blob: 213db2cc8ffa869a4a728d9e9d97d61390ea270f [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35// A lightweight X64 Assembler.
36
37#ifndef V8_X64_ASSEMBLER_X64_H_
38#define V8_X64_ASSEMBLER_X64_H_
39
Steve Blockd0582a62009-12-15 09:54:21 +000040#include "serialize.h"
41
Steve Blocka7e24c12009-10-30 11:49:00 +000042namespace v8 {
43namespace internal {
44
45// Utility functions
46
47// Test whether a 64-bit value is in a specific range.
48static inline bool is_uint32(int64_t x) {
Steve Block8defd9f2010-07-08 12:39:36 +010049 static const uint64_t kMaxUInt32 = V8_UINT64_C(0xffffffff);
50 return static_cast<uint64_t>(x) <= kMaxUInt32;
Steve Blocka7e24c12009-10-30 11:49:00 +000051}
52
53static inline bool is_int32(int64_t x) {
Steve Block8defd9f2010-07-08 12:39:36 +010054 static const int64_t kMinInt32 = -V8_INT64_C(0x80000000);
55 return is_uint32(x - kMinInt32);
Steve Blocka7e24c12009-10-30 11:49:00 +000056}
57
58static inline bool uint_is_int32(uint64_t x) {
Steve Block8defd9f2010-07-08 12:39:36 +010059 static const uint64_t kMaxInt32 = V8_UINT64_C(0x7fffffff);
60 return x <= kMaxInt32;
Steve Blocka7e24c12009-10-30 11:49:00 +000061}
62
63static inline bool is_uint32(uint64_t x) {
Steve Block8defd9f2010-07-08 12:39:36 +010064 static const uint64_t kMaxUInt32 = V8_UINT64_C(0xffffffff);
65 return x <= kMaxUInt32;
Steve Blocka7e24c12009-10-30 11:49:00 +000066}
67
68// CPU Registers.
69//
70// 1) We would prefer to use an enum, but enum values are assignment-
71// compatible with int, which has caused code-generation bugs.
72//
73// 2) We would prefer to use a class instead of a struct but we don't like
74// the register initialization to depend on the particular initialization
75// order (which appears to be different on OS X, Linux, and Windows for the
76// installed versions of C++ we tried). Using a struct permits C-style
77// "initialization". Also, the Register objects cannot be const as this
78// forces initialization stubs in MSVC, making us dependent on initialization
79// order.
80//
81// 3) By not using an enum, we are possibly preventing the compiler from
82// doing certain constant folds, which may significantly reduce the
83// code generated for some assembly instructions (because they boil down
84// to a few constants). If this is a problem, we could change the code
85// such that we use an enum in optimized mode, and the struct in debug
86// mode. This way we get the compile-time error checking in debug mode
87// and best performance in optimized code.
88//
89
90struct Register {
91 static Register toRegister(int code) {
92 Register r = { code };
93 return r;
94 }
95 bool is_valid() const { return 0 <= code_ && code_ < 16; }
96 bool is(Register reg) const { return code_ == reg.code_; }
97 int code() const {
98 ASSERT(is_valid());
99 return code_;
100 }
101 int bit() const {
102 return 1 << code_;
103 }
104
105 // Return the high bit of the register code as a 0 or 1. Used often
106 // when constructing the REX prefix byte.
107 int high_bit() const {
108 return code_ >> 3;
109 }
110 // Return the 3 low bits of the register code. Used when encoding registers
111 // in modR/M, SIB, and opcode bytes.
112 int low_bits() const {
113 return code_ & 0x7;
114 }
115
Andrei Popescu31002712010-02-23 13:46:05 +0000116 // Unfortunately we can't make this private in a struct when initializing
117 // by assignment.
Steve Blocka7e24c12009-10-30 11:49:00 +0000118 int code_;
119};
120
Andrei Popescu402d9372010-02-26 13:31:12 +0000121const Register rax = { 0 };
122const Register rcx = { 1 };
123const Register rdx = { 2 };
124const Register rbx = { 3 };
125const Register rsp = { 4 };
126const Register rbp = { 5 };
127const Register rsi = { 6 };
128const Register rdi = { 7 };
129const Register r8 = { 8 };
130const Register r9 = { 9 };
131const Register r10 = { 10 };
132const Register r11 = { 11 };
133const Register r12 = { 12 };
134const Register r13 = { 13 };
135const Register r14 = { 14 };
136const Register r15 = { 15 };
137const Register no_reg = { -1 };
Steve Blocka7e24c12009-10-30 11:49:00 +0000138
139
140struct XMMRegister {
141 bool is_valid() const { return 0 <= code_ && code_ < 16; }
142 int code() const {
143 ASSERT(is_valid());
144 return code_;
145 }
146
147 // Return the high bit of the register code as a 0 or 1. Used often
148 // when constructing the REX prefix byte.
149 int high_bit() const {
150 return code_ >> 3;
151 }
152 // Return the 3 low bits of the register code. Used when encoding registers
153 // in modR/M, SIB, and opcode bytes.
154 int low_bits() const {
155 return code_ & 0x7;
156 }
157
158 int code_;
159};
160
Andrei Popescu402d9372010-02-26 13:31:12 +0000161const XMMRegister xmm0 = { 0 };
162const XMMRegister xmm1 = { 1 };
163const XMMRegister xmm2 = { 2 };
164const XMMRegister xmm3 = { 3 };
165const XMMRegister xmm4 = { 4 };
166const XMMRegister xmm5 = { 5 };
167const XMMRegister xmm6 = { 6 };
168const XMMRegister xmm7 = { 7 };
169const XMMRegister xmm8 = { 8 };
170const XMMRegister xmm9 = { 9 };
171const XMMRegister xmm10 = { 10 };
172const XMMRegister xmm11 = { 11 };
173const XMMRegister xmm12 = { 12 };
174const XMMRegister xmm13 = { 13 };
175const XMMRegister xmm14 = { 14 };
176const XMMRegister xmm15 = { 15 };
Steve Blocka7e24c12009-10-30 11:49:00 +0000177
178enum Condition {
179 // any value < 0 is considered no_condition
180 no_condition = -1,
181
182 overflow = 0,
183 no_overflow = 1,
184 below = 2,
185 above_equal = 3,
186 equal = 4,
187 not_equal = 5,
188 below_equal = 6,
189 above = 7,
190 negative = 8,
191 positive = 9,
192 parity_even = 10,
193 parity_odd = 11,
194 less = 12,
195 greater_equal = 13,
196 less_equal = 14,
197 greater = 15,
198
Steve Block3ce2e202009-11-05 08:53:23 +0000199 // Fake conditions that are handled by the
200 // opcodes using them.
201 always = 16,
202 never = 17,
Steve Blocka7e24c12009-10-30 11:49:00 +0000203 // aliases
204 carry = below,
205 not_carry = above_equal,
206 zero = equal,
207 not_zero = not_equal,
208 sign = negative,
Steve Block3ce2e202009-11-05 08:53:23 +0000209 not_sign = positive,
210 last_condition = greater
Steve Blocka7e24c12009-10-30 11:49:00 +0000211};
212
213
214// Returns the equivalent of !cc.
215// Negation of the default no_condition (-1) results in a non-default
216// no_condition value (-2). As long as tests for no_condition check
217// for condition < 0, this will work as expected.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100218inline Condition NegateCondition(Condition cc) {
219 return static_cast<Condition>(cc ^ 1);
220}
221
Steve Blocka7e24c12009-10-30 11:49:00 +0000222
223// Corresponds to transposing the operands of a comparison.
224inline Condition ReverseCondition(Condition cc) {
225 switch (cc) {
226 case below:
227 return above;
228 case above:
229 return below;
230 case above_equal:
231 return below_equal;
232 case below_equal:
233 return above_equal;
234 case less:
235 return greater;
236 case greater:
237 return less;
238 case greater_equal:
239 return less_equal;
240 case less_equal:
241 return greater_equal;
242 default:
243 return cc;
244 };
245}
246
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100247
Steve Blocka7e24c12009-10-30 11:49:00 +0000248enum Hint {
249 no_hint = 0,
250 not_taken = 0x2e,
251 taken = 0x3e
252};
253
254// The result of negating a hint is as if the corresponding condition
255// were negated by NegateCondition. That is, no_hint is mapped to
256// itself and not_taken and taken are mapped to each other.
257inline Hint NegateHint(Hint hint) {
258 return (hint == no_hint)
259 ? no_hint
260 : ((hint == not_taken) ? taken : not_taken);
261}
262
263
264// -----------------------------------------------------------------------------
265// Machine instruction Immediates
266
267class Immediate BASE_EMBEDDED {
268 public:
269 explicit Immediate(int32_t value) : value_(value) {}
Steve Blocka7e24c12009-10-30 11:49:00 +0000270
271 private:
272 int32_t value_;
273
274 friend class Assembler;
275};
276
277
278// -----------------------------------------------------------------------------
279// Machine instruction Operands
280
281enum ScaleFactor {
282 times_1 = 0,
283 times_2 = 1,
284 times_4 = 2,
285 times_8 = 3,
286 times_int_size = times_4,
Steve Blocka7e24c12009-10-30 11:49:00 +0000287 times_pointer_size = times_8
288};
289
290
291class Operand BASE_EMBEDDED {
292 public:
293 // [base + disp/r]
294 Operand(Register base, int32_t disp);
295
296 // [base + index*scale + disp/r]
297 Operand(Register base,
298 Register index,
299 ScaleFactor scale,
300 int32_t disp);
301
302 // [index*scale + disp/r]
303 Operand(Register index,
304 ScaleFactor scale,
305 int32_t disp);
306
Leon Clarkef7060e22010-06-03 12:02:55 +0100307 // Offset from existing memory operand.
308 // Offset is added to existing displacement as 32-bit signed values and
309 // this must not overflow.
310 Operand(const Operand& base, int32_t offset);
311
Steve Blocka7e24c12009-10-30 11:49:00 +0000312 private:
313 byte rex_;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100314 byte buf_[6];
Steve Blocka7e24c12009-10-30 11:49:00 +0000315 // The number of bytes in buf_.
316 unsigned int len_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000317
318 // Set the ModR/M byte without an encoded 'reg' register. The
319 // register is encoded later as part of the emit_operand operation.
320 // set_modrm can be called before or after set_sib and set_disp*.
321 inline void set_modrm(int mod, Register rm);
322
323 // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
324 inline void set_sib(ScaleFactor scale, Register index, Register base);
325
326 // Adds operand displacement fields (offsets added to the memory address).
327 // Needs to be called after set_sib, not before it.
328 inline void set_disp8(int disp);
329 inline void set_disp32(int disp);
330
331 friend class Assembler;
332};
333
334
335// CpuFeatures keeps track of which features are supported by the target CPU.
336// Supported features must be enabled by a Scope before use.
337// Example:
338// if (CpuFeatures::IsSupported(SSE3)) {
339// CpuFeatures::Scope fscope(SSE3);
340// // Generate SSE3 floating point code.
341// } else {
342// // Generate standard x87 or SSE2 floating point code.
343// }
344class CpuFeatures : public AllStatic {
345 public:
Steve Blocka7e24c12009-10-30 11:49:00 +0000346 // Detect features of the target CPU. Set safe defaults if the serializer
347 // is enabled (snapshots must be portable).
348 static void Probe();
349 // Check whether a feature is supported by the target CPU.
Steve Blockd0582a62009-12-15 09:54:21 +0000350 static bool IsSupported(CpuFeature f) {
Steve Block3ce2e202009-11-05 08:53:23 +0000351 if (f == SSE2 && !FLAG_enable_sse2) return false;
352 if (f == SSE3 && !FLAG_enable_sse3) return false;
353 if (f == CMOV && !FLAG_enable_cmov) return false;
354 if (f == RDTSC && !FLAG_enable_rdtsc) return false;
355 if (f == SAHF && !FLAG_enable_sahf) return false;
Steve Blocka7e24c12009-10-30 11:49:00 +0000356 return (supported_ & (V8_UINT64_C(1) << f)) != 0;
357 }
358 // Check whether a feature is currently enabled.
Steve Blockd0582a62009-12-15 09:54:21 +0000359 static bool IsEnabled(CpuFeature f) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000360 return (enabled_ & (V8_UINT64_C(1) << f)) != 0;
361 }
362 // Enable a specified feature within a scope.
363 class Scope BASE_EMBEDDED {
364#ifdef DEBUG
365 public:
Steve Blockd0582a62009-12-15 09:54:21 +0000366 explicit Scope(CpuFeature f) {
367 uint64_t mask = (V8_UINT64_C(1) << f);
Steve Blocka7e24c12009-10-30 11:49:00 +0000368 ASSERT(CpuFeatures::IsSupported(f));
Steve Blockd0582a62009-12-15 09:54:21 +0000369 ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000370 old_enabled_ = CpuFeatures::enabled_;
Steve Blockd0582a62009-12-15 09:54:21 +0000371 CpuFeatures::enabled_ |= mask;
Steve Blocka7e24c12009-10-30 11:49:00 +0000372 }
373 ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
374 private:
375 uint64_t old_enabled_;
376#else
377 public:
Steve Blockd0582a62009-12-15 09:54:21 +0000378 explicit Scope(CpuFeature f) {}
Steve Blocka7e24c12009-10-30 11:49:00 +0000379#endif
380 };
381 private:
382 // Safe defaults include SSE2 and CMOV for X64. It is always available, if
383 // anyone checks, but they shouldn't need to check.
Steve Blockd0582a62009-12-15 09:54:21 +0000384 static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV);
Steve Blocka7e24c12009-10-30 11:49:00 +0000385 static uint64_t supported_;
386 static uint64_t enabled_;
Steve Blockd0582a62009-12-15 09:54:21 +0000387 static uint64_t found_by_runtime_probing_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000388};
389
390
391class Assembler : public Malloced {
392 private:
393 // We check before assembling an instruction that there is sufficient
394 // space to write an instruction and its relocation information.
395 // The relocation writer's position must be kGap bytes above the end of
396 // the generated instructions. This leaves enough space for the
397 // longest possible x64 instruction, 15 bytes, and the longest possible
398 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
399 // (There is a 15 byte limit on x64 instruction length that rules out some
400 // otherwise valid instructions.)
401 // This allows for a single, fast space check per instruction.
402 static const int kGap = 32;
403
404 public:
405 // Create an assembler. Instructions and relocation information are emitted
406 // into a buffer, with the instructions starting from the beginning and the
407 // relocation information starting from the end of the buffer. See CodeDesc
408 // for a detailed comment on the layout (globals.h).
409 //
410 // If the provided buffer is NULL, the assembler allocates and grows its own
411 // buffer, and buffer_size determines the initial buffer size. The buffer is
412 // owned by the assembler and deallocated upon destruction of the assembler.
413 //
414 // If the provided buffer is not NULL, the assembler uses the provided buffer
415 // for code generation and assumes its size to be buffer_size. If the buffer
416 // is too small, a fatal error occurs. No deallocation of the buffer is done
417 // upon destruction of the assembler.
418 Assembler(void* buffer, int buffer_size);
419 ~Assembler();
420
421 // GetCode emits any pending (non-emitted) code and fills the descriptor
422 // desc. GetCode() is idempotent; it returns the same result if no other
423 // Assembler functions are invoked in between GetCode() calls.
424 void GetCode(CodeDesc* desc);
425
Steve Block3ce2e202009-11-05 08:53:23 +0000426 // Read/Modify the code target in the relative branch/call instruction at pc.
427 // On the x64 architecture, we use relative jumps with a 32-bit displacement
428 // to jump to other Code objects in the Code space in the heap.
429 // Jumps to C functions are done indirectly through a 64-bit register holding
430 // the absolute address of the target.
431 // These functions convert between absolute Addresses of Code objects and
432 // the relative displacements stored in the code.
Steve Blocka7e24c12009-10-30 11:49:00 +0000433 static inline Address target_address_at(Address pc);
434 static inline void set_target_address_at(Address pc, Address target);
Steve Blockd0582a62009-12-15 09:54:21 +0000435
436 // This sets the branch destination (which is in the instruction on x64).
437 // This is for calls and branches within generated code.
438 inline static void set_target_at(Address instruction_payload,
439 Address target) {
440 set_target_address_at(instruction_payload, target);
441 }
442
443 // This sets the branch destination (which is a load instruction on x64).
444 // This is for calls and branches to runtime code.
445 inline static void set_external_target_at(Address instruction_payload,
446 Address target) {
447 *reinterpret_cast<Address*>(instruction_payload) = target;
448 }
449
Steve Block3ce2e202009-11-05 08:53:23 +0000450 inline Handle<Object> code_target_object_handle_at(Address pc);
Steve Blockd0582a62009-12-15 09:54:21 +0000451 // Number of bytes taken up by the branch target in the code.
452 static const int kCallTargetSize = 4; // Use 32-bit displacement.
453 static const int kExternalTargetSize = 8; // Use 64-bit absolute.
Steve Blocka7e24c12009-10-30 11:49:00 +0000454 // Distance between the address of the code target in the call instruction
Steve Block3ce2e202009-11-05 08:53:23 +0000455 // and the return address pushed on the stack.
456 static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement.
457 // Distance between the start of the JS return sequence and where the
458 // 32-bit displacement of a near call would be, relative to the pushed
459 // return address. TODO: Use return sequence length instead.
460 // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
461 static const int kPatchReturnSequenceAddressOffset = 13 - 4;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100462 // Distance between start of patched debug break slot and where the
463 // 32-bit displacement of a near call would be, relative to the pushed
464 // return address. TODO: Use return sequence length instead.
465 // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
466 static const int kPatchDebugBreakSlotAddressOffset = 13 - 4;
Steve Block3ce2e202009-11-05 08:53:23 +0000467 // TODO(X64): Rename this, removing the "Real", after changing the above.
468 static const int kRealPatchReturnSequenceAddressOffset = 2;
Steve Blockd0582a62009-12-15 09:54:21 +0000469
470 // The x64 JS return sequence is padded with int3 to make it large
471 // enough to hold a call instruction when the debugger patches it.
472 static const int kCallInstructionLength = 13;
473 static const int kJSReturnSequenceLength = 13;
474
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100475 // The debug break slot must be able to contain a call instruction.
476 static const int kDebugBreakSlotLength = kCallInstructionLength;
477
478
Steve Blocka7e24c12009-10-30 11:49:00 +0000479 // ---------------------------------------------------------------------------
480 // Code generation
481 //
482 // Function names correspond one-to-one to x64 instruction mnemonics.
483 // Unless specified otherwise, instructions operate on 64-bit operands.
484 //
485 // If we need versions of an assembly instruction that operate on different
486 // width arguments, we add a single-letter suffix specifying the width.
487 // This is done for the following instructions: mov, cmp, inc, dec,
488 // add, sub, and test.
489 // There are no versions of these instructions without the suffix.
490 // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
491 // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
492 // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
493 // - Instructions on 64-bit (quadword) operands/registers use 'q'.
494 //
495 // Some mnemonics, such as "and", are the same as C++ keywords.
496 // Naming conflicts with C++ keywords are resolved by adding a trailing '_'.
497
498 // Insert the smallest number of nop instructions
499 // possible to align the pc offset to a multiple
500 // of m. m must be a power of 2.
501 void Align(int m);
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100502 // Aligns code to something that's optimal for a jump target for the platform.
503 void CodeTargetAlign();
Steve Blocka7e24c12009-10-30 11:49:00 +0000504
505 // Stack
506 void pushfq();
507 void popfq();
508
509 void push(Immediate value);
510 void push(Register src);
511 void push(const Operand& src);
512 void push(Label* label, RelocInfo::Mode relocation_mode);
513
514 void pop(Register dst);
515 void pop(const Operand& dst);
516
517 void enter(Immediate size);
518 void leave();
519
520 // Moves
521 void movb(Register dst, const Operand& src);
522 void movb(Register dst, Immediate imm);
523 void movb(const Operand& dst, Register src);
524
Steve Block3ce2e202009-11-05 08:53:23 +0000525 // Move the low 16 bits of a 64-bit register value to a 16-bit
526 // memory location.
527 void movw(const Operand& dst, Register src);
528
Steve Blocka7e24c12009-10-30 11:49:00 +0000529 void movl(Register dst, Register src);
530 void movl(Register dst, const Operand& src);
531 void movl(const Operand& dst, Register src);
532 void movl(const Operand& dst, Immediate imm);
533 // Load a 32-bit immediate value, zero-extended to 64 bits.
534 void movl(Register dst, Immediate imm32);
535
536 // Move 64 bit register value to 64-bit memory location.
537 void movq(const Operand& dst, Register src);
538 // Move 64 bit memory location to 64-bit register value.
539 void movq(Register dst, const Operand& src);
540 void movq(Register dst, Register src);
541 // Sign extends immediate 32-bit value to 64 bits.
542 void movq(Register dst, Immediate x);
543 // Move the offset of the label location relative to the current
544 // position (after the move) to the destination.
545 void movl(const Operand& dst, Label* src);
546
547 // Move sign extended immediate to memory location.
548 void movq(const Operand& dst, Immediate value);
549 // New x64 instructions to load a 64-bit immediate into a register.
550 // All 64-bit immediates must have a relocation mode.
551 void movq(Register dst, void* ptr, RelocInfo::Mode rmode);
552 void movq(Register dst, int64_t value, RelocInfo::Mode rmode);
553 void movq(Register dst, const char* s, RelocInfo::Mode rmode);
554 // Moves the address of the external reference into the register.
555 void movq(Register dst, ExternalReference ext);
556 void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode);
557
Steve Block3ce2e202009-11-05 08:53:23 +0000558 void movsxbq(Register dst, const Operand& src);
559 void movsxwq(Register dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000560 void movsxlq(Register dst, Register src);
561 void movsxlq(Register dst, const Operand& src);
562 void movzxbq(Register dst, const Operand& src);
563 void movzxbl(Register dst, const Operand& src);
Steve Block3ce2e202009-11-05 08:53:23 +0000564 void movzxwq(Register dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000565 void movzxwl(Register dst, const Operand& src);
566
Leon Clarked91b9f72010-01-27 17:25:45 +0000567 // Repeated moves.
568
569 void repmovsb();
570 void repmovsw();
571 void repmovsl();
572 void repmovsq();
573
Steve Blocka7e24c12009-10-30 11:49:00 +0000574 // New x64 instruction to load from an immediate 64-bit pointer into RAX.
575 void load_rax(void* ptr, RelocInfo::Mode rmode);
576 void load_rax(ExternalReference ext);
577
578 // Conditional moves.
579 void cmovq(Condition cc, Register dst, Register src);
580 void cmovq(Condition cc, Register dst, const Operand& src);
581 void cmovl(Condition cc, Register dst, Register src);
582 void cmovl(Condition cc, Register dst, const Operand& src);
583
584 // Exchange two registers
585 void xchg(Register dst, Register src);
586
587 // Arithmetics
588 void addl(Register dst, Register src) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100589 arithmetic_op_32(0x03, dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000590 }
591
592 void addl(Register dst, Immediate src) {
593 immediate_arithmetic_op_32(0x0, dst, src);
594 }
595
596 void addl(Register dst, const Operand& src) {
597 arithmetic_op_32(0x03, dst, src);
598 }
599
600 void addl(const Operand& dst, Immediate src) {
601 immediate_arithmetic_op_32(0x0, dst, src);
602 }
603
604 void addq(Register dst, Register src) {
605 arithmetic_op(0x03, dst, src);
606 }
607
608 void addq(Register dst, const Operand& src) {
609 arithmetic_op(0x03, dst, src);
610 }
611
612 void addq(const Operand& dst, Register src) {
613 arithmetic_op(0x01, src, dst);
614 }
615
616 void addq(Register dst, Immediate src) {
617 immediate_arithmetic_op(0x0, dst, src);
618 }
619
620 void addq(const Operand& dst, Immediate src) {
621 immediate_arithmetic_op(0x0, dst, src);
622 }
623
Kristian Monsen25f61362010-05-21 11:50:48 +0100624 void sbbl(Register dst, Register src) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100625 arithmetic_op_32(0x1b, dst, src);
Kristian Monsen25f61362010-05-21 11:50:48 +0100626 }
627
Steve Blocka7e24c12009-10-30 11:49:00 +0000628 void cmpb(Register dst, Immediate src) {
629 immediate_arithmetic_op_8(0x7, dst, src);
630 }
631
632 void cmpb_al(Immediate src);
633
634 void cmpb(Register dst, Register src) {
635 arithmetic_op(0x3A, dst, src);
636 }
637
638 void cmpb(Register dst, const Operand& src) {
639 arithmetic_op(0x3A, dst, src);
640 }
641
642 void cmpb(const Operand& dst, Register src) {
643 arithmetic_op(0x38, src, dst);
644 }
645
646 void cmpb(const Operand& dst, Immediate src) {
647 immediate_arithmetic_op_8(0x7, dst, src);
648 }
649
650 void cmpw(const Operand& dst, Immediate src) {
651 immediate_arithmetic_op_16(0x7, dst, src);
652 }
653
654 void cmpw(Register dst, Immediate src) {
655 immediate_arithmetic_op_16(0x7, dst, src);
656 }
657
658 void cmpw(Register dst, const Operand& src) {
659 arithmetic_op_16(0x3B, dst, src);
660 }
661
662 void cmpw(Register dst, Register src) {
663 arithmetic_op_16(0x3B, dst, src);
664 }
665
666 void cmpw(const Operand& dst, Register src) {
667 arithmetic_op_16(0x39, src, dst);
668 }
669
670 void cmpl(Register dst, Register src) {
671 arithmetic_op_32(0x3B, dst, src);
672 }
673
674 void cmpl(Register dst, const Operand& src) {
675 arithmetic_op_32(0x3B, dst, src);
676 }
677
678 void cmpl(const Operand& dst, Register src) {
679 arithmetic_op_32(0x39, src, dst);
680 }
681
682 void cmpl(Register dst, Immediate src) {
683 immediate_arithmetic_op_32(0x7, dst, src);
684 }
685
686 void cmpl(const Operand& dst, Immediate src) {
687 immediate_arithmetic_op_32(0x7, dst, src);
688 }
689
690 void cmpq(Register dst, Register src) {
691 arithmetic_op(0x3B, dst, src);
692 }
693
694 void cmpq(Register dst, const Operand& src) {
695 arithmetic_op(0x3B, dst, src);
696 }
697
698 void cmpq(const Operand& dst, Register src) {
699 arithmetic_op(0x39, src, dst);
700 }
701
702 void cmpq(Register dst, Immediate src) {
703 immediate_arithmetic_op(0x7, dst, src);
704 }
705
706 void cmpq(const Operand& dst, Immediate src) {
707 immediate_arithmetic_op(0x7, dst, src);
708 }
709
710 void and_(Register dst, Register src) {
711 arithmetic_op(0x23, dst, src);
712 }
713
714 void and_(Register dst, const Operand& src) {
715 arithmetic_op(0x23, dst, src);
716 }
717
718 void and_(const Operand& dst, Register src) {
719 arithmetic_op(0x21, src, dst);
720 }
721
722 void and_(Register dst, Immediate src) {
723 immediate_arithmetic_op(0x4, dst, src);
724 }
725
726 void and_(const Operand& dst, Immediate src) {
727 immediate_arithmetic_op(0x4, dst, src);
728 }
729
730 void andl(Register dst, Immediate src) {
731 immediate_arithmetic_op_32(0x4, dst, src);
732 }
733
Steve Block3ce2e202009-11-05 08:53:23 +0000734 void andl(Register dst, Register src) {
735 arithmetic_op_32(0x23, dst, src);
736 }
737
Leon Clarke4515c472010-02-03 11:58:03 +0000738 void andb(Register dst, Immediate src) {
739 immediate_arithmetic_op_8(0x4, dst, src);
740 }
Steve Block3ce2e202009-11-05 08:53:23 +0000741
Steve Blocka7e24c12009-10-30 11:49:00 +0000742 void decq(Register dst);
743 void decq(const Operand& dst);
744 void decl(Register dst);
745 void decl(const Operand& dst);
Steve Block3ce2e202009-11-05 08:53:23 +0000746 void decb(Register dst);
747 void decb(const Operand& dst);
Steve Blocka7e24c12009-10-30 11:49:00 +0000748
749 // Sign-extends rax into rdx:rax.
750 void cqo();
751 // Sign-extends eax into edx:eax.
752 void cdq();
753
754 // Divide rdx:rax by src. Quotient in rax, remainder in rdx.
755 void idivq(Register src);
756 // Divide edx:eax by lower 32 bits of src. Quotient in eax, rem. in edx.
757 void idivl(Register src);
758
759 // Signed multiply instructions.
760 void imul(Register src); // rdx:rax = rax * src.
761 void imul(Register dst, Register src); // dst = dst * src.
762 void imul(Register dst, const Operand& src); // dst = dst * src.
763 void imul(Register dst, Register src, Immediate imm); // dst = src * imm.
Steve Block6ded16b2010-05-10 14:33:55 +0100764 // Signed 32-bit multiply instructions.
765 void imull(Register dst, Register src); // dst = dst * src.
766 void imull(Register dst, Register src, Immediate imm); // dst = src * imm.
Steve Blocka7e24c12009-10-30 11:49:00 +0000767
768 void incq(Register dst);
769 void incq(const Operand& dst);
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100770 void incl(Register dst);
Steve Blocka7e24c12009-10-30 11:49:00 +0000771 void incl(const Operand& dst);
772
773 void lea(Register dst, const Operand& src);
Steve Block6ded16b2010-05-10 14:33:55 +0100774 void leal(Register dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000775
776 // Multiply rax by src, put the result in rdx:rax.
777 void mul(Register src);
778
779 void neg(Register dst);
780 void neg(const Operand& dst);
781 void negl(Register dst);
782
783 void not_(Register dst);
784 void not_(const Operand& dst);
Steve Block6ded16b2010-05-10 14:33:55 +0100785 void notl(Register dst);
Steve Blocka7e24c12009-10-30 11:49:00 +0000786
787 void or_(Register dst, Register src) {
788 arithmetic_op(0x0B, dst, src);
789 }
790
791 void orl(Register dst, Register src) {
792 arithmetic_op_32(0x0B, dst, src);
793 }
794
795 void or_(Register dst, const Operand& src) {
796 arithmetic_op(0x0B, dst, src);
797 }
798
799 void or_(const Operand& dst, Register src) {
800 arithmetic_op(0x09, src, dst);
801 }
802
803 void or_(Register dst, Immediate src) {
804 immediate_arithmetic_op(0x1, dst, src);
805 }
806
Steve Block3ce2e202009-11-05 08:53:23 +0000807 void orl(Register dst, Immediate src) {
808 immediate_arithmetic_op_32(0x1, dst, src);
809 }
810
Steve Blocka7e24c12009-10-30 11:49:00 +0000811 void or_(const Operand& dst, Immediate src) {
812 immediate_arithmetic_op(0x1, dst, src);
813 }
814
Steve Block3ce2e202009-11-05 08:53:23 +0000815 void orl(const Operand& dst, Immediate src) {
816 immediate_arithmetic_op_32(0x1, dst, src);
817 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000818
Steve Block3ce2e202009-11-05 08:53:23 +0000819
820 void rcl(Register dst, Immediate imm8) {
821 shift(dst, imm8, 0x2);
822 }
823
824 void rol(Register dst, Immediate imm8) {
825 shift(dst, imm8, 0x0);
826 }
827
828 void rcr(Register dst, Immediate imm8) {
829 shift(dst, imm8, 0x3);
830 }
831
832 void ror(Register dst, Immediate imm8) {
833 shift(dst, imm8, 0x1);
834 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000835
836 // Shifts dst:src left by cl bits, affecting only dst.
837 void shld(Register dst, Register src);
838
839 // Shifts src:dst right by cl bits, affecting only dst.
840 void shrd(Register dst, Register src);
841
842 // Shifts dst right, duplicating sign bit, by shift_amount bits.
843 // Shifting by 1 is handled efficiently.
844 void sar(Register dst, Immediate shift_amount) {
845 shift(dst, shift_amount, 0x7);
846 }
847
848 // Shifts dst right, duplicating sign bit, by shift_amount bits.
849 // Shifting by 1 is handled efficiently.
850 void sarl(Register dst, Immediate shift_amount) {
851 shift_32(dst, shift_amount, 0x7);
852 }
853
854 // Shifts dst right, duplicating sign bit, by cl % 64 bits.
Steve Blockd0582a62009-12-15 09:54:21 +0000855 void sar_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000856 shift(dst, 0x7);
857 }
858
859 // Shifts dst right, duplicating sign bit, by cl % 64 bits.
Steve Blockd0582a62009-12-15 09:54:21 +0000860 void sarl_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000861 shift_32(dst, 0x7);
862 }
863
864 void shl(Register dst, Immediate shift_amount) {
865 shift(dst, shift_amount, 0x4);
866 }
867
Steve Blockd0582a62009-12-15 09:54:21 +0000868 void shl_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000869 shift(dst, 0x4);
870 }
871
Steve Blockd0582a62009-12-15 09:54:21 +0000872 void shll_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000873 shift_32(dst, 0x4);
874 }
875
876 void shll(Register dst, Immediate shift_amount) {
877 shift_32(dst, shift_amount, 0x4);
878 }
879
880 void shr(Register dst, Immediate shift_amount) {
881 shift(dst, shift_amount, 0x5);
882 }
883
Steve Blockd0582a62009-12-15 09:54:21 +0000884 void shr_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000885 shift(dst, 0x5);
886 }
887
Steve Blockd0582a62009-12-15 09:54:21 +0000888 void shrl_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000889 shift_32(dst, 0x5);
890 }
891
892 void shrl(Register dst, Immediate shift_amount) {
893 shift_32(dst, shift_amount, 0x5);
894 }
895
896 void store_rax(void* dst, RelocInfo::Mode mode);
897 void store_rax(ExternalReference ref);
898
899 void subq(Register dst, Register src) {
900 arithmetic_op(0x2B, dst, src);
901 }
902
903 void subq(Register dst, const Operand& src) {
904 arithmetic_op(0x2B, dst, src);
905 }
906
907 void subq(const Operand& dst, Register src) {
908 arithmetic_op(0x29, src, dst);
909 }
910
911 void subq(Register dst, Immediate src) {
912 immediate_arithmetic_op(0x5, dst, src);
913 }
914
915 void subq(const Operand& dst, Immediate src) {
916 immediate_arithmetic_op(0x5, dst, src);
917 }
918
919 void subl(Register dst, Register src) {
920 arithmetic_op_32(0x2B, dst, src);
921 }
922
Leon Clarkee46be812010-01-19 14:06:41 +0000923 void subl(Register dst, const Operand& src) {
924 arithmetic_op_32(0x2B, dst, src);
925 }
926
Steve Blocka7e24c12009-10-30 11:49:00 +0000927 void subl(const Operand& dst, Immediate src) {
928 immediate_arithmetic_op_32(0x5, dst, src);
929 }
930
931 void subl(Register dst, Immediate src) {
932 immediate_arithmetic_op_32(0x5, dst, src);
933 }
934
935 void subb(Register dst, Immediate src) {
936 immediate_arithmetic_op_8(0x5, dst, src);
937 }
938
Steve Block3ce2e202009-11-05 08:53:23 +0000939 void testb(Register dst, Register src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000940 void testb(Register reg, Immediate mask);
941 void testb(const Operand& op, Immediate mask);
Leon Clarkee46be812010-01-19 14:06:41 +0000942 void testb(const Operand& op, Register reg);
Steve Blocka7e24c12009-10-30 11:49:00 +0000943 void testl(Register dst, Register src);
944 void testl(Register reg, Immediate mask);
945 void testl(const Operand& op, Immediate mask);
946 void testq(const Operand& op, Register reg);
947 void testq(Register dst, Register src);
948 void testq(Register dst, Immediate mask);
949
950 void xor_(Register dst, Register src) {
Steve Blockd0582a62009-12-15 09:54:21 +0000951 if (dst.code() == src.code()) {
952 arithmetic_op_32(0x33, dst, src);
953 } else {
954 arithmetic_op(0x33, dst, src);
955 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000956 }
957
958 void xorl(Register dst, Register src) {
959 arithmetic_op_32(0x33, dst, src);
960 }
961
962 void xor_(Register dst, const Operand& src) {
963 arithmetic_op(0x33, dst, src);
964 }
965
966 void xor_(const Operand& dst, Register src) {
967 arithmetic_op(0x31, src, dst);
968 }
969
970 void xor_(Register dst, Immediate src) {
971 immediate_arithmetic_op(0x6, dst, src);
972 }
973
974 void xor_(const Operand& dst, Immediate src) {
975 immediate_arithmetic_op(0x6, dst, src);
976 }
977
978 // Bit operations.
979 void bt(const Operand& dst, Register src);
980 void bts(const Operand& dst, Register src);
981
982 // Miscellaneous
Steve Block3ce2e202009-11-05 08:53:23 +0000983 void clc();
Steve Blocka7e24c12009-10-30 11:49:00 +0000984 void cpuid();
985 void hlt();
986 void int3();
987 void nop();
988 void nop(int n);
989 void rdtsc();
990 void ret(int imm16);
991 void setcc(Condition cc, Register reg);
992
993 // Label operations & relative jumps (PPUM Appendix D)
994 //
995 // Takes a branch opcode (cc) and a label (L) and generates
996 // either a backward branch or a forward branch and links it
997 // to the label fixup chain. Usage:
998 //
999 // Label L; // unbound label
1000 // j(cc, &L); // forward branch to unbound label
1001 // bind(&L); // bind label to the current pc
1002 // j(cc, &L); // backward branch to bound label
1003 // bind(&L); // illegal: a label may be bound only once
1004 //
1005 // Note: The same Label can be used for forward and backward branches
1006 // but it may be bound only once.
1007
1008 void bind(Label* L); // binds an unbound label L to the current code position
1009
1010 // Calls
1011 // Call near relative 32-bit displacement, relative to next instruction.
1012 void call(Label* L);
Steve Block3ce2e202009-11-05 08:53:23 +00001013 void call(Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001014
1015 // Call near absolute indirect, address in register
1016 void call(Register adr);
1017
1018 // Call near indirect
1019 void call(const Operand& operand);
1020
1021 // Jumps
1022 // Jump short or near relative.
Steve Block3ce2e202009-11-05 08:53:23 +00001023 // Use a 32-bit signed displacement.
Steve Blocka7e24c12009-10-30 11:49:00 +00001024 void jmp(Label* L); // unconditional jump to L
Steve Block3ce2e202009-11-05 08:53:23 +00001025 void jmp(Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001026
1027 // Jump near absolute indirect (r64)
1028 void jmp(Register adr);
1029
1030 // Jump near absolute indirect (m64)
1031 void jmp(const Operand& src);
1032
1033 // Conditional jumps
1034 void j(Condition cc, Label* L);
Steve Block3ce2e202009-11-05 08:53:23 +00001035 void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001036
1037 // Floating-point operations
1038 void fld(int i);
1039
1040 void fld1();
1041 void fldz();
Steve Block6ded16b2010-05-10 14:33:55 +01001042 void fldpi();
Steve Blocka7e24c12009-10-30 11:49:00 +00001043
1044 void fld_s(const Operand& adr);
1045 void fld_d(const Operand& adr);
1046
1047 void fstp_s(const Operand& adr);
1048 void fstp_d(const Operand& adr);
Steve Block3ce2e202009-11-05 08:53:23 +00001049 void fstp(int index);
Steve Blocka7e24c12009-10-30 11:49:00 +00001050
1051 void fild_s(const Operand& adr);
1052 void fild_d(const Operand& adr);
1053
1054 void fist_s(const Operand& adr);
1055
1056 void fistp_s(const Operand& adr);
1057 void fistp_d(const Operand& adr);
1058
1059 void fisttp_s(const Operand& adr);
Leon Clarked91b9f72010-01-27 17:25:45 +00001060 void fisttp_d(const Operand& adr);
Steve Blocka7e24c12009-10-30 11:49:00 +00001061
1062 void fabs();
1063 void fchs();
1064
1065 void fadd(int i);
1066 void fsub(int i);
1067 void fmul(int i);
1068 void fdiv(int i);
1069
1070 void fisub_s(const Operand& adr);
1071
1072 void faddp(int i = 1);
1073 void fsubp(int i = 1);
1074 void fsubrp(int i = 1);
1075 void fmulp(int i = 1);
1076 void fdivp(int i = 1);
1077 void fprem();
1078 void fprem1();
1079
1080 void fxch(int i = 1);
1081 void fincstp();
1082 void ffree(int i = 0);
1083
1084 void ftst();
1085 void fucomp(int i);
1086 void fucompp();
Steve Block3ce2e202009-11-05 08:53:23 +00001087 void fucomi(int i);
1088 void fucomip();
1089
Steve Blocka7e24c12009-10-30 11:49:00 +00001090 void fcompp();
1091 void fnstsw_ax();
1092 void fwait();
1093 void fnclex();
1094
1095 void fsin();
1096 void fcos();
1097
1098 void frndint();
1099
1100 void sahf();
1101
1102 // SSE2 instructions
Steve Block6ded16b2010-05-10 14:33:55 +01001103 void movd(XMMRegister dst, Register src);
1104 void movd(Register dst, XMMRegister src);
1105 void movq(XMMRegister dst, Register src);
1106 void movq(Register dst, XMMRegister src);
1107 void extractps(Register dst, XMMRegister src, byte imm8);
1108
Steve Blocka7e24c12009-10-30 11:49:00 +00001109 void movsd(const Operand& dst, XMMRegister src);
Steve Block6ded16b2010-05-10 14:33:55 +01001110 void movsd(XMMRegister dst, XMMRegister src);
1111 void movsd(XMMRegister dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001112
Steve Block8defd9f2010-07-08 12:39:36 +01001113 void movss(XMMRegister dst, const Operand& src);
1114 void movss(const Operand& dst, XMMRegister src);
1115
Steve Blocka7e24c12009-10-30 11:49:00 +00001116 void cvttss2si(Register dst, const Operand& src);
1117 void cvttsd2si(Register dst, const Operand& src);
Kristian Monsen25f61362010-05-21 11:50:48 +01001118 void cvttsd2siq(Register dst, XMMRegister src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001119
1120 void cvtlsi2sd(XMMRegister dst, const Operand& src);
1121 void cvtlsi2sd(XMMRegister dst, Register src);
1122 void cvtqsi2sd(XMMRegister dst, const Operand& src);
1123 void cvtqsi2sd(XMMRegister dst, Register src);
1124
Steve Block8defd9f2010-07-08 12:39:36 +01001125 void cvtlsi2ss(XMMRegister dst, Register src);
1126
Steve Block6ded16b2010-05-10 14:33:55 +01001127 void cvtss2sd(XMMRegister dst, XMMRegister src);
Steve Block8defd9f2010-07-08 12:39:36 +01001128 void cvtss2sd(XMMRegister dst, const Operand& src);
1129 void cvtsd2ss(XMMRegister dst, XMMRegister src);
1130
1131 void cvtsd2si(Register dst, XMMRegister src);
1132 void cvtsd2siq(Register dst, XMMRegister src);
Steve Block6ded16b2010-05-10 14:33:55 +01001133
Steve Blocka7e24c12009-10-30 11:49:00 +00001134 void addsd(XMMRegister dst, XMMRegister src);
1135 void subsd(XMMRegister dst, XMMRegister src);
1136 void mulsd(XMMRegister dst, XMMRegister src);
1137 void divsd(XMMRegister dst, XMMRegister src);
1138
Andrei Popescu402d9372010-02-26 13:31:12 +00001139 void xorpd(XMMRegister dst, XMMRegister src);
Steve Block6ded16b2010-05-10 14:33:55 +01001140 void sqrtsd(XMMRegister dst, XMMRegister src);
Andrei Popescu402d9372010-02-26 13:31:12 +00001141
Andrei Popescu402d9372010-02-26 13:31:12 +00001142 void ucomisd(XMMRegister dst, XMMRegister src);
Steve Block8defd9f2010-07-08 12:39:36 +01001143 void ucomisd(XMMRegister dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001144
Steve Block6ded16b2010-05-10 14:33:55 +01001145 // The first argument is the reg field, the second argument is the r/m field.
Steve Blocka7e24c12009-10-30 11:49:00 +00001146 void emit_sse_operand(XMMRegister dst, XMMRegister src);
1147 void emit_sse_operand(XMMRegister reg, const Operand& adr);
1148 void emit_sse_operand(XMMRegister dst, Register src);
Steve Block6ded16b2010-05-10 14:33:55 +01001149 void emit_sse_operand(Register dst, XMMRegister src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001150
1151 // Use either movsd or movlpd.
1152 // void movdbl(XMMRegister dst, const Operand& src);
1153 // void movdbl(const Operand& dst, XMMRegister src);
1154
1155 // Debugging
1156 void Print();
1157
1158 // Check the code size generated from label to here.
1159 int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
1160
1161 // Mark address of the ExitJSFrame code.
1162 void RecordJSReturn();
1163
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001164 // Mark address of a debug break slot.
1165 void RecordDebugBreakSlot();
1166
Steve Blocka7e24c12009-10-30 11:49:00 +00001167 // Record a comment relocation entry that can be used by a disassembler.
1168 // Use --debug_code to enable.
1169 void RecordComment(const char* msg);
1170
1171 void RecordPosition(int pos);
1172 void RecordStatementPosition(int pos);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001173 bool WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001174
Steve Blockd0582a62009-12-15 09:54:21 +00001175 int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
Steve Blocka7e24c12009-10-30 11:49:00 +00001176 int current_statement_position() const { return current_statement_position_; }
1177 int current_position() const { return current_position_; }
1178
1179 // Check if there is less than kGap bytes available in the buffer.
1180 // If this is the case, we need to grow the buffer before emitting
1181 // an instruction or relocation information.
1182 inline bool buffer_overflow() const {
1183 return pc_ >= reloc_info_writer.pos() - kGap;
1184 }
1185
1186 // Get the number of bytes available in the buffer.
Steve Blockd0582a62009-12-15 09:54:21 +00001187 inline int available_space() const {
1188 return static_cast<int>(reloc_info_writer.pos() - pc_);
1189 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001190
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001191 static bool IsNop(Address addr) { return *addr == 0x90; }
1192
Steve Blocka7e24c12009-10-30 11:49:00 +00001193 // Avoid overflows for displacements etc.
1194 static const int kMaximalBufferSize = 512*MB;
1195 static const int kMinimalBufferSize = 4*KB;
1196
Steve Blocka7e24c12009-10-30 11:49:00 +00001197 private:
1198 byte* addr_at(int pos) { return buffer_ + pos; }
1199 byte byte_at(int pos) { return buffer_[pos]; }
1200 uint32_t long_at(int pos) {
1201 return *reinterpret_cast<uint32_t*>(addr_at(pos));
1202 }
1203 void long_at_put(int pos, uint32_t x) {
1204 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1205 }
1206
1207 // code emission
1208 void GrowBuffer();
1209
1210 void emit(byte x) { *pc_++ = x; }
1211 inline void emitl(uint32_t x);
Steve Blocka7e24c12009-10-30 11:49:00 +00001212 inline void emitq(uint64_t x, RelocInfo::Mode rmode);
1213 inline void emitw(uint16_t x);
Steve Block3ce2e202009-11-05 08:53:23 +00001214 inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001215 void emit(Immediate x) { emitl(x.value_); }
1216
1217 // Emits a REX prefix that encodes a 64-bit operand size and
1218 // the top bit of both register codes.
1219 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1220 // REX.W is set.
Steve Blocka7e24c12009-10-30 11:49:00 +00001221 inline void emit_rex_64(XMMRegister reg, Register rm_reg);
Steve Block6ded16b2010-05-10 14:33:55 +01001222 inline void emit_rex_64(Register reg, XMMRegister rm_reg);
1223 inline void emit_rex_64(Register reg, Register rm_reg);
Steve Blocka7e24c12009-10-30 11:49:00 +00001224
1225 // Emits a REX prefix that encodes a 64-bit operand size and
1226 // the top bit of the destination, index, and base register codes.
1227 // The high bit of reg is used for REX.R, the high bit of op's base
1228 // register is used for REX.B, and the high bit of op's index register
1229 // is used for REX.X. REX.W is set.
1230 inline void emit_rex_64(Register reg, const Operand& op);
1231 inline void emit_rex_64(XMMRegister reg, const Operand& op);
1232
1233 // Emits a REX prefix that encodes a 64-bit operand size and
1234 // the top bit of the register code.
1235 // The high bit of register is used for REX.B.
1236 // REX.W is set and REX.R and REX.X are clear.
1237 inline void emit_rex_64(Register rm_reg);
1238
1239 // Emits a REX prefix that encodes a 64-bit operand size and
1240 // the top bit of the index and base register codes.
1241 // The high bit of op's base register is used for REX.B, and the high
1242 // bit of op's index register is used for REX.X.
1243 // REX.W is set and REX.R clear.
1244 inline void emit_rex_64(const Operand& op);
1245
1246 // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
1247 void emit_rex_64() { emit(0x48); }
1248
1249 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1250 // REX.W is clear.
1251 inline void emit_rex_32(Register reg, Register rm_reg);
1252
1253 // The high bit of reg is used for REX.R, the high bit of op's base
1254 // register is used for REX.B, and the high bit of op's index register
1255 // is used for REX.X. REX.W is cleared.
1256 inline void emit_rex_32(Register reg, const Operand& op);
1257
1258 // High bit of rm_reg goes to REX.B.
1259 // REX.W, REX.R and REX.X are clear.
1260 inline void emit_rex_32(Register rm_reg);
1261
1262 // High bit of base goes to REX.B and high bit of index to REX.X.
1263 // REX.W and REX.R are clear.
1264 inline void emit_rex_32(const Operand& op);
1265
1266 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1267 // REX.W is cleared. If no REX bits are set, no byte is emitted.
1268 inline void emit_optional_rex_32(Register reg, Register rm_reg);
1269
1270 // The high bit of reg is used for REX.R, the high bit of op's base
1271 // register is used for REX.B, and the high bit of op's index register
1272 // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing
1273 // is emitted.
1274 inline void emit_optional_rex_32(Register reg, const Operand& op);
1275
1276 // As for emit_optional_rex_32(Register, Register), except that
1277 // the registers are XMM registers.
1278 inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
1279
1280 // As for emit_optional_rex_32(Register, Register), except that
Steve Block6ded16b2010-05-10 14:33:55 +01001281 // one of the registers is an XMM registers.
Steve Blocka7e24c12009-10-30 11:49:00 +00001282 inline void emit_optional_rex_32(XMMRegister reg, Register base);
1283
Steve Block6ded16b2010-05-10 14:33:55 +01001284 // As for emit_optional_rex_32(Register, Register), except that
1285 // one of the registers is an XMM registers.
1286 inline void emit_optional_rex_32(Register reg, XMMRegister base);
1287
Steve Blocka7e24c12009-10-30 11:49:00 +00001288 // As for emit_optional_rex_32(Register, const Operand&), except that
1289 // the register is an XMM register.
1290 inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
1291
1292 // Optionally do as emit_rex_32(Register) if the register number has
1293 // the high bit set.
1294 inline void emit_optional_rex_32(Register rm_reg);
1295
1296 // Optionally do as emit_rex_32(const Operand&) if the operand register
1297 // numbers have a high bit set.
1298 inline void emit_optional_rex_32(const Operand& op);
1299
1300
1301 // Emit the ModR/M byte, and optionally the SIB byte and
1302 // 1- or 4-byte offset for a memory operand. Also encodes
1303 // the second operand of the operation, a register or operation
1304 // subcode, into the reg field of the ModR/M byte.
1305 void emit_operand(Register reg, const Operand& adr) {
1306 emit_operand(reg.low_bits(), adr);
1307 }
1308
1309 // Emit the ModR/M byte, and optionally the SIB byte and
1310 // 1- or 4-byte offset for a memory operand. Also used to encode
1311 // a three-bit opcode extension into the ModR/M byte.
1312 void emit_operand(int rm, const Operand& adr);
1313
1314 // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
1315 void emit_modrm(Register reg, Register rm_reg) {
1316 emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
1317 }
1318
1319 // Emit a ModR/M byte with an operation subcode in the reg field and
1320 // a register in the rm_reg field.
1321 void emit_modrm(int code, Register rm_reg) {
1322 ASSERT(is_uint3(code));
1323 emit(0xC0 | code << 3 | rm_reg.low_bits());
1324 }
1325
1326 // Emit the code-object-relative offset of the label's position
1327 inline void emit_code_relative_offset(Label* label);
1328
1329 // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
1330 // AND, OR, XOR, or CMP. The encodings of these operations are all
1331 // similar, differing just in the opcode or in the reg field of the
1332 // ModR/M byte.
1333 void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
1334 void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
1335 void arithmetic_op_32(byte opcode, Register reg, Register rm_reg);
1336 void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg);
1337 void arithmetic_op(byte opcode, Register reg, Register rm_reg);
1338 void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg);
1339 void immediate_arithmetic_op(byte subcode, Register dst, Immediate src);
1340 void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src);
1341 // Operate on a byte in memory or register.
1342 void immediate_arithmetic_op_8(byte subcode,
1343 Register dst,
1344 Immediate src);
1345 void immediate_arithmetic_op_8(byte subcode,
1346 const Operand& dst,
1347 Immediate src);
1348 // Operate on a word in memory or register.
1349 void immediate_arithmetic_op_16(byte subcode,
1350 Register dst,
1351 Immediate src);
1352 void immediate_arithmetic_op_16(byte subcode,
1353 const Operand& dst,
1354 Immediate src);
1355 // Operate on a 32-bit word in memory or register.
1356 void immediate_arithmetic_op_32(byte subcode,
1357 Register dst,
1358 Immediate src);
1359 void immediate_arithmetic_op_32(byte subcode,
1360 const Operand& dst,
1361 Immediate src);
1362
1363 // Emit machine code for a shift operation.
1364 void shift(Register dst, Immediate shift_amount, int subcode);
1365 void shift_32(Register dst, Immediate shift_amount, int subcode);
1366 // Shift dst by cl % 64 bits.
1367 void shift(Register dst, int subcode);
1368 void shift_32(Register dst, int subcode);
1369
1370 void emit_farith(int b1, int b2, int i);
1371
1372 // labels
1373 // void print(Label* L);
1374 void bind_to(Label* L, int pos);
1375 void link_to(Label* L, Label* appendix);
1376
1377 // record reloc info for current pc_
1378 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1379
1380 friend class CodePatcher;
1381 friend class EnsureSpace;
1382 friend class RegExpMacroAssemblerX64;
1383
1384 // Code buffer:
1385 // The buffer into which code and relocation info are generated.
1386 byte* buffer_;
1387 int buffer_size_;
1388 // True if the assembler owns the buffer, false if buffer is external.
1389 bool own_buffer_;
1390 // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
1391 static byte* spare_buffer_;
1392
1393 // code generation
1394 byte* pc_; // the program counter; moves forward
1395 RelocInfoWriter reloc_info_writer;
1396
Steve Block3ce2e202009-11-05 08:53:23 +00001397 List< Handle<Code> > code_targets_;
Steve Blocka7e24c12009-10-30 11:49:00 +00001398 // push-pop elimination
1399 byte* last_pc_;
1400
1401 // source position information
1402 int current_statement_position_;
1403 int current_position_;
1404 int written_statement_position_;
1405 int written_position_;
1406};
1407
1408
1409// Helper class that ensures that there is enough space for generating
1410// instructions and relocation information. The constructor makes
1411// sure that there is enough space and (in debug mode) the destructor
1412// checks that we did not generate too much.
1413class EnsureSpace BASE_EMBEDDED {
1414 public:
1415 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1416 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1417#ifdef DEBUG
1418 space_before_ = assembler_->available_space();
1419#endif
1420 }
1421
1422#ifdef DEBUG
1423 ~EnsureSpace() {
1424 int bytes_generated = space_before_ - assembler_->available_space();
1425 ASSERT(bytes_generated < assembler_->kGap);
1426 }
1427#endif
1428
1429 private:
1430 Assembler* assembler_;
1431#ifdef DEBUG
1432 int space_before_;
1433#endif
1434};
1435
1436} } // namespace v8::internal
1437
1438#endif // V8_X64_ASSEMBLER_X64_H_