blob: a1620516a2f6d4b0070d2ea01944f3bc4063e92d [file] [log] [blame]
Ben Murdoch8b112d22011-06-08 16:22:53 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
Steve Blocka7e24c12009-10-30 11:49:00 +00004
5#ifndef V8_ARM_CONSTANTS_ARM_H_
6#define V8_ARM_CONSTANTS_ARM_H_
7
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00008#include <stdint.h>
9
10#include "src/base/logging.h"
11#include "src/base/macros.h"
12#include "src/globals.h"
13
Ben Murdoch8b112d22011-06-08 16:22:53 +010014// ARM EABI is required.
15#if defined(__arm__) && !defined(__ARM_EABI__)
16#error ARM EABI support is required.
Steve Blocka7e24c12009-10-30 11:49:00 +000017#endif
18
Steve Block1e0659c2011-05-24 12:43:12 +010019namespace v8 {
20namespace internal {
Steve Blocka7e24c12009-10-30 11:49:00 +000021
Steve Block44f0eee2011-05-26 01:26:41 +010022// Constant pool marker.
Ben Murdochb8a8cc12014-11-26 15:28:44 +000023// Use UDF, the permanently undefined instruction.
24const int kConstantPoolMarkerMask = 0xfff000f0;
25const int kConstantPoolMarker = 0xe7f000f0;
26const int kConstantPoolLengthMaxMask = 0xffff;
27inline int EncodeConstantPoolLength(int length) {
28 DCHECK((length & kConstantPoolLengthMaxMask) == length);
29 return ((length & 0xfff0) << 4) | (length & 0xf);
30}
31inline int DecodeConstantPoolLength(int instr) {
32 DCHECK((instr & kConstantPoolMarkerMask) == kConstantPoolMarker);
33 return ((instr >> 4) & 0xfff0) | (instr & 0xf);
34}
35
36// Used in code age prologue - ldr(pc, MemOperand(pc, -4))
37const int kCodeAgeJumpInstruction = 0xe51ff004;
Steve Block44f0eee2011-05-26 01:26:41 +010038
Steve Blocka7e24c12009-10-30 11:49:00 +000039// Number of registers in normal ARM mode.
Ben Murdoch3ef787d2012-04-12 10:51:47 +010040const int kNumRegisters = 16;
Steve Blocka7e24c12009-10-30 11:49:00 +000041
Steve Blockd0582a62009-12-15 09:54:21 +000042// VFP support.
Ben Murdoch3ef787d2012-04-12 10:51:47 +010043const int kNumVFPSingleRegisters = 32;
Ben Murdochb8a8cc12014-11-26 15:28:44 +000044const int kNumVFPDoubleRegisters = 32;
Ben Murdoch3ef787d2012-04-12 10:51:47 +010045const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
Steve Blockd0582a62009-12-15 09:54:21 +000046
Steve Blocka7e24c12009-10-30 11:49:00 +000047// PC is register 15.
Ben Murdoch3ef787d2012-04-12 10:51:47 +010048const int kPCRegister = 15;
49const int kNoRegister = -1;
Steve Blocka7e24c12009-10-30 11:49:00 +000050
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000051// Used in embedded constant pool builder - max reach in bits for
52// various load instructions (unsigned)
53const int kLdrMaxReachBits = 12;
54const int kVldrMaxReachBits = 10;
55
Steve Block1e0659c2011-05-24 12:43:12 +010056// -----------------------------------------------------------------------------
57// Conditions.
58
Steve Blocka7e24c12009-10-30 11:49:00 +000059// Defines constants and accessor classes to assemble, disassemble and
60// simulate ARM instructions.
61//
62// Section references in the code refer to the "ARM Architecture Reference
63// Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
64//
65// Constants for specific fields are defined in their respective named enums.
66// General constants are in an anonymous enum in class Instr.
67
Steve Blocka7e24c12009-10-30 11:49:00 +000068// Values for the condition field as defined in section A3.2
69enum Condition {
Steve Block1e0659c2011-05-24 12:43:12 +010070 kNoCondition = -1,
71
72 eq = 0 << 28, // Z set Equal.
73 ne = 1 << 28, // Z clear Not equal.
74 cs = 2 << 28, // C set Unsigned higher or same.
75 cc = 3 << 28, // C clear Unsigned lower.
76 mi = 4 << 28, // N set Negative.
77 pl = 5 << 28, // N clear Positive or zero.
78 vs = 6 << 28, // V set Overflow.
79 vc = 7 << 28, // V clear No overflow.
80 hi = 8 << 28, // C set, Z clear Unsigned higher.
81 ls = 9 << 28, // C clear or Z set Unsigned lower or same.
82 ge = 10 << 28, // N == V Greater or equal.
83 lt = 11 << 28, // N != V Less than.
84 gt = 12 << 28, // Z clear, N == V Greater than.
85 le = 13 << 28, // Z set or N != V Less then or equal
86 al = 14 << 28, // Always.
87
88 kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1).
89 kNumberOfConditions = 16,
90
91 // Aliases.
92 hs = cs, // C set Unsigned higher or same.
93 lo = cc // C clear Unsigned lower.
Steve Blocka7e24c12009-10-30 11:49:00 +000094};
95
96
Steve Block1e0659c2011-05-24 12:43:12 +010097inline Condition NegateCondition(Condition cond) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +000098 DCHECK(cond != al);
Steve Block1e0659c2011-05-24 12:43:12 +010099 return static_cast<Condition>(cond ^ ne);
100}
101
102
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000103// Commute a condition such that {a cond b == b cond' a}.
104inline Condition CommuteCondition(Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +0100105 switch (cond) {
106 case lo:
107 return hi;
108 case hi:
109 return lo;
110 case hs:
111 return ls;
112 case ls:
113 return hs;
114 case lt:
115 return gt;
116 case gt:
117 return lt;
118 case ge:
119 return le;
120 case le:
121 return ge;
122 default:
123 return cond;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000124 }
Steve Block1e0659c2011-05-24 12:43:12 +0100125}
126
127
128// -----------------------------------------------------------------------------
129// Instructions encoding.
130
131// Instr is merely used by the Assembler to distinguish 32bit integers
132// representing instructions from usual 32 bit values.
133// Instruction objects are pointers to 32bit values, and provide methods to
134// access the various ISA fields.
135typedef int32_t Instr;
136
137
Steve Blocka7e24c12009-10-30 11:49:00 +0000138// Opcodes for Data-processing instructions (instructions with a type 0 and 1)
139// as defined in section A3.4
140enum Opcode {
Steve Block1e0659c2011-05-24 12:43:12 +0100141 AND = 0 << 21, // Logical AND.
142 EOR = 1 << 21, // Logical Exclusive OR.
143 SUB = 2 << 21, // Subtract.
144 RSB = 3 << 21, // Reverse Subtract.
145 ADD = 4 << 21, // Add.
146 ADC = 5 << 21, // Add with Carry.
147 SBC = 6 << 21, // Subtract with Carry.
148 RSC = 7 << 21, // Reverse Subtract with Carry.
149 TST = 8 << 21, // Test.
150 TEQ = 9 << 21, // Test Equivalence.
151 CMP = 10 << 21, // Compare.
152 CMN = 11 << 21, // Compare Negated.
153 ORR = 12 << 21, // Logical (inclusive) OR.
154 MOV = 13 << 21, // Move.
155 BIC = 14 << 21, // Bit Clear.
156 MVN = 15 << 21 // Move Not.
Steve Blocka7e24c12009-10-30 11:49:00 +0000157};
158
159
Steve Block6ded16b2010-05-10 14:33:55 +0100160// The bits for bit 7-4 for some type 0 miscellaneous instructions.
161enum MiscInstructionsBits74 {
162 // With bits 22-21 01.
Steve Block1e0659c2011-05-24 12:43:12 +0100163 BX = 1 << 4,
164 BXJ = 2 << 4,
165 BLX = 3 << 4,
166 BKPT = 7 << 4,
Steve Blocka7e24c12009-10-30 11:49:00 +0000167
Steve Block6ded16b2010-05-10 14:33:55 +0100168 // With bits 22-21 11.
Steve Block1e0659c2011-05-24 12:43:12 +0100169 CLZ = 1 << 4
170};
171
172
173// Instruction encoding bits and masks.
174enum {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400175 H = 1 << 5, // Halfword (or byte).
176 S6 = 1 << 6, // Signed (or unsigned).
177 L = 1 << 20, // Load (or store).
178 S = 1 << 20, // Set condition code (or leave unchanged).
179 W = 1 << 21, // Writeback base register (or leave unchanged).
180 A = 1 << 21, // Accumulate in multiply instruction (or not).
181 B = 1 << 22, // Unsigned byte (or word).
182 N = 1 << 22, // Long (or short).
183 U = 1 << 23, // Positive (or negative) offset/index.
184 P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing).
185 I = 1 << 25, // Immediate shifter operand (or not).
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000186 B0 = 1 << 0,
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400187 B4 = 1 << 4,
188 B5 = 1 << 5,
189 B6 = 1 << 6,
190 B7 = 1 << 7,
191 B8 = 1 << 8,
192 B9 = 1 << 9,
Steve Block1e0659c2011-05-24 12:43:12 +0100193 B12 = 1 << 12,
194 B16 = 1 << 16,
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400195 B17 = 1 << 17,
Steve Block1e0659c2011-05-24 12:43:12 +0100196 B18 = 1 << 18,
197 B19 = 1 << 19,
198 B20 = 1 << 20,
199 B21 = 1 << 21,
200 B22 = 1 << 22,
201 B23 = 1 << 23,
202 B24 = 1 << 24,
203 B25 = 1 << 25,
204 B26 = 1 << 26,
205 B27 = 1 << 27,
206 B28 = 1 << 28,
207
208 // Instruction bit masks.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400209 kCondMask = 15 << 28,
210 kALUMask = 0x6f << 21,
211 kRdMask = 15 << 12, // In str instruction.
Steve Block1e0659c2011-05-24 12:43:12 +0100212 kCoprocessorMask = 15 << 8,
213 kOpCodeMask = 15 << 21, // In data-processing instructions.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400214 kImm24Mask = (1 << 24) - 1,
215 kImm16Mask = (1 << 16) - 1,
216 kImm8Mask = (1 << 8) - 1,
217 kOff12Mask = (1 << 12) - 1,
218 kOff8Mask = (1 << 8) - 1
Steve Block1e0659c2011-05-24 12:43:12 +0100219};
220
221
Ben Murdoch097c5b22016-05-18 11:27:45 +0100222enum BarrierOption {
223 OSHLD = 0x1,
224 OSHST = 0x2,
225 OSH = 0x3,
226 NSHLD = 0x5,
227 NSHST = 0x6,
228 NSH = 0x7,
229 ISHLD = 0x9,
230 ISHST = 0xa,
231 ISH = 0xb,
232 LD = 0xd,
233 ST = 0xe,
234 SY = 0xf,
235};
236
237
Steve Block1e0659c2011-05-24 12:43:12 +0100238// -----------------------------------------------------------------------------
239// Addressing modes and instruction variants.
240
241// Condition code updating mode.
242enum SBit {
243 SetCC = 1 << 20, // Set condition code.
244 LeaveCC = 0 << 20 // Leave condition code unchanged.
245};
246
247
248// Status register selection.
249enum SRegister {
250 CPSR = 0 << 22,
251 SPSR = 1 << 22
Steve Blocka7e24c12009-10-30 11:49:00 +0000252};
253
254
Steve Blocka7e24c12009-10-30 11:49:00 +0000255// Shifter types for Data-processing operands as defined in section A5.1.2.
Steve Block1e0659c2011-05-24 12:43:12 +0100256enum ShiftOp {
257 LSL = 0 << 5, // Logical shift left.
258 LSR = 1 << 5, // Logical shift right.
259 ASR = 2 << 5, // Arithmetic shift right.
260 ROR = 3 << 5, // Rotate right.
261
262 // RRX is encoded as ROR with shift_imm == 0.
263 // Use a special code to make the distinction. The RRX ShiftOp is only used
264 // as an argument, and will never actually be encoded. The Assembler will
265 // detect it and emit the correct ROR shift operand with shift_imm == 0.
266 RRX = -1,
267 kNumberOfShifts = 4
Steve Blocka7e24c12009-10-30 11:49:00 +0000268};
269
270
Steve Block1e0659c2011-05-24 12:43:12 +0100271// Status register fields.
272enum SRegisterField {
273 CPSR_c = CPSR | 1 << 16,
274 CPSR_x = CPSR | 1 << 17,
275 CPSR_s = CPSR | 1 << 18,
276 CPSR_f = CPSR | 1 << 19,
277 SPSR_c = SPSR | 1 << 16,
278 SPSR_x = SPSR | 1 << 17,
279 SPSR_s = SPSR | 1 << 18,
280 SPSR_f = SPSR | 1 << 19
281};
282
283// Status register field mask (or'ed SRegisterField enum values).
284typedef uint32_t SRegisterFieldMask;
285
286
287// Memory operand addressing mode.
288enum AddrMode {
289 // Bit encoding P U W.
290 Offset = (8|4|0) << 21, // Offset (without writeback to base).
291 PreIndex = (8|4|1) << 21, // Pre-indexed addressing with writeback.
292 PostIndex = (0|4|0) << 21, // Post-indexed addressing with writeback.
293 NegOffset = (8|0|0) << 21, // Negative offset (without writeback to base).
294 NegPreIndex = (8|0|1) << 21, // Negative pre-indexed with writeback.
295 NegPostIndex = (0|0|0) << 21 // Negative post-indexed with writeback.
296};
297
298
299// Load/store multiple addressing mode.
300enum BlockAddrMode {
301 // Bit encoding P U W .
302 da = (0|0|0) << 21, // Decrement after.
303 ia = (0|4|0) << 21, // Increment after.
304 db = (8|0|0) << 21, // Decrement before.
305 ib = (8|4|0) << 21, // Increment before.
306 da_w = (0|0|1) << 21, // Decrement after with writeback to base.
307 ia_w = (0|4|1) << 21, // Increment after with writeback to base.
308 db_w = (8|0|1) << 21, // Decrement before with writeback to base.
309 ib_w = (8|4|1) << 21, // Increment before with writeback to base.
310
311 // Alias modes for comparison when writeback does not matter.
312 da_x = (0|0|0) << 21, // Decrement after.
313 ia_x = (0|4|0) << 21, // Increment after.
314 db_x = (8|0|0) << 21, // Decrement before.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100315 ib_x = (8|4|0) << 21, // Increment before.
316
317 kBlockAddrModeMask = (8|4|1) << 21
Steve Block1e0659c2011-05-24 12:43:12 +0100318};
319
320
321// Coprocessor load/store operand size.
322enum LFlag {
323 Long = 1 << 22, // Long load/store coprocessor.
324 Short = 0 << 22 // Short load/store coprocessor.
325};
326
327
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000328// NEON data type
329enum NeonDataType {
330 NeonS8 = 0x1, // U = 0, imm3 = 0b001
331 NeonS16 = 0x2, // U = 0, imm3 = 0b010
332 NeonS32 = 0x4, // U = 0, imm3 = 0b100
333 NeonU8 = 1 << 24 | 0x1, // U = 1, imm3 = 0b001
334 NeonU16 = 1 << 24 | 0x2, // U = 1, imm3 = 0b010
335 NeonU32 = 1 << 24 | 0x4, // U = 1, imm3 = 0b100
336 NeonDataTypeSizeMask = 0x7,
337 NeonDataTypeUMask = 1 << 24
338};
339
340enum NeonListType {
341 nlt_1 = 0x7,
342 nlt_2 = 0xA,
343 nlt_3 = 0x6,
344 nlt_4 = 0x2
345};
346
347enum NeonSize {
348 Neon8 = 0x0,
349 Neon16 = 0x1,
350 Neon32 = 0x2,
351 Neon64 = 0x3
352};
353
Steve Block1e0659c2011-05-24 12:43:12 +0100354// -----------------------------------------------------------------------------
355// Supervisor Call (svc) specific support.
356
Steve Blocka7e24c12009-10-30 11:49:00 +0000357// Special Software Interrupt codes when used in the presence of the ARM
358// simulator.
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800359// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
360// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
Steve Blocka7e24c12009-10-30 11:49:00 +0000361enum SoftwareInterruptCodes {
362 // transition to C code
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400363 kCallRtRedirected = 0x10,
Steve Blocka7e24c12009-10-30 11:49:00 +0000364 // break point
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400365 kBreakpoint = 0x20,
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800366 // stop
Steve Block1e0659c2011-05-24 12:43:12 +0100367 kStopCode = 1 << 23
Steve Blocka7e24c12009-10-30 11:49:00 +0000368};
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100369const uint32_t kStopCodeMask = kStopCode - 1;
370const uint32_t kMaxStopCode = kStopCode - 1;
371const int32_t kDefaultStopCode = -1;
Steve Blocka7e24c12009-10-30 11:49:00 +0000372
373
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100374// Type of VFP register. Determines register encoding.
375enum VFPRegPrecision {
376 kSinglePrecision = 0,
377 kDoublePrecision = 1
378};
379
Steve Block1e0659c2011-05-24 12:43:12 +0100380
381// VFP FPSCR constants.
382enum VFPConversionMode {
383 kFPSCRRounding = 0,
384 kDefaultRoundToZero = 1
Russell Brenner90bac252010-11-18 13:33:46 -0800385};
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100386
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100387// This mask does not include the "inexact" or "input denormal" cumulative
388// exceptions flags, because we usually don't want to check for it.
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100389const uint32_t kVFPExceptionMask = 0xf;
390const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
391const uint32_t kVFPOverflowExceptionBit = 1 << 2;
392const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
393const uint32_t kVFPInexactExceptionBit = 1 << 4;
394const uint32_t kVFPFlushToZeroMask = 1 << 24;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000395const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
Steve Block1e0659c2011-05-24 12:43:12 +0100396
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100397const uint32_t kVFPNConditionFlagBit = 1 << 31;
398const uint32_t kVFPZConditionFlagBit = 1 << 30;
399const uint32_t kVFPCConditionFlagBit = 1 << 29;
400const uint32_t kVFPVConditionFlagBit = 1 << 28;
Steve Blocka7e24c12009-10-30 11:49:00 +0000401
402
Steve Block1e0659c2011-05-24 12:43:12 +0100403// VFP rounding modes. See ARM DDI 0406B Page A2-29.
404enum VFPRoundingMode {
405 RN = 0 << 22, // Round to Nearest.
406 RP = 1 << 22, // Round towards Plus Infinity.
407 RM = 2 << 22, // Round towards Minus Infinity.
408 RZ = 3 << 22, // Round towards zero.
409
410 // Aliases.
411 kRoundToNearest = RN,
412 kRoundToPlusInf = RP,
413 kRoundToMinusInf = RM,
414 kRoundToZero = RZ
415};
416
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100417const uint32_t kVFPRoundingModeMask = 3 << 22;
Steve Block1e0659c2011-05-24 12:43:12 +0100418
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100419enum CheckForInexactConversion {
420 kCheckForInexactConversion,
421 kDontCheckForInexactConversion
422};
423
Steve Block1e0659c2011-05-24 12:43:12 +0100424// -----------------------------------------------------------------------------
425// Hints.
426
427// Branch hints are not used on the ARM. They are defined so that they can
428// appear in shared function signatures, but will be ignored in ARM
429// implementations.
430enum Hint { no_hint };
431
432// Hints are not used on the arm. Negating is trivial.
433inline Hint NegateHint(Hint ignored) { return no_hint; }
434
435
436// -----------------------------------------------------------------------------
Steve Block1e0659c2011-05-24 12:43:12 +0100437// Instruction abstraction.
438
439// The class Instruction enables access to individual fields defined in the ARM
Steve Blocka7e24c12009-10-30 11:49:00 +0000440// architecture instruction set encoding as described in figure A3-1.
Steve Block1e0659c2011-05-24 12:43:12 +0100441// Note that the Assembler uses typedef int32_t Instr.
Steve Blocka7e24c12009-10-30 11:49:00 +0000442//
443// Example: Test whether the instruction at ptr does set the condition code
444// bits.
445//
446// bool InstructionSetsConditionCodes(byte* ptr) {
Steve Block1e0659c2011-05-24 12:43:12 +0100447// Instruction* instr = Instruction::At(ptr);
448// int type = instr->TypeValue();
Steve Blocka7e24c12009-10-30 11:49:00 +0000449// return ((type == 0) || (type == 1)) && instr->HasS();
450// }
451//
Steve Block1e0659c2011-05-24 12:43:12 +0100452class Instruction {
Steve Blocka7e24c12009-10-30 11:49:00 +0000453 public:
454 enum {
455 kInstrSize = 4,
456 kInstrSizeLog2 = 2,
457 kPCReadOffset = 8
458 };
459
Steve Block1e0659c2011-05-24 12:43:12 +0100460 // Helper macro to define static accessors.
461 // We use the cast to char* trick to bypass the strict anti-aliasing rules.
462 #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
463 static inline return_type Name(Instr instr) { \
464 char* temp = reinterpret_cast<char*>(&instr); \
465 return reinterpret_cast<Instruction*>(temp)->Name(); \
466 }
467
468 #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
469
Steve Blocka7e24c12009-10-30 11:49:00 +0000470 // Get the raw instruction bits.
Steve Block1e0659c2011-05-24 12:43:12 +0100471 inline Instr InstructionBits() const {
472 return *reinterpret_cast<const Instr*>(this);
Steve Blocka7e24c12009-10-30 11:49:00 +0000473 }
474
475 // Set the raw instruction bits to value.
Steve Block1e0659c2011-05-24 12:43:12 +0100476 inline void SetInstructionBits(Instr value) {
477 *reinterpret_cast<Instr*>(this) = value;
Steve Blocka7e24c12009-10-30 11:49:00 +0000478 }
479
480 // Read one particular bit out of the instruction bits.
481 inline int Bit(int nr) const {
482 return (InstructionBits() >> nr) & 1;
483 }
484
Steve Block1e0659c2011-05-24 12:43:12 +0100485 // Read a bit field's value out of the instruction bits.
Steve Blocka7e24c12009-10-30 11:49:00 +0000486 inline int Bits(int hi, int lo) const {
487 return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
488 }
489
Steve Block1e0659c2011-05-24 12:43:12 +0100490 // Read a bit field out of the instruction bits.
491 inline int BitField(int hi, int lo) const {
492 return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
493 }
494
495 // Static support.
496
497 // Read one particular bit out of the instruction bits.
498 static inline int Bit(Instr instr, int nr) {
499 return (instr >> nr) & 1;
500 }
501
502 // Read the value of a bit field out of the instruction bits.
503 static inline int Bits(Instr instr, int hi, int lo) {
504 return (instr >> lo) & ((2 << (hi - lo)) - 1);
505 }
506
507
508 // Read a bit field out of the instruction bits.
509 static inline int BitField(Instr instr, int hi, int lo) {
510 return instr & (((2 << (hi - lo)) - 1) << lo);
511 }
512
Steve Blocka7e24c12009-10-30 11:49:00 +0000513
514 // Accessors for the different named fields used in the ARM encoding.
515 // The naming of these accessor corresponds to figure A3-1.
Steve Block1e0659c2011-05-24 12:43:12 +0100516 //
517 // Two kind of accessors are declared:
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100518 // - <Name>Field() will return the raw field, i.e. the field's bits at their
Steve Block1e0659c2011-05-24 12:43:12 +0100519 // original place in the instruction encoding.
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100520 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
521 // 0xC0810002 ConditionField(instr) will return 0xC0000000.
Steve Block1e0659c2011-05-24 12:43:12 +0100522 // - <Name>Value() will return the field value, shifted back to bit 0.
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100523 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
524 // 0xC0810002 ConditionField(instr) will return 0xC.
Steve Block1e0659c2011-05-24 12:43:12 +0100525
526
Steve Blocka7e24c12009-10-30 11:49:00 +0000527 // Generally applicable fields
Steve Block1e0659c2011-05-24 12:43:12 +0100528 inline Condition ConditionValue() const {
Steve Blocka7e24c12009-10-30 11:49:00 +0000529 return static_cast<Condition>(Bits(31, 28));
530 }
Steve Block1e0659c2011-05-24 12:43:12 +0100531 inline Condition ConditionField() const {
532 return static_cast<Condition>(BitField(31, 28));
533 }
534 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
535 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
Steve Blocka7e24c12009-10-30 11:49:00 +0000536
Steve Block1e0659c2011-05-24 12:43:12 +0100537 inline int TypeValue() const { return Bits(27, 25); }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000538 inline int SpecialValue() const { return Bits(27, 23); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000539
Steve Block1e0659c2011-05-24 12:43:12 +0100540 inline int RnValue() const { return Bits(19, 16); }
541 DECLARE_STATIC_ACCESSOR(RnValue);
542 inline int RdValue() const { return Bits(15, 12); }
543 DECLARE_STATIC_ACCESSOR(RdValue);
544
545 inline int CoprocessorValue() const { return Bits(11, 8); }
Steve Blockd0582a62009-12-15 09:54:21 +0000546 // Support for VFP.
547 // Vn(19-16) | Vd(15-12) | Vm(3-0)
Steve Block1e0659c2011-05-24 12:43:12 +0100548 inline int VnValue() const { return Bits(19, 16); }
549 inline int VmValue() const { return Bits(3, 0); }
550 inline int VdValue() const { return Bits(15, 12); }
551 inline int NValue() const { return Bit(7); }
552 inline int MValue() const { return Bit(5); }
553 inline int DValue() const { return Bit(22); }
554 inline int RtValue() const { return Bits(15, 12); }
555 inline int PValue() const { return Bit(24); }
556 inline int UValue() const { return Bit(23); }
557 inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
558 inline int Opc2Value() const { return Bits(19, 16); }
559 inline int Opc3Value() const { return Bits(7, 6); }
560 inline int SzValue() const { return Bit(8); }
561 inline int VLValue() const { return Bit(20); }
562 inline int VCValue() const { return Bit(8); }
563 inline int VAValue() const { return Bits(23, 21); }
564 inline int VBValue() const { return Bits(6, 5); }
565 inline int VFPNRegValue(VFPRegPrecision pre) {
566 return VFPGlueRegValue(pre, 16, 7);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100567 }
Steve Block1e0659c2011-05-24 12:43:12 +0100568 inline int VFPMRegValue(VFPRegPrecision pre) {
569 return VFPGlueRegValue(pre, 0, 5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100570 }
Steve Block1e0659c2011-05-24 12:43:12 +0100571 inline int VFPDRegValue(VFPRegPrecision pre) {
572 return VFPGlueRegValue(pre, 12, 22);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100573 }
Steve Blockd0582a62009-12-15 09:54:21 +0000574
Steve Blocka7e24c12009-10-30 11:49:00 +0000575 // Fields used in Data processing instructions
Steve Block1e0659c2011-05-24 12:43:12 +0100576 inline int OpcodeValue() const {
Steve Blocka7e24c12009-10-30 11:49:00 +0000577 return static_cast<Opcode>(Bits(24, 21));
578 }
Steve Block1e0659c2011-05-24 12:43:12 +0100579 inline Opcode OpcodeField() const {
580 return static_cast<Opcode>(BitField(24, 21));
581 }
582 inline int SValue() const { return Bit(20); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000583 // with register
Steve Block1e0659c2011-05-24 12:43:12 +0100584 inline int RmValue() const { return Bits(3, 0); }
585 DECLARE_STATIC_ACCESSOR(RmValue);
586 inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
587 inline ShiftOp ShiftField() const {
588 return static_cast<ShiftOp>(BitField(6, 5));
589 }
590 inline int RegShiftValue() const { return Bit(4); }
591 inline int RsValue() const { return Bits(11, 8); }
592 inline int ShiftAmountValue() const { return Bits(11, 7); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000593 // with immediate
Steve Block1e0659c2011-05-24 12:43:12 +0100594 inline int RotateValue() const { return Bits(11, 8); }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000595 DECLARE_STATIC_ACCESSOR(RotateValue);
Steve Block1e0659c2011-05-24 12:43:12 +0100596 inline int Immed8Value() const { return Bits(7, 0); }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000597 DECLARE_STATIC_ACCESSOR(Immed8Value);
Steve Block1e0659c2011-05-24 12:43:12 +0100598 inline int Immed4Value() const { return Bits(19, 16); }
599 inline int ImmedMovwMovtValue() const {
600 return Immed4Value() << 12 | Offset12Value(); }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000601 DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
Steve Blocka7e24c12009-10-30 11:49:00 +0000602
603 // Fields used in Load/Store instructions
Steve Block1e0659c2011-05-24 12:43:12 +0100604 inline int PUValue() const { return Bits(24, 23); }
605 inline int PUField() const { return BitField(24, 23); }
606 inline int BValue() const { return Bit(22); }
607 inline int WValue() const { return Bit(21); }
608 inline int LValue() const { return Bit(20); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000609 // with register uses same fields as Data processing instructions above
610 // with immediate
Steve Block1e0659c2011-05-24 12:43:12 +0100611 inline int Offset12Value() const { return Bits(11, 0); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000612 // multiple
Steve Block1e0659c2011-05-24 12:43:12 +0100613 inline int RlistValue() const { return Bits(15, 0); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000614 // extra loads and stores
Steve Block1e0659c2011-05-24 12:43:12 +0100615 inline int SignValue() const { return Bit(6); }
616 inline int HValue() const { return Bit(5); }
617 inline int ImmedHValue() const { return Bits(11, 8); }
618 inline int ImmedLValue() const { return Bits(3, 0); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000619
620 // Fields used in Branch instructions
Steve Block1e0659c2011-05-24 12:43:12 +0100621 inline int LinkValue() const { return Bit(24); }
622 inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000623
624 // Fields used in Software interrupt instructions
Steve Block1e0659c2011-05-24 12:43:12 +0100625 inline SoftwareInterruptCodes SvcValue() const {
Steve Blocka7e24c12009-10-30 11:49:00 +0000626 return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
627 }
628
629 // Test for special encodings of type 0 instructions (extra loads and stores,
630 // as well as multiplications).
631 inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
632
Steve Block6ded16b2010-05-10 14:33:55 +0100633 // Test for miscellaneous instructions encodings of type 0 instructions.
634 inline bool IsMiscType0() const { return (Bit(24) == 1)
635 && (Bit(23) == 0)
636 && (Bit(20) == 0)
637 && ((Bit(7) == 0)); }
638
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000639 // Test for a nop instruction, which falls under type 1.
640 inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; }
641
Steve Block1e0659c2011-05-24 12:43:12 +0100642 // Test for a stop instruction.
643 inline bool IsStop() const {
644 return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
645 }
646
Steve Blocka7e24c12009-10-30 11:49:00 +0000647 // Special accessors that test for existence of a value.
Steve Block1e0659c2011-05-24 12:43:12 +0100648 inline bool HasS() const { return SValue() == 1; }
649 inline bool HasB() const { return BValue() == 1; }
650 inline bool HasW() const { return WValue() == 1; }
651 inline bool HasL() const { return LValue() == 1; }
652 inline bool HasU() const { return UValue() == 1; }
653 inline bool HasSign() const { return SignValue() == 1; }
654 inline bool HasH() const { return HValue() == 1; }
655 inline bool HasLink() const { return LinkValue() == 1; }
Steve Blocka7e24c12009-10-30 11:49:00 +0000656
Ben Murdochda12d292016-06-02 14:46:10 +0100657 // Decode the double immediate from a vmov instruction.
Ben Murdoch3bec4d22010-07-22 14:51:16 +0100658 double DoubleImmedVmov() const;
659
Steve Blocka7e24c12009-10-30 11:49:00 +0000660 // Instructions are read of out a code stream. The only way to get a
661 // reference to an instruction is to convert a pointer. There is no way
Steve Block1e0659c2011-05-24 12:43:12 +0100662 // to allocate or create instances of class Instruction.
663 // Use the At(pc) function to create references to Instruction.
664 static Instruction* At(byte* pc) {
665 return reinterpret_cast<Instruction*>(pc);
666 }
667
Steve Blocka7e24c12009-10-30 11:49:00 +0000668
669 private:
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100670 // Join split register codes, depending on single or double precision.
671 // four_bit is the position of the least-significant bit of the four
672 // bit specifier. one_bit is the position of the additional single bit
673 // specifier.
Steve Block1e0659c2011-05-24 12:43:12 +0100674 inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100675 if (pre == kSinglePrecision) {
676 return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
677 }
678 return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
679 }
680
Steve Block1e0659c2011-05-24 12:43:12 +0100681 // We need to prevent the creation of instances of class Instruction.
682 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
Steve Blocka7e24c12009-10-30 11:49:00 +0000683};
684
685
686// Helper functions for converting between register numbers and names.
687class Registers {
688 public:
689 // Return the name of the register.
690 static const char* Name(int reg);
691
692 // Lookup the register number for the name provided.
693 static int Number(const char* name);
694
695 struct RegisterAlias {
696 int reg;
Steve Blockd0582a62009-12-15 09:54:21 +0000697 const char* name;
Steve Blocka7e24c12009-10-30 11:49:00 +0000698 };
699
700 private:
701 static const char* names_[kNumRegisters];
702 static const RegisterAlias aliases_[];
703};
704
Steve Blockd0582a62009-12-15 09:54:21 +0000705// Helper functions for converting between VFP register numbers and names.
706class VFPRegisters {
707 public:
708 // Return the name of the register.
Steve Block6ded16b2010-05-10 14:33:55 +0100709 static const char* Name(int reg, bool is_double);
710
711 // Lookup the register number for the name provided.
712 // Set flag pointed by is_double to true if register
713 // is double-precision.
714 static int Number(const char* name, bool* is_double);
Steve Blockd0582a62009-12-15 09:54:21 +0000715
716 private:
717 static const char* names_[kNumVFPRegisters];
718};
Steve Blocka7e24c12009-10-30 11:49:00 +0000719
720
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000721} // namespace internal
722} // namespace v8
Steve Blocka7e24c12009-10-30 11:49:00 +0000723
724#endif // V8_ARM_CONSTANTS_ARM_H_