blob: d1770b06639676e2b1da9286faee20abc00db939 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
franse6cf5df2008-08-15 23:14:31 +02002 * This file contains an ECC algorithm that detects and corrects 1 bit
3 * errors in a 256 byte block of data.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
5 * drivers/mtd/nand/nand_ecc.c
6 *
David Woodhouseccbcd6c2008-08-16 11:01:31 +01007 * Copyright © 2008 Koninklijke Philips Electronics NV.
8 * Author: Frans Meulenbroeks
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 *
franse6cf5df2008-08-15 23:14:31 +020010 * Completely replaces the previous ECC implementation which was written by:
11 * Steven J. Hill (sjhill@realitydiluted.com)
12 * Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Information on how this algorithm works and how it was developed
David Woodhouseccbcd6c2008-08-16 11:01:31 +010015 * can be found in Documentation/mtd/nand_ecc.txt
Thomas Gleixner819d6a32006-05-23 11:32:45 +020016 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 * This file is free software; you can redistribute it and/or modify it
18 * under the terms of the GNU General Public License as published by the
19 * Free Software Foundation; either version 2 or (at your option) any
20 * later version.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000021 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 * This file is distributed in the hope that it will be useful, but WITHOUT
23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 * for more details.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000026 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070027 * You should have received a copy of the GNU General Public License along
28 * with this file; if not, write to the Free Software Foundation, Inc.,
29 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000030 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070031 */
32
franse6cf5df2008-08-15 23:14:31 +020033/*
34 * The STANDALONE macro is useful when running the code outside the kernel
35 * e.g. when running the code in a testbed or a benchmark program.
36 * When STANDALONE is used, the module related macros are commented out
37 * as well as the linux include files.
David Woodhouseccbcd6c2008-08-16 11:01:31 +010038 * Instead a private definition of mtd_info is given to satisfy the compiler
franse6cf5df2008-08-15 23:14:31 +020039 * (the code does not use mtd_info, so the code does not care)
40 */
41#ifndef STANDALONE
Linus Torvalds1da177e2005-04-16 15:20:36 -070042#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/module.h>
Singh, Vimald68156c2008-08-23 18:18:34 +020045#include <linux/mtd/mtd.h>
46#include <linux/mtd/nand.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include <linux/mtd/nand_ecc.h>
frans1077be52008-08-20 21:11:50 +020048#include <asm/byteorder.h>
franse6cf5df2008-08-15 23:14:31 +020049#else
David Woodhouseccbcd6c2008-08-16 11:01:31 +010050#include <stdint.h>
51struct mtd_info;
franse6cf5df2008-08-15 23:14:31 +020052#define EXPORT_SYMBOL(x) /* x */
53
54#define MODULE_LICENSE(x) /* x */
55#define MODULE_AUTHOR(x) /* x */
56#define MODULE_DESCRIPTION(x) /* x */
frans1077be52008-08-20 21:11:50 +020057
Tormod Volden54cccc72013-01-12 11:34:27 +010058#define pr_err printf
franse6cf5df2008-08-15 23:14:31 +020059#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070060
61/*
franse6cf5df2008-08-15 23:14:31 +020062 * invparity is a 256 byte table that contains the odd parity
63 * for each byte. So if the number of bits in a byte is even,
64 * the array element is 1, and when the number of bits is odd
65 * the array eleemnt is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -070066 */
franse6cf5df2008-08-15 23:14:31 +020067static const char invparity[256] = {
68 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
69 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
70 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
71 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
72 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
73 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
74 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
75 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
76 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
77 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
78 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
79 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
80 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
81 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
82 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
83 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
84};
85
86/*
87 * bitsperbyte contains the number of bits per byte
88 * this is only used for testing and repairing parity
89 * (a precalculated value slightly improves performance)
90 */
91static const char bitsperbyte[256] = {
92 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
93 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
94 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
95 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
96 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
97 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
98 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
99 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
100 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
101 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
102 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
103 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
104 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
105 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
106 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
107 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
108};
109
110/*
111 * addressbits is a lookup table to filter out the bits from the xor-ed
Brian Norris7854d3f2011-06-23 14:12:08 -0700112 * ECC data that identify the faulty location.
franse6cf5df2008-08-15 23:14:31 +0200113 * this is only used for repairing parity
114 * see the comments in nand_correct_data for more details
115 */
116static const char addressbits[256] = {
117 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
118 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
119 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
120 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
121 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
122 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
123 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
124 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
125 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
126 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
127 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
128 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
129 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
130 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
131 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
132 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
133 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
134 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
135 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
136 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
137 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
138 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
139 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
140 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
141 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
142 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
143 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
144 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
145 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
146 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
147 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
148 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
Linus Torvalds1da177e2005-04-16 15:20:36 -0700149};
150
Linus Torvalds1da177e2005-04-16 15:20:36 -0700151/**
Akinobu Mita1c63aca2009-10-22 16:53:32 +0900152 * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
Singh, Vimald68156c2008-08-23 18:18:34 +0200153 * block
Alexey Korolev17c1d2b2008-08-20 22:32:08 +0100154 * @buf: input buffer with raw data
Brian Norris7854d3f2011-06-23 14:12:08 -0700155 * @eccsize: data bytes per ECC step (256 or 512)
Alexey Korolev17c1d2b2008-08-20 22:32:08 +0100156 * @code: output buffer with ECC
Linus Torvalds1da177e2005-04-16 15:20:36 -0700157 */
Akinobu Mita1c63aca2009-10-22 16:53:32 +0900158void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize,
franse6cf5df2008-08-15 23:14:31 +0200159 unsigned char *code)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700160{
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200161 int i;
franse6cf5df2008-08-15 23:14:31 +0200162 const uint32_t *bp = (uint32_t *)buf;
Singh, Vimald68156c2008-08-23 18:18:34 +0200163 /* 256 or 512 bytes/ecc */
Akinobu Mita1c63aca2009-10-22 16:53:32 +0900164 const uint32_t eccsize_mult = eccsize >> 8;
franse6cf5df2008-08-15 23:14:31 +0200165 uint32_t cur; /* current value in buffer */
Singh, Vimald68156c2008-08-23 18:18:34 +0200166 /* rp0..rp15..rp17 are the various accumulated parities (per byte) */
franse6cf5df2008-08-15 23:14:31 +0200167 uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
Singh, Vimald68156c2008-08-23 18:18:34 +0200168 uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
169 uint32_t uninitialized_var(rp17); /* to make compiler happy */
franse6cf5df2008-08-15 23:14:31 +0200170 uint32_t par; /* the cumulative parity for all data */
171 uint32_t tmppar; /* the cumulative parity for this iteration;
Singh, Vimald68156c2008-08-23 18:18:34 +0200172 for rp12, rp14 and rp16 at the end of the
173 loop */
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000174
franse6cf5df2008-08-15 23:14:31 +0200175 par = 0;
176 rp4 = 0;
177 rp6 = 0;
178 rp8 = 0;
179 rp10 = 0;
180 rp12 = 0;
181 rp14 = 0;
Singh, Vimald68156c2008-08-23 18:18:34 +0200182 rp16 = 0;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000183
franse6cf5df2008-08-15 23:14:31 +0200184 /*
185 * The loop is unrolled a number of times;
186 * This avoids if statements to decide on which rp value to update
187 * Also we process the data by longwords.
188 * Note: passing unaligned data might give a performance penalty.
189 * It is assumed that the buffers are aligned.
190 * tmppar is the cumulative sum of this iteration.
Singh, Vimald68156c2008-08-23 18:18:34 +0200191 * needed for calculating rp12, rp14, rp16 and par
franse6cf5df2008-08-15 23:14:31 +0200192 * also used as a performance improvement for rp6, rp8 and rp10
193 */
Singh, Vimald68156c2008-08-23 18:18:34 +0200194 for (i = 0; i < eccsize_mult << 2; i++) {
franse6cf5df2008-08-15 23:14:31 +0200195 cur = *bp++;
196 tmppar = cur;
197 rp4 ^= cur;
198 cur = *bp++;
199 tmppar ^= cur;
200 rp6 ^= tmppar;
201 cur = *bp++;
202 tmppar ^= cur;
203 rp4 ^= cur;
204 cur = *bp++;
205 tmppar ^= cur;
206 rp8 ^= tmppar;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000207
franse6cf5df2008-08-15 23:14:31 +0200208 cur = *bp++;
209 tmppar ^= cur;
210 rp4 ^= cur;
211 rp6 ^= cur;
212 cur = *bp++;
213 tmppar ^= cur;
214 rp6 ^= cur;
215 cur = *bp++;
216 tmppar ^= cur;
217 rp4 ^= cur;
218 cur = *bp++;
219 tmppar ^= cur;
220 rp10 ^= tmppar;
221
222 cur = *bp++;
223 tmppar ^= cur;
224 rp4 ^= cur;
225 rp6 ^= cur;
226 rp8 ^= cur;
227 cur = *bp++;
228 tmppar ^= cur;
229 rp6 ^= cur;
230 rp8 ^= cur;
231 cur = *bp++;
232 tmppar ^= cur;
233 rp4 ^= cur;
234 rp8 ^= cur;
235 cur = *bp++;
236 tmppar ^= cur;
237 rp8 ^= cur;
238
239 cur = *bp++;
240 tmppar ^= cur;
241 rp4 ^= cur;
242 rp6 ^= cur;
243 cur = *bp++;
244 tmppar ^= cur;
245 rp6 ^= cur;
246 cur = *bp++;
247 tmppar ^= cur;
248 rp4 ^= cur;
249 cur = *bp++;
250 tmppar ^= cur;
251
252 par ^= tmppar;
253 if ((i & 0x1) == 0)
254 rp12 ^= tmppar;
255 if ((i & 0x2) == 0)
256 rp14 ^= tmppar;
Singh, Vimald68156c2008-08-23 18:18:34 +0200257 if (eccsize_mult == 2 && (i & 0x4) == 0)
258 rp16 ^= tmppar;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700259 }
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000260
franse6cf5df2008-08-15 23:14:31 +0200261 /*
262 * handle the fact that we use longword operations
Singh, Vimald68156c2008-08-23 18:18:34 +0200263 * we'll bring rp4..rp14..rp16 back to single byte entities by
264 * shifting and xoring first fold the upper and lower 16 bits,
franse6cf5df2008-08-15 23:14:31 +0200265 * then the upper and lower 8 bits.
266 */
267 rp4 ^= (rp4 >> 16);
268 rp4 ^= (rp4 >> 8);
269 rp4 &= 0xff;
270 rp6 ^= (rp6 >> 16);
271 rp6 ^= (rp6 >> 8);
272 rp6 &= 0xff;
273 rp8 ^= (rp8 >> 16);
274 rp8 ^= (rp8 >> 8);
275 rp8 &= 0xff;
276 rp10 ^= (rp10 >> 16);
277 rp10 ^= (rp10 >> 8);
278 rp10 &= 0xff;
279 rp12 ^= (rp12 >> 16);
280 rp12 ^= (rp12 >> 8);
281 rp12 &= 0xff;
282 rp14 ^= (rp14 >> 16);
283 rp14 ^= (rp14 >> 8);
284 rp14 &= 0xff;
Singh, Vimald68156c2008-08-23 18:18:34 +0200285 if (eccsize_mult == 2) {
286 rp16 ^= (rp16 >> 16);
287 rp16 ^= (rp16 >> 8);
288 rp16 &= 0xff;
289 }
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200290
franse6cf5df2008-08-15 23:14:31 +0200291 /*
292 * we also need to calculate the row parity for rp0..rp3
293 * This is present in par, because par is now
frans1077be52008-08-20 21:11:50 +0200294 * rp3 rp3 rp2 rp2 in little endian and
295 * rp2 rp2 rp3 rp3 in big endian
franse6cf5df2008-08-15 23:14:31 +0200296 * as well as
frans1077be52008-08-20 21:11:50 +0200297 * rp1 rp0 rp1 rp0 in little endian and
298 * rp0 rp1 rp0 rp1 in big endian
franse6cf5df2008-08-15 23:14:31 +0200299 * First calculate rp2 and rp3
franse6cf5df2008-08-15 23:14:31 +0200300 */
frans1077be52008-08-20 21:11:50 +0200301#ifdef __BIG_ENDIAN
302 rp2 = (par >> 16);
303 rp2 ^= (rp2 >> 8);
304 rp2 &= 0xff;
305 rp3 = par & 0xffff;
306 rp3 ^= (rp3 >> 8);
307 rp3 &= 0xff;
308#else
franse6cf5df2008-08-15 23:14:31 +0200309 rp3 = (par >> 16);
310 rp3 ^= (rp3 >> 8);
311 rp3 &= 0xff;
312 rp2 = par & 0xffff;
313 rp2 ^= (rp2 >> 8);
314 rp2 &= 0xff;
frans1077be52008-08-20 21:11:50 +0200315#endif
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000316
franse6cf5df2008-08-15 23:14:31 +0200317 /* reduce par to 16 bits then calculate rp1 and rp0 */
318 par ^= (par >> 16);
frans1077be52008-08-20 21:11:50 +0200319#ifdef __BIG_ENDIAN
320 rp0 = (par >> 8) & 0xff;
321 rp1 = (par & 0xff);
322#else
franse6cf5df2008-08-15 23:14:31 +0200323 rp1 = (par >> 8) & 0xff;
324 rp0 = (par & 0xff);
frans1077be52008-08-20 21:11:50 +0200325#endif
franse6cf5df2008-08-15 23:14:31 +0200326
327 /* finally reduce par to 8 bits */
328 par ^= (par >> 8);
329 par &= 0xff;
330
331 /*
Singh, Vimald68156c2008-08-23 18:18:34 +0200332 * and calculate rp5..rp15..rp17
franse6cf5df2008-08-15 23:14:31 +0200333 * note that par = rp4 ^ rp5 and due to the commutative property
334 * of the ^ operator we can say:
335 * rp5 = (par ^ rp4);
336 * The & 0xff seems superfluous, but benchmarking learned that
337 * leaving it out gives slightly worse results. No idea why, probably
338 * it has to do with the way the pipeline in pentium is organized.
339 */
340 rp5 = (par ^ rp4) & 0xff;
341 rp7 = (par ^ rp6) & 0xff;
342 rp9 = (par ^ rp8) & 0xff;
343 rp11 = (par ^ rp10) & 0xff;
344 rp13 = (par ^ rp12) & 0xff;
345 rp15 = (par ^ rp14) & 0xff;
Singh, Vimald68156c2008-08-23 18:18:34 +0200346 if (eccsize_mult == 2)
347 rp17 = (par ^ rp16) & 0xff;
franse6cf5df2008-08-15 23:14:31 +0200348
349 /*
Brian Norris7854d3f2011-06-23 14:12:08 -0700350 * Finally calculate the ECC bits.
franse6cf5df2008-08-15 23:14:31 +0200351 * Again here it might seem that there are performance optimisations
352 * possible, but benchmarks showed that on the system this is developed
353 * the code below is the fastest
354 */
Timo Lindhorstfc029192006-11-27 13:35:49 +0100355#ifdef CONFIG_MTD_NAND_ECC_SMC
franse6cf5df2008-08-15 23:14:31 +0200356 code[0] =
357 (invparity[rp7] << 7) |
358 (invparity[rp6] << 6) |
359 (invparity[rp5] << 5) |
360 (invparity[rp4] << 4) |
361 (invparity[rp3] << 3) |
362 (invparity[rp2] << 2) |
363 (invparity[rp1] << 1) |
364 (invparity[rp0]);
365 code[1] =
366 (invparity[rp15] << 7) |
367 (invparity[rp14] << 6) |
368 (invparity[rp13] << 5) |
369 (invparity[rp12] << 4) |
370 (invparity[rp11] << 3) |
371 (invparity[rp10] << 2) |
372 (invparity[rp9] << 1) |
373 (invparity[rp8]);
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200374#else
franse6cf5df2008-08-15 23:14:31 +0200375 code[1] =
376 (invparity[rp7] << 7) |
377 (invparity[rp6] << 6) |
378 (invparity[rp5] << 5) |
379 (invparity[rp4] << 4) |
380 (invparity[rp3] << 3) |
381 (invparity[rp2] << 2) |
382 (invparity[rp1] << 1) |
383 (invparity[rp0]);
384 code[0] =
385 (invparity[rp15] << 7) |
386 (invparity[rp14] << 6) |
387 (invparity[rp13] << 5) |
388 (invparity[rp12] << 4) |
389 (invparity[rp11] << 3) |
390 (invparity[rp10] << 2) |
391 (invparity[rp9] << 1) |
392 (invparity[rp8]);
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200393#endif
Singh, Vimald68156c2008-08-23 18:18:34 +0200394 if (eccsize_mult == 1)
395 code[2] =
396 (invparity[par & 0xf0] << 7) |
397 (invparity[par & 0x0f] << 6) |
398 (invparity[par & 0xcc] << 5) |
399 (invparity[par & 0x33] << 4) |
400 (invparity[par & 0xaa] << 3) |
401 (invparity[par & 0x55] << 2) |
402 3;
403 else
404 code[2] =
405 (invparity[par & 0xf0] << 7) |
406 (invparity[par & 0x0f] << 6) |
407 (invparity[par & 0xcc] << 5) |
408 (invparity[par & 0x33] << 4) |
409 (invparity[par & 0xaa] << 3) |
410 (invparity[par & 0x55] << 2) |
411 (invparity[rp17] << 1) |
412 (invparity[rp16] << 0);
Akinobu Mita1c63aca2009-10-22 16:53:32 +0900413}
414EXPORT_SYMBOL(__nand_calculate_ecc);
415
416/**
417 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
418 * block
419 * @mtd: MTD block structure
420 * @buf: input buffer with raw data
421 * @code: output buffer with ECC
422 */
423int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
424 unsigned char *code)
425{
426 __nand_calculate_ecc(buf,
Boris BREZILLON862eba52015-12-01 12:03:03 +0100427 mtd_to_nand(mtd)->ecc.size, code);
Akinobu Mita1c63aca2009-10-22 16:53:32 +0900428
Linus Torvalds1da177e2005-04-16 15:20:36 -0700429 return 0;
430}
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200431EXPORT_SYMBOL(nand_calculate_ecc);
432
Linus Torvalds1da177e2005-04-16 15:20:36 -0700433/**
Atsushi Nemotobe2f0922009-09-05 01:20:43 +0900434 * __nand_correct_data - [NAND Interface] Detect and correct bit error(s)
Alexey Korolev17c1d2b2008-08-20 22:32:08 +0100435 * @buf: raw data read from the chip
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436 * @read_ecc: ECC from the chip
437 * @calc_ecc: the ECC calculated from raw data
Brian Norris7854d3f2011-06-23 14:12:08 -0700438 * @eccsize: data bytes per ECC step (256 or 512)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700439 *
Atsushi Nemotobe2f0922009-09-05 01:20:43 +0900440 * Detect and correct a 1 bit error for eccsize byte block
Linus Torvalds1da177e2005-04-16 15:20:36 -0700441 */
Atsushi Nemotobe2f0922009-09-05 01:20:43 +0900442int __nand_correct_data(unsigned char *buf,
443 unsigned char *read_ecc, unsigned char *calc_ecc,
444 unsigned int eccsize)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700445{
Vimal Singh260dc002009-02-23 13:46:08 +0530446 unsigned char b0, b1, b2, bit_addr;
447 unsigned int byte_addr;
Singh, Vimald68156c2008-08-23 18:18:34 +0200448 /* 256 or 512 bytes/ecc */
Atsushi Nemotobe2f0922009-09-05 01:20:43 +0900449 const uint32_t eccsize_mult = eccsize >> 8;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000450
franse6cf5df2008-08-15 23:14:31 +0200451 /*
452 * b0 to b2 indicate which bit is faulty (if any)
453 * we might need the xor result more than once,
454 * so keep them in a local var
455 */
Timo Lindhorstfc029192006-11-27 13:35:49 +0100456#ifdef CONFIG_MTD_NAND_ECC_SMC
franse6cf5df2008-08-15 23:14:31 +0200457 b0 = read_ecc[0] ^ calc_ecc[0];
458 b1 = read_ecc[1] ^ calc_ecc[1];
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200459#else
franse6cf5df2008-08-15 23:14:31 +0200460 b0 = read_ecc[1] ^ calc_ecc[1];
461 b1 = read_ecc[0] ^ calc_ecc[0];
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200462#endif
franse6cf5df2008-08-15 23:14:31 +0200463 b2 = read_ecc[2] ^ calc_ecc[2];
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000464
franse6cf5df2008-08-15 23:14:31 +0200465 /* check if there are any bitfaults */
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200466
franse6cf5df2008-08-15 23:14:31 +0200467 /* repeated if statements are slightly more efficient than switch ... */
468 /* ordered in order of likelihood */
frans1077be52008-08-20 21:11:50 +0200469
470 if ((b0 | b1 | b2) == 0)
David Woodhouseccbcd6c2008-08-16 11:01:31 +0100471 return 0; /* no error */
frans1077be52008-08-20 21:11:50 +0200472
473 if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
474 (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
Singh, Vimald68156c2008-08-23 18:18:34 +0200475 ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
476 (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
477 /* single bit error */
franse6cf5df2008-08-15 23:14:31 +0200478 /*
Singh, Vimald68156c2008-08-23 18:18:34 +0200479 * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
480 * byte, cp 5/3/1 indicate the faulty bit.
franse6cf5df2008-08-15 23:14:31 +0200481 * A lookup table (called addressbits) is used to filter
482 * the bits from the byte they are in.
483 * A marginal optimisation is possible by having three
484 * different lookup tables.
485 * One as we have now (for b0), one for b2
486 * (that would avoid the >> 1), and one for b1 (with all values
487 * << 4). However it was felt that introducing two more tables
488 * hardly justify the gain.
489 *
490 * The b2 shift is there to get rid of the lowest two bits.
491 * We could also do addressbits[b2] >> 1 but for the
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200492 * performance it does not make any difference
franse6cf5df2008-08-15 23:14:31 +0200493 */
Singh, Vimald68156c2008-08-23 18:18:34 +0200494 if (eccsize_mult == 1)
495 byte_addr = (addressbits[b1] << 4) + addressbits[b0];
496 else
497 byte_addr = (addressbits[b2 & 0x3] << 8) +
498 (addressbits[b1] << 4) + addressbits[b0];
franse6cf5df2008-08-15 23:14:31 +0200499 bit_addr = addressbits[b2 >> 2];
500 /* flip the bit */
501 buf[byte_addr] ^= (1 << bit_addr);
David Woodhouseccbcd6c2008-08-16 11:01:31 +0100502 return 1;
frans1077be52008-08-20 21:11:50 +0200503
Linus Torvalds1da177e2005-04-16 15:20:36 -0700504 }
frans1077be52008-08-20 21:11:50 +0200505 /* count nr of bits; use table lookup, faster than calculating it */
506 if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
Brian Norris7854d3f2011-06-23 14:12:08 -0700507 return 1; /* error in ECC data; no action needed */
frans1077be52008-08-20 21:11:50 +0200508
Raphaël Poggi85a3bd92014-04-08 10:19:48 -0700509 pr_err("%s: uncorrectable ECC error\n", __func__);
Boris BREZILLON6e941192015-12-30 20:32:03 +0100510 return -EBADMSG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700511}
Atsushi Nemotobe2f0922009-09-05 01:20:43 +0900512EXPORT_SYMBOL(__nand_correct_data);
513
514/**
515 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
516 * @mtd: MTD block structure
517 * @buf: raw data read from the chip
518 * @read_ecc: ECC from the chip
519 * @calc_ecc: the ECC calculated from raw data
520 *
521 * Detect and correct a 1 bit error for 256/512 byte block
522 */
523int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
524 unsigned char *read_ecc, unsigned char *calc_ecc)
525{
526 return __nand_correct_data(buf, read_ecc, calc_ecc,
Boris BREZILLON862eba52015-12-01 12:03:03 +0100527 mtd_to_nand(mtd)->ecc.size);
Atsushi Nemotobe2f0922009-09-05 01:20:43 +0900528}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529EXPORT_SYMBOL(nand_correct_data);
530
531MODULE_LICENSE("GPL");
franse6cf5df2008-08-15 23:14:31 +0200532MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533MODULE_DESCRIPTION("Generic NAND ECC support");