852 if (i > 0) {
6853 // Add the probe offset (i + i * i) left shifted to avoid right shifting
6854 // the hash in a separate instruction. The value hash + i + i * i is right
6855 // shifted in the following and instruction.
6856 ASSERT(StringDictionary::GetProbeOffset(i) <
6857 1 << (32 - String::kHashFieldOffset));
6858 __ add(scratch2, scratch2, Operand(
6859 StringDictionary::GetProbeOffset(i) << String::kHashShift));
6860 }
6861 __ and_(scratch2, scratch1, Operand(scratch2, LSR, String::kHashShift));
6862
6863 // Scale the index by multiplying by the element size.
6864 ASSERT(StringDictionary::kEntrySize == 3);
6865 // scratch2 = scratch2 * 3.
6866 __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
6867
6868 // Check if the key is identical to the name.
6869 __ add(scratch2, elements, Operand(scratch2, LSL, 2));
6870 __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
6871 __ cmp(name, Operand(ip));
6872 __ b(eq, done);
6873 }
6874
6875 const int spill_mask =
6876 (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
6877 r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
6878 ~(scratch1.bit() | scratch2.bit());
6879
6880 __ stm(db_w, sp, spill_mask);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006881 if (name.is(r0)) {
6882 ASSERT(!elements.is(r1));
6883 __ Move(r1, name);
6884 __ Move(r0, elements);
6885 } else {
6886 __ Move(r0, elements);
6887 __ Move(r1, name);
6888 }
Ben Murdoch257744e2011-11-30 15:57:28 +00006889 StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
6890 __ CallStub(&stub);
6891 __ tst(r0, Operand(r0));
6892 __ mov(scratch2, Operand(r2));
6893 __ ldm(ia_w, sp, spill_mask);
6894
6895 __ b(ne, done);
6896 __ b(eq, miss);
6897}
6898
6899
6900void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006901 // This stub overrides SometimesSetsUpAFrame() to return false. That means
6902 // we cannot call anything that could cause a GC from this stub.
Ben Murdoch257744e2011-11-30 15:57:28 +00006903 // Registers:
6904 // result: StringDictionary to probe
6905 // r1: key
6906 // : StringDictionary to probe.
6907 // index_: will hold an index of entry if lookup is successful.
6908 // might alias with result_.
6909 // Returns:
6910 // result_ is zero if lookup failed, non zero otherwise.
6911
6912 Register result = r0;
6913 Register dictionary = r0;
6914 Register key = r1;
6915 Register index = r2;
6916 Register mask = r3;
6917 Register hash = r4;
6918 Register undefined = r5;
6919 Register entry_key = r6;
6920
6921 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
6922
6923 __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
6924 __ mov(mask, Operand(mask, ASR, kSmiTagSize));
6925 __ sub(mask, mask, Operand(1));
6926
6927 __ ldr(hash, FieldMemOperand(key, String::kHashFieldOffset));
6928
6929 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
6930
6931 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
6932 // Compute the masked index: (hash + i + i * i) & mask.
6933 // Capacity is smi 2^n.
6934 if (i > 0) {
6935 // Add the probe offset (i + i * i) left shifted to avoid right shifting
6936 // the hash in a separate instruction. The value hash + i + i * i is right
6937 // shifted in the following and instruction.
6938 ASSERT(StringDictionary::GetProbeOffset(i) <
6939 1 << (32 - String::kHashFieldOffset));
6940 __ add(index, hash, Operand(
6941 StringDictionary::GetProbeOffset(i) << String::kHashShift));
6942 } else {
6943 __ mov(index, Operand(hash));
6944 }
6945 __ and_(index, mask, Operand(index, LSR, String::kHashShift));
6946
6947 // Scale the index by multiplying by the entry size.
6948 ASSERT(StringDictionary::kEntrySize == 3);
6949 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
6950
6951 ASSERT_EQ(kSmiTagSize, 1);
6952 __ add(index, dictionary, Operand(index, LSL, 2));
6953 __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
6954
6955 // Having undefined at this place means the name is not contained.
6956 __ cmp(entry_key, Operand(undefined));
6957 __ b(eq, &not_in_dictionary);
6958
6959 // Stop if found the property.
6960 __ cmp(entry_key, Operand(key));
6961 __ b(eq, &in_dictionary);
6962
6963 if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
6964 // Check if the entry name is not a symbol.
6965 __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
6966 __ ldrb(entry_key,
6967 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
6968 __ tst(entry_key, Operand(kIsSymbolMask));
6969 __ b(eq, &maybe_in_dictionary);
6970 }
6971 }
6972
6973 __ bind(&maybe_in_dictionary);
6974 // If we are doing negative lookup then probing failure should be
6975 // treated as a lookup success. For positive lookup probing failure
6976 // should be treated as lookup failure.
6977 if (mode_ == POSITIVE_LOOKUP) {
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006978 __ mov(result, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +00006979 __ Ret();
6980 }
6981
6982 __ bind(&in_dictionary);
6983 __ mov(result, Operand(1));
6984 __ Ret();
6985
6986 __ bind(&not_in_dictionary);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006987 __ mov(result, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +00006988 __ Ret();
6989}
6990
6991
Ben Murdoch592a9fc2012-03-05 11:04:45 +00006992struct AheadOfTimeWriteBarrierStubList {
6993 Register object, value, address;
6994 RememberedSetAction action;
6995};
6996
6997
6998struct AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
6999 // Used in RegExpExecStub.
7000 { r6, r4, r7, EMIT_REMEMBERED_SET },
7001 { r6, r2, r7, EMIT_REMEMBERED_SET },
7002 // Used in CompileArrayPushCall.
7003 // Also used in StoreIC::GenerateNormal via GenerateDictionaryStore.
7004 // Also used in KeyedStoreIC::GenerateGeneric.
7005 { r3, r4, r5, EMIT_REMEMBERED_SET },
7006 // Used in CompileStoreGlobal.
7007 { r4, r1, r2, OMIT_REMEMBERED_SET },
7008 // Used in StoreStubCompiler::CompileStoreField via GenerateStoreField.
7009 { r1, r2, r3, EMIT_REMEMBERED_SET },
7010 { r3, r2, r1, EMIT_REMEMBERED_SET },
7011 // Used in KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
7012 { r2, r1, r3, EMIT_REMEMBERED_SET },
7013 { r3, r1, r2, EMIT_REMEMBERED_SET },
7014 // KeyedStoreStubCompiler::GenerateStoreFastElement.
7015 { r4, r2, r3, EMIT_REMEMBERED_SET },
7016 // ElementsTransitionGenerator::GenerateSmiOnlyToObject
7017 // and ElementsTransitionGenerator::GenerateSmiOnlyToDouble
7018 // and ElementsTransitionGenerator::GenerateDoubleToObject
7019 { r2, r3, r9, EMIT_REMEMBERED_SET },
7020 // ElementsTransitionGenerator::GenerateDoubleToObject
7021 { r6, r2, r0, EMIT_REMEMBERED_SET },
7022 { r2, r6, r9, EMIT_REMEMBERED_SET },
7023 // StoreArrayLiteralElementStub::Generate
7024 { r5, r0, r6, EMIT_REMEMBERED_SET },
7025 // Null termination.
7026 { no_reg, no_reg, no_reg, EMIT_REMEMBERED_SET}
7027};
7028
7029
7030bool RecordWriteStub::IsPregenerated() {
7031 for (AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
7032 !entry->object.is(no_reg);
7033 entry++) {
7034 if (object_.is(entry->object) &&
7035 value_.is(entry->value) &&
7036 address_.is(entry->address) &&
7037 remembered_set_action_ == entry->action &&
7038 save_fp_regs_mode_ == kDontSaveFPRegs) {
7039 return true;
7040 }
7041 }
7042 return false;
7043}
7044
7045
7046bool StoreBufferOverflowStub::IsPregenerated() {
7047 return save_doubles_ == kDontSaveFPRegs || ISOLATE->fp_stubs_generated();
7048}
7049
7050
7051void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
7052 StoreBufferOverflowStub stub1(kDontSaveFPRegs);
7053 stub1.GetCode()->set_is_pregenerated(true);
7054}
7055
7056
7057void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
7058 for (AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
7059 !entry->object.is(no_reg);
7060 entry++) {
7061 RecordWriteStub stub(entry->object,
7062 entry->value,
7063 entry->address,
7064 entry->action,
7065 kDontSaveFPRegs);
7066 stub.GetCode()->set_is_pregenerated(true);
7067 }
7068}
7069
7070
7071// Takes the input in 3 registers: address_ value_ and object_. A pointer to
7072// the value has just been written into the object, now this stub makes sure
7073// we keep the GC informed. The word in the object where the value has been
7074// written is in the address register.
7075void RecordWriteStub::Generate(MacroAssembler* masm) {
7076 Label skip_to_incremental_noncompacting;
7077 Label skip_to_incremental_compacting;
7078
7079 // The first two instructions are generated with labels so as to get the
7080 // offset fixed up correctly by the bind(Label*) call. We patch it back and
7081 // forth between a compare instructions (a nop in this position) and the
7082 // real branch when we start and stop incremental heap marking.
7083 // See RecordWriteStub::Patch for details.
7084 __ b(&skip_to_incremental_noncompacting);
7085 __ b(&skip_to_incremental_compacting);
7086
7087 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
7088 __ RememberedSetHelper(object_,
7089 address_,
7090 value_,
7091 save_fp_regs_mode_,
7092 MacroAssembler::kReturnAtEnd);
7093 }
7094 __ Ret();
7095
7096 __ bind(&skip_to_incremental_noncompacting);
7097 GenerateIncremental(masm, INCREMENTAL);
7098
7099 __ bind(&skip_to_incremental_compacting);
7100 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
7101
7102 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
7103 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
7104 ASSERT(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
7105 ASSERT(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
7106 PatchBranchIntoNop(masm, 0);
7107 PatchBranchIntoNop(masm, Assembler::kInstrSize);
7108}
7109
7110
7111void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
7112 regs_.Save(masm);
7113
7114 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
7115 Label dont_need_remembered_set;
7116
7117 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
7118 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
7119 regs_.scratch0(),
7120 &dont_need_remembered_set);
7121
7122 __ CheckPageFlag(regs_.object(),
7123 regs_.scratch0(),
7124 1 << MemoryChunk::SCAN_ON_SCAVENGE,
7125 ne,
7126 &dont_need_remembered_set);
7127
7128 // First notify the incremental marker if necessary, then update the
7129 // remembered set.
7130 CheckNeedsToInformIncrementalMarker(
7131 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
7132 InformIncrementalMarker(masm, mode);
7133 regs_.Restore(masm);
7134 __ RememberedSetHelper(object_,
7135 address_,
7136 value_,
7137 save_fp_regs_mode_,
7138 MacroAssembler::kReturnAtEnd);
7139
7140 __ bind(&dont_need_remembered_set);
7141 }
7142
7143 CheckNeedsToInformIncrementalMarker(
7144 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
7145 InformIncrementalMarker(masm, mode);
7146 regs_.Restore(masm);
7147 __ Ret();
7148}
7149
7150
7151void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
7152 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
7153 int argument_count = 3;
7154 __ PrepareCallCFunction(argument_count, regs_.scratch0());
7155 Register address =
7156 r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
7157 ASSERT(!address.is(regs_.object()));
7158 ASSERT(!address.is(r0));
7159 __ Move(address, regs_.address());
7160 __ Move(r0, regs_.object());
7161 if (mode == INCREMENTAL_COMPACTION) {
7162 __ Move(r1, address);
7163 } else {
7164 ASSERT(mode == INCREMENTAL);
7165 __ ldr(r1, MemOperand(address, 0));
7166 }
7167 __ mov(r2, Operand(ExternalReference::isolate_address()));
7168
7169 AllowExternalCallThatCantCauseGC scope(masm);
7170 if (mode == INCREMENTAL_COMPACTION) {
7171 __ CallCFunction(
7172 ExternalReference::incremental_evacuation_record_write_function(
7173 masm->isolate()),
7174 argument_count);
7175 } else {
7176 ASSERT(mode == INCREMENTAL);
7177 __ CallCFunction(
7178 ExternalReference::incremental_marking_record_write_function(
7179 masm->isolate()),
7180 argument_count);
7181 }
7182 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
7183}
7184
7185
7186void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
7187 MacroAssembler* masm,
7188 OnNoNeedToInformIncrementalMarker on_no_need,
7189 Mode mode) {
7190 Label on_black;
7191 Label need_incremental;
7192 Label need_incremental_pop_scratch;
7193
7194 // Let's look at the color of the object: If it is not black we don't have
7195 // to inform the incremental marker.
7196 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
7197
7198 regs_.Restore(masm);
7199 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
7200 __ RememberedSetHelper(object_,
7201 address_,
7202 value_,
7203 save_fp_regs_mode_,
7204 MacroAssembler::kReturnAtEnd);
7205 } else {
7206 __ Ret();
7207 }
7208
7209 __ bind(&on_black);
7210
7211 // Get the value from the slot.
7212 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
7213
7214 if (mode == INCREMENTAL_COMPACTION) {
7215 Label ensure_not_white;
7216
7217 __ CheckPageFlag(regs_.scratch0(), // Contains value.
7218 regs_.scratch1(), // Scratch.
7219 MemoryChunk::kEvacuationCandidateMask,
7220 eq,
7221 &ensure_not_white);
7222
7223 __ CheckPageFlag(regs_.object(),
7224 regs_.scratch1(), // Scratch.
7225 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
7226 eq,
7227 &need_incremental);
7228
7229 __ bind(&ensure_not_white);
7230 }
7231
7232 // We need extra registers for this, so we push the object and the address
7233 // register temporarily.
7234 __ Push(regs_.object(), regs_.address());
7235 __ EnsureNotWhite(regs_.scratch0(), // The value.
7236 regs_.scratch1(), // Scratch.
7237 regs_.object(), // Scratch.
7238 regs_.address(), // Scratch.
7239 &need_incremental_pop_scratch);
7240 __ Pop(regs_.object(), regs_.address());
7241
7242 regs_.Restore(masm);
7243 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
7244 __ RememberedSetHelper(object_,
7245 address_,
7246 value_,
7247 save_fp_regs_mode_,
7248 MacroAssembler::kReturnAtEnd);
7249 } else {
7250 __ Ret();
7251 }
7252
7253 __ bind(&need_incremental_pop_scratch);
7254 __ Pop(regs_.object(), regs_.address());
7255
7256 __ bind(&need_incremental);
7257
7258 // Fall through when we need to inform the incremental marker.
7259}
7260
7261
7262void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
7263 // ----------- S t a t e -------------
7264 // -- r0 : element value to store
7265 // -- r1 : array literal
7266 // -- r2 : map of array literal
7267 // -- r3 : element index as smi
7268 // -- r4 : array literal index in function as smi
7269 // -----------------------------------
7270
7271 Label element_done;
7272 Label double_elements;
7273 Label smi_element;
7274 Label slow_elements;
7275 Label fast_elements;
7276
7277 __ CheckFastElements(r2, r5, &double_elements);
7278 // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS
7279 __ JumpIfSmi(r0, &smi_element);
7280 __ CheckFastSmiOnlyElements(r2, r5, &fast_elements);
7281
7282 // Store into the array literal requires a elements transition. Call into
7283 // the runtime.
7284 __ bind(&slow_elements);
7285 // call.
7286 __ Push(r1, r3, r0);
7287 __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
7288 __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
7289 __ Push(r5, r4);
7290 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
7291
7292 // Array literal has ElementsKind of FAST_ELEMENTS and value is an object.
7293 __ bind(&fast_elements);
7294 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
7295 __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
7296 __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
7297 __ str(r0, MemOperand(r6, 0));
7298 // Update the write barrier for the array store.
7299 __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
7300 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
7301 __ Ret();
7302
7303 // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or
7304 // FAST_ELEMENTS, and value is Smi.
7305 __ bind(&smi_element);
7306 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
7307 __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
7308 __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
7309 __ Ret();
7310
7311 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
7312 __ bind(&double_elements);
7313 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
7314 __ StoreNumberToDoubleElements(r0, r3, r1, r5, r6, r7, r9, r10,
7315 &slow_elements);
7316 __ Ret();
7317}
7318
Kristian Monsen80d68ea2010-09-08 11:05:35 +01007319#undef __
7320
7321} } // namespace v8::internal
7322
7323#endif // V8_TARGET_ARCH_ARM