blob: 6ec5cdddb5aad737efb14ca29cb2a4cee7f1806f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
Auke Kok0abb6eb2006-09-27 12:53:14 -07003 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 more details.
Auke Kok0abb6eb2006-09-27 12:53:14 -070014
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 You should have received a copy of the GNU General Public License along with
Auke Kok0abb6eb2006-09-27 12:53:14 -070016 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 Contact Information:
23 Linux NICS <linux.nics@intel.com>
Auke Kok3d41e302006-04-14 19:05:31 -070024 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
Auke Kok8fc897b2006-08-28 14:56:16 -070033
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include "e1000_hw.h"
35
Nicholas Nunley35574762006-09-27 12:53:34 -070036static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
37static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
38static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
39static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
40static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
41static void e1000_release_software_semaphore(struct e1000_hw *hw);
42
43static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
44static int32_t e1000_check_downshift(struct e1000_hw *hw);
45static int32_t e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity);
46static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
47static void e1000_clear_vfta(struct e1000_hw *hw);
48static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
49static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up);
50static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
51static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
52static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank);
53static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
54static int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length);
55static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
56static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
57static int32_t e1000_get_software_flag(struct e1000_hw *hw);
58static int32_t e1000_ich8_cycle_init(struct e1000_hw *hw);
59static int32_t e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout);
60static int32_t e1000_id_led_init(struct e1000_hw *hw);
61static int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
62static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
63static void e1000_init_rx_addrs(struct e1000_hw *hw);
64static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
65static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
66static int32_t e1000_mng_enable_host_if(struct e1000_hw *hw);
67static int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, uint16_t length, uint16_t offset, uint8_t *sum);
68static int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, struct e1000_host_mng_command_header* hdr);
69static int32_t e1000_mng_write_commit(struct e1000_hw *hw);
70static int32_t e1000_phy_ife_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
71static int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
72static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
73static int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
74static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
75static int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
76static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
77static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t *data);
78static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
79static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
80static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data);
81static int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t *data);
82static int32_t e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t data);
83static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
84static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
85static void e1000_release_software_flag(struct e1000_hw *hw);
86static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
87static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
88static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
89static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
90static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
91static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
Linus Torvalds1da177e2005-04-16 15:20:36 -070092static int32_t e1000_set_phy_type(struct e1000_hw *hw);
93static void e1000_phy_init_script(struct e1000_hw *hw);
94static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
95static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
96static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
97static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
98static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
99static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
100static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
101static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
102 uint16_t count);
103static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
104static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
105static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
106 uint16_t words, uint16_t *data);
107static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
108 uint16_t offset, uint16_t words,
109 uint16_t *data);
110static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
111static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
112static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
113static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
114 uint16_t count);
115static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
116 uint16_t phy_data);
117static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
118 uint16_t *phy_data);
119static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
120static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
121static void e1000_release_eeprom(struct e1000_hw *hw);
122static void e1000_standby_eeprom(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700123static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
124static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
125static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700126static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
127static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
Auke Kokcd94dd02006-06-27 09:08:22 -0700128static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
129 uint16_t duplex);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800130static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700131
132/* IGP cable length table */
133static const
134uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
135 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
136 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
137 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
138 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
139 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
140 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
141 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
142 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
143
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700144static const
145uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400146 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
147 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
148 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
149 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
150 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
151 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
152 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
153 104, 109, 114, 118, 121, 124};
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700154
Linus Torvalds1da177e2005-04-16 15:20:36 -0700155/******************************************************************************
156 * Set the phy type member in the hw struct.
157 *
158 * hw - Struct containing variables accessed by shared code
159 *****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -0700160static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -0700161e1000_set_phy_type(struct e1000_hw *hw)
162{
163 DEBUGFUNC("e1000_set_phy_type");
164
Auke Kok8fc897b2006-08-28 14:56:16 -0700165 if (hw->mac_type == e1000_undefined)
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700166 return -E1000_ERR_PHY_TYPE;
167
Auke Kok8fc897b2006-08-28 14:56:16 -0700168 switch (hw->phy_id) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700169 case M88E1000_E_PHY_ID:
170 case M88E1000_I_PHY_ID:
171 case M88E1011_I_PHY_ID:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700172 case M88E1111_I_PHY_ID:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700173 hw->phy_type = e1000_phy_m88;
174 break;
175 case IGP01E1000_I_PHY_ID:
Auke Kok8fc897b2006-08-28 14:56:16 -0700176 if (hw->mac_type == e1000_82541 ||
177 hw->mac_type == e1000_82541_rev_2 ||
178 hw->mac_type == e1000_82547 ||
179 hw->mac_type == e1000_82547_rev_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180 hw->phy_type = e1000_phy_igp;
181 break;
182 }
Auke Kokcd94dd02006-06-27 09:08:22 -0700183 case IGP03E1000_E_PHY_ID:
184 hw->phy_type = e1000_phy_igp_3;
185 break;
186 case IFE_E_PHY_ID:
187 case IFE_PLUS_E_PHY_ID:
188 case IFE_C_E_PHY_ID:
189 hw->phy_type = e1000_phy_ife;
190 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800191 case GG82563_E_PHY_ID:
192 if (hw->mac_type == e1000_80003es2lan) {
193 hw->phy_type = e1000_phy_gg82563;
194 break;
195 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700196 /* Fall Through */
197 default:
198 /* Should never have loaded on this device */
199 hw->phy_type = e1000_phy_undefined;
200 return -E1000_ERR_PHY_TYPE;
201 }
202
203 return E1000_SUCCESS;
204}
205
206/******************************************************************************
207 * IGP phy init script - initializes the GbE PHY
208 *
209 * hw - Struct containing variables accessed by shared code
210 *****************************************************************************/
211static void
212e1000_phy_init_script(struct e1000_hw *hw)
213{
214 uint32_t ret_val;
215 uint16_t phy_saved_data;
216
217 DEBUGFUNC("e1000_phy_init_script");
218
Auke Kok8fc897b2006-08-28 14:56:16 -0700219 if (hw->phy_init_script) {
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400220 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700221
222 /* Save off the current value of register 0x2F5B to be restored at
223 * the end of this routine. */
224 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
225
226 /* Disabled the PHY transmitter */
227 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
228
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400229 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700230
231 e1000_write_phy_reg(hw,0x0000,0x0140);
232
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400233 msleep(5);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700234
Auke Kok8fc897b2006-08-28 14:56:16 -0700235 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700236 case e1000_82541:
237 case e1000_82547:
238 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
239
240 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
241
242 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
243
244 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
245
246 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
247
248 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
249
250 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
251
252 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
253
254 e1000_write_phy_reg(hw, 0x2010, 0x0008);
255 break;
256
257 case e1000_82541_rev_2:
258 case e1000_82547_rev_2:
259 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
260 break;
261 default:
262 break;
263 }
264
265 e1000_write_phy_reg(hw, 0x0000, 0x3300);
266
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400267 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700268
269 /* Now enable the transmitter */
270 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
271
Auke Kok8fc897b2006-08-28 14:56:16 -0700272 if (hw->mac_type == e1000_82547) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700273 uint16_t fused, fine, coarse;
274
275 /* Move to analog registers page */
276 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
277
Auke Kok8fc897b2006-08-28 14:56:16 -0700278 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
280
281 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
282 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
283
Auke Kok8fc897b2006-08-28 14:56:16 -0700284 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
286 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
Auke Kok8fc897b2006-08-28 14:56:16 -0700287 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700288 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
289
290 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
291 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
292 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
293
294 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
295 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
296 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
297 }
298 }
299 }
300}
301
302/******************************************************************************
303 * Set the mac type member in the hw struct.
304 *
305 * hw - Struct containing variables accessed by shared code
306 *****************************************************************************/
307int32_t
308e1000_set_mac_type(struct e1000_hw *hw)
309{
310 DEBUGFUNC("e1000_set_mac_type");
311
312 switch (hw->device_id) {
313 case E1000_DEV_ID_82542:
314 switch (hw->revision_id) {
315 case E1000_82542_2_0_REV_ID:
316 hw->mac_type = e1000_82542_rev2_0;
317 break;
318 case E1000_82542_2_1_REV_ID:
319 hw->mac_type = e1000_82542_rev2_1;
320 break;
321 default:
322 /* Invalid 82542 revision ID */
323 return -E1000_ERR_MAC_TYPE;
324 }
325 break;
326 case E1000_DEV_ID_82543GC_FIBER:
327 case E1000_DEV_ID_82543GC_COPPER:
328 hw->mac_type = e1000_82543;
329 break;
330 case E1000_DEV_ID_82544EI_COPPER:
331 case E1000_DEV_ID_82544EI_FIBER:
332 case E1000_DEV_ID_82544GC_COPPER:
333 case E1000_DEV_ID_82544GC_LOM:
334 hw->mac_type = e1000_82544;
335 break;
336 case E1000_DEV_ID_82540EM:
337 case E1000_DEV_ID_82540EM_LOM:
338 case E1000_DEV_ID_82540EP:
339 case E1000_DEV_ID_82540EP_LOM:
340 case E1000_DEV_ID_82540EP_LP:
341 hw->mac_type = e1000_82540;
342 break;
343 case E1000_DEV_ID_82545EM_COPPER:
344 case E1000_DEV_ID_82545EM_FIBER:
345 hw->mac_type = e1000_82545;
346 break;
347 case E1000_DEV_ID_82545GM_COPPER:
348 case E1000_DEV_ID_82545GM_FIBER:
349 case E1000_DEV_ID_82545GM_SERDES:
350 hw->mac_type = e1000_82545_rev_3;
351 break;
352 case E1000_DEV_ID_82546EB_COPPER:
353 case E1000_DEV_ID_82546EB_FIBER:
354 case E1000_DEV_ID_82546EB_QUAD_COPPER:
355 hw->mac_type = e1000_82546;
356 break;
357 case E1000_DEV_ID_82546GB_COPPER:
358 case E1000_DEV_ID_82546GB_FIBER:
359 case E1000_DEV_ID_82546GB_SERDES:
360 case E1000_DEV_ID_82546GB_PCIE:
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800361 case E1000_DEV_ID_82546GB_QUAD_COPPER:
362 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700363 hw->mac_type = e1000_82546_rev_3;
364 break;
365 case E1000_DEV_ID_82541EI:
366 case E1000_DEV_ID_82541EI_MOBILE:
Auke Kokcd94dd02006-06-27 09:08:22 -0700367 case E1000_DEV_ID_82541ER_LOM:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700368 hw->mac_type = e1000_82541;
369 break;
370 case E1000_DEV_ID_82541ER:
371 case E1000_DEV_ID_82541GI:
372 case E1000_DEV_ID_82541GI_LF:
373 case E1000_DEV_ID_82541GI_MOBILE:
374 hw->mac_type = e1000_82541_rev_2;
375 break;
376 case E1000_DEV_ID_82547EI:
Auke Kokcd94dd02006-06-27 09:08:22 -0700377 case E1000_DEV_ID_82547EI_MOBILE:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700378 hw->mac_type = e1000_82547;
379 break;
380 case E1000_DEV_ID_82547GI:
381 hw->mac_type = e1000_82547_rev_2;
382 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400383 case E1000_DEV_ID_82571EB_COPPER:
384 case E1000_DEV_ID_82571EB_FIBER:
385 case E1000_DEV_ID_82571EB_SERDES:
Jesse Brandeburg5881cde2006-08-31 14:27:47 -0700386 case E1000_DEV_ID_82571EB_QUAD_COPPER:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400387 hw->mac_type = e1000_82571;
388 break;
389 case E1000_DEV_ID_82572EI_COPPER:
390 case E1000_DEV_ID_82572EI_FIBER:
391 case E1000_DEV_ID_82572EI_SERDES:
Auke Kokcd94dd02006-06-27 09:08:22 -0700392 case E1000_DEV_ID_82572EI:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400393 hw->mac_type = e1000_82572;
394 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700395 case E1000_DEV_ID_82573E:
396 case E1000_DEV_ID_82573E_IAMT:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400397 case E1000_DEV_ID_82573L:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700398 hw->mac_type = e1000_82573;
399 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700400 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
401 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800402 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
403 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
404 hw->mac_type = e1000_80003es2lan;
405 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700406 case E1000_DEV_ID_ICH8_IGP_M_AMT:
407 case E1000_DEV_ID_ICH8_IGP_AMT:
408 case E1000_DEV_ID_ICH8_IGP_C:
409 case E1000_DEV_ID_ICH8_IFE:
410 case E1000_DEV_ID_ICH8_IGP_M:
411 hw->mac_type = e1000_ich8lan;
412 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413 default:
414 /* Should never have loaded on this device */
415 return -E1000_ERR_MAC_TYPE;
416 }
417
Auke Kok8fc897b2006-08-28 14:56:16 -0700418 switch (hw->mac_type) {
Auke Kokcd94dd02006-06-27 09:08:22 -0700419 case e1000_ich8lan:
420 hw->swfwhw_semaphore_present = TRUE;
421 hw->asf_firmware_present = TRUE;
422 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800423 case e1000_80003es2lan:
424 hw->swfw_sync_present = TRUE;
425 /* fall through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400426 case e1000_82571:
427 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700428 case e1000_82573:
429 hw->eeprom_semaphore_present = TRUE;
430 /* fall through */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700431 case e1000_82541:
432 case e1000_82547:
433 case e1000_82541_rev_2:
434 case e1000_82547_rev_2:
435 hw->asf_firmware_present = TRUE;
436 break;
437 default:
438 break;
439 }
440
441 return E1000_SUCCESS;
442}
443
444/*****************************************************************************
445 * Set media type and TBI compatibility.
446 *
447 * hw - Struct containing variables accessed by shared code
448 * **************************************************************************/
449void
450e1000_set_media_type(struct e1000_hw *hw)
451{
452 uint32_t status;
453
454 DEBUGFUNC("e1000_set_media_type");
455
Auke Kok8fc897b2006-08-28 14:56:16 -0700456 if (hw->mac_type != e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457 /* tbi_compatibility is only valid on 82543 */
458 hw->tbi_compatibility_en = FALSE;
459 }
460
461 switch (hw->device_id) {
462 case E1000_DEV_ID_82545GM_SERDES:
463 case E1000_DEV_ID_82546GB_SERDES:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400464 case E1000_DEV_ID_82571EB_SERDES:
465 case E1000_DEV_ID_82572EI_SERDES:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800466 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700467 hw->media_type = e1000_media_type_internal_serdes;
468 break;
469 default:
Malli Chilakala3893d542005-06-17 17:44:49 -0700470 switch (hw->mac_type) {
471 case e1000_82542_rev2_0:
472 case e1000_82542_rev2_1:
473 hw->media_type = e1000_media_type_fiber;
474 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700475 case e1000_ich8lan:
Malli Chilakala3893d542005-06-17 17:44:49 -0700476 case e1000_82573:
477 /* The STATUS_TBIMODE bit is reserved or reused for the this
478 * device.
479 */
480 hw->media_type = e1000_media_type_copper;
481 break;
482 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700483 status = E1000_READ_REG(hw, STATUS);
Malli Chilakala3893d542005-06-17 17:44:49 -0700484 if (status & E1000_STATUS_TBIMODE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700485 hw->media_type = e1000_media_type_fiber;
486 /* tbi_compatibility not valid on fiber */
487 hw->tbi_compatibility_en = FALSE;
488 } else {
489 hw->media_type = e1000_media_type_copper;
490 }
Malli Chilakala3893d542005-06-17 17:44:49 -0700491 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700492 }
493 }
494}
495
496/******************************************************************************
497 * Reset the transmit and receive units; mask and clear all interrupts.
498 *
499 * hw - Struct containing variables accessed by shared code
500 *****************************************************************************/
501int32_t
502e1000_reset_hw(struct e1000_hw *hw)
503{
504 uint32_t ctrl;
505 uint32_t ctrl_ext;
506 uint32_t icr;
507 uint32_t manc;
508 uint32_t led_ctrl;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700509 uint32_t timeout;
510 uint32_t extcnf_ctrl;
511 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512
513 DEBUGFUNC("e1000_reset_hw");
514
515 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
Auke Kok8fc897b2006-08-28 14:56:16 -0700516 if (hw->mac_type == e1000_82542_rev2_0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
518 e1000_pci_clear_mwi(hw);
519 }
520
Auke Kok8fc897b2006-08-28 14:56:16 -0700521 if (hw->bus_type == e1000_bus_type_pci_express) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700522 /* Prevent the PCI-E bus from sticking if there is no TLP connection
523 * on the last TLP read/write transaction when MAC is reset.
524 */
Auke Kok8fc897b2006-08-28 14:56:16 -0700525 if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700526 DEBUGOUT("PCI-E Master disable polling has failed.\n");
527 }
528 }
529
Linus Torvalds1da177e2005-04-16 15:20:36 -0700530 /* Clear interrupt mask to stop board from generating interrupts */
531 DEBUGOUT("Masking off all interrupts\n");
532 E1000_WRITE_REG(hw, IMC, 0xffffffff);
533
534 /* Disable the Transmit and Receive units. Then delay to allow
535 * any pending transactions to complete before we hit the MAC with
536 * the global reset.
537 */
538 E1000_WRITE_REG(hw, RCTL, 0);
539 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
540 E1000_WRITE_FLUSH(hw);
541
542 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
543 hw->tbi_compatibility_on = FALSE;
544
545 /* Delay to allow any outstanding PCI transactions to complete before
546 * resetting the device
547 */
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400548 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549
550 ctrl = E1000_READ_REG(hw, CTRL);
551
552 /* Must reset the PHY before resetting the MAC */
Auke Kok8fc897b2006-08-28 14:56:16 -0700553 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700554 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400555 msleep(5);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700556 }
557
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700558 /* Must acquire the MDIO ownership before MAC reset.
559 * Ownership defaults to firmware after a reset. */
Auke Kok8fc897b2006-08-28 14:56:16 -0700560 if (hw->mac_type == e1000_82573) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700561 timeout = 10;
562
563 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
564 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
565
566 do {
567 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
568 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
569
Auke Kok8fc897b2006-08-28 14:56:16 -0700570 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700571 break;
572 else
573 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
574
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400575 msleep(2);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700576 timeout--;
Auke Kok8fc897b2006-08-28 14:56:16 -0700577 } while (timeout);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700578 }
579
Auke Kokcd94dd02006-06-27 09:08:22 -0700580 /* Workaround for ICH8 bit corruption issue in FIFO memory */
581 if (hw->mac_type == e1000_ich8lan) {
582 /* Set Tx and Rx buffer allocation to 8k apiece. */
583 E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
584 /* Set Packet Buffer Size to 16k. */
585 E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
586 }
587
Linus Torvalds1da177e2005-04-16 15:20:36 -0700588 /* Issue a global reset to the MAC. This will reset the chip's
589 * transmit, receive, DMA, and link units. It will not effect
590 * the current PCI configuration. The global reset bit is self-
591 * clearing, and should clear within a microsecond.
592 */
593 DEBUGOUT("Issuing a global reset to MAC\n");
594
Auke Kok8fc897b2006-08-28 14:56:16 -0700595 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700596 case e1000_82544:
597 case e1000_82540:
598 case e1000_82545:
599 case e1000_82546:
600 case e1000_82541:
601 case e1000_82541_rev_2:
602 /* These controllers can't ack the 64-bit write when issuing the
603 * reset, so use IO-mapping as a workaround to issue the reset */
604 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
605 break;
606 case e1000_82545_rev_3:
607 case e1000_82546_rev_3:
608 /* Reset is performed on a shadow of the control register */
609 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
610 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700611 case e1000_ich8lan:
612 if (!hw->phy_reset_disable &&
613 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
614 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
615 * at the same time to make sure the interface between
616 * MAC and the external PHY is reset.
617 */
618 ctrl |= E1000_CTRL_PHY_RST;
619 }
620
621 e1000_get_software_flag(hw);
622 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400623 msleep(5);
Auke Kokcd94dd02006-06-27 09:08:22 -0700624 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700625 default:
626 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
627 break;
628 }
629
630 /* After MAC reset, force reload of EEPROM to restore power-on settings to
631 * device. Later controllers reload the EEPROM automatically, so just wait
632 * for reload to complete.
633 */
Auke Kok8fc897b2006-08-28 14:56:16 -0700634 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700635 case e1000_82542_rev2_0:
636 case e1000_82542_rev2_1:
637 case e1000_82543:
638 case e1000_82544:
639 /* Wait for reset to complete */
640 udelay(10);
641 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
642 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
643 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
644 E1000_WRITE_FLUSH(hw);
645 /* Wait for EEPROM reload */
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400646 msleep(2);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700647 break;
648 case e1000_82541:
649 case e1000_82541_rev_2:
650 case e1000_82547:
651 case e1000_82547_rev_2:
652 /* Wait for EEPROM reload */
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400653 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700654 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700655 case e1000_82573:
Jeff Kirsherfd803242005-12-13 00:06:22 -0500656 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
657 udelay(10);
658 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
659 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
660 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
661 E1000_WRITE_FLUSH(hw);
662 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700663 /* fall through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400664 case e1000_82571:
665 case e1000_82572:
Auke Kokcd94dd02006-06-27 09:08:22 -0700666 case e1000_ich8lan:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800667 case e1000_80003es2lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700668 ret_val = e1000_get_auto_rd_done(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -0700669 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700670 /* We don't want to continue accessing MAC registers. */
671 return ret_val;
672 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673 default:
674 /* Wait for EEPROM reload (it happens automatically) */
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400675 msleep(5);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700676 break;
677 }
678
679 /* Disable HW ARPs on ASF enabled adapters */
Auke Kok8fc897b2006-08-28 14:56:16 -0700680 if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700681 manc = E1000_READ_REG(hw, MANC);
682 manc &= ~(E1000_MANC_ARP_EN);
683 E1000_WRITE_REG(hw, MANC, manc);
684 }
685
Auke Kok8fc897b2006-08-28 14:56:16 -0700686 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700687 e1000_phy_init_script(hw);
688
689 /* Configure activity LED after PHY reset */
690 led_ctrl = E1000_READ_REG(hw, LEDCTL);
691 led_ctrl &= IGP_ACTIVITY_LED_MASK;
692 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
693 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
694 }
695
696 /* Clear interrupt mask to stop board from generating interrupts */
697 DEBUGOUT("Masking off all interrupts\n");
698 E1000_WRITE_REG(hw, IMC, 0xffffffff);
699
700 /* Clear any pending interrupt events. */
701 icr = E1000_READ_REG(hw, ICR);
702
703 /* If MWI was previously enabled, reenable it. */
Auke Kok8fc897b2006-08-28 14:56:16 -0700704 if (hw->mac_type == e1000_82542_rev2_0) {
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400705 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700706 e1000_pci_set_mwi(hw);
707 }
708
Auke Kokcd94dd02006-06-27 09:08:22 -0700709 if (hw->mac_type == e1000_ich8lan) {
710 uint32_t kab = E1000_READ_REG(hw, KABGTXD);
711 kab |= E1000_KABGTXD_BGSQLBIAS;
712 E1000_WRITE_REG(hw, KABGTXD, kab);
713 }
714
Linus Torvalds1da177e2005-04-16 15:20:36 -0700715 return E1000_SUCCESS;
716}
717
718/******************************************************************************
719 * Performs basic configuration of the adapter.
720 *
721 * hw - Struct containing variables accessed by shared code
722 *
723 * Assumes that the controller has previously been reset and is in a
724 * post-reset uninitialized state. Initializes the receive address registers,
725 * multicast table, and VLAN filter table. Calls routines to setup link
726 * configuration and flow control settings. Clears all on-chip counters. Leaves
727 * the transmit and receive units disabled and uninitialized.
728 *****************************************************************************/
729int32_t
730e1000_init_hw(struct e1000_hw *hw)
731{
732 uint32_t ctrl;
733 uint32_t i;
734 int32_t ret_val;
735 uint16_t pcix_cmd_word;
736 uint16_t pcix_stat_hi_word;
737 uint16_t cmd_mmrbc;
738 uint16_t stat_mmrbc;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700739 uint32_t mta_size;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800740 uint32_t reg_data;
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800741 uint32_t ctrl_ext;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700742
Linus Torvalds1da177e2005-04-16 15:20:36 -0700743 DEBUGFUNC("e1000_init_hw");
744
Jeff Kirsher7820d422006-08-16 13:39:00 -0700745 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
746 if (hw->mac_type == e1000_ich8lan) {
747 reg_data = E1000_READ_REG(hw, TARC0);
748 reg_data |= 0x30000000;
749 E1000_WRITE_REG(hw, TARC0, reg_data);
750
751 reg_data = E1000_READ_REG(hw, STATUS);
752 reg_data &= ~0x80000000;
753 E1000_WRITE_REG(hw, STATUS, reg_data);
754 }
755
Linus Torvalds1da177e2005-04-16 15:20:36 -0700756 /* Initialize Identification LED */
757 ret_val = e1000_id_led_init(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -0700758 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700759 DEBUGOUT("Error Initializing Identification LED\n");
760 return ret_val;
761 }
762
763 /* Set the media type and TBI compatibility */
764 e1000_set_media_type(hw);
765
766 /* Disabling VLAN filtering. */
767 DEBUGOUT("Initializing the IEEE VLAN\n");
Auke Kokcd94dd02006-06-27 09:08:22 -0700768 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
769 if (hw->mac_type != e1000_ich8lan) {
770 if (hw->mac_type < e1000_82545_rev_3)
771 E1000_WRITE_REG(hw, VET, 0);
772 e1000_clear_vfta(hw);
773 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700774
775 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
Auke Kok8fc897b2006-08-28 14:56:16 -0700776 if (hw->mac_type == e1000_82542_rev2_0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700777 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
778 e1000_pci_clear_mwi(hw);
779 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
780 E1000_WRITE_FLUSH(hw);
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400781 msleep(5);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700782 }
783
784 /* Setup the receive address. This involves initializing all of the Receive
785 * Address Registers (RARs 0 - 15).
786 */
787 e1000_init_rx_addrs(hw);
788
789 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
Auke Kok8fc897b2006-08-28 14:56:16 -0700790 if (hw->mac_type == e1000_82542_rev2_0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700791 E1000_WRITE_REG(hw, RCTL, 0);
792 E1000_WRITE_FLUSH(hw);
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400793 msleep(1);
794 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700795 e1000_pci_set_mwi(hw);
796 }
797
798 /* Zero out the Multicast HASH table */
799 DEBUGOUT("Zeroing the MTA\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700800 mta_size = E1000_MC_TBL_SIZE;
Auke Kokcd94dd02006-06-27 09:08:22 -0700801 if (hw->mac_type == e1000_ich8lan)
802 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
Auke Kok8fc897b2006-08-28 14:56:16 -0700803 for (i = 0; i < mta_size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700804 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Auke Kok4ca213a2006-06-27 09:07:08 -0700805 /* use write flush to prevent Memory Write Block (MWB) from
806 * occuring when accessing our register space */
807 E1000_WRITE_FLUSH(hw);
808 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700809
810 /* Set the PCI priority bit correctly in the CTRL register. This
811 * determines if the adapter gives priority to receives, or if it
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700812 * gives equal priority to transmits and receives. Valid only on
813 * 82542 and 82543 silicon.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700814 */
Auke Kok8fc897b2006-08-28 14:56:16 -0700815 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700816 ctrl = E1000_READ_REG(hw, CTRL);
817 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
818 }
819
Auke Kok8fc897b2006-08-28 14:56:16 -0700820 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700821 case e1000_82545_rev_3:
822 case e1000_82546_rev_3:
823 break;
824 default:
825 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Auke Kok8fc897b2006-08-28 14:56:16 -0700826 if (hw->bus_type == e1000_bus_type_pcix) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700827 e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
828 e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
829 &pcix_stat_hi_word);
830 cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
831 PCIX_COMMAND_MMRBC_SHIFT;
832 stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
833 PCIX_STATUS_HI_MMRBC_SHIFT;
Auke Kok8fc897b2006-08-28 14:56:16 -0700834 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700835 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
Auke Kok8fc897b2006-08-28 14:56:16 -0700836 if (cmd_mmrbc > stat_mmrbc) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700837 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
838 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
839 e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
840 &pcix_cmd_word);
841 }
842 }
843 break;
844 }
845
Auke Kokcd94dd02006-06-27 09:08:22 -0700846 /* More time needed for PHY to initialize */
847 if (hw->mac_type == e1000_ich8lan)
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400848 msleep(15);
Auke Kokcd94dd02006-06-27 09:08:22 -0700849
Linus Torvalds1da177e2005-04-16 15:20:36 -0700850 /* Call a subroutine to configure the link and setup flow control. */
851 ret_val = e1000_setup_link(hw);
852
853 /* Set the transmit descriptor write-back policy */
Auke Kok8fc897b2006-08-28 14:56:16 -0700854 if (hw->mac_type > e1000_82544) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700855 ctrl = E1000_READ_REG(hw, TXDCTL);
856 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700857 switch (hw->mac_type) {
858 default:
859 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400860 case e1000_82571:
861 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700862 case e1000_82573:
Auke Kokcd94dd02006-06-27 09:08:22 -0700863 case e1000_ich8lan:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800864 case e1000_80003es2lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700865 ctrl |= E1000_TXDCTL_COUNT_DESC;
866 break;
867 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700868 E1000_WRITE_REG(hw, TXDCTL, ctrl);
869 }
870
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700871 if (hw->mac_type == e1000_82573) {
Auke Kok76c224b2006-05-23 13:36:06 -0700872 e1000_enable_tx_pkt_filtering(hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700873 }
874
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400875 switch (hw->mac_type) {
876 default:
877 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800878 case e1000_80003es2lan:
879 /* Enable retransmit on late collisions */
880 reg_data = E1000_READ_REG(hw, TCTL);
881 reg_data |= E1000_TCTL_RTLC;
882 E1000_WRITE_REG(hw, TCTL, reg_data);
883
884 /* Configure Gigabit Carry Extend Padding */
885 reg_data = E1000_READ_REG(hw, TCTL_EXT);
886 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
887 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
888 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
889
890 /* Configure Transmit Inter-Packet Gap */
891 reg_data = E1000_READ_REG(hw, TIPG);
892 reg_data &= ~E1000_TIPG_IPGT_MASK;
893 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
894 E1000_WRITE_REG(hw, TIPG, reg_data);
895
896 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
897 reg_data &= ~0x00100000;
898 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
899 /* Fall through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400900 case e1000_82571:
Mallikarjuna R Chilakalaa7990ba2005-10-04 07:08:19 -0400901 case e1000_82572:
Auke Kokcd94dd02006-06-27 09:08:22 -0700902 case e1000_ich8lan:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400903 ctrl = E1000_READ_REG(hw, TXDCTL1);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800904 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
Auke Kok8fc897b2006-08-28 14:56:16 -0700905 if (hw->mac_type >= e1000_82571)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800906 ctrl |= E1000_TXDCTL_COUNT_DESC;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400907 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
908 break;
909 }
910
911
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400912 if (hw->mac_type == e1000_82573) {
913 uint32_t gcr = E1000_READ_REG(hw, GCR);
914 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
915 E1000_WRITE_REG(hw, GCR, gcr);
916 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700917
Linus Torvalds1da177e2005-04-16 15:20:36 -0700918 /* Clear all of the statistics registers (clear on read). It is
919 * important that we do this after we have tried to establish link
920 * because the symbol error count will increment wildly if there
921 * is no link.
922 */
923 e1000_clear_hw_cntrs(hw);
924
Auke Kokcd94dd02006-06-27 09:08:22 -0700925 /* ICH8 No-snoop bits are opposite polarity.
926 * Set to snoop by default after reset. */
927 if (hw->mac_type == e1000_ich8lan)
928 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
929
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800930 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
931 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
932 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
933 /* Relaxed ordering must be disabled to avoid a parity
934 * error crash in a PCI slot. */
935 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
936 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
937 }
938
Linus Torvalds1da177e2005-04-16 15:20:36 -0700939 return ret_val;
940}
941
942/******************************************************************************
943 * Adjust SERDES output amplitude based on EEPROM setting.
944 *
945 * hw - Struct containing variables accessed by shared code.
946 *****************************************************************************/
947static int32_t
948e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
949{
950 uint16_t eeprom_data;
951 int32_t ret_val;
952
953 DEBUGFUNC("e1000_adjust_serdes_amplitude");
954
Auke Kok8fc897b2006-08-28 14:56:16 -0700955 if (hw->media_type != e1000_media_type_internal_serdes)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700956 return E1000_SUCCESS;
957
Auke Kok8fc897b2006-08-28 14:56:16 -0700958 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700959 case e1000_82545_rev_3:
960 case e1000_82546_rev_3:
961 break;
962 default:
963 return E1000_SUCCESS;
964 }
965
966 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
967 if (ret_val) {
968 return ret_val;
969 }
970
Auke Kok8fc897b2006-08-28 14:56:16 -0700971 if (eeprom_data != EEPROM_RESERVED_WORD) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972 /* Adjust SERDES output amplitude only. */
Auke Kok76c224b2006-05-23 13:36:06 -0700973 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700974 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
Auke Kok8fc897b2006-08-28 14:56:16 -0700975 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700976 return ret_val;
977 }
978
979 return E1000_SUCCESS;
980}
981
982/******************************************************************************
983 * Configures flow control and link settings.
984 *
985 * hw - Struct containing variables accessed by shared code
986 *
987 * Determines which flow control settings to use. Calls the apropriate media-
988 * specific link configuration function. Configures the flow control settings.
989 * Assuming the adapter has a valid link partner, a valid link should be
990 * established. Assumes the hardware has previously been reset and the
991 * transmitter and receiver are not enabled.
992 *****************************************************************************/
993int32_t
994e1000_setup_link(struct e1000_hw *hw)
995{
996 uint32_t ctrl_ext;
997 int32_t ret_val;
998 uint16_t eeprom_data;
999
1000 DEBUGFUNC("e1000_setup_link");
1001
Jeff Kirsher526f9952006-01-12 16:50:46 -08001002 /* In the case of the phy reset being blocked, we already have a link.
1003 * We do not have to set it up again. */
1004 if (e1000_check_phy_reset_block(hw))
1005 return E1000_SUCCESS;
1006
Linus Torvalds1da177e2005-04-16 15:20:36 -07001007 /* Read and store word 0x0F of the EEPROM. This word contains bits
1008 * that determine the hardware's default PAUSE (flow control) mode,
1009 * a bit that determines whether the HW defaults to enabling or
1010 * disabling auto-negotiation, and the direction of the
1011 * SW defined pins. If there is no SW over-ride of the flow
1012 * control setting, then the variable hw->fc will
1013 * be initialized based on a value in the EEPROM.
1014 */
Jeff Kirsher11241b12006-09-27 12:53:28 -07001015 if (hw->fc == E1000_FC_DEFAULT) {
Jeff Kirsherfd803242005-12-13 00:06:22 -05001016 switch (hw->mac_type) {
Auke Kokcd94dd02006-06-27 09:08:22 -07001017 case e1000_ich8lan:
Jeff Kirsherfd803242005-12-13 00:06:22 -05001018 case e1000_82573:
Jeff Kirsher11241b12006-09-27 12:53:28 -07001019 hw->fc = E1000_FC_FULL;
Jeff Kirsherfd803242005-12-13 00:06:22 -05001020 break;
1021 default:
1022 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1023 1, &eeprom_data);
1024 if (ret_val) {
1025 DEBUGOUT("EEPROM Read Error\n");
1026 return -E1000_ERR_EEPROM;
1027 }
1028 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
Jeff Kirsher11241b12006-09-27 12:53:28 -07001029 hw->fc = E1000_FC_NONE;
Jeff Kirsherfd803242005-12-13 00:06:22 -05001030 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1031 EEPROM_WORD0F_ASM_DIR)
Jeff Kirsher11241b12006-09-27 12:53:28 -07001032 hw->fc = E1000_FC_TX_PAUSE;
Jeff Kirsherfd803242005-12-13 00:06:22 -05001033 else
Jeff Kirsher11241b12006-09-27 12:53:28 -07001034 hw->fc = E1000_FC_FULL;
Jeff Kirsherfd803242005-12-13 00:06:22 -05001035 break;
1036 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037 }
1038
1039 /* We want to save off the original Flow Control configuration just
1040 * in case we get disconnected and then reconnected into a different
1041 * hub or switch with different Flow Control capabilities.
1042 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001043 if (hw->mac_type == e1000_82542_rev2_0)
Jeff Kirsher11241b12006-09-27 12:53:28 -07001044 hw->fc &= (~E1000_FC_TX_PAUSE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001045
Auke Kok8fc897b2006-08-28 14:56:16 -07001046 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
Jeff Kirsher11241b12006-09-27 12:53:28 -07001047 hw->fc &= (~E1000_FC_RX_PAUSE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001048
1049 hw->original_fc = hw->fc;
1050
1051 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
1052
1053 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1054 * polarity value for the SW controlled pins, and setup the
1055 * Extended Device Control reg with that info.
1056 * This is needed because one of the SW controlled pins is used for
1057 * signal detection. So this should be done before e1000_setup_pcs_link()
1058 * or e1000_phy_setup() is called.
1059 */
Jeff Kirsher497fce52006-03-02 18:18:20 -08001060 if (hw->mac_type == e1000_82543) {
Auke Kok8fc897b2006-08-28 14:56:16 -07001061 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1062 1, &eeprom_data);
1063 if (ret_val) {
1064 DEBUGOUT("EEPROM Read Error\n");
1065 return -E1000_ERR_EEPROM;
1066 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1068 SWDPIO__EXT_SHIFT);
1069 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1070 }
1071
1072 /* Call the necessary subroutine to configure the link. */
1073 ret_val = (hw->media_type == e1000_media_type_copper) ?
1074 e1000_setup_copper_link(hw) :
1075 e1000_setup_fiber_serdes_link(hw);
1076
1077 /* Initialize the flow control address, type, and PAUSE timer
1078 * registers to their default values. This is done even if flow
1079 * control is disabled, because it does not hurt anything to
1080 * initialize these registers.
1081 */
1082 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1083
Auke Kokcd94dd02006-06-27 09:08:22 -07001084 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1085 if (hw->mac_type != e1000_ich8lan) {
1086 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1087 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1088 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1089 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001090
Linus Torvalds1da177e2005-04-16 15:20:36 -07001091 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1092
1093 /* Set the flow control receive threshold registers. Normally,
1094 * these registers will be set to a default threshold that may be
1095 * adjusted later by the driver's runtime code. However, if the
1096 * ability to transmit pause frames in not enabled, then these
1097 * registers will be set to 0.
1098 */
Jeff Kirsher11241b12006-09-27 12:53:28 -07001099 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001100 E1000_WRITE_REG(hw, FCRTL, 0);
1101 E1000_WRITE_REG(hw, FCRTH, 0);
1102 } else {
1103 /* We need to set up the Receive Threshold high and low water marks
1104 * as well as (optionally) enabling the transmission of XON frames.
1105 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001106 if (hw->fc_send_xon) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001107 E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
1108 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1109 } else {
1110 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1111 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1112 }
1113 }
1114 return ret_val;
1115}
1116
1117/******************************************************************************
1118 * Sets up link for a fiber based or serdes based adapter
1119 *
1120 * hw - Struct containing variables accessed by shared code
1121 *
1122 * Manipulates Physical Coding Sublayer functions in order to configure
1123 * link. Assumes the hardware has been previously reset and the transmitter
1124 * and receiver are not enabled.
1125 *****************************************************************************/
1126static int32_t
1127e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
1128{
1129 uint32_t ctrl;
1130 uint32_t status;
1131 uint32_t txcw = 0;
1132 uint32_t i;
1133 uint32_t signal = 0;
1134 int32_t ret_val;
1135
1136 DEBUGFUNC("e1000_setup_fiber_serdes_link");
1137
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04001138 /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
1139 * until explicitly turned off or a power cycle is performed. A read to
1140 * the register does not indicate its status. Therefore, we ensure
1141 * loopback mode is disabled during initialization.
1142 */
1143 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
1144 E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
1145
Linus Torvalds1da177e2005-04-16 15:20:36 -07001146 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
1147 * set when the optics detect a signal. On older adapters, it will be
1148 * cleared when there is a signal. This applies to fiber media only.
1149 * If we're on serdes media, adjust the output amplitude to value set in
1150 * the EEPROM.
1151 */
1152 ctrl = E1000_READ_REG(hw, CTRL);
Auke Kok8fc897b2006-08-28 14:56:16 -07001153 if (hw->media_type == e1000_media_type_fiber)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001154 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
1155
1156 ret_val = e1000_adjust_serdes_amplitude(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001157 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001158 return ret_val;
1159
1160 /* Take the link out of reset */
1161 ctrl &= ~(E1000_CTRL_LRST);
1162
1163 /* Adjust VCO speed to improve BER performance */
1164 ret_val = e1000_set_vco_speed(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001165 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001166 return ret_val;
1167
1168 e1000_config_collision_dist(hw);
1169
1170 /* Check for a software override of the flow control settings, and setup
1171 * the device accordingly. If auto-negotiation is enabled, then software
1172 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1173 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1174 * auto-negotiation is disabled, then software will have to manually
1175 * configure the two flow control enable bits in the CTRL register.
1176 *
1177 * The possible values of the "fc" parameter are:
1178 * 0: Flow control is completely disabled
1179 * 1: Rx flow control is enabled (we can receive pause frames, but
1180 * not send pause frames).
1181 * 2: Tx flow control is enabled (we can send pause frames but we do
1182 * not support receiving pause frames).
1183 * 3: Both Rx and TX flow control (symmetric) are enabled.
1184 */
1185 switch (hw->fc) {
Jeff Kirsher11241b12006-09-27 12:53:28 -07001186 case E1000_FC_NONE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001187 /* Flow control is completely disabled by a software over-ride. */
1188 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1189 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07001190 case E1000_FC_RX_PAUSE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001191 /* RX Flow control is enabled and TX Flow control is disabled by a
1192 * software over-ride. Since there really isn't a way to advertise
1193 * that we are capable of RX Pause ONLY, we will advertise that we
1194 * support both symmetric and asymmetric RX PAUSE. Later, we will
1195 * disable the adapter's ability to send PAUSE frames.
1196 */
1197 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1198 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07001199 case E1000_FC_TX_PAUSE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001200 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1201 * software over-ride.
1202 */
1203 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1204 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07001205 case E1000_FC_FULL:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001206 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1207 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1208 break;
1209 default:
1210 DEBUGOUT("Flow control param set incorrectly\n");
1211 return -E1000_ERR_CONFIG;
1212 break;
1213 }
1214
1215 /* Since auto-negotiation is enabled, take the link out of reset (the link
1216 * will be in reset, because we previously reset the chip). This will
1217 * restart auto-negotiation. If auto-neogtiation is successful then the
1218 * link-up status bit will be set and the flow control enable bits (RFCE
1219 * and TFCE) will be set according to their negotiated value.
1220 */
1221 DEBUGOUT("Auto-negotiation enabled\n");
1222
1223 E1000_WRITE_REG(hw, TXCW, txcw);
1224 E1000_WRITE_REG(hw, CTRL, ctrl);
1225 E1000_WRITE_FLUSH(hw);
1226
1227 hw->txcw = txcw;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04001228 msleep(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001229
1230 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1231 * indication in the Device Status Register. Time-out if a link isn't
1232 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1233 * less than 500 milliseconds even if the other end is doing it in SW).
1234 * For internal serdes, we just assume a signal is present, then poll.
1235 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001236 if (hw->media_type == e1000_media_type_internal_serdes ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07001237 (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1238 DEBUGOUT("Looking for Link\n");
Auke Kok8fc897b2006-08-28 14:56:16 -07001239 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
Jeff Garzikf8ec4732006-09-19 15:27:07 -04001240 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001241 status = E1000_READ_REG(hw, STATUS);
Auke Kok8fc897b2006-08-28 14:56:16 -07001242 if (status & E1000_STATUS_LU) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001243 }
Auke Kok8fc897b2006-08-28 14:56:16 -07001244 if (i == (LINK_UP_TIMEOUT / 10)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001245 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1246 hw->autoneg_failed = 1;
1247 /* AutoNeg failed to achieve a link, so we'll call
1248 * e1000_check_for_link. This routine will force the link up if
1249 * we detect a signal. This will allow us to communicate with
1250 * non-autonegotiating link partners.
1251 */
1252 ret_val = e1000_check_for_link(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001253 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001254 DEBUGOUT("Error while checking for link\n");
1255 return ret_val;
1256 }
1257 hw->autoneg_failed = 0;
1258 } else {
1259 hw->autoneg_failed = 0;
1260 DEBUGOUT("Valid Link Found\n");
1261 }
1262 } else {
1263 DEBUGOUT("No Signal Detected\n");
1264 }
1265 return E1000_SUCCESS;
1266}
1267
1268/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001269* Make sure we have a valid PHY and change PHY mode before link setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001270*
1271* hw - Struct containing variables accessed by shared code
1272******************************************************************************/
1273static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001274e1000_copper_link_preconfig(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275{
1276 uint32_t ctrl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001277 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001278 uint16_t phy_data;
1279
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001280 DEBUGFUNC("e1000_copper_link_preconfig");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001281
1282 ctrl = E1000_READ_REG(hw, CTRL);
1283 /* With 82543, we need to force speed and duplex on the MAC equal to what
1284 * the PHY speed and duplex configuration is. In addition, we need to
1285 * perform a hardware reset on the PHY to take it out of reset.
1286 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001287 if (hw->mac_type > e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001288 ctrl |= E1000_CTRL_SLU;
1289 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1290 E1000_WRITE_REG(hw, CTRL, ctrl);
1291 } else {
1292 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1293 E1000_WRITE_REG(hw, CTRL, ctrl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001294 ret_val = e1000_phy_hw_reset(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001295 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001296 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001297 }
1298
1299 /* Make sure we have a valid PHY */
1300 ret_val = e1000_detect_gig_phy(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001301 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001302 DEBUGOUT("Error, did not detect valid phy.\n");
1303 return ret_val;
1304 }
1305 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1306
1307 /* Set PHY to class A mode (if necessary) */
1308 ret_val = e1000_set_phy_mode(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001309 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001310 return ret_val;
1311
Auke Kok8fc897b2006-08-28 14:56:16 -07001312 if ((hw->mac_type == e1000_82545_rev_3) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07001313 (hw->mac_type == e1000_82546_rev_3)) {
1314 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1315 phy_data |= 0x00000008;
1316 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1317 }
1318
Auke Kok8fc897b2006-08-28 14:56:16 -07001319 if (hw->mac_type <= e1000_82543 ||
1320 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1321 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001322 hw->phy_reset_disable = FALSE;
1323
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001324 return E1000_SUCCESS;
1325}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001326
Linus Torvalds1da177e2005-04-16 15:20:36 -07001327
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001328/********************************************************************
1329* Copper link setup for e1000_phy_igp series.
1330*
1331* hw - Struct containing variables accessed by shared code
1332*********************************************************************/
1333static int32_t
1334e1000_copper_link_igp_setup(struct e1000_hw *hw)
1335{
1336 uint32_t led_ctrl;
1337 int32_t ret_val;
1338 uint16_t phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001339
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001340 DEBUGFUNC("e1000_copper_link_igp_setup");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001341
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001342 if (hw->phy_reset_disable)
1343 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001344
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001345 ret_val = e1000_phy_reset(hw);
1346 if (ret_val) {
1347 DEBUGOUT("Error Resetting the PHY\n");
1348 return ret_val;
1349 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001350
Auke Kok8fc897b2006-08-28 14:56:16 -07001351 /* Wait 15ms for MAC to configure PHY from eeprom settings */
Jeff Garzikf8ec4732006-09-19 15:27:07 -04001352 msleep(15);
Auke Kokcd94dd02006-06-27 09:08:22 -07001353 if (hw->mac_type != e1000_ich8lan) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001354 /* Configure activity LED after PHY reset */
1355 led_ctrl = E1000_READ_REG(hw, LEDCTL);
1356 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1357 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1358 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
Auke Kokcd94dd02006-06-27 09:08:22 -07001359 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001360
Jeff Kirsherc9c1b832006-08-16 13:38:54 -07001361 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1362 if (hw->phy_type == e1000_phy_igp) {
1363 /* disable lplu d3 during driver init */
1364 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
1365 if (ret_val) {
1366 DEBUGOUT("Error Disabling LPLU D3\n");
1367 return ret_val;
1368 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001369 }
1370
1371 /* disable lplu d0 during driver init */
1372 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
1373 if (ret_val) {
1374 DEBUGOUT("Error Disabling LPLU D0\n");
1375 return ret_val;
1376 }
1377 /* Configure mdi-mdix settings */
1378 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1379 if (ret_val)
1380 return ret_val;
1381
1382 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1383 hw->dsp_config_state = e1000_dsp_config_disabled;
1384 /* Force MDI for earlier revs of the IGP PHY */
1385 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1386 hw->mdix = 1;
1387
1388 } else {
1389 hw->dsp_config_state = e1000_dsp_config_enabled;
1390 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1391
1392 switch (hw->mdix) {
1393 case 1:
1394 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1395 break;
1396 case 2:
1397 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1398 break;
1399 case 0:
1400 default:
1401 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1402 break;
1403 }
1404 }
1405 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001406 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001407 return ret_val;
1408
1409 /* set auto-master slave resolution settings */
Auke Kok8fc897b2006-08-28 14:56:16 -07001410 if (hw->autoneg) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001411 e1000_ms_type phy_ms_setting = hw->master_slave;
1412
Auke Kok8fc897b2006-08-28 14:56:16 -07001413 if (hw->ffe_config_state == e1000_ffe_config_active)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001414 hw->ffe_config_state = e1000_ffe_config_enabled;
1415
Auke Kok8fc897b2006-08-28 14:56:16 -07001416 if (hw->dsp_config_state == e1000_dsp_config_activated)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001417 hw->dsp_config_state = e1000_dsp_config_enabled;
1418
1419 /* when autonegotiation advertisment is only 1000Mbps then we
1420 * should disable SmartSpeed and enable Auto MasterSlave
1421 * resolution as hardware default. */
Auke Kok8fc897b2006-08-28 14:56:16 -07001422 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001423 /* Disable SmartSpeed */
Auke Kok8fc897b2006-08-28 14:56:16 -07001424 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1425 &phy_data);
1426 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001427 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001428 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Auke Kok8fc897b2006-08-28 14:56:16 -07001429 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1430 phy_data);
1431 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001433 /* Set auto Master/Slave resolution process */
1434 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001435 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001436 return ret_val;
1437 phy_data &= ~CR_1000T_MS_ENABLE;
1438 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001439 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001440 return ret_val;
1441 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001442
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001443 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001444 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001445 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001447 /* load defaults for future use */
1448 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1449 ((phy_data & CR_1000T_MS_VALUE) ?
1450 e1000_ms_force_master :
1451 e1000_ms_force_slave) :
1452 e1000_ms_auto;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001453
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001454 switch (phy_ms_setting) {
1455 case e1000_ms_force_master:
1456 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1457 break;
1458 case e1000_ms_force_slave:
1459 phy_data |= CR_1000T_MS_ENABLE;
1460 phy_data &= ~(CR_1000T_MS_VALUE);
1461 break;
1462 case e1000_ms_auto:
1463 phy_data &= ~CR_1000T_MS_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001464 default:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001465 break;
1466 }
1467 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001468 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001469 return ret_val;
Malli Chilakala2b028932005-06-17 17:46:06 -07001470 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001471
Malli Chilakala2b028932005-06-17 17:46:06 -07001472 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001473}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001474
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001475/********************************************************************
1476* Copper link setup for e1000_phy_gg82563 series.
1477*
1478* hw - Struct containing variables accessed by shared code
1479*********************************************************************/
1480static int32_t
1481e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1482{
1483 int32_t ret_val;
1484 uint16_t phy_data;
1485 uint32_t reg_data;
1486
1487 DEBUGFUNC("e1000_copper_link_ggp_setup");
1488
Auke Kok8fc897b2006-08-28 14:56:16 -07001489 if (!hw->phy_reset_disable) {
Auke Kok76c224b2006-05-23 13:36:06 -07001490
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001491 /* Enable CRS on TX for half-duplex operation. */
1492 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1493 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001494 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001495 return ret_val;
1496
1497 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1498 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1499 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
1500
1501 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1502 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001503 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001504 return ret_val;
1505
1506 /* Options:
1507 * MDI/MDI-X = 0 (default)
1508 * 0 - Auto for all speeds
1509 * 1 - MDI mode
1510 * 2 - MDI-X mode
1511 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1512 */
1513 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001514 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001515 return ret_val;
1516
1517 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1518
1519 switch (hw->mdix) {
1520 case 1:
1521 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1522 break;
1523 case 2:
1524 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1525 break;
1526 case 0:
1527 default:
1528 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1529 break;
1530 }
1531
1532 /* Options:
1533 * disable_polarity_correction = 0 (default)
1534 * Automatic Correction for Reversed Cable Polarity
1535 * 0 - Disabled
1536 * 1 - Enabled
1537 */
1538 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
Auke Kok8fc897b2006-08-28 14:56:16 -07001539 if (hw->disable_polarity_correction == 1)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001540 phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1541 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
1542
Auke Kok8fc897b2006-08-28 14:56:16 -07001543 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001544 return ret_val;
1545
1546 /* SW Reset the PHY so all changes take effect */
1547 ret_val = e1000_phy_reset(hw);
1548 if (ret_val) {
1549 DEBUGOUT("Error Resetting the PHY\n");
1550 return ret_val;
1551 }
1552 } /* phy_reset_disable */
1553
1554 if (hw->mac_type == e1000_80003es2lan) {
1555 /* Bypass RX and TX FIFO's */
1556 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
1557 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
1558 E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
1559 if (ret_val)
1560 return ret_val;
1561
1562 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
1563 if (ret_val)
1564 return ret_val;
1565
1566 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1567 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
1568
1569 if (ret_val)
1570 return ret_val;
1571
1572 reg_data = E1000_READ_REG(hw, CTRL_EXT);
1573 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1574 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
1575
1576 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1577 &phy_data);
1578 if (ret_val)
1579 return ret_val;
1580
1581 /* Do not init these registers when the HW is in IAMT mode, since the
1582 * firmware will have already initialized them. We only initialize
1583 * them if the HW is not in IAMT mode.
1584 */
1585 if (e1000_check_mng_mode(hw) == FALSE) {
1586 /* Enable Electrical Idle on the PHY */
1587 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1588 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1589 phy_data);
1590 if (ret_val)
1591 return ret_val;
1592
1593 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1594 &phy_data);
1595 if (ret_val)
1596 return ret_val;
1597
Auke Kokcd94dd02006-06-27 09:08:22 -07001598 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001599 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1600 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001601
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001602 if (ret_val)
1603 return ret_val;
1604 }
1605
1606 /* Workaround: Disable padding in Kumeran interface in the MAC
1607 * and in the PHY to avoid CRC errors.
1608 */
1609 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1610 &phy_data);
1611 if (ret_val)
1612 return ret_val;
1613 phy_data |= GG82563_ICR_DIS_PADDING;
1614 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1615 phy_data);
1616 if (ret_val)
1617 return ret_val;
1618 }
1619
1620 return E1000_SUCCESS;
1621}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001622
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001623/********************************************************************
1624* Copper link setup for e1000_phy_m88 series.
1625*
1626* hw - Struct containing variables accessed by shared code
1627*********************************************************************/
1628static int32_t
1629e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1630{
1631 int32_t ret_val;
1632 uint16_t phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001634 DEBUGFUNC("e1000_copper_link_mgp_setup");
1635
Auke Kok8fc897b2006-08-28 14:56:16 -07001636 if (hw->phy_reset_disable)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001637 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001638
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001639 /* Enable CRS on TX. This must be set for half-duplex operation. */
1640 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001641 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001642 return ret_val;
1643
1644 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1645
1646 /* Options:
1647 * MDI/MDI-X = 0 (default)
1648 * 0 - Auto for all speeds
1649 * 1 - MDI mode
1650 * 2 - MDI-X mode
1651 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1652 */
1653 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1654
1655 switch (hw->mdix) {
1656 case 1:
1657 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1658 break;
1659 case 2:
1660 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1661 break;
1662 case 3:
1663 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1664 break;
1665 case 0:
1666 default:
1667 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1668 break;
1669 }
1670
1671 /* Options:
1672 * disable_polarity_correction = 0 (default)
1673 * Automatic Correction for Reversed Cable Polarity
1674 * 0 - Disabled
1675 * 1 - Enabled
1676 */
1677 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Auke Kok8fc897b2006-08-28 14:56:16 -07001678 if (hw->disable_polarity_correction == 1)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001679 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
Auke Kokee040222006-06-27 09:08:03 -07001680 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1681 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001682 return ret_val;
1683
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001684 if (hw->phy_revision < M88E1011_I_REV_4) {
Auke Kokee040222006-06-27 09:08:03 -07001685 /* Force TX_CLK in the Extended PHY Specific Control Register
1686 * to 25MHz clock.
1687 */
1688 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1689 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001690 return ret_val;
Auke Kokee040222006-06-27 09:08:03 -07001691
1692 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1693
1694 if ((hw->phy_revision == E1000_REVISION_2) &&
1695 (hw->phy_id == M88E1111_I_PHY_ID)) {
1696 /* Vidalia Phy, set the downshift counter to 5x */
1697 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1698 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1699 ret_val = e1000_write_phy_reg(hw,
1700 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1701 if (ret_val)
1702 return ret_val;
1703 } else {
1704 /* Configure Master and Slave downshift values */
1705 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1706 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1707 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1708 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1709 ret_val = e1000_write_phy_reg(hw,
1710 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1711 if (ret_val)
1712 return ret_val;
1713 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001714 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001715
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001716 /* SW Reset the PHY so all changes take effect */
1717 ret_val = e1000_phy_reset(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001718 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001719 DEBUGOUT("Error Resetting the PHY\n");
1720 return ret_val;
1721 }
1722
1723 return E1000_SUCCESS;
1724}
1725
1726/********************************************************************
1727* Setup auto-negotiation and flow control advertisements,
1728* and then perform auto-negotiation.
1729*
1730* hw - Struct containing variables accessed by shared code
1731*********************************************************************/
1732static int32_t
1733e1000_copper_link_autoneg(struct e1000_hw *hw)
1734{
1735 int32_t ret_val;
1736 uint16_t phy_data;
1737
1738 DEBUGFUNC("e1000_copper_link_autoneg");
1739
1740 /* Perform some bounds checking on the hw->autoneg_advertised
1741 * parameter. If this variable is zero, then set it to the default.
1742 */
1743 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1744
1745 /* If autoneg_advertised is zero, we assume it was not defaulted
1746 * by the calling code so we set to advertise full capability.
1747 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001748 if (hw->autoneg_advertised == 0)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001749 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1750
Auke Kokcd94dd02006-06-27 09:08:22 -07001751 /* IFE phy only supports 10/100 */
1752 if (hw->phy_type == e1000_phy_ife)
1753 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1754
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001755 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1756 ret_val = e1000_phy_setup_autoneg(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001757 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001758 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1759 return ret_val;
1760 }
1761 DEBUGOUT("Restarting Auto-Neg\n");
1762
1763 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1764 * the Auto Neg Restart bit in the PHY control register.
1765 */
1766 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001767 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001768 return ret_val;
1769
1770 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1771 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001772 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001773 return ret_val;
1774
1775 /* Does the user want to wait for Auto-Neg to complete here, or
1776 * check at a later time (for example, callback routine).
1777 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001778 if (hw->wait_autoneg_complete) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001779 ret_val = e1000_wait_autoneg(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001780 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001781 DEBUGOUT("Error while waiting for autoneg to complete\n");
1782 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001783 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001784 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001785
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001786 hw->get_link_status = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001787
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001788 return E1000_SUCCESS;
1789}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001791/******************************************************************************
1792* Config the MAC and the PHY after link is up.
1793* 1) Set up the MAC to the current PHY speed/duplex
1794* if we are on 82543. If we
1795* are on newer silicon, we only need to configure
1796* collision distance in the Transmit Control Register.
1797* 2) Set up flow control on the MAC to that established with
1798* the link partner.
Auke Kok76c224b2006-05-23 13:36:06 -07001799* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001800*
1801* hw - Struct containing variables accessed by shared code
1802******************************************************************************/
1803static int32_t
1804e1000_copper_link_postconfig(struct e1000_hw *hw)
1805{
1806 int32_t ret_val;
1807 DEBUGFUNC("e1000_copper_link_postconfig");
Auke Kok76c224b2006-05-23 13:36:06 -07001808
Auke Kok8fc897b2006-08-28 14:56:16 -07001809 if (hw->mac_type >= e1000_82544) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001810 e1000_config_collision_dist(hw);
1811 } else {
1812 ret_val = e1000_config_mac_to_phy(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001813 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001814 DEBUGOUT("Error configuring MAC to PHY settings\n");
1815 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001816 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001817 }
1818 ret_val = e1000_config_fc_after_link_up(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001819 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001820 DEBUGOUT("Error Configuring Flow Control\n");
1821 return ret_val;
1822 }
1823
1824 /* Config DSP to improve Giga link quality */
Auke Kok8fc897b2006-08-28 14:56:16 -07001825 if (hw->phy_type == e1000_phy_igp) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001826 ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
Auke Kok8fc897b2006-08-28 14:56:16 -07001827 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001828 DEBUGOUT("Error Configuring DSP after link up\n");
1829 return ret_val;
1830 }
1831 }
Auke Kok76c224b2006-05-23 13:36:06 -07001832
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001833 return E1000_SUCCESS;
1834}
1835
1836/******************************************************************************
1837* Detects which PHY is present and setup the speed and duplex
1838*
1839* hw - Struct containing variables accessed by shared code
1840******************************************************************************/
1841static int32_t
1842e1000_setup_copper_link(struct e1000_hw *hw)
1843{
1844 int32_t ret_val;
1845 uint16_t i;
1846 uint16_t phy_data;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001847 uint16_t reg_data;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001848
1849 DEBUGFUNC("e1000_setup_copper_link");
1850
Auke Kokcd94dd02006-06-27 09:08:22 -07001851 switch (hw->mac_type) {
1852 case e1000_80003es2lan:
1853 case e1000_ich8lan:
1854 /* Set the mac to wait the maximum time between each
1855 * iteration and increase the max iterations when
1856 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1857 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1858 if (ret_val)
1859 return ret_val;
1860 ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1861 if (ret_val)
1862 return ret_val;
1863 reg_data |= 0x3F;
1864 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1865 if (ret_val)
1866 return ret_val;
1867 default:
1868 break;
1869 }
1870
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001871 /* Check if it is a valid PHY and set PHY mode if necessary. */
1872 ret_val = e1000_copper_link_preconfig(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001873 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001874 return ret_val;
1875
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001876 switch (hw->mac_type) {
1877 case e1000_80003es2lan:
Auke Kokcd94dd02006-06-27 09:08:22 -07001878 /* Kumeran registers are written-only */
1879 reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001880 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1881 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1882 reg_data);
1883 if (ret_val)
1884 return ret_val;
1885 break;
1886 default:
1887 break;
1888 }
1889
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001890 if (hw->phy_type == e1000_phy_igp ||
Auke Kokcd94dd02006-06-27 09:08:22 -07001891 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001892 hw->phy_type == e1000_phy_igp_2) {
1893 ret_val = e1000_copper_link_igp_setup(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001894 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001895 return ret_val;
1896 } else if (hw->phy_type == e1000_phy_m88) {
1897 ret_val = e1000_copper_link_mgp_setup(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001898 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001899 return ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001900 } else if (hw->phy_type == e1000_phy_gg82563) {
1901 ret_val = e1000_copper_link_ggp_setup(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001902 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001903 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001904 }
1905
Auke Kok8fc897b2006-08-28 14:56:16 -07001906 if (hw->autoneg) {
Auke Kok76c224b2006-05-23 13:36:06 -07001907 /* Setup autoneg and flow control advertisement
1908 * and perform autonegotiation */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001909 ret_val = e1000_copper_link_autoneg(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001910 if (ret_val)
Auke Kok76c224b2006-05-23 13:36:06 -07001911 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001912 } else {
1913 /* PHY will be set to 10H, 10F, 100H,or 100F
1914 * depending on value from forced_speed_duplex. */
1915 DEBUGOUT("Forcing speed and duplex\n");
1916 ret_val = e1000_phy_force_speed_duplex(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001917 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001918 DEBUGOUT("Error Forcing Speed and Duplex\n");
1919 return ret_val;
1920 }
1921 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001922
1923 /* Check link status. Wait up to 100 microseconds for link to become
1924 * valid.
1925 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001926 for (i = 0; i < 10; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001927 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001928 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001929 return ret_val;
1930 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001931 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001932 return ret_val;
1933
Auke Kok8fc897b2006-08-28 14:56:16 -07001934 if (phy_data & MII_SR_LINK_STATUS) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001935 /* Config the MAC and PHY after link is up */
1936 ret_val = e1000_copper_link_postconfig(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001937 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001938 return ret_val;
Auke Kok76c224b2006-05-23 13:36:06 -07001939
Linus Torvalds1da177e2005-04-16 15:20:36 -07001940 DEBUGOUT("Valid link established!!!\n");
1941 return E1000_SUCCESS;
1942 }
1943 udelay(10);
1944 }
1945
1946 DEBUGOUT("Unable to establish link!!!\n");
1947 return E1000_SUCCESS;
1948}
1949
1950/******************************************************************************
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001951* Configure the MAC-to-PHY interface for 10/100Mbps
1952*
1953* hw - Struct containing variables accessed by shared code
1954******************************************************************************/
1955static int32_t
Auke Kokcd94dd02006-06-27 09:08:22 -07001956e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001957{
1958 int32_t ret_val = E1000_SUCCESS;
1959 uint32_t tipg;
1960 uint16_t reg_data;
1961
1962 DEBUGFUNC("e1000_configure_kmrn_for_10_100");
1963
1964 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
1965 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
1966 reg_data);
1967 if (ret_val)
1968 return ret_val;
1969
1970 /* Configure Transmit Inter-Packet Gap */
1971 tipg = E1000_READ_REG(hw, TIPG);
1972 tipg &= ~E1000_TIPG_IPGT_MASK;
1973 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
1974 E1000_WRITE_REG(hw, TIPG, tipg);
1975
Auke Kokcd94dd02006-06-27 09:08:22 -07001976 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1977
1978 if (ret_val)
1979 return ret_val;
1980
1981 if (duplex == HALF_DUPLEX)
1982 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1983 else
1984 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1985
1986 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1987
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001988 return ret_val;
1989}
1990
1991static int32_t
1992e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
1993{
1994 int32_t ret_val = E1000_SUCCESS;
1995 uint16_t reg_data;
1996 uint32_t tipg;
1997
1998 DEBUGFUNC("e1000_configure_kmrn_for_1000");
1999
2000 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
2001 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2002 reg_data);
2003 if (ret_val)
2004 return ret_val;
2005
2006 /* Configure Transmit Inter-Packet Gap */
2007 tipg = E1000_READ_REG(hw, TIPG);
2008 tipg &= ~E1000_TIPG_IPGT_MASK;
2009 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2010 E1000_WRITE_REG(hw, TIPG, tipg);
2011
Auke Kokcd94dd02006-06-27 09:08:22 -07002012 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2013
2014 if (ret_val)
2015 return ret_val;
2016
2017 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2018 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2019
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002020 return ret_val;
2021}
2022
2023/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07002024* Configures PHY autoneg and flow control advertisement settings
2025*
2026* hw - Struct containing variables accessed by shared code
2027******************************************************************************/
2028int32_t
2029e1000_phy_setup_autoneg(struct e1000_hw *hw)
2030{
2031 int32_t ret_val;
2032 uint16_t mii_autoneg_adv_reg;
2033 uint16_t mii_1000t_ctrl_reg;
2034
2035 DEBUGFUNC("e1000_phy_setup_autoneg");
2036
2037 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2038 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002039 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002040 return ret_val;
2041
Auke Kokcd94dd02006-06-27 09:08:22 -07002042 if (hw->phy_type != e1000_phy_ife) {
2043 /* Read the MII 1000Base-T Control Register (Address 9). */
2044 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
2045 if (ret_val)
2046 return ret_val;
2047 } else
2048 mii_1000t_ctrl_reg=0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002049
2050 /* Need to parse both autoneg_advertised and fc and set up
2051 * the appropriate PHY registers. First we will parse for
2052 * autoneg_advertised software override. Since we can advertise
2053 * a plethora of combinations, we need to check each bit
2054 * individually.
2055 */
2056
2057 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2058 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2059 * the 1000Base-T Control Register (Address 9).
2060 */
2061 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
2062 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
2063
2064 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
2065
2066 /* Do we want to advertise 10 Mb Half Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002067 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002068 DEBUGOUT("Advertise 10mb Half duplex\n");
2069 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
2070 }
2071
2072 /* Do we want to advertise 10 Mb Full Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002073 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074 DEBUGOUT("Advertise 10mb Full duplex\n");
2075 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
2076 }
2077
2078 /* Do we want to advertise 100 Mb Half Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002079 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002080 DEBUGOUT("Advertise 100mb Half duplex\n");
2081 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
2082 }
2083
2084 /* Do we want to advertise 100 Mb Full Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002085 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002086 DEBUGOUT("Advertise 100mb Full duplex\n");
2087 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
2088 }
2089
2090 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
Auke Kok8fc897b2006-08-28 14:56:16 -07002091 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002092 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
2093 }
2094
2095 /* Do we want to advertise 1000 Mb Full Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002096 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002097 DEBUGOUT("Advertise 1000mb Full duplex\n");
2098 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
Auke Kokcd94dd02006-06-27 09:08:22 -07002099 if (hw->phy_type == e1000_phy_ife) {
2100 DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2101 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002102 }
2103
2104 /* Check for a software override of the flow control settings, and
2105 * setup the PHY advertisement registers accordingly. If
2106 * auto-negotiation is enabled, then software will have to set the
2107 * "PAUSE" bits to the correct value in the Auto-Negotiation
2108 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
2109 *
2110 * The possible values of the "fc" parameter are:
2111 * 0: Flow control is completely disabled
2112 * 1: Rx flow control is enabled (we can receive pause frames
2113 * but not send pause frames).
2114 * 2: Tx flow control is enabled (we can send pause frames
2115 * but we do not support receiving pause frames).
2116 * 3: Both Rx and TX flow control (symmetric) are enabled.
2117 * other: No software override. The flow control configuration
2118 * in the EEPROM is used.
2119 */
2120 switch (hw->fc) {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002121 case E1000_FC_NONE: /* 0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002122 /* Flow control (RX & TX) is completely disabled by a
2123 * software over-ride.
2124 */
2125 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2126 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07002127 case E1000_FC_RX_PAUSE: /* 1 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002128 /* RX Flow control is enabled, and TX Flow control is
2129 * disabled, by a software over-ride.
2130 */
2131 /* Since there really isn't a way to advertise that we are
2132 * capable of RX Pause ONLY, we will advertise that we
2133 * support both symmetric and asymmetric RX PAUSE. Later
2134 * (in e1000_config_fc_after_link_up) we will disable the
2135 *hw's ability to send PAUSE frames.
2136 */
2137 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2138 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07002139 case E1000_FC_TX_PAUSE: /* 2 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002140 /* TX Flow control is enabled, and RX Flow control is
2141 * disabled, by a software over-ride.
2142 */
2143 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
2144 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
2145 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07002146 case E1000_FC_FULL: /* 3 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002147 /* Flow control (both RX and TX) is enabled by a software
2148 * over-ride.
2149 */
2150 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2151 break;
2152 default:
2153 DEBUGOUT("Flow control param set incorrectly\n");
2154 return -E1000_ERR_CONFIG;
2155 }
2156
2157 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002158 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002159 return ret_val;
2160
2161 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
2162
Auke Kokcd94dd02006-06-27 09:08:22 -07002163 if (hw->phy_type != e1000_phy_ife) {
2164 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
2165 if (ret_val)
2166 return ret_val;
2167 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002168
2169 return E1000_SUCCESS;
2170}
2171
2172/******************************************************************************
2173* Force PHY speed and duplex settings to hw->forced_speed_duplex
2174*
2175* hw - Struct containing variables accessed by shared code
2176******************************************************************************/
2177static int32_t
2178e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2179{
2180 uint32_t ctrl;
2181 int32_t ret_val;
2182 uint16_t mii_ctrl_reg;
2183 uint16_t mii_status_reg;
2184 uint16_t phy_data;
2185 uint16_t i;
2186
2187 DEBUGFUNC("e1000_phy_force_speed_duplex");
2188
2189 /* Turn off Flow control if we are forcing speed and duplex. */
Jeff Kirsher11241b12006-09-27 12:53:28 -07002190 hw->fc = E1000_FC_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002191
2192 DEBUGOUT1("hw->fc = %d\n", hw->fc);
2193
2194 /* Read the Device Control Register. */
2195 ctrl = E1000_READ_REG(hw, CTRL);
2196
2197 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
2198 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2199 ctrl &= ~(DEVICE_SPEED_MASK);
2200
2201 /* Clear the Auto Speed Detect Enable bit. */
2202 ctrl &= ~E1000_CTRL_ASDE;
2203
2204 /* Read the MII Control Register. */
2205 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002206 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002207 return ret_val;
2208
2209 /* We need to disable autoneg in order to force link and duplex. */
2210
2211 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
2212
2213 /* Are we forcing Full or Half Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002214 if (hw->forced_speed_duplex == e1000_100_full ||
2215 hw->forced_speed_duplex == e1000_10_full) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002216 /* We want to force full duplex so we SET the full duplex bits in the
2217 * Device and MII Control Registers.
2218 */
2219 ctrl |= E1000_CTRL_FD;
2220 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
2221 DEBUGOUT("Full Duplex\n");
2222 } else {
2223 /* We want to force half duplex so we CLEAR the full duplex bits in
2224 * the Device and MII Control Registers.
2225 */
2226 ctrl &= ~E1000_CTRL_FD;
2227 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
2228 DEBUGOUT("Half Duplex\n");
2229 }
2230
2231 /* Are we forcing 100Mbps??? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002232 if (hw->forced_speed_duplex == e1000_100_full ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07002233 hw->forced_speed_duplex == e1000_100_half) {
2234 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
2235 ctrl |= E1000_CTRL_SPD_100;
2236 mii_ctrl_reg |= MII_CR_SPEED_100;
2237 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
2238 DEBUGOUT("Forcing 100mb ");
2239 } else {
2240 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
2241 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2242 mii_ctrl_reg |= MII_CR_SPEED_10;
2243 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2244 DEBUGOUT("Forcing 10mb ");
2245 }
2246
2247 e1000_config_collision_dist(hw);
2248
2249 /* Write the configured values back to the Device Control Reg. */
2250 E1000_WRITE_REG(hw, CTRL, ctrl);
2251
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002252 if ((hw->phy_type == e1000_phy_m88) ||
2253 (hw->phy_type == e1000_phy_gg82563)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002254 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002255 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002256 return ret_val;
2257
2258 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
2259 * forced whenever speed are duplex are forced.
2260 */
2261 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2262 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002263 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002264 return ret_val;
2265
2266 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
2267
2268 /* Need to reset the PHY or these changes will be ignored */
2269 mii_ctrl_reg |= MII_CR_RESET;
Auke Kokcd94dd02006-06-27 09:08:22 -07002270 /* Disable MDI-X support for 10/100 */
2271 } else if (hw->phy_type == e1000_phy_ife) {
2272 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
2273 if (ret_val)
2274 return ret_val;
2275
2276 phy_data &= ~IFE_PMC_AUTO_MDIX;
2277 phy_data &= ~IFE_PMC_FORCE_MDIX;
2278
2279 ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
2280 if (ret_val)
2281 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002282 } else {
2283 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
2284 * forced whenever speed or duplex are forced.
2285 */
2286 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002287 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002288 return ret_val;
2289
2290 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2291 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2292
2293 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002294 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002295 return ret_val;
2296 }
2297
2298 /* Write back the modified PHY MII control register. */
2299 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002300 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002301 return ret_val;
2302
2303 udelay(1);
2304
2305 /* The wait_autoneg_complete flag may be a little misleading here.
2306 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
2307 * But we do want to delay for a period while forcing only so we
2308 * don't generate false No Link messages. So we will wait here
2309 * only if the user has set wait_autoneg_complete to 1, which is
2310 * the default.
2311 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002312 if (hw->wait_autoneg_complete) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002313 /* We will wait for autoneg to complete. */
2314 DEBUGOUT("Waiting for forced speed/duplex link.\n");
2315 mii_status_reg = 0;
2316
2317 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
Auke Kok8fc897b2006-08-28 14:56:16 -07002318 for (i = PHY_FORCE_TIME; i > 0; i--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002319 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2320 * to be set.
2321 */
2322 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002323 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002324 return ret_val;
2325
2326 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002327 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002328 return ret_val;
2329
Auke Kok8fc897b2006-08-28 14:56:16 -07002330 if (mii_status_reg & MII_SR_LINK_STATUS) break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04002331 msleep(100);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332 }
Auke Kok8fc897b2006-08-28 14:56:16 -07002333 if ((i == 0) &&
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002334 ((hw->phy_type == e1000_phy_m88) ||
2335 (hw->phy_type == e1000_phy_gg82563))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002336 /* We didn't get link. Reset the DSP and wait again for link. */
2337 ret_val = e1000_phy_reset_dsp(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002338 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002339 DEBUGOUT("Error Resetting PHY DSP\n");
2340 return ret_val;
2341 }
2342 }
2343 /* This loop will early-out if the link condition has been met. */
Auke Kok8fc897b2006-08-28 14:56:16 -07002344 for (i = PHY_FORCE_TIME; i > 0; i--) {
2345 if (mii_status_reg & MII_SR_LINK_STATUS) break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04002346 msleep(100);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002347 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2348 * to be set.
2349 */
2350 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002351 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002352 return ret_val;
2353
2354 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002355 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002356 return ret_val;
2357 }
2358 }
2359
2360 if (hw->phy_type == e1000_phy_m88) {
2361 /* Because we reset the PHY above, we need to re-force TX_CLK in the
2362 * Extended PHY Specific Control Register to 25MHz clock. This value
2363 * defaults back to a 2.5MHz clock when the PHY is reset.
2364 */
2365 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002366 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002367 return ret_val;
2368
2369 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2370 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002371 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002372 return ret_val;
2373
2374 /* In addition, because of the s/w reset above, we need to enable CRS on
2375 * TX. This must be set for both full and half duplex operation.
2376 */
2377 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002378 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002379 return ret_val;
2380
2381 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2382 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002383 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002384 return ret_val;
2385
Auke Kok8fc897b2006-08-28 14:56:16 -07002386 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2387 (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
2388 hw->forced_speed_duplex == e1000_10_half)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002389 ret_val = e1000_polarity_reversal_workaround(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002390 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002391 return ret_val;
2392 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002393 } else if (hw->phy_type == e1000_phy_gg82563) {
2394 /* The TX_CLK of the Extended PHY Specific Control Register defaults
2395 * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if
2396 * we're not in a forced 10/duplex configuration. */
2397 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2398 if (ret_val)
2399 return ret_val;
2400
2401 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
2402 if ((hw->forced_speed_duplex == e1000_10_full) ||
2403 (hw->forced_speed_duplex == e1000_10_half))
2404 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
2405 else
2406 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
2407
2408 /* Also due to the reset, we need to enable CRS on Tx. */
2409 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2410
2411 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2412 if (ret_val)
2413 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002414 }
2415 return E1000_SUCCESS;
2416}
2417
2418/******************************************************************************
2419* Sets the collision distance in the Transmit Control register
2420*
2421* hw - Struct containing variables accessed by shared code
2422*
2423* Link should have been established previously. Reads the speed and duplex
2424* information from the Device Status register.
2425******************************************************************************/
2426void
2427e1000_config_collision_dist(struct e1000_hw *hw)
2428{
Jeff Kirsher0fadb052006-01-12 16:51:05 -08002429 uint32_t tctl, coll_dist;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002430
2431 DEBUGFUNC("e1000_config_collision_dist");
2432
Jeff Kirsher0fadb052006-01-12 16:51:05 -08002433 if (hw->mac_type < e1000_82543)
2434 coll_dist = E1000_COLLISION_DISTANCE_82542;
2435 else
2436 coll_dist = E1000_COLLISION_DISTANCE;
2437
Linus Torvalds1da177e2005-04-16 15:20:36 -07002438 tctl = E1000_READ_REG(hw, TCTL);
2439
2440 tctl &= ~E1000_TCTL_COLD;
Jeff Kirsher0fadb052006-01-12 16:51:05 -08002441 tctl |= coll_dist << E1000_COLD_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002442
2443 E1000_WRITE_REG(hw, TCTL, tctl);
2444 E1000_WRITE_FLUSH(hw);
2445}
2446
2447/******************************************************************************
2448* Sets MAC speed and duplex settings to reflect the those in the PHY
2449*
2450* hw - Struct containing variables accessed by shared code
2451* mii_reg - data to write to the MII control register
2452*
2453* The contents of the PHY register containing the needed information need to
2454* be passed in.
2455******************************************************************************/
2456static int32_t
2457e1000_config_mac_to_phy(struct e1000_hw *hw)
2458{
2459 uint32_t ctrl;
2460 int32_t ret_val;
2461 uint16_t phy_data;
2462
2463 DEBUGFUNC("e1000_config_mac_to_phy");
2464
Auke Kok76c224b2006-05-23 13:36:06 -07002465 /* 82544 or newer MAC, Auto Speed Detection takes care of
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002466 * MAC speed/duplex configuration.*/
2467 if (hw->mac_type >= e1000_82544)
2468 return E1000_SUCCESS;
2469
Linus Torvalds1da177e2005-04-16 15:20:36 -07002470 /* Read the Device Control Register and set the bits to Force Speed
2471 * and Duplex.
2472 */
2473 ctrl = E1000_READ_REG(hw, CTRL);
2474 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2475 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
2476
2477 /* Set up duplex in the Device Control and Transmit Control
2478 * registers depending on negotiated values.
2479 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002480 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002481 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002482 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002483
Auke Kok8fc897b2006-08-28 14:56:16 -07002484 if (phy_data & M88E1000_PSSR_DPLX)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002485 ctrl |= E1000_CTRL_FD;
Auke Kok76c224b2006-05-23 13:36:06 -07002486 else
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002487 ctrl &= ~E1000_CTRL_FD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002488
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002489 e1000_config_collision_dist(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002490
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002491 /* Set up speed in the Device Control register depending on
2492 * negotiated values.
2493 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002494 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002495 ctrl |= E1000_CTRL_SPD_1000;
Auke Kok8fc897b2006-08-28 14:56:16 -07002496 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002497 ctrl |= E1000_CTRL_SPD_100;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002498
Linus Torvalds1da177e2005-04-16 15:20:36 -07002499 /* Write the configured values back to the Device Control Reg. */
2500 E1000_WRITE_REG(hw, CTRL, ctrl);
2501 return E1000_SUCCESS;
2502}
2503
2504/******************************************************************************
2505 * Forces the MAC's flow control settings.
2506 *
2507 * hw - Struct containing variables accessed by shared code
2508 *
2509 * Sets the TFCE and RFCE bits in the device control register to reflect
2510 * the adapter settings. TFCE and RFCE need to be explicitly set by
2511 * software when a Copper PHY is used because autonegotiation is managed
2512 * by the PHY rather than the MAC. Software must also configure these
2513 * bits when link is forced on a fiber connection.
2514 *****************************************************************************/
2515int32_t
2516e1000_force_mac_fc(struct e1000_hw *hw)
2517{
2518 uint32_t ctrl;
2519
2520 DEBUGFUNC("e1000_force_mac_fc");
2521
2522 /* Get the current configuration of the Device Control Register */
2523 ctrl = E1000_READ_REG(hw, CTRL);
2524
2525 /* Because we didn't get link via the internal auto-negotiation
2526 * mechanism (we either forced link or we got link via PHY
2527 * auto-neg), we have to manually enable/disable transmit an
2528 * receive flow control.
2529 *
2530 * The "Case" statement below enables/disable flow control
2531 * according to the "hw->fc" parameter.
2532 *
2533 * The possible values of the "fc" parameter are:
2534 * 0: Flow control is completely disabled
2535 * 1: Rx flow control is enabled (we can receive pause
2536 * frames but not send pause frames).
2537 * 2: Tx flow control is enabled (we can send pause frames
2538 * frames but we do not receive pause frames).
2539 * 3: Both Rx and TX flow control (symmetric) is enabled.
2540 * other: No other values should be possible at this point.
2541 */
2542
2543 switch (hw->fc) {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002544 case E1000_FC_NONE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002545 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2546 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07002547 case E1000_FC_RX_PAUSE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002548 ctrl &= (~E1000_CTRL_TFCE);
2549 ctrl |= E1000_CTRL_RFCE;
2550 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07002551 case E1000_FC_TX_PAUSE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002552 ctrl &= (~E1000_CTRL_RFCE);
2553 ctrl |= E1000_CTRL_TFCE;
2554 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07002555 case E1000_FC_FULL:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002556 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2557 break;
2558 default:
2559 DEBUGOUT("Flow control param set incorrectly\n");
2560 return -E1000_ERR_CONFIG;
2561 }
2562
2563 /* Disable TX Flow Control for 82542 (rev 2.0) */
Auke Kok8fc897b2006-08-28 14:56:16 -07002564 if (hw->mac_type == e1000_82542_rev2_0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002565 ctrl &= (~E1000_CTRL_TFCE);
2566
2567 E1000_WRITE_REG(hw, CTRL, ctrl);
2568 return E1000_SUCCESS;
2569}
2570
2571/******************************************************************************
2572 * Configures flow control settings after link is established
2573 *
2574 * hw - Struct containing variables accessed by shared code
2575 *
2576 * Should be called immediately after a valid link has been established.
2577 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2578 * and autonegotiation is enabled, the MAC flow control settings will be set
2579 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2580 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2581 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01002582static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07002583e1000_config_fc_after_link_up(struct e1000_hw *hw)
2584{
2585 int32_t ret_val;
2586 uint16_t mii_status_reg;
2587 uint16_t mii_nway_adv_reg;
2588 uint16_t mii_nway_lp_ability_reg;
2589 uint16_t speed;
2590 uint16_t duplex;
2591
2592 DEBUGFUNC("e1000_config_fc_after_link_up");
2593
2594 /* Check for the case where we have fiber media and auto-neg failed
2595 * so we had to force link. In this case, we need to force the
2596 * configuration of the MAC to match the "fc" parameter.
2597 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002598 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2599 ((hw->media_type == e1000_media_type_internal_serdes) &&
2600 (hw->autoneg_failed)) ||
2601 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002602 ret_val = e1000_force_mac_fc(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002603 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002604 DEBUGOUT("Error forcing flow control settings\n");
2605 return ret_val;
2606 }
2607 }
2608
2609 /* Check for the case where we have copper media and auto-neg is
2610 * enabled. In this case, we need to check and see if Auto-Neg
2611 * has completed, and if so, how the PHY and link partner has
2612 * flow control configured.
2613 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002614 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002615 /* Read the MII Status Register and check to see if AutoNeg
2616 * has completed. We read this twice because this reg has
2617 * some "sticky" (latched) bits.
2618 */
2619 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002620 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002621 return ret_val;
2622 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002623 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002624 return ret_val;
2625
Auke Kok8fc897b2006-08-28 14:56:16 -07002626 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002627 /* The AutoNeg process has completed, so we now need to
2628 * read both the Auto Negotiation Advertisement Register
2629 * (Address 4) and the Auto_Negotiation Base Page Ability
2630 * Register (Address 5) to determine how flow control was
2631 * negotiated.
2632 */
2633 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2634 &mii_nway_adv_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002635 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002636 return ret_val;
2637 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2638 &mii_nway_lp_ability_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002639 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002640 return ret_val;
2641
2642 /* Two bits in the Auto Negotiation Advertisement Register
2643 * (Address 4) and two bits in the Auto Negotiation Base
2644 * Page Ability Register (Address 5) determine flow control
2645 * for both the PHY and the link partner. The following
2646 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2647 * 1999, describes these PAUSE resolution bits and how flow
2648 * control is determined based upon these settings.
2649 * NOTE: DC = Don't Care
2650 *
2651 * LOCAL DEVICE | LINK PARTNER
2652 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2653 *-------|---------|-------|---------|--------------------
Jeff Kirsher11241b12006-09-27 12:53:28 -07002654 * 0 | 0 | DC | DC | E1000_FC_NONE
2655 * 0 | 1 | 0 | DC | E1000_FC_NONE
2656 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2657 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2658 * 1 | 0 | 0 | DC | E1000_FC_NONE
2659 * 1 | DC | 1 | DC | E1000_FC_FULL
2660 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2661 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
Linus Torvalds1da177e2005-04-16 15:20:36 -07002662 *
2663 */
2664 /* Are both PAUSE bits set to 1? If so, this implies
2665 * Symmetric Flow Control is enabled at both ends. The
2666 * ASM_DIR bits are irrelevant per the spec.
2667 *
2668 * For Symmetric Flow Control:
2669 *
2670 * LOCAL DEVICE | LINK PARTNER
2671 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2672 *-------|---------|-------|---------|--------------------
Jeff Kirsher11241b12006-09-27 12:53:28 -07002673 * 1 | DC | 1 | DC | E1000_FC_FULL
Linus Torvalds1da177e2005-04-16 15:20:36 -07002674 *
2675 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002676 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2677 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002678 /* Now we need to check if the user selected RX ONLY
2679 * of pause frames. In this case, we had to advertise
2680 * FULL flow control because we could not advertise RX
2681 * ONLY. Hence, we must now check to see if we need to
2682 * turn OFF the TRANSMISSION of PAUSE frames.
2683 */
Jeff Kirsher11241b12006-09-27 12:53:28 -07002684 if (hw->original_fc == E1000_FC_FULL) {
2685 hw->fc = E1000_FC_FULL;
Auke Koka42a5072006-05-23 13:36:01 -07002686 DEBUGOUT("Flow Control = FULL.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002687 } else {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002688 hw->fc = E1000_FC_RX_PAUSE;
Auke Koka42a5072006-05-23 13:36:01 -07002689 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002690 }
2691 }
2692 /* For receiving PAUSE frames ONLY.
2693 *
2694 * LOCAL DEVICE | LINK PARTNER
2695 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2696 *-------|---------|-------|---------|--------------------
Jeff Kirsher11241b12006-09-27 12:53:28 -07002697 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
Linus Torvalds1da177e2005-04-16 15:20:36 -07002698 *
2699 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002700 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2701 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2702 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2703 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002704 hw->fc = E1000_FC_TX_PAUSE;
Auke Koka42a5072006-05-23 13:36:01 -07002705 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002706 }
2707 /* For transmitting PAUSE frames ONLY.
2708 *
2709 * LOCAL DEVICE | LINK PARTNER
2710 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2711 *-------|---------|-------|---------|--------------------
Jeff Kirsher11241b12006-09-27 12:53:28 -07002712 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
Linus Torvalds1da177e2005-04-16 15:20:36 -07002713 *
2714 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002715 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2716 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2717 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2718 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002719 hw->fc = E1000_FC_RX_PAUSE;
Auke Koka42a5072006-05-23 13:36:01 -07002720 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002721 }
2722 /* Per the IEEE spec, at this point flow control should be
2723 * disabled. However, we want to consider that we could
2724 * be connected to a legacy switch that doesn't advertise
2725 * desired flow control, but can be forced on the link
2726 * partner. So if we advertised no flow control, that is
2727 * what we will resolve to. If we advertised some kind of
2728 * receive capability (Rx Pause Only or Full Flow Control)
2729 * and the link partner advertised none, we will configure
2730 * ourselves to enable Rx Flow Control only. We can do
2731 * this safely for two reasons: If the link partner really
2732 * didn't want flow control enabled, and we enable Rx, no
2733 * harm done since we won't be receiving any PAUSE frames
2734 * anyway. If the intent on the link partner was to have
2735 * flow control enabled, then by us enabling RX only, we
2736 * can at least receive pause frames and process them.
2737 * This is a good idea because in most cases, since we are
2738 * predominantly a server NIC, more times than not we will
2739 * be asked to delay transmission of packets than asking
2740 * our link partner to pause transmission of frames.
2741 */
Jeff Kirsher11241b12006-09-27 12:53:28 -07002742 else if ((hw->original_fc == E1000_FC_NONE ||
2743 hw->original_fc == E1000_FC_TX_PAUSE) ||
Auke Kok8fc897b2006-08-28 14:56:16 -07002744 hw->fc_strict_ieee) {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002745 hw->fc = E1000_FC_NONE;
Auke Koka42a5072006-05-23 13:36:01 -07002746 DEBUGOUT("Flow Control = NONE.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002747 } else {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002748 hw->fc = E1000_FC_RX_PAUSE;
Auke Koka42a5072006-05-23 13:36:01 -07002749 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002750 }
2751
2752 /* Now we need to do one last check... If we auto-
2753 * negotiated to HALF DUPLEX, flow control should not be
2754 * enabled per IEEE 802.3 spec.
2755 */
2756 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
Auke Kok8fc897b2006-08-28 14:56:16 -07002757 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002758 DEBUGOUT("Error getting link speed and duplex\n");
2759 return ret_val;
2760 }
2761
Auke Kok8fc897b2006-08-28 14:56:16 -07002762 if (duplex == HALF_DUPLEX)
Jeff Kirsher11241b12006-09-27 12:53:28 -07002763 hw->fc = E1000_FC_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002764
2765 /* Now we call a subroutine to actually force the MAC
2766 * controller to use the correct flow control settings.
2767 */
2768 ret_val = e1000_force_mac_fc(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002769 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002770 DEBUGOUT("Error forcing flow control settings\n");
2771 return ret_val;
2772 }
2773 } else {
Auke Koka42a5072006-05-23 13:36:01 -07002774 DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002775 }
2776 }
2777 return E1000_SUCCESS;
2778}
2779
2780/******************************************************************************
2781 * Checks to see if the link status of the hardware has changed.
2782 *
2783 * hw - Struct containing variables accessed by shared code
2784 *
2785 * Called by any function that needs to check the link status of the adapter.
2786 *****************************************************************************/
2787int32_t
2788e1000_check_for_link(struct e1000_hw *hw)
2789{
2790 uint32_t rxcw = 0;
2791 uint32_t ctrl;
2792 uint32_t status;
2793 uint32_t rctl;
2794 uint32_t icr;
2795 uint32_t signal = 0;
2796 int32_t ret_val;
2797 uint16_t phy_data;
2798
2799 DEBUGFUNC("e1000_check_for_link");
2800
2801 ctrl = E1000_READ_REG(hw, CTRL);
2802 status = E1000_READ_REG(hw, STATUS);
2803
2804 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2805 * set when the optics detect a signal. On older adapters, it will be
2806 * cleared when there is a signal. This applies to fiber media only.
2807 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002808 if ((hw->media_type == e1000_media_type_fiber) ||
2809 (hw->media_type == e1000_media_type_internal_serdes)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002810 rxcw = E1000_READ_REG(hw, RXCW);
2811
Auke Kok8fc897b2006-08-28 14:56:16 -07002812 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002813 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
Auke Kok8fc897b2006-08-28 14:56:16 -07002814 if (status & E1000_STATUS_LU)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815 hw->get_link_status = FALSE;
2816 }
2817 }
2818
2819 /* If we have a copper PHY then we only want to go out to the PHY
2820 * registers to see if Auto-Neg has completed and/or if our link
2821 * status has changed. The get_link_status flag will be set if we
2822 * receive a Link Status Change interrupt or we have Rx Sequence
2823 * Errors.
2824 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002825 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002826 /* First we want to see if the MII Status Register reports
2827 * link. If so, then we want to get the current speed/duplex
2828 * of the PHY.
2829 * Read the register twice since the link bit is sticky.
2830 */
2831 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002832 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002833 return ret_val;
2834 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002835 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002836 return ret_val;
2837
Auke Kok8fc897b2006-08-28 14:56:16 -07002838 if (phy_data & MII_SR_LINK_STATUS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002839 hw->get_link_status = FALSE;
2840 /* Check if there was DownShift, must be checked immediately after
2841 * link-up */
2842 e1000_check_downshift(hw);
2843
2844 /* If we are on 82544 or 82543 silicon and speed/duplex
2845 * are forced to 10H or 10F, then we will implement the polarity
2846 * reversal workaround. We disable interrupts first, and upon
2847 * returning, place the devices interrupt state to its previous
2848 * value except for the link status change interrupt which will
2849 * happen due to the execution of this workaround.
2850 */
2851
Auke Kok8fc897b2006-08-28 14:56:16 -07002852 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2853 (!hw->autoneg) &&
2854 (hw->forced_speed_duplex == e1000_10_full ||
2855 hw->forced_speed_duplex == e1000_10_half)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002856 E1000_WRITE_REG(hw, IMC, 0xffffffff);
2857 ret_val = e1000_polarity_reversal_workaround(hw);
2858 icr = E1000_READ_REG(hw, ICR);
2859 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
2860 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
2861 }
2862
2863 } else {
2864 /* No link detected */
2865 e1000_config_dsp_after_link_change(hw, FALSE);
2866 return 0;
2867 }
2868
2869 /* If we are forcing speed/duplex, then we simply return since
2870 * we have already determined whether we have link or not.
2871 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002872 if (!hw->autoneg) return -E1000_ERR_CONFIG;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002873
2874 /* optimize the dsp settings for the igp phy */
2875 e1000_config_dsp_after_link_change(hw, TRUE);
2876
2877 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2878 * have Si on board that is 82544 or newer, Auto
2879 * Speed Detection takes care of MAC speed/duplex
2880 * configuration. So we only need to configure Collision
2881 * Distance in the MAC. Otherwise, we need to force
2882 * speed/duplex on the MAC to the current PHY speed/duplex
2883 * settings.
2884 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002885 if (hw->mac_type >= e1000_82544)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002886 e1000_config_collision_dist(hw);
2887 else {
2888 ret_val = e1000_config_mac_to_phy(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002889 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002890 DEBUGOUT("Error configuring MAC to PHY settings\n");
2891 return ret_val;
2892 }
2893 }
2894
2895 /* Configure Flow Control now that Auto-Neg has completed. First, we
2896 * need to restore the desired flow control settings because we may
2897 * have had to re-autoneg with a different link partner.
2898 */
2899 ret_val = e1000_config_fc_after_link_up(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002900 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002901 DEBUGOUT("Error configuring flow control\n");
2902 return ret_val;
2903 }
2904
2905 /* At this point we know that we are on copper and we have
2906 * auto-negotiated link. These are conditions for checking the link
2907 * partner capability register. We use the link speed to determine if
2908 * TBI compatibility needs to be turned on or off. If the link is not
2909 * at gigabit speed, then TBI compatibility is not needed. If we are
2910 * at gigabit speed, we turn on TBI compatibility.
2911 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002912 if (hw->tbi_compatibility_en) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002913 uint16_t speed, duplex;
Auke Kok592600a2006-06-27 09:08:09 -07002914 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2915 if (ret_val) {
2916 DEBUGOUT("Error getting link speed and duplex\n");
2917 return ret_val;
2918 }
2919 if (speed != SPEED_1000) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002920 /* If link speed is not set to gigabit speed, we do not need
2921 * to enable TBI compatibility.
2922 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002923 if (hw->tbi_compatibility_on) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002924 /* If we previously were in the mode, turn it off. */
2925 rctl = E1000_READ_REG(hw, RCTL);
2926 rctl &= ~E1000_RCTL_SBP;
2927 E1000_WRITE_REG(hw, RCTL, rctl);
2928 hw->tbi_compatibility_on = FALSE;
2929 }
2930 } else {
2931 /* If TBI compatibility is was previously off, turn it on. For
2932 * compatibility with a TBI link partner, we will store bad
2933 * packets. Some frames have an additional byte on the end and
2934 * will look like CRC errors to to the hardware.
2935 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002936 if (!hw->tbi_compatibility_on) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002937 hw->tbi_compatibility_on = TRUE;
2938 rctl = E1000_READ_REG(hw, RCTL);
2939 rctl |= E1000_RCTL_SBP;
2940 E1000_WRITE_REG(hw, RCTL, rctl);
2941 }
2942 }
2943 }
2944 }
2945 /* If we don't have link (auto-negotiation failed or link partner cannot
2946 * auto-negotiate), the cable is plugged in (we have signal), and our
2947 * link partner is not trying to auto-negotiate with us (we are receiving
2948 * idles or data), we need to force link up. We also need to give
2949 * auto-negotiation time to complete, in case the cable was just plugged
2950 * in. The autoneg_failed flag does this.
2951 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002952 else if ((((hw->media_type == e1000_media_type_fiber) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07002953 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
Auke Kok8fc897b2006-08-28 14:56:16 -07002954 (hw->media_type == e1000_media_type_internal_serdes)) &&
2955 (!(status & E1000_STATUS_LU)) &&
2956 (!(rxcw & E1000_RXCW_C))) {
2957 if (hw->autoneg_failed == 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002958 hw->autoneg_failed = 1;
2959 return 0;
2960 }
Auke Koka42a5072006-05-23 13:36:01 -07002961 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002962
2963 /* Disable auto-negotiation in the TXCW register */
2964 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2965
2966 /* Force link-up and also force full-duplex. */
2967 ctrl = E1000_READ_REG(hw, CTRL);
2968 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2969 E1000_WRITE_REG(hw, CTRL, ctrl);
2970
2971 /* Configure Flow Control after forcing link up. */
2972 ret_val = e1000_config_fc_after_link_up(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002973 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002974 DEBUGOUT("Error configuring flow control\n");
2975 return ret_val;
2976 }
2977 }
2978 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2979 * auto-negotiation in the TXCW register and disable forced link in the
2980 * Device Control register in an attempt to auto-negotiate with our link
2981 * partner.
2982 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002983 else if (((hw->media_type == e1000_media_type_fiber) ||
2984 (hw->media_type == e1000_media_type_internal_serdes)) &&
2985 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
Auke Koka42a5072006-05-23 13:36:01 -07002986 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002987 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2988 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2989
2990 hw->serdes_link_down = FALSE;
2991 }
2992 /* If we force link for non-auto-negotiation switch, check link status
2993 * based on MAC synchronization for internal serdes media type.
2994 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002995 else if ((hw->media_type == e1000_media_type_internal_serdes) &&
2996 !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002997 /* SYNCH bit and IV bit are sticky. */
2998 udelay(10);
Auke Kok8fc897b2006-08-28 14:56:16 -07002999 if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
3000 if (!(rxcw & E1000_RXCW_IV)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003001 hw->serdes_link_down = FALSE;
3002 DEBUGOUT("SERDES: Link is up.\n");
3003 }
3004 } else {
3005 hw->serdes_link_down = TRUE;
3006 DEBUGOUT("SERDES: Link is down.\n");
3007 }
3008 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003009 if ((hw->media_type == e1000_media_type_internal_serdes) &&
3010 (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003011 hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
3012 }
3013 return E1000_SUCCESS;
3014}
3015
3016/******************************************************************************
3017 * Detects the current speed and duplex settings of the hardware.
3018 *
3019 * hw - Struct containing variables accessed by shared code
3020 * speed - Speed of the connection
3021 * duplex - Duplex setting of the connection
3022 *****************************************************************************/
3023int32_t
3024e1000_get_speed_and_duplex(struct e1000_hw *hw,
3025 uint16_t *speed,
3026 uint16_t *duplex)
3027{
3028 uint32_t status;
3029 int32_t ret_val;
3030 uint16_t phy_data;
3031
3032 DEBUGFUNC("e1000_get_speed_and_duplex");
3033
Auke Kok8fc897b2006-08-28 14:56:16 -07003034 if (hw->mac_type >= e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003035 status = E1000_READ_REG(hw, STATUS);
Auke Kok8fc897b2006-08-28 14:56:16 -07003036 if (status & E1000_STATUS_SPEED_1000) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003037 *speed = SPEED_1000;
3038 DEBUGOUT("1000 Mbs, ");
Auke Kok8fc897b2006-08-28 14:56:16 -07003039 } else if (status & E1000_STATUS_SPEED_100) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003040 *speed = SPEED_100;
3041 DEBUGOUT("100 Mbs, ");
3042 } else {
3043 *speed = SPEED_10;
3044 DEBUGOUT("10 Mbs, ");
3045 }
3046
Auke Kok8fc897b2006-08-28 14:56:16 -07003047 if (status & E1000_STATUS_FD) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003048 *duplex = FULL_DUPLEX;
Auke Koka42a5072006-05-23 13:36:01 -07003049 DEBUGOUT("Full Duplex\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003050 } else {
3051 *duplex = HALF_DUPLEX;
Auke Koka42a5072006-05-23 13:36:01 -07003052 DEBUGOUT(" Half Duplex\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003053 }
3054 } else {
Auke Koka42a5072006-05-23 13:36:01 -07003055 DEBUGOUT("1000 Mbs, Full Duplex\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003056 *speed = SPEED_1000;
3057 *duplex = FULL_DUPLEX;
3058 }
3059
3060 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
3061 * if it is operating at half duplex. Here we set the duplex settings to
3062 * match the duplex in the link partner's capabilities.
3063 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003064 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003065 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003066 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003067 return ret_val;
3068
Auke Kok8fc897b2006-08-28 14:56:16 -07003069 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003070 *duplex = HALF_DUPLEX;
3071 else {
3072 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003073 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003074 return ret_val;
Auke Kok8fc897b2006-08-28 14:56:16 -07003075 if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07003076 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3077 *duplex = HALF_DUPLEX;
3078 }
3079 }
3080
Auke Kok76c224b2006-05-23 13:36:06 -07003081 if ((hw->mac_type == e1000_80003es2lan) &&
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003082 (hw->media_type == e1000_media_type_copper)) {
3083 if (*speed == SPEED_1000)
3084 ret_val = e1000_configure_kmrn_for_1000(hw);
3085 else
Auke Kokcd94dd02006-06-27 09:08:22 -07003086 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3087 if (ret_val)
3088 return ret_val;
3089 }
3090
3091 if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3092 ret_val = e1000_kumeran_lock_loss_workaround(hw);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003093 if (ret_val)
3094 return ret_val;
3095 }
3096
Linus Torvalds1da177e2005-04-16 15:20:36 -07003097 return E1000_SUCCESS;
3098}
3099
3100/******************************************************************************
3101* Blocks until autoneg completes or times out (~4.5 seconds)
3102*
3103* hw - Struct containing variables accessed by shared code
3104******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01003105static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003106e1000_wait_autoneg(struct e1000_hw *hw)
3107{
3108 int32_t ret_val;
3109 uint16_t i;
3110 uint16_t phy_data;
3111
3112 DEBUGFUNC("e1000_wait_autoneg");
3113 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3114
3115 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
Auke Kok8fc897b2006-08-28 14:56:16 -07003116 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003117 /* Read the MII Status Register and wait for Auto-Neg
3118 * Complete bit to be set.
3119 */
3120 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003121 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003122 return ret_val;
3123 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003124 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003125 return ret_val;
Auke Kok8fc897b2006-08-28 14:56:16 -07003126 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003127 return E1000_SUCCESS;
3128 }
Jeff Garzikf8ec4732006-09-19 15:27:07 -04003129 msleep(100);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003130 }
3131 return E1000_SUCCESS;
3132}
3133
3134/******************************************************************************
3135* Raises the Management Data Clock
3136*
3137* hw - Struct containing variables accessed by shared code
3138* ctrl - Device control register's current value
3139******************************************************************************/
3140static void
3141e1000_raise_mdi_clk(struct e1000_hw *hw,
3142 uint32_t *ctrl)
3143{
3144 /* Raise the clock input to the Management Data Clock (by setting the MDC
3145 * bit), and then delay 10 microseconds.
3146 */
3147 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3148 E1000_WRITE_FLUSH(hw);
3149 udelay(10);
3150}
3151
3152/******************************************************************************
3153* Lowers the Management Data Clock
3154*
3155* hw - Struct containing variables accessed by shared code
3156* ctrl - Device control register's current value
3157******************************************************************************/
3158static void
3159e1000_lower_mdi_clk(struct e1000_hw *hw,
3160 uint32_t *ctrl)
3161{
3162 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3163 * bit), and then delay 10 microseconds.
3164 */
3165 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3166 E1000_WRITE_FLUSH(hw);
3167 udelay(10);
3168}
3169
3170/******************************************************************************
3171* Shifts data bits out to the PHY
3172*
3173* hw - Struct containing variables accessed by shared code
3174* data - Data to send out to the PHY
3175* count - Number of bits to shift out
3176*
3177* Bits are shifted out in MSB to LSB order.
3178******************************************************************************/
3179static void
3180e1000_shift_out_mdi_bits(struct e1000_hw *hw,
3181 uint32_t data,
3182 uint16_t count)
3183{
3184 uint32_t ctrl;
3185 uint32_t mask;
3186
3187 /* We need to shift "count" number of bits out to the PHY. So, the value
3188 * in the "data" parameter will be shifted out to the PHY one bit at a
3189 * time. In order to do this, "data" must be broken down into bits.
3190 */
3191 mask = 0x01;
3192 mask <<= (count - 1);
3193
3194 ctrl = E1000_READ_REG(hw, CTRL);
3195
3196 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3197 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3198
Auke Kok8fc897b2006-08-28 14:56:16 -07003199 while (mask) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003200 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3201 * then raising and lowering the Management Data Clock. A "0" is
3202 * shifted out to the PHY by setting the MDIO bit to "0" and then
3203 * raising and lowering the clock.
3204 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003205 if (data & mask)
3206 ctrl |= E1000_CTRL_MDIO;
3207 else
3208 ctrl &= ~E1000_CTRL_MDIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003209
3210 E1000_WRITE_REG(hw, CTRL, ctrl);
3211 E1000_WRITE_FLUSH(hw);
3212
3213 udelay(10);
3214
3215 e1000_raise_mdi_clk(hw, &ctrl);
3216 e1000_lower_mdi_clk(hw, &ctrl);
3217
3218 mask = mask >> 1;
3219 }
3220}
3221
3222/******************************************************************************
3223* Shifts data bits in from the PHY
3224*
3225* hw - Struct containing variables accessed by shared code
3226*
3227* Bits are shifted in in MSB to LSB order.
3228******************************************************************************/
3229static uint16_t
3230e1000_shift_in_mdi_bits(struct e1000_hw *hw)
3231{
3232 uint32_t ctrl;
3233 uint16_t data = 0;
3234 uint8_t i;
3235
3236 /* In order to read a register from the PHY, we need to shift in a total
3237 * of 18 bits from the PHY. The first two bit (turnaround) times are used
3238 * to avoid contention on the MDIO pin when a read operation is performed.
3239 * These two bits are ignored by us and thrown away. Bits are "shifted in"
3240 * by raising the input to the Management Data Clock (setting the MDC bit),
3241 * and then reading the value of the MDIO bit.
3242 */
3243 ctrl = E1000_READ_REG(hw, CTRL);
3244
3245 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
3246 ctrl &= ~E1000_CTRL_MDIO_DIR;
3247 ctrl &= ~E1000_CTRL_MDIO;
3248
3249 E1000_WRITE_REG(hw, CTRL, ctrl);
3250 E1000_WRITE_FLUSH(hw);
3251
3252 /* Raise and Lower the clock before reading in the data. This accounts for
3253 * the turnaround bits. The first clock occurred when we clocked out the
3254 * last bit of the Register Address.
3255 */
3256 e1000_raise_mdi_clk(hw, &ctrl);
3257 e1000_lower_mdi_clk(hw, &ctrl);
3258
Auke Kok8fc897b2006-08-28 14:56:16 -07003259 for (data = 0, i = 0; i < 16; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003260 data = data << 1;
3261 e1000_raise_mdi_clk(hw, &ctrl);
3262 ctrl = E1000_READ_REG(hw, CTRL);
3263 /* Check to see if we shifted in a "1". */
Auke Kok8fc897b2006-08-28 14:56:16 -07003264 if (ctrl & E1000_CTRL_MDIO)
3265 data |= 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003266 e1000_lower_mdi_clk(hw, &ctrl);
3267 }
3268
3269 e1000_raise_mdi_clk(hw, &ctrl);
3270 e1000_lower_mdi_clk(hw, &ctrl);
3271
3272 return data;
3273}
3274
Adrian Bunke4c780b2006-08-14 23:00:10 -07003275static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003276e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
3277{
3278 uint32_t swfw_sync = 0;
3279 uint32_t swmask = mask;
3280 uint32_t fwmask = mask << 16;
3281 int32_t timeout = 200;
3282
3283 DEBUGFUNC("e1000_swfw_sync_acquire");
3284
Auke Kokcd94dd02006-06-27 09:08:22 -07003285 if (hw->swfwhw_semaphore_present)
3286 return e1000_get_software_flag(hw);
3287
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003288 if (!hw->swfw_sync_present)
3289 return e1000_get_hw_eeprom_semaphore(hw);
3290
Auke Kok8fc897b2006-08-28 14:56:16 -07003291 while (timeout) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003292 if (e1000_get_hw_eeprom_semaphore(hw))
3293 return -E1000_ERR_SWFW_SYNC;
3294
3295 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3296 if (!(swfw_sync & (fwmask | swmask))) {
3297 break;
3298 }
3299
3300 /* firmware currently using resource (fwmask) */
3301 /* or other software thread currently using resource (swmask) */
3302 e1000_put_hw_eeprom_semaphore(hw);
Jeff Garzikf8ec4732006-09-19 15:27:07 -04003303 mdelay(5);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003304 timeout--;
3305 }
3306
3307 if (!timeout) {
3308 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3309 return -E1000_ERR_SWFW_SYNC;
3310 }
3311
3312 swfw_sync |= swmask;
3313 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3314
3315 e1000_put_hw_eeprom_semaphore(hw);
3316 return E1000_SUCCESS;
3317}
3318
Adrian Bunke4c780b2006-08-14 23:00:10 -07003319static void
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003320e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
3321{
3322 uint32_t swfw_sync;
3323 uint32_t swmask = mask;
3324
3325 DEBUGFUNC("e1000_swfw_sync_release");
3326
Auke Kokcd94dd02006-06-27 09:08:22 -07003327 if (hw->swfwhw_semaphore_present) {
3328 e1000_release_software_flag(hw);
3329 return;
3330 }
3331
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003332 if (!hw->swfw_sync_present) {
3333 e1000_put_hw_eeprom_semaphore(hw);
3334 return;
3335 }
3336
3337 /* if (e1000_get_hw_eeprom_semaphore(hw))
3338 * return -E1000_ERR_SWFW_SYNC; */
3339 while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
3340 /* empty */
3341
3342 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3343 swfw_sync &= ~swmask;
3344 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3345
3346 e1000_put_hw_eeprom_semaphore(hw);
3347}
3348
Linus Torvalds1da177e2005-04-16 15:20:36 -07003349/*****************************************************************************
3350* Reads the value from a PHY register, if the value is on a specific non zero
3351* page, sets the page first.
3352* hw - Struct containing variables accessed by shared code
3353* reg_addr - address of the PHY register to read
3354******************************************************************************/
3355int32_t
3356e1000_read_phy_reg(struct e1000_hw *hw,
3357 uint32_t reg_addr,
3358 uint16_t *phy_data)
3359{
3360 uint32_t ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003361 uint16_t swfw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003362
3363 DEBUGFUNC("e1000_read_phy_reg");
3364
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003365 if ((hw->mac_type == e1000_80003es2lan) &&
3366 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3367 swfw = E1000_SWFW_PHY1_SM;
3368 } else {
3369 swfw = E1000_SWFW_PHY0_SM;
3370 }
3371 if (e1000_swfw_sync_acquire(hw, swfw))
3372 return -E1000_ERR_SWFW_SYNC;
3373
Auke Kokcd94dd02006-06-27 09:08:22 -07003374 if ((hw->phy_type == e1000_phy_igp ||
3375 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003376 hw->phy_type == e1000_phy_igp_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07003377 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3378 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3379 (uint16_t)reg_addr);
Auke Kok8fc897b2006-08-28 14:56:16 -07003380 if (ret_val) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003381 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003382 return ret_val;
3383 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003384 } else if (hw->phy_type == e1000_phy_gg82563) {
3385 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3386 (hw->mac_type == e1000_80003es2lan)) {
3387 /* Select Configuration Page */
3388 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3389 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3390 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3391 } else {
3392 /* Use Alternative Page Select register to access
3393 * registers 30 and 31
3394 */
3395 ret_val = e1000_write_phy_reg_ex(hw,
3396 GG82563_PHY_PAGE_SELECT_ALT,
3397 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3398 }
3399
3400 if (ret_val) {
3401 e1000_swfw_sync_release(hw, swfw);
3402 return ret_val;
3403 }
3404 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003405 }
3406
3407 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3408 phy_data);
3409
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003410 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003411 return ret_val;
3412}
3413
Nicholas Nunley35574762006-09-27 12:53:34 -07003414static int32_t
3415e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003416 uint16_t *phy_data)
3417{
3418 uint32_t i;
3419 uint32_t mdic = 0;
3420 const uint32_t phy_addr = 1;
3421
3422 DEBUGFUNC("e1000_read_phy_reg_ex");
3423
Auke Kok8fc897b2006-08-28 14:56:16 -07003424 if (reg_addr > MAX_PHY_REG_ADDRESS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003425 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3426 return -E1000_ERR_PARAM;
3427 }
3428
Auke Kok8fc897b2006-08-28 14:56:16 -07003429 if (hw->mac_type > e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003430 /* Set up Op-code, Phy Address, and register address in the MDI
3431 * Control register. The MAC will take care of interfacing with the
3432 * PHY to retrieve the desired data.
3433 */
3434 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
3435 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3436 (E1000_MDIC_OP_READ));
3437
3438 E1000_WRITE_REG(hw, MDIC, mdic);
3439
3440 /* Poll the ready bit to see if the MDI read completed */
Auke Kok8fc897b2006-08-28 14:56:16 -07003441 for (i = 0; i < 64; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003442 udelay(50);
3443 mdic = E1000_READ_REG(hw, MDIC);
Auke Kok8fc897b2006-08-28 14:56:16 -07003444 if (mdic & E1000_MDIC_READY) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003445 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003446 if (!(mdic & E1000_MDIC_READY)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003447 DEBUGOUT("MDI Read did not complete\n");
3448 return -E1000_ERR_PHY;
3449 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003450 if (mdic & E1000_MDIC_ERROR) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003451 DEBUGOUT("MDI Error\n");
3452 return -E1000_ERR_PHY;
3453 }
3454 *phy_data = (uint16_t) mdic;
3455 } else {
3456 /* We must first send a preamble through the MDIO pin to signal the
3457 * beginning of an MII instruction. This is done by sending 32
3458 * consecutive "1" bits.
3459 */
3460 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3461
3462 /* Now combine the next few fields that are required for a read
3463 * operation. We use this method instead of calling the
3464 * e1000_shift_out_mdi_bits routine five different times. The format of
3465 * a MII read instruction consists of a shift out of 14 bits and is
3466 * defined as follows:
3467 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
3468 * followed by a shift in of 18 bits. This first two bits shifted in
3469 * are TurnAround bits used to avoid contention on the MDIO pin when a
3470 * READ operation is performed. These two bits are thrown away
3471 * followed by a shift in of 16 bits which contains the desired data.
3472 */
3473 mdic = ((reg_addr) | (phy_addr << 5) |
3474 (PHY_OP_READ << 10) | (PHY_SOF << 12));
3475
3476 e1000_shift_out_mdi_bits(hw, mdic, 14);
3477
3478 /* Now that we've shifted out the read command to the MII, we need to
3479 * "shift in" the 16-bit value (18 total bits) of the requested PHY
3480 * register address.
3481 */
3482 *phy_data = e1000_shift_in_mdi_bits(hw);
3483 }
3484 return E1000_SUCCESS;
3485}
3486
3487/******************************************************************************
3488* Writes a value to a PHY register
3489*
3490* hw - Struct containing variables accessed by shared code
3491* reg_addr - address of the PHY register to write
3492* data - data to write to the PHY
3493******************************************************************************/
3494int32_t
Nicholas Nunley35574762006-09-27 12:53:34 -07003495e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003496 uint16_t phy_data)
3497{
3498 uint32_t ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003499 uint16_t swfw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003500
3501 DEBUGFUNC("e1000_write_phy_reg");
3502
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003503 if ((hw->mac_type == e1000_80003es2lan) &&
3504 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3505 swfw = E1000_SWFW_PHY1_SM;
3506 } else {
3507 swfw = E1000_SWFW_PHY0_SM;
3508 }
3509 if (e1000_swfw_sync_acquire(hw, swfw))
3510 return -E1000_ERR_SWFW_SYNC;
3511
Auke Kokcd94dd02006-06-27 09:08:22 -07003512 if ((hw->phy_type == e1000_phy_igp ||
3513 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003514 hw->phy_type == e1000_phy_igp_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07003515 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3516 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3517 (uint16_t)reg_addr);
Auke Kok8fc897b2006-08-28 14:56:16 -07003518 if (ret_val) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003519 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003520 return ret_val;
3521 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003522 } else if (hw->phy_type == e1000_phy_gg82563) {
3523 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3524 (hw->mac_type == e1000_80003es2lan)) {
3525 /* Select Configuration Page */
3526 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3527 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3528 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3529 } else {
3530 /* Use Alternative Page Select register to access
3531 * registers 30 and 31
3532 */
3533 ret_val = e1000_write_phy_reg_ex(hw,
3534 GG82563_PHY_PAGE_SELECT_ALT,
3535 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3536 }
3537
3538 if (ret_val) {
3539 e1000_swfw_sync_release(hw, swfw);
3540 return ret_val;
3541 }
3542 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003543 }
3544
3545 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3546 phy_data);
3547
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003548 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003549 return ret_val;
3550}
3551
Nicholas Nunley35574762006-09-27 12:53:34 -07003552static int32_t
3553e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
3554 uint16_t phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003555{
3556 uint32_t i;
3557 uint32_t mdic = 0;
3558 const uint32_t phy_addr = 1;
3559
3560 DEBUGFUNC("e1000_write_phy_reg_ex");
3561
Auke Kok8fc897b2006-08-28 14:56:16 -07003562 if (reg_addr > MAX_PHY_REG_ADDRESS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003563 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3564 return -E1000_ERR_PARAM;
3565 }
3566
Auke Kok8fc897b2006-08-28 14:56:16 -07003567 if (hw->mac_type > e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003568 /* Set up Op-code, Phy Address, register address, and data intended
3569 * for the PHY register in the MDI Control register. The MAC will take
3570 * care of interfacing with the PHY to send the desired data.
3571 */
3572 mdic = (((uint32_t) phy_data) |
3573 (reg_addr << E1000_MDIC_REG_SHIFT) |
3574 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3575 (E1000_MDIC_OP_WRITE));
3576
3577 E1000_WRITE_REG(hw, MDIC, mdic);
3578
3579 /* Poll the ready bit to see if the MDI read completed */
Auke Kok8fc897b2006-08-28 14:56:16 -07003580 for (i = 0; i < 641; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003581 udelay(5);
3582 mdic = E1000_READ_REG(hw, MDIC);
Auke Kok8fc897b2006-08-28 14:56:16 -07003583 if (mdic & E1000_MDIC_READY) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003584 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003585 if (!(mdic & E1000_MDIC_READY)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003586 DEBUGOUT("MDI Write did not complete\n");
3587 return -E1000_ERR_PHY;
3588 }
3589 } else {
3590 /* We'll need to use the SW defined pins to shift the write command
3591 * out to the PHY. We first send a preamble to the PHY to signal the
3592 * beginning of the MII instruction. This is done by sending 32
3593 * consecutive "1" bits.
3594 */
3595 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3596
3597 /* Now combine the remaining required fields that will indicate a
3598 * write operation. We use this method instead of calling the
3599 * e1000_shift_out_mdi_bits routine for each field in the command. The
3600 * format of a MII write instruction is as follows:
3601 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3602 */
3603 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3604 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3605 mdic <<= 16;
3606 mdic |= (uint32_t) phy_data;
3607
3608 e1000_shift_out_mdi_bits(hw, mdic, 32);
3609 }
3610
3611 return E1000_SUCCESS;
3612}
3613
Adrian Bunke4c780b2006-08-14 23:00:10 -07003614static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003615e1000_read_kmrn_reg(struct e1000_hw *hw,
3616 uint32_t reg_addr,
3617 uint16_t *data)
3618{
3619 uint32_t reg_val;
3620 uint16_t swfw;
3621 DEBUGFUNC("e1000_read_kmrn_reg");
3622
3623 if ((hw->mac_type == e1000_80003es2lan) &&
3624 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3625 swfw = E1000_SWFW_PHY1_SM;
3626 } else {
3627 swfw = E1000_SWFW_PHY0_SM;
3628 }
3629 if (e1000_swfw_sync_acquire(hw, swfw))
3630 return -E1000_ERR_SWFW_SYNC;
3631
3632 /* Write register address */
3633 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3634 E1000_KUMCTRLSTA_OFFSET) |
3635 E1000_KUMCTRLSTA_REN;
3636 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3637 udelay(2);
3638
3639 /* Read the data returned */
3640 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
3641 *data = (uint16_t)reg_val;
3642
3643 e1000_swfw_sync_release(hw, swfw);
3644 return E1000_SUCCESS;
3645}
3646
Adrian Bunke4c780b2006-08-14 23:00:10 -07003647static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003648e1000_write_kmrn_reg(struct e1000_hw *hw,
3649 uint32_t reg_addr,
3650 uint16_t data)
3651{
3652 uint32_t reg_val;
3653 uint16_t swfw;
3654 DEBUGFUNC("e1000_write_kmrn_reg");
3655
3656 if ((hw->mac_type == e1000_80003es2lan) &&
3657 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3658 swfw = E1000_SWFW_PHY1_SM;
3659 } else {
3660 swfw = E1000_SWFW_PHY0_SM;
3661 }
3662 if (e1000_swfw_sync_acquire(hw, swfw))
3663 return -E1000_ERR_SWFW_SYNC;
3664
3665 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3666 E1000_KUMCTRLSTA_OFFSET) | data;
3667 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3668 udelay(2);
3669
3670 e1000_swfw_sync_release(hw, swfw);
3671 return E1000_SUCCESS;
3672}
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003673
Linus Torvalds1da177e2005-04-16 15:20:36 -07003674/******************************************************************************
3675* Returns the PHY to the power-on reset state
3676*
3677* hw - Struct containing variables accessed by shared code
3678******************************************************************************/
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003679int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003680e1000_phy_hw_reset(struct e1000_hw *hw)
3681{
3682 uint32_t ctrl, ctrl_ext;
3683 uint32_t led_ctrl;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003684 int32_t ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003685 uint16_t swfw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003686
3687 DEBUGFUNC("e1000_phy_hw_reset");
3688
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003689 /* In the case of the phy reset being blocked, it's not an error, we
3690 * simply return success without performing the reset. */
3691 ret_val = e1000_check_phy_reset_block(hw);
3692 if (ret_val)
3693 return E1000_SUCCESS;
3694
Linus Torvalds1da177e2005-04-16 15:20:36 -07003695 DEBUGOUT("Resetting Phy...\n");
3696
Auke Kok8fc897b2006-08-28 14:56:16 -07003697 if (hw->mac_type > e1000_82543) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003698 if ((hw->mac_type == e1000_80003es2lan) &&
3699 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3700 swfw = E1000_SWFW_PHY1_SM;
3701 } else {
3702 swfw = E1000_SWFW_PHY0_SM;
3703 }
3704 if (e1000_swfw_sync_acquire(hw, swfw)) {
3705 e1000_release_software_semaphore(hw);
3706 return -E1000_ERR_SWFW_SYNC;
3707 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003708 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3709 * bit. Then, take it out of reset.
Auke Kok76c224b2006-05-23 13:36:06 -07003710 * For pre-e1000_82571 hardware, we delay for 10ms between the assert
Jeff Kirsherfd803242005-12-13 00:06:22 -05003711 * and deassert. For e1000_82571 hardware and later, we instead delay
Jeff Kirsher0f15a8f2006-03-02 18:46:29 -08003712 * for 50us between and 10ms after the deassertion.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003713 */
3714 ctrl = E1000_READ_REG(hw, CTRL);
3715 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
3716 E1000_WRITE_FLUSH(hw);
Auke Kok76c224b2006-05-23 13:36:06 -07003717
3718 if (hw->mac_type < e1000_82571)
Jeff Garzikf8ec4732006-09-19 15:27:07 -04003719 msleep(10);
Jeff Kirsherb55ccb32006-01-12 16:50:30 -08003720 else
3721 udelay(100);
Auke Kok76c224b2006-05-23 13:36:06 -07003722
Linus Torvalds1da177e2005-04-16 15:20:36 -07003723 E1000_WRITE_REG(hw, CTRL, ctrl);
3724 E1000_WRITE_FLUSH(hw);
Auke Kok76c224b2006-05-23 13:36:06 -07003725
Jeff Kirsherfd803242005-12-13 00:06:22 -05003726 if (hw->mac_type >= e1000_82571)
Jeff Garzikf8ec4732006-09-19 15:27:07 -04003727 mdelay(10);
Nicholas Nunley35574762006-09-27 12:53:34 -07003728
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003729 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003730 } else {
3731 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3732 * bit to put the PHY into reset. Then, take it out of reset.
3733 */
3734 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
3735 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3736 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3737 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3738 E1000_WRITE_FLUSH(hw);
Jeff Garzikf8ec4732006-09-19 15:27:07 -04003739 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003740 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3741 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3742 E1000_WRITE_FLUSH(hw);
3743 }
3744 udelay(150);
3745
Auke Kok8fc897b2006-08-28 14:56:16 -07003746 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003747 /* Configure activity LED after PHY reset */
3748 led_ctrl = E1000_READ_REG(hw, LEDCTL);
3749 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3750 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3751 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
3752 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003753
3754 /* Wait for FW to finish PHY configuration. */
3755 ret_val = e1000_get_phy_cfg_done(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07003756 if (ret_val != E1000_SUCCESS)
3757 return ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003758 e1000_release_software_semaphore(hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003759
Auke Kok8fc897b2006-08-28 14:56:16 -07003760 if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
3761 ret_val = e1000_init_lcd_from_nvm(hw);
3762
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003763 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003764}
3765
3766/******************************************************************************
3767* Resets the PHY
3768*
3769* hw - Struct containing variables accessed by shared code
3770*
3771* Sets bit 15 of the MII Control regiser
3772******************************************************************************/
3773int32_t
3774e1000_phy_reset(struct e1000_hw *hw)
3775{
3776 int32_t ret_val;
3777 uint16_t phy_data;
3778
3779 DEBUGFUNC("e1000_phy_reset");
3780
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003781 /* In the case of the phy reset being blocked, it's not an error, we
3782 * simply return success without performing the reset. */
3783 ret_val = e1000_check_phy_reset_block(hw);
3784 if (ret_val)
3785 return E1000_SUCCESS;
3786
3787 switch (hw->mac_type) {
3788 case e1000_82541_rev_2:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003789 case e1000_82571:
3790 case e1000_82572:
Auke Kokcd94dd02006-06-27 09:08:22 -07003791 case e1000_ich8lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003792 ret_val = e1000_phy_hw_reset(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07003793 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003794 return ret_val;
3795 break;
3796 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003797 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003798 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003799 return ret_val;
3800
3801 phy_data |= MII_CR_RESET;
3802 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003803 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003804 return ret_val;
3805
3806 udelay(1);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003807 break;
3808 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003809
Auke Kok8fc897b2006-08-28 14:56:16 -07003810 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003811 e1000_phy_init_script(hw);
3812
3813 return E1000_SUCCESS;
3814}
3815
3816/******************************************************************************
Auke Kokd37ea5d2006-06-27 09:08:17 -07003817* Work-around for 82566 power-down: on D3 entry-
3818* 1) disable gigabit link
3819* 2) write VR power-down enable
3820* 3) read it back
3821* if successful continue, else issue LCD reset and repeat
3822*
3823* hw - struct containing variables accessed by shared code
3824******************************************************************************/
3825void
3826e1000_phy_powerdown_workaround(struct e1000_hw *hw)
3827{
3828 int32_t reg;
3829 uint16_t phy_data;
3830 int32_t retry = 0;
3831
3832 DEBUGFUNC("e1000_phy_powerdown_workaround");
3833
3834 if (hw->phy_type != e1000_phy_igp_3)
3835 return;
3836
3837 do {
3838 /* Disable link */
3839 reg = E1000_READ_REG(hw, PHY_CTRL);
3840 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3841 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3842
3843 /* Write VR power-down enable */
3844 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3845 e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
3846 IGP3_VR_CTRL_MODE_SHUT);
3847
3848 /* Read it back and test */
3849 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3850 if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
3851 break;
3852
3853 /* Issue PHY reset and repeat at most one more time */
3854 reg = E1000_READ_REG(hw, CTRL);
3855 E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
3856 retry++;
3857 } while (retry);
3858
3859 return;
3860
3861}
3862
3863/******************************************************************************
3864* Work-around for 82566 Kumeran PCS lock loss:
3865* On link status change (i.e. PCI reset, speed change) and link is up and
3866* speed is gigabit-
3867* 0) if workaround is optionally disabled do nothing
3868* 1) wait 1ms for Kumeran link to come up
3869* 2) check Kumeran Diagnostic register PCS lock loss bit
3870* 3) if not set the link is locked (all is good), otherwise...
3871* 4) reset the PHY
3872* 5) repeat up to 10 times
3873* Note: this is only called for IGP3 copper when speed is 1gb.
3874*
3875* hw - struct containing variables accessed by shared code
3876******************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07003877static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07003878e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
3879{
3880 int32_t ret_val;
3881 int32_t reg;
3882 int32_t cnt;
3883 uint16_t phy_data;
3884
3885 if (hw->kmrn_lock_loss_workaround_disabled)
3886 return E1000_SUCCESS;
3887
Auke Kok8fc897b2006-08-28 14:56:16 -07003888 /* Make sure link is up before proceeding. If not just return.
3889 * Attempting this while link is negotiating fouled up link
Auke Kokd37ea5d2006-06-27 09:08:17 -07003890 * stability */
3891 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3892 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3893
3894 if (phy_data & MII_SR_LINK_STATUS) {
3895 for (cnt = 0; cnt < 10; cnt++) {
3896 /* read once to clear */
3897 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3898 if (ret_val)
3899 return ret_val;
3900 /* and again to get new status */
3901 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3902 if (ret_val)
3903 return ret_val;
3904
3905 /* check for PCS lock */
3906 if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3907 return E1000_SUCCESS;
3908
3909 /* Issue PHY reset */
3910 e1000_phy_hw_reset(hw);
Jeff Garzikf8ec4732006-09-19 15:27:07 -04003911 mdelay(5);
Auke Kokd37ea5d2006-06-27 09:08:17 -07003912 }
3913 /* Disable GigE link negotiation */
3914 reg = E1000_READ_REG(hw, PHY_CTRL);
3915 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3916 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3917
3918 /* unable to acquire PCS lock */
3919 return E1000_ERR_PHY;
3920 }
3921
3922 return E1000_SUCCESS;
3923}
3924
3925/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07003926* Probes the expected PHY address for known PHY IDs
3927*
3928* hw - Struct containing variables accessed by shared code
3929******************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07003930static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003931e1000_detect_gig_phy(struct e1000_hw *hw)
3932{
3933 int32_t phy_init_status, ret_val;
3934 uint16_t phy_id_high, phy_id_low;
3935 boolean_t match = FALSE;
3936
3937 DEBUGFUNC("e1000_detect_gig_phy");
3938
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003939 /* The 82571 firmware may still be configuring the PHY. In this
3940 * case, we cannot access the PHY until the configuration is done. So
3941 * we explicitly set the PHY values. */
Auke Kokcd94dd02006-06-27 09:08:22 -07003942 if (hw->mac_type == e1000_82571 ||
3943 hw->mac_type == e1000_82572) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003944 hw->phy_id = IGP01E1000_I_PHY_ID;
3945 hw->phy_type = e1000_phy_igp_2;
3946 return E1000_SUCCESS;
3947 }
3948
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003949 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
3950 * around that forces PHY page 0 to be set or the reads fail. The rest of
3951 * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
3952 * So for ESB-2 we need to have this set so our reads won't fail. If the
3953 * attached PHY is not a e1000_phy_gg82563, the routines below will figure
3954 * this out as well. */
3955 if (hw->mac_type == e1000_80003es2lan)
3956 hw->phy_type = e1000_phy_gg82563;
3957
Linus Torvalds1da177e2005-04-16 15:20:36 -07003958 /* Read the PHY ID Registers to identify which PHY is onboard. */
3959 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
Auke Kokcd94dd02006-06-27 09:08:22 -07003960 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003961 return ret_val;
3962
3963 hw->phy_id = (uint32_t) (phy_id_high << 16);
3964 udelay(20);
3965 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
Auke Kok8fc897b2006-08-28 14:56:16 -07003966 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003967 return ret_val;
3968
3969 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
3970 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
3971
Auke Kok8fc897b2006-08-28 14:56:16 -07003972 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003973 case e1000_82543:
Auke Kok8fc897b2006-08-28 14:56:16 -07003974 if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003975 break;
3976 case e1000_82544:
Auke Kok8fc897b2006-08-28 14:56:16 -07003977 if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003978 break;
3979 case e1000_82540:
3980 case e1000_82545:
3981 case e1000_82545_rev_3:
3982 case e1000_82546:
3983 case e1000_82546_rev_3:
Auke Kok8fc897b2006-08-28 14:56:16 -07003984 if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003985 break;
3986 case e1000_82541:
3987 case e1000_82541_rev_2:
3988 case e1000_82547:
3989 case e1000_82547_rev_2:
Auke Kok8fc897b2006-08-28 14:56:16 -07003990 if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003991 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003992 case e1000_82573:
Auke Kok8fc897b2006-08-28 14:56:16 -07003993 if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003994 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003995 case e1000_80003es2lan:
3996 if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
3997 break;
Auke Kokcd94dd02006-06-27 09:08:22 -07003998 case e1000_ich8lan:
3999 if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
4000 if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
4001 if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
4002 if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
4003 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004004 default:
4005 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
4006 return -E1000_ERR_CONFIG;
4007 }
4008 phy_init_status = e1000_set_phy_type(hw);
4009
4010 if ((match) && (phy_init_status == E1000_SUCCESS)) {
4011 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
4012 return E1000_SUCCESS;
4013 }
4014 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
4015 return -E1000_ERR_PHY;
4016}
4017
4018/******************************************************************************
4019* Resets the PHY's DSP
4020*
4021* hw - Struct containing variables accessed by shared code
4022******************************************************************************/
4023static int32_t
4024e1000_phy_reset_dsp(struct e1000_hw *hw)
4025{
4026 int32_t ret_val;
4027 DEBUGFUNC("e1000_phy_reset_dsp");
4028
4029 do {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004030 if (hw->phy_type != e1000_phy_gg82563) {
4031 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
Auke Kok8fc897b2006-08-28 14:56:16 -07004032 if (ret_val) break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004033 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004034 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
Auke Kok8fc897b2006-08-28 14:56:16 -07004035 if (ret_val) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004036 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
Auke Kok8fc897b2006-08-28 14:56:16 -07004037 if (ret_val) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004038 ret_val = E1000_SUCCESS;
Auke Kok8fc897b2006-08-28 14:56:16 -07004039 } while (0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004040
4041 return ret_val;
4042}
4043
4044/******************************************************************************
4045* Get PHY information from various PHY registers for igp PHY only.
4046*
4047* hw - Struct containing variables accessed by shared code
4048* phy_info - PHY information structure
4049******************************************************************************/
Adrian Bunkcff93eb2006-09-04 13:41:14 +02004050static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004051e1000_phy_igp_get_info(struct e1000_hw *hw,
4052 struct e1000_phy_info *phy_info)
4053{
4054 int32_t ret_val;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004055 uint16_t phy_data, min_length, max_length, average;
4056 e1000_rev_polarity polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004057
4058 DEBUGFUNC("e1000_phy_igp_get_info");
4059
4060 /* The downshift status is checked only once, after link is established,
4061 * and it stored in the hw->speed_downgraded parameter. */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004062 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004063
4064 /* IGP01E1000 does not need to support it. */
4065 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4066
4067 /* IGP01E1000 always correct polarity reversal */
4068 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
4069
4070 /* Check polarity status */
4071 ret_val = e1000_check_polarity(hw, &polarity);
Auke Kok8fc897b2006-08-28 14:56:16 -07004072 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004073 return ret_val;
4074
4075 phy_info->cable_polarity = polarity;
4076
4077 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004078 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004079 return ret_val;
4080
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004081 phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
4082 IGP01E1000_PSSR_MDIX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004083
Auke Kok8fc897b2006-08-28 14:56:16 -07004084 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
Linus Torvalds1da177e2005-04-16 15:20:36 -07004085 IGP01E1000_PSSR_SPEED_1000MBPS) {
4086 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
4087 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004088 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004089 return ret_val;
4090
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004091 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4092 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4093 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4094 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4095 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4096 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004097
4098 /* Get cable length */
4099 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
Auke Kok8fc897b2006-08-28 14:56:16 -07004100 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004101 return ret_val;
4102
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004103 /* Translate to old method */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004104 average = (max_length + min_length) / 2;
4105
Auke Kok8fc897b2006-08-28 14:56:16 -07004106 if (average <= e1000_igp_cable_length_50)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004107 phy_info->cable_length = e1000_cable_length_50;
Auke Kok8fc897b2006-08-28 14:56:16 -07004108 else if (average <= e1000_igp_cable_length_80)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004109 phy_info->cable_length = e1000_cable_length_50_80;
Auke Kok8fc897b2006-08-28 14:56:16 -07004110 else if (average <= e1000_igp_cable_length_110)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004111 phy_info->cable_length = e1000_cable_length_80_110;
Auke Kok8fc897b2006-08-28 14:56:16 -07004112 else if (average <= e1000_igp_cable_length_140)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004113 phy_info->cable_length = e1000_cable_length_110_140;
4114 else
4115 phy_info->cable_length = e1000_cable_length_140;
4116 }
4117
4118 return E1000_SUCCESS;
4119}
4120
4121/******************************************************************************
Auke Kokd37ea5d2006-06-27 09:08:17 -07004122* Get PHY information from various PHY registers for ife PHY only.
4123*
4124* hw - Struct containing variables accessed by shared code
4125* phy_info - PHY information structure
4126******************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07004127static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07004128e1000_phy_ife_get_info(struct e1000_hw *hw,
4129 struct e1000_phy_info *phy_info)
4130{
4131 int32_t ret_val;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004132 uint16_t phy_data;
4133 e1000_rev_polarity polarity;
Auke Kokd37ea5d2006-06-27 09:08:17 -07004134
4135 DEBUGFUNC("e1000_phy_ife_get_info");
4136
4137 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4138 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4139
4140 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
4141 if (ret_val)
4142 return ret_val;
4143 phy_info->polarity_correction =
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004144 ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
4145 IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
4146 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
Auke Kokd37ea5d2006-06-27 09:08:17 -07004147
4148 if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
4149 ret_val = e1000_check_polarity(hw, &polarity);
4150 if (ret_val)
4151 return ret_val;
4152 } else {
4153 /* Polarity is forced. */
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004154 polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
4155 IFE_PSC_FORCE_POLARITY_SHIFT) ?
4156 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
Auke Kokd37ea5d2006-06-27 09:08:17 -07004157 }
4158 phy_info->cable_polarity = polarity;
4159
4160 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
4161 if (ret_val)
4162 return ret_val;
4163
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004164 phy_info->mdix_mode = (e1000_auto_x_mode)
4165 ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
4166 IFE_PMC_MDIX_MODE_SHIFT);
Auke Kokd37ea5d2006-06-27 09:08:17 -07004167
4168 return E1000_SUCCESS;
4169}
4170
4171/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07004172* Get PHY information from various PHY registers fot m88 PHY only.
4173*
4174* hw - Struct containing variables accessed by shared code
4175* phy_info - PHY information structure
4176******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004177static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004178e1000_phy_m88_get_info(struct e1000_hw *hw,
4179 struct e1000_phy_info *phy_info)
4180{
4181 int32_t ret_val;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004182 uint16_t phy_data;
4183 e1000_rev_polarity polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004184
4185 DEBUGFUNC("e1000_phy_m88_get_info");
4186
4187 /* The downshift status is checked only once, after link is established,
4188 * and it stored in the hw->speed_downgraded parameter. */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004189 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004190
4191 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004192 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004193 return ret_val;
4194
4195 phy_info->extended_10bt_distance =
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004196 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
4197 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
4198 e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
4199
Linus Torvalds1da177e2005-04-16 15:20:36 -07004200 phy_info->polarity_correction =
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004201 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
4202 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
4203 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004204
4205 /* Check polarity status */
4206 ret_val = e1000_check_polarity(hw, &polarity);
Auke Kok8fc897b2006-08-28 14:56:16 -07004207 if (ret_val)
Auke Kok76c224b2006-05-23 13:36:06 -07004208 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004209 phy_info->cable_polarity = polarity;
4210
4211 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004212 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004213 return ret_val;
4214
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004215 phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
4216 M88E1000_PSSR_MDIX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004217
4218 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
4219 /* Cable Length Estimation and Local/Remote Receiver Information
4220 * are only valid at 1000 Mbps.
4221 */
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004222 if (hw->phy_type != e1000_phy_gg82563) {
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004223 phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004224 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
4225 } else {
4226 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
4227 &phy_data);
4228 if (ret_val)
4229 return ret_val;
4230
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004231 phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004232 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004233
4234 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004235 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004236 return ret_val;
4237
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004238 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4239 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4240 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4241 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4242 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4243 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004244
Linus Torvalds1da177e2005-04-16 15:20:36 -07004245 }
4246
4247 return E1000_SUCCESS;
4248}
4249
4250/******************************************************************************
4251* Get PHY information from various PHY registers
4252*
4253* hw - Struct containing variables accessed by shared code
4254* phy_info - PHY information structure
4255******************************************************************************/
4256int32_t
4257e1000_phy_get_info(struct e1000_hw *hw,
4258 struct e1000_phy_info *phy_info)
4259{
4260 int32_t ret_val;
4261 uint16_t phy_data;
4262
4263 DEBUGFUNC("e1000_phy_get_info");
4264
4265 phy_info->cable_length = e1000_cable_length_undefined;
4266 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
4267 phy_info->cable_polarity = e1000_rev_polarity_undefined;
4268 phy_info->downshift = e1000_downshift_undefined;
4269 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
4270 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
4271 phy_info->local_rx = e1000_1000t_rx_status_undefined;
4272 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
4273
Auke Kok8fc897b2006-08-28 14:56:16 -07004274 if (hw->media_type != e1000_media_type_copper) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004275 DEBUGOUT("PHY info is only valid for copper media\n");
4276 return -E1000_ERR_CONFIG;
4277 }
4278
4279 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004280 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004281 return ret_val;
4282
4283 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004284 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004285 return ret_val;
4286
Auke Kok8fc897b2006-08-28 14:56:16 -07004287 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004288 DEBUGOUT("PHY info is only valid if link is up\n");
4289 return -E1000_ERR_CONFIG;
4290 }
4291
Auke Kokcd94dd02006-06-27 09:08:22 -07004292 if (hw->phy_type == e1000_phy_igp ||
4293 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004294 hw->phy_type == e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004295 return e1000_phy_igp_get_info(hw, phy_info);
Auke Kokcd94dd02006-06-27 09:08:22 -07004296 else if (hw->phy_type == e1000_phy_ife)
4297 return e1000_phy_ife_get_info(hw, phy_info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004298 else
4299 return e1000_phy_m88_get_info(hw, phy_info);
4300}
4301
4302int32_t
4303e1000_validate_mdi_setting(struct e1000_hw *hw)
4304{
4305 DEBUGFUNC("e1000_validate_mdi_settings");
4306
Auke Kok8fc897b2006-08-28 14:56:16 -07004307 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004308 DEBUGOUT("Invalid MDI setting detected\n");
4309 hw->mdix = 1;
4310 return -E1000_ERR_CONFIG;
4311 }
4312 return E1000_SUCCESS;
4313}
4314
4315
4316/******************************************************************************
4317 * Sets up eeprom variables in the hw struct. Must be called after mac_type
Jeff Kirsher0f15a8f2006-03-02 18:46:29 -08004318 * is configured. Additionally, if this is ICH8, the flash controller GbE
4319 * registers must be mapped, or this will crash.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004320 *
4321 * hw - Struct containing variables accessed by shared code
4322 *****************************************************************************/
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004323int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004324e1000_init_eeprom_params(struct e1000_hw *hw)
4325{
4326 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4327 uint32_t eecd = E1000_READ_REG(hw, EECD);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004328 int32_t ret_val = E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004329 uint16_t eeprom_size;
4330
4331 DEBUGFUNC("e1000_init_eeprom_params");
4332
4333 switch (hw->mac_type) {
4334 case e1000_82542_rev2_0:
4335 case e1000_82542_rev2_1:
4336 case e1000_82543:
4337 case e1000_82544:
4338 eeprom->type = e1000_eeprom_microwire;
4339 eeprom->word_size = 64;
4340 eeprom->opcode_bits = 3;
4341 eeprom->address_bits = 6;
4342 eeprom->delay_usec = 50;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004343 eeprom->use_eerd = FALSE;
4344 eeprom->use_eewr = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004345 break;
4346 case e1000_82540:
4347 case e1000_82545:
4348 case e1000_82545_rev_3:
4349 case e1000_82546:
4350 case e1000_82546_rev_3:
4351 eeprom->type = e1000_eeprom_microwire;
4352 eeprom->opcode_bits = 3;
4353 eeprom->delay_usec = 50;
Auke Kok8fc897b2006-08-28 14:56:16 -07004354 if (eecd & E1000_EECD_SIZE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004355 eeprom->word_size = 256;
4356 eeprom->address_bits = 8;
4357 } else {
4358 eeprom->word_size = 64;
4359 eeprom->address_bits = 6;
4360 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004361 eeprom->use_eerd = FALSE;
4362 eeprom->use_eewr = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004363 break;
4364 case e1000_82541:
4365 case e1000_82541_rev_2:
4366 case e1000_82547:
4367 case e1000_82547_rev_2:
4368 if (eecd & E1000_EECD_TYPE) {
4369 eeprom->type = e1000_eeprom_spi;
4370 eeprom->opcode_bits = 8;
4371 eeprom->delay_usec = 1;
4372 if (eecd & E1000_EECD_ADDR_BITS) {
4373 eeprom->page_size = 32;
4374 eeprom->address_bits = 16;
4375 } else {
4376 eeprom->page_size = 8;
4377 eeprom->address_bits = 8;
4378 }
4379 } else {
4380 eeprom->type = e1000_eeprom_microwire;
4381 eeprom->opcode_bits = 3;
4382 eeprom->delay_usec = 50;
4383 if (eecd & E1000_EECD_ADDR_BITS) {
4384 eeprom->word_size = 256;
4385 eeprom->address_bits = 8;
4386 } else {
4387 eeprom->word_size = 64;
4388 eeprom->address_bits = 6;
4389 }
4390 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004391 eeprom->use_eerd = FALSE;
4392 eeprom->use_eewr = FALSE;
4393 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004394 case e1000_82571:
4395 case e1000_82572:
4396 eeprom->type = e1000_eeprom_spi;
4397 eeprom->opcode_bits = 8;
4398 eeprom->delay_usec = 1;
4399 if (eecd & E1000_EECD_ADDR_BITS) {
4400 eeprom->page_size = 32;
4401 eeprom->address_bits = 16;
4402 } else {
4403 eeprom->page_size = 8;
4404 eeprom->address_bits = 8;
4405 }
4406 eeprom->use_eerd = FALSE;
4407 eeprom->use_eewr = FALSE;
4408 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004409 case e1000_82573:
4410 eeprom->type = e1000_eeprom_spi;
4411 eeprom->opcode_bits = 8;
4412 eeprom->delay_usec = 1;
4413 if (eecd & E1000_EECD_ADDR_BITS) {
4414 eeprom->page_size = 32;
4415 eeprom->address_bits = 16;
4416 } else {
4417 eeprom->page_size = 8;
4418 eeprom->address_bits = 8;
4419 }
4420 eeprom->use_eerd = TRUE;
4421 eeprom->use_eewr = TRUE;
Auke Kok8fc897b2006-08-28 14:56:16 -07004422 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004423 eeprom->type = e1000_eeprom_flash;
4424 eeprom->word_size = 2048;
4425
4426 /* Ensure that the Autonomous FLASH update bit is cleared due to
4427 * Flash update issue on parts which use a FLASH for NVM. */
4428 eecd &= ~E1000_EECD_AUPDEN;
4429 E1000_WRITE_REG(hw, EECD, eecd);
4430 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004431 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004432 case e1000_80003es2lan:
4433 eeprom->type = e1000_eeprom_spi;
4434 eeprom->opcode_bits = 8;
4435 eeprom->delay_usec = 1;
4436 if (eecd & E1000_EECD_ADDR_BITS) {
4437 eeprom->page_size = 32;
4438 eeprom->address_bits = 16;
4439 } else {
4440 eeprom->page_size = 8;
4441 eeprom->address_bits = 8;
4442 }
4443 eeprom->use_eerd = TRUE;
4444 eeprom->use_eewr = FALSE;
4445 break;
Auke Kokcd94dd02006-06-27 09:08:22 -07004446 case e1000_ich8lan:
Nicholas Nunley35574762006-09-27 12:53:34 -07004447 {
Auke Kokcd94dd02006-06-27 09:08:22 -07004448 int32_t i = 0;
4449 uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
4450
4451 eeprom->type = e1000_eeprom_ich8;
4452 eeprom->use_eerd = FALSE;
4453 eeprom->use_eewr = FALSE;
4454 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
4455
4456 /* Zero the shadow RAM structure. But don't load it from NVM
4457 * so as to save time for driver init */
4458 if (hw->eeprom_shadow_ram != NULL) {
4459 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4460 hw->eeprom_shadow_ram[i].modified = FALSE;
4461 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
4462 }
4463 }
4464
4465 hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
4466 ICH8_FLASH_SECTOR_SIZE;
4467
4468 hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
4469 hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
4470 hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
4471 hw->flash_bank_size /= 2 * sizeof(uint16_t);
4472
4473 break;
Nicholas Nunley35574762006-09-27 12:53:34 -07004474 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004475 default:
4476 break;
4477 }
4478
4479 if (eeprom->type == e1000_eeprom_spi) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004480 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
4481 * 32KB (incremented by powers of 2).
4482 */
Auke Kok8fc897b2006-08-28 14:56:16 -07004483 if (hw->mac_type <= e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004484 /* Set to default value for initial eeprom read. */
4485 eeprom->word_size = 64;
4486 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
Auke Kok8fc897b2006-08-28 14:56:16 -07004487 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004488 return ret_val;
4489 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
4490 /* 256B eeprom size was not supported in earlier hardware, so we
4491 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
4492 * is never the result used in the shifting logic below. */
Auke Kok8fc897b2006-08-28 14:56:16 -07004493 if (eeprom_size)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004494 eeprom_size++;
4495 } else {
4496 eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
4497 E1000_EECD_SIZE_EX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004498 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004499
4500 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004501 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004502 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004503}
4504
4505/******************************************************************************
4506 * Raises the EEPROM's clock input.
4507 *
4508 * hw - Struct containing variables accessed by shared code
4509 * eecd - EECD's current value
4510 *****************************************************************************/
4511static void
4512e1000_raise_ee_clk(struct e1000_hw *hw,
4513 uint32_t *eecd)
4514{
4515 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
4516 * wait <delay> microseconds.
4517 */
4518 *eecd = *eecd | E1000_EECD_SK;
4519 E1000_WRITE_REG(hw, EECD, *eecd);
4520 E1000_WRITE_FLUSH(hw);
4521 udelay(hw->eeprom.delay_usec);
4522}
4523
4524/******************************************************************************
4525 * Lowers the EEPROM's clock input.
4526 *
4527 * hw - Struct containing variables accessed by shared code
4528 * eecd - EECD's current value
4529 *****************************************************************************/
4530static void
4531e1000_lower_ee_clk(struct e1000_hw *hw,
4532 uint32_t *eecd)
4533{
4534 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
4535 * wait 50 microseconds.
4536 */
4537 *eecd = *eecd & ~E1000_EECD_SK;
4538 E1000_WRITE_REG(hw, EECD, *eecd);
4539 E1000_WRITE_FLUSH(hw);
4540 udelay(hw->eeprom.delay_usec);
4541}
4542
4543/******************************************************************************
4544 * Shift data bits out to the EEPROM.
4545 *
4546 * hw - Struct containing variables accessed by shared code
4547 * data - data to send to the EEPROM
4548 * count - number of bits to shift out
4549 *****************************************************************************/
4550static void
4551e1000_shift_out_ee_bits(struct e1000_hw *hw,
4552 uint16_t data,
4553 uint16_t count)
4554{
4555 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4556 uint32_t eecd;
4557 uint32_t mask;
4558
4559 /* We need to shift "count" bits out to the EEPROM. So, value in the
4560 * "data" parameter will be shifted out to the EEPROM one bit at a time.
4561 * In order to do this, "data" must be broken down into bits.
4562 */
4563 mask = 0x01 << (count - 1);
4564 eecd = E1000_READ_REG(hw, EECD);
4565 if (eeprom->type == e1000_eeprom_microwire) {
4566 eecd &= ~E1000_EECD_DO;
4567 } else if (eeprom->type == e1000_eeprom_spi) {
4568 eecd |= E1000_EECD_DO;
4569 }
4570 do {
4571 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
4572 * and then raising and then lowering the clock (the SK bit controls
4573 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
4574 * by setting "DI" to "0" and then raising and then lowering the clock.
4575 */
4576 eecd &= ~E1000_EECD_DI;
4577
Auke Kok8fc897b2006-08-28 14:56:16 -07004578 if (data & mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004579 eecd |= E1000_EECD_DI;
4580
4581 E1000_WRITE_REG(hw, EECD, eecd);
4582 E1000_WRITE_FLUSH(hw);
4583
4584 udelay(eeprom->delay_usec);
4585
4586 e1000_raise_ee_clk(hw, &eecd);
4587 e1000_lower_ee_clk(hw, &eecd);
4588
4589 mask = mask >> 1;
4590
Auke Kok8fc897b2006-08-28 14:56:16 -07004591 } while (mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004592
4593 /* We leave the "DI" bit set to "0" when we leave this routine. */
4594 eecd &= ~E1000_EECD_DI;
4595 E1000_WRITE_REG(hw, EECD, eecd);
4596}
4597
4598/******************************************************************************
4599 * Shift data bits in from the EEPROM
4600 *
4601 * hw - Struct containing variables accessed by shared code
4602 *****************************************************************************/
4603static uint16_t
4604e1000_shift_in_ee_bits(struct e1000_hw *hw,
4605 uint16_t count)
4606{
4607 uint32_t eecd;
4608 uint32_t i;
4609 uint16_t data;
4610
4611 /* In order to read a register from the EEPROM, we need to shift 'count'
4612 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
4613 * input to the EEPROM (setting the SK bit), and then reading the value of
4614 * the "DO" bit. During this "shifting in" process the "DI" bit should
4615 * always be clear.
4616 */
4617
4618 eecd = E1000_READ_REG(hw, EECD);
4619
4620 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
4621 data = 0;
4622
Auke Kok8fc897b2006-08-28 14:56:16 -07004623 for (i = 0; i < count; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004624 data = data << 1;
4625 e1000_raise_ee_clk(hw, &eecd);
4626
4627 eecd = E1000_READ_REG(hw, EECD);
4628
4629 eecd &= ~(E1000_EECD_DI);
Auke Kok8fc897b2006-08-28 14:56:16 -07004630 if (eecd & E1000_EECD_DO)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004631 data |= 1;
4632
4633 e1000_lower_ee_clk(hw, &eecd);
4634 }
4635
4636 return data;
4637}
4638
4639/******************************************************************************
4640 * Prepares EEPROM for access
4641 *
4642 * hw - Struct containing variables accessed by shared code
4643 *
4644 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
4645 * function should be called before issuing a command to the EEPROM.
4646 *****************************************************************************/
4647static int32_t
4648e1000_acquire_eeprom(struct e1000_hw *hw)
4649{
4650 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4651 uint32_t eecd, i=0;
4652
4653 DEBUGFUNC("e1000_acquire_eeprom");
4654
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004655 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4656 return -E1000_ERR_SWFW_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004657 eecd = E1000_READ_REG(hw, EECD);
4658
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004659 if (hw->mac_type != e1000_82573) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004660 /* Request EEPROM Access */
Auke Kok8fc897b2006-08-28 14:56:16 -07004661 if (hw->mac_type > e1000_82544) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004662 eecd |= E1000_EECD_REQ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004663 E1000_WRITE_REG(hw, EECD, eecd);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004664 eecd = E1000_READ_REG(hw, EECD);
Auke Kok8fc897b2006-08-28 14:56:16 -07004665 while ((!(eecd & E1000_EECD_GNT)) &&
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004666 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
4667 i++;
4668 udelay(5);
4669 eecd = E1000_READ_REG(hw, EECD);
4670 }
Auke Kok8fc897b2006-08-28 14:56:16 -07004671 if (!(eecd & E1000_EECD_GNT)) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004672 eecd &= ~E1000_EECD_REQ;
4673 E1000_WRITE_REG(hw, EECD, eecd);
4674 DEBUGOUT("Could not acquire EEPROM grant\n");
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004675 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004676 return -E1000_ERR_EEPROM;
4677 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004678 }
4679 }
4680
4681 /* Setup EEPROM for Read/Write */
4682
4683 if (eeprom->type == e1000_eeprom_microwire) {
4684 /* Clear SK and DI */
4685 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
4686 E1000_WRITE_REG(hw, EECD, eecd);
4687
4688 /* Set CS */
4689 eecd |= E1000_EECD_CS;
4690 E1000_WRITE_REG(hw, EECD, eecd);
4691 } else if (eeprom->type == e1000_eeprom_spi) {
4692 /* Clear SK and CS */
4693 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4694 E1000_WRITE_REG(hw, EECD, eecd);
4695 udelay(1);
4696 }
4697
4698 return E1000_SUCCESS;
4699}
4700
4701/******************************************************************************
4702 * Returns EEPROM to a "standby" state
4703 *
4704 * hw - Struct containing variables accessed by shared code
4705 *****************************************************************************/
4706static void
4707e1000_standby_eeprom(struct e1000_hw *hw)
4708{
4709 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4710 uint32_t eecd;
4711
4712 eecd = E1000_READ_REG(hw, EECD);
4713
Auke Kok8fc897b2006-08-28 14:56:16 -07004714 if (eeprom->type == e1000_eeprom_microwire) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004715 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4716 E1000_WRITE_REG(hw, EECD, eecd);
4717 E1000_WRITE_FLUSH(hw);
4718 udelay(eeprom->delay_usec);
4719
4720 /* Clock high */
4721 eecd |= E1000_EECD_SK;
4722 E1000_WRITE_REG(hw, EECD, eecd);
4723 E1000_WRITE_FLUSH(hw);
4724 udelay(eeprom->delay_usec);
4725
4726 /* Select EEPROM */
4727 eecd |= E1000_EECD_CS;
4728 E1000_WRITE_REG(hw, EECD, eecd);
4729 E1000_WRITE_FLUSH(hw);
4730 udelay(eeprom->delay_usec);
4731
4732 /* Clock low */
4733 eecd &= ~E1000_EECD_SK;
4734 E1000_WRITE_REG(hw, EECD, eecd);
4735 E1000_WRITE_FLUSH(hw);
4736 udelay(eeprom->delay_usec);
Auke Kok8fc897b2006-08-28 14:56:16 -07004737 } else if (eeprom->type == e1000_eeprom_spi) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004738 /* Toggle CS to flush commands */
4739 eecd |= E1000_EECD_CS;
4740 E1000_WRITE_REG(hw, EECD, eecd);
4741 E1000_WRITE_FLUSH(hw);
4742 udelay(eeprom->delay_usec);
4743 eecd &= ~E1000_EECD_CS;
4744 E1000_WRITE_REG(hw, EECD, eecd);
4745 E1000_WRITE_FLUSH(hw);
4746 udelay(eeprom->delay_usec);
4747 }
4748}
4749
4750/******************************************************************************
4751 * Terminates a command by inverting the EEPROM's chip select pin
4752 *
4753 * hw - Struct containing variables accessed by shared code
4754 *****************************************************************************/
4755static void
4756e1000_release_eeprom(struct e1000_hw *hw)
4757{
4758 uint32_t eecd;
4759
4760 DEBUGFUNC("e1000_release_eeprom");
4761
4762 eecd = E1000_READ_REG(hw, EECD);
4763
4764 if (hw->eeprom.type == e1000_eeprom_spi) {
4765 eecd |= E1000_EECD_CS; /* Pull CS high */
4766 eecd &= ~E1000_EECD_SK; /* Lower SCK */
4767
4768 E1000_WRITE_REG(hw, EECD, eecd);
4769
4770 udelay(hw->eeprom.delay_usec);
Auke Kok8fc897b2006-08-28 14:56:16 -07004771 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004772 /* cleanup eeprom */
4773
4774 /* CS on Microwire is active-high */
4775 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
4776
4777 E1000_WRITE_REG(hw, EECD, eecd);
4778
4779 /* Rising edge of clock */
4780 eecd |= E1000_EECD_SK;
4781 E1000_WRITE_REG(hw, EECD, eecd);
4782 E1000_WRITE_FLUSH(hw);
4783 udelay(hw->eeprom.delay_usec);
4784
4785 /* Falling edge of clock */
4786 eecd &= ~E1000_EECD_SK;
4787 E1000_WRITE_REG(hw, EECD, eecd);
4788 E1000_WRITE_FLUSH(hw);
4789 udelay(hw->eeprom.delay_usec);
4790 }
4791
4792 /* Stop requesting EEPROM access */
Auke Kok8fc897b2006-08-28 14:56:16 -07004793 if (hw->mac_type > e1000_82544) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004794 eecd &= ~E1000_EECD_REQ;
4795 E1000_WRITE_REG(hw, EECD, eecd);
4796 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004797
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004798 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004799}
4800
4801/******************************************************************************
4802 * Reads a 16 bit word from the EEPROM.
4803 *
4804 * hw - Struct containing variables accessed by shared code
4805 *****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07004806static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004807e1000_spi_eeprom_ready(struct e1000_hw *hw)
4808{
4809 uint16_t retry_count = 0;
4810 uint8_t spi_stat_reg;
4811
4812 DEBUGFUNC("e1000_spi_eeprom_ready");
4813
4814 /* Read "Status Register" repeatedly until the LSB is cleared. The
4815 * EEPROM will signal that the command has been completed by clearing
4816 * bit 0 of the internal status register. If it's not cleared within
4817 * 5 milliseconds, then error out.
4818 */
4819 retry_count = 0;
4820 do {
4821 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
4822 hw->eeprom.opcode_bits);
4823 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
4824 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
4825 break;
4826
4827 udelay(5);
4828 retry_count += 5;
4829
4830 e1000_standby_eeprom(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07004831 } while (retry_count < EEPROM_MAX_RETRY_SPI);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004832
4833 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
4834 * only 0-5mSec on 5V devices)
4835 */
Auke Kok8fc897b2006-08-28 14:56:16 -07004836 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004837 DEBUGOUT("SPI EEPROM Status error\n");
4838 return -E1000_ERR_EEPROM;
4839 }
4840
4841 return E1000_SUCCESS;
4842}
4843
4844/******************************************************************************
4845 * Reads a 16 bit word from the EEPROM.
4846 *
4847 * hw - Struct containing variables accessed by shared code
4848 * offset - offset of word in the EEPROM to read
4849 * data - word read from the EEPROM
4850 * words - number of words to read
4851 *****************************************************************************/
4852int32_t
4853e1000_read_eeprom(struct e1000_hw *hw,
4854 uint16_t offset,
4855 uint16_t words,
4856 uint16_t *data)
4857{
4858 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4859 uint32_t i = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004860 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004861
4862 DEBUGFUNC("e1000_read_eeprom");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004863
Linus Torvalds1da177e2005-04-16 15:20:36 -07004864 /* A check for invalid values: offset too large, too many words, and not
4865 * enough words.
4866 */
Auke Kok8fc897b2006-08-28 14:56:16 -07004867 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07004868 (words == 0)) {
4869 DEBUGOUT("\"words\" parameter out of bounds\n");
4870 return -E1000_ERR_EEPROM;
4871 }
4872
Jeff Kirsher4d3518582006-01-12 16:50:48 -08004873 /* FLASH reads without acquiring the semaphore are safe */
4874 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
Auke Kok8fc897b2006-08-28 14:56:16 -07004875 hw->eeprom.use_eerd == FALSE) {
Jeff Kirsher4d3518582006-01-12 16:50:48 -08004876 switch (hw->mac_type) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004877 case e1000_80003es2lan:
4878 break;
Jeff Kirsher4d3518582006-01-12 16:50:48 -08004879 default:
4880 /* Prepare the EEPROM for reading */
4881 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4882 return -E1000_ERR_EEPROM;
4883 break;
4884 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004885 }
4886
Jesse Brandeburg96838a42006-01-18 13:01:39 -08004887 if (eeprom->use_eerd == TRUE) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004888 ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
4889 if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
4890 (hw->mac_type != e1000_82573))
4891 e1000_release_eeprom(hw);
4892 return ret_val;
4893 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004894
Auke Kokcd94dd02006-06-27 09:08:22 -07004895 if (eeprom->type == e1000_eeprom_ich8)
4896 return e1000_read_eeprom_ich8(hw, offset, words, data);
4897
4898 if (eeprom->type == e1000_eeprom_spi) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004899 uint16_t word_in;
4900 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
4901
Auke Kok8fc897b2006-08-28 14:56:16 -07004902 if (e1000_spi_eeprom_ready(hw)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004903 e1000_release_eeprom(hw);
4904 return -E1000_ERR_EEPROM;
4905 }
4906
4907 e1000_standby_eeprom(hw);
4908
4909 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
Auke Kok8fc897b2006-08-28 14:56:16 -07004910 if ((eeprom->address_bits == 8) && (offset >= 128))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004911 read_opcode |= EEPROM_A8_OPCODE_SPI;
4912
4913 /* Send the READ command (opcode + addr) */
4914 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
4915 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
4916
4917 /* Read the data. The address of the eeprom internally increments with
4918 * each byte (spi) being read, saving on the overhead of eeprom setup
4919 * and tear-down. The address counter will roll over if reading beyond
4920 * the size of the eeprom, thus allowing the entire memory to be read
4921 * starting from any offset. */
4922 for (i = 0; i < words; i++) {
4923 word_in = e1000_shift_in_ee_bits(hw, 16);
4924 data[i] = (word_in >> 8) | (word_in << 8);
4925 }
Auke Kok8fc897b2006-08-28 14:56:16 -07004926 } else if (eeprom->type == e1000_eeprom_microwire) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004927 for (i = 0; i < words; i++) {
4928 /* Send the READ command (opcode + addr) */
4929 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
4930 eeprom->opcode_bits);
4931 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
4932 eeprom->address_bits);
4933
4934 /* Read the data. For microwire, each word requires the overhead
4935 * of eeprom setup and tear-down. */
4936 data[i] = e1000_shift_in_ee_bits(hw, 16);
4937 e1000_standby_eeprom(hw);
4938 }
4939 }
4940
4941 /* End this read operation */
4942 e1000_release_eeprom(hw);
4943
4944 return E1000_SUCCESS;
4945}
4946
4947/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004948 * Reads a 16 bit word from the EEPROM using the EERD register.
4949 *
4950 * hw - Struct containing variables accessed by shared code
4951 * offset - offset of word in the EEPROM to read
4952 * data - word read from the EEPROM
4953 * words - number of words to read
4954 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004955static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004956e1000_read_eeprom_eerd(struct e1000_hw *hw,
4957 uint16_t offset,
4958 uint16_t words,
4959 uint16_t *data)
4960{
4961 uint32_t i, eerd = 0;
4962 int32_t error = 0;
4963
4964 for (i = 0; i < words; i++) {
4965 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
4966 E1000_EEPROM_RW_REG_START;
4967
4968 E1000_WRITE_REG(hw, EERD, eerd);
4969 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
Auke Kok76c224b2006-05-23 13:36:06 -07004970
Auke Kok8fc897b2006-08-28 14:56:16 -07004971 if (error) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004972 break;
4973 }
4974 data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
Auke Kok76c224b2006-05-23 13:36:06 -07004975
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004976 }
Auke Kok76c224b2006-05-23 13:36:06 -07004977
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004978 return error;
4979}
4980
4981/******************************************************************************
4982 * Writes a 16 bit word from the EEPROM using the EEWR register.
4983 *
4984 * hw - Struct containing variables accessed by shared code
4985 * offset - offset of word in the EEPROM to read
4986 * data - word read from the EEPROM
4987 * words - number of words to read
4988 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004989static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004990e1000_write_eeprom_eewr(struct e1000_hw *hw,
4991 uint16_t offset,
4992 uint16_t words,
4993 uint16_t *data)
4994{
4995 uint32_t register_value = 0;
4996 uint32_t i = 0;
4997 int32_t error = 0;
4998
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004999 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
5000 return -E1000_ERR_SWFW_SYNC;
5001
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005002 for (i = 0; i < words; i++) {
Auke Kok76c224b2006-05-23 13:36:06 -07005003 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
5004 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005005 E1000_EEPROM_RW_REG_START;
5006
5007 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
Auke Kok8fc897b2006-08-28 14:56:16 -07005008 if (error) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005009 break;
Auke Kok76c224b2006-05-23 13:36:06 -07005010 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005011
5012 E1000_WRITE_REG(hw, EEWR, register_value);
Auke Kok76c224b2006-05-23 13:36:06 -07005013
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005014 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
Auke Kok76c224b2006-05-23 13:36:06 -07005015
Auke Kok8fc897b2006-08-28 14:56:16 -07005016 if (error) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005017 break;
Auke Kok76c224b2006-05-23 13:36:06 -07005018 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005019 }
Auke Kok76c224b2006-05-23 13:36:06 -07005020
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005021 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005022 return error;
5023}
5024
5025/******************************************************************************
5026 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
5027 *
5028 * hw - Struct containing variables accessed by shared code
5029 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005030static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005031e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
5032{
5033 uint32_t attempts = 100000;
5034 uint32_t i, reg = 0;
5035 int32_t done = E1000_ERR_EEPROM;
5036
Auke Kok8fc897b2006-08-28 14:56:16 -07005037 for (i = 0; i < attempts; i++) {
5038 if (eerd == E1000_EEPROM_POLL_READ)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005039 reg = E1000_READ_REG(hw, EERD);
Auke Kok76c224b2006-05-23 13:36:06 -07005040 else
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005041 reg = E1000_READ_REG(hw, EEWR);
5042
Auke Kok8fc897b2006-08-28 14:56:16 -07005043 if (reg & E1000_EEPROM_RW_REG_DONE) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005044 done = E1000_SUCCESS;
5045 break;
5046 }
5047 udelay(5);
5048 }
5049
5050 return done;
5051}
5052
5053/***************************************************************************
5054* Description: Determines if the onboard NVM is FLASH or EEPROM.
5055*
5056* hw - Struct containing variables accessed by shared code
5057****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005058static boolean_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005059e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
5060{
5061 uint32_t eecd = 0;
5062
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005063 DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
5064
Auke Kokcd94dd02006-06-27 09:08:22 -07005065 if (hw->mac_type == e1000_ich8lan)
5066 return FALSE;
5067
5068 if (hw->mac_type == e1000_82573) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005069 eecd = E1000_READ_REG(hw, EECD);
5070
5071 /* Isolate bits 15 & 16 */
5072 eecd = ((eecd >> 15) & 0x03);
5073
5074 /* If both bits are set, device is Flash type */
Auke Kok8fc897b2006-08-28 14:56:16 -07005075 if (eecd == 0x03) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005076 return FALSE;
5077 }
5078 }
5079 return TRUE;
5080}
5081
5082/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07005083 * Verifies that the EEPROM has a valid checksum
5084 *
5085 * hw - Struct containing variables accessed by shared code
5086 *
5087 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
5088 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
5089 * valid.
5090 *****************************************************************************/
5091int32_t
5092e1000_validate_eeprom_checksum(struct e1000_hw *hw)
5093{
5094 uint16_t checksum = 0;
5095 uint16_t i, eeprom_data;
5096
5097 DEBUGFUNC("e1000_validate_eeprom_checksum");
5098
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005099 if ((hw->mac_type == e1000_82573) &&
5100 (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
5101 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
5102 * 10h-12h. Checksum may need to be fixed. */
5103 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
5104 if ((eeprom_data & 0x10) == 0) {
5105 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
5106 * has already been fixed. If the checksum is still wrong and this
5107 * bit is a 1, we need to return bad checksum. Otherwise, we need
5108 * to set this bit to a 1 and update the checksum. */
5109 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
5110 if ((eeprom_data & 0x8000) == 0) {
5111 eeprom_data |= 0x8000;
5112 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
5113 e1000_update_eeprom_checksum(hw);
5114 }
5115 }
5116 }
5117
Auke Kokcd94dd02006-06-27 09:08:22 -07005118 if (hw->mac_type == e1000_ich8lan) {
5119 /* Drivers must allocate the shadow ram structure for the
5120 * EEPROM checksum to be updated. Otherwise, this bit as well
5121 * as the checksum must both be set correctly for this
5122 * validation to pass.
5123 */
5124 e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
5125 if ((eeprom_data & 0x40) == 0) {
5126 eeprom_data |= 0x40;
5127 e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
5128 e1000_update_eeprom_checksum(hw);
5129 }
5130 }
5131
5132 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
5133 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005134 DEBUGOUT("EEPROM Read Error\n");
5135 return -E1000_ERR_EEPROM;
5136 }
5137 checksum += eeprom_data;
5138 }
5139
Auke Kok8fc897b2006-08-28 14:56:16 -07005140 if (checksum == (uint16_t) EEPROM_SUM)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005141 return E1000_SUCCESS;
5142 else {
5143 DEBUGOUT("EEPROM Checksum Invalid\n");
5144 return -E1000_ERR_EEPROM;
5145 }
5146}
5147
5148/******************************************************************************
5149 * Calculates the EEPROM checksum and writes it to the EEPROM
5150 *
5151 * hw - Struct containing variables accessed by shared code
5152 *
5153 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
5154 * Writes the difference to word offset 63 of the EEPROM.
5155 *****************************************************************************/
5156int32_t
5157e1000_update_eeprom_checksum(struct e1000_hw *hw)
5158{
Auke Kokcd94dd02006-06-27 09:08:22 -07005159 uint32_t ctrl_ext;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005160 uint16_t checksum = 0;
5161 uint16_t i, eeprom_data;
5162
5163 DEBUGFUNC("e1000_update_eeprom_checksum");
5164
Auke Kok8fc897b2006-08-28 14:56:16 -07005165 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
5166 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005167 DEBUGOUT("EEPROM Read Error\n");
5168 return -E1000_ERR_EEPROM;
5169 }
5170 checksum += eeprom_data;
5171 }
5172 checksum = (uint16_t) EEPROM_SUM - checksum;
Auke Kok8fc897b2006-08-28 14:56:16 -07005173 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005174 DEBUGOUT("EEPROM Write Error\n");
5175 return -E1000_ERR_EEPROM;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005176 } else if (hw->eeprom.type == e1000_eeprom_flash) {
5177 e1000_commit_shadow_ram(hw);
Auke Kokcd94dd02006-06-27 09:08:22 -07005178 } else if (hw->eeprom.type == e1000_eeprom_ich8) {
5179 e1000_commit_shadow_ram(hw);
5180 /* Reload the EEPROM, or else modifications will not appear
5181 * until after next adapter reset. */
5182 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5183 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
5184 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
Jeff Garzikf8ec4732006-09-19 15:27:07 -04005185 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005186 }
5187 return E1000_SUCCESS;
5188}
5189
5190/******************************************************************************
5191 * Parent function for writing words to the different EEPROM types.
5192 *
5193 * hw - Struct containing variables accessed by shared code
5194 * offset - offset within the EEPROM to be written to
5195 * words - number of words to write
5196 * data - 16 bit word to be written to the EEPROM
5197 *
5198 * If e1000_update_eeprom_checksum is not called after this function, the
5199 * EEPROM will most likely contain an invalid checksum.
5200 *****************************************************************************/
5201int32_t
5202e1000_write_eeprom(struct e1000_hw *hw,
5203 uint16_t offset,
5204 uint16_t words,
5205 uint16_t *data)
5206{
5207 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5208 int32_t status = 0;
5209
5210 DEBUGFUNC("e1000_write_eeprom");
5211
5212 /* A check for invalid values: offset too large, too many words, and not
5213 * enough words.
5214 */
Auke Kok8fc897b2006-08-28 14:56:16 -07005215 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07005216 (words == 0)) {
5217 DEBUGOUT("\"words\" parameter out of bounds\n");
5218 return -E1000_ERR_EEPROM;
5219 }
5220
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005221 /* 82573 writes only through eewr */
Auke Kok8fc897b2006-08-28 14:56:16 -07005222 if (eeprom->use_eewr == TRUE)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005223 return e1000_write_eeprom_eewr(hw, offset, words, data);
5224
Auke Kokcd94dd02006-06-27 09:08:22 -07005225 if (eeprom->type == e1000_eeprom_ich8)
5226 return e1000_write_eeprom_ich8(hw, offset, words, data);
5227
Linus Torvalds1da177e2005-04-16 15:20:36 -07005228 /* Prepare the EEPROM for writing */
5229 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5230 return -E1000_ERR_EEPROM;
5231
Auke Kok8fc897b2006-08-28 14:56:16 -07005232 if (eeprom->type == e1000_eeprom_microwire) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005233 status = e1000_write_eeprom_microwire(hw, offset, words, data);
5234 } else {
5235 status = e1000_write_eeprom_spi(hw, offset, words, data);
Jeff Garzikf8ec4732006-09-19 15:27:07 -04005236 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005237 }
5238
5239 /* Done with writing */
5240 e1000_release_eeprom(hw);
5241
5242 return status;
5243}
5244
5245/******************************************************************************
5246 * Writes a 16 bit word to a given offset in an SPI EEPROM.
5247 *
5248 * hw - Struct containing variables accessed by shared code
5249 * offset - offset within the EEPROM to be written to
5250 * words - number of words to write
5251 * data - pointer to array of 8 bit words to be written to the EEPROM
5252 *
5253 *****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07005254static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07005255e1000_write_eeprom_spi(struct e1000_hw *hw,
5256 uint16_t offset,
5257 uint16_t words,
5258 uint16_t *data)
5259{
5260 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5261 uint16_t widx = 0;
5262
5263 DEBUGFUNC("e1000_write_eeprom_spi");
5264
5265 while (widx < words) {
5266 uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
5267
Auke Kok8fc897b2006-08-28 14:56:16 -07005268 if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005269
5270 e1000_standby_eeprom(hw);
5271
5272 /* Send the WRITE ENABLE command (8 bit opcode ) */
5273 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
5274 eeprom->opcode_bits);
5275
5276 e1000_standby_eeprom(hw);
5277
5278 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
Auke Kok8fc897b2006-08-28 14:56:16 -07005279 if ((eeprom->address_bits == 8) && (offset >= 128))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005280 write_opcode |= EEPROM_A8_OPCODE_SPI;
5281
5282 /* Send the Write command (8-bit opcode + addr) */
5283 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
5284
5285 e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
5286 eeprom->address_bits);
5287
5288 /* Send the data */
5289
5290 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
5291 while (widx < words) {
5292 uint16_t word_out = data[widx];
5293 word_out = (word_out >> 8) | (word_out << 8);
5294 e1000_shift_out_ee_bits(hw, word_out, 16);
5295 widx++;
5296
5297 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
5298 * operation, while the smaller eeproms are capable of an 8-byte
5299 * PAGE WRITE operation. Break the inner loop to pass new address
5300 */
Auke Kok8fc897b2006-08-28 14:56:16 -07005301 if ((((offset + widx)*2) % eeprom->page_size) == 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005302 e1000_standby_eeprom(hw);
5303 break;
5304 }
5305 }
5306 }
5307
5308 return E1000_SUCCESS;
5309}
5310
5311/******************************************************************************
5312 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
5313 *
5314 * hw - Struct containing variables accessed by shared code
5315 * offset - offset within the EEPROM to be written to
5316 * words - number of words to write
5317 * data - pointer to array of 16 bit words to be written to the EEPROM
5318 *
5319 *****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07005320static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07005321e1000_write_eeprom_microwire(struct e1000_hw *hw,
5322 uint16_t offset,
5323 uint16_t words,
5324 uint16_t *data)
5325{
5326 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5327 uint32_t eecd;
5328 uint16_t words_written = 0;
5329 uint16_t i = 0;
5330
5331 DEBUGFUNC("e1000_write_eeprom_microwire");
5332
5333 /* Send the write enable command to the EEPROM (3-bit opcode plus
5334 * 6/8-bit dummy address beginning with 11). It's less work to include
5335 * the 11 of the dummy address as part of the opcode than it is to shift
5336 * it over the correct number of bits for the address. This puts the
5337 * EEPROM into write/erase mode.
5338 */
5339 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
5340 (uint16_t)(eeprom->opcode_bits + 2));
5341
5342 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5343
5344 /* Prepare the EEPROM */
5345 e1000_standby_eeprom(hw);
5346
5347 while (words_written < words) {
5348 /* Send the Write command (3-bit opcode + addr) */
5349 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
5350 eeprom->opcode_bits);
5351
5352 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
5353 eeprom->address_bits);
5354
5355 /* Send the data */
5356 e1000_shift_out_ee_bits(hw, data[words_written], 16);
5357
5358 /* Toggle the CS line. This in effect tells the EEPROM to execute
5359 * the previous command.
5360 */
5361 e1000_standby_eeprom(hw);
5362
5363 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
5364 * signal that the command has been completed by raising the DO signal.
5365 * If DO does not go high in 10 milliseconds, then error out.
5366 */
Auke Kok8fc897b2006-08-28 14:56:16 -07005367 for (i = 0; i < 200; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005368 eecd = E1000_READ_REG(hw, EECD);
Auke Kok8fc897b2006-08-28 14:56:16 -07005369 if (eecd & E1000_EECD_DO) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005370 udelay(50);
5371 }
Auke Kok8fc897b2006-08-28 14:56:16 -07005372 if (i == 200) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005373 DEBUGOUT("EEPROM Write did not complete\n");
5374 return -E1000_ERR_EEPROM;
5375 }
5376
5377 /* Recover from write */
5378 e1000_standby_eeprom(hw);
5379
5380 words_written++;
5381 }
5382
5383 /* Send the write disable command to the EEPROM (3-bit opcode plus
5384 * 6/8-bit dummy address beginning with 10). It's less work to include
5385 * the 10 of the dummy address as part of the opcode than it is to shift
5386 * it over the correct number of bits for the address. This takes the
5387 * EEPROM out of write/erase mode.
5388 */
5389 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
5390 (uint16_t)(eeprom->opcode_bits + 2));
5391
5392 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5393
5394 return E1000_SUCCESS;
5395}
5396
5397/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005398 * Flushes the cached eeprom to NVM. This is done by saving the modified values
5399 * in the eeprom cache and the non modified values in the currently active bank
5400 * to the new bank.
5401 *
5402 * hw - Struct containing variables accessed by shared code
5403 * offset - offset of word in the EEPROM to read
5404 * data - word read from the EEPROM
5405 * words - number of words to read
5406 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005407static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005408e1000_commit_shadow_ram(struct e1000_hw *hw)
5409{
5410 uint32_t attempts = 100000;
5411 uint32_t eecd = 0;
5412 uint32_t flop = 0;
5413 uint32_t i = 0;
5414 int32_t error = E1000_SUCCESS;
Auke Kokcd94dd02006-06-27 09:08:22 -07005415 uint32_t old_bank_offset = 0;
5416 uint32_t new_bank_offset = 0;
5417 uint32_t sector_retries = 0;
5418 uint8_t low_byte = 0;
5419 uint8_t high_byte = 0;
5420 uint8_t temp_byte = 0;
5421 boolean_t sector_write_failed = FALSE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005422
5423 if (hw->mac_type == e1000_82573) {
Auke Kokcd94dd02006-06-27 09:08:22 -07005424 /* The flop register will be used to determine if flash type is STM */
5425 flop = E1000_READ_REG(hw, FLOP);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005426 for (i=0; i < attempts; i++) {
5427 eecd = E1000_READ_REG(hw, EECD);
5428 if ((eecd & E1000_EECD_FLUPD) == 0) {
5429 break;
5430 }
5431 udelay(5);
5432 }
5433
5434 if (i == attempts) {
5435 return -E1000_ERR_EEPROM;
5436 }
5437
Jesse Brandeburg96838a42006-01-18 13:01:39 -08005438 /* If STM opcode located in bits 15:8 of flop, reset firmware */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005439 if ((flop & 0xFF00) == E1000_STM_OPCODE) {
5440 E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
5441 }
5442
5443 /* Perform the flash update */
5444 E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
5445
Jesse Brandeburg96838a42006-01-18 13:01:39 -08005446 for (i=0; i < attempts; i++) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005447 eecd = E1000_READ_REG(hw, EECD);
5448 if ((eecd & E1000_EECD_FLUPD) == 0) {
5449 break;
5450 }
5451 udelay(5);
5452 }
5453
5454 if (i == attempts) {
5455 return -E1000_ERR_EEPROM;
5456 }
5457 }
5458
Auke Kokcd94dd02006-06-27 09:08:22 -07005459 if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
5460 /* We're writing to the opposite bank so if we're on bank 1,
5461 * write to bank 0 etc. We also need to erase the segment that
5462 * is going to be written */
5463 if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
5464 new_bank_offset = hw->flash_bank_size * 2;
5465 old_bank_offset = 0;
5466 e1000_erase_ich8_4k_segment(hw, 1);
5467 } else {
5468 old_bank_offset = hw->flash_bank_size * 2;
5469 new_bank_offset = 0;
5470 e1000_erase_ich8_4k_segment(hw, 0);
5471 }
5472
5473 do {
5474 sector_write_failed = FALSE;
5475 /* Loop for every byte in the shadow RAM,
5476 * which is in units of words. */
5477 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5478 /* Determine whether to write the value stored
5479 * in the other NVM bank or a modified value stored
5480 * in the shadow RAM */
5481 if (hw->eeprom_shadow_ram[i].modified == TRUE) {
5482 low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
5483 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5484 &temp_byte);
5485 udelay(100);
5486 error = e1000_verify_write_ich8_byte(hw,
5487 (i << 1) + new_bank_offset,
5488 low_byte);
5489 if (error != E1000_SUCCESS)
5490 sector_write_failed = TRUE;
5491 high_byte =
5492 (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
5493 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5494 &temp_byte);
5495 udelay(100);
5496 } else {
5497 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5498 &low_byte);
5499 udelay(100);
5500 error = e1000_verify_write_ich8_byte(hw,
5501 (i << 1) + new_bank_offset, low_byte);
5502 if (error != E1000_SUCCESS)
5503 sector_write_failed = TRUE;
5504 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5505 &high_byte);
5506 }
5507
5508 /* If the word is 0x13, then make sure the signature bits
5509 * (15:14) are 11b until the commit has completed.
5510 * This will allow us to write 10b which indicates the
5511 * signature is valid. We want to do this after the write
5512 * has completed so that we don't mark the segment valid
5513 * while the write is still in progress */
5514 if (i == E1000_ICH8_NVM_SIG_WORD)
5515 high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
5516
5517 error = e1000_verify_write_ich8_byte(hw,
5518 (i << 1) + new_bank_offset + 1, high_byte);
5519 if (error != E1000_SUCCESS)
5520 sector_write_failed = TRUE;
5521
5522 if (sector_write_failed == FALSE) {
5523 /* Clear the now not used entry in the cache */
5524 hw->eeprom_shadow_ram[i].modified = FALSE;
5525 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
5526 }
5527 }
5528
5529 /* Don't bother writing the segment valid bits if sector
5530 * programming failed. */
5531 if (sector_write_failed == FALSE) {
5532 /* Finally validate the new segment by setting bit 15:14
5533 * to 10b in word 0x13 , this can be done without an
5534 * erase as well since these bits are 11 to start with
5535 * and we need to change bit 14 to 0b */
5536 e1000_read_ich8_byte(hw,
5537 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5538 &high_byte);
5539 high_byte &= 0xBF;
5540 error = e1000_verify_write_ich8_byte(hw,
5541 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5542 high_byte);
5543 if (error != E1000_SUCCESS)
5544 sector_write_failed = TRUE;
5545
5546 /* And invalidate the previously valid segment by setting
5547 * its signature word (0x13) high_byte to 0b. This can be
5548 * done without an erase because flash erase sets all bits
5549 * to 1's. We can write 1's to 0's without an erase */
5550 error = e1000_verify_write_ich8_byte(hw,
5551 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
5552 0);
5553 if (error != E1000_SUCCESS)
5554 sector_write_failed = TRUE;
5555 }
5556 } while (++sector_retries < 10 && sector_write_failed == TRUE);
5557 }
5558
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005559 return error;
5560}
5561
5562/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07005563 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
5564 * second function of dual function devices
5565 *
5566 * hw - Struct containing variables accessed by shared code
5567 *****************************************************************************/
5568int32_t
5569e1000_read_mac_addr(struct e1000_hw * hw)
5570{
5571 uint16_t offset;
5572 uint16_t eeprom_data, i;
5573
5574 DEBUGFUNC("e1000_read_mac_addr");
5575
Auke Kok8fc897b2006-08-28 14:56:16 -07005576 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005577 offset = i >> 1;
Auke Kok8fc897b2006-08-28 14:56:16 -07005578 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005579 DEBUGOUT("EEPROM Read Error\n");
5580 return -E1000_ERR_EEPROM;
5581 }
5582 hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
5583 hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
5584 }
Jesse Brandeburg96838a42006-01-18 13:01:39 -08005585
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005586 switch (hw->mac_type) {
5587 default:
5588 break;
5589 case e1000_82546:
5590 case e1000_82546_rev_3:
5591 case e1000_82571:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005592 case e1000_80003es2lan:
Auke Kok8fc897b2006-08-28 14:56:16 -07005593 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005594 hw->perm_mac_addr[5] ^= 0x01;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005595 break;
5596 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005597
Auke Kok8fc897b2006-08-28 14:56:16 -07005598 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005599 hw->mac_addr[i] = hw->perm_mac_addr[i];
5600 return E1000_SUCCESS;
5601}
5602
5603/******************************************************************************
5604 * Initializes receive address filters.
5605 *
5606 * hw - Struct containing variables accessed by shared code
5607 *
5608 * Places the MAC address in receive address register 0 and clears the rest
5609 * of the receive addresss registers. Clears the multicast table. Assumes
5610 * the receiver is in reset when the routine is called.
5611 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005612static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07005613e1000_init_rx_addrs(struct e1000_hw *hw)
5614{
5615 uint32_t i;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005616 uint32_t rar_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005617
5618 DEBUGFUNC("e1000_init_rx_addrs");
5619
5620 /* Setup the receive address. */
5621 DEBUGOUT("Programming MAC Address into RAR[0]\n");
5622
5623 e1000_rar_set(hw, hw->mac_addr, 0);
5624
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005625 rar_num = E1000_RAR_ENTRIES;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005626
5627 /* Reserve a spot for the Locally Administered Address to work around
5628 * an 82571 issue in which a reset on one port will reload the MAC on
5629 * the other port. */
5630 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
5631 rar_num -= 1;
Auke Kokcd94dd02006-06-27 09:08:22 -07005632 if (hw->mac_type == e1000_ich8lan)
5633 rar_num = E1000_RAR_ENTRIES_ICH8LAN;
5634
Linus Torvalds1da177e2005-04-16 15:20:36 -07005635 /* Zero out the other 15 receive addresses. */
5636 DEBUGOUT("Clearing RAR[1-15]\n");
Auke Kok8fc897b2006-08-28 14:56:16 -07005637 for (i = 1; i < rar_num; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005638 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005639 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005640 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005641 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005642 }
5643}
5644
5645/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07005646 * Hashes an address to determine its location in the multicast table
5647 *
5648 * hw - Struct containing variables accessed by shared code
5649 * mc_addr - the multicast address to hash
5650 *****************************************************************************/
5651uint32_t
5652e1000_hash_mc_addr(struct e1000_hw *hw,
5653 uint8_t *mc_addr)
5654{
5655 uint32_t hash_value = 0;
5656
5657 /* The portion of the address that is used for the hash table is
5658 * determined by the mc_filter_type setting.
5659 */
5660 switch (hw->mc_filter_type) {
5661 /* [0] [1] [2] [3] [4] [5]
5662 * 01 AA 00 12 34 56
5663 * LSB MSB
5664 */
5665 case 0:
Auke Kokcd94dd02006-06-27 09:08:22 -07005666 if (hw->mac_type == e1000_ich8lan) {
5667 /* [47:38] i.e. 0x158 for above example address */
5668 hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
5669 } else {
5670 /* [47:36] i.e. 0x563 for above example address */
5671 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5672 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005673 break;
5674 case 1:
Auke Kokcd94dd02006-06-27 09:08:22 -07005675 if (hw->mac_type == e1000_ich8lan) {
5676 /* [46:37] i.e. 0x2B1 for above example address */
5677 hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
5678 } else {
5679 /* [46:35] i.e. 0xAC6 for above example address */
5680 hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
5681 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005682 break;
5683 case 2:
Auke Kokcd94dd02006-06-27 09:08:22 -07005684 if (hw->mac_type == e1000_ich8lan) {
5685 /*[45:36] i.e. 0x163 for above example address */
5686 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5687 } else {
5688 /* [45:34] i.e. 0x5D8 for above example address */
5689 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5690 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005691 break;
5692 case 3:
Auke Kokcd94dd02006-06-27 09:08:22 -07005693 if (hw->mac_type == e1000_ich8lan) {
5694 /* [43:34] i.e. 0x18D for above example address */
5695 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5696 } else {
5697 /* [43:32] i.e. 0x634 for above example address */
5698 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
5699 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005700 break;
5701 }
5702
5703 hash_value &= 0xFFF;
Auke Kokcd94dd02006-06-27 09:08:22 -07005704 if (hw->mac_type == e1000_ich8lan)
5705 hash_value &= 0x3FF;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005706
Linus Torvalds1da177e2005-04-16 15:20:36 -07005707 return hash_value;
5708}
5709
5710/******************************************************************************
5711 * Sets the bit in the multicast table corresponding to the hash value.
5712 *
5713 * hw - Struct containing variables accessed by shared code
5714 * hash_value - Multicast address hash value
5715 *****************************************************************************/
5716void
5717e1000_mta_set(struct e1000_hw *hw,
5718 uint32_t hash_value)
5719{
5720 uint32_t hash_bit, hash_reg;
5721 uint32_t mta;
5722 uint32_t temp;
5723
5724 /* The MTA is a register array of 128 32-bit registers.
5725 * It is treated like an array of 4096 bits. We want to set
5726 * bit BitArray[hash_value]. So we figure out what register
5727 * the bit is in, read it, OR in the new bit, then write
5728 * back the new value. The register is determined by the
5729 * upper 7 bits of the hash value and the bit within that
5730 * register are determined by the lower 5 bits of the value.
5731 */
5732 hash_reg = (hash_value >> 5) & 0x7F;
Auke Kokcd94dd02006-06-27 09:08:22 -07005733 if (hw->mac_type == e1000_ich8lan)
5734 hash_reg &= 0x1F;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005735 hash_bit = hash_value & 0x1F;
5736
5737 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
5738
5739 mta |= (1 << hash_bit);
5740
5741 /* If we are on an 82544 and we are trying to write an odd offset
5742 * in the MTA, save off the previous entry before writing and
5743 * restore the old value after writing.
5744 */
Auke Kok8fc897b2006-08-28 14:56:16 -07005745 if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005746 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
5747 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
Auke Kok4ca213a2006-06-27 09:07:08 -07005748 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005749 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
Auke Kok4ca213a2006-06-27 09:07:08 -07005750 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005751 } else {
5752 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
Auke Kok4ca213a2006-06-27 09:07:08 -07005753 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005754 }
5755}
5756
5757/******************************************************************************
5758 * Puts an ethernet address into a receive address register.
5759 *
5760 * hw - Struct containing variables accessed by shared code
5761 * addr - Address to put into receive address register
5762 * index - Receive address register to write
5763 *****************************************************************************/
5764void
5765e1000_rar_set(struct e1000_hw *hw,
5766 uint8_t *addr,
5767 uint32_t index)
5768{
5769 uint32_t rar_low, rar_high;
5770
5771 /* HW expects these in little endian so we reverse the byte order
5772 * from network order (big endian) to little endian
5773 */
5774 rar_low = ((uint32_t) addr[0] |
5775 ((uint32_t) addr[1] << 8) |
5776 ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
Jeff Kirsher8df06e52006-03-02 18:18:32 -08005777 rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005778
Jeff Kirsher8df06e52006-03-02 18:18:32 -08005779 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
5780 * unit hang.
5781 *
5782 * Description:
5783 * If there are any Rx frames queued up or otherwise present in the HW
5784 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
5785 * hang. To work around this issue, we have to disable receives and
5786 * flush out all Rx frames before we enable RSS. To do so, we modify we
5787 * redirect all Rx traffic to manageability and then reset the HW.
5788 * This flushes away Rx frames, and (since the redirections to
5789 * manageability persists across resets) keeps new ones from coming in
5790 * while we work. Then, we clear the Address Valid AV bit for all MAC
5791 * addresses and undo the re-direction to manageability.
5792 * Now, frames are coming in again, but the MAC won't accept them, so
5793 * far so good. We now proceed to initialize RSS (if necessary) and
5794 * configure the Rx unit. Last, we re-enable the AV bits and continue
5795 * on our merry way.
5796 */
5797 switch (hw->mac_type) {
5798 case e1000_82571:
5799 case e1000_82572:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005800 case e1000_80003es2lan:
Jeff Kirsher8df06e52006-03-02 18:18:32 -08005801 if (hw->leave_av_bit_off == TRUE)
5802 break;
5803 default:
5804 /* Indicate to hardware the Address is Valid. */
5805 rar_high |= E1000_RAH_AV;
5806 break;
5807 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005808
5809 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
Auke Kok4ca213a2006-06-27 09:07:08 -07005810 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005811 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
Auke Kok4ca213a2006-06-27 09:07:08 -07005812 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005813}
5814
5815/******************************************************************************
5816 * Writes a value to the specified offset in the VLAN filter table.
5817 *
5818 * hw - Struct containing variables accessed by shared code
5819 * offset - Offset in VLAN filer table to write
5820 * value - Value to write into VLAN filter table
5821 *****************************************************************************/
5822void
5823e1000_write_vfta(struct e1000_hw *hw,
5824 uint32_t offset,
5825 uint32_t value)
5826{
5827 uint32_t temp;
5828
Auke Kokcd94dd02006-06-27 09:08:22 -07005829 if (hw->mac_type == e1000_ich8lan)
5830 return;
5831
5832 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005833 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
5834 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
Auke Kok4ca213a2006-06-27 09:07:08 -07005835 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005836 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
Auke Kok4ca213a2006-06-27 09:07:08 -07005837 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005838 } else {
5839 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
Auke Kok4ca213a2006-06-27 09:07:08 -07005840 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005841 }
5842}
5843
5844/******************************************************************************
5845 * Clears the VLAN filer table
5846 *
5847 * hw - Struct containing variables accessed by shared code
5848 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005849static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07005850e1000_clear_vfta(struct e1000_hw *hw)
5851{
5852 uint32_t offset;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005853 uint32_t vfta_value = 0;
5854 uint32_t vfta_offset = 0;
5855 uint32_t vfta_bit_in_reg = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005856
Auke Kokcd94dd02006-06-27 09:08:22 -07005857 if (hw->mac_type == e1000_ich8lan)
5858 return;
5859
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005860 if (hw->mac_type == e1000_82573) {
5861 if (hw->mng_cookie.vlan_id != 0) {
5862 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
5863 * ID. The following operations determine which 32b entry
5864 * (i.e. offset) into the array we want to set the VLAN ID
5865 * (i.e. bit) of the manageability unit. */
5866 vfta_offset = (hw->mng_cookie.vlan_id >>
5867 E1000_VFTA_ENTRY_SHIFT) &
5868 E1000_VFTA_ENTRY_MASK;
5869 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
5870 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
5871 }
5872 }
5873 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
5874 /* If the offset we want to clear is the same offset of the
5875 * manageability VLAN ID, then clear all bits except that of the
5876 * manageability unit */
5877 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
5878 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
Auke Kok4ca213a2006-06-27 09:07:08 -07005879 E1000_WRITE_FLUSH(hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005880 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005881}
5882
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005883static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07005884e1000_id_led_init(struct e1000_hw * hw)
5885{
5886 uint32_t ledctl;
5887 const uint32_t ledctl_mask = 0x000000FF;
5888 const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
5889 const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
5890 uint16_t eeprom_data, i, temp;
5891 const uint16_t led_mask = 0x0F;
5892
5893 DEBUGFUNC("e1000_id_led_init");
5894
Auke Kok8fc897b2006-08-28 14:56:16 -07005895 if (hw->mac_type < e1000_82540) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005896 /* Nothing to do */
5897 return E1000_SUCCESS;
5898 }
5899
5900 ledctl = E1000_READ_REG(hw, LEDCTL);
5901 hw->ledctl_default = ledctl;
5902 hw->ledctl_mode1 = hw->ledctl_default;
5903 hw->ledctl_mode2 = hw->ledctl_default;
5904
Auke Kok8fc897b2006-08-28 14:56:16 -07005905 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005906 DEBUGOUT("EEPROM Read Error\n");
5907 return -E1000_ERR_EEPROM;
5908 }
Auke Kokcd94dd02006-06-27 09:08:22 -07005909
5910 if ((hw->mac_type == e1000_82573) &&
5911 (eeprom_data == ID_LED_RESERVED_82573))
5912 eeprom_data = ID_LED_DEFAULT_82573;
5913 else if ((eeprom_data == ID_LED_RESERVED_0000) ||
5914 (eeprom_data == ID_LED_RESERVED_FFFF)) {
5915 if (hw->mac_type == e1000_ich8lan)
5916 eeprom_data = ID_LED_DEFAULT_ICH8LAN;
5917 else
5918 eeprom_data = ID_LED_DEFAULT;
5919 }
5920 for (i = 0; i < 4; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005921 temp = (eeprom_data >> (i << 2)) & led_mask;
Auke Kok8fc897b2006-08-28 14:56:16 -07005922 switch (temp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005923 case ID_LED_ON1_DEF2:
5924 case ID_LED_ON1_ON2:
5925 case ID_LED_ON1_OFF2:
5926 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
5927 hw->ledctl_mode1 |= ledctl_on << (i << 3);
5928 break;
5929 case ID_LED_OFF1_DEF2:
5930 case ID_LED_OFF1_ON2:
5931 case ID_LED_OFF1_OFF2:
5932 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
5933 hw->ledctl_mode1 |= ledctl_off << (i << 3);
5934 break;
5935 default:
5936 /* Do nothing */
5937 break;
5938 }
Auke Kok8fc897b2006-08-28 14:56:16 -07005939 switch (temp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005940 case ID_LED_DEF1_ON2:
5941 case ID_LED_ON1_ON2:
5942 case ID_LED_OFF1_ON2:
5943 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
5944 hw->ledctl_mode2 |= ledctl_on << (i << 3);
5945 break;
5946 case ID_LED_DEF1_OFF2:
5947 case ID_LED_ON1_OFF2:
5948 case ID_LED_OFF1_OFF2:
5949 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
5950 hw->ledctl_mode2 |= ledctl_off << (i << 3);
5951 break;
5952 default:
5953 /* Do nothing */
5954 break;
5955 }
5956 }
5957 return E1000_SUCCESS;
5958}
5959
5960/******************************************************************************
5961 * Prepares SW controlable LED for use and saves the current state of the LED.
5962 *
5963 * hw - Struct containing variables accessed by shared code
5964 *****************************************************************************/
5965int32_t
5966e1000_setup_led(struct e1000_hw *hw)
5967{
5968 uint32_t ledctl;
5969 int32_t ret_val = E1000_SUCCESS;
5970
5971 DEBUGFUNC("e1000_setup_led");
5972
Auke Kok8fc897b2006-08-28 14:56:16 -07005973 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005974 case e1000_82542_rev2_0:
5975 case e1000_82542_rev2_1:
5976 case e1000_82543:
5977 case e1000_82544:
5978 /* No setup necessary */
5979 break;
5980 case e1000_82541:
5981 case e1000_82547:
5982 case e1000_82541_rev_2:
5983 case e1000_82547_rev_2:
5984 /* Turn off PHY Smart Power Down (if enabled) */
5985 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
5986 &hw->phy_spd_default);
Auke Kok8fc897b2006-08-28 14:56:16 -07005987 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005988 return ret_val;
5989 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5990 (uint16_t)(hw->phy_spd_default &
5991 ~IGP01E1000_GMII_SPD));
Auke Kok8fc897b2006-08-28 14:56:16 -07005992 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005993 return ret_val;
5994 /* Fall Through */
5995 default:
Auke Kok8fc897b2006-08-28 14:56:16 -07005996 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005997 ledctl = E1000_READ_REG(hw, LEDCTL);
5998 /* Save current LEDCTL settings */
5999 hw->ledctl_default = ledctl;
6000 /* Turn off LED0 */
6001 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
6002 E1000_LEDCTL_LED0_BLINK |
6003 E1000_LEDCTL_LED0_MODE_MASK);
6004 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
6005 E1000_LEDCTL_LED0_MODE_SHIFT);
6006 E1000_WRITE_REG(hw, LEDCTL, ledctl);
Auke Kok8fc897b2006-08-28 14:56:16 -07006007 } else if (hw->media_type == e1000_media_type_copper)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006008 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6009 break;
6010 }
6011
6012 return E1000_SUCCESS;
6013}
6014
Auke Kok8fc897b2006-08-28 14:56:16 -07006015
Linus Torvalds1da177e2005-04-16 15:20:36 -07006016/******************************************************************************
Auke Kokf1b3a852006-06-27 09:07:56 -07006017 * Used on 82571 and later Si that has LED blink bits.
6018 * Callers must use their own timer and should have already called
6019 * e1000_id_led_init()
6020 * Call e1000_cleanup led() to stop blinking
6021 *
6022 * hw - Struct containing variables accessed by shared code
6023 *****************************************************************************/
6024int32_t
6025e1000_blink_led_start(struct e1000_hw *hw)
6026{
6027 int16_t i;
6028 uint32_t ledctl_blink = 0;
6029
6030 DEBUGFUNC("e1000_id_led_blink_on");
6031
6032 if (hw->mac_type < e1000_82571) {
6033 /* Nothing to do */
6034 return E1000_SUCCESS;
6035 }
6036 if (hw->media_type == e1000_media_type_fiber) {
6037 /* always blink LED0 for PCI-E fiber */
6038 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
6039 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
6040 } else {
6041 /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6042 ledctl_blink = hw->ledctl_mode2;
6043 for (i=0; i < 4; i++)
6044 if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
6045 E1000_LEDCTL_MODE_LED_ON)
6046 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
6047 }
6048
6049 E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
6050
6051 return E1000_SUCCESS;
6052}
6053
6054/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07006055 * Restores the saved state of the SW controlable LED.
6056 *
6057 * hw - Struct containing variables accessed by shared code
6058 *****************************************************************************/
6059int32_t
6060e1000_cleanup_led(struct e1000_hw *hw)
6061{
6062 int32_t ret_val = E1000_SUCCESS;
6063
6064 DEBUGFUNC("e1000_cleanup_led");
6065
Auke Kok8fc897b2006-08-28 14:56:16 -07006066 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006067 case e1000_82542_rev2_0:
6068 case e1000_82542_rev2_1:
6069 case e1000_82543:
6070 case e1000_82544:
6071 /* No cleanup necessary */
6072 break;
6073 case e1000_82541:
6074 case e1000_82547:
6075 case e1000_82541_rev_2:
6076 case e1000_82547_rev_2:
6077 /* Turn on PHY Smart Power Down (if previously enabled) */
6078 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6079 hw->phy_spd_default);
Auke Kok8fc897b2006-08-28 14:56:16 -07006080 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006081 return ret_val;
6082 /* Fall Through */
6083 default:
Auke Kokcd94dd02006-06-27 09:08:22 -07006084 if (hw->phy_type == e1000_phy_ife) {
6085 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
6086 break;
6087 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006088 /* Restore LEDCTL settings */
6089 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
6090 break;
6091 }
6092
6093 return E1000_SUCCESS;
6094}
6095
6096/******************************************************************************
6097 * Turns on the software controllable LED
6098 *
6099 * hw - Struct containing variables accessed by shared code
6100 *****************************************************************************/
6101int32_t
6102e1000_led_on(struct e1000_hw *hw)
6103{
6104 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6105
6106 DEBUGFUNC("e1000_led_on");
6107
Auke Kok8fc897b2006-08-28 14:56:16 -07006108 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006109 case e1000_82542_rev2_0:
6110 case e1000_82542_rev2_1:
6111 case e1000_82543:
6112 /* Set SW Defineable Pin 0 to turn on the LED */
6113 ctrl |= E1000_CTRL_SWDPIN0;
6114 ctrl |= E1000_CTRL_SWDPIO0;
6115 break;
6116 case e1000_82544:
Auke Kok8fc897b2006-08-28 14:56:16 -07006117 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006118 /* Set SW Defineable Pin 0 to turn on the LED */
6119 ctrl |= E1000_CTRL_SWDPIN0;
6120 ctrl |= E1000_CTRL_SWDPIO0;
6121 } else {
6122 /* Clear SW Defineable Pin 0 to turn on the LED */
6123 ctrl &= ~E1000_CTRL_SWDPIN0;
6124 ctrl |= E1000_CTRL_SWDPIO0;
6125 }
6126 break;
6127 default:
Auke Kok8fc897b2006-08-28 14:56:16 -07006128 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006129 /* Clear SW Defineable Pin 0 to turn on the LED */
6130 ctrl &= ~E1000_CTRL_SWDPIN0;
6131 ctrl |= E1000_CTRL_SWDPIO0;
Auke Kokcd94dd02006-06-27 09:08:22 -07006132 } else if (hw->phy_type == e1000_phy_ife) {
6133 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6134 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
6135 } else if (hw->media_type == e1000_media_type_copper) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006136 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
6137 return E1000_SUCCESS;
6138 }
6139 break;
6140 }
6141
6142 E1000_WRITE_REG(hw, CTRL, ctrl);
6143
6144 return E1000_SUCCESS;
6145}
6146
6147/******************************************************************************
6148 * Turns off the software controllable LED
6149 *
6150 * hw - Struct containing variables accessed by shared code
6151 *****************************************************************************/
6152int32_t
6153e1000_led_off(struct e1000_hw *hw)
6154{
6155 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6156
6157 DEBUGFUNC("e1000_led_off");
6158
Auke Kok8fc897b2006-08-28 14:56:16 -07006159 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006160 case e1000_82542_rev2_0:
6161 case e1000_82542_rev2_1:
6162 case e1000_82543:
6163 /* Clear SW Defineable Pin 0 to turn off the LED */
6164 ctrl &= ~E1000_CTRL_SWDPIN0;
6165 ctrl |= E1000_CTRL_SWDPIO0;
6166 break;
6167 case e1000_82544:
Auke Kok8fc897b2006-08-28 14:56:16 -07006168 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006169 /* Clear SW Defineable Pin 0 to turn off the LED */
6170 ctrl &= ~E1000_CTRL_SWDPIN0;
6171 ctrl |= E1000_CTRL_SWDPIO0;
6172 } else {
6173 /* Set SW Defineable Pin 0 to turn off the LED */
6174 ctrl |= E1000_CTRL_SWDPIN0;
6175 ctrl |= E1000_CTRL_SWDPIO0;
6176 }
6177 break;
6178 default:
Auke Kok8fc897b2006-08-28 14:56:16 -07006179 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006180 /* Set SW Defineable Pin 0 to turn off the LED */
6181 ctrl |= E1000_CTRL_SWDPIN0;
6182 ctrl |= E1000_CTRL_SWDPIO0;
Auke Kokcd94dd02006-06-27 09:08:22 -07006183 } else if (hw->phy_type == e1000_phy_ife) {
6184 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6185 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
6186 } else if (hw->media_type == e1000_media_type_copper) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006187 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6188 return E1000_SUCCESS;
6189 }
6190 break;
6191 }
6192
6193 E1000_WRITE_REG(hw, CTRL, ctrl);
6194
6195 return E1000_SUCCESS;
6196}
6197
6198/******************************************************************************
6199 * Clears all hardware statistics counters.
6200 *
6201 * hw - Struct containing variables accessed by shared code
6202 *****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07006203static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07006204e1000_clear_hw_cntrs(struct e1000_hw *hw)
6205{
6206 volatile uint32_t temp;
6207
6208 temp = E1000_READ_REG(hw, CRCERRS);
6209 temp = E1000_READ_REG(hw, SYMERRS);
6210 temp = E1000_READ_REG(hw, MPC);
6211 temp = E1000_READ_REG(hw, SCC);
6212 temp = E1000_READ_REG(hw, ECOL);
6213 temp = E1000_READ_REG(hw, MCC);
6214 temp = E1000_READ_REG(hw, LATECOL);
6215 temp = E1000_READ_REG(hw, COLC);
6216 temp = E1000_READ_REG(hw, DC);
6217 temp = E1000_READ_REG(hw, SEC);
6218 temp = E1000_READ_REG(hw, RLEC);
6219 temp = E1000_READ_REG(hw, XONRXC);
6220 temp = E1000_READ_REG(hw, XONTXC);
6221 temp = E1000_READ_REG(hw, XOFFRXC);
6222 temp = E1000_READ_REG(hw, XOFFTXC);
6223 temp = E1000_READ_REG(hw, FCRUC);
Auke Kokcd94dd02006-06-27 09:08:22 -07006224
6225 if (hw->mac_type != e1000_ich8lan) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006226 temp = E1000_READ_REG(hw, PRC64);
6227 temp = E1000_READ_REG(hw, PRC127);
6228 temp = E1000_READ_REG(hw, PRC255);
6229 temp = E1000_READ_REG(hw, PRC511);
6230 temp = E1000_READ_REG(hw, PRC1023);
6231 temp = E1000_READ_REG(hw, PRC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07006232 }
6233
Linus Torvalds1da177e2005-04-16 15:20:36 -07006234 temp = E1000_READ_REG(hw, GPRC);
6235 temp = E1000_READ_REG(hw, BPRC);
6236 temp = E1000_READ_REG(hw, MPRC);
6237 temp = E1000_READ_REG(hw, GPTC);
6238 temp = E1000_READ_REG(hw, GORCL);
6239 temp = E1000_READ_REG(hw, GORCH);
6240 temp = E1000_READ_REG(hw, GOTCL);
6241 temp = E1000_READ_REG(hw, GOTCH);
6242 temp = E1000_READ_REG(hw, RNBC);
6243 temp = E1000_READ_REG(hw, RUC);
6244 temp = E1000_READ_REG(hw, RFC);
6245 temp = E1000_READ_REG(hw, ROC);
6246 temp = E1000_READ_REG(hw, RJC);
6247 temp = E1000_READ_REG(hw, TORL);
6248 temp = E1000_READ_REG(hw, TORH);
6249 temp = E1000_READ_REG(hw, TOTL);
6250 temp = E1000_READ_REG(hw, TOTH);
6251 temp = E1000_READ_REG(hw, TPR);
6252 temp = E1000_READ_REG(hw, TPT);
Auke Kokcd94dd02006-06-27 09:08:22 -07006253
6254 if (hw->mac_type != e1000_ich8lan) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006255 temp = E1000_READ_REG(hw, PTC64);
6256 temp = E1000_READ_REG(hw, PTC127);
6257 temp = E1000_READ_REG(hw, PTC255);
6258 temp = E1000_READ_REG(hw, PTC511);
6259 temp = E1000_READ_REG(hw, PTC1023);
6260 temp = E1000_READ_REG(hw, PTC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07006261 }
6262
Linus Torvalds1da177e2005-04-16 15:20:36 -07006263 temp = E1000_READ_REG(hw, MPTC);
6264 temp = E1000_READ_REG(hw, BPTC);
6265
Auke Kok8fc897b2006-08-28 14:56:16 -07006266 if (hw->mac_type < e1000_82543) return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006267
6268 temp = E1000_READ_REG(hw, ALGNERRC);
6269 temp = E1000_READ_REG(hw, RXERRC);
6270 temp = E1000_READ_REG(hw, TNCRS);
6271 temp = E1000_READ_REG(hw, CEXTERR);
6272 temp = E1000_READ_REG(hw, TSCTC);
6273 temp = E1000_READ_REG(hw, TSCTFC);
6274
Auke Kok8fc897b2006-08-28 14:56:16 -07006275 if (hw->mac_type <= e1000_82544) return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006276
6277 temp = E1000_READ_REG(hw, MGTPRC);
6278 temp = E1000_READ_REG(hw, MGTPDC);
6279 temp = E1000_READ_REG(hw, MGTPTC);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006280
Auke Kok8fc897b2006-08-28 14:56:16 -07006281 if (hw->mac_type <= e1000_82547_rev_2) return;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006282
6283 temp = E1000_READ_REG(hw, IAC);
6284 temp = E1000_READ_REG(hw, ICRXOC);
Auke Kokcd94dd02006-06-27 09:08:22 -07006285
6286 if (hw->mac_type == e1000_ich8lan) return;
6287
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006288 temp = E1000_READ_REG(hw, ICRXPTC);
6289 temp = E1000_READ_REG(hw, ICRXATC);
6290 temp = E1000_READ_REG(hw, ICTXPTC);
6291 temp = E1000_READ_REG(hw, ICTXATC);
6292 temp = E1000_READ_REG(hw, ICTXQEC);
6293 temp = E1000_READ_REG(hw, ICTXQMTC);
6294 temp = E1000_READ_REG(hw, ICRXDMTC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006295}
6296
6297/******************************************************************************
6298 * Resets Adaptive IFS to its default state.
6299 *
6300 * hw - Struct containing variables accessed by shared code
6301 *
6302 * Call this after e1000_init_hw. You may override the IFS defaults by setting
6303 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
6304 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
6305 * before calling this function.
6306 *****************************************************************************/
6307void
6308e1000_reset_adaptive(struct e1000_hw *hw)
6309{
6310 DEBUGFUNC("e1000_reset_adaptive");
6311
Auke Kok8fc897b2006-08-28 14:56:16 -07006312 if (hw->adaptive_ifs) {
6313 if (!hw->ifs_params_forced) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006314 hw->current_ifs_val = 0;
6315 hw->ifs_min_val = IFS_MIN;
6316 hw->ifs_max_val = IFS_MAX;
6317 hw->ifs_step_size = IFS_STEP;
6318 hw->ifs_ratio = IFS_RATIO;
6319 }
6320 hw->in_ifs_mode = FALSE;
6321 E1000_WRITE_REG(hw, AIT, 0);
6322 } else {
6323 DEBUGOUT("Not in Adaptive IFS mode!\n");
6324 }
6325}
6326
6327/******************************************************************************
6328 * Called during the callback/watchdog routine to update IFS value based on
6329 * the ratio of transmits to collisions.
6330 *
6331 * hw - Struct containing variables accessed by shared code
6332 * tx_packets - Number of transmits since last callback
6333 * total_collisions - Number of collisions since last callback
6334 *****************************************************************************/
6335void
6336e1000_update_adaptive(struct e1000_hw *hw)
6337{
6338 DEBUGFUNC("e1000_update_adaptive");
6339
Auke Kok8fc897b2006-08-28 14:56:16 -07006340 if (hw->adaptive_ifs) {
6341 if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
6342 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006343 hw->in_ifs_mode = TRUE;
Auke Kok8fc897b2006-08-28 14:56:16 -07006344 if (hw->current_ifs_val < hw->ifs_max_val) {
6345 if (hw->current_ifs_val == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006346 hw->current_ifs_val = hw->ifs_min_val;
6347 else
6348 hw->current_ifs_val += hw->ifs_step_size;
6349 E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
6350 }
6351 }
6352 } else {
Auke Kok8fc897b2006-08-28 14:56:16 -07006353 if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006354 hw->current_ifs_val = 0;
6355 hw->in_ifs_mode = FALSE;
6356 E1000_WRITE_REG(hw, AIT, 0);
6357 }
6358 }
6359 } else {
6360 DEBUGOUT("Not in Adaptive IFS mode!\n");
6361 }
6362}
6363
6364/******************************************************************************
6365 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
6366 *
6367 * hw - Struct containing variables accessed by shared code
6368 * frame_len - The length of the frame in question
6369 * mac_addr - The Ethernet destination address of the frame in question
6370 *****************************************************************************/
6371void
6372e1000_tbi_adjust_stats(struct e1000_hw *hw,
6373 struct e1000_hw_stats *stats,
6374 uint32_t frame_len,
6375 uint8_t *mac_addr)
6376{
6377 uint64_t carry_bit;
6378
6379 /* First adjust the frame length. */
6380 frame_len--;
6381 /* We need to adjust the statistics counters, since the hardware
6382 * counters overcount this packet as a CRC error and undercount
6383 * the packet as a good packet
6384 */
6385 /* This packet should not be counted as a CRC error. */
6386 stats->crcerrs--;
6387 /* This packet does count as a Good Packet Received. */
6388 stats->gprc++;
6389
6390 /* Adjust the Good Octets received counters */
6391 carry_bit = 0x80000000 & stats->gorcl;
6392 stats->gorcl += frame_len;
6393 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
6394 * Received Count) was one before the addition,
6395 * AND it is zero after, then we lost the carry out,
6396 * need to add one to Gorch (Good Octets Received Count High).
6397 * This could be simplified if all environments supported
6398 * 64-bit integers.
6399 */
Auke Kok8fc897b2006-08-28 14:56:16 -07006400 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07006401 stats->gorch++;
6402 /* Is this a broadcast or multicast? Check broadcast first,
6403 * since the test for a multicast frame will test positive on
6404 * a broadcast frame.
6405 */
Auke Kok8fc897b2006-08-28 14:56:16 -07006406 if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
Linus Torvalds1da177e2005-04-16 15:20:36 -07006407 /* Broadcast packet */
6408 stats->bprc++;
Auke Kok8fc897b2006-08-28 14:56:16 -07006409 else if (*mac_addr & 0x01)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006410 /* Multicast packet */
6411 stats->mprc++;
6412
Auke Kok8fc897b2006-08-28 14:56:16 -07006413 if (frame_len == hw->max_frame_size) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006414 /* In this case, the hardware has overcounted the number of
6415 * oversize frames.
6416 */
Auke Kok8fc897b2006-08-28 14:56:16 -07006417 if (stats->roc > 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006418 stats->roc--;
6419 }
6420
6421 /* Adjust the bin counters when the extra byte put the frame in the
6422 * wrong bin. Remember that the frame_len was adjusted above.
6423 */
Auke Kok8fc897b2006-08-28 14:56:16 -07006424 if (frame_len == 64) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006425 stats->prc64++;
6426 stats->prc127--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006427 } else if (frame_len == 127) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006428 stats->prc127++;
6429 stats->prc255--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006430 } else if (frame_len == 255) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006431 stats->prc255++;
6432 stats->prc511--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006433 } else if (frame_len == 511) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006434 stats->prc511++;
6435 stats->prc1023--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006436 } else if (frame_len == 1023) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006437 stats->prc1023++;
6438 stats->prc1522--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006439 } else if (frame_len == 1522) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006440 stats->prc1522++;
6441 }
6442}
6443
6444/******************************************************************************
6445 * Gets the current PCI bus type, speed, and width of the hardware
6446 *
6447 * hw - Struct containing variables accessed by shared code
6448 *****************************************************************************/
6449void
6450e1000_get_bus_info(struct e1000_hw *hw)
6451{
6452 uint32_t status;
6453
6454 switch (hw->mac_type) {
6455 case e1000_82542_rev2_0:
6456 case e1000_82542_rev2_1:
6457 hw->bus_type = e1000_bus_type_unknown;
6458 hw->bus_speed = e1000_bus_speed_unknown;
6459 hw->bus_width = e1000_bus_width_unknown;
6460 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006461 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006462 case e1000_82573:
6463 hw->bus_type = e1000_bus_type_pci_express;
6464 hw->bus_speed = e1000_bus_speed_2500;
Jeff Kirsherfd803242005-12-13 00:06:22 -05006465 hw->bus_width = e1000_bus_width_pciex_1;
6466 break;
6467 case e1000_82571:
Auke Kokcd94dd02006-06-27 09:08:22 -07006468 case e1000_ich8lan:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006469 case e1000_80003es2lan:
Jeff Kirsherfd803242005-12-13 00:06:22 -05006470 hw->bus_type = e1000_bus_type_pci_express;
6471 hw->bus_speed = e1000_bus_speed_2500;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006472 hw->bus_width = e1000_bus_width_pciex_4;
6473 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006474 default:
6475 status = E1000_READ_REG(hw, STATUS);
6476 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
6477 e1000_bus_type_pcix : e1000_bus_type_pci;
6478
Auke Kok8fc897b2006-08-28 14:56:16 -07006479 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006480 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
6481 e1000_bus_speed_66 : e1000_bus_speed_120;
Auke Kok8fc897b2006-08-28 14:56:16 -07006482 } else if (hw->bus_type == e1000_bus_type_pci) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006483 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
6484 e1000_bus_speed_66 : e1000_bus_speed_33;
6485 } else {
6486 switch (status & E1000_STATUS_PCIX_SPEED) {
6487 case E1000_STATUS_PCIX_SPEED_66:
6488 hw->bus_speed = e1000_bus_speed_66;
6489 break;
6490 case E1000_STATUS_PCIX_SPEED_100:
6491 hw->bus_speed = e1000_bus_speed_100;
6492 break;
6493 case E1000_STATUS_PCIX_SPEED_133:
6494 hw->bus_speed = e1000_bus_speed_133;
6495 break;
6496 default:
6497 hw->bus_speed = e1000_bus_speed_reserved;
6498 break;
6499 }
6500 }
6501 hw->bus_width = (status & E1000_STATUS_BUS64) ?
6502 e1000_bus_width_64 : e1000_bus_width_32;
6503 break;
6504 }
6505}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006506
6507/******************************************************************************
6508 * Writes a value to one of the devices registers using port I/O (as opposed to
6509 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6510 *
6511 * hw - Struct containing variables accessed by shared code
6512 * offset - offset to write to
6513 * value - value to write
6514 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006515static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07006516e1000_write_reg_io(struct e1000_hw *hw,
6517 uint32_t offset,
6518 uint32_t value)
6519{
6520 unsigned long io_addr = hw->io_base;
6521 unsigned long io_data = hw->io_base + 4;
6522
6523 e1000_io_write(hw, io_addr, offset);
6524 e1000_io_write(hw, io_data, value);
6525}
6526
Linus Torvalds1da177e2005-04-16 15:20:36 -07006527/******************************************************************************
6528 * Estimates the cable length.
6529 *
6530 * hw - Struct containing variables accessed by shared code
6531 * min_length - The estimated minimum length
6532 * max_length - The estimated maximum length
6533 *
6534 * returns: - E1000_ERR_XXX
6535 * E1000_SUCCESS
6536 *
6537 * This function always returns a ranged length (minimum & maximum).
6538 * So for M88 phy's, this function interprets the one value returned from the
6539 * register to the minimum and maximum range.
6540 * For IGP phy's, the function calculates the range by the AGC registers.
6541 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006542static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006543e1000_get_cable_length(struct e1000_hw *hw,
6544 uint16_t *min_length,
6545 uint16_t *max_length)
6546{
6547 int32_t ret_val;
6548 uint16_t agc_value = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006549 uint16_t i, phy_data;
6550 uint16_t cable_length;
6551
6552 DEBUGFUNC("e1000_get_cable_length");
6553
6554 *min_length = *max_length = 0;
6555
6556 /* Use old method for Phy older than IGP */
Auke Kok8fc897b2006-08-28 14:56:16 -07006557 if (hw->phy_type == e1000_phy_m88) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006558
Linus Torvalds1da177e2005-04-16 15:20:36 -07006559 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6560 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006561 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006562 return ret_val;
6563 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
6564 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
6565
6566 /* Convert the enum value to ranged values */
6567 switch (cable_length) {
6568 case e1000_cable_length_50:
6569 *min_length = 0;
6570 *max_length = e1000_igp_cable_length_50;
6571 break;
6572 case e1000_cable_length_50_80:
6573 *min_length = e1000_igp_cable_length_50;
6574 *max_length = e1000_igp_cable_length_80;
6575 break;
6576 case e1000_cable_length_80_110:
6577 *min_length = e1000_igp_cable_length_80;
6578 *max_length = e1000_igp_cable_length_110;
6579 break;
6580 case e1000_cable_length_110_140:
6581 *min_length = e1000_igp_cable_length_110;
6582 *max_length = e1000_igp_cable_length_140;
6583 break;
6584 case e1000_cable_length_140:
6585 *min_length = e1000_igp_cable_length_140;
6586 *max_length = e1000_igp_cable_length_170;
6587 break;
6588 default:
6589 return -E1000_ERR_PHY;
6590 break;
6591 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006592 } else if (hw->phy_type == e1000_phy_gg82563) {
6593 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
6594 &phy_data);
6595 if (ret_val)
6596 return ret_val;
6597 cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
6598
6599 switch (cable_length) {
6600 case e1000_gg_cable_length_60:
6601 *min_length = 0;
6602 *max_length = e1000_igp_cable_length_60;
6603 break;
6604 case e1000_gg_cable_length_60_115:
6605 *min_length = e1000_igp_cable_length_60;
6606 *max_length = e1000_igp_cable_length_115;
6607 break;
6608 case e1000_gg_cable_length_115_150:
6609 *min_length = e1000_igp_cable_length_115;
6610 *max_length = e1000_igp_cable_length_150;
6611 break;
6612 case e1000_gg_cable_length_150:
6613 *min_length = e1000_igp_cable_length_150;
6614 *max_length = e1000_igp_cable_length_180;
6615 break;
6616 default:
6617 return -E1000_ERR_PHY;
6618 break;
6619 }
Auke Kok8fc897b2006-08-28 14:56:16 -07006620 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
Auke Kokcd94dd02006-06-27 09:08:22 -07006621 uint16_t cur_agc_value;
6622 uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006623 uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6624 {IGP01E1000_PHY_AGC_A,
6625 IGP01E1000_PHY_AGC_B,
6626 IGP01E1000_PHY_AGC_C,
6627 IGP01E1000_PHY_AGC_D};
6628 /* Read the AGC registers for all channels */
Auke Kok8fc897b2006-08-28 14:56:16 -07006629 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006630
6631 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006632 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006633 return ret_val;
6634
Auke Kokcd94dd02006-06-27 09:08:22 -07006635 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006636
Auke Kokcd94dd02006-06-27 09:08:22 -07006637 /* Value bound check. */
6638 if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
6639 (cur_agc_value == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07006640 return -E1000_ERR_PHY;
6641
Auke Kokcd94dd02006-06-27 09:08:22 -07006642 agc_value += cur_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006643
6644 /* Update minimal AGC value. */
Auke Kokcd94dd02006-06-27 09:08:22 -07006645 if (min_agc_value > cur_agc_value)
6646 min_agc_value = cur_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006647 }
6648
6649 /* Remove the minimal AGC result for length < 50m */
Auke Kokcd94dd02006-06-27 09:08:22 -07006650 if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
6651 agc_value -= min_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006652
6653 /* Get the average length of the remaining 3 channels */
6654 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
6655 } else {
6656 /* Get the average length of all the 4 channels. */
6657 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
6658 }
6659
6660 /* Set the range of the calculated length. */
6661 *min_length = ((e1000_igp_cable_length_table[agc_value] -
6662 IGP01E1000_AGC_RANGE) > 0) ?
6663 (e1000_igp_cable_length_table[agc_value] -
6664 IGP01E1000_AGC_RANGE) : 0;
6665 *max_length = e1000_igp_cable_length_table[agc_value] +
6666 IGP01E1000_AGC_RANGE;
Auke Kokcd94dd02006-06-27 09:08:22 -07006667 } else if (hw->phy_type == e1000_phy_igp_2 ||
6668 hw->phy_type == e1000_phy_igp_3) {
6669 uint16_t cur_agc_index, max_agc_index = 0;
6670 uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006671 uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
6672 {IGP02E1000_PHY_AGC_A,
6673 IGP02E1000_PHY_AGC_B,
6674 IGP02E1000_PHY_AGC_C,
6675 IGP02E1000_PHY_AGC_D};
6676 /* Read the AGC registers for all channels */
6677 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
6678 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6679 if (ret_val)
6680 return ret_val;
6681
Auke Kok8fc897b2006-08-28 14:56:16 -07006682 /* Getting bits 15:9, which represent the combination of course and
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006683 * fine gain values. The result is a number that can be put into
6684 * the lookup table to obtain the approximate cable length. */
Auke Kokcd94dd02006-06-27 09:08:22 -07006685 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
6686 IGP02E1000_AGC_LENGTH_MASK;
6687
6688 /* Array index bound check. */
6689 if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
6690 (cur_agc_index == 0))
6691 return -E1000_ERR_PHY;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006692
6693 /* Remove min & max AGC values from calculation. */
Auke Kokcd94dd02006-06-27 09:08:22 -07006694 if (e1000_igp_2_cable_length_table[min_agc_index] >
6695 e1000_igp_2_cable_length_table[cur_agc_index])
6696 min_agc_index = cur_agc_index;
6697 if (e1000_igp_2_cable_length_table[max_agc_index] <
6698 e1000_igp_2_cable_length_table[cur_agc_index])
6699 max_agc_index = cur_agc_index;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006700
Auke Kokcd94dd02006-06-27 09:08:22 -07006701 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006702 }
6703
Auke Kokcd94dd02006-06-27 09:08:22 -07006704 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
6705 e1000_igp_2_cable_length_table[max_agc_index]);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006706 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
6707
6708 /* Calculate cable length with the error range of +/- 10 meters. */
6709 *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
6710 (agc_value - IGP02E1000_AGC_RANGE) : 0;
6711 *max_length = agc_value + IGP02E1000_AGC_RANGE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006712 }
6713
6714 return E1000_SUCCESS;
6715}
6716
6717/******************************************************************************
6718 * Check the cable polarity
6719 *
6720 * hw - Struct containing variables accessed by shared code
6721 * polarity - output parameter : 0 - Polarity is not reversed
6722 * 1 - Polarity is reversed.
6723 *
6724 * returns: - E1000_ERR_XXX
6725 * E1000_SUCCESS
6726 *
6727 * For phy's older then IGP, this function simply reads the polarity bit in the
6728 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
6729 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
6730 * return 0. If the link speed is 1000 Mbps the polarity status is in the
6731 * IGP01E1000_PHY_PCS_INIT_REG.
6732 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006733static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006734e1000_check_polarity(struct e1000_hw *hw,
Jeff Kirsher70c6f302006-09-27 12:53:31 -07006735 e1000_rev_polarity *polarity)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006736{
6737 int32_t ret_val;
6738 uint16_t phy_data;
6739
6740 DEBUGFUNC("e1000_check_polarity");
6741
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006742 if ((hw->phy_type == e1000_phy_m88) ||
6743 (hw->phy_type == e1000_phy_gg82563)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006744 /* return the Polarity bit in the Status register. */
6745 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6746 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006747 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006748 return ret_val;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07006749 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
6750 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
6751 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6752
Auke Kokcd94dd02006-06-27 09:08:22 -07006753 } else if (hw->phy_type == e1000_phy_igp ||
6754 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006755 hw->phy_type == e1000_phy_igp_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006756 /* Read the Status register to check the speed */
6757 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
6758 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006759 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006760 return ret_val;
6761
6762 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
6763 * find the polarity status */
Auke Kok8fc897b2006-08-28 14:56:16 -07006764 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
Linus Torvalds1da177e2005-04-16 15:20:36 -07006765 IGP01E1000_PSSR_SPEED_1000MBPS) {
6766
6767 /* Read the GIG initialization PCS register (0x00B4) */
6768 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
6769 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006770 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006771 return ret_val;
6772
6773 /* Check the polarity bits */
Jeff Kirsher70c6f302006-09-27 12:53:31 -07006774 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
6775 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006776 } else {
6777 /* For 10 Mbps, read the polarity bit in the status register. (for
6778 * 100 Mbps this bit is always 0) */
Jeff Kirsher70c6f302006-09-27 12:53:31 -07006779 *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
6780 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006781 }
Auke Kokcd94dd02006-06-27 09:08:22 -07006782 } else if (hw->phy_type == e1000_phy_ife) {
6783 ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
6784 &phy_data);
6785 if (ret_val)
6786 return ret_val;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07006787 *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
6788 IFE_PESC_POLARITY_REVERSED_SHIFT) ?
6789 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006790 }
6791 return E1000_SUCCESS;
6792}
6793
6794/******************************************************************************
6795 * Check if Downshift occured
6796 *
6797 * hw - Struct containing variables accessed by shared code
6798 * downshift - output parameter : 0 - No Downshift ocured.
6799 * 1 - Downshift ocured.
6800 *
6801 * returns: - E1000_ERR_XXX
Auke Kok76c224b2006-05-23 13:36:06 -07006802 * E1000_SUCCESS
Linus Torvalds1da177e2005-04-16 15:20:36 -07006803 *
6804 * For phy's older then IGP, this function reads the Downshift bit in the Phy
6805 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
6806 * Link Health register. In IGP this bit is latched high, so the driver must
6807 * read it immediately after link is established.
6808 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006809static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006810e1000_check_downshift(struct e1000_hw *hw)
6811{
6812 int32_t ret_val;
6813 uint16_t phy_data;
6814
6815 DEBUGFUNC("e1000_check_downshift");
6816
Auke Kokcd94dd02006-06-27 09:08:22 -07006817 if (hw->phy_type == e1000_phy_igp ||
6818 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006819 hw->phy_type == e1000_phy_igp_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006820 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6821 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006822 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006823 return ret_val;
6824
6825 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006826 } else if ((hw->phy_type == e1000_phy_m88) ||
6827 (hw->phy_type == e1000_phy_gg82563)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006828 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6829 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006830 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006831 return ret_val;
6832
6833 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
6834 M88E1000_PSSR_DOWNSHIFT_SHIFT;
Auke Kokcd94dd02006-06-27 09:08:22 -07006835 } else if (hw->phy_type == e1000_phy_ife) {
6836 /* e1000_phy_ife supports 10/100 speed only */
6837 hw->speed_downgraded = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006838 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006839
Linus Torvalds1da177e2005-04-16 15:20:36 -07006840 return E1000_SUCCESS;
6841}
6842
6843/*****************************************************************************
6844 *
6845 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
6846 * gigabit link is achieved to improve link quality.
6847 *
6848 * hw: Struct containing variables accessed by shared code
6849 *
6850 * returns: - E1000_ERR_PHY if fail to read/write the PHY
6851 * E1000_SUCCESS at any other case.
6852 *
6853 ****************************************************************************/
6854
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006855static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006856e1000_config_dsp_after_link_change(struct e1000_hw *hw,
6857 boolean_t link_up)
6858{
6859 int32_t ret_val;
6860 uint16_t phy_data, phy_saved_data, speed, duplex, i;
6861 uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6862 {IGP01E1000_PHY_AGC_PARAM_A,
6863 IGP01E1000_PHY_AGC_PARAM_B,
6864 IGP01E1000_PHY_AGC_PARAM_C,
6865 IGP01E1000_PHY_AGC_PARAM_D};
6866 uint16_t min_length, max_length;
6867
6868 DEBUGFUNC("e1000_config_dsp_after_link_change");
6869
Auke Kok8fc897b2006-08-28 14:56:16 -07006870 if (hw->phy_type != e1000_phy_igp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006871 return E1000_SUCCESS;
6872
Auke Kok8fc897b2006-08-28 14:56:16 -07006873 if (link_up) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006874 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
Auke Kok8fc897b2006-08-28 14:56:16 -07006875 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006876 DEBUGOUT("Error getting link speed and duplex\n");
6877 return ret_val;
6878 }
6879
Auke Kok8fc897b2006-08-28 14:56:16 -07006880 if (speed == SPEED_1000) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006881
Auke Kokcd94dd02006-06-27 09:08:22 -07006882 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
6883 if (ret_val)
6884 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006885
Auke Kok8fc897b2006-08-28 14:56:16 -07006886 if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07006887 min_length >= e1000_igp_cable_length_50) {
6888
Auke Kok8fc897b2006-08-28 14:56:16 -07006889 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006890 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
6891 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006892 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006893 return ret_val;
6894
6895 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
6896
6897 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
6898 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006899 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006900 return ret_val;
6901 }
6902 hw->dsp_config_state = e1000_dsp_config_activated;
6903 }
6904
Auke Kok8fc897b2006-08-28 14:56:16 -07006905 if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07006906 (min_length < e1000_igp_cable_length_50)) {
6907
6908 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
6909 uint32_t idle_errs = 0;
6910
6911 /* clear previous idle error counts */
6912 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6913 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006914 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006915 return ret_val;
6916
Auke Kok8fc897b2006-08-28 14:56:16 -07006917 for (i = 0; i < ffe_idle_err_timeout; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006918 udelay(1000);
6919 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6920 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006921 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006922 return ret_val;
6923
6924 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
Auke Kok8fc897b2006-08-28 14:56:16 -07006925 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006926 hw->ffe_config_state = e1000_ffe_config_active;
6927
6928 ret_val = e1000_write_phy_reg(hw,
6929 IGP01E1000_PHY_DSP_FFE,
6930 IGP01E1000_PHY_DSP_FFE_CM_CP);
Auke Kok8fc897b2006-08-28 14:56:16 -07006931 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006932 return ret_val;
6933 break;
6934 }
6935
Auke Kok8fc897b2006-08-28 14:56:16 -07006936 if (idle_errs)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006937 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
6938 }
6939 }
6940 }
6941 } else {
Auke Kok8fc897b2006-08-28 14:56:16 -07006942 if (hw->dsp_config_state == e1000_dsp_config_activated) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006943 /* Save off the current value of register 0x2F5B to be restored at
6944 * the end of the routines. */
6945 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
6946
Auke Kok8fc897b2006-08-28 14:56:16 -07006947 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006948 return ret_val;
6949
6950 /* Disable the PHY transmitter */
6951 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
6952
Auke Kok8fc897b2006-08-28 14:56:16 -07006953 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006954 return ret_val;
6955
Jeff Garzikf8ec4732006-09-19 15:27:07 -04006956 mdelay(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006957
6958 ret_val = e1000_write_phy_reg(hw, 0x0000,
6959 IGP01E1000_IEEE_FORCE_GIGA);
Auke Kok8fc897b2006-08-28 14:56:16 -07006960 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006961 return ret_val;
Auke Kok8fc897b2006-08-28 14:56:16 -07006962 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006963 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006964 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006965 return ret_val;
6966
6967 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
6968 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
6969
6970 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006971 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006972 return ret_val;
6973 }
6974
6975 ret_val = e1000_write_phy_reg(hw, 0x0000,
6976 IGP01E1000_IEEE_RESTART_AUTONEG);
Auke Kok8fc897b2006-08-28 14:56:16 -07006977 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006978 return ret_val;
6979
Jeff Garzikf8ec4732006-09-19 15:27:07 -04006980 mdelay(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006981
6982 /* Now enable the transmitter */
6983 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
6984
Auke Kok8fc897b2006-08-28 14:56:16 -07006985 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006986 return ret_val;
6987
6988 hw->dsp_config_state = e1000_dsp_config_enabled;
6989 }
6990
Auke Kok8fc897b2006-08-28 14:56:16 -07006991 if (hw->ffe_config_state == e1000_ffe_config_active) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006992 /* Save off the current value of register 0x2F5B to be restored at
6993 * the end of the routines. */
6994 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
6995
Auke Kok8fc897b2006-08-28 14:56:16 -07006996 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006997 return ret_val;
6998
6999 /* Disable the PHY transmitter */
7000 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7001
Auke Kok8fc897b2006-08-28 14:56:16 -07007002 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007003 return ret_val;
7004
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007005 mdelay(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007006
7007 ret_val = e1000_write_phy_reg(hw, 0x0000,
7008 IGP01E1000_IEEE_FORCE_GIGA);
Auke Kok8fc897b2006-08-28 14:56:16 -07007009 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007010 return ret_val;
7011 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
7012 IGP01E1000_PHY_DSP_FFE_DEFAULT);
Auke Kok8fc897b2006-08-28 14:56:16 -07007013 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007014 return ret_val;
7015
7016 ret_val = e1000_write_phy_reg(hw, 0x0000,
7017 IGP01E1000_IEEE_RESTART_AUTONEG);
Auke Kok8fc897b2006-08-28 14:56:16 -07007018 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007019 return ret_val;
7020
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007021 mdelay(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007022
7023 /* Now enable the transmitter */
7024 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7025
Auke Kok8fc897b2006-08-28 14:56:16 -07007026 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007027 return ret_val;
7028
7029 hw->ffe_config_state = e1000_ffe_config_enabled;
7030 }
7031 }
7032 return E1000_SUCCESS;
7033}
7034
7035/*****************************************************************************
7036 * Set PHY to class A mode
7037 * Assumes the following operations will follow to enable the new class mode.
7038 * 1. Do a PHY soft reset
7039 * 2. Restart auto-negotiation or force link.
7040 *
7041 * hw - Struct containing variables accessed by shared code
7042 ****************************************************************************/
7043static int32_t
7044e1000_set_phy_mode(struct e1000_hw *hw)
7045{
7046 int32_t ret_val;
7047 uint16_t eeprom_data;
7048
7049 DEBUGFUNC("e1000_set_phy_mode");
7050
Auke Kok8fc897b2006-08-28 14:56:16 -07007051 if ((hw->mac_type == e1000_82545_rev_3) &&
7052 (hw->media_type == e1000_media_type_copper)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007053 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007054 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007055 return ret_val;
7056 }
7057
Auke Kok8fc897b2006-08-28 14:56:16 -07007058 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
7059 (eeprom_data & EEPROM_PHY_CLASS_A)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007060 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
Auke Kok8fc897b2006-08-28 14:56:16 -07007061 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007062 return ret_val;
7063 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
Auke Kok8fc897b2006-08-28 14:56:16 -07007064 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007065 return ret_val;
7066
7067 hw->phy_reset_disable = FALSE;
7068 }
7069 }
7070
7071 return E1000_SUCCESS;
7072}
7073
7074/*****************************************************************************
7075 *
7076 * This function sets the lplu state according to the active flag. When
7077 * activating lplu this function also disables smart speed and vise versa.
7078 * lplu will not be activated unless the device autonegotiation advertisment
7079 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7080 * hw: Struct containing variables accessed by shared code
7081 * active - true to enable lplu false to disable lplu.
7082 *
7083 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7084 * E1000_SUCCESS at any other case.
7085 *
7086 ****************************************************************************/
7087
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007088static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07007089e1000_set_d3_lplu_state(struct e1000_hw *hw,
7090 boolean_t active)
7091{
Auke Kokcd94dd02006-06-27 09:08:22 -07007092 uint32_t phy_ctrl = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007093 int32_t ret_val;
7094 uint16_t phy_data;
7095 DEBUGFUNC("e1000_set_d3_lplu_state");
7096
Auke Kokcd94dd02006-06-27 09:08:22 -07007097 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
7098 && hw->phy_type != e1000_phy_igp_3)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007099 return E1000_SUCCESS;
7100
7101 /* During driver activity LPLU should not be used or it will attain link
7102 * from the lowest speeds starting from 10Mbps. The capability is used for
7103 * Dx transitions and states */
Auke Kokcd94dd02006-06-27 09:08:22 -07007104 if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007105 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
Auke Kokcd94dd02006-06-27 09:08:22 -07007106 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007107 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007108 } else if (hw->mac_type == e1000_ich8lan) {
7109 /* MAC writes into PHY register based on the state transition
7110 * and start auto-negotiation. SW driver can overwrite the settings
7111 * in CSR PHY power control E1000_PHY_CTRL register. */
7112 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007113 } else {
7114 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007115 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007116 return ret_val;
7117 }
7118
Auke Kok8fc897b2006-08-28 14:56:16 -07007119 if (!active) {
7120 if (hw->mac_type == e1000_82541_rev_2 ||
7121 hw->mac_type == e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007122 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
7123 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007124 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007125 return ret_val;
7126 } else {
Auke Kokcd94dd02006-06-27 09:08:22 -07007127 if (hw->mac_type == e1000_ich8lan) {
7128 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
7129 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7130 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007131 phy_data &= ~IGP02E1000_PM_D3_LPLU;
7132 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7133 phy_data);
7134 if (ret_val)
7135 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007136 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007137 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07007138
7139 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7140 * Dx states where the power conservation is most important. During
7141 * driver activity we should enable SmartSpeed, so performance is
7142 * maintained. */
7143 if (hw->smart_speed == e1000_smart_speed_on) {
7144 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7145 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007146 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007147 return ret_val;
7148
7149 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7150 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7151 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007152 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007153 return ret_val;
7154 } else if (hw->smart_speed == e1000_smart_speed_off) {
7155 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7156 &phy_data);
Nicholas Nunley35574762006-09-27 12:53:34 -07007157 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007158 return ret_val;
7159
7160 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7161 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7162 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007163 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007164 return ret_val;
7165 }
7166
Auke Kok8fc897b2006-08-28 14:56:16 -07007167 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
7168 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
7169 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007170
Auke Kok8fc897b2006-08-28 14:56:16 -07007171 if (hw->mac_type == e1000_82541_rev_2 ||
Auke Kokcd94dd02006-06-27 09:08:22 -07007172 hw->mac_type == e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007173 phy_data |= IGP01E1000_GMII_FLEX_SPD;
7174 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007175 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007176 return ret_val;
7177 } else {
Auke Kokcd94dd02006-06-27 09:08:22 -07007178 if (hw->mac_type == e1000_ich8lan) {
7179 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
7180 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7181 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007182 phy_data |= IGP02E1000_PM_D3_LPLU;
7183 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7184 phy_data);
7185 if (ret_val)
7186 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007187 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007188 }
7189
7190 /* When LPLU is enabled we should disable SmartSpeed */
7191 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007192 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007193 return ret_val;
7194
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007195 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7196 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007197 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007198 return ret_val;
7199
7200 }
7201 return E1000_SUCCESS;
7202}
7203
7204/*****************************************************************************
7205 *
7206 * This function sets the lplu d0 state according to the active flag. When
7207 * activating lplu this function also disables smart speed and vise versa.
7208 * lplu will not be activated unless the device autonegotiation advertisment
7209 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7210 * hw: Struct containing variables accessed by shared code
7211 * active - true to enable lplu false to disable lplu.
7212 *
7213 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7214 * E1000_SUCCESS at any other case.
7215 *
7216 ****************************************************************************/
7217
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007218static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007219e1000_set_d0_lplu_state(struct e1000_hw *hw,
7220 boolean_t active)
7221{
Auke Kokcd94dd02006-06-27 09:08:22 -07007222 uint32_t phy_ctrl = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007223 int32_t ret_val;
7224 uint16_t phy_data;
7225 DEBUGFUNC("e1000_set_d0_lplu_state");
7226
Auke Kok8fc897b2006-08-28 14:56:16 -07007227 if (hw->mac_type <= e1000_82547_rev_2)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007228 return E1000_SUCCESS;
7229
Auke Kokcd94dd02006-06-27 09:08:22 -07007230 if (hw->mac_type == e1000_ich8lan) {
7231 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7232 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007233 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007234 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007235 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007236 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007237
7238 if (!active) {
Auke Kokcd94dd02006-06-27 09:08:22 -07007239 if (hw->mac_type == e1000_ich8lan) {
7240 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
7241 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7242 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007243 phy_data &= ~IGP02E1000_PM_D0_LPLU;
7244 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7245 if (ret_val)
7246 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007247 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007248
7249 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7250 * Dx states where the power conservation is most important. During
7251 * driver activity we should enable SmartSpeed, so performance is
7252 * maintained. */
7253 if (hw->smart_speed == e1000_smart_speed_on) {
7254 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7255 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007256 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007257 return ret_val;
7258
7259 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7260 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7261 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007262 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007263 return ret_val;
7264 } else if (hw->smart_speed == e1000_smart_speed_off) {
7265 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7266 &phy_data);
Nicholas Nunley35574762006-09-27 12:53:34 -07007267 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007268 return ret_val;
7269
7270 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7271 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7272 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007273 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007274 return ret_val;
7275 }
7276
7277
7278 } else {
Auke Kok76c224b2006-05-23 13:36:06 -07007279
Auke Kokcd94dd02006-06-27 09:08:22 -07007280 if (hw->mac_type == e1000_ich8lan) {
7281 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
7282 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7283 } else {
Auke Kok76c224b2006-05-23 13:36:06 -07007284 phy_data |= IGP02E1000_PM_D0_LPLU;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007285 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7286 if (ret_val)
7287 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007288 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007289
Linus Torvalds1da177e2005-04-16 15:20:36 -07007290 /* When LPLU is enabled we should disable SmartSpeed */
7291 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007292 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007293 return ret_val;
7294
7295 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7296 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007297 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007298 return ret_val;
7299
7300 }
7301 return E1000_SUCCESS;
7302}
7303
7304/******************************************************************************
7305 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
7306 *
7307 * hw - Struct containing variables accessed by shared code
7308 *****************************************************************************/
7309static int32_t
7310e1000_set_vco_speed(struct e1000_hw *hw)
7311{
7312 int32_t ret_val;
7313 uint16_t default_page = 0;
7314 uint16_t phy_data;
7315
7316 DEBUGFUNC("e1000_set_vco_speed");
7317
Auke Kok8fc897b2006-08-28 14:56:16 -07007318 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007319 case e1000_82545_rev_3:
7320 case e1000_82546_rev_3:
7321 break;
7322 default:
7323 return E1000_SUCCESS;
7324 }
7325
7326 /* Set PHY register 30, page 5, bit 8 to 0 */
7327
7328 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
Auke Kok8fc897b2006-08-28 14:56:16 -07007329 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007330 return ret_val;
7331
7332 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
Auke Kok8fc897b2006-08-28 14:56:16 -07007333 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007334 return ret_val;
7335
7336 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007337 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007338 return ret_val;
7339
7340 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
7341 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007342 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007343 return ret_val;
7344
7345 /* Set PHY register 30, page 4, bit 11 to 1 */
7346
7347 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
Auke Kok8fc897b2006-08-28 14:56:16 -07007348 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007349 return ret_val;
7350
7351 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007352 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007353 return ret_val;
7354
7355 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
7356 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007357 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007358 return ret_val;
7359
7360 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
Auke Kok8fc897b2006-08-28 14:56:16 -07007361 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007362 return ret_val;
7363
7364 return E1000_SUCCESS;
7365}
7366
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007367
7368/*****************************************************************************
7369 * This function reads the cookie from ARC ram.
7370 *
7371 * returns: - E1000_SUCCESS .
7372 ****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07007373static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007374e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
7375{
7376 uint8_t i;
Auke Kok76c224b2006-05-23 13:36:06 -07007377 uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007378 uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
7379
7380 length = (length >> 2);
7381 offset = (offset >> 2);
7382
7383 for (i = 0; i < length; i++) {
7384 *((uint32_t *) buffer + i) =
7385 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
7386 }
7387 return E1000_SUCCESS;
7388}
7389
7390
7391/*****************************************************************************
7392 * This function checks whether the HOST IF is enabled for command operaton
7393 * and also checks whether the previous command is completed.
7394 * It busy waits in case of previous command is not completed.
7395 *
Auke Kok76c224b2006-05-23 13:36:06 -07007396 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007397 * timeout
7398 * - E1000_SUCCESS for success.
7399 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007400static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007401e1000_mng_enable_host_if(struct e1000_hw * hw)
7402{
7403 uint32_t hicr;
7404 uint8_t i;
7405
7406 /* Check that the host interface is enabled. */
7407 hicr = E1000_READ_REG(hw, HICR);
7408 if ((hicr & E1000_HICR_EN) == 0) {
7409 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
7410 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7411 }
7412 /* check the previous command is completed */
7413 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
7414 hicr = E1000_READ_REG(hw, HICR);
7415 if (!(hicr & E1000_HICR_C))
7416 break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007417 mdelay(1);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007418 }
7419
Auke Kok76c224b2006-05-23 13:36:06 -07007420 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007421 DEBUGOUT("Previous command timeout failed .\n");
7422 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7423 }
7424 return E1000_SUCCESS;
7425}
7426
7427/*****************************************************************************
7428 * This function writes the buffer content at the offset given on the host if.
7429 * It also does alignment considerations to do the writes in most efficient way.
7430 * Also fills up the sum of the buffer in *buffer parameter.
7431 *
7432 * returns - E1000_SUCCESS for success.
7433 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007434static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007435e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
7436 uint16_t length, uint16_t offset, uint8_t *sum)
7437{
7438 uint8_t *tmp;
7439 uint8_t *bufptr = buffer;
Auke Kok8fc897b2006-08-28 14:56:16 -07007440 uint32_t data = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007441 uint16_t remaining, i, j, prev_bytes;
7442
7443 /* sum = only sum of the data and it is not checksum */
7444
7445 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
7446 return -E1000_ERR_PARAM;
7447 }
7448
7449 tmp = (uint8_t *)&data;
7450 prev_bytes = offset & 0x3;
7451 offset &= 0xFFFC;
7452 offset >>= 2;
7453
7454 if (prev_bytes) {
7455 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
7456 for (j = prev_bytes; j < sizeof(uint32_t); j++) {
7457 *(tmp + j) = *bufptr++;
7458 *sum += *(tmp + j);
7459 }
7460 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
7461 length -= j - prev_bytes;
7462 offset++;
7463 }
7464
7465 remaining = length & 0x3;
7466 length -= remaining;
7467
7468 /* Calculate length in DWORDs */
7469 length >>= 2;
7470
7471 /* The device driver writes the relevant command block into the
7472 * ram area. */
7473 for (i = 0; i < length; i++) {
7474 for (j = 0; j < sizeof(uint32_t); j++) {
7475 *(tmp + j) = *bufptr++;
7476 *sum += *(tmp + j);
7477 }
7478
7479 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7480 }
7481 if (remaining) {
7482 for (j = 0; j < sizeof(uint32_t); j++) {
7483 if (j < remaining)
7484 *(tmp + j) = *bufptr++;
7485 else
7486 *(tmp + j) = 0;
7487
7488 *sum += *(tmp + j);
7489 }
7490 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7491 }
7492
7493 return E1000_SUCCESS;
7494}
7495
7496
7497/*****************************************************************************
7498 * This function writes the command header after does the checksum calculation.
7499 *
7500 * returns - E1000_SUCCESS for success.
7501 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007502static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007503e1000_mng_write_cmd_header(struct e1000_hw * hw,
7504 struct e1000_host_mng_command_header * hdr)
7505{
7506 uint16_t i;
7507 uint8_t sum;
7508 uint8_t *buffer;
7509
7510 /* Write the whole command header structure which includes sum of
7511 * the buffer */
7512
7513 uint16_t length = sizeof(struct e1000_host_mng_command_header);
7514
7515 sum = hdr->checksum;
7516 hdr->checksum = 0;
7517
7518 buffer = (uint8_t *) hdr;
7519 i = length;
Auke Kok8fc897b2006-08-28 14:56:16 -07007520 while (i--)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007521 sum += buffer[i];
7522
7523 hdr->checksum = 0 - sum;
7524
7525 length >>= 2;
7526 /* The device driver writes the relevant command block into the ram area. */
Auke Kok4ca213a2006-06-27 09:07:08 -07007527 for (i = 0; i < length; i++) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007528 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
Auke Kok4ca213a2006-06-27 09:07:08 -07007529 E1000_WRITE_FLUSH(hw);
7530 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007531
7532 return E1000_SUCCESS;
7533}
7534
7535
7536/*****************************************************************************
7537 * This function indicates to ARC that a new command is pending which completes
7538 * one write operation by the driver.
7539 *
7540 * returns - E1000_SUCCESS for success.
7541 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007542static int32_t
Auke Kok8fc897b2006-08-28 14:56:16 -07007543e1000_mng_write_commit(struct e1000_hw * hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007544{
7545 uint32_t hicr;
7546
7547 hicr = E1000_READ_REG(hw, HICR);
7548 /* Setting this bit tells the ARC that a new command is pending. */
7549 E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
7550
7551 return E1000_SUCCESS;
7552}
7553
7554
7555/*****************************************************************************
7556 * This function checks the mode of the firmware.
7557 *
7558 * returns - TRUE when the mode is IAMT or FALSE.
7559 ****************************************************************************/
7560boolean_t
Auke Kokcd94dd02006-06-27 09:08:22 -07007561e1000_check_mng_mode(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007562{
7563 uint32_t fwsm;
7564
7565 fwsm = E1000_READ_REG(hw, FWSM);
7566
Auke Kokcd94dd02006-06-27 09:08:22 -07007567 if (hw->mac_type == e1000_ich8lan) {
7568 if ((fwsm & E1000_FWSM_MODE_MASK) ==
7569 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7570 return TRUE;
7571 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
7572 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007573 return TRUE;
7574
7575 return FALSE;
7576}
7577
7578
7579/*****************************************************************************
7580 * This function writes the dhcp info .
7581 ****************************************************************************/
7582int32_t
7583e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
Nicholas Nunley35574762006-09-27 12:53:34 -07007584 uint16_t length)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007585{
7586 int32_t ret_val;
7587 struct e1000_host_mng_command_header hdr;
7588
7589 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
7590 hdr.command_length = length;
7591 hdr.reserved1 = 0;
7592 hdr.reserved2 = 0;
7593 hdr.checksum = 0;
7594
7595 ret_val = e1000_mng_enable_host_if(hw);
7596 if (ret_val == E1000_SUCCESS) {
7597 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
7598 &(hdr.checksum));
7599 if (ret_val == E1000_SUCCESS) {
7600 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
7601 if (ret_val == E1000_SUCCESS)
7602 ret_val = e1000_mng_write_commit(hw);
7603 }
7604 }
7605 return ret_val;
7606}
7607
7608
7609/*****************************************************************************
7610 * This function calculates the checksum.
7611 *
7612 * returns - checksum of buffer contents.
7613 ****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07007614static uint8_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007615e1000_calculate_mng_checksum(char *buffer, uint32_t length)
7616{
7617 uint8_t sum = 0;
7618 uint32_t i;
7619
7620 if (!buffer)
7621 return 0;
7622
7623 for (i=0; i < length; i++)
7624 sum += buffer[i];
7625
7626 return (uint8_t) (0 - sum);
7627}
7628
7629/*****************************************************************************
7630 * This function checks whether tx pkt filtering needs to be enabled or not.
7631 *
7632 * returns - TRUE for packet filtering or FALSE.
7633 ****************************************************************************/
7634boolean_t
7635e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
7636{
7637 /* called in init as well as watchdog timer functions */
7638
7639 int32_t ret_val, checksum;
7640 boolean_t tx_filter = FALSE;
7641 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
7642 uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
7643
7644 if (e1000_check_mng_mode(hw)) {
7645 ret_val = e1000_mng_enable_host_if(hw);
7646 if (ret_val == E1000_SUCCESS) {
7647 ret_val = e1000_host_if_read_cookie(hw, buffer);
7648 if (ret_val == E1000_SUCCESS) {
7649 checksum = hdr->checksum;
7650 hdr->checksum = 0;
7651 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
7652 checksum == e1000_calculate_mng_checksum((char *)buffer,
7653 E1000_MNG_DHCP_COOKIE_LENGTH)) {
7654 if (hdr->status &
7655 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
7656 tx_filter = TRUE;
7657 } else
7658 tx_filter = TRUE;
7659 } else
7660 tx_filter = TRUE;
7661 }
7662 }
7663
7664 hw->tx_pkt_filtering = tx_filter;
7665 return tx_filter;
7666}
7667
7668/******************************************************************************
7669 * Verifies the hardware needs to allow ARPs to be processed by the host
7670 *
7671 * hw - Struct containing variables accessed by shared code
7672 *
7673 * returns: - TRUE/FALSE
7674 *
7675 *****************************************************************************/
7676uint32_t
7677e1000_enable_mng_pass_thru(struct e1000_hw *hw)
7678{
7679 uint32_t manc;
7680 uint32_t fwsm, factps;
7681
7682 if (hw->asf_firmware_present) {
7683 manc = E1000_READ_REG(hw, MANC);
7684
7685 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
7686 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
7687 return FALSE;
7688 if (e1000_arc_subsystem_valid(hw) == TRUE) {
7689 fwsm = E1000_READ_REG(hw, FWSM);
7690 factps = E1000_READ_REG(hw, FACTPS);
7691
7692 if (((fwsm & E1000_FWSM_MODE_MASK) ==
7693 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
7694 (factps & E1000_FACTPS_MNGCG))
7695 return TRUE;
7696 } else
7697 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
7698 return TRUE;
7699 }
7700 return FALSE;
7701}
7702
Linus Torvalds1da177e2005-04-16 15:20:36 -07007703static int32_t
7704e1000_polarity_reversal_workaround(struct e1000_hw *hw)
7705{
7706 int32_t ret_val;
7707 uint16_t mii_status_reg;
7708 uint16_t i;
7709
7710 /* Polarity reversal workaround for forced 10F/10H links. */
7711
7712 /* Disable the transmitter on the PHY */
7713
7714 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
Auke Kok8fc897b2006-08-28 14:56:16 -07007715 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007716 return ret_val;
7717 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
Auke Kok8fc897b2006-08-28 14:56:16 -07007718 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007719 return ret_val;
7720
7721 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
Auke Kok8fc897b2006-08-28 14:56:16 -07007722 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007723 return ret_val;
7724
7725 /* This loop will early-out if the NO link condition has been met. */
Auke Kok8fc897b2006-08-28 14:56:16 -07007726 for (i = PHY_FORCE_TIME; i > 0; i--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007727 /* Read the MII Status Register and wait for Link Status bit
7728 * to be clear.
7729 */
7730
7731 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07007732 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007733 return ret_val;
7734
7735 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07007736 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007737 return ret_val;
7738
Auke Kok8fc897b2006-08-28 14:56:16 -07007739 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007740 mdelay(100);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007741 }
7742
7743 /* Recommended delay time after link has been lost */
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007744 mdelay(1000);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007745
7746 /* Now we will re-enable th transmitter on the PHY */
7747
7748 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
Auke Kok8fc897b2006-08-28 14:56:16 -07007749 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007750 return ret_val;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007751 mdelay(50);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007752 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
Auke Kok8fc897b2006-08-28 14:56:16 -07007753 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007754 return ret_val;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007755 mdelay(50);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007756 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
Auke Kok8fc897b2006-08-28 14:56:16 -07007757 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007758 return ret_val;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007759 mdelay(50);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007760 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
Auke Kok8fc897b2006-08-28 14:56:16 -07007761 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007762 return ret_val;
7763
7764 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
Auke Kok8fc897b2006-08-28 14:56:16 -07007765 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007766 return ret_val;
7767
7768 /* This loop will early-out if the link condition has been met. */
Auke Kok8fc897b2006-08-28 14:56:16 -07007769 for (i = PHY_FORCE_TIME; i > 0; i--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007770 /* Read the MII Status Register and wait for Link Status bit
7771 * to be set.
7772 */
7773
7774 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07007775 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007776 return ret_val;
7777
7778 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07007779 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007780 return ret_val;
7781
Auke Kok8fc897b2006-08-28 14:56:16 -07007782 if (mii_status_reg & MII_SR_LINK_STATUS) break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007783 mdelay(100);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007784 }
7785 return E1000_SUCCESS;
7786}
7787
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007788/***************************************************************************
7789 *
7790 * Disables PCI-Express master access.
7791 *
7792 * hw: Struct containing variables accessed by shared code
7793 *
7794 * returns: - none.
7795 *
7796 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007797static void
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007798e1000_set_pci_express_master_disable(struct e1000_hw *hw)
7799{
7800 uint32_t ctrl;
7801
7802 DEBUGFUNC("e1000_set_pci_express_master_disable");
7803
7804 if (hw->bus_type != e1000_bus_type_pci_express)
7805 return;
7806
7807 ctrl = E1000_READ_REG(hw, CTRL);
7808 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
7809 E1000_WRITE_REG(hw, CTRL, ctrl);
7810}
7811
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007812/*******************************************************************************
7813 *
7814 * Disables PCI-Express master access and verifies there are no pending requests
7815 *
7816 * hw: Struct containing variables accessed by shared code
7817 *
7818 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
7819 * caused the master requests to be disabled.
7820 * E1000_SUCCESS master requests disabled.
7821 *
7822 ******************************************************************************/
7823int32_t
7824e1000_disable_pciex_master(struct e1000_hw *hw)
7825{
7826 int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
7827
7828 DEBUGFUNC("e1000_disable_pciex_master");
7829
7830 if (hw->bus_type != e1000_bus_type_pci_express)
7831 return E1000_SUCCESS;
7832
7833 e1000_set_pci_express_master_disable(hw);
7834
Auke Kok8fc897b2006-08-28 14:56:16 -07007835 while (timeout) {
7836 if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007837 break;
7838 else
7839 udelay(100);
7840 timeout--;
7841 }
7842
Auke Kok8fc897b2006-08-28 14:56:16 -07007843 if (!timeout) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007844 DEBUGOUT("Master requests are pending.\n");
7845 return -E1000_ERR_MASTER_REQUESTS_PENDING;
7846 }
7847
7848 return E1000_SUCCESS;
7849}
7850
7851/*******************************************************************************
7852 *
7853 * Check for EEPROM Auto Read bit done.
7854 *
7855 * hw: Struct containing variables accessed by shared code
7856 *
7857 * returns: - E1000_ERR_RESET if fail to reset MAC
7858 * E1000_SUCCESS at any other case.
7859 *
7860 ******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007861static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007862e1000_get_auto_rd_done(struct e1000_hw *hw)
7863{
7864 int32_t timeout = AUTO_READ_DONE_TIMEOUT;
7865
7866 DEBUGFUNC("e1000_get_auto_rd_done");
7867
7868 switch (hw->mac_type) {
7869 default:
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007870 msleep(5);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007871 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04007872 case e1000_82571:
7873 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007874 case e1000_82573:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08007875 case e1000_80003es2lan:
Auke Kokcd94dd02006-06-27 09:08:22 -07007876 case e1000_ich8lan:
7877 while (timeout) {
7878 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
7879 break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007880 else msleep(1);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007881 timeout--;
7882 }
7883
Auke Kok8fc897b2006-08-28 14:56:16 -07007884 if (!timeout) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007885 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
7886 return -E1000_ERR_RESET;
7887 }
7888 break;
7889 }
7890
Jeff Kirsherfd803242005-12-13 00:06:22 -05007891 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
7892 * Need to wait for PHY configuration completion before accessing NVM
7893 * and PHY. */
7894 if (hw->mac_type == e1000_82573)
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007895 msleep(25);
Jeff Kirsherfd803242005-12-13 00:06:22 -05007896
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007897 return E1000_SUCCESS;
7898}
7899
7900/***************************************************************************
7901 * Checks if the PHY configuration is done
7902 *
7903 * hw: Struct containing variables accessed by shared code
7904 *
7905 * returns: - E1000_ERR_RESET if fail to reset MAC
7906 * E1000_SUCCESS at any other case.
7907 *
7908 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007909static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007910e1000_get_phy_cfg_done(struct e1000_hw *hw)
7911{
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04007912 int32_t timeout = PHY_CFG_TIMEOUT;
7913 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
7914
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007915 DEBUGFUNC("e1000_get_phy_cfg_done");
7916
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04007917 switch (hw->mac_type) {
7918 default:
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007919 mdelay(10);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04007920 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08007921 case e1000_80003es2lan:
7922 /* Separate *_CFG_DONE_* bit for each port */
7923 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
7924 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
7925 /* Fall Through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04007926 case e1000_82571:
7927 case e1000_82572:
7928 while (timeout) {
7929 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
7930 break;
7931 else
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007932 msleep(1);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04007933 timeout--;
7934 }
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04007935 if (!timeout) {
7936 DEBUGOUT("MNG configuration cycle has not completed.\n");
7937 return -E1000_ERR_RESET;
7938 }
7939 break;
7940 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007941
7942 return E1000_SUCCESS;
7943}
7944
7945/***************************************************************************
7946 *
7947 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
7948 * adapter or Eeprom access.
7949 *
7950 * hw: Struct containing variables accessed by shared code
7951 *
7952 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
7953 * E1000_SUCCESS at any other case.
7954 *
7955 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007956static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007957e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
7958{
7959 int32_t timeout;
7960 uint32_t swsm;
7961
7962 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
7963
Auke Kok8fc897b2006-08-28 14:56:16 -07007964 if (!hw->eeprom_semaphore_present)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007965 return E1000_SUCCESS;
7966
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08007967 if (hw->mac_type == e1000_80003es2lan) {
7968 /* Get the SW semaphore. */
7969 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
7970 return -E1000_ERR_EEPROM;
7971 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007972
7973 /* Get the FW semaphore. */
7974 timeout = hw->eeprom.word_size + 1;
Auke Kok8fc897b2006-08-28 14:56:16 -07007975 while (timeout) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007976 swsm = E1000_READ_REG(hw, SWSM);
7977 swsm |= E1000_SWSM_SWESMBI;
7978 E1000_WRITE_REG(hw, SWSM, swsm);
7979 /* if we managed to set the bit we got the semaphore. */
7980 swsm = E1000_READ_REG(hw, SWSM);
Auke Kok8fc897b2006-08-28 14:56:16 -07007981 if (swsm & E1000_SWSM_SWESMBI)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007982 break;
7983
7984 udelay(50);
7985 timeout--;
7986 }
7987
Auke Kok8fc897b2006-08-28 14:56:16 -07007988 if (!timeout) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007989 /* Release semaphores */
7990 e1000_put_hw_eeprom_semaphore(hw);
7991 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
7992 return -E1000_ERR_EEPROM;
7993 }
7994
7995 return E1000_SUCCESS;
7996}
7997
7998/***************************************************************************
7999 * This function clears HW semaphore bits.
8000 *
8001 * hw: Struct containing variables accessed by shared code
8002 *
8003 * returns: - None.
8004 *
8005 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008006static void
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008007e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
8008{
8009 uint32_t swsm;
8010
8011 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
8012
Auke Kok8fc897b2006-08-28 14:56:16 -07008013 if (!hw->eeprom_semaphore_present)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008014 return;
8015
8016 swsm = E1000_READ_REG(hw, SWSM);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008017 if (hw->mac_type == e1000_80003es2lan) {
8018 /* Release both semaphores. */
8019 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
8020 } else
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008021 swsm &= ~(E1000_SWSM_SWESMBI);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008022 E1000_WRITE_REG(hw, SWSM, swsm);
8023}
8024
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008025/***************************************************************************
8026 *
8027 * Obtaining software semaphore bit (SMBI) before resetting PHY.
8028 *
8029 * hw: Struct containing variables accessed by shared code
8030 *
8031 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
8032 * E1000_SUCCESS at any other case.
8033 *
8034 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008035static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008036e1000_get_software_semaphore(struct e1000_hw *hw)
8037{
8038 int32_t timeout = hw->eeprom.word_size + 1;
8039 uint32_t swsm;
8040
8041 DEBUGFUNC("e1000_get_software_semaphore");
8042
Nicholas Nunley35574762006-09-27 12:53:34 -07008043 if (hw->mac_type != e1000_80003es2lan) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008044 return E1000_SUCCESS;
Nicholas Nunley35574762006-09-27 12:53:34 -07008045 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008046
Auke Kok8fc897b2006-08-28 14:56:16 -07008047 while (timeout) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008048 swsm = E1000_READ_REG(hw, SWSM);
8049 /* If SMBI bit cleared, it is now set and we hold the semaphore */
Auke Kok8fc897b2006-08-28 14:56:16 -07008050 if (!(swsm & E1000_SWSM_SMBI))
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008051 break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04008052 mdelay(1);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008053 timeout--;
8054 }
8055
Auke Kok8fc897b2006-08-28 14:56:16 -07008056 if (!timeout) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008057 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
8058 return -E1000_ERR_RESET;
8059 }
8060
8061 return E1000_SUCCESS;
8062}
8063
8064/***************************************************************************
8065 *
8066 * Release semaphore bit (SMBI).
8067 *
8068 * hw: Struct containing variables accessed by shared code
8069 *
8070 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008071static void
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008072e1000_release_software_semaphore(struct e1000_hw *hw)
8073{
8074 uint32_t swsm;
8075
8076 DEBUGFUNC("e1000_release_software_semaphore");
8077
Nicholas Nunley35574762006-09-27 12:53:34 -07008078 if (hw->mac_type != e1000_80003es2lan) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008079 return;
Nicholas Nunley35574762006-09-27 12:53:34 -07008080 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008081
8082 swsm = E1000_READ_REG(hw, SWSM);
8083 /* Release the SW semaphores.*/
8084 swsm &= ~E1000_SWSM_SMBI;
8085 E1000_WRITE_REG(hw, SWSM, swsm);
8086}
8087
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008088/******************************************************************************
8089 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
8090 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
8091 * the caller to figure out how to deal with it.
8092 *
8093 * hw - Struct containing variables accessed by shared code
8094 *
8095 * returns: - E1000_BLK_PHY_RESET
8096 * E1000_SUCCESS
8097 *
8098 *****************************************************************************/
8099int32_t
8100e1000_check_phy_reset_block(struct e1000_hw *hw)
8101{
8102 uint32_t manc = 0;
Auke Kokcd94dd02006-06-27 09:08:22 -07008103 uint32_t fwsm = 0;
8104
8105 if (hw->mac_type == e1000_ich8lan) {
8106 fwsm = E1000_READ_REG(hw, FWSM);
8107 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
8108 : E1000_BLK_PHY_RESET;
8109 }
Jesse Brandeburg96838a42006-01-18 13:01:39 -08008110
8111 if (hw->mac_type > e1000_82547_rev_2)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008112 manc = E1000_READ_REG(hw, MANC);
8113 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
Nicholas Nunley35574762006-09-27 12:53:34 -07008114 E1000_BLK_PHY_RESET : E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008115}
8116
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008117static uint8_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008118e1000_arc_subsystem_valid(struct e1000_hw *hw)
8119{
8120 uint32_t fwsm;
8121
8122 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
8123 * may not be provided a DMA clock when no manageability features are
8124 * enabled. We do not want to perform any reads/writes to these registers
8125 * if this is the case. We read FWSM to determine the manageability mode.
8126 */
8127 switch (hw->mac_type) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008128 case e1000_82571:
8129 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008130 case e1000_82573:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008131 case e1000_80003es2lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008132 fwsm = E1000_READ_REG(hw, FWSM);
Auke Kok8fc897b2006-08-28 14:56:16 -07008133 if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008134 return TRUE;
8135 break;
Auke Kokcd94dd02006-06-27 09:08:22 -07008136 case e1000_ich8lan:
8137 return TRUE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008138 default:
8139 break;
8140 }
8141 return FALSE;
8142}
8143
8144
Auke Kokd37ea5d2006-06-27 09:08:17 -07008145/******************************************************************************
8146 * Configure PCI-Ex no-snoop
8147 *
8148 * hw - Struct containing variables accessed by shared code.
8149 * no_snoop - Bitmap of no-snoop events.
8150 *
8151 * returns: E1000_SUCCESS
8152 *
8153 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008154static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008155e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
8156{
8157 uint32_t gcr_reg = 0;
8158
8159 DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8160
8161 if (hw->bus_type == e1000_bus_type_unknown)
8162 e1000_get_bus_info(hw);
8163
8164 if (hw->bus_type != e1000_bus_type_pci_express)
8165 return E1000_SUCCESS;
8166
8167 if (no_snoop) {
8168 gcr_reg = E1000_READ_REG(hw, GCR);
8169 gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
8170 gcr_reg |= no_snoop;
8171 E1000_WRITE_REG(hw, GCR, gcr_reg);
8172 }
8173 if (hw->mac_type == e1000_ich8lan) {
8174 uint32_t ctrl_ext;
8175
8176 E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
8177
8178 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
8179 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
8180 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
8181 }
8182
8183 return E1000_SUCCESS;
8184}
8185
8186/***************************************************************************
8187 *
8188 * Get software semaphore FLAG bit (SWFLAG).
8189 * SWFLAG is used to synchronize the access to all shared resource between
8190 * SW, FW and HW.
8191 *
8192 * hw: Struct containing variables accessed by shared code
8193 *
8194 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008195static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008196e1000_get_software_flag(struct e1000_hw *hw)
8197{
8198 int32_t timeout = PHY_CFG_TIMEOUT;
8199 uint32_t extcnf_ctrl;
8200
8201 DEBUGFUNC("e1000_get_software_flag");
8202
8203 if (hw->mac_type == e1000_ich8lan) {
8204 while (timeout) {
8205 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8206 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
8207 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8208
8209 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8210 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
8211 break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04008212 mdelay(1);
Auke Kokd37ea5d2006-06-27 09:08:17 -07008213 timeout--;
8214 }
8215
8216 if (!timeout) {
8217 DEBUGOUT("FW or HW locks the resource too long.\n");
8218 return -E1000_ERR_CONFIG;
8219 }
8220 }
8221
8222 return E1000_SUCCESS;
8223}
8224
8225/***************************************************************************
8226 *
8227 * Release software semaphore FLAG bit (SWFLAG).
8228 * SWFLAG is used to synchronize the access to all shared resource between
8229 * SW, FW and HW.
8230 *
8231 * hw: Struct containing variables accessed by shared code
8232 *
8233 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008234static void
Auke Kokd37ea5d2006-06-27 09:08:17 -07008235e1000_release_software_flag(struct e1000_hw *hw)
8236{
8237 uint32_t extcnf_ctrl;
8238
8239 DEBUGFUNC("e1000_release_software_flag");
8240
8241 if (hw->mac_type == e1000_ich8lan) {
8242 extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
8243 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
8244 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8245 }
8246
8247 return;
8248}
8249
Auke Kokd37ea5d2006-06-27 09:08:17 -07008250/******************************************************************************
8251 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8252 * register.
8253 *
8254 * hw - Struct containing variables accessed by shared code
8255 * offset - offset of word in the EEPROM to read
8256 * data - word read from the EEPROM
8257 * words - number of words to read
8258 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008259static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008260e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8261 uint16_t *data)
8262{
8263 int32_t error = E1000_SUCCESS;
8264 uint32_t flash_bank = 0;
8265 uint32_t act_offset = 0;
8266 uint32_t bank_offset = 0;
8267 uint16_t word = 0;
8268 uint16_t i = 0;
8269
8270 /* We need to know which is the valid flash bank. In the event
8271 * that we didn't allocate eeprom_shadow_ram, we may not be
8272 * managing flash_bank. So it cannot be trusted and needs
8273 * to be updated with each read.
8274 */
8275 /* Value of bit 22 corresponds to the flash bank we're on. */
8276 flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
8277
8278 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8279 bank_offset = flash_bank * (hw->flash_bank_size * 2);
8280
8281 error = e1000_get_software_flag(hw);
8282 if (error != E1000_SUCCESS)
8283 return error;
8284
8285 for (i = 0; i < words; i++) {
8286 if (hw->eeprom_shadow_ram != NULL &&
8287 hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
8288 data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
8289 } else {
8290 /* The NVM part needs a byte offset, hence * 2 */
8291 act_offset = bank_offset + ((offset + i) * 2);
8292 error = e1000_read_ich8_word(hw, act_offset, &word);
8293 if (error != E1000_SUCCESS)
8294 break;
8295 data[i] = word;
8296 }
8297 }
8298
8299 e1000_release_software_flag(hw);
8300
8301 return error;
8302}
8303
8304/******************************************************************************
8305 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8306 * register. Actually, writes are written to the shadow ram cache in the hw
8307 * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
8308 * the NVM, which occurs when the NVM checksum is updated.
8309 *
8310 * hw - Struct containing variables accessed by shared code
8311 * offset - offset of word in the EEPROM to write
8312 * words - number of words to write
8313 * data - words to write to the EEPROM
8314 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008315static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008316e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8317 uint16_t *data)
8318{
8319 uint32_t i = 0;
8320 int32_t error = E1000_SUCCESS;
8321
8322 error = e1000_get_software_flag(hw);
8323 if (error != E1000_SUCCESS)
8324 return error;
8325
8326 /* A driver can write to the NVM only if it has eeprom_shadow_ram
8327 * allocated. Subsequent reads to the modified words are read from
8328 * this cached structure as well. Writes will only go into this
8329 * cached structure unless it's followed by a call to
8330 * e1000_update_eeprom_checksum() where it will commit the changes
8331 * and clear the "modified" field.
8332 */
8333 if (hw->eeprom_shadow_ram != NULL) {
8334 for (i = 0; i < words; i++) {
8335 if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
8336 hw->eeprom_shadow_ram[offset+i].modified = TRUE;
8337 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
8338 } else {
8339 error = -E1000_ERR_EEPROM;
8340 break;
8341 }
8342 }
8343 } else {
8344 /* Drivers have the option to not allocate eeprom_shadow_ram as long
8345 * as they don't perform any NVM writes. An attempt in doing so
8346 * will result in this error.
8347 */
8348 error = -E1000_ERR_EEPROM;
8349 }
8350
8351 e1000_release_software_flag(hw);
8352
8353 return error;
8354}
8355
8356/******************************************************************************
8357 * This function does initial flash setup so that a new read/write/erase cycle
8358 * can be started.
8359 *
8360 * hw - The pointer to the hw structure
8361 ****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008362static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008363e1000_ich8_cycle_init(struct e1000_hw *hw)
8364{
8365 union ich8_hws_flash_status hsfsts;
8366 int32_t error = E1000_ERR_EEPROM;
8367 int32_t i = 0;
8368
8369 DEBUGFUNC("e1000_ich8_cycle_init");
8370
8371 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8372
8373 /* May be check the Flash Des Valid bit in Hw status */
8374 if (hsfsts.hsf_status.fldesvalid == 0) {
8375 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
8376 return error;
8377 }
8378
8379 /* Clear FCERR in Hw status by writing 1 */
8380 /* Clear DAEL in Hw status by writing a 1 */
8381 hsfsts.hsf_status.flcerr = 1;
8382 hsfsts.hsf_status.dael = 1;
8383
8384 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8385
8386 /* Either we should have a hardware SPI cycle in progress bit to check
8387 * against, in order to start a new cycle or FDONE bit should be changed
8388 * in the hardware so that it is 1 after harware reset, which can then be
8389 * used as an indication whether a cycle is in progress or has been
8390 * completed .. we should also have some software semaphore mechanism to
8391 * guard FDONE or the cycle in progress bit so that two threads access to
8392 * those bits can be sequentiallized or a way so that 2 threads dont
8393 * start the cycle at the same time */
8394
8395 if (hsfsts.hsf_status.flcinprog == 0) {
8396 /* There is no cycle running at present, so we can start a cycle */
8397 /* Begin by setting Flash Cycle Done. */
8398 hsfsts.hsf_status.flcdone = 1;
8399 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8400 error = E1000_SUCCESS;
8401 } else {
8402 /* otherwise poll for sometime so the current cycle has a chance
8403 * to end before giving up. */
8404 for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
8405 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8406 if (hsfsts.hsf_status.flcinprog == 0) {
8407 error = E1000_SUCCESS;
8408 break;
8409 }
8410 udelay(1);
8411 }
8412 if (error == E1000_SUCCESS) {
8413 /* Successful in waiting for previous cycle to timeout,
8414 * now set the Flash Cycle Done. */
8415 hsfsts.hsf_status.flcdone = 1;
8416 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8417 } else {
8418 DEBUGOUT("Flash controller busy, cannot get access");
8419 }
8420 }
8421 return error;
8422}
8423
8424/******************************************************************************
8425 * This function starts a flash cycle and waits for its completion
8426 *
8427 * hw - The pointer to the hw structure
8428 ****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008429static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008430e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
8431{
8432 union ich8_hws_flash_ctrl hsflctl;
8433 union ich8_hws_flash_status hsfsts;
8434 int32_t error = E1000_ERR_EEPROM;
8435 uint32_t i = 0;
8436
8437 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
8438 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8439 hsflctl.hsf_ctrl.flcgo = 1;
8440 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8441
8442 /* wait till FDONE bit is set to 1 */
8443 do {
8444 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8445 if (hsfsts.hsf_status.flcdone == 1)
8446 break;
8447 udelay(1);
8448 i++;
8449 } while (i < timeout);
8450 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
8451 error = E1000_SUCCESS;
8452 }
8453 return error;
8454}
8455
8456/******************************************************************************
8457 * Reads a byte or word from the NVM using the ICH8 flash access registers.
8458 *
8459 * hw - The pointer to the hw structure
8460 * index - The index of the byte or word to read.
8461 * size - Size of data to read, 1=byte 2=word
8462 * data - Pointer to the word to store the value read.
8463 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008464static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008465e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
8466 uint32_t size, uint16_t* data)
8467{
8468 union ich8_hws_flash_status hsfsts;
8469 union ich8_hws_flash_ctrl hsflctl;
8470 uint32_t flash_linear_address;
8471 uint32_t flash_data = 0;
8472 int32_t error = -E1000_ERR_EEPROM;
8473 int32_t count = 0;
8474
8475 DEBUGFUNC("e1000_read_ich8_data");
8476
8477 if (size < 1 || size > 2 || data == 0x0 ||
8478 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8479 return error;
8480
8481 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8482 hw->flash_base_addr;
8483
8484 do {
8485 udelay(1);
8486 /* Steps */
8487 error = e1000_ich8_cycle_init(hw);
8488 if (error != E1000_SUCCESS)
8489 break;
8490
8491 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8492 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8493 hsflctl.hsf_ctrl.fldbcount = size - 1;
8494 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
8495 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8496
8497 /* Write the last 24 bits of index into Flash Linear address field in
8498 * Flash Address */
8499 /* TODO: TBD maybe check the index against the size of flash */
8500
8501 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8502
8503 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8504
8505 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8506 * sequence a few more times, else read in (shift in) the Flash Data0,
8507 * the order is least significant byte first msb to lsb */
8508 if (error == E1000_SUCCESS) {
8509 flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
8510 if (size == 1) {
8511 *data = (uint8_t)(flash_data & 0x000000FF);
8512 } else if (size == 2) {
8513 *data = (uint16_t)(flash_data & 0x0000FFFF);
8514 }
8515 break;
8516 } else {
8517 /* If we've gotten here, then things are probably completely hosed,
8518 * but if the error condition is detected, it won't hurt to give
8519 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8520 */
8521 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8522 if (hsfsts.hsf_status.flcerr == 1) {
8523 /* Repeat for some time before giving up. */
8524 continue;
8525 } else if (hsfsts.hsf_status.flcdone == 0) {
8526 DEBUGOUT("Timeout error - flash cycle did not complete.");
8527 break;
8528 }
8529 }
8530 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8531
8532 return error;
8533}
8534
8535/******************************************************************************
8536 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8537 *
8538 * hw - The pointer to the hw structure
8539 * index - The index of the byte/word to read.
8540 * size - Size of data to read, 1=byte 2=word
8541 * data - The byte(s) to write to the NVM.
8542 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008543static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008544e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
8545 uint16_t data)
8546{
8547 union ich8_hws_flash_status hsfsts;
8548 union ich8_hws_flash_ctrl hsflctl;
8549 uint32_t flash_linear_address;
8550 uint32_t flash_data = 0;
8551 int32_t error = -E1000_ERR_EEPROM;
8552 int32_t count = 0;
8553
8554 DEBUGFUNC("e1000_write_ich8_data");
8555
8556 if (size < 1 || size > 2 || data > size * 0xff ||
8557 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8558 return error;
8559
8560 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8561 hw->flash_base_addr;
8562
8563 do {
8564 udelay(1);
8565 /* Steps */
8566 error = e1000_ich8_cycle_init(hw);
8567 if (error != E1000_SUCCESS)
8568 break;
8569
8570 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8571 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8572 hsflctl.hsf_ctrl.fldbcount = size -1;
8573 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
8574 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8575
8576 /* Write the last 24 bits of index into Flash Linear address field in
8577 * Flash Address */
8578 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8579
8580 if (size == 1)
8581 flash_data = (uint32_t)data & 0x00FF;
8582 else
8583 flash_data = (uint32_t)data;
8584
8585 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
8586
8587 /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8588 * sequence a few more times else done */
8589 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8590 if (error == E1000_SUCCESS) {
8591 break;
8592 } else {
8593 /* If we're here, then things are most likely completely hosed,
8594 * but if the error condition is detected, it won't hurt to give
8595 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8596 */
8597 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8598 if (hsfsts.hsf_status.flcerr == 1) {
8599 /* Repeat for some time before giving up. */
8600 continue;
8601 } else if (hsfsts.hsf_status.flcdone == 0) {
8602 DEBUGOUT("Timeout error - flash cycle did not complete.");
8603 break;
8604 }
8605 }
8606 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8607
8608 return error;
8609}
8610
8611/******************************************************************************
8612 * Reads a single byte from the NVM using the ICH8 flash access registers.
8613 *
8614 * hw - pointer to e1000_hw structure
8615 * index - The index of the byte to read.
8616 * data - Pointer to a byte to store the value read.
8617 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008618static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008619e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
8620{
8621 int32_t status = E1000_SUCCESS;
8622 uint16_t word = 0;
8623
8624 status = e1000_read_ich8_data(hw, index, 1, &word);
8625 if (status == E1000_SUCCESS) {
8626 *data = (uint8_t)word;
8627 }
8628
8629 return status;
8630}
8631
8632/******************************************************************************
8633 * Writes a single byte to the NVM using the ICH8 flash access registers.
8634 * Performs verification by reading back the value and then going through
8635 * a retry algorithm before giving up.
8636 *
8637 * hw - pointer to e1000_hw structure
8638 * index - The index of the byte to write.
8639 * byte - The byte to write to the NVM.
8640 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008641static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008642e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
8643{
8644 int32_t error = E1000_SUCCESS;
8645 int32_t program_retries;
8646 uint8_t temp_byte;
8647
8648 e1000_write_ich8_byte(hw, index, byte);
8649 udelay(100);
8650
8651 for (program_retries = 0; program_retries < 100; program_retries++) {
8652 e1000_read_ich8_byte(hw, index, &temp_byte);
8653 if (temp_byte == byte)
8654 break;
8655 udelay(10);
8656 e1000_write_ich8_byte(hw, index, byte);
8657 udelay(100);
8658 }
8659 if (program_retries == 100)
8660 error = E1000_ERR_EEPROM;
8661
8662 return error;
8663}
8664
8665/******************************************************************************
8666 * Writes a single byte to the NVM using the ICH8 flash access registers.
8667 *
8668 * hw - pointer to e1000_hw structure
8669 * index - The index of the byte to read.
8670 * data - The byte to write to the NVM.
8671 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008672static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008673e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
8674{
8675 int32_t status = E1000_SUCCESS;
8676 uint16_t word = (uint16_t)data;
8677
8678 status = e1000_write_ich8_data(hw, index, 1, word);
8679
8680 return status;
8681}
8682
8683/******************************************************************************
8684 * Reads a word from the NVM using the ICH8 flash access registers.
8685 *
8686 * hw - pointer to e1000_hw structure
8687 * index - The starting byte index of the word to read.
8688 * data - Pointer to a word to store the value read.
8689 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008690static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008691e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
8692{
8693 int32_t status = E1000_SUCCESS;
8694 status = e1000_read_ich8_data(hw, index, 2, data);
8695 return status;
8696}
8697
8698/******************************************************************************
8699 * Writes a word to the NVM using the ICH8 flash access registers.
8700 *
8701 * hw - pointer to e1000_hw structure
8702 * index - The starting byte index of the word to read.
8703 * data - The word to write to the NVM.
8704 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008705#if 0
Auke Kokd37ea5d2006-06-27 09:08:17 -07008706int32_t
8707e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
8708{
8709 int32_t status = E1000_SUCCESS;
8710 status = e1000_write_ich8_data(hw, index, 2, data);
8711 return status;
8712}
Adrian Bunke4c780b2006-08-14 23:00:10 -07008713#endif /* 0 */
Auke Kokd37ea5d2006-06-27 09:08:17 -07008714
8715/******************************************************************************
8716 * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
8717 * segment N is 4096 * N + flash_reg_addr.
8718 *
8719 * hw - pointer to e1000_hw structure
8720 * segment - 0 for first segment, 1 for second segment, etc.
8721 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008722static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008723e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
8724{
8725 union ich8_hws_flash_status hsfsts;
8726 union ich8_hws_flash_ctrl hsflctl;
8727 uint32_t flash_linear_address;
8728 int32_t count = 0;
8729 int32_t error = E1000_ERR_EEPROM;
8730 int32_t iteration, seg_size;
8731 int32_t sector_size;
8732 int32_t j = 0;
8733 int32_t error_flag = 0;
8734
8735 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8736
8737 /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8738 /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8739 * consecutive sectors. The start index for the nth Hw sector can be
8740 * calculated as = segment * 4096 + n * 256
8741 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8742 * The start index for the nth Hw sector can be calculated
8743 * as = segment * 4096
8744 * 10: Error condition
8745 * 11: The Hw sector size is much bigger than the size asked to
8746 * erase...error condition */
8747 if (hsfsts.hsf_status.berasesz == 0x0) {
8748 /* Hw sector size 256 */
8749 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
8750 iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
8751 } else if (hsfsts.hsf_status.berasesz == 0x1) {
8752 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
8753 iteration = 1;
8754 } else if (hsfsts.hsf_status.berasesz == 0x3) {
8755 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
8756 iteration = 1;
8757 } else {
8758 return error;
8759 }
8760
8761 for (j = 0; j < iteration ; j++) {
8762 do {
8763 count++;
8764 /* Steps */
8765 error = e1000_ich8_cycle_init(hw);
8766 if (error != E1000_SUCCESS) {
8767 error_flag = 1;
8768 break;
8769 }
8770
8771 /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8772 * Control */
8773 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8774 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
8775 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8776
8777 /* Write the last 24 bits of an index within the block into Flash
8778 * Linear address field in Flash Address. This probably needs to
8779 * be calculated here based off the on-chip segment size and the
8780 * software segment size assumed (4K) */
8781 /* TBD */
8782 flash_linear_address = segment * sector_size + j * seg_size;
8783 flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
8784 flash_linear_address += hw->flash_base_addr;
8785
8786 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8787
8788 error = e1000_ich8_flash_cycle(hw, 1000000);
8789 /* Check if FCERR is set to 1. If 1, clear it and try the whole
8790 * sequence a few more times else Done */
8791 if (error == E1000_SUCCESS) {
8792 break;
8793 } else {
8794 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8795 if (hsfsts.hsf_status.flcerr == 1) {
8796 /* repeat for some time before giving up */
8797 continue;
8798 } else if (hsfsts.hsf_status.flcdone == 0) {
8799 error_flag = 1;
8800 break;
8801 }
8802 }
8803 } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
8804 if (error_flag == 1)
8805 break;
8806 }
8807 if (error_flag != 1)
8808 error = E1000_SUCCESS;
8809 return error;
8810}
8811
Adrian Bunke4c780b2006-08-14 23:00:10 -07008812static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008813e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
8814 uint32_t cnf_base_addr, uint32_t cnf_size)
8815{
8816 uint32_t ret_val = E1000_SUCCESS;
8817 uint16_t word_addr, reg_data, reg_addr;
8818 uint16_t i;
8819
8820 /* cnf_base_addr is in DWORD */
8821 word_addr = (uint16_t)(cnf_base_addr << 1);
8822
8823 /* cnf_size is returned in size of dwords */
8824 for (i = 0; i < cnf_size; i++) {
8825 ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
8826 if (ret_val)
8827 return ret_val;
8828
8829 ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
8830 if (ret_val)
8831 return ret_val;
8832
8833 ret_val = e1000_get_software_flag(hw);
8834 if (ret_val != E1000_SUCCESS)
8835 return ret_val;
8836
8837 ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
8838
8839 e1000_release_software_flag(hw);
8840 }
8841
8842 return ret_val;
8843}
8844
8845
Adrian Bunke4c780b2006-08-14 23:00:10 -07008846static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008847e1000_init_lcd_from_nvm(struct e1000_hw *hw)
8848{
8849 uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
8850
8851 if (hw->phy_type != e1000_phy_igp_3)
8852 return E1000_SUCCESS;
8853
8854 /* Check if SW needs configure the PHY */
8855 reg_data = E1000_READ_REG(hw, FEXTNVM);
8856 if (!(reg_data & FEXTNVM_SW_CONFIG))
8857 return E1000_SUCCESS;
8858
8859 /* Wait for basic configuration completes before proceeding*/
8860 loop = 0;
8861 do {
8862 reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
8863 udelay(100);
8864 loop++;
8865 } while ((!reg_data) && (loop < 50));
8866
8867 /* Clear the Init Done bit for the next init event */
8868 reg_data = E1000_READ_REG(hw, STATUS);
8869 reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
8870 E1000_WRITE_REG(hw, STATUS, reg_data);
8871
8872 /* Make sure HW does not configure LCD from PHY extended configuration
8873 before SW configuration */
8874 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
8875 if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
8876 reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
8877 cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
8878 cnf_size >>= 16;
8879 if (cnf_size) {
8880 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
8881 cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
8882 /* cnf_base_addr is in DWORD */
8883 cnf_base_addr >>= 16;
8884
8885 /* Configure LCD from extended configuration region. */
8886 ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
8887 cnf_size);
8888 if (ret_val)
8889 return ret_val;
8890 }
8891 }
8892
8893 return E1000_SUCCESS;
8894}
8895
8896
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008897