blob: e842aee00535cb62ae14d1cc61944bfd62dbdfb5 [file] [log] [blame]
Mike Marciniszyn77241052015-07-30 15:17:43 -04001/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51/*
52 * This file contains all of the code that is specific to the HFI chip
53 */
54
55#include <linux/pci.h>
56#include <linux/delay.h>
57#include <linux/interrupt.h>
58#include <linux/module.h>
59
60#include "hfi.h"
61#include "trace.h"
62#include "mad.h"
63#include "pio.h"
64#include "sdma.h"
65#include "eprom.h"
66
67#define NUM_IB_PORTS 1
68
69uint kdeth_qp;
70module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
71MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
72
73uint num_vls = HFI1_MAX_VLS_SUPPORTED;
74module_param(num_vls, uint, S_IRUGO);
75MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
76
77/*
78 * Default time to aggregate two 10K packets from the idle state
79 * (timer not running). The timer starts at the end of the first packet,
80 * so only the time for one 10K packet and header plus a bit extra is needed.
81 * 10 * 1024 + 64 header byte = 10304 byte
82 * 10304 byte / 12.5 GB/s = 824.32ns
83 */
84uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
85module_param(rcv_intr_timeout, uint, S_IRUGO);
86MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
87
88uint rcv_intr_count = 16; /* same as qib */
89module_param(rcv_intr_count, uint, S_IRUGO);
90MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
91
92ushort link_crc_mask = SUPPORTED_CRCS;
93module_param(link_crc_mask, ushort, S_IRUGO);
94MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
95
96uint loopback;
97module_param_named(loopback, loopback, uint, S_IRUGO);
98MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
99
100/* Other driver tunables */
101uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
102static ushort crc_14b_sideband = 1;
103static uint use_flr = 1;
104uint quick_linkup; /* skip LNI */
105
106struct flag_table {
107 u64 flag; /* the flag */
108 char *str; /* description string */
109 u16 extra; /* extra information */
110 u16 unused0;
111 u32 unused1;
112};
113
114/* str must be a string constant */
115#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
116#define FLAG_ENTRY0(str, flag) {flag, str, 0}
117
118/* Send Error Consequences */
119#define SEC_WRITE_DROPPED 0x1
120#define SEC_PACKET_DROPPED 0x2
121#define SEC_SC_HALTED 0x4 /* per-context only */
122#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
123
124#define VL15CTXT 1
125#define MIN_KERNEL_KCTXTS 2
126#define NUM_MAP_REGS 32
127
128/* Bit offset into the GUID which carries HFI id information */
129#define GUID_HFI_INDEX_SHIFT 39
130
131/* extract the emulation revision */
132#define emulator_rev(dd) ((dd)->irev >> 8)
133/* parallel and serial emulation versions are 3 and 4 respectively */
134#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
135#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
136
137/* RSM fields */
138
139/* packet type */
140#define IB_PACKET_TYPE 2ull
141#define QW_SHIFT 6ull
142/* QPN[7..1] */
143#define QPN_WIDTH 7ull
144
145/* LRH.BTH: QW 0, OFFSET 48 - for match */
146#define LRH_BTH_QW 0ull
147#define LRH_BTH_BIT_OFFSET 48ull
148#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
149#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
150#define LRH_BTH_SELECT
151#define LRH_BTH_MASK 3ull
152#define LRH_BTH_VALUE 2ull
153
154/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
155#define LRH_SC_QW 0ull
156#define LRH_SC_BIT_OFFSET 56ull
157#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
158#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
159#define LRH_SC_MASK 128ull
160#define LRH_SC_VALUE 0ull
161
162/* SC[n..0] QW 0, OFFSET 60 - for select */
163#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
164
165/* QPN[m+n:1] QW 1, OFFSET 1 */
166#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
167
168/* defines to build power on SC2VL table */
169#define SC2VL_VAL( \
170 num, \
171 sc0, sc0val, \
172 sc1, sc1val, \
173 sc2, sc2val, \
174 sc3, sc3val, \
175 sc4, sc4val, \
176 sc5, sc5val, \
177 sc6, sc6val, \
178 sc7, sc7val) \
179( \
180 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
181 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
182 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
183 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
184 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
185 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
186 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
187 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
188)
189
190#define DC_SC_VL_VAL( \
191 range, \
192 e0, e0val, \
193 e1, e1val, \
194 e2, e2val, \
195 e3, e3val, \
196 e4, e4val, \
197 e5, e5val, \
198 e6, e6val, \
199 e7, e7val, \
200 e8, e8val, \
201 e9, e9val, \
202 e10, e10val, \
203 e11, e11val, \
204 e12, e12val, \
205 e13, e13val, \
206 e14, e14val, \
207 e15, e15val) \
208( \
209 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
210 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
211 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
212 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
213 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
214 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
215 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
216 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
217 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
218 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
219 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
220 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
221 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
222 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
223 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
224 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
225)
226
227/* all CceStatus sub-block freeze bits */
228#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
229 | CCE_STATUS_RXE_FROZE_SMASK \
230 | CCE_STATUS_TXE_FROZE_SMASK \
231 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
232/* all CceStatus sub-block TXE pause bits */
233#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
234 | CCE_STATUS_TXE_PAUSED_SMASK \
235 | CCE_STATUS_SDMA_PAUSED_SMASK)
236/* all CceStatus sub-block RXE pause bits */
237#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
238
239/*
240 * CCE Error flags.
241 */
242static struct flag_table cce_err_status_flags[] = {
243/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
244 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
245/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
246 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
247/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
248 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
249/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
250 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
251/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
252 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
253/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
254 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
255/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
256 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
257/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
258 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
259/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
260 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
261/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
262 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
263/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
264 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
265/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
266 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
267/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
268 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
269/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
270 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
271/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
272 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
273/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
274 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
275/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
276 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
277/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
278 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
279/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
280 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
281/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
282 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
283/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
284 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
285/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
286 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
287/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
288 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
289/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
290 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
291/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
292 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
293/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
294 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
295/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
296 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
297/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
298 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
299/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
300 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
301/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
302 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
303/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
304 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
305/*31*/ FLAG_ENTRY0("LATriggered",
306 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
307/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
308 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
309/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
310 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
311/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
312 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
313/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
314 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
315/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
316 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
317/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
318 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
319/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
320 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
321/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
322 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
323/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
324 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
325/*41-63 reserved*/
326};
327
328/*
329 * Misc Error flags
330 */
331#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
332static struct flag_table misc_err_status_flags[] = {
333/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
334/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
335/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
336/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
337/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
338/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
339/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
340/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
341/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
342/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
343/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
344/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
345/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
346};
347
348/*
349 * TXE PIO Error flags and consequences
350 */
351static struct flag_table pio_err_status_flags[] = {
352/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
353 SEC_WRITE_DROPPED,
354 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
355/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
356 SEC_SPC_FREEZE,
357 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
358/* 2*/ FLAG_ENTRY("PioCsrParity",
359 SEC_SPC_FREEZE,
360 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
361/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
362 SEC_SPC_FREEZE,
363 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
364/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
365 SEC_SPC_FREEZE,
366 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
367/* 5*/ FLAG_ENTRY("PioPccFifoParity",
368 SEC_SPC_FREEZE,
369 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
370/* 6*/ FLAG_ENTRY("PioPecFifoParity",
371 SEC_SPC_FREEZE,
372 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
373/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
374 SEC_SPC_FREEZE,
375 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
376/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
377 SEC_SPC_FREEZE,
378 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
379/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
380 SEC_SPC_FREEZE,
381 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
382/*10*/ FLAG_ENTRY("PioSmPktResetParity",
383 SEC_SPC_FREEZE,
384 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
385/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
386 SEC_SPC_FREEZE,
387 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
388/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
389 SEC_SPC_FREEZE,
390 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
391/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
392 0,
393 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
394/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
395 0,
396 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
397/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
398 SEC_SPC_FREEZE,
399 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
400/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
401 SEC_SPC_FREEZE,
402 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
403/*17*/ FLAG_ENTRY("PioInitSmIn",
404 0,
405 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
406/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
407 SEC_SPC_FREEZE,
408 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
409/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
410 SEC_SPC_FREEZE,
411 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
412/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
413 0,
414 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
415/*21*/ FLAG_ENTRY("PioWriteDataParity",
416 SEC_SPC_FREEZE,
417 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
418/*22*/ FLAG_ENTRY("PioStateMachine",
419 SEC_SPC_FREEZE,
420 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
421/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
422 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
423 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
424/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
425 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
426 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
427/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
428 SEC_SPC_FREEZE,
429 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
430/*26*/ FLAG_ENTRY("PioVlfSopParity",
431 SEC_SPC_FREEZE,
432 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
433/*27*/ FLAG_ENTRY("PioVlFifoParity",
434 SEC_SPC_FREEZE,
435 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
436/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
437 SEC_SPC_FREEZE,
438 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
439/*29*/ FLAG_ENTRY("PioPpmcSopLen",
440 SEC_SPC_FREEZE,
441 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
442/*30-31 reserved*/
443/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
444 SEC_SPC_FREEZE,
445 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
446/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
447 SEC_SPC_FREEZE,
448 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
449/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
450 SEC_SPC_FREEZE,
451 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
452/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
453 SEC_SPC_FREEZE,
454 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
455/*36-63 reserved*/
456};
457
458/* TXE PIO errors that cause an SPC freeze */
459#define ALL_PIO_FREEZE_ERR \
460 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
461 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
462 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
463 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
464 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
465 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
466 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
467 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
489
490/*
491 * TXE SDMA Error flags
492 */
493static struct flag_table sdma_err_status_flags[] = {
494/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
495 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
496/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
497 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
498/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
499 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
500/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
501 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
502/*04-63 reserved*/
503};
504
505/* TXE SDMA errors that cause an SPC freeze */
506#define ALL_SDMA_FREEZE_ERR \
507 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
508 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
509 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
510
511/*
512 * TXE Egress Error flags
513 */
514#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
515static struct flag_table egress_err_status_flags[] = {
516/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
517/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
518/* 2 reserved */
519/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
520 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
521/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
522/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
523/* 6 reserved */
524/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
525 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
526/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
527 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
528/* 9-10 reserved */
529/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
530 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
531/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
532/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
533/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
534/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
535/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
536 SEES(TX_SDMA0_DISALLOWED_PACKET)),
537/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
538 SEES(TX_SDMA1_DISALLOWED_PACKET)),
539/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
540 SEES(TX_SDMA2_DISALLOWED_PACKET)),
541/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
542 SEES(TX_SDMA3_DISALLOWED_PACKET)),
543/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
544 SEES(TX_SDMA4_DISALLOWED_PACKET)),
545/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
546 SEES(TX_SDMA5_DISALLOWED_PACKET)),
547/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
548 SEES(TX_SDMA6_DISALLOWED_PACKET)),
549/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
550 SEES(TX_SDMA7_DISALLOWED_PACKET)),
551/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
552 SEES(TX_SDMA8_DISALLOWED_PACKET)),
553/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
554 SEES(TX_SDMA9_DISALLOWED_PACKET)),
555/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
556 SEES(TX_SDMA10_DISALLOWED_PACKET)),
557/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
558 SEES(TX_SDMA11_DISALLOWED_PACKET)),
559/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
560 SEES(TX_SDMA12_DISALLOWED_PACKET)),
561/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
562 SEES(TX_SDMA13_DISALLOWED_PACKET)),
563/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
564 SEES(TX_SDMA14_DISALLOWED_PACKET)),
565/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
566 SEES(TX_SDMA15_DISALLOWED_PACKET)),
567/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
568 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
569/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
570 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
571/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
572 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
573/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
574 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
575/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
576 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
577/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
578 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
579/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
580 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
581/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
582 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
583/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
584 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
585/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
586/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
587/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
588/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
589/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
590/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
591/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
592/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
593/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
594/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
595/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
596/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
597/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
598/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
599/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
600/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
601/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
602/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
603/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
604/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
605/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
606/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
607 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
608/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
609 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
610};
611
612/*
613 * TXE Egress Error Info flags
614 */
615#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
616static struct flag_table egress_err_info_flags[] = {
617/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
618/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
619/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
620/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
621/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
622/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
623/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
624/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
625/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
626/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
627/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
628/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
629/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
630/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
631/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
632/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
633/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
634/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
635/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
636/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
637/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
638/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
639};
640
641/* TXE Egress errors that cause an SPC freeze */
642#define ALL_TXE_EGRESS_FREEZE_ERR \
643 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
644 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
645 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
646 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
647 | SEES(TX_LAUNCH_CSR_PARITY) \
648 | SEES(TX_SBRD_CTL_CSR_PARITY) \
649 | SEES(TX_CONFIG_PARITY) \
650 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
651 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
652 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
653 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
654 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
655 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
656 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
657 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
658 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
659 | SEES(TX_CREDIT_RETURN_PARITY))
660
661/*
662 * TXE Send error flags
663 */
664#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
665static struct flag_table send_err_status_flags[] = {
666/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr", SES(CSR_PARITY)),
667/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
668/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
669};
670
671/*
672 * TXE Send Context Error flags and consequences
673 */
674static struct flag_table sc_err_status_flags[] = {
675/* 0*/ FLAG_ENTRY("InconsistentSop",
676 SEC_PACKET_DROPPED | SEC_SC_HALTED,
677 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
678/* 1*/ FLAG_ENTRY("DisallowedPacket",
679 SEC_PACKET_DROPPED | SEC_SC_HALTED,
680 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
681/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
682 SEC_WRITE_DROPPED | SEC_SC_HALTED,
683 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
684/* 3*/ FLAG_ENTRY("WriteOverflow",
685 SEC_WRITE_DROPPED | SEC_SC_HALTED,
686 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
687/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
688 SEC_WRITE_DROPPED | SEC_SC_HALTED,
689 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
690/* 5-63 reserved*/
691};
692
693/*
694 * RXE Receive Error flags
695 */
696#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
697static struct flag_table rxe_err_status_flags[] = {
698/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
699/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
700/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
701/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
702/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
703/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
704/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
705/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
706/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
707/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
708/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
709/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
710/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
711/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
712/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
713/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
714/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
715 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
716/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
717/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
718/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
719 RXES(RBUF_BLOCK_LIST_READ_UNC)),
720/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
721 RXES(RBUF_BLOCK_LIST_READ_COR)),
722/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
723 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
724/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
725 RXES(RBUF_CSR_QENT_CNT_PARITY)),
726/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
727 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
728/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
729 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
730/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
731/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
732/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
733 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
734/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
735/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
736/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
737/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
738/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
739/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
740/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
741/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
742 RXES(RBUF_FL_INITDONE_PARITY)),
743/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
744 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
745/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
746/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
747/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
748/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
749 RXES(LOOKUP_DES_PART1_UNC_COR)),
750/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
751 RXES(LOOKUP_DES_PART2_PARITY)),
752/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
753/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
754/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
755/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
756/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
757/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
758/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
759/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
760/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
761/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
762/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
763/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
764/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
765/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
766/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
767/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
768/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
769/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
770/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
771/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
772/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
773/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
774};
775
776/* RXE errors that will trigger an SPC freeze */
777#define ALL_RXE_FREEZE_ERR \
778 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
779 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
780 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
781 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
782 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
783 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
784 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
785 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
786 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
787 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
788 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
789 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
790 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
791 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
822
823#define RXE_FREEZE_ABORT_MASK \
824 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
825 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
826 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
827
828/*
829 * DCC Error Flags
830 */
831#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
832static struct flag_table dcc_err_flags[] = {
833 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
834 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
835 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
836 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
837 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
838 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
839 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
840 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
841 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
842 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
843 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
844 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
845 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
846 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
847 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
848 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
849 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
850 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
851 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
852 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
853 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
854 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
855 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
856 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
857 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
858 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
859 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
860 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
861 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
862 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
863 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
864 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
865 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
866 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
867 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
868 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
869 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
870 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
871 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
872 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
873 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
874 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
875 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
876 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
877 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
878 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
879};
880
881/*
882 * LCB error flags
883 */
884#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
885static struct flag_table lcb_err_flags[] = {
886/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
887/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
888/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
889/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
890 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
891/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
892/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
893/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
894/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
895/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
896/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
897/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
898/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
899/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
900/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
901 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
902/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
903/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
904/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
905/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
906/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
907/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
908 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
909/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
910/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
911/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
912/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
913/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
914/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
915/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
916 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
917/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
918/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
919 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
920/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
921 LCBE(REDUNDANT_FLIT_PARITY_ERR))
922};
923
924/*
925 * DC8051 Error Flags
926 */
927#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
928static struct flag_table dc8051_err_flags[] = {
929 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
930 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
931 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
932 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
933 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
934 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
935 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
936 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
937 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
938 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
939 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
940};
941
942/*
943 * DC8051 Information Error flags
944 *
945 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
946 */
947static struct flag_table dc8051_info_err_flags[] = {
948 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
949 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
950 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
951 FLAG_ENTRY0("Serdes internal loopback failure",
952 FAILED_SERDES_INTERNAL_LOOPBACK),
953 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
954 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
955 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
956 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
957 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
958 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
959 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
960 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT)
961};
962
963/*
964 * DC8051 Information Host Information flags
965 *
966 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
967 */
968static struct flag_table dc8051_info_host_msg_flags[] = {
969 FLAG_ENTRY0("Host request done", 0x0001),
970 FLAG_ENTRY0("BC SMA message", 0x0002),
971 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
972 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
973 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
974 FLAG_ENTRY0("External device config request", 0x0020),
975 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
976 FLAG_ENTRY0("LinkUp achieved", 0x0080),
977 FLAG_ENTRY0("Link going down", 0x0100),
978};
979
980
981static u32 encoded_size(u32 size);
982static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
983static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
984static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
985 u8 *continuous);
986static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
987 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
988static void read_vc_remote_link_width(struct hfi1_devdata *dd,
989 u8 *remote_tx_rate, u16 *link_widths);
990static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
991 u8 *flag_bits, u16 *link_widths);
992static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
993 u8 *device_rev);
994static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
995static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
996static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
997 u8 *tx_polarity_inversion,
998 u8 *rx_polarity_inversion, u8 *max_rate);
999static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1000 unsigned int context, u64 err_status);
1001static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1002static void handle_dcc_err(struct hfi1_devdata *dd,
1003 unsigned int context, u64 err_status);
1004static void handle_lcb_err(struct hfi1_devdata *dd,
1005 unsigned int context, u64 err_status);
1006static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1007static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1008static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1009static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1010static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1011static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1012static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1013static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1014static void set_partition_keys(struct hfi1_pportdata *);
1015static const char *link_state_name(u32 state);
1016static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1017 u32 state);
1018static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1019 u64 *out_data);
1020static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1021static int thermal_init(struct hfi1_devdata *dd);
1022
1023static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1024 int msecs);
1025static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1026static void handle_temp_err(struct hfi1_devdata *);
1027static void dc_shutdown(struct hfi1_devdata *);
1028static void dc_start(struct hfi1_devdata *);
1029
1030/*
1031 * Error interrupt table entry. This is used as input to the interrupt
1032 * "clear down" routine used for all second tier error interrupt register.
1033 * Second tier interrupt registers have a single bit representing them
1034 * in the top-level CceIntStatus.
1035 */
1036struct err_reg_info {
1037 u32 status; /* status CSR offset */
1038 u32 clear; /* clear CSR offset */
1039 u32 mask; /* mask CSR offset */
1040 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1041 const char *desc;
1042};
1043
1044#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1045#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1046#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1047
1048/*
1049 * Helpers for building HFI and DC error interrupt table entries. Different
1050 * helpers are needed because of inconsistent register names.
1051 */
1052#define EE(reg, handler, desc) \
1053 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1054 handler, desc }
1055#define DC_EE1(reg, handler, desc) \
1056 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1057#define DC_EE2(reg, handler, desc) \
1058 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1059
1060/*
1061 * Table of the "misc" grouping of error interrupts. Each entry refers to
1062 * another register containing more information.
1063 */
1064static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1065/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1066/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1067/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1068/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1069/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1070/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1071/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1072/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1073 /* the rest are reserved */
1074};
1075
1076/*
1077 * Index into the Various section of the interrupt sources
1078 * corresponding to the Critical Temperature interrupt.
1079 */
1080#define TCRIT_INT_SOURCE 4
1081
1082/*
1083 * SDMA error interrupt entry - refers to another register containing more
1084 * information.
1085 */
1086static const struct err_reg_info sdma_eng_err =
1087 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1088
1089static const struct err_reg_info various_err[NUM_VARIOUS] = {
1090/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1091/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1092/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1093/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1094/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1095 /* rest are reserved */
1096};
1097
1098/*
1099 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1100 * register can not be derived from the MTU value because 10K is not
1101 * a power of 2. Therefore, we need a constant. Everything else can
1102 * be calculated.
1103 */
1104#define DCC_CFG_PORT_MTU_CAP_10240 7
1105
1106/*
1107 * Table of the DC grouping of error interrupts. Each entry refers to
1108 * another register containing more information.
1109 */
1110static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1111/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1112/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1113/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1114/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1115 /* the rest are reserved */
1116};
1117
1118struct cntr_entry {
1119 /*
1120 * counter name
1121 */
1122 char *name;
1123
1124 /*
1125 * csr to read for name (if applicable)
1126 */
1127 u64 csr;
1128
1129 /*
1130 * offset into dd or ppd to store the counter's value
1131 */
1132 int offset;
1133
1134 /*
1135 * flags
1136 */
1137 u8 flags;
1138
1139 /*
1140 * accessor for stat element, context either dd or ppd
1141 */
1142 u64 (*rw_cntr)(const struct cntr_entry *,
1143 void *context,
1144 int vl,
1145 int mode,
1146 u64 data);
1147};
1148
1149#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1150#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1151
1152#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1153{ \
1154 name, \
1155 csr, \
1156 offset, \
1157 flags, \
1158 accessor \
1159}
1160
1161/* 32bit RXE */
1162#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1163CNTR_ELEM(#name, \
1164 (counter * 8 + RCV_COUNTER_ARRAY32), \
1165 0, flags | CNTR_32BIT, \
1166 port_access_u32_csr)
1167
1168#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1169CNTR_ELEM(#name, \
1170 (counter * 8 + RCV_COUNTER_ARRAY32), \
1171 0, flags | CNTR_32BIT, \
1172 dev_access_u32_csr)
1173
1174/* 64bit RXE */
1175#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1176CNTR_ELEM(#name, \
1177 (counter * 8 + RCV_COUNTER_ARRAY64), \
1178 0, flags, \
1179 port_access_u64_csr)
1180
1181#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1182CNTR_ELEM(#name, \
1183 (counter * 8 + RCV_COUNTER_ARRAY64), \
1184 0, flags, \
1185 dev_access_u64_csr)
1186
1187#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1188#define OVR_ELM(ctx) \
1189CNTR_ELEM("RcvHdrOvr" #ctx, \
1190 (RCV_HDR_OVFL_CNT + ctx*0x100), \
1191 0, CNTR_NORMAL, port_access_u64_csr)
1192
1193/* 32bit TXE */
1194#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1195CNTR_ELEM(#name, \
1196 (counter * 8 + SEND_COUNTER_ARRAY32), \
1197 0, flags | CNTR_32BIT, \
1198 port_access_u32_csr)
1199
1200/* 64bit TXE */
1201#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1202CNTR_ELEM(#name, \
1203 (counter * 8 + SEND_COUNTER_ARRAY64), \
1204 0, flags, \
1205 port_access_u64_csr)
1206
1207# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1208CNTR_ELEM(#name,\
1209 counter * 8 + SEND_COUNTER_ARRAY64, \
1210 0, \
1211 flags, \
1212 dev_access_u64_csr)
1213
1214/* CCE */
1215#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1216CNTR_ELEM(#name, \
1217 (counter * 8 + CCE_COUNTER_ARRAY32), \
1218 0, flags | CNTR_32BIT, \
1219 dev_access_u32_csr)
1220
1221#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1222CNTR_ELEM(#name, \
1223 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1224 0, flags | CNTR_32BIT, \
1225 dev_access_u32_csr)
1226
1227/* DC */
1228#define DC_PERF_CNTR(name, counter, flags) \
1229CNTR_ELEM(#name, \
1230 counter, \
1231 0, \
1232 flags, \
1233 dev_access_u64_csr)
1234
1235#define DC_PERF_CNTR_LCB(name, counter, flags) \
1236CNTR_ELEM(#name, \
1237 counter, \
1238 0, \
1239 flags, \
1240 dc_access_lcb_cntr)
1241
1242/* ibp counters */
1243#define SW_IBP_CNTR(name, cntr) \
1244CNTR_ELEM(#name, \
1245 0, \
1246 0, \
1247 CNTR_SYNTH, \
1248 access_ibp_##cntr)
1249
1250u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1251{
1252 u64 val;
1253
1254 if (dd->flags & HFI1_PRESENT) {
1255 val = readq((void __iomem *)dd->kregbase + offset);
1256 return val;
1257 }
1258 return -1;
1259}
1260
1261void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1262{
1263 if (dd->flags & HFI1_PRESENT)
1264 writeq(value, (void __iomem *)dd->kregbase + offset);
1265}
1266
1267void __iomem *get_csr_addr(
1268 struct hfi1_devdata *dd,
1269 u32 offset)
1270{
1271 return (void __iomem *)dd->kregbase + offset;
1272}
1273
1274static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1275 int mode, u64 value)
1276{
1277 u64 ret;
1278
1279
1280 if (mode == CNTR_MODE_R) {
1281 ret = read_csr(dd, csr);
1282 } else if (mode == CNTR_MODE_W) {
1283 write_csr(dd, csr, value);
1284 ret = value;
1285 } else {
1286 dd_dev_err(dd, "Invalid cntr register access mode");
1287 return 0;
1288 }
1289
1290 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1291 return ret;
1292}
1293
1294/* Dev Access */
1295static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1296 void *context, int vl, int mode, u64 data)
1297{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301298 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001299
1300 if (vl != CNTR_INVALID_VL)
1301 return 0;
1302 return read_write_csr(dd, entry->csr, mode, data);
1303}
1304
1305static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1306 int vl, int mode, u64 data)
1307{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301308 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001309
1310 u64 val = 0;
1311 u64 csr = entry->csr;
1312
1313 if (entry->flags & CNTR_VL) {
1314 if (vl == CNTR_INVALID_VL)
1315 return 0;
1316 csr += 8 * vl;
1317 } else {
1318 if (vl != CNTR_INVALID_VL)
1319 return 0;
1320 }
1321
1322 val = read_write_csr(dd, csr, mode, data);
1323 return val;
1324}
1325
1326static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1327 int vl, int mode, u64 data)
1328{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301329 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001330 u32 csr = entry->csr;
1331 int ret = 0;
1332
1333 if (vl != CNTR_INVALID_VL)
1334 return 0;
1335 if (mode == CNTR_MODE_R)
1336 ret = read_lcb_csr(dd, csr, &data);
1337 else if (mode == CNTR_MODE_W)
1338 ret = write_lcb_csr(dd, csr, data);
1339
1340 if (ret) {
1341 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1342 return 0;
1343 }
1344
1345 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1346 return data;
1347}
1348
1349/* Port Access */
1350static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1351 int vl, int mode, u64 data)
1352{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301353 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001354
1355 if (vl != CNTR_INVALID_VL)
1356 return 0;
1357 return read_write_csr(ppd->dd, entry->csr, mode, data);
1358}
1359
1360static u64 port_access_u64_csr(const struct cntr_entry *entry,
1361 void *context, int vl, int mode, u64 data)
1362{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301363 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001364 u64 val;
1365 u64 csr = entry->csr;
1366
1367 if (entry->flags & CNTR_VL) {
1368 if (vl == CNTR_INVALID_VL)
1369 return 0;
1370 csr += 8 * vl;
1371 } else {
1372 if (vl != CNTR_INVALID_VL)
1373 return 0;
1374 }
1375 val = read_write_csr(ppd->dd, csr, mode, data);
1376 return val;
1377}
1378
1379/* Software defined */
1380static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1381 u64 data)
1382{
1383 u64 ret;
1384
1385 if (mode == CNTR_MODE_R) {
1386 ret = *cntr;
1387 } else if (mode == CNTR_MODE_W) {
1388 *cntr = data;
1389 ret = data;
1390 } else {
1391 dd_dev_err(dd, "Invalid cntr sw access mode");
1392 return 0;
1393 }
1394
1395 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1396
1397 return ret;
1398}
1399
1400static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1401 int vl, int mode, u64 data)
1402{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301403 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001404
1405 if (vl != CNTR_INVALID_VL)
1406 return 0;
1407 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1408}
1409
1410static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1411 int vl, int mode, u64 data)
1412{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301413 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001414
1415 if (vl != CNTR_INVALID_VL)
1416 return 0;
1417 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1418}
1419
1420static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1421 void *context, int vl, int mode, u64 data)
1422{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301423 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001424
1425 if (vl != CNTR_INVALID_VL)
1426 return 0;
1427
1428 return read_write_sw(ppd->dd, &ppd->port_xmit_discards, mode, data);
1429}
1430
1431static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1432 void *context, int vl, int mode, u64 data)
1433{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301434 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001435
1436 if (vl != CNTR_INVALID_VL)
1437 return 0;
1438
1439 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1440 mode, data);
1441}
1442
1443static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1444 void *context, int vl, int mode, u64 data)
1445{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301446 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001447
1448 if (vl != CNTR_INVALID_VL)
1449 return 0;
1450
1451 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1452 mode, data);
1453}
1454
1455u64 get_all_cpu_total(u64 __percpu *cntr)
1456{
1457 int cpu;
1458 u64 counter = 0;
1459
1460 for_each_possible_cpu(cpu)
1461 counter += *per_cpu_ptr(cntr, cpu);
1462 return counter;
1463}
1464
1465static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1466 u64 __percpu *cntr,
1467 int vl, int mode, u64 data)
1468{
1469
1470 u64 ret = 0;
1471
1472 if (vl != CNTR_INVALID_VL)
1473 return 0;
1474
1475 if (mode == CNTR_MODE_R) {
1476 ret = get_all_cpu_total(cntr) - *z_val;
1477 } else if (mode == CNTR_MODE_W) {
1478 /* A write can only zero the counter */
1479 if (data == 0)
1480 *z_val = get_all_cpu_total(cntr);
1481 else
1482 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1483 } else {
1484 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1485 return 0;
1486 }
1487
1488 return ret;
1489}
1490
1491static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1492 void *context, int vl, int mode, u64 data)
1493{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301494 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001495
1496 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1497 mode, data);
1498}
1499
1500static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1501 void *context, int vl, int mode, u64 data)
1502{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301503 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001504
1505 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1506 mode, data);
1507}
1508
1509static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1510 void *context, int vl, int mode, u64 data)
1511{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301512 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001513
1514 return dd->verbs_dev.n_piowait;
1515}
1516
1517static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1518 void *context, int vl, int mode, u64 data)
1519{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301520 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001521
1522 return dd->verbs_dev.n_txwait;
1523}
1524
1525static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1526 void *context, int vl, int mode, u64 data)
1527{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301528 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001529
1530 return dd->verbs_dev.n_kmem_wait;
1531}
1532
Dean Luickb4219222015-10-26 10:28:35 -04001533static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1534 void *context, int vl, int mode, u64 data)
1535{
1536 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1537
1538 return dd->verbs_dev.n_send_schedule;
1539}
1540
Mike Marciniszyn77241052015-07-30 15:17:43 -04001541#define def_access_sw_cpu(cntr) \
1542static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
1543 void *context, int vl, int mode, u64 data) \
1544{ \
1545 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
1546 return read_write_cpu(ppd->dd, &ppd->ibport_data.z_ ##cntr, \
1547 ppd->ibport_data.cntr, vl, \
1548 mode, data); \
1549}
1550
1551def_access_sw_cpu(rc_acks);
1552def_access_sw_cpu(rc_qacks);
1553def_access_sw_cpu(rc_delayed_comp);
1554
1555#define def_access_ibp_counter(cntr) \
1556static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
1557 void *context, int vl, int mode, u64 data) \
1558{ \
1559 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
1560 \
1561 if (vl != CNTR_INVALID_VL) \
1562 return 0; \
1563 \
1564 return read_write_sw(ppd->dd, &ppd->ibport_data.n_ ##cntr, \
1565 mode, data); \
1566}
1567
1568def_access_ibp_counter(loop_pkts);
1569def_access_ibp_counter(rc_resends);
1570def_access_ibp_counter(rnr_naks);
1571def_access_ibp_counter(other_naks);
1572def_access_ibp_counter(rc_timeouts);
1573def_access_ibp_counter(pkt_drops);
1574def_access_ibp_counter(dmawait);
1575def_access_ibp_counter(rc_seqnak);
1576def_access_ibp_counter(rc_dupreq);
1577def_access_ibp_counter(rdma_seq);
1578def_access_ibp_counter(unaligned);
1579def_access_ibp_counter(seq_naks);
1580
1581static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
1582[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
1583[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
1584 CNTR_NORMAL),
1585[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
1586 CNTR_NORMAL),
1587[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
1588 RCV_TID_FLOW_GEN_MISMATCH_CNT,
1589 CNTR_NORMAL),
1590[C_RX_CTX_RHQS] = RXE32_DEV_CNTR_ELEM(RxCtxRHQS, RCV_CONTEXT_RHQ_STALL,
1591 CNTR_NORMAL),
1592[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
1593 CNTR_NORMAL),
1594[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
1595 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
1596[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
1597 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
1598[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
1599 CNTR_NORMAL),
1600[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
1601 CNTR_NORMAL),
1602[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
1603 CNTR_NORMAL),
1604[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
1605 CNTR_NORMAL),
1606[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
1607 CNTR_NORMAL),
1608[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
1609 CNTR_NORMAL),
1610[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
1611 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
1612[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
1613 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
1614[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
1615 CNTR_SYNTH),
1616[C_DC_RCV_ERR] = DC_PERF_CNTR(DcRecvErr, DCC_ERR_PORTRCV_ERR_CNT, CNTR_SYNTH),
1617[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
1618 CNTR_SYNTH),
1619[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
1620 CNTR_SYNTH),
1621[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
1622 CNTR_SYNTH),
1623[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
1624 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
1625[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
1626 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
1627 CNTR_SYNTH),
1628[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
1629 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
1630[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
1631 CNTR_SYNTH),
1632[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
1633 CNTR_SYNTH),
1634[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
1635 CNTR_SYNTH),
1636[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
1637 CNTR_SYNTH),
1638[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
1639 CNTR_SYNTH),
1640[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
1641 CNTR_SYNTH),
1642[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
1643 CNTR_SYNTH),
1644[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
1645 CNTR_SYNTH | CNTR_VL),
1646[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
1647 CNTR_SYNTH | CNTR_VL),
1648[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
1649[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
1650 CNTR_SYNTH | CNTR_VL),
1651[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
1652[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
1653 CNTR_SYNTH | CNTR_VL),
1654[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
1655 CNTR_SYNTH),
1656[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
1657 CNTR_SYNTH | CNTR_VL),
1658[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
1659 CNTR_SYNTH),
1660[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
1661 CNTR_SYNTH | CNTR_VL),
1662[C_DC_TOTAL_CRC] =
1663 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
1664 CNTR_SYNTH),
1665[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
1666 CNTR_SYNTH),
1667[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
1668 CNTR_SYNTH),
1669[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
1670 CNTR_SYNTH),
1671[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
1672 CNTR_SYNTH),
1673[C_DC_CRC_MULT_LN] =
1674 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
1675 CNTR_SYNTH),
1676[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
1677 CNTR_SYNTH),
1678[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
1679 CNTR_SYNTH),
1680[C_DC_SEQ_CRC_CNT] =
1681 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
1682 CNTR_SYNTH),
1683[C_DC_ESC0_ONLY_CNT] =
1684 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
1685 CNTR_SYNTH),
1686[C_DC_ESC0_PLUS1_CNT] =
1687 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
1688 CNTR_SYNTH),
1689[C_DC_ESC0_PLUS2_CNT] =
1690 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
1691 CNTR_SYNTH),
1692[C_DC_REINIT_FROM_PEER_CNT] =
1693 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
1694 CNTR_SYNTH),
1695[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
1696 CNTR_SYNTH),
1697[C_DC_MISC_FLG_CNT] =
1698 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
1699 CNTR_SYNTH),
1700[C_DC_PRF_GOOD_LTP_CNT] =
1701 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
1702[C_DC_PRF_ACCEPTED_LTP_CNT] =
1703 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
1704 CNTR_SYNTH),
1705[C_DC_PRF_RX_FLIT_CNT] =
1706 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
1707[C_DC_PRF_TX_FLIT_CNT] =
1708 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
1709[C_DC_PRF_CLK_CNTR] =
1710 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
1711[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
1712 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
1713[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
1714 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
1715 CNTR_SYNTH),
1716[C_DC_PG_STS_TX_SBE_CNT] =
1717 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
1718[C_DC_PG_STS_TX_MBE_CNT] =
1719 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
1720 CNTR_SYNTH),
1721[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
1722 access_sw_cpu_intr),
1723[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
1724 access_sw_cpu_rcv_limit),
1725[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
1726 access_sw_vtx_wait),
1727[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
1728 access_sw_pio_wait),
1729[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
1730 access_sw_kmem_wait),
Dean Luickb4219222015-10-26 10:28:35 -04001731[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
1732 access_sw_send_schedule),
Mike Marciniszyn77241052015-07-30 15:17:43 -04001733};
1734
1735static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
1736[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
1737 CNTR_NORMAL),
1738[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
1739 CNTR_NORMAL),
1740[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
1741 CNTR_NORMAL),
1742[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
1743 CNTR_NORMAL),
1744[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
1745 CNTR_NORMAL),
1746[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
1747 CNTR_NORMAL),
1748[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
1749 CNTR_NORMAL),
1750[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
1751[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
1752[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
1753[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
1754 CNTR_SYNTH | CNTR_VL),
1755[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
1756 CNTR_SYNTH | CNTR_VL),
1757[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
1758 CNTR_SYNTH | CNTR_VL),
1759[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
1760[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
1761[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
1762 access_sw_link_dn_cnt),
1763[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
1764 access_sw_link_up_cnt),
1765[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
1766 access_sw_xmit_discards),
1767[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
1768 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
1769 access_sw_xmit_discards),
1770[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
1771 access_xmit_constraint_errs),
1772[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
1773 access_rcv_constraint_errs),
1774[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
1775[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
1776[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
1777[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
1778[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
1779[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
1780[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
1781[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
1782[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
1783[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
1784[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
1785[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
1786[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
1787 access_sw_cpu_rc_acks),
1788[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
1789 access_sw_cpu_rc_qacks),
1790[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
1791 access_sw_cpu_rc_delayed_comp),
1792[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
1793[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
1794[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
1795[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
1796[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
1797[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
1798[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
1799[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
1800[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
1801[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
1802[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
1803[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
1804[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
1805[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
1806[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
1807[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
1808[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
1809[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
1810[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
1811[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
1812[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
1813[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
1814[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
1815[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
1816[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
1817[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
1818[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
1819[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
1820[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
1821[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
1822[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
1823[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
1824[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
1825[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
1826[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
1827[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
1828[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
1829[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
1830[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
1831[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
1832[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
1833[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
1834[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
1835[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
1836[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
1837[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
1838[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
1839[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
1840[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
1841[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
1842[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
1843[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
1844[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
1845[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
1846[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
1847[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
1848[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
1849[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
1850[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
1851[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
1852[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
1853[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
1854[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
1855[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
1856[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
1857[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
1858[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
1859[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
1860[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
1861[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
1862[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
1863[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
1864[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
1865[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
1866[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
1867[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
1868[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
1869[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
1870[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
1871[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
1872};
1873
1874/* ======================================================================== */
1875
1876/* return true if this is chip revision revision a0 */
1877int is_a0(struct hfi1_devdata *dd)
1878{
1879 return ((dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
1880 & CCE_REVISION_CHIP_REV_MINOR_MASK) == 0;
1881}
1882
1883/* return true if this is chip revision revision a */
1884int is_ax(struct hfi1_devdata *dd)
1885{
1886 u8 chip_rev_minor =
1887 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
1888 & CCE_REVISION_CHIP_REV_MINOR_MASK;
1889 return (chip_rev_minor & 0xf0) == 0;
1890}
1891
1892/* return true if this is chip revision revision b */
1893int is_bx(struct hfi1_devdata *dd)
1894{
1895 u8 chip_rev_minor =
1896 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
1897 & CCE_REVISION_CHIP_REV_MINOR_MASK;
1898 return !!(chip_rev_minor & 0x10);
1899}
1900
1901/*
1902 * Append string s to buffer buf. Arguments curp and len are the current
1903 * position and remaining length, respectively.
1904 *
1905 * return 0 on success, 1 on out of room
1906 */
1907static int append_str(char *buf, char **curp, int *lenp, const char *s)
1908{
1909 char *p = *curp;
1910 int len = *lenp;
1911 int result = 0; /* success */
1912 char c;
1913
1914 /* add a comma, if first in the buffer */
1915 if (p != buf) {
1916 if (len == 0) {
1917 result = 1; /* out of room */
1918 goto done;
1919 }
1920 *p++ = ',';
1921 len--;
1922 }
1923
1924 /* copy the string */
1925 while ((c = *s++) != 0) {
1926 if (len == 0) {
1927 result = 1; /* out of room */
1928 goto done;
1929 }
1930 *p++ = c;
1931 len--;
1932 }
1933
1934done:
1935 /* write return values */
1936 *curp = p;
1937 *lenp = len;
1938
1939 return result;
1940}
1941
1942/*
1943 * Using the given flag table, print a comma separated string into
1944 * the buffer. End in '*' if the buffer is too short.
1945 */
1946static char *flag_string(char *buf, int buf_len, u64 flags,
1947 struct flag_table *table, int table_size)
1948{
1949 char extra[32];
1950 char *p = buf;
1951 int len = buf_len;
1952 int no_room = 0;
1953 int i;
1954
1955 /* make sure there is at least 2 so we can form "*" */
1956 if (len < 2)
1957 return "";
1958
1959 len--; /* leave room for a nul */
1960 for (i = 0; i < table_size; i++) {
1961 if (flags & table[i].flag) {
1962 no_room = append_str(buf, &p, &len, table[i].str);
1963 if (no_room)
1964 break;
1965 flags &= ~table[i].flag;
1966 }
1967 }
1968
1969 /* any undocumented bits left? */
1970 if (!no_room && flags) {
1971 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
1972 no_room = append_str(buf, &p, &len, extra);
1973 }
1974
1975 /* add * if ran out of room */
1976 if (no_room) {
1977 /* may need to back up to add space for a '*' */
1978 if (len == 0)
1979 --p;
1980 *p++ = '*';
1981 }
1982
1983 /* add final nul - space already allocated above */
1984 *p = 0;
1985 return buf;
1986}
1987
1988/* first 8 CCE error interrupt source names */
1989static const char * const cce_misc_names[] = {
1990 "CceErrInt", /* 0 */
1991 "RxeErrInt", /* 1 */
1992 "MiscErrInt", /* 2 */
1993 "Reserved3", /* 3 */
1994 "PioErrInt", /* 4 */
1995 "SDmaErrInt", /* 5 */
1996 "EgressErrInt", /* 6 */
1997 "TxeErrInt" /* 7 */
1998};
1999
2000/*
2001 * Return the miscellaneous error interrupt name.
2002 */
2003static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
2004{
2005 if (source < ARRAY_SIZE(cce_misc_names))
2006 strncpy(buf, cce_misc_names[source], bsize);
2007 else
2008 snprintf(buf,
2009 bsize,
2010 "Reserved%u",
2011 source + IS_GENERAL_ERR_START);
2012
2013 return buf;
2014}
2015
2016/*
2017 * Return the SDMA engine error interrupt name.
2018 */
2019static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
2020{
2021 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
2022 return buf;
2023}
2024
2025/*
2026 * Return the send context error interrupt name.
2027 */
2028static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
2029{
2030 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
2031 return buf;
2032}
2033
2034static const char * const various_names[] = {
2035 "PbcInt",
2036 "GpioAssertInt",
2037 "Qsfp1Int",
2038 "Qsfp2Int",
2039 "TCritInt"
2040};
2041
2042/*
2043 * Return the various interrupt name.
2044 */
2045static char *is_various_name(char *buf, size_t bsize, unsigned int source)
2046{
2047 if (source < ARRAY_SIZE(various_names))
2048 strncpy(buf, various_names[source], bsize);
2049 else
2050 snprintf(buf, bsize, "Reserved%u", source+IS_VARIOUS_START);
2051 return buf;
2052}
2053
2054/*
2055 * Return the DC interrupt name.
2056 */
2057static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
2058{
2059 static const char * const dc_int_names[] = {
2060 "common",
2061 "lcb",
2062 "8051",
2063 "lbm" /* local block merge */
2064 };
2065
2066 if (source < ARRAY_SIZE(dc_int_names))
2067 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
2068 else
2069 snprintf(buf, bsize, "DCInt%u", source);
2070 return buf;
2071}
2072
2073static const char * const sdma_int_names[] = {
2074 "SDmaInt",
2075 "SdmaIdleInt",
2076 "SdmaProgressInt",
2077};
2078
2079/*
2080 * Return the SDMA engine interrupt name.
2081 */
2082static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
2083{
2084 /* what interrupt */
2085 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
2086 /* which engine */
2087 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
2088
2089 if (likely(what < 3))
2090 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
2091 else
2092 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
2093 return buf;
2094}
2095
2096/*
2097 * Return the receive available interrupt name.
2098 */
2099static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
2100{
2101 snprintf(buf, bsize, "RcvAvailInt%u", source);
2102 return buf;
2103}
2104
2105/*
2106 * Return the receive urgent interrupt name.
2107 */
2108static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
2109{
2110 snprintf(buf, bsize, "RcvUrgentInt%u", source);
2111 return buf;
2112}
2113
2114/*
2115 * Return the send credit interrupt name.
2116 */
2117static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
2118{
2119 snprintf(buf, bsize, "SendCreditInt%u", source);
2120 return buf;
2121}
2122
2123/*
2124 * Return the reserved interrupt name.
2125 */
2126static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
2127{
2128 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
2129 return buf;
2130}
2131
2132static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
2133{
2134 return flag_string(buf, buf_len, flags,
2135 cce_err_status_flags, ARRAY_SIZE(cce_err_status_flags));
2136}
2137
2138static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
2139{
2140 return flag_string(buf, buf_len, flags,
2141 rxe_err_status_flags, ARRAY_SIZE(rxe_err_status_flags));
2142}
2143
2144static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
2145{
2146 return flag_string(buf, buf_len, flags, misc_err_status_flags,
2147 ARRAY_SIZE(misc_err_status_flags));
2148}
2149
2150static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
2151{
2152 return flag_string(buf, buf_len, flags,
2153 pio_err_status_flags, ARRAY_SIZE(pio_err_status_flags));
2154}
2155
2156static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
2157{
2158 return flag_string(buf, buf_len, flags,
2159 sdma_err_status_flags,
2160 ARRAY_SIZE(sdma_err_status_flags));
2161}
2162
2163static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
2164{
2165 return flag_string(buf, buf_len, flags,
2166 egress_err_status_flags, ARRAY_SIZE(egress_err_status_flags));
2167}
2168
2169static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
2170{
2171 return flag_string(buf, buf_len, flags,
2172 egress_err_info_flags, ARRAY_SIZE(egress_err_info_flags));
2173}
2174
2175static char *send_err_status_string(char *buf, int buf_len, u64 flags)
2176{
2177 return flag_string(buf, buf_len, flags,
2178 send_err_status_flags,
2179 ARRAY_SIZE(send_err_status_flags));
2180}
2181
2182static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2183{
2184 char buf[96];
2185
2186 /*
2187 * For most these errors, there is nothing that can be done except
2188 * report or record it.
2189 */
2190 dd_dev_info(dd, "CCE Error: %s\n",
2191 cce_err_status_string(buf, sizeof(buf), reg));
2192
2193 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK)
2194 && is_a0(dd)
2195 && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
2196 /* this error requires a manual drop into SPC freeze mode */
2197 /* then a fix up */
2198 start_freeze_handling(dd->pport, FREEZE_SELF);
2199 }
2200}
2201
2202/*
2203 * Check counters for receive errors that do not have an interrupt
2204 * associated with them.
2205 */
2206#define RCVERR_CHECK_TIME 10
2207static void update_rcverr_timer(unsigned long opaque)
2208{
2209 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
2210 struct hfi1_pportdata *ppd = dd->pport;
2211 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
2212
2213 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
2214 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
2215 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
2216 set_link_down_reason(ppd,
2217 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
2218 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
2219 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
2220 }
2221 dd->rcv_ovfl_cnt = (u32) cur_ovfl_cnt;
2222
2223 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
2224}
2225
2226static int init_rcverr(struct hfi1_devdata *dd)
2227{
Muhammad Falak R Wani24523a92015-10-25 16:13:23 +05302228 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04002229 /* Assume the hardware counter has been reset */
2230 dd->rcv_ovfl_cnt = 0;
2231 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
2232}
2233
2234static void free_rcverr(struct hfi1_devdata *dd)
2235{
2236 if (dd->rcverr_timer.data)
2237 del_timer_sync(&dd->rcverr_timer);
2238 dd->rcverr_timer.data = 0;
2239}
2240
2241static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2242{
2243 char buf[96];
2244
2245 dd_dev_info(dd, "Receive Error: %s\n",
2246 rxe_err_status_string(buf, sizeof(buf), reg));
2247
2248 if (reg & ALL_RXE_FREEZE_ERR) {
2249 int flags = 0;
2250
2251 /*
2252 * Freeze mode recovery is disabled for the errors
2253 * in RXE_FREEZE_ABORT_MASK
2254 */
2255 if (is_a0(dd) && (reg & RXE_FREEZE_ABORT_MASK))
2256 flags = FREEZE_ABORT;
2257
2258 start_freeze_handling(dd->pport, flags);
2259 }
2260}
2261
2262static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2263{
2264 char buf[96];
2265
2266 dd_dev_info(dd, "Misc Error: %s",
2267 misc_err_status_string(buf, sizeof(buf), reg));
2268}
2269
2270static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2271{
2272 char buf[96];
2273
2274 dd_dev_info(dd, "PIO Error: %s\n",
2275 pio_err_status_string(buf, sizeof(buf), reg));
2276
2277 if (reg & ALL_PIO_FREEZE_ERR)
2278 start_freeze_handling(dd->pport, 0);
2279}
2280
2281static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2282{
2283 char buf[96];
2284
2285 dd_dev_info(dd, "SDMA Error: %s\n",
2286 sdma_err_status_string(buf, sizeof(buf), reg));
2287
2288 if (reg & ALL_SDMA_FREEZE_ERR)
2289 start_freeze_handling(dd->pport, 0);
2290}
2291
2292static void count_port_inactive(struct hfi1_devdata *dd)
2293{
2294 struct hfi1_pportdata *ppd = dd->pport;
2295
2296 if (ppd->port_xmit_discards < ~(u64)0)
2297 ppd->port_xmit_discards++;
2298}
2299
2300/*
2301 * We have had a "disallowed packet" error during egress. Determine the
2302 * integrity check which failed, and update relevant error counter, etc.
2303 *
2304 * Note that the SEND_EGRESS_ERR_INFO register has only a single
2305 * bit of state per integrity check, and so we can miss the reason for an
2306 * egress error if more than one packet fails the same integrity check
2307 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
2308 */
2309static void handle_send_egress_err_info(struct hfi1_devdata *dd)
2310{
2311 struct hfi1_pportdata *ppd = dd->pport;
2312 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
2313 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
2314 char buf[96];
2315
2316 /* clear down all observed info as quickly as possible after read */
2317 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
2318
2319 dd_dev_info(dd,
2320 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
2321 info, egress_err_info_string(buf, sizeof(buf), info), src);
2322
2323 /* Eventually add other counters for each bit */
2324
2325 if (info & SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK) {
2326 if (ppd->port_xmit_discards < ~(u64)0)
2327 ppd->port_xmit_discards++;
2328 }
2329}
2330
2331/*
2332 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
2333 * register. Does it represent a 'port inactive' error?
2334 */
2335static inline int port_inactive_err(u64 posn)
2336{
2337 return (posn >= SEES(TX_LINKDOWN) &&
2338 posn <= SEES(TX_INCORRECT_LINK_STATE));
2339}
2340
2341/*
2342 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
2343 * register. Does it represent a 'disallowed packet' error?
2344 */
2345static inline int disallowed_pkt_err(u64 posn)
2346{
2347 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
2348 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
2349}
2350
2351static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2352{
2353 u64 reg_copy = reg, handled = 0;
2354 char buf[96];
2355
2356 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
2357 start_freeze_handling(dd->pport, 0);
2358 if (is_a0(dd) && (reg &
2359 SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK)
2360 && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
2361 start_freeze_handling(dd->pport, 0);
2362
2363 while (reg_copy) {
2364 int posn = fls64(reg_copy);
2365 /*
2366 * fls64() returns a 1-based offset, but we generally
2367 * want 0-based offsets.
2368 */
2369 int shift = posn - 1;
2370
2371 if (port_inactive_err(shift)) {
2372 count_port_inactive(dd);
2373 handled |= (1ULL << shift);
2374 } else if (disallowed_pkt_err(shift)) {
2375 handle_send_egress_err_info(dd);
2376 handled |= (1ULL << shift);
2377 }
2378 clear_bit(shift, (unsigned long *)&reg_copy);
2379 }
2380
2381 reg &= ~handled;
2382
2383 if (reg)
2384 dd_dev_info(dd, "Egress Error: %s\n",
2385 egress_err_status_string(buf, sizeof(buf), reg));
2386}
2387
2388static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2389{
2390 char buf[96];
2391
2392 dd_dev_info(dd, "Send Error: %s\n",
2393 send_err_status_string(buf, sizeof(buf), reg));
2394
2395}
2396
2397/*
2398 * The maximum number of times the error clear down will loop before
2399 * blocking a repeating error. This value is arbitrary.
2400 */
2401#define MAX_CLEAR_COUNT 20
2402
2403/*
2404 * Clear and handle an error register. All error interrupts are funneled
2405 * through here to have a central location to correctly handle single-
2406 * or multi-shot errors.
2407 *
2408 * For non per-context registers, call this routine with a context value
2409 * of 0 so the per-context offset is zero.
2410 *
2411 * If the handler loops too many times, assume that something is wrong
2412 * and can't be fixed, so mask the error bits.
2413 */
2414static void interrupt_clear_down(struct hfi1_devdata *dd,
2415 u32 context,
2416 const struct err_reg_info *eri)
2417{
2418 u64 reg;
2419 u32 count;
2420
2421 /* read in a loop until no more errors are seen */
2422 count = 0;
2423 while (1) {
2424 reg = read_kctxt_csr(dd, context, eri->status);
2425 if (reg == 0)
2426 break;
2427 write_kctxt_csr(dd, context, eri->clear, reg);
2428 if (likely(eri->handler))
2429 eri->handler(dd, context, reg);
2430 count++;
2431 if (count > MAX_CLEAR_COUNT) {
2432 u64 mask;
2433
2434 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
2435 eri->desc, reg);
2436 /*
2437 * Read-modify-write so any other masked bits
2438 * remain masked.
2439 */
2440 mask = read_kctxt_csr(dd, context, eri->mask);
2441 mask &= ~reg;
2442 write_kctxt_csr(dd, context, eri->mask, mask);
2443 break;
2444 }
2445 }
2446}
2447
2448/*
2449 * CCE block "misc" interrupt. Source is < 16.
2450 */
2451static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
2452{
2453 const struct err_reg_info *eri = &misc_errs[source];
2454
2455 if (eri->handler) {
2456 interrupt_clear_down(dd, 0, eri);
2457 } else {
2458 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
2459 source);
2460 }
2461}
2462
2463static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
2464{
2465 return flag_string(buf, buf_len, flags,
2466 sc_err_status_flags, ARRAY_SIZE(sc_err_status_flags));
2467}
2468
2469/*
2470 * Send context error interrupt. Source (hw_context) is < 160.
2471 *
2472 * All send context errors cause the send context to halt. The normal
2473 * clear-down mechanism cannot be used because we cannot clear the
2474 * error bits until several other long-running items are done first.
2475 * This is OK because with the context halted, nothing else is going
2476 * to happen on it anyway.
2477 */
2478static void is_sendctxt_err_int(struct hfi1_devdata *dd,
2479 unsigned int hw_context)
2480{
2481 struct send_context_info *sci;
2482 struct send_context *sc;
2483 char flags[96];
2484 u64 status;
2485 u32 sw_index;
2486
2487 sw_index = dd->hw_to_sw[hw_context];
2488 if (sw_index >= dd->num_send_contexts) {
2489 dd_dev_err(dd,
2490 "out of range sw index %u for send context %u\n",
2491 sw_index, hw_context);
2492 return;
2493 }
2494 sci = &dd->send_contexts[sw_index];
2495 sc = sci->sc;
2496 if (!sc) {
2497 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
2498 sw_index, hw_context);
2499 return;
2500 }
2501
2502 /* tell the software that a halt has begun */
2503 sc_stop(sc, SCF_HALTED);
2504
2505 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
2506
2507 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
2508 send_context_err_status_string(flags, sizeof(flags), status));
2509
2510 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
2511 handle_send_egress_err_info(dd);
2512
2513 /*
2514 * Automatically restart halted kernel contexts out of interrupt
2515 * context. User contexts must ask the driver to restart the context.
2516 */
2517 if (sc->type != SC_USER)
2518 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
2519}
2520
2521static void handle_sdma_eng_err(struct hfi1_devdata *dd,
2522 unsigned int source, u64 status)
2523{
2524 struct sdma_engine *sde;
2525
2526 sde = &dd->per_sdma[source];
2527#ifdef CONFIG_SDMA_VERBOSITY
2528 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
2529 slashstrip(__FILE__), __LINE__, __func__);
2530 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
2531 sde->this_idx, source, (unsigned long long)status);
2532#endif
2533 sdma_engine_error(sde, status);
2534}
2535
2536/*
2537 * CCE block SDMA error interrupt. Source is < 16.
2538 */
2539static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
2540{
2541#ifdef CONFIG_SDMA_VERBOSITY
2542 struct sdma_engine *sde = &dd->per_sdma[source];
2543
2544 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
2545 slashstrip(__FILE__), __LINE__, __func__);
2546 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
2547 source);
2548 sdma_dumpstate(sde);
2549#endif
2550 interrupt_clear_down(dd, source, &sdma_eng_err);
2551}
2552
2553/*
2554 * CCE block "various" interrupt. Source is < 8.
2555 */
2556static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
2557{
2558 const struct err_reg_info *eri = &various_err[source];
2559
2560 /*
2561 * TCritInt cannot go through interrupt_clear_down()
2562 * because it is not a second tier interrupt. The handler
2563 * should be called directly.
2564 */
2565 if (source == TCRIT_INT_SOURCE)
2566 handle_temp_err(dd);
2567 else if (eri->handler)
2568 interrupt_clear_down(dd, 0, eri);
2569 else
2570 dd_dev_info(dd,
2571 "%s: Unimplemented/reserved interrupt %d\n",
2572 __func__, source);
2573}
2574
2575static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
2576{
2577 /* source is always zero */
2578 struct hfi1_pportdata *ppd = dd->pport;
2579 unsigned long flags;
2580 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
2581
2582 if (reg & QSFP_HFI0_MODPRST_N) {
2583
2584 dd_dev_info(dd, "%s: ModPresent triggered QSFP interrupt\n",
2585 __func__);
2586
2587 if (!qsfp_mod_present(ppd)) {
2588 ppd->driver_link_ready = 0;
2589 /*
2590 * Cable removed, reset all our information about the
2591 * cache and cable capabilities
2592 */
2593
2594 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
2595 /*
2596 * We don't set cache_refresh_required here as we expect
2597 * an interrupt when a cable is inserted
2598 */
2599 ppd->qsfp_info.cache_valid = 0;
2600 ppd->qsfp_info.qsfp_interrupt_functional = 0;
2601 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
2602 flags);
2603 write_csr(dd,
2604 dd->hfi1_id ?
2605 ASIC_QSFP2_INVERT :
2606 ASIC_QSFP1_INVERT,
2607 qsfp_int_mgmt);
2608 if (ppd->host_link_state == HLS_DN_POLL) {
2609 /*
2610 * The link is still in POLL. This means
2611 * that the normal link down processing
2612 * will not happen. We have to do it here
2613 * before turning the DC off.
2614 */
2615 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
2616 }
2617 } else {
2618 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
2619 ppd->qsfp_info.cache_valid = 0;
2620 ppd->qsfp_info.cache_refresh_required = 1;
2621 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
2622 flags);
2623
2624 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
2625 write_csr(dd,
2626 dd->hfi1_id ?
2627 ASIC_QSFP2_INVERT :
2628 ASIC_QSFP1_INVERT,
2629 qsfp_int_mgmt);
2630 }
2631 }
2632
2633 if (reg & QSFP_HFI0_INT_N) {
2634
2635 dd_dev_info(dd, "%s: IntN triggered QSFP interrupt\n",
2636 __func__);
2637 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
2638 ppd->qsfp_info.check_interrupt_flags = 1;
2639 ppd->qsfp_info.qsfp_interrupt_functional = 1;
2640 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
2641 }
2642
2643 /* Schedule the QSFP work only if there is a cable attached. */
2644 if (qsfp_mod_present(ppd))
2645 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
2646}
2647
2648static int request_host_lcb_access(struct hfi1_devdata *dd)
2649{
2650 int ret;
2651
2652 ret = do_8051_command(dd, HCMD_MISC,
2653 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
2654 NULL);
2655 if (ret != HCMD_SUCCESS) {
2656 dd_dev_err(dd, "%s: command failed with error %d\n",
2657 __func__, ret);
2658 }
2659 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
2660}
2661
2662static int request_8051_lcb_access(struct hfi1_devdata *dd)
2663{
2664 int ret;
2665
2666 ret = do_8051_command(dd, HCMD_MISC,
2667 (u64)HCMD_MISC_GRANT_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
2668 NULL);
2669 if (ret != HCMD_SUCCESS) {
2670 dd_dev_err(dd, "%s: command failed with error %d\n",
2671 __func__, ret);
2672 }
2673 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
2674}
2675
2676/*
2677 * Set the LCB selector - allow host access. The DCC selector always
2678 * points to the host.
2679 */
2680static inline void set_host_lcb_access(struct hfi1_devdata *dd)
2681{
2682 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
2683 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK
2684 | DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
2685}
2686
2687/*
2688 * Clear the LCB selector - allow 8051 access. The DCC selector always
2689 * points to the host.
2690 */
2691static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
2692{
2693 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
2694 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
2695}
2696
2697/*
2698 * Acquire LCB access from the 8051. If the host already has access,
2699 * just increment a counter. Otherwise, inform the 8051 that the
2700 * host is taking access.
2701 *
2702 * Returns:
2703 * 0 on success
2704 * -EBUSY if the 8051 has control and cannot be disturbed
2705 * -errno if unable to acquire access from the 8051
2706 */
2707int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
2708{
2709 struct hfi1_pportdata *ppd = dd->pport;
2710 int ret = 0;
2711
2712 /*
2713 * Use the host link state lock so the operation of this routine
2714 * { link state check, selector change, count increment } can occur
2715 * as a unit against a link state change. Otherwise there is a
2716 * race between the state change and the count increment.
2717 */
2718 if (sleep_ok) {
2719 mutex_lock(&ppd->hls_lock);
2720 } else {
Dan Carpenter951842b2015-09-16 09:22:51 +03002721 while (!mutex_trylock(&ppd->hls_lock))
Mike Marciniszyn77241052015-07-30 15:17:43 -04002722 udelay(1);
2723 }
2724
2725 /* this access is valid only when the link is up */
2726 if ((ppd->host_link_state & HLS_UP) == 0) {
2727 dd_dev_info(dd, "%s: link state %s not up\n",
2728 __func__, link_state_name(ppd->host_link_state));
2729 ret = -EBUSY;
2730 goto done;
2731 }
2732
2733 if (dd->lcb_access_count == 0) {
2734 ret = request_host_lcb_access(dd);
2735 if (ret) {
2736 dd_dev_err(dd,
2737 "%s: unable to acquire LCB access, err %d\n",
2738 __func__, ret);
2739 goto done;
2740 }
2741 set_host_lcb_access(dd);
2742 }
2743 dd->lcb_access_count++;
2744done:
2745 mutex_unlock(&ppd->hls_lock);
2746 return ret;
2747}
2748
2749/*
2750 * Release LCB access by decrementing the use count. If the count is moving
2751 * from 1 to 0, inform 8051 that it has control back.
2752 *
2753 * Returns:
2754 * 0 on success
2755 * -errno if unable to release access to the 8051
2756 */
2757int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
2758{
2759 int ret = 0;
2760
2761 /*
2762 * Use the host link state lock because the acquire needed it.
2763 * Here, we only need to keep { selector change, count decrement }
2764 * as a unit.
2765 */
2766 if (sleep_ok) {
2767 mutex_lock(&dd->pport->hls_lock);
2768 } else {
Dan Carpenter951842b2015-09-16 09:22:51 +03002769 while (!mutex_trylock(&dd->pport->hls_lock))
Mike Marciniszyn77241052015-07-30 15:17:43 -04002770 udelay(1);
2771 }
2772
2773 if (dd->lcb_access_count == 0) {
2774 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
2775 __func__);
2776 goto done;
2777 }
2778
2779 if (dd->lcb_access_count == 1) {
2780 set_8051_lcb_access(dd);
2781 ret = request_8051_lcb_access(dd);
2782 if (ret) {
2783 dd_dev_err(dd,
2784 "%s: unable to release LCB access, err %d\n",
2785 __func__, ret);
2786 /* restore host access if the grant didn't work */
2787 set_host_lcb_access(dd);
2788 goto done;
2789 }
2790 }
2791 dd->lcb_access_count--;
2792done:
2793 mutex_unlock(&dd->pport->hls_lock);
2794 return ret;
2795}
2796
2797/*
2798 * Initialize LCB access variables and state. Called during driver load,
2799 * after most of the initialization is finished.
2800 *
2801 * The DC default is LCB access on for the host. The driver defaults to
2802 * leaving access to the 8051. Assign access now - this constrains the call
2803 * to this routine to be after all LCB set-up is done. In particular, after
2804 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
2805 */
2806static void init_lcb_access(struct hfi1_devdata *dd)
2807{
2808 dd->lcb_access_count = 0;
2809}
2810
2811/*
2812 * Write a response back to a 8051 request.
2813 */
2814static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
2815{
2816 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
2817 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK
2818 | (u64)return_code << DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT
2819 | (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
2820}
2821
2822/*
2823 * Handle requests from the 8051.
2824 */
2825static void handle_8051_request(struct hfi1_devdata *dd)
2826{
2827 u64 reg;
2828 u16 data;
2829 u8 type;
2830
2831 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
2832 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
2833 return; /* no request */
2834
2835 /* zero out COMPLETED so the response is seen */
2836 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
2837
2838 /* extract request details */
2839 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
2840 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
2841 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
2842 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
2843
2844 switch (type) {
2845 case HREQ_LOAD_CONFIG:
2846 case HREQ_SAVE_CONFIG:
2847 case HREQ_READ_CONFIG:
2848 case HREQ_SET_TX_EQ_ABS:
2849 case HREQ_SET_TX_EQ_REL:
2850 case HREQ_ENABLE:
2851 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
2852 type);
2853 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
2854 break;
2855
2856 case HREQ_CONFIG_DONE:
2857 hreq_response(dd, HREQ_SUCCESS, 0);
2858 break;
2859
2860 case HREQ_INTERFACE_TEST:
2861 hreq_response(dd, HREQ_SUCCESS, data);
2862 break;
2863
2864 default:
2865 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
2866 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
2867 break;
2868 }
2869}
2870
2871static void write_global_credit(struct hfi1_devdata *dd,
2872 u8 vau, u16 total, u16 shared)
2873{
2874 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
2875 ((u64)total
2876 << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
2877 | ((u64)shared
2878 << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
2879 | ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
2880}
2881
2882/*
2883 * Set up initial VL15 credits of the remote. Assumes the rest of
2884 * the CM credit registers are zero from a previous global or credit reset .
2885 */
2886void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
2887{
2888 /* leave shared count at zero for both global and VL15 */
2889 write_global_credit(dd, vau, vl15buf, 0);
2890
2891 /* We may need some credits for another VL when sending packets
2892 * with the snoop interface. Dividing it down the middle for VL15
2893 * and VL0 should suffice.
2894 */
2895 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
2896 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
2897 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
2898 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
2899 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
2900 } else {
2901 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
2902 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
2903 }
2904}
2905
2906/*
2907 * Zero all credit details from the previous connection and
2908 * reset the CM manager's internal counters.
2909 */
2910void reset_link_credits(struct hfi1_devdata *dd)
2911{
2912 int i;
2913
2914 /* remove all previous VL credit limits */
2915 for (i = 0; i < TXE_NUM_DATA_VL; i++)
2916 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
2917 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
2918 write_global_credit(dd, 0, 0, 0);
2919 /* reset the CM block */
2920 pio_send_control(dd, PSC_CM_RESET);
2921}
2922
2923/* convert a vCU to a CU */
2924static u32 vcu_to_cu(u8 vcu)
2925{
2926 return 1 << vcu;
2927}
2928
2929/* convert a CU to a vCU */
2930static u8 cu_to_vcu(u32 cu)
2931{
2932 return ilog2(cu);
2933}
2934
2935/* convert a vAU to an AU */
2936static u32 vau_to_au(u8 vau)
2937{
2938 return 8 * (1 << vau);
2939}
2940
2941static void set_linkup_defaults(struct hfi1_pportdata *ppd)
2942{
2943 ppd->sm_trap_qp = 0x0;
2944 ppd->sa_qp = 0x1;
2945}
2946
2947/*
2948 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
2949 */
2950static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
2951{
2952 u64 reg;
2953
2954 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
2955 write_csr(dd, DC_LCB_CFG_RUN, 0);
2956 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
2957 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
2958 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
2959 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
2960 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
2961 reg = read_csr(dd, DCC_CFG_RESET);
2962 write_csr(dd, DCC_CFG_RESET,
2963 reg
2964 | (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT)
2965 | (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
2966 (void) read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
2967 if (!abort) {
2968 udelay(1); /* must hold for the longer of 16cclks or 20ns */
2969 write_csr(dd, DCC_CFG_RESET, reg);
2970 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
2971 }
2972}
2973
2974/*
2975 * This routine should be called after the link has been transitioned to
2976 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
2977 * reset).
2978 *
2979 * The expectation is that the caller of this routine would have taken
2980 * care of properly transitioning the link into the correct state.
2981 */
2982static void dc_shutdown(struct hfi1_devdata *dd)
2983{
2984 unsigned long flags;
2985
2986 spin_lock_irqsave(&dd->dc8051_lock, flags);
2987 if (dd->dc_shutdown) {
2988 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
2989 return;
2990 }
2991 dd->dc_shutdown = 1;
2992 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
2993 /* Shutdown the LCB */
2994 lcb_shutdown(dd, 1);
2995 /* Going to OFFLINE would have causes the 8051 to put the
2996 * SerDes into reset already. Just need to shut down the 8051,
2997 * itself. */
2998 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
2999}
3000
3001/* Calling this after the DC has been brought out of reset should not
3002 * do any damage. */
3003static void dc_start(struct hfi1_devdata *dd)
3004{
3005 unsigned long flags;
3006 int ret;
3007
3008 spin_lock_irqsave(&dd->dc8051_lock, flags);
3009 if (!dd->dc_shutdown)
3010 goto done;
3011 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
3012 /* Take the 8051 out of reset */
3013 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
3014 /* Wait until 8051 is ready */
3015 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
3016 if (ret) {
3017 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
3018 __func__);
3019 }
3020 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
3021 write_csr(dd, DCC_CFG_RESET, 0x10);
3022 /* lcb_shutdown() with abort=1 does not restore these */
3023 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
3024 spin_lock_irqsave(&dd->dc8051_lock, flags);
3025 dd->dc_shutdown = 0;
3026done:
3027 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
3028}
3029
3030/*
3031 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
3032 */
3033static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
3034{
3035 u64 rx_radr, tx_radr;
3036 u32 version;
3037
3038 if (dd->icode != ICODE_FPGA_EMULATION)
3039 return;
3040
3041 /*
3042 * These LCB defaults on emulator _s are good, nothing to do here:
3043 * LCB_CFG_TX_FIFOS_RADR
3044 * LCB_CFG_RX_FIFOS_RADR
3045 * LCB_CFG_LN_DCLK
3046 * LCB_CFG_IGNORE_LOST_RCLK
3047 */
3048 if (is_emulator_s(dd))
3049 return;
3050 /* else this is _p */
3051
3052 version = emulator_rev(dd);
3053 if (!is_a0(dd))
3054 version = 0x2d; /* all B0 use 0x2d or higher settings */
3055
3056 if (version <= 0x12) {
3057 /* release 0x12 and below */
3058
3059 /*
3060 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
3061 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
3062 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
3063 */
3064 rx_radr =
3065 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3066 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3067 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3068 /*
3069 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
3070 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
3071 */
3072 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3073 } else if (version <= 0x18) {
3074 /* release 0x13 up to 0x18 */
3075 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
3076 rx_radr =
3077 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3078 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3079 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3080 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3081 } else if (version == 0x19) {
3082 /* release 0x19 */
3083 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
3084 rx_radr =
3085 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3086 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3087 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3088 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3089 } else if (version == 0x1a) {
3090 /* release 0x1a */
3091 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
3092 rx_radr =
3093 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3094 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3095 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3096 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3097 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
3098 } else {
3099 /* release 0x1b and higher */
3100 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
3101 rx_radr =
3102 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3103 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3104 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3105 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3106 }
3107
3108 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
3109 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
3110 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
3111 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
3112 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
3113}
3114
3115/*
3116 * Handle a SMA idle message
3117 *
3118 * This is a work-queue function outside of the interrupt.
3119 */
3120void handle_sma_message(struct work_struct *work)
3121{
3122 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3123 sma_message_work);
3124 struct hfi1_devdata *dd = ppd->dd;
3125 u64 msg;
3126 int ret;
3127
3128 /* msg is bytes 1-4 of the 40-bit idle message - the command code
3129 is stripped off */
3130 ret = read_idle_sma(dd, &msg);
3131 if (ret)
3132 return;
3133 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
3134 /*
3135 * React to the SMA message. Byte[1] (0 for us) is the command.
3136 */
3137 switch (msg & 0xff) {
3138 case SMA_IDLE_ARM:
3139 /*
3140 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
3141 * State Transitions
3142 *
3143 * Only expected in INIT or ARMED, discard otherwise.
3144 */
3145 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
3146 ppd->neighbor_normal = 1;
3147 break;
3148 case SMA_IDLE_ACTIVE:
3149 /*
3150 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
3151 * State Transitions
3152 *
3153 * Can activate the node. Discard otherwise.
3154 */
3155 if (ppd->host_link_state == HLS_UP_ARMED
3156 && ppd->is_active_optimize_enabled) {
3157 ppd->neighbor_normal = 1;
3158 ret = set_link_state(ppd, HLS_UP_ACTIVE);
3159 if (ret)
3160 dd_dev_err(
3161 dd,
3162 "%s: received Active SMA idle message, couldn't set link to Active\n",
3163 __func__);
3164 }
3165 break;
3166 default:
3167 dd_dev_err(dd,
3168 "%s: received unexpected SMA idle message 0x%llx\n",
3169 __func__, msg);
3170 break;
3171 }
3172}
3173
3174static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
3175{
3176 u64 rcvctrl;
3177 unsigned long flags;
3178
3179 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
3180 rcvctrl = read_csr(dd, RCV_CTRL);
3181 rcvctrl |= add;
3182 rcvctrl &= ~clear;
3183 write_csr(dd, RCV_CTRL, rcvctrl);
3184 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
3185}
3186
3187static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
3188{
3189 adjust_rcvctrl(dd, add, 0);
3190}
3191
3192static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
3193{
3194 adjust_rcvctrl(dd, 0, clear);
3195}
3196
3197/*
3198 * Called from all interrupt handlers to start handling an SPC freeze.
3199 */
3200void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
3201{
3202 struct hfi1_devdata *dd = ppd->dd;
3203 struct send_context *sc;
3204 int i;
3205
3206 if (flags & FREEZE_SELF)
3207 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
3208
3209 /* enter frozen mode */
3210 dd->flags |= HFI1_FROZEN;
3211
3212 /* notify all SDMA engines that they are going into a freeze */
3213 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
3214
3215 /* do halt pre-handling on all enabled send contexts */
3216 for (i = 0; i < dd->num_send_contexts; i++) {
3217 sc = dd->send_contexts[i].sc;
3218 if (sc && (sc->flags & SCF_ENABLED))
3219 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
3220 }
3221
3222 /* Send context are frozen. Notify user space */
3223 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
3224
3225 if (flags & FREEZE_ABORT) {
3226 dd_dev_err(dd,
3227 "Aborted freeze recovery. Please REBOOT system\n");
3228 return;
3229 }
3230 /* queue non-interrupt handler */
3231 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
3232}
3233
3234/*
3235 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
3236 * depending on the "freeze" parameter.
3237 *
3238 * No need to return an error if it times out, our only option
3239 * is to proceed anyway.
3240 */
3241static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
3242{
3243 unsigned long timeout;
3244 u64 reg;
3245
3246 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
3247 while (1) {
3248 reg = read_csr(dd, CCE_STATUS);
3249 if (freeze) {
3250 /* waiting until all indicators are set */
3251 if ((reg & ALL_FROZE) == ALL_FROZE)
3252 return; /* all done */
3253 } else {
3254 /* waiting until all indicators are clear */
3255 if ((reg & ALL_FROZE) == 0)
3256 return; /* all done */
3257 }
3258
3259 if (time_after(jiffies, timeout)) {
3260 dd_dev_err(dd,
3261 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
3262 freeze ? "" : "un",
3263 reg & ALL_FROZE,
3264 freeze ? ALL_FROZE : 0ull);
3265 return;
3266 }
3267 usleep_range(80, 120);
3268 }
3269}
3270
3271/*
3272 * Do all freeze handling for the RXE block.
3273 */
3274static void rxe_freeze(struct hfi1_devdata *dd)
3275{
3276 int i;
3277
3278 /* disable port */
3279 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
3280
3281 /* disable all receive contexts */
3282 for (i = 0; i < dd->num_rcv_contexts; i++)
3283 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
3284}
3285
3286/*
3287 * Unfreeze handling for the RXE block - kernel contexts only.
3288 * This will also enable the port. User contexts will do unfreeze
3289 * handling on a per-context basis as they call into the driver.
3290 *
3291 */
3292static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
3293{
3294 int i;
3295
3296 /* enable all kernel contexts */
3297 for (i = 0; i < dd->n_krcv_queues; i++)
3298 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, i);
3299
3300 /* enable port */
3301 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
3302}
3303
3304/*
3305 * Non-interrupt SPC freeze handling.
3306 *
3307 * This is a work-queue function outside of the triggering interrupt.
3308 */
3309void handle_freeze(struct work_struct *work)
3310{
3311 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3312 freeze_work);
3313 struct hfi1_devdata *dd = ppd->dd;
3314
3315 /* wait for freeze indicators on all affected blocks */
3316 dd_dev_info(dd, "Entering SPC freeze\n");
3317 wait_for_freeze_status(dd, 1);
3318
3319 /* SPC is now frozen */
3320
3321 /* do send PIO freeze steps */
3322 pio_freeze(dd);
3323
3324 /* do send DMA freeze steps */
3325 sdma_freeze(dd);
3326
3327 /* do send egress freeze steps - nothing to do */
3328
3329 /* do receive freeze steps */
3330 rxe_freeze(dd);
3331
3332 /*
3333 * Unfreeze the hardware - clear the freeze, wait for each
3334 * block's frozen bit to clear, then clear the frozen flag.
3335 */
3336 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
3337 wait_for_freeze_status(dd, 0);
3338
3339 if (is_a0(dd)) {
3340 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
3341 wait_for_freeze_status(dd, 1);
3342 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
3343 wait_for_freeze_status(dd, 0);
3344 }
3345
3346 /* do send PIO unfreeze steps for kernel contexts */
3347 pio_kernel_unfreeze(dd);
3348
3349 /* do send DMA unfreeze steps */
3350 sdma_unfreeze(dd);
3351
3352 /* do send egress unfreeze steps - nothing to do */
3353
3354 /* do receive unfreeze steps for kernel contexts */
3355 rxe_kernel_unfreeze(dd);
3356
3357 /*
3358 * The unfreeze procedure touches global device registers when
3359 * it disables and re-enables RXE. Mark the device unfrozen
3360 * after all that is done so other parts of the driver waiting
3361 * for the device to unfreeze don't do things out of order.
3362 *
3363 * The above implies that the meaning of HFI1_FROZEN flag is
3364 * "Device has gone into freeze mode and freeze mode handling
3365 * is still in progress."
3366 *
3367 * The flag will be removed when freeze mode processing has
3368 * completed.
3369 */
3370 dd->flags &= ~HFI1_FROZEN;
3371 wake_up(&dd->event_queue);
3372
3373 /* no longer frozen */
3374 dd_dev_err(dd, "Exiting SPC freeze\n");
3375}
3376
3377/*
3378 * Handle a link up interrupt from the 8051.
3379 *
3380 * This is a work-queue function outside of the interrupt.
3381 */
3382void handle_link_up(struct work_struct *work)
3383{
3384 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3385 link_up_work);
3386 set_link_state(ppd, HLS_UP_INIT);
3387
3388 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
3389 read_ltp_rtt(ppd->dd);
3390 /*
3391 * OPA specifies that certain counters are cleared on a transition
3392 * to link up, so do that.
3393 */
3394 clear_linkup_counters(ppd->dd);
3395 /*
3396 * And (re)set link up default values.
3397 */
3398 set_linkup_defaults(ppd);
3399
3400 /* enforce link speed enabled */
3401 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
3402 /* oops - current speed is not enabled, bounce */
3403 dd_dev_err(ppd->dd,
3404 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
3405 ppd->link_speed_active, ppd->link_speed_enabled);
3406 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
3407 OPA_LINKDOWN_REASON_SPEED_POLICY);
3408 set_link_state(ppd, HLS_DN_OFFLINE);
3409 start_link(ppd);
3410 }
3411}
3412
3413/* Several pieces of LNI information were cached for SMA in ppd.
3414 * Reset these on link down */
3415static void reset_neighbor_info(struct hfi1_pportdata *ppd)
3416{
3417 ppd->neighbor_guid = 0;
3418 ppd->neighbor_port_number = 0;
3419 ppd->neighbor_type = 0;
3420 ppd->neighbor_fm_security = 0;
3421}
3422
3423/*
3424 * Handle a link down interrupt from the 8051.
3425 *
3426 * This is a work-queue function outside of the interrupt.
3427 */
3428void handle_link_down(struct work_struct *work)
3429{
3430 u8 lcl_reason, neigh_reason = 0;
3431 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3432 link_down_work);
3433
3434 /* go offline first, then deal with reasons */
3435 set_link_state(ppd, HLS_DN_OFFLINE);
3436
3437 lcl_reason = 0;
3438 read_planned_down_reason_code(ppd->dd, &neigh_reason);
3439
3440 /*
3441 * If no reason, assume peer-initiated but missed
3442 * LinkGoingDown idle flits.
3443 */
3444 if (neigh_reason == 0)
3445 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
3446
3447 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
3448
3449 reset_neighbor_info(ppd);
3450
3451 /* disable the port */
3452 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
3453
3454 /* If there is no cable attached, turn the DC off. Otherwise,
3455 * start the link bring up. */
3456 if (!qsfp_mod_present(ppd))
3457 dc_shutdown(ppd->dd);
3458 else
3459 start_link(ppd);
3460}
3461
3462void handle_link_bounce(struct work_struct *work)
3463{
3464 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3465 link_bounce_work);
3466
3467 /*
3468 * Only do something if the link is currently up.
3469 */
3470 if (ppd->host_link_state & HLS_UP) {
3471 set_link_state(ppd, HLS_DN_OFFLINE);
3472 start_link(ppd);
3473 } else {
3474 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
3475 __func__, link_state_name(ppd->host_link_state));
3476 }
3477}
3478
3479/*
3480 * Mask conversion: Capability exchange to Port LTP. The capability
3481 * exchange has an implicit 16b CRC that is mandatory.
3482 */
3483static int cap_to_port_ltp(int cap)
3484{
3485 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
3486
3487 if (cap & CAP_CRC_14B)
3488 port_ltp |= PORT_LTP_CRC_MODE_14;
3489 if (cap & CAP_CRC_48B)
3490 port_ltp |= PORT_LTP_CRC_MODE_48;
3491 if (cap & CAP_CRC_12B_16B_PER_LANE)
3492 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
3493
3494 return port_ltp;
3495}
3496
3497/*
3498 * Convert an OPA Port LTP mask to capability mask
3499 */
3500int port_ltp_to_cap(int port_ltp)
3501{
3502 int cap_mask = 0;
3503
3504 if (port_ltp & PORT_LTP_CRC_MODE_14)
3505 cap_mask |= CAP_CRC_14B;
3506 if (port_ltp & PORT_LTP_CRC_MODE_48)
3507 cap_mask |= CAP_CRC_48B;
3508 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
3509 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
3510
3511 return cap_mask;
3512}
3513
3514/*
3515 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
3516 */
3517static int lcb_to_port_ltp(int lcb_crc)
3518{
3519 int port_ltp = 0;
3520
3521 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
3522 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
3523 else if (lcb_crc == LCB_CRC_48B)
3524 port_ltp = PORT_LTP_CRC_MODE_48;
3525 else if (lcb_crc == LCB_CRC_14B)
3526 port_ltp = PORT_LTP_CRC_MODE_14;
3527 else
3528 port_ltp = PORT_LTP_CRC_MODE_16;
3529
3530 return port_ltp;
3531}
3532
3533/*
3534 * Our neighbor has indicated that we are allowed to act as a fabric
3535 * manager, so place the full management partition key in the second
3536 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
3537 * that we should already have the limited management partition key in
3538 * array element 1, and also that the port is not yet up when
3539 * add_full_mgmt_pkey() is invoked.
3540 */
3541static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
3542{
3543 struct hfi1_devdata *dd = ppd->dd;
3544
3545 /* Sanity check - ppd->pkeys[2] should be 0 */
3546 if (ppd->pkeys[2] != 0)
3547 dd_dev_err(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
3548 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
3549 ppd->pkeys[2] = FULL_MGMT_P_KEY;
3550 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
3551}
3552
3553/*
3554 * Convert the given link width to the OPA link width bitmask.
3555 */
3556static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
3557{
3558 switch (width) {
3559 case 0:
3560 /*
3561 * Simulator and quick linkup do not set the width.
3562 * Just set it to 4x without complaint.
3563 */
3564 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
3565 return OPA_LINK_WIDTH_4X;
3566 return 0; /* no lanes up */
3567 case 1: return OPA_LINK_WIDTH_1X;
3568 case 2: return OPA_LINK_WIDTH_2X;
3569 case 3: return OPA_LINK_WIDTH_3X;
3570 default:
3571 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
3572 __func__, width);
3573 /* fall through */
3574 case 4: return OPA_LINK_WIDTH_4X;
3575 }
3576}
3577
3578/*
3579 * Do a population count on the bottom nibble.
3580 */
3581static const u8 bit_counts[16] = {
3582 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
3583};
3584static inline u8 nibble_to_count(u8 nibble)
3585{
3586 return bit_counts[nibble & 0xf];
3587}
3588
3589/*
3590 * Read the active lane information from the 8051 registers and return
3591 * their widths.
3592 *
3593 * Active lane information is found in these 8051 registers:
3594 * enable_lane_tx
3595 * enable_lane_rx
3596 */
3597static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
3598 u16 *rx_width)
3599{
3600 u16 tx, rx;
3601 u8 enable_lane_rx;
3602 u8 enable_lane_tx;
3603 u8 tx_polarity_inversion;
3604 u8 rx_polarity_inversion;
3605 u8 max_rate;
3606
3607 /* read the active lanes */
3608 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
3609 &rx_polarity_inversion, &max_rate);
3610 read_local_lni(dd, &enable_lane_rx);
3611
3612 /* convert to counts */
3613 tx = nibble_to_count(enable_lane_tx);
3614 rx = nibble_to_count(enable_lane_rx);
3615
3616 /*
3617 * Set link_speed_active here, overriding what was set in
3618 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
3619 * set the max_rate field in handle_verify_cap until v0.19.
3620 */
3621 if ((dd->icode == ICODE_RTL_SILICON)
3622 && (dd->dc8051_ver < dc8051_ver(0, 19))) {
3623 /* max_rate: 0 = 12.5G, 1 = 25G */
3624 switch (max_rate) {
3625 case 0:
3626 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
3627 break;
3628 default:
3629 dd_dev_err(dd,
3630 "%s: unexpected max rate %d, using 25Gb\n",
3631 __func__, (int)max_rate);
3632 /* fall through */
3633 case 1:
3634 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
3635 break;
3636 }
3637 }
3638
3639 dd_dev_info(dd,
3640 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
3641 enable_lane_tx, tx, enable_lane_rx, rx);
3642 *tx_width = link_width_to_bits(dd, tx);
3643 *rx_width = link_width_to_bits(dd, rx);
3644}
3645
3646/*
3647 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
3648 * Valid after the end of VerifyCap and during LinkUp. Does not change
3649 * after link up. I.e. look elsewhere for downgrade information.
3650 *
3651 * Bits are:
3652 * + bits [7:4] contain the number of active transmitters
3653 * + bits [3:0] contain the number of active receivers
3654 * These are numbers 1 through 4 and can be different values if the
3655 * link is asymmetric.
3656 *
3657 * verify_cap_local_fm_link_width[0] retains its original value.
3658 */
3659static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
3660 u16 *rx_width)
3661{
3662 u16 widths, tx, rx;
3663 u8 misc_bits, local_flags;
3664 u16 active_tx, active_rx;
3665
3666 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
3667 tx = widths >> 12;
3668 rx = (widths >> 8) & 0xf;
3669
3670 *tx_width = link_width_to_bits(dd, tx);
3671 *rx_width = link_width_to_bits(dd, rx);
3672
3673 /* print the active widths */
3674 get_link_widths(dd, &active_tx, &active_rx);
3675}
3676
3677/*
3678 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
3679 * hardware information when the link first comes up.
3680 *
3681 * The link width is not available until after VerifyCap.AllFramesReceived
3682 * (the trigger for handle_verify_cap), so this is outside that routine
3683 * and should be called when the 8051 signals linkup.
3684 */
3685void get_linkup_link_widths(struct hfi1_pportdata *ppd)
3686{
3687 u16 tx_width, rx_width;
3688
3689 /* get end-of-LNI link widths */
3690 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
3691
3692 /* use tx_width as the link is supposed to be symmetric on link up */
3693 ppd->link_width_active = tx_width;
3694 /* link width downgrade active (LWD.A) starts out matching LW.A */
3695 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
3696 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
3697 /* per OPA spec, on link up LWD.E resets to LWD.S */
3698 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
3699 /* cache the active egress rate (units {10^6 bits/sec]) */
3700 ppd->current_egress_rate = active_egress_rate(ppd);
3701}
3702
3703/*
3704 * Handle a verify capabilities interrupt from the 8051.
3705 *
3706 * This is a work-queue function outside of the interrupt.
3707 */
3708void handle_verify_cap(struct work_struct *work)
3709{
3710 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3711 link_vc_work);
3712 struct hfi1_devdata *dd = ppd->dd;
3713 u64 reg;
3714 u8 power_management;
3715 u8 continious;
3716 u8 vcu;
3717 u8 vau;
3718 u8 z;
3719 u16 vl15buf;
3720 u16 link_widths;
3721 u16 crc_mask;
3722 u16 crc_val;
3723 u16 device_id;
3724 u16 active_tx, active_rx;
3725 u8 partner_supported_crc;
3726 u8 remote_tx_rate;
3727 u8 device_rev;
3728
3729 set_link_state(ppd, HLS_VERIFY_CAP);
3730
3731 lcb_shutdown(dd, 0);
3732 adjust_lcb_for_fpga_serdes(dd);
3733
3734 /*
3735 * These are now valid:
3736 * remote VerifyCap fields in the general LNI config
3737 * CSR DC8051_STS_REMOTE_GUID
3738 * CSR DC8051_STS_REMOTE_NODE_TYPE
3739 * CSR DC8051_STS_REMOTE_FM_SECURITY
3740 * CSR DC8051_STS_REMOTE_PORT_NO
3741 */
3742
3743 read_vc_remote_phy(dd, &power_management, &continious);
3744 read_vc_remote_fabric(
3745 dd,
3746 &vau,
3747 &z,
3748 &vcu,
3749 &vl15buf,
3750 &partner_supported_crc);
3751 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
3752 read_remote_device_id(dd, &device_id, &device_rev);
3753 /*
3754 * And the 'MgmtAllowed' information, which is exchanged during
3755 * LNI, is also be available at this point.
3756 */
3757 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
3758 /* print the active widths */
3759 get_link_widths(dd, &active_tx, &active_rx);
3760 dd_dev_info(dd,
3761 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
3762 (int)power_management, (int)continious);
3763 dd_dev_info(dd,
3764 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
3765 (int)vau,
3766 (int)z,
3767 (int)vcu,
3768 (int)vl15buf,
3769 (int)partner_supported_crc);
3770 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
3771 (u32)remote_tx_rate, (u32)link_widths);
3772 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
3773 (u32)device_id, (u32)device_rev);
3774 /*
3775 * The peer vAU value just read is the peer receiver value. HFI does
3776 * not support a transmit vAU of 0 (AU == 8). We advertised that
3777 * with Z=1 in the fabric capabilities sent to the peer. The peer
3778 * will see our Z=1, and, if it advertised a vAU of 0, will move its
3779 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
3780 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
3781 * subject to the Z value exception.
3782 */
3783 if (vau == 0)
3784 vau = 1;
3785 set_up_vl15(dd, vau, vl15buf);
3786
3787 /* set up the LCB CRC mode */
3788 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
3789
3790 /* order is important: use the lowest bit in common */
3791 if (crc_mask & CAP_CRC_14B)
3792 crc_val = LCB_CRC_14B;
3793 else if (crc_mask & CAP_CRC_48B)
3794 crc_val = LCB_CRC_48B;
3795 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
3796 crc_val = LCB_CRC_12B_16B_PER_LANE;
3797 else
3798 crc_val = LCB_CRC_16B;
3799
3800 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
3801 write_csr(dd, DC_LCB_CFG_CRC_MODE,
3802 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
3803
3804 /* set (14b only) or clear sideband credit */
3805 reg = read_csr(dd, SEND_CM_CTRL);
3806 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
3807 write_csr(dd, SEND_CM_CTRL,
3808 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
3809 } else {
3810 write_csr(dd, SEND_CM_CTRL,
3811 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
3812 }
3813
3814 ppd->link_speed_active = 0; /* invalid value */
3815 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
3816 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
3817 switch (remote_tx_rate) {
3818 case 0:
3819 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
3820 break;
3821 case 1:
3822 ppd->link_speed_active = OPA_LINK_SPEED_25G;
3823 break;
3824 }
3825 } else {
3826 /* actual rate is highest bit of the ANDed rates */
3827 u8 rate = remote_tx_rate & ppd->local_tx_rate;
3828
3829 if (rate & 2)
3830 ppd->link_speed_active = OPA_LINK_SPEED_25G;
3831 else if (rate & 1)
3832 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
3833 }
3834 if (ppd->link_speed_active == 0) {
3835 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
3836 __func__, (int)remote_tx_rate);
3837 ppd->link_speed_active = OPA_LINK_SPEED_25G;
3838 }
3839
3840 /*
3841 * Cache the values of the supported, enabled, and active
3842 * LTP CRC modes to return in 'portinfo' queries. But the bit
3843 * flags that are returned in the portinfo query differ from
3844 * what's in the link_crc_mask, crc_sizes, and crc_val
3845 * variables. Convert these here.
3846 */
3847 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
3848 /* supported crc modes */
3849 ppd->port_ltp_crc_mode |=
3850 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
3851 /* enabled crc modes */
3852 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
3853 /* active crc mode */
3854
3855 /* set up the remote credit return table */
3856 assign_remote_cm_au_table(dd, vcu);
3857
3858 /*
3859 * The LCB is reset on entry to handle_verify_cap(), so this must
3860 * be applied on every link up.
3861 *
3862 * Adjust LCB error kill enable to kill the link if
3863 * these RBUF errors are seen:
3864 * REPLAY_BUF_MBE_SMASK
3865 * FLIT_INPUT_BUF_MBE_SMASK
3866 */
3867 if (is_a0(dd)) { /* fixed in B0 */
3868 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
3869 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
3870 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
3871 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
3872 }
3873
3874 /* pull LCB fifos out of reset - all fifo clocks must be stable */
3875 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
3876
3877 /* give 8051 access to the LCB CSRs */
3878 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
3879 set_8051_lcb_access(dd);
3880
3881 ppd->neighbor_guid =
3882 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
3883 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
3884 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
3885 ppd->neighbor_type =
3886 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
3887 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
3888 ppd->neighbor_fm_security =
3889 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
3890 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
3891 dd_dev_info(dd,
3892 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
3893 ppd->neighbor_guid, ppd->neighbor_type,
3894 ppd->mgmt_allowed, ppd->neighbor_fm_security);
3895 if (ppd->mgmt_allowed)
3896 add_full_mgmt_pkey(ppd);
3897
3898 /* tell the 8051 to go to LinkUp */
3899 set_link_state(ppd, HLS_GOING_UP);
3900}
3901
3902/*
3903 * Apply the link width downgrade enabled policy against the current active
3904 * link widths.
3905 *
3906 * Called when the enabled policy changes or the active link widths change.
3907 */
3908void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
3909{
3910 int skip = 1;
3911 int do_bounce = 0;
3912 u16 lwde = ppd->link_width_downgrade_enabled;
3913 u16 tx, rx;
3914
3915 mutex_lock(&ppd->hls_lock);
3916 /* only apply if the link is up */
3917 if (ppd->host_link_state & HLS_UP)
3918 skip = 0;
3919 mutex_unlock(&ppd->hls_lock);
3920 if (skip)
3921 return;
3922
3923 if (refresh_widths) {
3924 get_link_widths(ppd->dd, &tx, &rx);
3925 ppd->link_width_downgrade_tx_active = tx;
3926 ppd->link_width_downgrade_rx_active = rx;
3927 }
3928
3929 if (lwde == 0) {
3930 /* downgrade is disabled */
3931
3932 /* bounce if not at starting active width */
3933 if ((ppd->link_width_active !=
3934 ppd->link_width_downgrade_tx_active)
3935 || (ppd->link_width_active !=
3936 ppd->link_width_downgrade_rx_active)) {
3937 dd_dev_err(ppd->dd,
3938 "Link downgrade is disabled and link has downgraded, downing link\n");
3939 dd_dev_err(ppd->dd,
3940 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
3941 ppd->link_width_active,
3942 ppd->link_width_downgrade_tx_active,
3943 ppd->link_width_downgrade_rx_active);
3944 do_bounce = 1;
3945 }
3946 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0
3947 || (lwde & ppd->link_width_downgrade_rx_active) == 0) {
3948 /* Tx or Rx is outside the enabled policy */
3949 dd_dev_err(ppd->dd,
3950 "Link is outside of downgrade allowed, downing link\n");
3951 dd_dev_err(ppd->dd,
3952 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
3953 lwde,
3954 ppd->link_width_downgrade_tx_active,
3955 ppd->link_width_downgrade_rx_active);
3956 do_bounce = 1;
3957 }
3958
3959 if (do_bounce) {
3960 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
3961 OPA_LINKDOWN_REASON_WIDTH_POLICY);
3962 set_link_state(ppd, HLS_DN_OFFLINE);
3963 start_link(ppd);
3964 }
3965}
3966
3967/*
3968 * Handle a link downgrade interrupt from the 8051.
3969 *
3970 * This is a work-queue function outside of the interrupt.
3971 */
3972void handle_link_downgrade(struct work_struct *work)
3973{
3974 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3975 link_downgrade_work);
3976
3977 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
3978 apply_link_downgrade_policy(ppd, 1);
3979}
3980
3981static char *dcc_err_string(char *buf, int buf_len, u64 flags)
3982{
3983 return flag_string(buf, buf_len, flags, dcc_err_flags,
3984 ARRAY_SIZE(dcc_err_flags));
3985}
3986
3987static char *lcb_err_string(char *buf, int buf_len, u64 flags)
3988{
3989 return flag_string(buf, buf_len, flags, lcb_err_flags,
3990 ARRAY_SIZE(lcb_err_flags));
3991}
3992
3993static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
3994{
3995 return flag_string(buf, buf_len, flags, dc8051_err_flags,
3996 ARRAY_SIZE(dc8051_err_flags));
3997}
3998
3999static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
4000{
4001 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
4002 ARRAY_SIZE(dc8051_info_err_flags));
4003}
4004
4005static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
4006{
4007 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
4008 ARRAY_SIZE(dc8051_info_host_msg_flags));
4009}
4010
4011static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
4012{
4013 struct hfi1_pportdata *ppd = dd->pport;
4014 u64 info, err, host_msg;
4015 int queue_link_down = 0;
4016 char buf[96];
4017
4018 /* look at the flags */
4019 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
4020 /* 8051 information set by firmware */
4021 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
4022 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
4023 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
4024 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
4025 host_msg = (info >>
4026 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
4027 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
4028
4029 /*
4030 * Handle error flags.
4031 */
4032 if (err & FAILED_LNI) {
4033 /*
4034 * LNI error indications are cleared by the 8051
4035 * only when starting polling. Only pay attention
4036 * to them when in the states that occur during
4037 * LNI.
4038 */
4039 if (ppd->host_link_state
4040 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
4041 queue_link_down = 1;
4042 dd_dev_info(dd, "Link error: %s\n",
4043 dc8051_info_err_string(buf,
4044 sizeof(buf),
4045 err & FAILED_LNI));
4046 }
4047 err &= ~(u64)FAILED_LNI;
4048 }
4049 if (err) {
4050 /* report remaining errors, but do not do anything */
4051 dd_dev_err(dd, "8051 info error: %s\n",
4052 dc8051_info_err_string(buf, sizeof(buf), err));
4053 }
4054
4055 /*
4056 * Handle host message flags.
4057 */
4058 if (host_msg & HOST_REQ_DONE) {
4059 /*
4060 * Presently, the driver does a busy wait for
4061 * host requests to complete. This is only an
4062 * informational message.
4063 * NOTE: The 8051 clears the host message
4064 * information *on the next 8051 command*.
4065 * Therefore, when linkup is achieved,
4066 * this flag will still be set.
4067 */
4068 host_msg &= ~(u64)HOST_REQ_DONE;
4069 }
4070 if (host_msg & BC_SMA_MSG) {
4071 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
4072 host_msg &= ~(u64)BC_SMA_MSG;
4073 }
4074 if (host_msg & LINKUP_ACHIEVED) {
4075 dd_dev_info(dd, "8051: Link up\n");
4076 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
4077 host_msg &= ~(u64)LINKUP_ACHIEVED;
4078 }
4079 if (host_msg & EXT_DEVICE_CFG_REQ) {
4080 handle_8051_request(dd);
4081 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
4082 }
4083 if (host_msg & VERIFY_CAP_FRAME) {
4084 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
4085 host_msg &= ~(u64)VERIFY_CAP_FRAME;
4086 }
4087 if (host_msg & LINK_GOING_DOWN) {
4088 const char *extra = "";
4089 /* no downgrade action needed if going down */
4090 if (host_msg & LINK_WIDTH_DOWNGRADED) {
4091 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
4092 extra = " (ignoring downgrade)";
4093 }
4094 dd_dev_info(dd, "8051: Link down%s\n", extra);
4095 queue_link_down = 1;
4096 host_msg &= ~(u64)LINK_GOING_DOWN;
4097 }
4098 if (host_msg & LINK_WIDTH_DOWNGRADED) {
4099 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
4100 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
4101 }
4102 if (host_msg) {
4103 /* report remaining messages, but do not do anything */
4104 dd_dev_info(dd, "8051 info host message: %s\n",
4105 dc8051_info_host_msg_string(buf, sizeof(buf),
4106 host_msg));
4107 }
4108
4109 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
4110 }
4111 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
4112 /*
4113 * Lost the 8051 heartbeat. If this happens, we
4114 * receive constant interrupts about it. Disable
4115 * the interrupt after the first.
4116 */
4117 dd_dev_err(dd, "Lost 8051 heartbeat\n");
4118 write_csr(dd, DC_DC8051_ERR_EN,
4119 read_csr(dd, DC_DC8051_ERR_EN)
4120 & ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
4121
4122 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
4123 }
4124 if (reg) {
4125 /* report the error, but do not do anything */
4126 dd_dev_err(dd, "8051 error: %s\n",
4127 dc8051_err_string(buf, sizeof(buf), reg));
4128 }
4129
4130 if (queue_link_down) {
4131 /* if the link is already going down or disabled, do not
4132 * queue another */
4133 if ((ppd->host_link_state
4134 & (HLS_GOING_OFFLINE|HLS_LINK_COOLDOWN))
4135 || ppd->link_enabled == 0) {
4136 dd_dev_info(dd, "%s: not queuing link down\n",
4137 __func__);
4138 } else {
4139 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
4140 }
4141 }
4142}
4143
4144static const char * const fm_config_txt[] = {
4145[0] =
4146 "BadHeadDist: Distance violation between two head flits",
4147[1] =
4148 "BadTailDist: Distance violation between two tail flits",
4149[2] =
4150 "BadCtrlDist: Distance violation between two credit control flits",
4151[3] =
4152 "BadCrdAck: Credits return for unsupported VL",
4153[4] =
4154 "UnsupportedVLMarker: Received VL Marker",
4155[5] =
4156 "BadPreempt: Exceeded the preemption nesting level",
4157[6] =
4158 "BadControlFlit: Received unsupported control flit",
4159/* no 7 */
4160[8] =
4161 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
4162};
4163
4164static const char * const port_rcv_txt[] = {
4165[1] =
4166 "BadPktLen: Illegal PktLen",
4167[2] =
4168 "PktLenTooLong: Packet longer than PktLen",
4169[3] =
4170 "PktLenTooShort: Packet shorter than PktLen",
4171[4] =
4172 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
4173[5] =
4174 "BadDLID: Illegal DLID (0, doesn't match HFI)",
4175[6] =
4176 "BadL2: Illegal L2 opcode",
4177[7] =
4178 "BadSC: Unsupported SC",
4179[9] =
4180 "BadRC: Illegal RC",
4181[11] =
4182 "PreemptError: Preempting with same VL",
4183[12] =
4184 "PreemptVL15: Preempting a VL15 packet",
4185};
4186
4187#define OPA_LDR_FMCONFIG_OFFSET 16
4188#define OPA_LDR_PORTRCV_OFFSET 0
4189static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
4190{
4191 u64 info, hdr0, hdr1;
4192 const char *extra;
4193 char buf[96];
4194 struct hfi1_pportdata *ppd = dd->pport;
4195 u8 lcl_reason = 0;
4196 int do_bounce = 0;
4197
4198 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
4199 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
4200 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
4201 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
4202 /* set status bit */
4203 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
4204 }
4205 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
4206 }
4207
4208 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
4209 struct hfi1_pportdata *ppd = dd->pport;
4210 /* this counter saturates at (2^32) - 1 */
4211 if (ppd->link_downed < (u32)UINT_MAX)
4212 ppd->link_downed++;
4213 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
4214 }
4215
4216 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
4217 u8 reason_valid = 1;
4218
4219 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
4220 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
4221 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
4222 /* set status bit */
4223 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
4224 }
4225 switch (info) {
4226 case 0:
4227 case 1:
4228 case 2:
4229 case 3:
4230 case 4:
4231 case 5:
4232 case 6:
4233 extra = fm_config_txt[info];
4234 break;
4235 case 8:
4236 extra = fm_config_txt[info];
4237 if (ppd->port_error_action &
4238 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
4239 do_bounce = 1;
4240 /*
4241 * lcl_reason cannot be derived from info
4242 * for this error
4243 */
4244 lcl_reason =
4245 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
4246 }
4247 break;
4248 default:
4249 reason_valid = 0;
4250 snprintf(buf, sizeof(buf), "reserved%lld", info);
4251 extra = buf;
4252 break;
4253 }
4254
4255 if (reason_valid && !do_bounce) {
4256 do_bounce = ppd->port_error_action &
4257 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
4258 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
4259 }
4260
4261 /* just report this */
4262 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
4263 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
4264 }
4265
4266 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
4267 u8 reason_valid = 1;
4268
4269 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
4270 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
4271 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
4272 if (!(dd->err_info_rcvport.status_and_code &
4273 OPA_EI_STATUS_SMASK)) {
4274 dd->err_info_rcvport.status_and_code =
4275 info & OPA_EI_CODE_SMASK;
4276 /* set status bit */
4277 dd->err_info_rcvport.status_and_code |=
4278 OPA_EI_STATUS_SMASK;
4279 /* save first 2 flits in the packet that caused
4280 * the error */
4281 dd->err_info_rcvport.packet_flit1 = hdr0;
4282 dd->err_info_rcvport.packet_flit2 = hdr1;
4283 }
4284 switch (info) {
4285 case 1:
4286 case 2:
4287 case 3:
4288 case 4:
4289 case 5:
4290 case 6:
4291 case 7:
4292 case 9:
4293 case 11:
4294 case 12:
4295 extra = port_rcv_txt[info];
4296 break;
4297 default:
4298 reason_valid = 0;
4299 snprintf(buf, sizeof(buf), "reserved%lld", info);
4300 extra = buf;
4301 break;
4302 }
4303
4304 if (reason_valid && !do_bounce) {
4305 do_bounce = ppd->port_error_action &
4306 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
4307 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
4308 }
4309
4310 /* just report this */
4311 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
4312 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
4313 hdr0, hdr1);
4314
4315 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
4316 }
4317
4318 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
4319 /* informative only */
4320 dd_dev_info(dd, "8051 access to LCB blocked\n");
4321 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
4322 }
4323 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
4324 /* informative only */
4325 dd_dev_info(dd, "host access to LCB blocked\n");
4326 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
4327 }
4328
4329 /* report any remaining errors */
4330 if (reg)
4331 dd_dev_info(dd, "DCC Error: %s\n",
4332 dcc_err_string(buf, sizeof(buf), reg));
4333
4334 if (lcl_reason == 0)
4335 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
4336
4337 if (do_bounce) {
4338 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
4339 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
4340 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
4341 }
4342}
4343
4344static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
4345{
4346 char buf[96];
4347
4348 dd_dev_info(dd, "LCB Error: %s\n",
4349 lcb_err_string(buf, sizeof(buf), reg));
4350}
4351
4352/*
4353 * CCE block DC interrupt. Source is < 8.
4354 */
4355static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
4356{
4357 const struct err_reg_info *eri = &dc_errs[source];
4358
4359 if (eri->handler) {
4360 interrupt_clear_down(dd, 0, eri);
4361 } else if (source == 3 /* dc_lbm_int */) {
4362 /*
4363 * This indicates that a parity error has occurred on the
4364 * address/control lines presented to the LBM. The error
4365 * is a single pulse, there is no associated error flag,
4366 * and it is non-maskable. This is because if a parity
4367 * error occurs on the request the request is dropped.
4368 * This should never occur, but it is nice to know if it
4369 * ever does.
4370 */
4371 dd_dev_err(dd, "Parity error in DC LBM block\n");
4372 } else {
4373 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
4374 }
4375}
4376
4377/*
4378 * TX block send credit interrupt. Source is < 160.
4379 */
4380static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
4381{
4382 sc_group_release_update(dd, source);
4383}
4384
4385/*
4386 * TX block SDMA interrupt. Source is < 48.
4387 *
4388 * SDMA interrupts are grouped by type:
4389 *
4390 * 0 - N-1 = SDma
4391 * N - 2N-1 = SDmaProgress
4392 * 2N - 3N-1 = SDmaIdle
4393 */
4394static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
4395{
4396 /* what interrupt */
4397 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
4398 /* which engine */
4399 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
4400
4401#ifdef CONFIG_SDMA_VERBOSITY
4402 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
4403 slashstrip(__FILE__), __LINE__, __func__);
4404 sdma_dumpstate(&dd->per_sdma[which]);
4405#endif
4406
4407 if (likely(what < 3 && which < dd->num_sdma)) {
4408 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
4409 } else {
4410 /* should not happen */
4411 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
4412 }
4413}
4414
4415/*
4416 * RX block receive available interrupt. Source is < 160.
4417 */
4418static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
4419{
4420 struct hfi1_ctxtdata *rcd;
4421 char *err_detail;
4422
4423 if (likely(source < dd->num_rcv_contexts)) {
4424 rcd = dd->rcd[source];
4425 if (rcd) {
4426 if (source < dd->first_user_ctxt)
Dean Luickf4f30031c2015-10-26 10:28:44 -04004427 rcd->do_interrupt(rcd, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -04004428 else
4429 handle_user_interrupt(rcd);
4430 return; /* OK */
4431 }
4432 /* received an interrupt, but no rcd */
4433 err_detail = "dataless";
4434 } else {
4435 /* received an interrupt, but are not using that context */
4436 err_detail = "out of range";
4437 }
4438 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
4439 err_detail, source);
4440}
4441
4442/*
4443 * RX block receive urgent interrupt. Source is < 160.
4444 */
4445static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
4446{
4447 struct hfi1_ctxtdata *rcd;
4448 char *err_detail;
4449
4450 if (likely(source < dd->num_rcv_contexts)) {
4451 rcd = dd->rcd[source];
4452 if (rcd) {
4453 /* only pay attention to user urgent interrupts */
4454 if (source >= dd->first_user_ctxt)
4455 handle_user_interrupt(rcd);
4456 return; /* OK */
4457 }
4458 /* received an interrupt, but no rcd */
4459 err_detail = "dataless";
4460 } else {
4461 /* received an interrupt, but are not using that context */
4462 err_detail = "out of range";
4463 }
4464 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
4465 err_detail, source);
4466}
4467
4468/*
4469 * Reserved range interrupt. Should not be called in normal operation.
4470 */
4471static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
4472{
4473 char name[64];
4474
4475 dd_dev_err(dd, "unexpected %s interrupt\n",
4476 is_reserved_name(name, sizeof(name), source));
4477}
4478
4479static const struct is_table is_table[] = {
4480/* start end
4481 name func interrupt func */
4482{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
4483 is_misc_err_name, is_misc_err_int },
4484{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
4485 is_sdma_eng_err_name, is_sdma_eng_err_int },
4486{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
4487 is_sendctxt_err_name, is_sendctxt_err_int },
4488{ IS_SDMA_START, IS_SDMA_END,
4489 is_sdma_eng_name, is_sdma_eng_int },
4490{ IS_VARIOUS_START, IS_VARIOUS_END,
4491 is_various_name, is_various_int },
4492{ IS_DC_START, IS_DC_END,
4493 is_dc_name, is_dc_int },
4494{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
4495 is_rcv_avail_name, is_rcv_avail_int },
4496{ IS_RCVURGENT_START, IS_RCVURGENT_END,
4497 is_rcv_urgent_name, is_rcv_urgent_int },
4498{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
4499 is_send_credit_name, is_send_credit_int},
4500{ IS_RESERVED_START, IS_RESERVED_END,
4501 is_reserved_name, is_reserved_int},
4502};
4503
4504/*
4505 * Interrupt source interrupt - called when the given source has an interrupt.
4506 * Source is a bit index into an array of 64-bit integers.
4507 */
4508static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
4509{
4510 const struct is_table *entry;
4511
4512 /* avoids a double compare by walking the table in-order */
4513 for (entry = &is_table[0]; entry->is_name; entry++) {
4514 if (source < entry->end) {
4515 trace_hfi1_interrupt(dd, entry, source);
4516 entry->is_int(dd, source - entry->start);
4517 return;
4518 }
4519 }
4520 /* fell off the end */
4521 dd_dev_err(dd, "invalid interrupt source %u\n", source);
4522}
4523
4524/*
4525 * General interrupt handler. This is able to correctly handle
4526 * all interrupts in case INTx is used.
4527 */
4528static irqreturn_t general_interrupt(int irq, void *data)
4529{
4530 struct hfi1_devdata *dd = data;
4531 u64 regs[CCE_NUM_INT_CSRS];
4532 u32 bit;
4533 int i;
4534
4535 this_cpu_inc(*dd->int_counter);
4536
4537 /* phase 1: scan and clear all handled interrupts */
4538 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
4539 if (dd->gi_mask[i] == 0) {
4540 regs[i] = 0; /* used later */
4541 continue;
4542 }
4543 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
4544 dd->gi_mask[i];
4545 /* only clear if anything is set */
4546 if (regs[i])
4547 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
4548 }
4549
4550 /* phase 2: call the appropriate handler */
4551 for_each_set_bit(bit, (unsigned long *)&regs[0],
4552 CCE_NUM_INT_CSRS*64) {
4553 is_interrupt(dd, bit);
4554 }
4555
4556 return IRQ_HANDLED;
4557}
4558
4559static irqreturn_t sdma_interrupt(int irq, void *data)
4560{
4561 struct sdma_engine *sde = data;
4562 struct hfi1_devdata *dd = sde->dd;
4563 u64 status;
4564
4565#ifdef CONFIG_SDMA_VERBOSITY
4566 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
4567 slashstrip(__FILE__), __LINE__, __func__);
4568 sdma_dumpstate(sde);
4569#endif
4570
4571 this_cpu_inc(*dd->int_counter);
4572
4573 /* This read_csr is really bad in the hot path */
4574 status = read_csr(dd,
4575 CCE_INT_STATUS + (8*(IS_SDMA_START/64)))
4576 & sde->imask;
4577 if (likely(status)) {
4578 /* clear the interrupt(s) */
4579 write_csr(dd,
4580 CCE_INT_CLEAR + (8*(IS_SDMA_START/64)),
4581 status);
4582
4583 /* handle the interrupt(s) */
4584 sdma_engine_interrupt(sde, status);
4585 } else
4586 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
4587 sde->this_idx);
4588
4589 return IRQ_HANDLED;
4590}
4591
4592/*
Dean Luickf4f30031c2015-10-26 10:28:44 -04004593 * Clear the receive interrupt, forcing the write and making sure
4594 * we have data from the chip, pushing everything in front of it
4595 * back to the host.
4596 */
4597static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
4598{
4599 struct hfi1_devdata *dd = rcd->dd;
4600 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
4601
4602 mmiowb(); /* make sure everything before is written */
4603 write_csr(dd, addr, rcd->imask);
4604 /* force the above write on the chip and get a value back */
4605 (void)read_csr(dd, addr);
4606}
4607
4608/* force the receive interrupt */
4609static inline void force_recv_intr(struct hfi1_ctxtdata *rcd)
4610{
4611 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
4612}
4613
4614/* return non-zero if a packet is present */
4615static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
4616{
4617 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
4618 return (rcd->seq_cnt ==
4619 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
4620
4621 /* else is RDMA rtail */
4622 return (rcd->head != get_rcvhdrtail(rcd));
4623}
4624
4625/*
4626 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
4627 * This routine will try to handle packets immediately (latency), but if
4628 * it finds too many, it will invoke the thread handler (bandwitdh). The
4629 * chip receive interupt is *not* cleared down until this or the thread (if
4630 * invoked) is finished. The intent is to avoid extra interrupts while we
4631 * are processing packets anyway.
Mike Marciniszyn77241052015-07-30 15:17:43 -04004632 */
4633static irqreturn_t receive_context_interrupt(int irq, void *data)
4634{
4635 struct hfi1_ctxtdata *rcd = data;
4636 struct hfi1_devdata *dd = rcd->dd;
Dean Luickf4f30031c2015-10-26 10:28:44 -04004637 int disposition;
4638 int present;
Mike Marciniszyn77241052015-07-30 15:17:43 -04004639
4640 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
4641 this_cpu_inc(*dd->int_counter);
4642
Dean Luickf4f30031c2015-10-26 10:28:44 -04004643 /* receive interrupt remains blocked while processing packets */
4644 disposition = rcd->do_interrupt(rcd, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -04004645
Dean Luickf4f30031c2015-10-26 10:28:44 -04004646 /*
4647 * Too many packets were seen while processing packets in this
4648 * IRQ handler. Invoke the handler thread. The receive interrupt
4649 * remains blocked.
4650 */
4651 if (disposition == RCV_PKT_LIMIT)
4652 return IRQ_WAKE_THREAD;
4653
4654 /*
4655 * The packet processor detected no more packets. Clear the receive
4656 * interrupt and recheck for a packet packet that may have arrived
4657 * after the previous check and interrupt clear. If a packet arrived,
4658 * force another interrupt.
4659 */
4660 clear_recv_intr(rcd);
4661 present = check_packet_present(rcd);
4662 if (present)
4663 force_recv_intr(rcd);
4664
4665 return IRQ_HANDLED;
4666}
4667
4668/*
4669 * Receive packet thread handler. This expects to be invoked with the
4670 * receive interrupt still blocked.
4671 */
4672static irqreturn_t receive_context_thread(int irq, void *data)
4673{
4674 struct hfi1_ctxtdata *rcd = data;
4675 int present;
4676
4677 /* receive interrupt is still blocked from the IRQ handler */
4678 (void)rcd->do_interrupt(rcd, 1);
4679
4680 /*
4681 * The packet processor will only return if it detected no more
4682 * packets. Hold IRQs here so we can safely clear the interrupt and
4683 * recheck for a packet that may have arrived after the previous
4684 * check and the interrupt clear. If a packet arrived, force another
4685 * interrupt.
4686 */
4687 local_irq_disable();
4688 clear_recv_intr(rcd);
4689 present = check_packet_present(rcd);
4690 if (present)
4691 force_recv_intr(rcd);
4692 local_irq_enable();
Mike Marciniszyn77241052015-07-30 15:17:43 -04004693
4694 return IRQ_HANDLED;
4695}
4696
4697/* ========================================================================= */
4698
4699u32 read_physical_state(struct hfi1_devdata *dd)
4700{
4701 u64 reg;
4702
4703 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
4704 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
4705 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
4706}
4707
4708static u32 read_logical_state(struct hfi1_devdata *dd)
4709{
4710 u64 reg;
4711
4712 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
4713 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
4714 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
4715}
4716
4717static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
4718{
4719 u64 reg;
4720
4721 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
4722 /* clear current state, set new state */
4723 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
4724 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
4725 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
4726}
4727
4728/*
4729 * Use the 8051 to read a LCB CSR.
4730 */
4731static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
4732{
4733 u32 regno;
4734 int ret;
4735
4736 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
4737 if (acquire_lcb_access(dd, 0) == 0) {
4738 *data = read_csr(dd, addr);
4739 release_lcb_access(dd, 0);
4740 return 0;
4741 }
4742 return -EBUSY;
4743 }
4744
4745 /* register is an index of LCB registers: (offset - base) / 8 */
4746 regno = (addr - DC_LCB_CFG_RUN) >> 3;
4747 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
4748 if (ret != HCMD_SUCCESS)
4749 return -EBUSY;
4750 return 0;
4751}
4752
4753/*
4754 * Read an LCB CSR. Access may not be in host control, so check.
4755 * Return 0 on success, -EBUSY on failure.
4756 */
4757int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
4758{
4759 struct hfi1_pportdata *ppd = dd->pport;
4760
4761 /* if up, go through the 8051 for the value */
4762 if (ppd->host_link_state & HLS_UP)
4763 return read_lcb_via_8051(dd, addr, data);
4764 /* if going up or down, no access */
4765 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
4766 return -EBUSY;
4767 /* otherwise, host has access */
4768 *data = read_csr(dd, addr);
4769 return 0;
4770}
4771
4772/*
4773 * Use the 8051 to write a LCB CSR.
4774 */
4775static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
4776{
4777
4778 if (acquire_lcb_access(dd, 0) == 0) {
4779 write_csr(dd, addr, data);
4780 release_lcb_access(dd, 0);
4781 return 0;
4782 }
4783 return -EBUSY;
4784}
4785
4786/*
4787 * Write an LCB CSR. Access may not be in host control, so check.
4788 * Return 0 on success, -EBUSY on failure.
4789 */
4790int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
4791{
4792 struct hfi1_pportdata *ppd = dd->pport;
4793
4794 /* if up, go through the 8051 for the value */
4795 if (ppd->host_link_state & HLS_UP)
4796 return write_lcb_via_8051(dd, addr, data);
4797 /* if going up or down, no access */
4798 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
4799 return -EBUSY;
4800 /* otherwise, host has access */
4801 write_csr(dd, addr, data);
4802 return 0;
4803}
4804
4805/*
4806 * Returns:
4807 * < 0 = Linux error, not able to get access
4808 * > 0 = 8051 command RETURN_CODE
4809 */
4810static int do_8051_command(
4811 struct hfi1_devdata *dd,
4812 u32 type,
4813 u64 in_data,
4814 u64 *out_data)
4815{
4816 u64 reg, completed;
4817 int return_code;
4818 unsigned long flags;
4819 unsigned long timeout;
4820
4821 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
4822
4823 /*
4824 * Alternative to holding the lock for a long time:
4825 * - keep busy wait - have other users bounce off
4826 */
4827 spin_lock_irqsave(&dd->dc8051_lock, flags);
4828
4829 /* We can't send any commands to the 8051 if it's in reset */
4830 if (dd->dc_shutdown) {
4831 return_code = -ENODEV;
4832 goto fail;
4833 }
4834
4835 /*
4836 * If an 8051 host command timed out previously, then the 8051 is
4837 * stuck.
4838 *
4839 * On first timeout, attempt to reset and restart the entire DC
4840 * block (including 8051). (Is this too big of a hammer?)
4841 *
4842 * If the 8051 times out a second time, the reset did not bring it
4843 * back to healthy life. In that case, fail any subsequent commands.
4844 */
4845 if (dd->dc8051_timed_out) {
4846 if (dd->dc8051_timed_out > 1) {
4847 dd_dev_err(dd,
4848 "Previous 8051 host command timed out, skipping command %u\n",
4849 type);
4850 return_code = -ENXIO;
4851 goto fail;
4852 }
4853 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
4854 dc_shutdown(dd);
4855 dc_start(dd);
4856 spin_lock_irqsave(&dd->dc8051_lock, flags);
4857 }
4858
4859 /*
4860 * If there is no timeout, then the 8051 command interface is
4861 * waiting for a command.
4862 */
4863
4864 /*
4865 * Do two writes: the first to stabilize the type and req_data, the
4866 * second to activate.
4867 */
4868 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
4869 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
4870 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
4871 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
4872 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
4873 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
4874 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
4875
4876 /* wait for completion, alternate: interrupt */
4877 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
4878 while (1) {
4879 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
4880 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
4881 if (completed)
4882 break;
4883 if (time_after(jiffies, timeout)) {
4884 dd->dc8051_timed_out++;
4885 dd_dev_err(dd, "8051 host command %u timeout\n", type);
4886 if (out_data)
4887 *out_data = 0;
4888 return_code = -ETIMEDOUT;
4889 goto fail;
4890 }
4891 udelay(2);
4892 }
4893
4894 if (out_data) {
4895 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
4896 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
4897 if (type == HCMD_READ_LCB_CSR) {
4898 /* top 16 bits are in a different register */
4899 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
4900 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
4901 << (48
4902 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
4903 }
4904 }
4905 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
4906 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
4907 dd->dc8051_timed_out = 0;
4908 /*
4909 * Clear command for next user.
4910 */
4911 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
4912
4913fail:
4914 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
4915
4916 return return_code;
4917}
4918
4919static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
4920{
4921 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
4922}
4923
4924static int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
4925 u8 lane_id, u32 config_data)
4926{
4927 u64 data;
4928 int ret;
4929
4930 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
4931 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
4932 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
4933 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
4934 if (ret != HCMD_SUCCESS) {
4935 dd_dev_err(dd,
4936 "load 8051 config: field id %d, lane %d, err %d\n",
4937 (int)field_id, (int)lane_id, ret);
4938 }
4939 return ret;
4940}
4941
4942/*
4943 * Read the 8051 firmware "registers". Use the RAM directly. Always
4944 * set the result, even on error.
4945 * Return 0 on success, -errno on failure
4946 */
4947static int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
4948 u32 *result)
4949{
4950 u64 big_data;
4951 u32 addr;
4952 int ret;
4953
4954 /* address start depends on the lane_id */
4955 if (lane_id < 4)
4956 addr = (4 * NUM_GENERAL_FIELDS)
4957 + (lane_id * 4 * NUM_LANE_FIELDS);
4958 else
4959 addr = 0;
4960 addr += field_id * 4;
4961
4962 /* read is in 8-byte chunks, hardware will truncate the address down */
4963 ret = read_8051_data(dd, addr, 8, &big_data);
4964
4965 if (ret == 0) {
4966 /* extract the 4 bytes we want */
4967 if (addr & 0x4)
4968 *result = (u32)(big_data >> 32);
4969 else
4970 *result = (u32)big_data;
4971 } else {
4972 *result = 0;
4973 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
4974 __func__, lane_id, field_id);
4975 }
4976
4977 return ret;
4978}
4979
4980static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
4981 u8 continuous)
4982{
4983 u32 frame;
4984
4985 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
4986 | power_management << POWER_MANAGEMENT_SHIFT;
4987 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
4988 GENERAL_CONFIG, frame);
4989}
4990
4991static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
4992 u16 vl15buf, u8 crc_sizes)
4993{
4994 u32 frame;
4995
4996 frame = (u32)vau << VAU_SHIFT
4997 | (u32)z << Z_SHIFT
4998 | (u32)vcu << VCU_SHIFT
4999 | (u32)vl15buf << VL15BUF_SHIFT
5000 | (u32)crc_sizes << CRC_SIZES_SHIFT;
5001 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
5002 GENERAL_CONFIG, frame);
5003}
5004
5005static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
5006 u8 *flag_bits, u16 *link_widths)
5007{
5008 u32 frame;
5009
5010 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
5011 &frame);
5012 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
5013 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
5014 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
5015}
5016
5017static int write_vc_local_link_width(struct hfi1_devdata *dd,
5018 u8 misc_bits,
5019 u8 flag_bits,
5020 u16 link_widths)
5021{
5022 u32 frame;
5023
5024 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
5025 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
5026 | (u32)link_widths << LINK_WIDTH_SHIFT;
5027 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
5028 frame);
5029}
5030
5031static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
5032 u8 device_rev)
5033{
5034 u32 frame;
5035
5036 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
5037 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
5038 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
5039}
5040
5041static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
5042 u8 *device_rev)
5043{
5044 u32 frame;
5045
5046 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
5047 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
5048 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
5049 & REMOTE_DEVICE_REV_MASK;
5050}
5051
5052void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
5053{
5054 u32 frame;
5055
5056 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
5057 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
5058 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
5059}
5060
5061static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
5062 u8 *continuous)
5063{
5064 u32 frame;
5065
5066 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
5067 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
5068 & POWER_MANAGEMENT_MASK;
5069 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
5070 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
5071}
5072
5073static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
5074 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
5075{
5076 u32 frame;
5077
5078 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
5079 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
5080 *z = (frame >> Z_SHIFT) & Z_MASK;
5081 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
5082 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
5083 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
5084}
5085
5086static void read_vc_remote_link_width(struct hfi1_devdata *dd,
5087 u8 *remote_tx_rate,
5088 u16 *link_widths)
5089{
5090 u32 frame;
5091
5092 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
5093 &frame);
5094 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
5095 & REMOTE_TX_RATE_MASK;
5096 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
5097}
5098
5099static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
5100{
5101 u32 frame;
5102
5103 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
5104 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
5105}
5106
5107static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
5108{
5109 u32 frame;
5110
5111 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
5112 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
5113}
5114
5115static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
5116{
5117 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
5118}
5119
5120static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
5121{
5122 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
5123}
5124
5125void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
5126{
5127 u32 frame;
5128 int ret;
5129
5130 *link_quality = 0;
5131 if (dd->pport->host_link_state & HLS_UP) {
5132 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
5133 &frame);
5134 if (ret == 0)
5135 *link_quality = (frame >> LINK_QUALITY_SHIFT)
5136 & LINK_QUALITY_MASK;
5137 }
5138}
5139
5140static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
5141{
5142 u32 frame;
5143
5144 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
5145 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
5146}
5147
5148static int read_tx_settings(struct hfi1_devdata *dd,
5149 u8 *enable_lane_tx,
5150 u8 *tx_polarity_inversion,
5151 u8 *rx_polarity_inversion,
5152 u8 *max_rate)
5153{
5154 u32 frame;
5155 int ret;
5156
5157 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
5158 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
5159 & ENABLE_LANE_TX_MASK;
5160 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
5161 & TX_POLARITY_INVERSION_MASK;
5162 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
5163 & RX_POLARITY_INVERSION_MASK;
5164 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
5165 return ret;
5166}
5167
5168static int write_tx_settings(struct hfi1_devdata *dd,
5169 u8 enable_lane_tx,
5170 u8 tx_polarity_inversion,
5171 u8 rx_polarity_inversion,
5172 u8 max_rate)
5173{
5174 u32 frame;
5175
5176 /* no need to mask, all variable sizes match field widths */
5177 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
5178 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
5179 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
5180 | max_rate << MAX_RATE_SHIFT;
5181 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
5182}
5183
5184static void check_fabric_firmware_versions(struct hfi1_devdata *dd)
5185{
5186 u32 frame, version, prod_id;
5187 int ret, lane;
5188
5189 /* 4 lanes */
5190 for (lane = 0; lane < 4; lane++) {
5191 ret = read_8051_config(dd, SPICO_FW_VERSION, lane, &frame);
5192 if (ret) {
5193 dd_dev_err(
5194 dd,
5195 "Unable to read lane %d firmware details\n",
5196 lane);
5197 continue;
5198 }
5199 version = (frame >> SPICO_ROM_VERSION_SHIFT)
5200 & SPICO_ROM_VERSION_MASK;
5201 prod_id = (frame >> SPICO_ROM_PROD_ID_SHIFT)
5202 & SPICO_ROM_PROD_ID_MASK;
5203 dd_dev_info(dd,
5204 "Lane %d firmware: version 0x%04x, prod_id 0x%04x\n",
5205 lane, version, prod_id);
5206 }
5207}
5208
5209/*
5210 * Read an idle LCB message.
5211 *
5212 * Returns 0 on success, -EINVAL on error
5213 */
5214static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
5215{
5216 int ret;
5217
5218 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG,
5219 type, data_out);
5220 if (ret != HCMD_SUCCESS) {
5221 dd_dev_err(dd, "read idle message: type %d, err %d\n",
5222 (u32)type, ret);
5223 return -EINVAL;
5224 }
5225 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
5226 /* return only the payload as we already know the type */
5227 *data_out >>= IDLE_PAYLOAD_SHIFT;
5228 return 0;
5229}
5230
5231/*
5232 * Read an idle SMA message. To be done in response to a notification from
5233 * the 8051.
5234 *
5235 * Returns 0 on success, -EINVAL on error
5236 */
5237static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
5238{
5239 return read_idle_message(dd,
5240 (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, data);
5241}
5242
5243/*
5244 * Send an idle LCB message.
5245 *
5246 * Returns 0 on success, -EINVAL on error
5247 */
5248static int send_idle_message(struct hfi1_devdata *dd, u64 data)
5249{
5250 int ret;
5251
5252 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
5253 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
5254 if (ret != HCMD_SUCCESS) {
5255 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
5256 data, ret);
5257 return -EINVAL;
5258 }
5259 return 0;
5260}
5261
5262/*
5263 * Send an idle SMA message.
5264 *
5265 * Returns 0 on success, -EINVAL on error
5266 */
5267int send_idle_sma(struct hfi1_devdata *dd, u64 message)
5268{
5269 u64 data;
5270
5271 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT)
5272 | ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
5273 return send_idle_message(dd, data);
5274}
5275
5276/*
5277 * Initialize the LCB then do a quick link up. This may or may not be
5278 * in loopback.
5279 *
5280 * return 0 on success, -errno on error
5281 */
5282static int do_quick_linkup(struct hfi1_devdata *dd)
5283{
5284 u64 reg;
5285 unsigned long timeout;
5286 int ret;
5287
5288 lcb_shutdown(dd, 0);
5289
5290 if (loopback) {
5291 /* LCB_CFG_LOOPBACK.VAL = 2 */
5292 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
5293 write_csr(dd, DC_LCB_CFG_LOOPBACK,
5294 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
5295 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
5296 }
5297
5298 /* start the LCBs */
5299 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
5300 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
5301
5302 /* simulator only loopback steps */
5303 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
5304 /* LCB_CFG_RUN.EN = 1 */
5305 write_csr(dd, DC_LCB_CFG_RUN,
5306 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
5307
5308 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
5309 timeout = jiffies + msecs_to_jiffies(10);
5310 while (1) {
5311 reg = read_csr(dd,
5312 DC_LCB_STS_LINK_TRANSFER_ACTIVE);
5313 if (reg)
5314 break;
5315 if (time_after(jiffies, timeout)) {
5316 dd_dev_err(dd,
5317 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
5318 return -ETIMEDOUT;
5319 }
5320 udelay(2);
5321 }
5322
5323 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
5324 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
5325 }
5326
5327 if (!loopback) {
5328 /*
5329 * When doing quick linkup and not in loopback, both
5330 * sides must be done with LCB set-up before either
5331 * starts the quick linkup. Put a delay here so that
5332 * both sides can be started and have a chance to be
5333 * done with LCB set up before resuming.
5334 */
5335 dd_dev_err(dd,
5336 "Pausing for peer to be finished with LCB set up\n");
5337 msleep(5000);
5338 dd_dev_err(dd,
5339 "Continuing with quick linkup\n");
5340 }
5341
5342 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
5343 set_8051_lcb_access(dd);
5344
5345 /*
5346 * State "quick" LinkUp request sets the physical link state to
5347 * LinkUp without a verify capability sequence.
5348 * This state is in simulator v37 and later.
5349 */
5350 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
5351 if (ret != HCMD_SUCCESS) {
5352 dd_dev_err(dd,
5353 "%s: set physical link state to quick LinkUp failed with return %d\n",
5354 __func__, ret);
5355
5356 set_host_lcb_access(dd);
5357 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
5358
5359 if (ret >= 0)
5360 ret = -EINVAL;
5361 return ret;
5362 }
5363
5364 return 0; /* success */
5365}
5366
5367/*
5368 * Set the SerDes to internal loopback mode.
5369 * Returns 0 on success, -errno on error.
5370 */
5371static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
5372{
5373 int ret;
5374
5375 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
5376 if (ret == HCMD_SUCCESS)
5377 return 0;
5378 dd_dev_err(dd,
5379 "Set physical link state to SerDes Loopback failed with return %d\n",
5380 ret);
5381 if (ret >= 0)
5382 ret = -EINVAL;
5383 return ret;
5384}
5385
5386/*
5387 * Do all special steps to set up loopback.
5388 */
5389static int init_loopback(struct hfi1_devdata *dd)
5390{
5391 dd_dev_info(dd, "Entering loopback mode\n");
5392
5393 /* all loopbacks should disable self GUID check */
5394 write_csr(dd, DC_DC8051_CFG_MODE,
5395 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
5396
5397 /*
5398 * The simulator has only one loopback option - LCB. Switch
5399 * to that option, which includes quick link up.
5400 *
5401 * Accept all valid loopback values.
5402 */
5403 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
5404 && (loopback == LOOPBACK_SERDES
5405 || loopback == LOOPBACK_LCB
5406 || loopback == LOOPBACK_CABLE)) {
5407 loopback = LOOPBACK_LCB;
5408 quick_linkup = 1;
5409 return 0;
5410 }
5411
5412 /* handle serdes loopback */
5413 if (loopback == LOOPBACK_SERDES) {
5414 /* internal serdes loopack needs quick linkup on RTL */
5415 if (dd->icode == ICODE_RTL_SILICON)
5416 quick_linkup = 1;
5417 return set_serdes_loopback_mode(dd);
5418 }
5419
5420 /* LCB loopback - handled at poll time */
5421 if (loopback == LOOPBACK_LCB) {
5422 quick_linkup = 1; /* LCB is always quick linkup */
5423
5424 /* not supported in emulation due to emulation RTL changes */
5425 if (dd->icode == ICODE_FPGA_EMULATION) {
5426 dd_dev_err(dd,
5427 "LCB loopback not supported in emulation\n");
5428 return -EINVAL;
5429 }
5430 return 0;
5431 }
5432
5433 /* external cable loopback requires no extra steps */
5434 if (loopback == LOOPBACK_CABLE)
5435 return 0;
5436
5437 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
5438 return -EINVAL;
5439}
5440
5441/*
5442 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
5443 * used in the Verify Capability link width attribute.
5444 */
5445static u16 opa_to_vc_link_widths(u16 opa_widths)
5446{
5447 int i;
5448 u16 result = 0;
5449
5450 static const struct link_bits {
5451 u16 from;
5452 u16 to;
5453 } opa_link_xlate[] = {
5454 { OPA_LINK_WIDTH_1X, 1 << (1-1) },
5455 { OPA_LINK_WIDTH_2X, 1 << (2-1) },
5456 { OPA_LINK_WIDTH_3X, 1 << (3-1) },
5457 { OPA_LINK_WIDTH_4X, 1 << (4-1) },
5458 };
5459
5460 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
5461 if (opa_widths & opa_link_xlate[i].from)
5462 result |= opa_link_xlate[i].to;
5463 }
5464 return result;
5465}
5466
5467/*
5468 * Set link attributes before moving to polling.
5469 */
5470static int set_local_link_attributes(struct hfi1_pportdata *ppd)
5471{
5472 struct hfi1_devdata *dd = ppd->dd;
5473 u8 enable_lane_tx;
5474 u8 tx_polarity_inversion;
5475 u8 rx_polarity_inversion;
5476 int ret;
5477
5478 /* reset our fabric serdes to clear any lingering problems */
5479 fabric_serdes_reset(dd);
5480
5481 /* set the local tx rate - need to read-modify-write */
5482 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
5483 &rx_polarity_inversion, &ppd->local_tx_rate);
5484 if (ret)
5485 goto set_local_link_attributes_fail;
5486
5487 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
5488 /* set the tx rate to the fastest enabled */
5489 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
5490 ppd->local_tx_rate = 1;
5491 else
5492 ppd->local_tx_rate = 0;
5493 } else {
5494 /* set the tx rate to all enabled */
5495 ppd->local_tx_rate = 0;
5496 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
5497 ppd->local_tx_rate |= 2;
5498 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
5499 ppd->local_tx_rate |= 1;
5500 }
Easwar Hariharanfebffe22015-10-26 10:28:36 -04005501
5502 enable_lane_tx = 0xF; /* enable all four lanes */
Mike Marciniszyn77241052015-07-30 15:17:43 -04005503 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
5504 rx_polarity_inversion, ppd->local_tx_rate);
5505 if (ret != HCMD_SUCCESS)
5506 goto set_local_link_attributes_fail;
5507
5508 /*
5509 * DC supports continuous updates.
5510 */
5511 ret = write_vc_local_phy(dd, 0 /* no power management */,
5512 1 /* continuous updates */);
5513 if (ret != HCMD_SUCCESS)
5514 goto set_local_link_attributes_fail;
5515
5516 /* z=1 in the next call: AU of 0 is not supported by the hardware */
5517 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
5518 ppd->port_crc_mode_enabled);
5519 if (ret != HCMD_SUCCESS)
5520 goto set_local_link_attributes_fail;
5521
5522 ret = write_vc_local_link_width(dd, 0, 0,
5523 opa_to_vc_link_widths(ppd->link_width_enabled));
5524 if (ret != HCMD_SUCCESS)
5525 goto set_local_link_attributes_fail;
5526
5527 /* let peer know who we are */
5528 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
5529 if (ret == HCMD_SUCCESS)
5530 return 0;
5531
5532set_local_link_attributes_fail:
5533 dd_dev_err(dd,
5534 "Failed to set local link attributes, return 0x%x\n",
5535 ret);
5536 return ret;
5537}
5538
5539/*
5540 * Call this to start the link. Schedule a retry if the cable is not
5541 * present or if unable to start polling. Do not do anything if the
5542 * link is disabled. Returns 0 if link is disabled or moved to polling
5543 */
5544int start_link(struct hfi1_pportdata *ppd)
5545{
5546 if (!ppd->link_enabled) {
5547 dd_dev_info(ppd->dd,
5548 "%s: stopping link start because link is disabled\n",
5549 __func__);
5550 return 0;
5551 }
5552 if (!ppd->driver_link_ready) {
5553 dd_dev_info(ppd->dd,
5554 "%s: stopping link start because driver is not ready\n",
5555 __func__);
5556 return 0;
5557 }
5558
5559 if (qsfp_mod_present(ppd) || loopback == LOOPBACK_SERDES ||
5560 loopback == LOOPBACK_LCB ||
5561 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
5562 return set_link_state(ppd, HLS_DN_POLL);
5563
5564 dd_dev_info(ppd->dd,
5565 "%s: stopping link start because no cable is present\n",
5566 __func__);
5567 return -EAGAIN;
5568}
5569
5570static void reset_qsfp(struct hfi1_pportdata *ppd)
5571{
5572 struct hfi1_devdata *dd = ppd->dd;
5573 u64 mask, qsfp_mask;
5574
5575 mask = (u64)QSFP_HFI0_RESET_N;
5576 qsfp_mask = read_csr(dd,
5577 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE);
5578 qsfp_mask |= mask;
5579 write_csr(dd,
5580 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE,
5581 qsfp_mask);
5582
5583 qsfp_mask = read_csr(dd,
5584 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
5585 qsfp_mask &= ~mask;
5586 write_csr(dd,
5587 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT,
5588 qsfp_mask);
5589
5590 udelay(10);
5591
5592 qsfp_mask |= mask;
5593 write_csr(dd,
5594 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT,
5595 qsfp_mask);
5596}
5597
5598static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
5599 u8 *qsfp_interrupt_status)
5600{
5601 struct hfi1_devdata *dd = ppd->dd;
5602
5603 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
5604 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
5605 dd_dev_info(dd,
5606 "%s: QSFP cable on fire\n",
5607 __func__);
5608
5609 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
5610 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
5611 dd_dev_info(dd,
5612 "%s: QSFP cable temperature too low\n",
5613 __func__);
5614
5615 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
5616 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
5617 dd_dev_info(dd,
5618 "%s: QSFP supply voltage too high\n",
5619 __func__);
5620
5621 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
5622 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
5623 dd_dev_info(dd,
5624 "%s: QSFP supply voltage too low\n",
5625 __func__);
5626
5627 /* Byte 2 is vendor specific */
5628
5629 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
5630 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
5631 dd_dev_info(dd,
5632 "%s: Cable RX channel 1/2 power too high\n",
5633 __func__);
5634
5635 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
5636 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
5637 dd_dev_info(dd,
5638 "%s: Cable RX channel 1/2 power too low\n",
5639 __func__);
5640
5641 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
5642 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
5643 dd_dev_info(dd,
5644 "%s: Cable RX channel 3/4 power too high\n",
5645 __func__);
5646
5647 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
5648 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
5649 dd_dev_info(dd,
5650 "%s: Cable RX channel 3/4 power too low\n",
5651 __func__);
5652
5653 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
5654 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
5655 dd_dev_info(dd,
5656 "%s: Cable TX channel 1/2 bias too high\n",
5657 __func__);
5658
5659 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
5660 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
5661 dd_dev_info(dd,
5662 "%s: Cable TX channel 1/2 bias too low\n",
5663 __func__);
5664
5665 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
5666 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
5667 dd_dev_info(dd,
5668 "%s: Cable TX channel 3/4 bias too high\n",
5669 __func__);
5670
5671 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
5672 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
5673 dd_dev_info(dd,
5674 "%s: Cable TX channel 3/4 bias too low\n",
5675 __func__);
5676
5677 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
5678 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
5679 dd_dev_info(dd,
5680 "%s: Cable TX channel 1/2 power too high\n",
5681 __func__);
5682
5683 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
5684 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
5685 dd_dev_info(dd,
5686 "%s: Cable TX channel 1/2 power too low\n",
5687 __func__);
5688
5689 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
5690 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
5691 dd_dev_info(dd,
5692 "%s: Cable TX channel 3/4 power too high\n",
5693 __func__);
5694
5695 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
5696 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
5697 dd_dev_info(dd,
5698 "%s: Cable TX channel 3/4 power too low\n",
5699 __func__);
5700
5701 /* Bytes 9-10 and 11-12 are reserved */
5702 /* Bytes 13-15 are vendor specific */
5703
5704 return 0;
5705}
5706
5707static int do_pre_lni_host_behaviors(struct hfi1_pportdata *ppd)
5708{
5709 refresh_qsfp_cache(ppd, &ppd->qsfp_info);
5710
5711 return 0;
5712}
5713
5714static int do_qsfp_intr_fallback(struct hfi1_pportdata *ppd)
5715{
5716 struct hfi1_devdata *dd = ppd->dd;
5717 u8 qsfp_interrupt_status = 0;
5718
5719 if (qsfp_read(ppd, dd->hfi1_id, 2, &qsfp_interrupt_status, 1)
5720 != 1) {
5721 dd_dev_info(dd,
5722 "%s: Failed to read status of QSFP module\n",
5723 __func__);
5724 return -EIO;
5725 }
5726
5727 /* We don't care about alarms & warnings with a non-functional INT_N */
5728 if (!(qsfp_interrupt_status & QSFP_DATA_NOT_READY))
5729 do_pre_lni_host_behaviors(ppd);
5730
5731 return 0;
5732}
5733
5734/* This routine will only be scheduled if the QSFP module is present */
5735static void qsfp_event(struct work_struct *work)
5736{
5737 struct qsfp_data *qd;
5738 struct hfi1_pportdata *ppd;
5739 struct hfi1_devdata *dd;
5740
5741 qd = container_of(work, struct qsfp_data, qsfp_work);
5742 ppd = qd->ppd;
5743 dd = ppd->dd;
5744
5745 /* Sanity check */
5746 if (!qsfp_mod_present(ppd))
5747 return;
5748
5749 /*
5750 * Turn DC back on after cables has been
5751 * re-inserted. Up until now, the DC has been in
5752 * reset to save power.
5753 */
5754 dc_start(dd);
5755
5756 if (qd->cache_refresh_required) {
5757 msleep(3000);
5758 reset_qsfp(ppd);
5759
5760 /* Check for QSFP interrupt after t_init (SFF 8679)
5761 * + extra
5762 */
5763 msleep(3000);
5764 if (!qd->qsfp_interrupt_functional) {
5765 if (do_qsfp_intr_fallback(ppd) < 0)
5766 dd_dev_info(dd, "%s: QSFP fallback failed\n",
5767 __func__);
5768 ppd->driver_link_ready = 1;
5769 start_link(ppd);
5770 }
5771 }
5772
5773 if (qd->check_interrupt_flags) {
5774 u8 qsfp_interrupt_status[16] = {0,};
5775
5776 if (qsfp_read(ppd, dd->hfi1_id, 6,
5777 &qsfp_interrupt_status[0], 16) != 16) {
5778 dd_dev_info(dd,
5779 "%s: Failed to read status of QSFP module\n",
5780 __func__);
5781 } else {
5782 unsigned long flags;
5783 u8 data_status;
5784
5785 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5786 ppd->qsfp_info.check_interrupt_flags = 0;
5787 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5788 flags);
5789
5790 if (qsfp_read(ppd, dd->hfi1_id, 2, &data_status, 1)
5791 != 1) {
5792 dd_dev_info(dd,
5793 "%s: Failed to read status of QSFP module\n",
5794 __func__);
5795 }
5796 if (!(data_status & QSFP_DATA_NOT_READY)) {
5797 do_pre_lni_host_behaviors(ppd);
5798 start_link(ppd);
5799 } else
5800 handle_qsfp_error_conditions(ppd,
5801 qsfp_interrupt_status);
5802 }
5803 }
5804}
5805
5806void init_qsfp(struct hfi1_pportdata *ppd)
5807{
5808 struct hfi1_devdata *dd = ppd->dd;
5809 u64 qsfp_mask;
5810
5811 if (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
Easwar Hariharan3c2f85b2015-10-26 10:28:31 -04005812 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04005813 ppd->driver_link_ready = 1;
5814 return;
5815 }
5816
5817 ppd->qsfp_info.ppd = ppd;
5818 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
5819
5820 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5821 /* Clear current status to avoid spurious interrupts */
5822 write_csr(dd,
5823 dd->hfi1_id ?
5824 ASIC_QSFP2_CLEAR :
5825 ASIC_QSFP1_CLEAR,
5826 qsfp_mask);
5827
5828 /* Handle active low nature of INT_N and MODPRST_N pins */
5829 if (qsfp_mod_present(ppd))
5830 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
5831 write_csr(dd,
5832 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
5833 qsfp_mask);
5834
5835 /* Allow only INT_N and MODPRST_N to trigger QSFP interrupts */
5836 qsfp_mask |= (u64)QSFP_HFI0_MODPRST_N;
5837 write_csr(dd,
5838 dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
5839 qsfp_mask);
5840
5841 if (qsfp_mod_present(ppd)) {
5842 msleep(3000);
5843 reset_qsfp(ppd);
5844
5845 /* Check for QSFP interrupt after t_init (SFF 8679)
5846 * + extra
5847 */
5848 msleep(3000);
5849 if (!ppd->qsfp_info.qsfp_interrupt_functional) {
5850 if (do_qsfp_intr_fallback(ppd) < 0)
5851 dd_dev_info(dd,
5852 "%s: QSFP fallback failed\n",
5853 __func__);
5854 ppd->driver_link_ready = 1;
5855 }
5856 }
5857}
5858
5859int bringup_serdes(struct hfi1_pportdata *ppd)
5860{
5861 struct hfi1_devdata *dd = ppd->dd;
5862 u64 guid;
5863 int ret;
5864
5865 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
5866 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
5867
5868 guid = ppd->guid;
5869 if (!guid) {
5870 if (dd->base_guid)
5871 guid = dd->base_guid + ppd->port - 1;
5872 ppd->guid = guid;
5873 }
5874
5875 /* the link defaults to enabled */
5876 ppd->link_enabled = 1;
5877 /* Set linkinit_reason on power up per OPA spec */
5878 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
5879
5880 if (loopback) {
5881 ret = init_loopback(dd);
5882 if (ret < 0)
5883 return ret;
5884 }
5885
5886 return start_link(ppd);
5887}
5888
5889void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
5890{
5891 struct hfi1_devdata *dd = ppd->dd;
5892
5893 /*
5894 * Shut down the link and keep it down. First turn off that the
5895 * driver wants to allow the link to be up (driver_link_ready).
5896 * Then make sure the link is not automatically restarted
5897 * (link_enabled). Cancel any pending restart. And finally
5898 * go offline.
5899 */
5900 ppd->driver_link_ready = 0;
5901 ppd->link_enabled = 0;
5902
5903 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
5904 OPA_LINKDOWN_REASON_SMA_DISABLED);
5905 set_link_state(ppd, HLS_DN_OFFLINE);
5906
5907 /* disable the port */
5908 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
5909}
5910
5911static inline int init_cpu_counters(struct hfi1_devdata *dd)
5912{
5913 struct hfi1_pportdata *ppd;
5914 int i;
5915
5916 ppd = (struct hfi1_pportdata *)(dd + 1);
5917 for (i = 0; i < dd->num_pports; i++, ppd++) {
5918 ppd->ibport_data.rc_acks = NULL;
5919 ppd->ibport_data.rc_qacks = NULL;
5920 ppd->ibport_data.rc_acks = alloc_percpu(u64);
5921 ppd->ibport_data.rc_qacks = alloc_percpu(u64);
5922 ppd->ibport_data.rc_delayed_comp = alloc_percpu(u64);
5923 if ((ppd->ibport_data.rc_acks == NULL) ||
5924 (ppd->ibport_data.rc_delayed_comp == NULL) ||
5925 (ppd->ibport_data.rc_qacks == NULL))
5926 return -ENOMEM;
5927 }
5928
5929 return 0;
5930}
5931
5932static const char * const pt_names[] = {
5933 "expected",
5934 "eager",
5935 "invalid"
5936};
5937
5938static const char *pt_name(u32 type)
5939{
5940 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
5941}
5942
5943/*
5944 * index is the index into the receive array
5945 */
5946void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
5947 u32 type, unsigned long pa, u16 order)
5948{
5949 u64 reg;
5950 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
5951 (dd->kregbase + RCV_ARRAY));
5952
5953 if (!(dd->flags & HFI1_PRESENT))
5954 goto done;
5955
5956 if (type == PT_INVALID) {
5957 pa = 0;
5958 } else if (type > PT_INVALID) {
5959 dd_dev_err(dd,
5960 "unexpected receive array type %u for index %u, not handled\n",
5961 type, index);
5962 goto done;
5963 }
5964
5965 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
5966 pt_name(type), index, pa, (unsigned long)order);
5967
5968#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
5969 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
5970 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
5971 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
5972 << RCV_ARRAY_RT_ADDR_SHIFT;
5973 writeq(reg, base + (index * 8));
5974
5975 if (type == PT_EAGER)
5976 /*
5977 * Eager entries are written one-by-one so we have to push them
5978 * after we write the entry.
5979 */
5980 flush_wc();
5981done:
5982 return;
5983}
5984
5985void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
5986{
5987 struct hfi1_devdata *dd = rcd->dd;
5988 u32 i;
5989
5990 /* this could be optimized */
5991 for (i = rcd->eager_base; i < rcd->eager_base +
5992 rcd->egrbufs.alloced; i++)
5993 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
5994
5995 for (i = rcd->expected_base;
5996 i < rcd->expected_base + rcd->expected_count; i++)
5997 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
5998}
5999
6000int hfi1_get_base_kinfo(struct hfi1_ctxtdata *rcd,
6001 struct hfi1_ctxt_info *kinfo)
6002{
6003 kinfo->runtime_flags = (HFI1_MISC_GET() << HFI1_CAP_USER_SHIFT) |
6004 HFI1_CAP_UGET(MASK) | HFI1_CAP_KGET(K2U);
6005 return 0;
6006}
6007
6008struct hfi1_message_header *hfi1_get_msgheader(
6009 struct hfi1_devdata *dd, __le32 *rhf_addr)
6010{
6011 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
6012
6013 return (struct hfi1_message_header *)
6014 (rhf_addr - dd->rhf_offset + offset);
6015}
6016
6017static const char * const ib_cfg_name_strings[] = {
6018 "HFI1_IB_CFG_LIDLMC",
6019 "HFI1_IB_CFG_LWID_DG_ENB",
6020 "HFI1_IB_CFG_LWID_ENB",
6021 "HFI1_IB_CFG_LWID",
6022 "HFI1_IB_CFG_SPD_ENB",
6023 "HFI1_IB_CFG_SPD",
6024 "HFI1_IB_CFG_RXPOL_ENB",
6025 "HFI1_IB_CFG_LREV_ENB",
6026 "HFI1_IB_CFG_LINKLATENCY",
6027 "HFI1_IB_CFG_HRTBT",
6028 "HFI1_IB_CFG_OP_VLS",
6029 "HFI1_IB_CFG_VL_HIGH_CAP",
6030 "HFI1_IB_CFG_VL_LOW_CAP",
6031 "HFI1_IB_CFG_OVERRUN_THRESH",
6032 "HFI1_IB_CFG_PHYERR_THRESH",
6033 "HFI1_IB_CFG_LINKDEFAULT",
6034 "HFI1_IB_CFG_PKEYS",
6035 "HFI1_IB_CFG_MTU",
6036 "HFI1_IB_CFG_LSTATE",
6037 "HFI1_IB_CFG_VL_HIGH_LIMIT",
6038 "HFI1_IB_CFG_PMA_TICKS",
6039 "HFI1_IB_CFG_PORT"
6040};
6041
6042static const char *ib_cfg_name(int which)
6043{
6044 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
6045 return "invalid";
6046 return ib_cfg_name_strings[which];
6047}
6048
6049int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
6050{
6051 struct hfi1_devdata *dd = ppd->dd;
6052 int val = 0;
6053
6054 switch (which) {
6055 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
6056 val = ppd->link_width_enabled;
6057 break;
6058 case HFI1_IB_CFG_LWID: /* currently active Link-width */
6059 val = ppd->link_width_active;
6060 break;
6061 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
6062 val = ppd->link_speed_enabled;
6063 break;
6064 case HFI1_IB_CFG_SPD: /* current Link speed */
6065 val = ppd->link_speed_active;
6066 break;
6067
6068 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
6069 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
6070 case HFI1_IB_CFG_LINKLATENCY:
6071 goto unimplemented;
6072
6073 case HFI1_IB_CFG_OP_VLS:
6074 val = ppd->vls_operational;
6075 break;
6076 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
6077 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
6078 break;
6079 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
6080 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
6081 break;
6082 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
6083 val = ppd->overrun_threshold;
6084 break;
6085 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
6086 val = ppd->phy_error_threshold;
6087 break;
6088 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
6089 val = dd->link_default;
6090 break;
6091
6092 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
6093 case HFI1_IB_CFG_PMA_TICKS:
6094 default:
6095unimplemented:
6096 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
6097 dd_dev_info(
6098 dd,
6099 "%s: which %s: not implemented\n",
6100 __func__,
6101 ib_cfg_name(which));
6102 break;
6103 }
6104
6105 return val;
6106}
6107
6108/*
6109 * The largest MAD packet size.
6110 */
6111#define MAX_MAD_PACKET 2048
6112
6113/*
6114 * Return the maximum header bytes that can go on the _wire_
6115 * for this device. This count includes the ICRC which is
6116 * not part of the packet held in memory but it is appended
6117 * by the HW.
6118 * This is dependent on the device's receive header entry size.
6119 * HFI allows this to be set per-receive context, but the
6120 * driver presently enforces a global value.
6121 */
6122u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
6123{
6124 /*
6125 * The maximum non-payload (MTU) bytes in LRH.PktLen are
6126 * the Receive Header Entry Size minus the PBC (or RHF) size
6127 * plus one DW for the ICRC appended by HW.
6128 *
6129 * dd->rcd[0].rcvhdrqentsize is in DW.
6130 * We use rcd[0] as all context will have the same value. Also,
6131 * the first kernel context would have been allocated by now so
6132 * we are guaranteed a valid value.
6133 */
6134 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
6135}
6136
6137/*
6138 * Set Send Length
6139 * @ppd - per port data
6140 *
6141 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
6142 * registers compare against LRH.PktLen, so use the max bytes included
6143 * in the LRH.
6144 *
6145 * This routine changes all VL values except VL15, which it maintains at
6146 * the same value.
6147 */
6148static void set_send_length(struct hfi1_pportdata *ppd)
6149{
6150 struct hfi1_devdata *dd = ppd->dd;
6151 u32 max_hb = lrh_max_header_bytes(dd), maxvlmtu = 0, dcmtu;
6152 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
6153 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
6154 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
6155 int i;
6156
6157 for (i = 0; i < ppd->vls_supported; i++) {
6158 if (dd->vld[i].mtu > maxvlmtu)
6159 maxvlmtu = dd->vld[i].mtu;
6160 if (i <= 3)
6161 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
6162 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
6163 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
6164 else
6165 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
6166 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
6167 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
6168 }
6169 write_csr(dd, SEND_LEN_CHECK0, len1);
6170 write_csr(dd, SEND_LEN_CHECK1, len2);
6171 /* adjust kernel credit return thresholds based on new MTUs */
6172 /* all kernel receive contexts have the same hdrqentsize */
6173 for (i = 0; i < ppd->vls_supported; i++) {
6174 sc_set_cr_threshold(dd->vld[i].sc,
6175 sc_mtu_to_threshold(dd->vld[i].sc, dd->vld[i].mtu,
6176 dd->rcd[0]->rcvhdrqentsize));
6177 }
6178 sc_set_cr_threshold(dd->vld[15].sc,
6179 sc_mtu_to_threshold(dd->vld[15].sc, dd->vld[15].mtu,
6180 dd->rcd[0]->rcvhdrqentsize));
6181
6182 /* Adjust maximum MTU for the port in DC */
6183 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
6184 (ilog2(maxvlmtu >> 8) + 1);
6185 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
6186 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
6187 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
6188 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
6189 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
6190}
6191
6192static void set_lidlmc(struct hfi1_pportdata *ppd)
6193{
6194 int i;
6195 u64 sreg = 0;
6196 struct hfi1_devdata *dd = ppd->dd;
6197 u32 mask = ~((1U << ppd->lmc) - 1);
6198 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
6199
6200 if (dd->hfi1_snoop.mode_flag)
6201 dd_dev_info(dd, "Set lid/lmc while snooping");
6202
6203 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
6204 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
6205 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
6206 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT)|
6207 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
6208 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
6209 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
6210
6211 /*
6212 * Iterate over all the send contexts and set their SLID check
6213 */
6214 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
6215 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
6216 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
6217 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
6218
6219 for (i = 0; i < dd->chip_send_contexts; i++) {
6220 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
6221 i, (u32)sreg);
6222 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
6223 }
6224
6225 /* Now we have to do the same thing for the sdma engines */
6226 sdma_update_lmc(dd, mask, ppd->lid);
6227}
6228
6229static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
6230{
6231 unsigned long timeout;
6232 u32 curr_state;
6233
6234 timeout = jiffies + msecs_to_jiffies(msecs);
6235 while (1) {
6236 curr_state = read_physical_state(dd);
6237 if (curr_state == state)
6238 break;
6239 if (time_after(jiffies, timeout)) {
6240 dd_dev_err(dd,
6241 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
6242 state, curr_state);
6243 return -ETIMEDOUT;
6244 }
6245 usleep_range(1950, 2050); /* sleep 2ms-ish */
6246 }
6247
6248 return 0;
6249}
6250
6251/*
6252 * Helper for set_link_state(). Do not call except from that routine.
6253 * Expects ppd->hls_mutex to be held.
6254 *
6255 * @rem_reason value to be sent to the neighbor
6256 *
6257 * LinkDownReasons only set if transition succeeds.
6258 */
6259static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
6260{
6261 struct hfi1_devdata *dd = ppd->dd;
6262 u32 pstate, previous_state;
6263 u32 last_local_state;
6264 u32 last_remote_state;
6265 int ret;
6266 int do_transition;
6267 int do_wait;
6268
6269 previous_state = ppd->host_link_state;
6270 ppd->host_link_state = HLS_GOING_OFFLINE;
6271 pstate = read_physical_state(dd);
6272 if (pstate == PLS_OFFLINE) {
6273 do_transition = 0; /* in right state */
6274 do_wait = 0; /* ...no need to wait */
6275 } else if ((pstate & 0xff) == PLS_OFFLINE) {
6276 do_transition = 0; /* in an offline transient state */
6277 do_wait = 1; /* ...wait for it to settle */
6278 } else {
6279 do_transition = 1; /* need to move to offline */
6280 do_wait = 1; /* ...will need to wait */
6281 }
6282
6283 if (do_transition) {
6284 ret = set_physical_link_state(dd,
6285 PLS_OFFLINE | (rem_reason << 8));
6286
6287 if (ret != HCMD_SUCCESS) {
6288 dd_dev_err(dd,
6289 "Failed to transition to Offline link state, return %d\n",
6290 ret);
6291 return -EINVAL;
6292 }
6293 if (ppd->offline_disabled_reason == OPA_LINKDOWN_REASON_NONE)
6294 ppd->offline_disabled_reason =
6295 OPA_LINKDOWN_REASON_TRANSIENT;
6296 }
6297
6298 if (do_wait) {
6299 /* it can take a while for the link to go down */
Dean Luickdc060242015-10-26 10:28:29 -04006300 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
Mike Marciniszyn77241052015-07-30 15:17:43 -04006301 if (ret < 0)
6302 return ret;
6303 }
6304
6305 /* make sure the logical state is also down */
6306 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
6307
6308 /*
6309 * Now in charge of LCB - must be after the physical state is
6310 * offline.quiet and before host_link_state is changed.
6311 */
6312 set_host_lcb_access(dd);
6313 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
6314 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
6315
6316 /*
6317 * The LNI has a mandatory wait time after the physical state
6318 * moves to Offline.Quiet. The wait time may be different
6319 * depending on how the link went down. The 8051 firmware
6320 * will observe the needed wait time and only move to ready
6321 * when that is completed. The largest of the quiet timeouts
6322 * is 2.5s, so wait that long and then a bit more.
6323 */
6324 ret = wait_fm_ready(dd, 3000);
6325 if (ret) {
6326 dd_dev_err(dd,
6327 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
6328 /* state is really offline, so make it so */
6329 ppd->host_link_state = HLS_DN_OFFLINE;
6330 return ret;
6331 }
6332
6333 /*
6334 * The state is now offline and the 8051 is ready to accept host
6335 * requests.
6336 * - change our state
6337 * - notify others if we were previously in a linkup state
6338 */
6339 ppd->host_link_state = HLS_DN_OFFLINE;
6340 if (previous_state & HLS_UP) {
6341 /* went down while link was up */
6342 handle_linkup_change(dd, 0);
6343 } else if (previous_state
6344 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
6345 /* went down while attempting link up */
6346 /* byte 1 of last_*_state is the failure reason */
6347 read_last_local_state(dd, &last_local_state);
6348 read_last_remote_state(dd, &last_remote_state);
6349 dd_dev_err(dd,
6350 "LNI failure last states: local 0x%08x, remote 0x%08x\n",
6351 last_local_state, last_remote_state);
6352 }
6353
6354 /* the active link width (downgrade) is 0 on link down */
6355 ppd->link_width_active = 0;
6356 ppd->link_width_downgrade_tx_active = 0;
6357 ppd->link_width_downgrade_rx_active = 0;
6358 ppd->current_egress_rate = 0;
6359 return 0;
6360}
6361
6362/* return the link state name */
6363static const char *link_state_name(u32 state)
6364{
6365 const char *name;
6366 int n = ilog2(state);
6367 static const char * const names[] = {
6368 [__HLS_UP_INIT_BP] = "INIT",
6369 [__HLS_UP_ARMED_BP] = "ARMED",
6370 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
6371 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
6372 [__HLS_DN_POLL_BP] = "POLL",
6373 [__HLS_DN_DISABLE_BP] = "DISABLE",
6374 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
6375 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
6376 [__HLS_GOING_UP_BP] = "GOING_UP",
6377 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
6378 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
6379 };
6380
6381 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
6382 return name ? name : "unknown";
6383}
6384
6385/* return the link state reason name */
6386static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
6387{
6388 if (state == HLS_UP_INIT) {
6389 switch (ppd->linkinit_reason) {
6390 case OPA_LINKINIT_REASON_LINKUP:
6391 return "(LINKUP)";
6392 case OPA_LINKINIT_REASON_FLAPPING:
6393 return "(FLAPPING)";
6394 case OPA_LINKINIT_OUTSIDE_POLICY:
6395 return "(OUTSIDE_POLICY)";
6396 case OPA_LINKINIT_QUARANTINED:
6397 return "(QUARANTINED)";
6398 case OPA_LINKINIT_INSUFIC_CAPABILITY:
6399 return "(INSUFIC_CAPABILITY)";
6400 default:
6401 break;
6402 }
6403 }
6404 return "";
6405}
6406
6407/*
6408 * driver_physical_state - convert the driver's notion of a port's
6409 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
6410 * Return -1 (converted to a u32) to indicate error.
6411 */
6412u32 driver_physical_state(struct hfi1_pportdata *ppd)
6413{
6414 switch (ppd->host_link_state) {
6415 case HLS_UP_INIT:
6416 case HLS_UP_ARMED:
6417 case HLS_UP_ACTIVE:
6418 return IB_PORTPHYSSTATE_LINKUP;
6419 case HLS_DN_POLL:
6420 return IB_PORTPHYSSTATE_POLLING;
6421 case HLS_DN_DISABLE:
6422 return IB_PORTPHYSSTATE_DISABLED;
6423 case HLS_DN_OFFLINE:
6424 return OPA_PORTPHYSSTATE_OFFLINE;
6425 case HLS_VERIFY_CAP:
6426 return IB_PORTPHYSSTATE_POLLING;
6427 case HLS_GOING_UP:
6428 return IB_PORTPHYSSTATE_POLLING;
6429 case HLS_GOING_OFFLINE:
6430 return OPA_PORTPHYSSTATE_OFFLINE;
6431 case HLS_LINK_COOLDOWN:
6432 return OPA_PORTPHYSSTATE_OFFLINE;
6433 case HLS_DN_DOWNDEF:
6434 default:
6435 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
6436 ppd->host_link_state);
6437 return -1;
6438 }
6439}
6440
6441/*
6442 * driver_logical_state - convert the driver's notion of a port's
6443 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
6444 * (converted to a u32) to indicate error.
6445 */
6446u32 driver_logical_state(struct hfi1_pportdata *ppd)
6447{
6448 if (ppd->host_link_state && !(ppd->host_link_state & HLS_UP))
6449 return IB_PORT_DOWN;
6450
6451 switch (ppd->host_link_state & HLS_UP) {
6452 case HLS_UP_INIT:
6453 return IB_PORT_INIT;
6454 case HLS_UP_ARMED:
6455 return IB_PORT_ARMED;
6456 case HLS_UP_ACTIVE:
6457 return IB_PORT_ACTIVE;
6458 default:
6459 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
6460 ppd->host_link_state);
6461 return -1;
6462 }
6463}
6464
6465void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
6466 u8 neigh_reason, u8 rem_reason)
6467{
6468 if (ppd->local_link_down_reason.latest == 0 &&
6469 ppd->neigh_link_down_reason.latest == 0) {
6470 ppd->local_link_down_reason.latest = lcl_reason;
6471 ppd->neigh_link_down_reason.latest = neigh_reason;
6472 ppd->remote_link_down_reason = rem_reason;
6473 }
6474}
6475
6476/*
6477 * Change the physical and/or logical link state.
6478 *
6479 * Do not call this routine while inside an interrupt. It contains
6480 * calls to routines that can take multiple seconds to finish.
6481 *
6482 * Returns 0 on success, -errno on failure.
6483 */
6484int set_link_state(struct hfi1_pportdata *ppd, u32 state)
6485{
6486 struct hfi1_devdata *dd = ppd->dd;
6487 struct ib_event event = {.device = NULL};
6488 int ret1, ret = 0;
6489 int was_up, is_down;
6490 int orig_new_state, poll_bounce;
6491
6492 mutex_lock(&ppd->hls_lock);
6493
6494 orig_new_state = state;
6495 if (state == HLS_DN_DOWNDEF)
6496 state = dd->link_default;
6497
6498 /* interpret poll -> poll as a link bounce */
6499 poll_bounce = ppd->host_link_state == HLS_DN_POLL
6500 && state == HLS_DN_POLL;
6501
6502 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
6503 link_state_name(ppd->host_link_state),
6504 link_state_name(orig_new_state),
6505 poll_bounce ? "(bounce) " : "",
6506 link_state_reason_name(ppd, state));
6507
6508 was_up = !!(ppd->host_link_state & HLS_UP);
6509
6510 /*
6511 * If we're going to a (HLS_*) link state that implies the logical
6512 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
6513 * reset is_sm_config_started to 0.
6514 */
6515 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
6516 ppd->is_sm_config_started = 0;
6517
6518 /*
6519 * Do nothing if the states match. Let a poll to poll link bounce
6520 * go through.
6521 */
6522 if (ppd->host_link_state == state && !poll_bounce)
6523 goto done;
6524
6525 switch (state) {
6526 case HLS_UP_INIT:
6527 if (ppd->host_link_state == HLS_DN_POLL && (quick_linkup
6528 || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
6529 /*
6530 * Quick link up jumps from polling to here.
6531 *
6532 * Whether in normal or loopback mode, the
6533 * simulator jumps from polling to link up.
6534 * Accept that here.
6535 */
6536 /* OK */;
6537 } else if (ppd->host_link_state != HLS_GOING_UP) {
6538 goto unexpected;
6539 }
6540
6541 ppd->host_link_state = HLS_UP_INIT;
6542 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
6543 if (ret) {
6544 /* logical state didn't change, stay at going_up */
6545 ppd->host_link_state = HLS_GOING_UP;
6546 dd_dev_err(dd,
6547 "%s: logical state did not change to INIT\n",
6548 __func__);
6549 } else {
6550 /* clear old transient LINKINIT_REASON code */
6551 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
6552 ppd->linkinit_reason =
6553 OPA_LINKINIT_REASON_LINKUP;
6554
6555 /* enable the port */
6556 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6557
6558 handle_linkup_change(dd, 1);
6559 }
6560 break;
6561 case HLS_UP_ARMED:
6562 if (ppd->host_link_state != HLS_UP_INIT)
6563 goto unexpected;
6564
6565 ppd->host_link_state = HLS_UP_ARMED;
6566 set_logical_state(dd, LSTATE_ARMED);
6567 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
6568 if (ret) {
6569 /* logical state didn't change, stay at init */
6570 ppd->host_link_state = HLS_UP_INIT;
6571 dd_dev_err(dd,
6572 "%s: logical state did not change to ARMED\n",
6573 __func__);
6574 }
6575 /*
6576 * The simulator does not currently implement SMA messages,
6577 * so neighbor_normal is not set. Set it here when we first
6578 * move to Armed.
6579 */
6580 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
6581 ppd->neighbor_normal = 1;
6582 break;
6583 case HLS_UP_ACTIVE:
6584 if (ppd->host_link_state != HLS_UP_ARMED)
6585 goto unexpected;
6586
6587 ppd->host_link_state = HLS_UP_ACTIVE;
6588 set_logical_state(dd, LSTATE_ACTIVE);
6589 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
6590 if (ret) {
6591 /* logical state didn't change, stay at armed */
6592 ppd->host_link_state = HLS_UP_ARMED;
6593 dd_dev_err(dd,
6594 "%s: logical state did not change to ACTIVE\n",
6595 __func__);
6596 } else {
6597
6598 /* tell all engines to go running */
6599 sdma_all_running(dd);
6600
6601 /* Signal the IB layer that the port has went active */
6602 event.device = &dd->verbs_dev.ibdev;
6603 event.element.port_num = ppd->port;
6604 event.event = IB_EVENT_PORT_ACTIVE;
6605 }
6606 break;
6607 case HLS_DN_POLL:
6608 if ((ppd->host_link_state == HLS_DN_DISABLE ||
6609 ppd->host_link_state == HLS_DN_OFFLINE) &&
6610 dd->dc_shutdown)
6611 dc_start(dd);
6612 /* Hand LED control to the DC */
6613 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
6614
6615 if (ppd->host_link_state != HLS_DN_OFFLINE) {
6616 u8 tmp = ppd->link_enabled;
6617
6618 ret = goto_offline(ppd, ppd->remote_link_down_reason);
6619 if (ret) {
6620 ppd->link_enabled = tmp;
6621 break;
6622 }
6623 ppd->remote_link_down_reason = 0;
6624
6625 if (ppd->driver_link_ready)
6626 ppd->link_enabled = 1;
6627 }
6628
6629 ret = set_local_link_attributes(ppd);
6630 if (ret)
6631 break;
6632
6633 ppd->port_error_action = 0;
6634 ppd->host_link_state = HLS_DN_POLL;
6635
6636 if (quick_linkup) {
6637 /* quick linkup does not go into polling */
6638 ret = do_quick_linkup(dd);
6639 } else {
6640 ret1 = set_physical_link_state(dd, PLS_POLLING);
6641 if (ret1 != HCMD_SUCCESS) {
6642 dd_dev_err(dd,
6643 "Failed to transition to Polling link state, return 0x%x\n",
6644 ret1);
6645 ret = -EINVAL;
6646 }
6647 }
6648 ppd->offline_disabled_reason = OPA_LINKDOWN_REASON_NONE;
6649 /*
6650 * If an error occurred above, go back to offline. The
6651 * caller may reschedule another attempt.
6652 */
6653 if (ret)
6654 goto_offline(ppd, 0);
6655 break;
6656 case HLS_DN_DISABLE:
6657 /* link is disabled */
6658 ppd->link_enabled = 0;
6659
6660 /* allow any state to transition to disabled */
6661
6662 /* must transition to offline first */
6663 if (ppd->host_link_state != HLS_DN_OFFLINE) {
6664 ret = goto_offline(ppd, ppd->remote_link_down_reason);
6665 if (ret)
6666 break;
6667 ppd->remote_link_down_reason = 0;
6668 }
6669
6670 ret1 = set_physical_link_state(dd, PLS_DISABLED);
6671 if (ret1 != HCMD_SUCCESS) {
6672 dd_dev_err(dd,
6673 "Failed to transition to Disabled link state, return 0x%x\n",
6674 ret1);
6675 ret = -EINVAL;
6676 break;
6677 }
6678 ppd->host_link_state = HLS_DN_DISABLE;
6679 dc_shutdown(dd);
6680 break;
6681 case HLS_DN_OFFLINE:
6682 if (ppd->host_link_state == HLS_DN_DISABLE)
6683 dc_start(dd);
6684
6685 /* allow any state to transition to offline */
6686 ret = goto_offline(ppd, ppd->remote_link_down_reason);
6687 if (!ret)
6688 ppd->remote_link_down_reason = 0;
6689 break;
6690 case HLS_VERIFY_CAP:
6691 if (ppd->host_link_state != HLS_DN_POLL)
6692 goto unexpected;
6693 ppd->host_link_state = HLS_VERIFY_CAP;
6694 break;
6695 case HLS_GOING_UP:
6696 if (ppd->host_link_state != HLS_VERIFY_CAP)
6697 goto unexpected;
6698
6699 ret1 = set_physical_link_state(dd, PLS_LINKUP);
6700 if (ret1 != HCMD_SUCCESS) {
6701 dd_dev_err(dd,
6702 "Failed to transition to link up state, return 0x%x\n",
6703 ret1);
6704 ret = -EINVAL;
6705 break;
6706 }
6707 ppd->host_link_state = HLS_GOING_UP;
6708 break;
6709
6710 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
6711 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
6712 default:
6713 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
6714 __func__, state);
6715 ret = -EINVAL;
6716 break;
6717 }
6718
6719 is_down = !!(ppd->host_link_state & (HLS_DN_POLL |
6720 HLS_DN_DISABLE | HLS_DN_OFFLINE));
6721
6722 if (was_up && is_down && ppd->local_link_down_reason.sma == 0 &&
6723 ppd->neigh_link_down_reason.sma == 0) {
6724 ppd->local_link_down_reason.sma =
6725 ppd->local_link_down_reason.latest;
6726 ppd->neigh_link_down_reason.sma =
6727 ppd->neigh_link_down_reason.latest;
6728 }
6729
6730 goto done;
6731
6732unexpected:
6733 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
6734 __func__, link_state_name(ppd->host_link_state),
6735 link_state_name(state));
6736 ret = -EINVAL;
6737
6738done:
6739 mutex_unlock(&ppd->hls_lock);
6740
6741 if (event.device)
6742 ib_dispatch_event(&event);
6743
6744 return ret;
6745}
6746
6747int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
6748{
6749 u64 reg;
6750 int ret = 0;
6751
6752 switch (which) {
6753 case HFI1_IB_CFG_LIDLMC:
6754 set_lidlmc(ppd);
6755 break;
6756 case HFI1_IB_CFG_VL_HIGH_LIMIT:
6757 /*
6758 * The VL Arbitrator high limit is sent in units of 4k
6759 * bytes, while HFI stores it in units of 64 bytes.
6760 */
6761 val *= 4096/64;
6762 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
6763 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
6764 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
6765 break;
6766 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
6767 /* HFI only supports POLL as the default link down state */
6768 if (val != HLS_DN_POLL)
6769 ret = -EINVAL;
6770 break;
6771 case HFI1_IB_CFG_OP_VLS:
6772 if (ppd->vls_operational != val) {
6773 ppd->vls_operational = val;
6774 if (!ppd->port)
6775 ret = -EINVAL;
6776 else
6777 ret = sdma_map_init(
6778 ppd->dd,
6779 ppd->port - 1,
6780 val,
6781 NULL);
6782 }
6783 break;
6784 /*
6785 * For link width, link width downgrade, and speed enable, always AND
6786 * the setting with what is actually supported. This has two benefits.
6787 * First, enabled can't have unsupported values, no matter what the
6788 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
6789 * "fill in with your supported value" have all the bits in the
6790 * field set, so simply ANDing with supported has the desired result.
6791 */
6792 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
6793 ppd->link_width_enabled = val & ppd->link_width_supported;
6794 break;
6795 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
6796 ppd->link_width_downgrade_enabled =
6797 val & ppd->link_width_downgrade_supported;
6798 break;
6799 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
6800 ppd->link_speed_enabled = val & ppd->link_speed_supported;
6801 break;
6802 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
6803 /*
6804 * HFI does not follow IB specs, save this value
6805 * so we can report it, if asked.
6806 */
6807 ppd->overrun_threshold = val;
6808 break;
6809 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
6810 /*
6811 * HFI does not follow IB specs, save this value
6812 * so we can report it, if asked.
6813 */
6814 ppd->phy_error_threshold = val;
6815 break;
6816
6817 case HFI1_IB_CFG_MTU:
6818 set_send_length(ppd);
6819 break;
6820
6821 case HFI1_IB_CFG_PKEYS:
6822 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
6823 set_partition_keys(ppd);
6824 break;
6825
6826 default:
6827 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
6828 dd_dev_info(ppd->dd,
6829 "%s: which %s, val 0x%x: not implemented\n",
6830 __func__, ib_cfg_name(which), val);
6831 break;
6832 }
6833 return ret;
6834}
6835
6836/* begin functions related to vl arbitration table caching */
6837static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
6838{
6839 int i;
6840
6841 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
6842 VL_ARB_LOW_PRIO_TABLE_SIZE);
6843 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
6844 VL_ARB_HIGH_PRIO_TABLE_SIZE);
6845
6846 /*
6847 * Note that we always return values directly from the
6848 * 'vl_arb_cache' (and do no CSR reads) in response to a
6849 * 'Get(VLArbTable)'. This is obviously correct after a
6850 * 'Set(VLArbTable)', since the cache will then be up to
6851 * date. But it's also correct prior to any 'Set(VLArbTable)'
6852 * since then both the cache, and the relevant h/w registers
6853 * will be zeroed.
6854 */
6855
6856 for (i = 0; i < MAX_PRIO_TABLE; i++)
6857 spin_lock_init(&ppd->vl_arb_cache[i].lock);
6858}
6859
6860/*
6861 * vl_arb_lock_cache
6862 *
6863 * All other vl_arb_* functions should be called only after locking
6864 * the cache.
6865 */
6866static inline struct vl_arb_cache *
6867vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
6868{
6869 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
6870 return NULL;
6871 spin_lock(&ppd->vl_arb_cache[idx].lock);
6872 return &ppd->vl_arb_cache[idx];
6873}
6874
6875static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
6876{
6877 spin_unlock(&ppd->vl_arb_cache[idx].lock);
6878}
6879
6880static void vl_arb_get_cache(struct vl_arb_cache *cache,
6881 struct ib_vl_weight_elem *vl)
6882{
6883 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
6884}
6885
6886static void vl_arb_set_cache(struct vl_arb_cache *cache,
6887 struct ib_vl_weight_elem *vl)
6888{
6889 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
6890}
6891
6892static int vl_arb_match_cache(struct vl_arb_cache *cache,
6893 struct ib_vl_weight_elem *vl)
6894{
6895 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
6896}
6897/* end functions related to vl arbitration table caching */
6898
6899static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
6900 u32 size, struct ib_vl_weight_elem *vl)
6901{
6902 struct hfi1_devdata *dd = ppd->dd;
6903 u64 reg;
6904 unsigned int i, is_up = 0;
6905 int drain, ret = 0;
6906
6907 mutex_lock(&ppd->hls_lock);
6908
6909 if (ppd->host_link_state & HLS_UP)
6910 is_up = 1;
6911
6912 drain = !is_ax(dd) && is_up;
6913
6914 if (drain)
6915 /*
6916 * Before adjusting VL arbitration weights, empty per-VL
6917 * FIFOs, otherwise a packet whose VL weight is being
6918 * set to 0 could get stuck in a FIFO with no chance to
6919 * egress.
6920 */
6921 ret = stop_drain_data_vls(dd);
6922
6923 if (ret) {
6924 dd_dev_err(
6925 dd,
6926 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
6927 __func__);
6928 goto err;
6929 }
6930
6931 for (i = 0; i < size; i++, vl++) {
6932 /*
6933 * NOTE: The low priority shift and mask are used here, but
6934 * they are the same for both the low and high registers.
6935 */
6936 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
6937 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
6938 | (((u64)vl->weight
6939 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
6940 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
6941 write_csr(dd, target + (i * 8), reg);
6942 }
6943 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
6944
6945 if (drain)
6946 open_fill_data_vls(dd); /* reopen all VLs */
6947
6948err:
6949 mutex_unlock(&ppd->hls_lock);
6950
6951 return ret;
6952}
6953
6954/*
6955 * Read one credit merge VL register.
6956 */
6957static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
6958 struct vl_limit *vll)
6959{
6960 u64 reg = read_csr(dd, csr);
6961
6962 vll->dedicated = cpu_to_be16(
6963 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
6964 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
6965 vll->shared = cpu_to_be16(
6966 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
6967 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
6968}
6969
6970/*
6971 * Read the current credit merge limits.
6972 */
6973static int get_buffer_control(struct hfi1_devdata *dd,
6974 struct buffer_control *bc, u16 *overall_limit)
6975{
6976 u64 reg;
6977 int i;
6978
6979 /* not all entries are filled in */
6980 memset(bc, 0, sizeof(*bc));
6981
6982 /* OPA and HFI have a 1-1 mapping */
6983 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6984 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8*i), &bc->vl[i]);
6985
6986 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
6987 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
6988
6989 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6990 bc->overall_shared_limit = cpu_to_be16(
6991 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
6992 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
6993 if (overall_limit)
6994 *overall_limit = (reg
6995 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
6996 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
6997 return sizeof(struct buffer_control);
6998}
6999
7000static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
7001{
7002 u64 reg;
7003 int i;
7004
7005 /* each register contains 16 SC->VLnt mappings, 4 bits each */
7006 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
7007 for (i = 0; i < sizeof(u64); i++) {
7008 u8 byte = *(((u8 *)&reg) + i);
7009
7010 dp->vlnt[2 * i] = byte & 0xf;
7011 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
7012 }
7013
7014 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
7015 for (i = 0; i < sizeof(u64); i++) {
7016 u8 byte = *(((u8 *)&reg) + i);
7017
7018 dp->vlnt[16 + (2 * i)] = byte & 0xf;
7019 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
7020 }
7021 return sizeof(struct sc2vlnt);
7022}
7023
7024static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
7025 struct ib_vl_weight_elem *vl)
7026{
7027 unsigned int i;
7028
7029 for (i = 0; i < nelems; i++, vl++) {
7030 vl->vl = 0xf;
7031 vl->weight = 0;
7032 }
7033}
7034
7035static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
7036{
7037 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
7038 DC_SC_VL_VAL(15_0,
7039 0, dp->vlnt[0] & 0xf,
7040 1, dp->vlnt[1] & 0xf,
7041 2, dp->vlnt[2] & 0xf,
7042 3, dp->vlnt[3] & 0xf,
7043 4, dp->vlnt[4] & 0xf,
7044 5, dp->vlnt[5] & 0xf,
7045 6, dp->vlnt[6] & 0xf,
7046 7, dp->vlnt[7] & 0xf,
7047 8, dp->vlnt[8] & 0xf,
7048 9, dp->vlnt[9] & 0xf,
7049 10, dp->vlnt[10] & 0xf,
7050 11, dp->vlnt[11] & 0xf,
7051 12, dp->vlnt[12] & 0xf,
7052 13, dp->vlnt[13] & 0xf,
7053 14, dp->vlnt[14] & 0xf,
7054 15, dp->vlnt[15] & 0xf));
7055 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
7056 DC_SC_VL_VAL(31_16,
7057 16, dp->vlnt[16] & 0xf,
7058 17, dp->vlnt[17] & 0xf,
7059 18, dp->vlnt[18] & 0xf,
7060 19, dp->vlnt[19] & 0xf,
7061 20, dp->vlnt[20] & 0xf,
7062 21, dp->vlnt[21] & 0xf,
7063 22, dp->vlnt[22] & 0xf,
7064 23, dp->vlnt[23] & 0xf,
7065 24, dp->vlnt[24] & 0xf,
7066 25, dp->vlnt[25] & 0xf,
7067 26, dp->vlnt[26] & 0xf,
7068 27, dp->vlnt[27] & 0xf,
7069 28, dp->vlnt[28] & 0xf,
7070 29, dp->vlnt[29] & 0xf,
7071 30, dp->vlnt[30] & 0xf,
7072 31, dp->vlnt[31] & 0xf));
7073}
7074
7075static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
7076 u16 limit)
7077{
7078 if (limit != 0)
7079 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
7080 what, (int)limit, idx);
7081}
7082
7083/* change only the shared limit portion of SendCmGLobalCredit */
7084static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
7085{
7086 u64 reg;
7087
7088 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
7089 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
7090 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
7091 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
7092}
7093
7094/* change only the total credit limit portion of SendCmGLobalCredit */
7095static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
7096{
7097 u64 reg;
7098
7099 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
7100 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
7101 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
7102 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
7103}
7104
7105/* set the given per-VL shared limit */
7106static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
7107{
7108 u64 reg;
7109 u32 addr;
7110
7111 if (vl < TXE_NUM_DATA_VL)
7112 addr = SEND_CM_CREDIT_VL + (8 * vl);
7113 else
7114 addr = SEND_CM_CREDIT_VL15;
7115
7116 reg = read_csr(dd, addr);
7117 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
7118 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
7119 write_csr(dd, addr, reg);
7120}
7121
7122/* set the given per-VL dedicated limit */
7123static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
7124{
7125 u64 reg;
7126 u32 addr;
7127
7128 if (vl < TXE_NUM_DATA_VL)
7129 addr = SEND_CM_CREDIT_VL + (8 * vl);
7130 else
7131 addr = SEND_CM_CREDIT_VL15;
7132
7133 reg = read_csr(dd, addr);
7134 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
7135 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
7136 write_csr(dd, addr, reg);
7137}
7138
7139/* spin until the given per-VL status mask bits clear */
7140static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
7141 const char *which)
7142{
7143 unsigned long timeout;
7144 u64 reg;
7145
7146 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
7147 while (1) {
7148 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
7149
7150 if (reg == 0)
7151 return; /* success */
7152 if (time_after(jiffies, timeout))
7153 break; /* timed out */
7154 udelay(1);
7155 }
7156
7157 dd_dev_err(dd,
7158 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
7159 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
7160 /*
7161 * If this occurs, it is likely there was a credit loss on the link.
7162 * The only recovery from that is a link bounce.
7163 */
7164 dd_dev_err(dd,
7165 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
7166}
7167
7168/*
7169 * The number of credits on the VLs may be changed while everything
7170 * is "live", but the following algorithm must be followed due to
7171 * how the hardware is actually implemented. In particular,
7172 * Return_Credit_Status[] is the only correct status check.
7173 *
7174 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
7175 * set Global_Shared_Credit_Limit = 0
7176 * use_all_vl = 1
7177 * mask0 = all VLs that are changing either dedicated or shared limits
7178 * set Shared_Limit[mask0] = 0
7179 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
7180 * if (changing any dedicated limit)
7181 * mask1 = all VLs that are lowering dedicated limits
7182 * lower Dedicated_Limit[mask1]
7183 * spin until Return_Credit_Status[mask1] == 0
7184 * raise Dedicated_Limits
7185 * raise Shared_Limits
7186 * raise Global_Shared_Credit_Limit
7187 *
7188 * lower = if the new limit is lower, set the limit to the new value
7189 * raise = if the new limit is higher than the current value (may be changed
7190 * earlier in the algorithm), set the new limit to the new value
7191 */
7192static int set_buffer_control(struct hfi1_devdata *dd,
7193 struct buffer_control *new_bc)
7194{
7195 u64 changing_mask, ld_mask, stat_mask;
7196 int change_count;
7197 int i, use_all_mask;
7198 int this_shared_changing;
7199 /*
7200 * A0: add the variable any_shared_limit_changing below and in the
7201 * algorithm above. If removing A0 support, it can be removed.
7202 */
7203 int any_shared_limit_changing;
7204 struct buffer_control cur_bc;
7205 u8 changing[OPA_MAX_VLS];
7206 u8 lowering_dedicated[OPA_MAX_VLS];
7207 u16 cur_total;
7208 u32 new_total = 0;
7209 const u64 all_mask =
7210 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
7211 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
7212 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
7213 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
7214 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
7215 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
7216 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
7217 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
7218 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
7219
7220#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
7221#define NUM_USABLE_VLS 16 /* look at VL15 and less */
7222
7223
7224 /* find the new total credits, do sanity check on unused VLs */
7225 for (i = 0; i < OPA_MAX_VLS; i++) {
7226 if (valid_vl(i)) {
7227 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
7228 continue;
7229 }
7230 nonzero_msg(dd, i, "dedicated",
7231 be16_to_cpu(new_bc->vl[i].dedicated));
7232 nonzero_msg(dd, i, "shared",
7233 be16_to_cpu(new_bc->vl[i].shared));
7234 new_bc->vl[i].dedicated = 0;
7235 new_bc->vl[i].shared = 0;
7236 }
7237 new_total += be16_to_cpu(new_bc->overall_shared_limit);
7238 if (new_total > (u32)dd->link_credits)
7239 return -EINVAL;
7240 /* fetch the current values */
7241 get_buffer_control(dd, &cur_bc, &cur_total);
7242
7243 /*
7244 * Create the masks we will use.
7245 */
7246 memset(changing, 0, sizeof(changing));
7247 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
7248 /* NOTE: Assumes that the individual VL bits are adjacent and in
7249 increasing order */
7250 stat_mask =
7251 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
7252 changing_mask = 0;
7253 ld_mask = 0;
7254 change_count = 0;
7255 any_shared_limit_changing = 0;
7256 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
7257 if (!valid_vl(i))
7258 continue;
7259 this_shared_changing = new_bc->vl[i].shared
7260 != cur_bc.vl[i].shared;
7261 if (this_shared_changing)
7262 any_shared_limit_changing = 1;
7263 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated
7264 || this_shared_changing) {
7265 changing[i] = 1;
7266 changing_mask |= stat_mask;
7267 change_count++;
7268 }
7269 if (be16_to_cpu(new_bc->vl[i].dedicated) <
7270 be16_to_cpu(cur_bc.vl[i].dedicated)) {
7271 lowering_dedicated[i] = 1;
7272 ld_mask |= stat_mask;
7273 }
7274 }
7275
7276 /* bracket the credit change with a total adjustment */
7277 if (new_total > cur_total)
7278 set_global_limit(dd, new_total);
7279
7280 /*
7281 * Start the credit change algorithm.
7282 */
7283 use_all_mask = 0;
7284 if ((be16_to_cpu(new_bc->overall_shared_limit) <
7285 be16_to_cpu(cur_bc.overall_shared_limit))
7286 || (is_a0(dd) && any_shared_limit_changing)) {
7287 set_global_shared(dd, 0);
7288 cur_bc.overall_shared_limit = 0;
7289 use_all_mask = 1;
7290 }
7291
7292 for (i = 0; i < NUM_USABLE_VLS; i++) {
7293 if (!valid_vl(i))
7294 continue;
7295
7296 if (changing[i]) {
7297 set_vl_shared(dd, i, 0);
7298 cur_bc.vl[i].shared = 0;
7299 }
7300 }
7301
7302 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
7303 "shared");
7304
7305 if (change_count > 0) {
7306 for (i = 0; i < NUM_USABLE_VLS; i++) {
7307 if (!valid_vl(i))
7308 continue;
7309
7310 if (lowering_dedicated[i]) {
7311 set_vl_dedicated(dd, i,
7312 be16_to_cpu(new_bc->vl[i].dedicated));
7313 cur_bc.vl[i].dedicated =
7314 new_bc->vl[i].dedicated;
7315 }
7316 }
7317
7318 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
7319
7320 /* now raise all dedicated that are going up */
7321 for (i = 0; i < NUM_USABLE_VLS; i++) {
7322 if (!valid_vl(i))
7323 continue;
7324
7325 if (be16_to_cpu(new_bc->vl[i].dedicated) >
7326 be16_to_cpu(cur_bc.vl[i].dedicated))
7327 set_vl_dedicated(dd, i,
7328 be16_to_cpu(new_bc->vl[i].dedicated));
7329 }
7330 }
7331
7332 /* next raise all shared that are going up */
7333 for (i = 0; i < NUM_USABLE_VLS; i++) {
7334 if (!valid_vl(i))
7335 continue;
7336
7337 if (be16_to_cpu(new_bc->vl[i].shared) >
7338 be16_to_cpu(cur_bc.vl[i].shared))
7339 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
7340 }
7341
7342 /* finally raise the global shared */
7343 if (be16_to_cpu(new_bc->overall_shared_limit) >
7344 be16_to_cpu(cur_bc.overall_shared_limit))
7345 set_global_shared(dd,
7346 be16_to_cpu(new_bc->overall_shared_limit));
7347
7348 /* bracket the credit change with a total adjustment */
7349 if (new_total < cur_total)
7350 set_global_limit(dd, new_total);
7351 return 0;
7352}
7353
7354/*
7355 * Read the given fabric manager table. Return the size of the
7356 * table (in bytes) on success, and a negative error code on
7357 * failure.
7358 */
7359int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
7360
7361{
7362 int size;
7363 struct vl_arb_cache *vlc;
7364
7365 switch (which) {
7366 case FM_TBL_VL_HIGH_ARB:
7367 size = 256;
7368 /*
7369 * OPA specifies 128 elements (of 2 bytes each), though
7370 * HFI supports only 16 elements in h/w.
7371 */
7372 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
7373 vl_arb_get_cache(vlc, t);
7374 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
7375 break;
7376 case FM_TBL_VL_LOW_ARB:
7377 size = 256;
7378 /*
7379 * OPA specifies 128 elements (of 2 bytes each), though
7380 * HFI supports only 16 elements in h/w.
7381 */
7382 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
7383 vl_arb_get_cache(vlc, t);
7384 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
7385 break;
7386 case FM_TBL_BUFFER_CONTROL:
7387 size = get_buffer_control(ppd->dd, t, NULL);
7388 break;
7389 case FM_TBL_SC2VLNT:
7390 size = get_sc2vlnt(ppd->dd, t);
7391 break;
7392 case FM_TBL_VL_PREEMPT_ELEMS:
7393 size = 256;
7394 /* OPA specifies 128 elements, of 2 bytes each */
7395 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
7396 break;
7397 case FM_TBL_VL_PREEMPT_MATRIX:
7398 size = 256;
7399 /*
7400 * OPA specifies that this is the same size as the VL
7401 * arbitration tables (i.e., 256 bytes).
7402 */
7403 break;
7404 default:
7405 return -EINVAL;
7406 }
7407 return size;
7408}
7409
7410/*
7411 * Write the given fabric manager table.
7412 */
7413int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
7414{
7415 int ret = 0;
7416 struct vl_arb_cache *vlc;
7417
7418 switch (which) {
7419 case FM_TBL_VL_HIGH_ARB:
7420 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
7421 if (vl_arb_match_cache(vlc, t)) {
7422 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
7423 break;
7424 }
7425 vl_arb_set_cache(vlc, t);
7426 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
7427 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
7428 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
7429 break;
7430 case FM_TBL_VL_LOW_ARB:
7431 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
7432 if (vl_arb_match_cache(vlc, t)) {
7433 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
7434 break;
7435 }
7436 vl_arb_set_cache(vlc, t);
7437 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
7438 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
7439 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
7440 break;
7441 case FM_TBL_BUFFER_CONTROL:
7442 ret = set_buffer_control(ppd->dd, t);
7443 break;
7444 case FM_TBL_SC2VLNT:
7445 set_sc2vlnt(ppd->dd, t);
7446 break;
7447 default:
7448 ret = -EINVAL;
7449 }
7450 return ret;
7451}
7452
7453/*
7454 * Disable all data VLs.
7455 *
7456 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
7457 */
7458static int disable_data_vls(struct hfi1_devdata *dd)
7459{
7460 if (is_a0(dd))
7461 return 1;
7462
7463 pio_send_control(dd, PSC_DATA_VL_DISABLE);
7464
7465 return 0;
7466}
7467
7468/*
7469 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
7470 * Just re-enables all data VLs (the "fill" part happens
7471 * automatically - the name was chosen for symmetry with
7472 * stop_drain_data_vls()).
7473 *
7474 * Return 0 if successful, non-zero if the VLs cannot be enabled.
7475 */
7476int open_fill_data_vls(struct hfi1_devdata *dd)
7477{
7478 if (is_a0(dd))
7479 return 1;
7480
7481 pio_send_control(dd, PSC_DATA_VL_ENABLE);
7482
7483 return 0;
7484}
7485
7486/*
7487 * drain_data_vls() - assumes that disable_data_vls() has been called,
7488 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
7489 * engines to drop to 0.
7490 */
7491static void drain_data_vls(struct hfi1_devdata *dd)
7492{
7493 sc_wait(dd);
7494 sdma_wait(dd);
7495 pause_for_credit_return(dd);
7496}
7497
7498/*
7499 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
7500 *
7501 * Use open_fill_data_vls() to resume using data VLs. This pair is
7502 * meant to be used like this:
7503 *
7504 * stop_drain_data_vls(dd);
7505 * // do things with per-VL resources
7506 * open_fill_data_vls(dd);
7507 */
7508int stop_drain_data_vls(struct hfi1_devdata *dd)
7509{
7510 int ret;
7511
7512 ret = disable_data_vls(dd);
7513 if (ret == 0)
7514 drain_data_vls(dd);
7515
7516 return ret;
7517}
7518
7519/*
7520 * Convert a nanosecond time to a cclock count. No matter how slow
7521 * the cclock, a non-zero ns will always have a non-zero result.
7522 */
7523u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
7524{
7525 u32 cclocks;
7526
7527 if (dd->icode == ICODE_FPGA_EMULATION)
7528 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
7529 else /* simulation pretends to be ASIC */
7530 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
7531 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
7532 cclocks = 1;
7533 return cclocks;
7534}
7535
7536/*
7537 * Convert a cclock count to nanoseconds. Not matter how slow
7538 * the cclock, a non-zero cclocks will always have a non-zero result.
7539 */
7540u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
7541{
7542 u32 ns;
7543
7544 if (dd->icode == ICODE_FPGA_EMULATION)
7545 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
7546 else /* simulation pretends to be ASIC */
7547 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
7548 if (cclocks && !ns)
7549 ns = 1;
7550 return ns;
7551}
7552
7553/*
7554 * Dynamically adjust the receive interrupt timeout for a context based on
7555 * incoming packet rate.
7556 *
7557 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
7558 */
7559static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
7560{
7561 struct hfi1_devdata *dd = rcd->dd;
7562 u32 timeout = rcd->rcvavail_timeout;
7563
7564 /*
7565 * This algorithm doubles or halves the timeout depending on whether
7566 * the number of packets received in this interrupt were less than or
7567 * greater equal the interrupt count.
7568 *
7569 * The calculations below do not allow a steady state to be achieved.
7570 * Only at the endpoints it is possible to have an unchanging
7571 * timeout.
7572 */
7573 if (npkts < rcv_intr_count) {
7574 /*
7575 * Not enough packets arrived before the timeout, adjust
7576 * timeout downward.
7577 */
7578 if (timeout < 2) /* already at minimum? */
7579 return;
7580 timeout >>= 1;
7581 } else {
7582 /*
7583 * More than enough packets arrived before the timeout, adjust
7584 * timeout upward.
7585 */
7586 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
7587 return;
7588 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
7589 }
7590
7591 rcd->rcvavail_timeout = timeout;
7592 /* timeout cannot be larger than rcv_intr_timeout_csr which has already
7593 been verified to be in range */
7594 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
7595 (u64)timeout << RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
7596}
7597
7598void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
7599 u32 intr_adjust, u32 npkts)
7600{
7601 struct hfi1_devdata *dd = rcd->dd;
7602 u64 reg;
7603 u32 ctxt = rcd->ctxt;
7604
7605 /*
7606 * Need to write timeout register before updating RcvHdrHead to ensure
7607 * that a new value is used when the HW decides to restart counting.
7608 */
7609 if (intr_adjust)
7610 adjust_rcv_timeout(rcd, npkts);
7611 if (updegr) {
7612 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
7613 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
7614 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
7615 }
7616 mmiowb();
7617 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
7618 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
7619 << RCV_HDR_HEAD_HEAD_SHIFT);
7620 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
7621 mmiowb();
7622}
7623
7624u32 hdrqempty(struct hfi1_ctxtdata *rcd)
7625{
7626 u32 head, tail;
7627
7628 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
7629 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
7630
7631 if (rcd->rcvhdrtail_kvaddr)
7632 tail = get_rcvhdrtail(rcd);
7633 else
7634 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
7635
7636 return head == tail;
7637}
7638
7639/*
7640 * Context Control and Receive Array encoding for buffer size:
7641 * 0x0 invalid
7642 * 0x1 4 KB
7643 * 0x2 8 KB
7644 * 0x3 16 KB
7645 * 0x4 32 KB
7646 * 0x5 64 KB
7647 * 0x6 128 KB
7648 * 0x7 256 KB
7649 * 0x8 512 KB (Receive Array only)
7650 * 0x9 1 MB (Receive Array only)
7651 * 0xa 2 MB (Receive Array only)
7652 *
7653 * 0xB-0xF - reserved (Receive Array only)
7654 *
7655 *
7656 * This routine assumes that the value has already been sanity checked.
7657 */
7658static u32 encoded_size(u32 size)
7659{
7660 switch (size) {
7661 case 4*1024: return 0x1;
7662 case 8*1024: return 0x2;
7663 case 16*1024: return 0x3;
7664 case 32*1024: return 0x4;
7665 case 64*1024: return 0x5;
7666 case 128*1024: return 0x6;
7667 case 256*1024: return 0x7;
7668 case 512*1024: return 0x8;
7669 case 1*1024*1024: return 0x9;
7670 case 2*1024*1024: return 0xa;
7671 }
7672 return 0x1; /* if invalid, go with the minimum size */
7673}
7674
7675void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
7676{
7677 struct hfi1_ctxtdata *rcd;
7678 u64 rcvctrl, reg;
7679 int did_enable = 0;
7680
7681 rcd = dd->rcd[ctxt];
7682 if (!rcd)
7683 return;
7684
7685 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
7686
7687 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
7688 /* if the context already enabled, don't do the extra steps */
7689 if ((op & HFI1_RCVCTRL_CTXT_ENB)
7690 && !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
7691 /* reset the tail and hdr addresses, and sequence count */
7692 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
7693 rcd->rcvhdrq_phys);
7694 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
7695 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
7696 rcd->rcvhdrqtailaddr_phys);
7697 rcd->seq_cnt = 1;
7698
7699 /* reset the cached receive header queue head value */
7700 rcd->head = 0;
7701
7702 /*
7703 * Zero the receive header queue so we don't get false
7704 * positives when checking the sequence number. The
7705 * sequence numbers could land exactly on the same spot.
7706 * E.g. a rcd restart before the receive header wrapped.
7707 */
7708 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
7709
7710 /* starting timeout */
7711 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
7712
7713 /* enable the context */
7714 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
7715
7716 /* clean the egr buffer size first */
7717 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
7718 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
7719 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
7720 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
7721
7722 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
7723 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
7724 did_enable = 1;
7725
7726 /* zero RcvEgrIndexHead */
7727 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
7728
7729 /* set eager count and base index */
7730 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
7731 & RCV_EGR_CTRL_EGR_CNT_MASK)
7732 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
7733 (((rcd->eager_base >> RCV_SHIFT)
7734 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
7735 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
7736 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
7737
7738 /*
7739 * Set TID (expected) count and base index.
7740 * rcd->expected_count is set to individual RcvArray entries,
7741 * not pairs, and the CSR takes a pair-count in groups of
7742 * four, so divide by 8.
7743 */
7744 reg = (((rcd->expected_count >> RCV_SHIFT)
7745 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
7746 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
7747 (((rcd->expected_base >> RCV_SHIFT)
7748 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
7749 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
7750 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
7751 if (ctxt == VL15CTXT)
7752 write_csr(dd, RCV_VL15, VL15CTXT);
7753 }
7754 if (op & HFI1_RCVCTRL_CTXT_DIS) {
7755 write_csr(dd, RCV_VL15, 0);
7756 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
7757 }
7758 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
7759 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
7760 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
7761 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
7762 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
7763 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
7764 if (op & HFI1_RCVCTRL_TAILUPD_DIS)
7765 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
7766 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
7767 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
7768 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
7769 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
7770 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
7771 /* In one-packet-per-eager mode, the size comes from
7772 the RcvArray entry. */
7773 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
7774 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
7775 }
7776 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
7777 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
7778 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
7779 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
7780 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
7781 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
7782 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
7783 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
7784 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
7785 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
7786 rcd->rcvctrl = rcvctrl;
7787 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
7788 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
7789
7790 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
7791 if (did_enable
7792 && (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
7793 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
7794 if (reg != 0) {
7795 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
7796 ctxt, reg);
7797 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
7798 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
7799 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
7800 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
7801 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
7802 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
7803 ctxt, reg, reg == 0 ? "not" : "still");
7804 }
7805 }
7806
7807 if (did_enable) {
7808 /*
7809 * The interrupt timeout and count must be set after
7810 * the context is enabled to take effect.
7811 */
7812 /* set interrupt timeout */
7813 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
7814 (u64)rcd->rcvavail_timeout <<
7815 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
7816
7817 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
7818 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
7819 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
7820 }
7821
7822 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
7823 /*
7824 * If the context has been disabled and the Tail Update has
7825 * been cleared, clear the RCV_HDR_TAIL_ADDR CSR so
7826 * it doesn't contain an address that is invalid.
7827 */
7828 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 0);
7829}
7830
7831u32 hfi1_read_cntrs(struct hfi1_devdata *dd, loff_t pos, char **namep,
7832 u64 **cntrp)
7833{
7834 int ret;
7835 u64 val = 0;
7836
7837 if (namep) {
7838 ret = dd->cntrnameslen;
7839 if (pos != 0) {
7840 dd_dev_err(dd, "read_cntrs does not support indexing");
7841 return 0;
7842 }
7843 *namep = dd->cntrnames;
7844 } else {
7845 const struct cntr_entry *entry;
7846 int i, j;
7847
7848 ret = (dd->ndevcntrs) * sizeof(u64);
7849 if (pos != 0) {
7850 dd_dev_err(dd, "read_cntrs does not support indexing");
7851 return 0;
7852 }
7853
7854 /* Get the start of the block of counters */
7855 *cntrp = dd->cntrs;
7856
7857 /*
7858 * Now go and fill in each counter in the block.
7859 */
7860 for (i = 0; i < DEV_CNTR_LAST; i++) {
7861 entry = &dev_cntrs[i];
7862 hfi1_cdbg(CNTR, "reading %s", entry->name);
7863 if (entry->flags & CNTR_DISABLED) {
7864 /* Nothing */
7865 hfi1_cdbg(CNTR, "\tDisabled\n");
7866 } else {
7867 if (entry->flags & CNTR_VL) {
7868 hfi1_cdbg(CNTR, "\tPer VL\n");
7869 for (j = 0; j < C_VL_COUNT; j++) {
7870 val = entry->rw_cntr(entry,
7871 dd, j,
7872 CNTR_MODE_R,
7873 0);
7874 hfi1_cdbg(
7875 CNTR,
7876 "\t\tRead 0x%llx for %d\n",
7877 val, j);
7878 dd->cntrs[entry->offset + j] =
7879 val;
7880 }
7881 } else {
7882 val = entry->rw_cntr(entry, dd,
7883 CNTR_INVALID_VL,
7884 CNTR_MODE_R, 0);
7885 dd->cntrs[entry->offset] = val;
7886 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
7887 }
7888 }
7889 }
7890 }
7891 return ret;
7892}
7893
7894/*
7895 * Used by sysfs to create files for hfi stats to read
7896 */
7897u32 hfi1_read_portcntrs(struct hfi1_devdata *dd, loff_t pos, u32 port,
7898 char **namep, u64 **cntrp)
7899{
7900 int ret;
7901 u64 val = 0;
7902
7903 if (namep) {
7904 ret = dd->portcntrnameslen;
7905 if (pos != 0) {
7906 dd_dev_err(dd, "index not supported");
7907 return 0;
7908 }
7909 *namep = dd->portcntrnames;
7910 } else {
7911 const struct cntr_entry *entry;
7912 struct hfi1_pportdata *ppd;
7913 int i, j;
7914
7915 ret = (dd->nportcntrs) * sizeof(u64);
7916 if (pos != 0) {
7917 dd_dev_err(dd, "indexing not supported");
7918 return 0;
7919 }
7920 ppd = (struct hfi1_pportdata *)(dd + 1 + port);
7921 *cntrp = ppd->cntrs;
7922
7923 for (i = 0; i < PORT_CNTR_LAST; i++) {
7924 entry = &port_cntrs[i];
7925 hfi1_cdbg(CNTR, "reading %s", entry->name);
7926 if (entry->flags & CNTR_DISABLED) {
7927 /* Nothing */
7928 hfi1_cdbg(CNTR, "\tDisabled\n");
7929 continue;
7930 }
7931
7932 if (entry->flags & CNTR_VL) {
7933 hfi1_cdbg(CNTR, "\tPer VL");
7934 for (j = 0; j < C_VL_COUNT; j++) {
7935 val = entry->rw_cntr(entry, ppd, j,
7936 CNTR_MODE_R,
7937 0);
7938 hfi1_cdbg(
7939 CNTR,
7940 "\t\tRead 0x%llx for %d",
7941 val, j);
7942 ppd->cntrs[entry->offset + j] = val;
7943 }
7944 } else {
7945 val = entry->rw_cntr(entry, ppd,
7946 CNTR_INVALID_VL,
7947 CNTR_MODE_R,
7948 0);
7949 ppd->cntrs[entry->offset] = val;
7950 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
7951 }
7952 }
7953 }
7954 return ret;
7955}
7956
7957static void free_cntrs(struct hfi1_devdata *dd)
7958{
7959 struct hfi1_pportdata *ppd;
7960 int i;
7961
7962 if (dd->synth_stats_timer.data)
7963 del_timer_sync(&dd->synth_stats_timer);
7964 dd->synth_stats_timer.data = 0;
7965 ppd = (struct hfi1_pportdata *)(dd + 1);
7966 for (i = 0; i < dd->num_pports; i++, ppd++) {
7967 kfree(ppd->cntrs);
7968 kfree(ppd->scntrs);
7969 free_percpu(ppd->ibport_data.rc_acks);
7970 free_percpu(ppd->ibport_data.rc_qacks);
7971 free_percpu(ppd->ibport_data.rc_delayed_comp);
7972 ppd->cntrs = NULL;
7973 ppd->scntrs = NULL;
7974 ppd->ibport_data.rc_acks = NULL;
7975 ppd->ibport_data.rc_qacks = NULL;
7976 ppd->ibport_data.rc_delayed_comp = NULL;
7977 }
7978 kfree(dd->portcntrnames);
7979 dd->portcntrnames = NULL;
7980 kfree(dd->cntrs);
7981 dd->cntrs = NULL;
7982 kfree(dd->scntrs);
7983 dd->scntrs = NULL;
7984 kfree(dd->cntrnames);
7985 dd->cntrnames = NULL;
7986}
7987
7988#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
7989#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
7990
7991static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
7992 u64 *psval, void *context, int vl)
7993{
7994 u64 val;
7995 u64 sval = *psval;
7996
7997 if (entry->flags & CNTR_DISABLED) {
7998 dd_dev_err(dd, "Counter %s not enabled", entry->name);
7999 return 0;
8000 }
8001
8002 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
8003
8004 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
8005
8006 /* If its a synthetic counter there is more work we need to do */
8007 if (entry->flags & CNTR_SYNTH) {
8008 if (sval == CNTR_MAX) {
8009 /* No need to read already saturated */
8010 return CNTR_MAX;
8011 }
8012
8013 if (entry->flags & CNTR_32BIT) {
8014 /* 32bit counters can wrap multiple times */
8015 u64 upper = sval >> 32;
8016 u64 lower = (sval << 32) >> 32;
8017
8018 if (lower > val) { /* hw wrapped */
8019 if (upper == CNTR_32BIT_MAX)
8020 val = CNTR_MAX;
8021 else
8022 upper++;
8023 }
8024
8025 if (val != CNTR_MAX)
8026 val = (upper << 32) | val;
8027
8028 } else {
8029 /* If we rolled we are saturated */
8030 if ((val < sval) || (val > CNTR_MAX))
8031 val = CNTR_MAX;
8032 }
8033 }
8034
8035 *psval = val;
8036
8037 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
8038
8039 return val;
8040}
8041
8042static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
8043 struct cntr_entry *entry,
8044 u64 *psval, void *context, int vl, u64 data)
8045{
8046 u64 val;
8047
8048 if (entry->flags & CNTR_DISABLED) {
8049 dd_dev_err(dd, "Counter %s not enabled", entry->name);
8050 return 0;
8051 }
8052
8053 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
8054
8055 if (entry->flags & CNTR_SYNTH) {
8056 *psval = data;
8057 if (entry->flags & CNTR_32BIT) {
8058 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
8059 (data << 32) >> 32);
8060 val = data; /* return the full 64bit value */
8061 } else {
8062 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
8063 data);
8064 }
8065 } else {
8066 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
8067 }
8068
8069 *psval = val;
8070
8071 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
8072
8073 return val;
8074}
8075
8076u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
8077{
8078 struct cntr_entry *entry;
8079 u64 *sval;
8080
8081 entry = &dev_cntrs[index];
8082 sval = dd->scntrs + entry->offset;
8083
8084 if (vl != CNTR_INVALID_VL)
8085 sval += vl;
8086
8087 return read_dev_port_cntr(dd, entry, sval, dd, vl);
8088}
8089
8090u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
8091{
8092 struct cntr_entry *entry;
8093 u64 *sval;
8094
8095 entry = &dev_cntrs[index];
8096 sval = dd->scntrs + entry->offset;
8097
8098 if (vl != CNTR_INVALID_VL)
8099 sval += vl;
8100
8101 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
8102}
8103
8104u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
8105{
8106 struct cntr_entry *entry;
8107 u64 *sval;
8108
8109 entry = &port_cntrs[index];
8110 sval = ppd->scntrs + entry->offset;
8111
8112 if (vl != CNTR_INVALID_VL)
8113 sval += vl;
8114
8115 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
8116 (index <= C_RCV_HDR_OVF_LAST)) {
8117 /* We do not want to bother for disabled contexts */
8118 return 0;
8119 }
8120
8121 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
8122}
8123
8124u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
8125{
8126 struct cntr_entry *entry;
8127 u64 *sval;
8128
8129 entry = &port_cntrs[index];
8130 sval = ppd->scntrs + entry->offset;
8131
8132 if (vl != CNTR_INVALID_VL)
8133 sval += vl;
8134
8135 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
8136 (index <= C_RCV_HDR_OVF_LAST)) {
8137 /* We do not want to bother for disabled contexts */
8138 return 0;
8139 }
8140
8141 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
8142}
8143
8144static void update_synth_timer(unsigned long opaque)
8145{
8146 u64 cur_tx;
8147 u64 cur_rx;
8148 u64 total_flits;
8149 u8 update = 0;
8150 int i, j, vl;
8151 struct hfi1_pportdata *ppd;
8152 struct cntr_entry *entry;
8153
8154 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
8155
8156 /*
8157 * Rather than keep beating on the CSRs pick a minimal set that we can
8158 * check to watch for potential roll over. We can do this by looking at
8159 * the number of flits sent/recv. If the total flits exceeds 32bits then
8160 * we have to iterate all the counters and update.
8161 */
8162 entry = &dev_cntrs[C_DC_RCV_FLITS];
8163 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
8164
8165 entry = &dev_cntrs[C_DC_XMIT_FLITS];
8166 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
8167
8168 hfi1_cdbg(
8169 CNTR,
8170 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
8171 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
8172
8173 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
8174 /*
8175 * May not be strictly necessary to update but it won't hurt and
8176 * simplifies the logic here.
8177 */
8178 update = 1;
8179 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
8180 dd->unit);
8181 } else {
8182 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
8183 hfi1_cdbg(CNTR,
8184 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
8185 total_flits, (u64)CNTR_32BIT_MAX);
8186 if (total_flits >= CNTR_32BIT_MAX) {
8187 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
8188 dd->unit);
8189 update = 1;
8190 }
8191 }
8192
8193 if (update) {
8194 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
8195 for (i = 0; i < DEV_CNTR_LAST; i++) {
8196 entry = &dev_cntrs[i];
8197 if (entry->flags & CNTR_VL) {
8198 for (vl = 0; vl < C_VL_COUNT; vl++)
8199 read_dev_cntr(dd, i, vl);
8200 } else {
8201 read_dev_cntr(dd, i, CNTR_INVALID_VL);
8202 }
8203 }
8204 ppd = (struct hfi1_pportdata *)(dd + 1);
8205 for (i = 0; i < dd->num_pports; i++, ppd++) {
8206 for (j = 0; j < PORT_CNTR_LAST; j++) {
8207 entry = &port_cntrs[j];
8208 if (entry->flags & CNTR_VL) {
8209 for (vl = 0; vl < C_VL_COUNT; vl++)
8210 read_port_cntr(ppd, j, vl);
8211 } else {
8212 read_port_cntr(ppd, j, CNTR_INVALID_VL);
8213 }
8214 }
8215 }
8216
8217 /*
8218 * We want the value in the register. The goal is to keep track
8219 * of the number of "ticks" not the counter value. In other
8220 * words if the register rolls we want to notice it and go ahead
8221 * and force an update.
8222 */
8223 entry = &dev_cntrs[C_DC_XMIT_FLITS];
8224 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
8225 CNTR_MODE_R, 0);
8226
8227 entry = &dev_cntrs[C_DC_RCV_FLITS];
8228 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
8229 CNTR_MODE_R, 0);
8230
8231 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
8232 dd->unit, dd->last_tx, dd->last_rx);
8233
8234 } else {
8235 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
8236 }
8237
8238mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
8239}
8240
8241#define C_MAX_NAME 13 /* 12 chars + one for /0 */
8242static int init_cntrs(struct hfi1_devdata *dd)
8243{
8244 int i, rcv_ctxts, index, j;
8245 size_t sz;
8246 char *p;
8247 char name[C_MAX_NAME];
8248 struct hfi1_pportdata *ppd;
8249
8250 /* set up the stats timer; the add_timer is done at the end */
Muhammad Falak R Wani24523a92015-10-25 16:13:23 +05308251 setup_timer(&dd->synth_stats_timer, update_synth_timer,
8252 (unsigned long)dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04008253
8254 /***********************/
8255 /* per device counters */
8256 /***********************/
8257
8258 /* size names and determine how many we have*/
8259 dd->ndevcntrs = 0;
8260 sz = 0;
8261 index = 0;
8262
8263 for (i = 0; i < DEV_CNTR_LAST; i++) {
8264 hfi1_dbg_early("Init cntr %s\n", dev_cntrs[i].name);
8265 if (dev_cntrs[i].flags & CNTR_DISABLED) {
8266 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
8267 continue;
8268 }
8269
8270 if (dev_cntrs[i].flags & CNTR_VL) {
8271 hfi1_dbg_early("\tProcessing VL cntr\n");
8272 dev_cntrs[i].offset = index;
8273 for (j = 0; j < C_VL_COUNT; j++) {
8274 memset(name, '\0', C_MAX_NAME);
8275 snprintf(name, C_MAX_NAME, "%s%d",
8276 dev_cntrs[i].name,
8277 vl_from_idx(j));
8278 sz += strlen(name);
8279 sz++;
8280 hfi1_dbg_early("\t\t%s\n", name);
8281 dd->ndevcntrs++;
8282 index++;
8283 }
8284 } else {
8285 /* +1 for newline */
8286 sz += strlen(dev_cntrs[i].name) + 1;
8287 dd->ndevcntrs++;
8288 dev_cntrs[i].offset = index;
8289 index++;
8290 hfi1_dbg_early("\tAdding %s\n", dev_cntrs[i].name);
8291 }
8292 }
8293
8294 /* allocate space for the counter values */
8295 dd->cntrs = kcalloc(index, sizeof(u64), GFP_KERNEL);
8296 if (!dd->cntrs)
8297 goto bail;
8298
8299 dd->scntrs = kcalloc(index, sizeof(u64), GFP_KERNEL);
8300 if (!dd->scntrs)
8301 goto bail;
8302
8303
8304 /* allocate space for the counter names */
8305 dd->cntrnameslen = sz;
8306 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
8307 if (!dd->cntrnames)
8308 goto bail;
8309
8310 /* fill in the names */
8311 for (p = dd->cntrnames, i = 0, index = 0; i < DEV_CNTR_LAST; i++) {
8312 if (dev_cntrs[i].flags & CNTR_DISABLED) {
8313 /* Nothing */
8314 } else {
8315 if (dev_cntrs[i].flags & CNTR_VL) {
8316 for (j = 0; j < C_VL_COUNT; j++) {
8317 memset(name, '\0', C_MAX_NAME);
8318 snprintf(name, C_MAX_NAME, "%s%d",
8319 dev_cntrs[i].name,
8320 vl_from_idx(j));
8321 memcpy(p, name, strlen(name));
8322 p += strlen(name);
8323 *p++ = '\n';
8324 }
8325 } else {
8326 memcpy(p, dev_cntrs[i].name,
8327 strlen(dev_cntrs[i].name));
8328 p += strlen(dev_cntrs[i].name);
8329 *p++ = '\n';
8330 }
8331 index++;
8332 }
8333 }
8334
8335 /*********************/
8336 /* per port counters */
8337 /*********************/
8338
8339 /*
8340 * Go through the counters for the overflows and disable the ones we
8341 * don't need. This varies based on platform so we need to do it
8342 * dynamically here.
8343 */
8344 rcv_ctxts = dd->num_rcv_contexts;
8345 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
8346 i <= C_RCV_HDR_OVF_LAST; i++) {
8347 port_cntrs[i].flags |= CNTR_DISABLED;
8348 }
8349
8350 /* size port counter names and determine how many we have*/
8351 sz = 0;
8352 dd->nportcntrs = 0;
8353 for (i = 0; i < PORT_CNTR_LAST; i++) {
8354 hfi1_dbg_early("Init pcntr %s\n", port_cntrs[i].name);
8355 if (port_cntrs[i].flags & CNTR_DISABLED) {
8356 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
8357 continue;
8358 }
8359
8360 if (port_cntrs[i].flags & CNTR_VL) {
8361 hfi1_dbg_early("\tProcessing VL cntr\n");
8362 port_cntrs[i].offset = dd->nportcntrs;
8363 for (j = 0; j < C_VL_COUNT; j++) {
8364 memset(name, '\0', C_MAX_NAME);
8365 snprintf(name, C_MAX_NAME, "%s%d",
8366 port_cntrs[i].name,
8367 vl_from_idx(j));
8368 sz += strlen(name);
8369 sz++;
8370 hfi1_dbg_early("\t\t%s\n", name);
8371 dd->nportcntrs++;
8372 }
8373 } else {
8374 /* +1 for newline */
8375 sz += strlen(port_cntrs[i].name) + 1;
8376 port_cntrs[i].offset = dd->nportcntrs;
8377 dd->nportcntrs++;
8378 hfi1_dbg_early("\tAdding %s\n", port_cntrs[i].name);
8379 }
8380 }
8381
8382 /* allocate space for the counter names */
8383 dd->portcntrnameslen = sz;
8384 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
8385 if (!dd->portcntrnames)
8386 goto bail;
8387
8388 /* fill in port cntr names */
8389 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
8390 if (port_cntrs[i].flags & CNTR_DISABLED)
8391 continue;
8392
8393 if (port_cntrs[i].flags & CNTR_VL) {
8394 for (j = 0; j < C_VL_COUNT; j++) {
8395 memset(name, '\0', C_MAX_NAME);
8396 snprintf(name, C_MAX_NAME, "%s%d",
8397 port_cntrs[i].name,
8398 vl_from_idx(j));
8399 memcpy(p, name, strlen(name));
8400 p += strlen(name);
8401 *p++ = '\n';
8402 }
8403 } else {
8404 memcpy(p, port_cntrs[i].name,
8405 strlen(port_cntrs[i].name));
8406 p += strlen(port_cntrs[i].name);
8407 *p++ = '\n';
8408 }
8409 }
8410
8411 /* allocate per port storage for counter values */
8412 ppd = (struct hfi1_pportdata *)(dd + 1);
8413 for (i = 0; i < dd->num_pports; i++, ppd++) {
8414 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
8415 if (!ppd->cntrs)
8416 goto bail;
8417
8418 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
8419 if (!ppd->scntrs)
8420 goto bail;
8421 }
8422
8423 /* CPU counters need to be allocated and zeroed */
8424 if (init_cpu_counters(dd))
8425 goto bail;
8426
8427 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
8428 return 0;
8429bail:
8430 free_cntrs(dd);
8431 return -ENOMEM;
8432}
8433
8434
8435static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
8436{
8437 switch (chip_lstate) {
8438 default:
8439 dd_dev_err(dd,
8440 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
8441 chip_lstate);
8442 /* fall through */
8443 case LSTATE_DOWN:
8444 return IB_PORT_DOWN;
8445 case LSTATE_INIT:
8446 return IB_PORT_INIT;
8447 case LSTATE_ARMED:
8448 return IB_PORT_ARMED;
8449 case LSTATE_ACTIVE:
8450 return IB_PORT_ACTIVE;
8451 }
8452}
8453
8454u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
8455{
8456 /* look at the HFI meta-states only */
8457 switch (chip_pstate & 0xf0) {
8458 default:
8459 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
8460 chip_pstate);
8461 /* fall through */
8462 case PLS_DISABLED:
8463 return IB_PORTPHYSSTATE_DISABLED;
8464 case PLS_OFFLINE:
8465 return OPA_PORTPHYSSTATE_OFFLINE;
8466 case PLS_POLLING:
8467 return IB_PORTPHYSSTATE_POLLING;
8468 case PLS_CONFIGPHY:
8469 return IB_PORTPHYSSTATE_TRAINING;
8470 case PLS_LINKUP:
8471 return IB_PORTPHYSSTATE_LINKUP;
8472 case PLS_PHYTEST:
8473 return IB_PORTPHYSSTATE_PHY_TEST;
8474 }
8475}
8476
8477/* return the OPA port logical state name */
8478const char *opa_lstate_name(u32 lstate)
8479{
8480 static const char * const port_logical_names[] = {
8481 "PORT_NOP",
8482 "PORT_DOWN",
8483 "PORT_INIT",
8484 "PORT_ARMED",
8485 "PORT_ACTIVE",
8486 "PORT_ACTIVE_DEFER",
8487 };
8488 if (lstate < ARRAY_SIZE(port_logical_names))
8489 return port_logical_names[lstate];
8490 return "unknown";
8491}
8492
8493/* return the OPA port physical state name */
8494const char *opa_pstate_name(u32 pstate)
8495{
8496 static const char * const port_physical_names[] = {
8497 "PHYS_NOP",
8498 "reserved1",
8499 "PHYS_POLL",
8500 "PHYS_DISABLED",
8501 "PHYS_TRAINING",
8502 "PHYS_LINKUP",
8503 "PHYS_LINK_ERR_RECOVER",
8504 "PHYS_PHY_TEST",
8505 "reserved8",
8506 "PHYS_OFFLINE",
8507 "PHYS_GANGED",
8508 "PHYS_TEST",
8509 };
8510 if (pstate < ARRAY_SIZE(port_physical_names))
8511 return port_physical_names[pstate];
8512 return "unknown";
8513}
8514
8515/*
8516 * Read the hardware link state and set the driver's cached value of it.
8517 * Return the (new) current value.
8518 */
8519u32 get_logical_state(struct hfi1_pportdata *ppd)
8520{
8521 u32 new_state;
8522
8523 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
8524 if (new_state != ppd->lstate) {
8525 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
8526 opa_lstate_name(new_state), new_state);
8527 ppd->lstate = new_state;
8528 }
8529 /*
8530 * Set port status flags in the page mapped into userspace
8531 * memory. Do it here to ensure a reliable state - this is
8532 * the only function called by all state handling code.
8533 * Always set the flags due to the fact that the cache value
8534 * might have been changed explicitly outside of this
8535 * function.
8536 */
8537 if (ppd->statusp) {
8538 switch (ppd->lstate) {
8539 case IB_PORT_DOWN:
8540 case IB_PORT_INIT:
8541 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
8542 HFI1_STATUS_IB_READY);
8543 break;
8544 case IB_PORT_ARMED:
8545 *ppd->statusp |= HFI1_STATUS_IB_CONF;
8546 break;
8547 case IB_PORT_ACTIVE:
8548 *ppd->statusp |= HFI1_STATUS_IB_READY;
8549 break;
8550 }
8551 }
8552 return ppd->lstate;
8553}
8554
8555/**
8556 * wait_logical_linkstate - wait for an IB link state change to occur
8557 * @ppd: port device
8558 * @state: the state to wait for
8559 * @msecs: the number of milliseconds to wait
8560 *
8561 * Wait up to msecs milliseconds for IB link state change to occur.
8562 * For now, take the easy polling route.
8563 * Returns 0 if state reached, otherwise -ETIMEDOUT.
8564 */
8565static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
8566 int msecs)
8567{
8568 unsigned long timeout;
8569
8570 timeout = jiffies + msecs_to_jiffies(msecs);
8571 while (1) {
8572 if (get_logical_state(ppd) == state)
8573 return 0;
8574 if (time_after(jiffies, timeout))
8575 break;
8576 msleep(20);
8577 }
8578 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
8579
8580 return -ETIMEDOUT;
8581}
8582
8583u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
8584{
8585 static u32 remembered_state = 0xff;
8586 u32 pstate;
8587 u32 ib_pstate;
8588
8589 pstate = read_physical_state(ppd->dd);
8590 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
8591 if (remembered_state != ib_pstate) {
8592 dd_dev_info(ppd->dd,
8593 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
8594 __func__, opa_pstate_name(ib_pstate), ib_pstate,
8595 pstate);
8596 remembered_state = ib_pstate;
8597 }
8598 return ib_pstate;
8599}
8600
8601/*
8602 * Read/modify/write ASIC_QSFP register bits as selected by mask
8603 * data: 0 or 1 in the positions depending on what needs to be written
8604 * dir: 0 for read, 1 for write
8605 * mask: select by setting
8606 * I2CCLK (bit 0)
8607 * I2CDATA (bit 1)
8608 */
8609u64 hfi1_gpio_mod(struct hfi1_devdata *dd, u32 target, u32 data, u32 dir,
8610 u32 mask)
8611{
8612 u64 qsfp_oe, target_oe;
8613
8614 target_oe = target ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
8615 if (mask) {
8616 /* We are writing register bits, so lock access */
8617 dir &= mask;
8618 data &= mask;
8619
8620 qsfp_oe = read_csr(dd, target_oe);
8621 qsfp_oe = (qsfp_oe & ~(u64)mask) | (u64)dir;
8622 write_csr(dd, target_oe, qsfp_oe);
8623 }
8624 /* We are exclusively reading bits here, but it is unlikely
8625 * we'll get valid data when we set the direction of the pin
8626 * in the same call, so read should call this function again
8627 * to get valid data
8628 */
8629 return read_csr(dd, target ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
8630}
8631
8632#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
8633(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
8634
8635#define SET_STATIC_RATE_CONTROL_SMASK(r) \
8636(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
8637
8638int hfi1_init_ctxt(struct send_context *sc)
8639{
8640 if (sc != NULL) {
8641 struct hfi1_devdata *dd = sc->dd;
8642 u64 reg;
8643 u8 set = (sc->type == SC_USER ?
8644 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
8645 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
8646 reg = read_kctxt_csr(dd, sc->hw_context,
8647 SEND_CTXT_CHECK_ENABLE);
8648 if (set)
8649 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
8650 else
8651 SET_STATIC_RATE_CONTROL_SMASK(reg);
8652 write_kctxt_csr(dd, sc->hw_context,
8653 SEND_CTXT_CHECK_ENABLE, reg);
8654 }
8655 return 0;
8656}
8657
8658int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
8659{
8660 int ret = 0;
8661 u64 reg;
8662
8663 if (dd->icode != ICODE_RTL_SILICON) {
8664 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
8665 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
8666 __func__);
8667 return -EINVAL;
8668 }
8669 reg = read_csr(dd, ASIC_STS_THERM);
8670 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
8671 ASIC_STS_THERM_CURR_TEMP_MASK);
8672 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
8673 ASIC_STS_THERM_LO_TEMP_MASK);
8674 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
8675 ASIC_STS_THERM_HI_TEMP_MASK);
8676 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
8677 ASIC_STS_THERM_CRIT_TEMP_MASK);
8678 /* triggers is a 3-bit value - 1 bit per trigger. */
8679 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
8680
8681 return ret;
8682}
8683
8684/* ========================================================================= */
8685
8686/*
8687 * Enable/disable chip from delivering interrupts.
8688 */
8689void set_intr_state(struct hfi1_devdata *dd, u32 enable)
8690{
8691 int i;
8692
8693 /*
8694 * In HFI, the mask needs to be 1 to allow interrupts.
8695 */
8696 if (enable) {
8697 u64 cce_int_mask;
8698 const int qsfp1_int_smask = QSFP1_INT % 64;
8699 const int qsfp2_int_smask = QSFP2_INT % 64;
8700
8701 /* enable all interrupts */
8702 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8703 write_csr(dd, CCE_INT_MASK + (8*i), ~(u64)0);
8704
8705 /*
8706 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
8707 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
8708 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
8709 * the index of the appropriate CSR in the CCEIntMask CSR array
8710 */
8711 cce_int_mask = read_csr(dd, CCE_INT_MASK +
8712 (8*(QSFP1_INT/64)));
8713 if (dd->hfi1_id) {
8714 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
8715 write_csr(dd, CCE_INT_MASK + (8*(QSFP1_INT/64)),
8716 cce_int_mask);
8717 } else {
8718 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
8719 write_csr(dd, CCE_INT_MASK + (8*(QSFP2_INT/64)),
8720 cce_int_mask);
8721 }
8722 } else {
8723 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8724 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
8725 }
8726}
8727
8728/*
8729 * Clear all interrupt sources on the chip.
8730 */
8731static void clear_all_interrupts(struct hfi1_devdata *dd)
8732{
8733 int i;
8734
8735 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8736 write_csr(dd, CCE_INT_CLEAR + (8*i), ~(u64)0);
8737
8738 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
8739 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
8740 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
8741 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
8742 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
8743 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
8744 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
8745 for (i = 0; i < dd->chip_send_contexts; i++)
8746 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
8747 for (i = 0; i < dd->chip_sdma_engines; i++)
8748 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
8749
8750 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
8751 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
8752 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
8753}
8754
8755/* Move to pcie.c? */
8756static void disable_intx(struct pci_dev *pdev)
8757{
8758 pci_intx(pdev, 0);
8759}
8760
8761static void clean_up_interrupts(struct hfi1_devdata *dd)
8762{
8763 int i;
8764
8765 /* remove irqs - must happen before disabling/turning off */
8766 if (dd->num_msix_entries) {
8767 /* MSI-X */
8768 struct hfi1_msix_entry *me = dd->msix_entries;
8769
8770 for (i = 0; i < dd->num_msix_entries; i++, me++) {
8771 if (me->arg == NULL) /* => no irq, no affinity */
8772 break;
8773 irq_set_affinity_hint(dd->msix_entries[i].msix.vector,
8774 NULL);
8775 free_irq(me->msix.vector, me->arg);
8776 }
8777 } else {
8778 /* INTx */
8779 if (dd->requested_intx_irq) {
8780 free_irq(dd->pcidev->irq, dd);
8781 dd->requested_intx_irq = 0;
8782 }
8783 }
8784
8785 /* turn off interrupts */
8786 if (dd->num_msix_entries) {
8787 /* MSI-X */
Amitoj Kaur Chawla6e5b6132015-11-01 16:14:32 +05308788 pci_disable_msix(dd->pcidev);
Mike Marciniszyn77241052015-07-30 15:17:43 -04008789 } else {
8790 /* INTx */
8791 disable_intx(dd->pcidev);
8792 }
8793
8794 /* clean structures */
8795 for (i = 0; i < dd->num_msix_entries; i++)
8796 free_cpumask_var(dd->msix_entries[i].mask);
8797 kfree(dd->msix_entries);
8798 dd->msix_entries = NULL;
8799 dd->num_msix_entries = 0;
8800}
8801
8802/*
8803 * Remap the interrupt source from the general handler to the given MSI-X
8804 * interrupt.
8805 */
8806static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
8807{
8808 u64 reg;
8809 int m, n;
8810
8811 /* clear from the handled mask of the general interrupt */
8812 m = isrc / 64;
8813 n = isrc % 64;
8814 dd->gi_mask[m] &= ~((u64)1 << n);
8815
8816 /* direct the chip source to the given MSI-X interrupt */
8817 m = isrc / 8;
8818 n = isrc % 8;
8819 reg = read_csr(dd, CCE_INT_MAP + (8*m));
8820 reg &= ~((u64)0xff << (8*n));
8821 reg |= ((u64)msix_intr & 0xff) << (8*n);
8822 write_csr(dd, CCE_INT_MAP + (8*m), reg);
8823}
8824
8825static void remap_sdma_interrupts(struct hfi1_devdata *dd,
8826 int engine, int msix_intr)
8827{
8828 /*
8829 * SDMA engine interrupt sources grouped by type, rather than
8830 * engine. Per-engine interrupts are as follows:
8831 * SDMA
8832 * SDMAProgress
8833 * SDMAIdle
8834 */
8835 remap_intr(dd, IS_SDMA_START + 0*TXE_NUM_SDMA_ENGINES + engine,
8836 msix_intr);
8837 remap_intr(dd, IS_SDMA_START + 1*TXE_NUM_SDMA_ENGINES + engine,
8838 msix_intr);
8839 remap_intr(dd, IS_SDMA_START + 2*TXE_NUM_SDMA_ENGINES + engine,
8840 msix_intr);
8841}
8842
Mike Marciniszyn77241052015-07-30 15:17:43 -04008843static int request_intx_irq(struct hfi1_devdata *dd)
8844{
8845 int ret;
8846
8847 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME"_%d",
8848 dd->unit);
8849 ret = request_irq(dd->pcidev->irq, general_interrupt,
8850 IRQF_SHARED, dd->intx_name, dd);
8851 if (ret)
8852 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
8853 ret);
8854 else
8855 dd->requested_intx_irq = 1;
8856 return ret;
8857}
8858
8859static int request_msix_irqs(struct hfi1_devdata *dd)
8860{
8861 const struct cpumask *local_mask;
8862 cpumask_var_t def, rcv;
8863 bool def_ret, rcv_ret;
8864 int first_general, last_general;
8865 int first_sdma, last_sdma;
8866 int first_rx, last_rx;
8867 int first_cpu, restart_cpu, curr_cpu;
8868 int rcv_cpu, sdma_cpu;
8869 int i, ret = 0, possible;
8870 int ht;
8871
8872 /* calculate the ranges we are going to use */
8873 first_general = 0;
8874 first_sdma = last_general = first_general + 1;
8875 first_rx = last_sdma = first_sdma + dd->num_sdma;
8876 last_rx = first_rx + dd->n_krcv_queues;
8877
8878 /*
8879 * Interrupt affinity.
8880 *
8881 * non-rcv avail gets a default mask that
8882 * starts as possible cpus with threads reset
8883 * and each rcv avail reset.
8884 *
8885 * rcv avail gets node relative 1 wrapping back
8886 * to the node relative 1 as necessary.
8887 *
8888 */
8889 local_mask = cpumask_of_pcibus(dd->pcidev->bus);
8890 /* if first cpu is invalid, use NUMA 0 */
8891 if (cpumask_first(local_mask) >= nr_cpu_ids)
8892 local_mask = topology_core_cpumask(0);
8893
8894 def_ret = zalloc_cpumask_var(&def, GFP_KERNEL);
8895 rcv_ret = zalloc_cpumask_var(&rcv, GFP_KERNEL);
8896 if (!def_ret || !rcv_ret)
8897 goto bail;
8898 /* use local mask as default */
8899 cpumask_copy(def, local_mask);
8900 possible = cpumask_weight(def);
8901 /* disarm threads from default */
8902 ht = cpumask_weight(
8903 topology_sibling_cpumask(cpumask_first(local_mask)));
8904 for (i = possible/ht; i < possible; i++)
8905 cpumask_clear_cpu(i, def);
8906 /* reset possible */
8907 possible = cpumask_weight(def);
8908 /* def now has full cores on chosen node*/
8909 first_cpu = cpumask_first(def);
8910 if (nr_cpu_ids >= first_cpu)
8911 first_cpu++;
8912 restart_cpu = first_cpu;
8913 curr_cpu = restart_cpu;
8914
8915 for (i = first_cpu; i < dd->n_krcv_queues + first_cpu; i++) {
8916 cpumask_clear_cpu(curr_cpu, def);
8917 cpumask_set_cpu(curr_cpu, rcv);
8918 if (curr_cpu >= possible)
8919 curr_cpu = restart_cpu;
8920 else
8921 curr_cpu++;
8922 }
8923 /* def mask has non-rcv, rcv has recv mask */
8924 rcv_cpu = cpumask_first(rcv);
8925 sdma_cpu = cpumask_first(def);
8926
8927 /*
8928 * Sanity check - the code expects all SDMA chip source
8929 * interrupts to be in the same CSR, starting at bit 0. Verify
8930 * that this is true by checking the bit location of the start.
8931 */
8932 BUILD_BUG_ON(IS_SDMA_START % 64);
8933
8934 for (i = 0; i < dd->num_msix_entries; i++) {
8935 struct hfi1_msix_entry *me = &dd->msix_entries[i];
8936 const char *err_info;
8937 irq_handler_t handler;
Dean Luickf4f30031c2015-10-26 10:28:44 -04008938 irq_handler_t thread = NULL;
Mike Marciniszyn77241052015-07-30 15:17:43 -04008939 void *arg;
8940 int idx;
8941 struct hfi1_ctxtdata *rcd = NULL;
8942 struct sdma_engine *sde = NULL;
8943
8944 /* obtain the arguments to request_irq */
8945 if (first_general <= i && i < last_general) {
8946 idx = i - first_general;
8947 handler = general_interrupt;
8948 arg = dd;
8949 snprintf(me->name, sizeof(me->name),
8950 DRIVER_NAME"_%d", dd->unit);
8951 err_info = "general";
8952 } else if (first_sdma <= i && i < last_sdma) {
8953 idx = i - first_sdma;
8954 sde = &dd->per_sdma[idx];
8955 handler = sdma_interrupt;
8956 arg = sde;
8957 snprintf(me->name, sizeof(me->name),
8958 DRIVER_NAME"_%d sdma%d", dd->unit, idx);
8959 err_info = "sdma";
8960 remap_sdma_interrupts(dd, idx, i);
8961 } else if (first_rx <= i && i < last_rx) {
8962 idx = i - first_rx;
8963 rcd = dd->rcd[idx];
8964 /* no interrupt if no rcd */
8965 if (!rcd)
8966 continue;
8967 /*
8968 * Set the interrupt register and mask for this
8969 * context's interrupt.
8970 */
8971 rcd->ireg = (IS_RCVAVAIL_START+idx) / 64;
8972 rcd->imask = ((u64)1) <<
8973 ((IS_RCVAVAIL_START+idx) % 64);
8974 handler = receive_context_interrupt;
Dean Luickf4f30031c2015-10-26 10:28:44 -04008975 thread = receive_context_thread;
Mike Marciniszyn77241052015-07-30 15:17:43 -04008976 arg = rcd;
8977 snprintf(me->name, sizeof(me->name),
8978 DRIVER_NAME"_%d kctxt%d", dd->unit, idx);
8979 err_info = "receive context";
Amitoj Kaur Chawla66c09332015-11-01 16:18:18 +05308980 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
Mike Marciniszyn77241052015-07-30 15:17:43 -04008981 } else {
8982 /* not in our expected range - complain, then
8983 ignore it */
8984 dd_dev_err(dd,
8985 "Unexpected extra MSI-X interrupt %d\n", i);
8986 continue;
8987 }
8988 /* no argument, no interrupt */
8989 if (arg == NULL)
8990 continue;
8991 /* make sure the name is terminated */
8992 me->name[sizeof(me->name)-1] = 0;
8993
Dean Luickf4f30031c2015-10-26 10:28:44 -04008994 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
8995 me->name, arg);
Mike Marciniszyn77241052015-07-30 15:17:43 -04008996 if (ret) {
8997 dd_dev_err(dd,
8998 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
8999 err_info, me->msix.vector, idx, ret);
9000 return ret;
9001 }
9002 /*
9003 * assign arg after request_irq call, so it will be
9004 * cleaned up
9005 */
9006 me->arg = arg;
9007
9008 if (!zalloc_cpumask_var(
9009 &dd->msix_entries[i].mask,
9010 GFP_KERNEL))
9011 goto bail;
9012 if (handler == sdma_interrupt) {
9013 dd_dev_info(dd, "sdma engine %d cpu %d\n",
9014 sde->this_idx, sdma_cpu);
9015 cpumask_set_cpu(sdma_cpu, dd->msix_entries[i].mask);
9016 sdma_cpu = cpumask_next(sdma_cpu, def);
9017 if (sdma_cpu >= nr_cpu_ids)
9018 sdma_cpu = cpumask_first(def);
9019 } else if (handler == receive_context_interrupt) {
9020 dd_dev_info(dd, "rcv ctxt %d cpu %d\n",
9021 rcd->ctxt, rcv_cpu);
9022 cpumask_set_cpu(rcv_cpu, dd->msix_entries[i].mask);
9023 rcv_cpu = cpumask_next(rcv_cpu, rcv);
9024 if (rcv_cpu >= nr_cpu_ids)
9025 rcv_cpu = cpumask_first(rcv);
9026 } else {
9027 /* otherwise first def */
9028 dd_dev_info(dd, "%s cpu %d\n",
9029 err_info, cpumask_first(def));
9030 cpumask_set_cpu(
9031 cpumask_first(def), dd->msix_entries[i].mask);
9032 }
9033 irq_set_affinity_hint(
9034 dd->msix_entries[i].msix.vector,
9035 dd->msix_entries[i].mask);
9036 }
9037
9038out:
9039 free_cpumask_var(def);
9040 free_cpumask_var(rcv);
9041 return ret;
9042bail:
9043 ret = -ENOMEM;
9044 goto out;
9045}
9046
9047/*
9048 * Set the general handler to accept all interrupts, remap all
9049 * chip interrupts back to MSI-X 0.
9050 */
9051static void reset_interrupts(struct hfi1_devdata *dd)
9052{
9053 int i;
9054
9055 /* all interrupts handled by the general handler */
9056 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
9057 dd->gi_mask[i] = ~(u64)0;
9058
9059 /* all chip interrupts map to MSI-X 0 */
9060 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
9061 write_csr(dd, CCE_INT_MAP + (8*i), 0);
9062}
9063
9064static int set_up_interrupts(struct hfi1_devdata *dd)
9065{
9066 struct hfi1_msix_entry *entries;
9067 u32 total, request;
9068 int i, ret;
9069 int single_interrupt = 0; /* we expect to have all the interrupts */
9070
9071 /*
9072 * Interrupt count:
9073 * 1 general, "slow path" interrupt (includes the SDMA engines
9074 * slow source, SDMACleanupDone)
9075 * N interrupts - one per used SDMA engine
9076 * M interrupt - one per kernel receive context
9077 */
9078 total = 1 + dd->num_sdma + dd->n_krcv_queues;
9079
9080 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
9081 if (!entries) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04009082 ret = -ENOMEM;
9083 goto fail;
9084 }
9085 /* 1-1 MSI-X entry assignment */
9086 for (i = 0; i < total; i++)
9087 entries[i].msix.entry = i;
9088
9089 /* ask for MSI-X interrupts */
9090 request = total;
9091 request_msix(dd, &request, entries);
9092
9093 if (request == 0) {
9094 /* using INTx */
9095 /* dd->num_msix_entries already zero */
9096 kfree(entries);
9097 single_interrupt = 1;
9098 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
9099 } else {
9100 /* using MSI-X */
9101 dd->num_msix_entries = request;
9102 dd->msix_entries = entries;
9103
9104 if (request != total) {
9105 /* using MSI-X, with reduced interrupts */
9106 dd_dev_err(
9107 dd,
9108 "cannot handle reduced interrupt case, want %u, got %u\n",
9109 total, request);
9110 ret = -EINVAL;
9111 goto fail;
9112 }
9113 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
9114 }
9115
9116 /* mask all interrupts */
9117 set_intr_state(dd, 0);
9118 /* clear all pending interrupts */
9119 clear_all_interrupts(dd);
9120
9121 /* reset general handler mask, chip MSI-X mappings */
9122 reset_interrupts(dd);
9123
9124 if (single_interrupt)
9125 ret = request_intx_irq(dd);
9126 else
9127 ret = request_msix_irqs(dd);
9128 if (ret)
9129 goto fail;
9130
9131 return 0;
9132
9133fail:
9134 clean_up_interrupts(dd);
9135 return ret;
9136}
9137
9138/*
9139 * Set up context values in dd. Sets:
9140 *
9141 * num_rcv_contexts - number of contexts being used
9142 * n_krcv_queues - number of kernel contexts
9143 * first_user_ctxt - first non-kernel context in array of contexts
9144 * freectxts - number of free user contexts
9145 * num_send_contexts - number of PIO send contexts being used
9146 */
9147static int set_up_context_variables(struct hfi1_devdata *dd)
9148{
9149 int num_kernel_contexts;
9150 int num_user_contexts;
9151 int total_contexts;
9152 int ret;
9153 unsigned ngroups;
9154
9155 /*
9156 * Kernel contexts: (to be fixed later):
9157 * - min or 2 or 1 context/numa
9158 * - Context 0 - default/errors
9159 * - Context 1 - VL15
9160 */
9161 if (n_krcvqs)
9162 num_kernel_contexts = n_krcvqs + MIN_KERNEL_KCTXTS;
9163 else
9164 num_kernel_contexts = num_online_nodes();
9165 num_kernel_contexts =
9166 max_t(int, MIN_KERNEL_KCTXTS, num_kernel_contexts);
9167 /*
9168 * Every kernel receive context needs an ACK send context.
9169 * one send context is allocated for each VL{0-7} and VL15
9170 */
9171 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
9172 dd_dev_err(dd,
9173 "Reducing # kernel rcv contexts to: %d, from %d\n",
9174 (int)(dd->chip_send_contexts - num_vls - 1),
9175 (int)num_kernel_contexts);
9176 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
9177 }
9178 /*
9179 * User contexts: (to be fixed later)
9180 * - set to num_rcv_contexts if non-zero
9181 * - default to 1 user context per CPU
9182 */
9183 if (num_rcv_contexts)
9184 num_user_contexts = num_rcv_contexts;
9185 else
9186 num_user_contexts = num_online_cpus();
9187
9188 total_contexts = num_kernel_contexts + num_user_contexts;
9189
9190 /*
9191 * Adjust the counts given a global max.
9192 */
9193 if (total_contexts > dd->chip_rcv_contexts) {
9194 dd_dev_err(dd,
9195 "Reducing # user receive contexts to: %d, from %d\n",
9196 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
9197 (int)num_user_contexts);
9198 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
9199 /* recalculate */
9200 total_contexts = num_kernel_contexts + num_user_contexts;
9201 }
9202
9203 /* the first N are kernel contexts, the rest are user contexts */
9204 dd->num_rcv_contexts = total_contexts;
9205 dd->n_krcv_queues = num_kernel_contexts;
9206 dd->first_user_ctxt = num_kernel_contexts;
9207 dd->freectxts = num_user_contexts;
9208 dd_dev_info(dd,
9209 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
9210 (int)dd->chip_rcv_contexts,
9211 (int)dd->num_rcv_contexts,
9212 (int)dd->n_krcv_queues,
9213 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
9214
9215 /*
9216 * Receive array allocation:
9217 * All RcvArray entries are divided into groups of 8. This
9218 * is required by the hardware and will speed up writes to
9219 * consecutive entries by using write-combining of the entire
9220 * cacheline.
9221 *
9222 * The number of groups are evenly divided among all contexts.
9223 * any left over groups will be given to the first N user
9224 * contexts.
9225 */
9226 dd->rcv_entries.group_size = RCV_INCREMENT;
9227 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
9228 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
9229 dd->rcv_entries.nctxt_extra = ngroups -
9230 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
9231 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
9232 dd->rcv_entries.ngroups,
9233 dd->rcv_entries.nctxt_extra);
9234 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
9235 MAX_EAGER_ENTRIES * 2) {
9236 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
9237 dd->rcv_entries.group_size;
9238 dd_dev_info(dd,
9239 "RcvArray group count too high, change to %u\n",
9240 dd->rcv_entries.ngroups);
9241 dd->rcv_entries.nctxt_extra = 0;
9242 }
9243 /*
9244 * PIO send contexts
9245 */
9246 ret = init_sc_pools_and_sizes(dd);
9247 if (ret >= 0) { /* success */
9248 dd->num_send_contexts = ret;
9249 dd_dev_info(
9250 dd,
9251 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d)\n",
9252 dd->chip_send_contexts,
9253 dd->num_send_contexts,
9254 dd->sc_sizes[SC_KERNEL].count,
9255 dd->sc_sizes[SC_ACK].count,
9256 dd->sc_sizes[SC_USER].count);
9257 ret = 0; /* success */
9258 }
9259
9260 return ret;
9261}
9262
9263/*
9264 * Set the device/port partition key table. The MAD code
9265 * will ensure that, at least, the partial management
9266 * partition key is present in the table.
9267 */
9268static void set_partition_keys(struct hfi1_pportdata *ppd)
9269{
9270 struct hfi1_devdata *dd = ppd->dd;
9271 u64 reg = 0;
9272 int i;
9273
9274 dd_dev_info(dd, "Setting partition keys\n");
9275 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
9276 reg |= (ppd->pkeys[i] &
9277 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
9278 ((i % 4) *
9279 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
9280 /* Each register holds 4 PKey values. */
9281 if ((i % 4) == 3) {
9282 write_csr(dd, RCV_PARTITION_KEY +
9283 ((i - 3) * 2), reg);
9284 reg = 0;
9285 }
9286 }
9287
9288 /* Always enable HW pkeys check when pkeys table is set */
9289 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
9290}
9291
9292/*
9293 * These CSRs and memories are uninitialized on reset and must be
9294 * written before reading to set the ECC/parity bits.
9295 *
9296 * NOTE: All user context CSRs that are not mmaped write-only
9297 * (e.g. the TID flows) must be initialized even if the driver never
9298 * reads them.
9299 */
9300static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
9301{
9302 int i, j;
9303
9304 /* CceIntMap */
9305 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
9306 write_csr(dd, CCE_INT_MAP+(8*i), 0);
9307
9308 /* SendCtxtCreditReturnAddr */
9309 for (i = 0; i < dd->chip_send_contexts; i++)
9310 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
9311
9312 /* PIO Send buffers */
9313 /* SDMA Send buffers */
9314 /* These are not normally read, and (presently) have no method
9315 to be read, so are not pre-initialized */
9316
9317 /* RcvHdrAddr */
9318 /* RcvHdrTailAddr */
9319 /* RcvTidFlowTable */
9320 for (i = 0; i < dd->chip_rcv_contexts; i++) {
9321 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
9322 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
9323 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
9324 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE+(8*j), 0);
9325 }
9326
9327 /* RcvArray */
9328 for (i = 0; i < dd->chip_rcv_array_count; i++)
9329 write_csr(dd, RCV_ARRAY + (8*i),
9330 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
9331
9332 /* RcvQPMapTable */
9333 for (i = 0; i < 32; i++)
9334 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
9335}
9336
9337/*
9338 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
9339 */
9340static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
9341 u64 ctrl_bits)
9342{
9343 unsigned long timeout;
9344 u64 reg;
9345
9346 /* is the condition present? */
9347 reg = read_csr(dd, CCE_STATUS);
9348 if ((reg & status_bits) == 0)
9349 return;
9350
9351 /* clear the condition */
9352 write_csr(dd, CCE_CTRL, ctrl_bits);
9353
9354 /* wait for the condition to clear */
9355 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
9356 while (1) {
9357 reg = read_csr(dd, CCE_STATUS);
9358 if ((reg & status_bits) == 0)
9359 return;
9360 if (time_after(jiffies, timeout)) {
9361 dd_dev_err(dd,
9362 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
9363 status_bits, reg & status_bits);
9364 return;
9365 }
9366 udelay(1);
9367 }
9368}
9369
9370/* set CCE CSRs to chip reset defaults */
9371static void reset_cce_csrs(struct hfi1_devdata *dd)
9372{
9373 int i;
9374
9375 /* CCE_REVISION read-only */
9376 /* CCE_REVISION2 read-only */
9377 /* CCE_CTRL - bits clear automatically */
9378 /* CCE_STATUS read-only, use CceCtrl to clear */
9379 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
9380 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
9381 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
9382 for (i = 0; i < CCE_NUM_SCRATCH; i++)
9383 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
9384 /* CCE_ERR_STATUS read-only */
9385 write_csr(dd, CCE_ERR_MASK, 0);
9386 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
9387 /* CCE_ERR_FORCE leave alone */
9388 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
9389 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
9390 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
9391 /* CCE_PCIE_CTRL leave alone */
9392 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
9393 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
9394 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
9395 CCE_MSIX_TABLE_UPPER_RESETCSR);
9396 }
9397 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
9398 /* CCE_MSIX_PBA read-only */
9399 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
9400 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
9401 }
9402 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
9403 write_csr(dd, CCE_INT_MAP, 0);
9404 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
9405 /* CCE_INT_STATUS read-only */
9406 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
9407 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
9408 /* CCE_INT_FORCE leave alone */
9409 /* CCE_INT_BLOCKED read-only */
9410 }
9411 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
9412 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
9413}
9414
9415/* set ASIC CSRs to chip reset defaults */
9416static void reset_asic_csrs(struct hfi1_devdata *dd)
9417{
Mike Marciniszyn77241052015-07-30 15:17:43 -04009418 int i;
9419
9420 /*
9421 * If the HFIs are shared between separate nodes or VMs,
9422 * then more will need to be done here. One idea is a module
9423 * parameter that returns early, letting the first power-on or
9424 * a known first load do the reset and blocking all others.
9425 */
9426
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009427 if (!(dd->flags & HFI1_DO_INIT_ASIC))
9428 return;
Mike Marciniszyn77241052015-07-30 15:17:43 -04009429
9430 if (dd->icode != ICODE_FPGA_EMULATION) {
9431 /* emulation does not have an SBus - leave these alone */
9432 /*
9433 * All writes to ASIC_CFG_SBUS_REQUEST do something.
9434 * Notes:
9435 * o The reset is not zero if aimed at the core. See the
9436 * SBus documentation for details.
9437 * o If the SBus firmware has been updated (e.g. by the BIOS),
9438 * will the reset revert that?
9439 */
9440 /* ASIC_CFG_SBUS_REQUEST leave alone */
9441 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
9442 }
9443 /* ASIC_SBUS_RESULT read-only */
9444 write_csr(dd, ASIC_STS_SBUS_COUNTERS, 0);
9445 for (i = 0; i < ASIC_NUM_SCRATCH; i++)
9446 write_csr(dd, ASIC_CFG_SCRATCH + (8 * i), 0);
9447 write_csr(dd, ASIC_CFG_MUTEX, 0); /* this will clear it */
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009448
9449 /* We might want to retain this state across FLR if we ever use it */
Mike Marciniszyn77241052015-07-30 15:17:43 -04009450 write_csr(dd, ASIC_CFG_DRV_STR, 0);
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009451
Jareer Abdel-Qader4ef98982015-11-06 20:07:00 -05009452 /* ASIC_CFG_THERM_POLL_EN leave alone */
Mike Marciniszyn77241052015-07-30 15:17:43 -04009453 /* ASIC_STS_THERM read-only */
9454 /* ASIC_CFG_RESET leave alone */
9455
9456 write_csr(dd, ASIC_PCIE_SD_HOST_CMD, 0);
9457 /* ASIC_PCIE_SD_HOST_STATUS read-only */
9458 write_csr(dd, ASIC_PCIE_SD_INTRPT_DATA_CODE, 0);
9459 write_csr(dd, ASIC_PCIE_SD_INTRPT_ENABLE, 0);
9460 /* ASIC_PCIE_SD_INTRPT_PROGRESS read-only */
9461 write_csr(dd, ASIC_PCIE_SD_INTRPT_STATUS, ~0ull); /* clear */
9462 /* ASIC_HFI0_PCIE_SD_INTRPT_RSPD_DATA read-only */
9463 /* ASIC_HFI1_PCIE_SD_INTRPT_RSPD_DATA read-only */
9464 for (i = 0; i < 16; i++)
9465 write_csr(dd, ASIC_PCIE_SD_INTRPT_LIST + (8 * i), 0);
9466
9467 /* ASIC_GPIO_IN read-only */
9468 write_csr(dd, ASIC_GPIO_OE, 0);
9469 write_csr(dd, ASIC_GPIO_INVERT, 0);
9470 write_csr(dd, ASIC_GPIO_OUT, 0);
9471 write_csr(dd, ASIC_GPIO_MASK, 0);
9472 /* ASIC_GPIO_STATUS read-only */
9473 write_csr(dd, ASIC_GPIO_CLEAR, ~0ull);
9474 /* ASIC_GPIO_FORCE leave alone */
9475
9476 /* ASIC_QSFP1_IN read-only */
9477 write_csr(dd, ASIC_QSFP1_OE, 0);
9478 write_csr(dd, ASIC_QSFP1_INVERT, 0);
9479 write_csr(dd, ASIC_QSFP1_OUT, 0);
9480 write_csr(dd, ASIC_QSFP1_MASK, 0);
9481 /* ASIC_QSFP1_STATUS read-only */
9482 write_csr(dd, ASIC_QSFP1_CLEAR, ~0ull);
9483 /* ASIC_QSFP1_FORCE leave alone */
9484
9485 /* ASIC_QSFP2_IN read-only */
9486 write_csr(dd, ASIC_QSFP2_OE, 0);
9487 write_csr(dd, ASIC_QSFP2_INVERT, 0);
9488 write_csr(dd, ASIC_QSFP2_OUT, 0);
9489 write_csr(dd, ASIC_QSFP2_MASK, 0);
9490 /* ASIC_QSFP2_STATUS read-only */
9491 write_csr(dd, ASIC_QSFP2_CLEAR, ~0ull);
9492 /* ASIC_QSFP2_FORCE leave alone */
9493
9494 write_csr(dd, ASIC_EEP_CTL_STAT, ASIC_EEP_CTL_STAT_RESETCSR);
9495 /* this also writes a NOP command, clearing paging mode */
9496 write_csr(dd, ASIC_EEP_ADDR_CMD, 0);
9497 write_csr(dd, ASIC_EEP_DATA, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009498}
9499
9500/* set MISC CSRs to chip reset defaults */
9501static void reset_misc_csrs(struct hfi1_devdata *dd)
9502{
9503 int i;
9504
9505 for (i = 0; i < 32; i++) {
9506 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
9507 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
9508 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
9509 }
9510 /* MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
9511 only be written 128-byte chunks */
9512 /* init RSA engine to clear lingering errors */
9513 write_csr(dd, MISC_CFG_RSA_CMD, 1);
9514 write_csr(dd, MISC_CFG_RSA_MU, 0);
9515 write_csr(dd, MISC_CFG_FW_CTRL, 0);
9516 /* MISC_STS_8051_DIGEST read-only */
9517 /* MISC_STS_SBM_DIGEST read-only */
9518 /* MISC_STS_PCIE_DIGEST read-only */
9519 /* MISC_STS_FAB_DIGEST read-only */
9520 /* MISC_ERR_STATUS read-only */
9521 write_csr(dd, MISC_ERR_MASK, 0);
9522 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
9523 /* MISC_ERR_FORCE leave alone */
9524}
9525
9526/* set TXE CSRs to chip reset defaults */
9527static void reset_txe_csrs(struct hfi1_devdata *dd)
9528{
9529 int i;
9530
9531 /*
9532 * TXE Kernel CSRs
9533 */
9534 write_csr(dd, SEND_CTRL, 0);
9535 __cm_reset(dd, 0); /* reset CM internal state */
9536 /* SEND_CONTEXTS read-only */
9537 /* SEND_DMA_ENGINES read-only */
9538 /* SEND_PIO_MEM_SIZE read-only */
9539 /* SEND_DMA_MEM_SIZE read-only */
9540 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
9541 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
9542 /* SEND_PIO_ERR_STATUS read-only */
9543 write_csr(dd, SEND_PIO_ERR_MASK, 0);
9544 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
9545 /* SEND_PIO_ERR_FORCE leave alone */
9546 /* SEND_DMA_ERR_STATUS read-only */
9547 write_csr(dd, SEND_DMA_ERR_MASK, 0);
9548 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
9549 /* SEND_DMA_ERR_FORCE leave alone */
9550 /* SEND_EGRESS_ERR_STATUS read-only */
9551 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
9552 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
9553 /* SEND_EGRESS_ERR_FORCE leave alone */
9554 write_csr(dd, SEND_BTH_QP, 0);
9555 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
9556 write_csr(dd, SEND_SC2VLT0, 0);
9557 write_csr(dd, SEND_SC2VLT1, 0);
9558 write_csr(dd, SEND_SC2VLT2, 0);
9559 write_csr(dd, SEND_SC2VLT3, 0);
9560 write_csr(dd, SEND_LEN_CHECK0, 0);
9561 write_csr(dd, SEND_LEN_CHECK1, 0);
9562 /* SEND_ERR_STATUS read-only */
9563 write_csr(dd, SEND_ERR_MASK, 0);
9564 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
9565 /* SEND_ERR_FORCE read-only */
9566 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
9567 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8*i), 0);
9568 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
9569 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8*i), 0);
9570 for (i = 0; i < dd->chip_send_contexts/NUM_CONTEXTS_PER_SET; i++)
9571 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8*i), 0);
9572 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
9573 write_csr(dd, SEND_COUNTER_ARRAY32 + (8*i), 0);
9574 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
9575 write_csr(dd, SEND_COUNTER_ARRAY64 + (8*i), 0);
9576 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
9577 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
9578 SEND_CM_GLOBAL_CREDIT_RESETCSR);
9579 /* SEND_CM_CREDIT_USED_STATUS read-only */
9580 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
9581 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
9582 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
9583 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
9584 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
9585 for (i = 0; i < TXE_NUM_DATA_VL; i++)
9586 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
9587 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
9588 /* SEND_CM_CREDIT_USED_VL read-only */
9589 /* SEND_CM_CREDIT_USED_VL15 read-only */
9590 /* SEND_EGRESS_CTXT_STATUS read-only */
9591 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
9592 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
9593 /* SEND_EGRESS_ERR_INFO read-only */
9594 /* SEND_EGRESS_ERR_SOURCE read-only */
9595
9596 /*
9597 * TXE Per-Context CSRs
9598 */
9599 for (i = 0; i < dd->chip_send_contexts; i++) {
9600 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
9601 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
9602 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
9603 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
9604 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
9605 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
9606 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
9607 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
9608 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
9609 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
9610 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
9611 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
9612 }
9613
9614 /*
9615 * TXE Per-SDMA CSRs
9616 */
9617 for (i = 0; i < dd->chip_sdma_engines; i++) {
9618 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
9619 /* SEND_DMA_STATUS read-only */
9620 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
9621 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
9622 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
9623 /* SEND_DMA_HEAD read-only */
9624 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
9625 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
9626 /* SEND_DMA_IDLE_CNT read-only */
9627 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
9628 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
9629 /* SEND_DMA_DESC_FETCHED_CNT read-only */
9630 /* SEND_DMA_ENG_ERR_STATUS read-only */
9631 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
9632 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
9633 /* SEND_DMA_ENG_ERR_FORCE leave alone */
9634 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
9635 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
9636 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
9637 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
9638 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
9639 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
9640 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
9641 }
9642}
9643
9644/*
9645 * Expect on entry:
9646 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
9647 */
9648static void init_rbufs(struct hfi1_devdata *dd)
9649{
9650 u64 reg;
9651 int count;
9652
9653 /*
9654 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
9655 * clear.
9656 */
9657 count = 0;
9658 while (1) {
9659 reg = read_csr(dd, RCV_STATUS);
9660 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
9661 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
9662 break;
9663 /*
9664 * Give up after 1ms - maximum wait time.
9665 *
9666 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
9667 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
9668 * 148 KB / (66% * 250MB/s) = 920us
9669 */
9670 if (count++ > 500) {
9671 dd_dev_err(dd,
9672 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
9673 __func__, reg);
9674 break;
9675 }
9676 udelay(2); /* do not busy-wait the CSR */
9677 }
9678
9679 /* start the init - expect RcvCtrl to be 0 */
9680 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
9681
9682 /*
9683 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
9684 * period after the write before RcvStatus.RxRbufInitDone is valid.
9685 * The delay in the first run through the loop below is sufficient and
9686 * required before the first read of RcvStatus.RxRbufInintDone.
9687 */
9688 read_csr(dd, RCV_CTRL);
9689
9690 /* wait for the init to finish */
9691 count = 0;
9692 while (1) {
9693 /* delay is required first time through - see above */
9694 udelay(2); /* do not busy-wait the CSR */
9695 reg = read_csr(dd, RCV_STATUS);
9696 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
9697 break;
9698
9699 /* give up after 100us - slowest possible at 33MHz is 73us */
9700 if (count++ > 50) {
9701 dd_dev_err(dd,
9702 "%s: RcvStatus.RxRbufInit not set, continuing\n",
9703 __func__);
9704 break;
9705 }
9706 }
9707}
9708
9709/* set RXE CSRs to chip reset defaults */
9710static void reset_rxe_csrs(struct hfi1_devdata *dd)
9711{
9712 int i, j;
9713
9714 /*
9715 * RXE Kernel CSRs
9716 */
9717 write_csr(dd, RCV_CTRL, 0);
9718 init_rbufs(dd);
9719 /* RCV_STATUS read-only */
9720 /* RCV_CONTEXTS read-only */
9721 /* RCV_ARRAY_CNT read-only */
9722 /* RCV_BUF_SIZE read-only */
9723 write_csr(dd, RCV_BTH_QP, 0);
9724 write_csr(dd, RCV_MULTICAST, 0);
9725 write_csr(dd, RCV_BYPASS, 0);
9726 write_csr(dd, RCV_VL15, 0);
9727 /* this is a clear-down */
9728 write_csr(dd, RCV_ERR_INFO,
9729 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
9730 /* RCV_ERR_STATUS read-only */
9731 write_csr(dd, RCV_ERR_MASK, 0);
9732 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
9733 /* RCV_ERR_FORCE leave alone */
9734 for (i = 0; i < 32; i++)
9735 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
9736 for (i = 0; i < 4; i++)
9737 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
9738 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
9739 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
9740 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
9741 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
9742 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
9743 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
9744 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
9745 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
9746 }
9747 for (i = 0; i < 32; i++)
9748 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
9749
9750 /*
9751 * RXE Kernel and User Per-Context CSRs
9752 */
9753 for (i = 0; i < dd->chip_rcv_contexts; i++) {
9754 /* kernel */
9755 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
9756 /* RCV_CTXT_STATUS read-only */
9757 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
9758 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
9759 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
9760 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
9761 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
9762 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
9763 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
9764 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
9765 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
9766 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
9767
9768 /* user */
9769 /* RCV_HDR_TAIL read-only */
9770 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
9771 /* RCV_EGR_INDEX_TAIL read-only */
9772 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
9773 /* RCV_EGR_OFFSET_TAIL read-only */
9774 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
9775 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j),
9776 0);
9777 }
9778 }
9779}
9780
9781/*
9782 * Set sc2vl tables.
9783 *
9784 * They power on to zeros, so to avoid send context errors
9785 * they need to be set:
9786 *
9787 * SC 0-7 -> VL 0-7 (respectively)
9788 * SC 15 -> VL 15
9789 * otherwise
9790 * -> VL 0
9791 */
9792static void init_sc2vl_tables(struct hfi1_devdata *dd)
9793{
9794 int i;
9795 /* init per architecture spec, constrained by hardware capability */
9796
9797 /* HFI maps sent packets */
9798 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
9799 0,
9800 0, 0, 1, 1,
9801 2, 2, 3, 3,
9802 4, 4, 5, 5,
9803 6, 6, 7, 7));
9804 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
9805 1,
9806 8, 0, 9, 0,
9807 10, 0, 11, 0,
9808 12, 0, 13, 0,
9809 14, 0, 15, 15));
9810 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
9811 2,
9812 16, 0, 17, 0,
9813 18, 0, 19, 0,
9814 20, 0, 21, 0,
9815 22, 0, 23, 0));
9816 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
9817 3,
9818 24, 0, 25, 0,
9819 26, 0, 27, 0,
9820 28, 0, 29, 0,
9821 30, 0, 31, 0));
9822
9823 /* DC maps received packets */
9824 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
9825 15_0,
9826 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
9827 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
9828 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
9829 31_16,
9830 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
9831 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
9832
9833 /* initialize the cached sc2vl values consistently with h/w */
9834 for (i = 0; i < 32; i++) {
9835 if (i < 8 || i == 15)
9836 *((u8 *)(dd->sc2vl) + i) = (u8)i;
9837 else
9838 *((u8 *)(dd->sc2vl) + i) = 0;
9839 }
9840}
9841
9842/*
9843 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
9844 * depend on the chip going through a power-on reset - a driver may be loaded
9845 * and unloaded many times.
9846 *
9847 * Do not write any CSR values to the chip in this routine - there may be
9848 * a reset following the (possible) FLR in this routine.
9849 *
9850 */
9851static void init_chip(struct hfi1_devdata *dd)
9852{
9853 int i;
9854
9855 /*
9856 * Put the HFI CSRs in a known state.
9857 * Combine this with a DC reset.
9858 *
9859 * Stop the device from doing anything while we do a
9860 * reset. We know there are no other active users of
9861 * the device since we are now in charge. Turn off
9862 * off all outbound and inbound traffic and make sure
9863 * the device does not generate any interrupts.
9864 */
9865
9866 /* disable send contexts and SDMA engines */
9867 write_csr(dd, SEND_CTRL, 0);
9868 for (i = 0; i < dd->chip_send_contexts; i++)
9869 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
9870 for (i = 0; i < dd->chip_sdma_engines; i++)
9871 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
9872 /* disable port (turn off RXE inbound traffic) and contexts */
9873 write_csr(dd, RCV_CTRL, 0);
9874 for (i = 0; i < dd->chip_rcv_contexts; i++)
9875 write_csr(dd, RCV_CTXT_CTRL, 0);
9876 /* mask all interrupt sources */
9877 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
9878 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
9879
9880 /*
9881 * DC Reset: do a full DC reset before the register clear.
9882 * A recommended length of time to hold is one CSR read,
9883 * so reread the CceDcCtrl. Then, hold the DC in reset
9884 * across the clear.
9885 */
9886 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
9887 (void) read_csr(dd, CCE_DC_CTRL);
9888
9889 if (use_flr) {
9890 /*
9891 * A FLR will reset the SPC core and part of the PCIe.
9892 * The parts that need to be restored have already been
9893 * saved.
9894 */
9895 dd_dev_info(dd, "Resetting CSRs with FLR\n");
9896
9897 /* do the FLR, the DC reset will remain */
9898 hfi1_pcie_flr(dd);
9899
9900 /* restore command and BARs */
9901 restore_pci_variables(dd);
9902
9903 if (is_a0(dd)) {
9904 dd_dev_info(dd, "Resetting CSRs with FLR\n");
9905 hfi1_pcie_flr(dd);
9906 restore_pci_variables(dd);
9907 }
9908
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009909 reset_asic_csrs(dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009910 } else {
9911 dd_dev_info(dd, "Resetting CSRs with writes\n");
9912 reset_cce_csrs(dd);
9913 reset_txe_csrs(dd);
9914 reset_rxe_csrs(dd);
9915 reset_asic_csrs(dd);
9916 reset_misc_csrs(dd);
9917 }
9918 /* clear the DC reset */
9919 write_csr(dd, CCE_DC_CTRL, 0);
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009920
Mike Marciniszyn77241052015-07-30 15:17:43 -04009921 /* Set the LED off */
9922 if (is_a0(dd))
9923 setextled(dd, 0);
9924 /*
9925 * Clear the QSFP reset.
Easwar Hariharan72a67ba2015-11-06 20:06:57 -05009926 * An FLR enforces a 0 on all out pins. The driver does not touch
Mike Marciniszyn77241052015-07-30 15:17:43 -04009927 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
Easwar Hariharan72a67ba2015-11-06 20:06:57 -05009928 * anything plugged constantly in reset, if it pays attention
Mike Marciniszyn77241052015-07-30 15:17:43 -04009929 * to RESET_N.
Easwar Hariharan72a67ba2015-11-06 20:06:57 -05009930 * Prime examples of this are optical cables. Set all pins high.
Mike Marciniszyn77241052015-07-30 15:17:43 -04009931 * I2CCLK and I2CDAT will change per direction, and INT_N and
9932 * MODPRS_N are input only and their value is ignored.
9933 */
Easwar Hariharan72a67ba2015-11-06 20:06:57 -05009934 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
9935 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009936}
9937
9938static void init_early_variables(struct hfi1_devdata *dd)
9939{
9940 int i;
9941
9942 /* assign link credit variables */
9943 dd->vau = CM_VAU;
9944 dd->link_credits = CM_GLOBAL_CREDITS;
9945 if (is_a0(dd))
9946 dd->link_credits--;
9947 dd->vcu = cu_to_vcu(hfi1_cu);
9948 /* enough room for 8 MAD packets plus header - 17K */
9949 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
9950 if (dd->vl15_init > dd->link_credits)
9951 dd->vl15_init = dd->link_credits;
9952
9953 write_uninitialized_csrs_and_memories(dd);
9954
9955 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
9956 for (i = 0; i < dd->num_pports; i++) {
9957 struct hfi1_pportdata *ppd = &dd->pport[i];
9958
9959 set_partition_keys(ppd);
9960 }
9961 init_sc2vl_tables(dd);
9962}
9963
9964static void init_kdeth_qp(struct hfi1_devdata *dd)
9965{
9966 /* user changed the KDETH_QP */
9967 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
9968 /* out of range or illegal value */
9969 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
9970 kdeth_qp = 0;
9971 }
9972 if (kdeth_qp == 0) /* not set, or failed range check */
9973 kdeth_qp = DEFAULT_KDETH_QP;
9974
9975 write_csr(dd, SEND_BTH_QP,
9976 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK)
9977 << SEND_BTH_QP_KDETH_QP_SHIFT);
9978
9979 write_csr(dd, RCV_BTH_QP,
9980 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK)
9981 << RCV_BTH_QP_KDETH_QP_SHIFT);
9982}
9983
9984/**
9985 * init_qpmap_table
9986 * @dd - device data
9987 * @first_ctxt - first context
9988 * @last_ctxt - first context
9989 *
9990 * This return sets the qpn mapping table that
9991 * is indexed by qpn[8:1].
9992 *
9993 * The routine will round robin the 256 settings
9994 * from first_ctxt to last_ctxt.
9995 *
9996 * The first/last looks ahead to having specialized
9997 * receive contexts for mgmt and bypass. Normal
9998 * verbs traffic will assumed to be on a range
9999 * of receive contexts.
10000 */
10001static void init_qpmap_table(struct hfi1_devdata *dd,
10002 u32 first_ctxt,
10003 u32 last_ctxt)
10004{
10005 u64 reg = 0;
10006 u64 regno = RCV_QP_MAP_TABLE;
10007 int i;
10008 u64 ctxt = first_ctxt;
10009
10010 for (i = 0; i < 256;) {
10011 if (ctxt == VL15CTXT) {
10012 ctxt++;
10013 if (ctxt > last_ctxt)
10014 ctxt = first_ctxt;
10015 continue;
10016 }
10017 reg |= ctxt << (8 * (i % 8));
10018 i++;
10019 ctxt++;
10020 if (ctxt > last_ctxt)
10021 ctxt = first_ctxt;
10022 if (i % 8 == 0) {
10023 write_csr(dd, regno, reg);
10024 reg = 0;
10025 regno += 8;
10026 }
10027 }
10028 if (i % 8)
10029 write_csr(dd, regno, reg);
10030
10031 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
10032 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
10033}
10034
10035/**
10036 * init_qos - init RX qos
10037 * @dd - device data
10038 * @first_context
10039 *
10040 * This routine initializes Rule 0 and the
10041 * RSM map table to implement qos.
10042 *
10043 * If all of the limit tests succeed,
10044 * qos is applied based on the array
10045 * interpretation of krcvqs where
10046 * entry 0 is VL0.
10047 *
10048 * The number of vl bits (n) and the number of qpn
10049 * bits (m) are computed to feed both the RSM map table
10050 * and the single rule.
10051 *
10052 */
10053static void init_qos(struct hfi1_devdata *dd, u32 first_ctxt)
10054{
10055 u8 max_by_vl = 0;
10056 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
10057 u64 *rsmmap;
10058 u64 reg;
10059 u8 rxcontext = is_a0(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
10060
10061 /* validate */
10062 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
10063 num_vls == 1 ||
10064 krcvqsset <= 1)
10065 goto bail;
10066 for (i = 0; i < min_t(unsigned, num_vls, krcvqsset); i++)
10067 if (krcvqs[i] > max_by_vl)
10068 max_by_vl = krcvqs[i];
10069 if (max_by_vl > 32)
10070 goto bail;
10071 qpns_per_vl = __roundup_pow_of_two(max_by_vl);
10072 /* determine bits vl */
10073 n = ilog2(num_vls);
10074 /* determine bits for qpn */
10075 m = ilog2(qpns_per_vl);
10076 if ((m + n) > 7)
10077 goto bail;
10078 if (num_vls * qpns_per_vl > dd->chip_rcv_contexts)
10079 goto bail;
10080 rsmmap = kmalloc_array(NUM_MAP_REGS, sizeof(u64), GFP_KERNEL);
10081 memset(rsmmap, rxcontext, NUM_MAP_REGS * sizeof(u64));
10082 /* init the local copy of the table */
10083 for (i = 0, ctxt = first_ctxt; i < num_vls; i++) {
10084 unsigned tctxt;
10085
10086 for (qpn = 0, tctxt = ctxt;
10087 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
10088 unsigned idx, regoff, regidx;
10089
10090 /* generate index <= 128 */
10091 idx = (qpn << n) ^ i;
10092 regoff = (idx % 8) * 8;
10093 regidx = idx / 8;
10094 reg = rsmmap[regidx];
10095 /* replace 0xff with context number */
10096 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
10097 << regoff);
10098 reg |= (u64)(tctxt++) << regoff;
10099 rsmmap[regidx] = reg;
10100 if (tctxt == ctxt + krcvqs[i])
10101 tctxt = ctxt;
10102 }
10103 ctxt += krcvqs[i];
10104 }
10105 /* flush cached copies to chip */
10106 for (i = 0; i < NUM_MAP_REGS; i++)
10107 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rsmmap[i]);
10108 /* add rule0 */
10109 write_csr(dd, RCV_RSM_CFG /* + (8 * 0) */,
10110 RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_MASK
10111 << RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_SHIFT |
10112 2ull << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
10113 write_csr(dd, RCV_RSM_SELECT /* + (8 * 0) */,
10114 LRH_BTH_MATCH_OFFSET
10115 << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
10116 LRH_SC_MATCH_OFFSET << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
10117 LRH_SC_SELECT_OFFSET << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
10118 ((u64)n) << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
10119 QPN_SELECT_OFFSET << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
10120 ((u64)m + (u64)n) << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
10121 write_csr(dd, RCV_RSM_MATCH /* + (8 * 0) */,
10122 LRH_BTH_MASK << RCV_RSM_MATCH_MASK1_SHIFT |
10123 LRH_BTH_VALUE << RCV_RSM_MATCH_VALUE1_SHIFT |
10124 LRH_SC_MASK << RCV_RSM_MATCH_MASK2_SHIFT |
10125 LRH_SC_VALUE << RCV_RSM_MATCH_VALUE2_SHIFT);
10126 /* Enable RSM */
10127 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
10128 kfree(rsmmap);
10129 /* map everything else (non-VL15) to context 0 */
10130 init_qpmap_table(
10131 dd,
10132 0,
10133 0);
10134 dd->qos_shift = n + 1;
10135 return;
10136bail:
10137 dd->qos_shift = 1;
10138 init_qpmap_table(
10139 dd,
10140 dd->n_krcv_queues > MIN_KERNEL_KCTXTS ? MIN_KERNEL_KCTXTS : 0,
10141 dd->n_krcv_queues - 1);
10142}
10143
10144static void init_rxe(struct hfi1_devdata *dd)
10145{
10146 /* enable all receive errors */
10147 write_csr(dd, RCV_ERR_MASK, ~0ull);
10148 /* setup QPN map table - start where VL15 context leaves off */
10149 init_qos(
10150 dd,
10151 dd->n_krcv_queues > MIN_KERNEL_KCTXTS ? MIN_KERNEL_KCTXTS : 0);
10152 /*
10153 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
10154 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
10155 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
10156 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
10157 * Max_PayLoad_Size set to its minimum of 128.
10158 *
10159 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
10160 * (64 bytes). Max_Payload_Size is possibly modified upward in
10161 * tune_pcie_caps() which is called after this routine.
10162 */
10163}
10164
10165static void init_other(struct hfi1_devdata *dd)
10166{
10167 /* enable all CCE errors */
10168 write_csr(dd, CCE_ERR_MASK, ~0ull);
10169 /* enable *some* Misc errors */
10170 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
10171 /* enable all DC errors, except LCB */
10172 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
10173 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
10174}
10175
10176/*
10177 * Fill out the given AU table using the given CU. A CU is defined in terms
10178 * AUs. The table is a an encoding: given the index, how many AUs does that
10179 * represent?
10180 *
10181 * NOTE: Assumes that the register layout is the same for the
10182 * local and remote tables.
10183 */
10184static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
10185 u32 csr0to3, u32 csr4to7)
10186{
10187 write_csr(dd, csr0to3,
10188 0ull <<
10189 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT
10190 | 1ull <<
10191 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT
10192 | 2ull * cu <<
10193 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT
10194 | 4ull * cu <<
10195 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
10196 write_csr(dd, csr4to7,
10197 8ull * cu <<
10198 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT
10199 | 16ull * cu <<
10200 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT
10201 | 32ull * cu <<
10202 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT
10203 | 64ull * cu <<
10204 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
10205
10206}
10207
10208static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
10209{
10210 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
10211 SEND_CM_LOCAL_AU_TABLE4_TO7);
10212}
10213
10214void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
10215{
10216 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
10217 SEND_CM_REMOTE_AU_TABLE4_TO7);
10218}
10219
10220static void init_txe(struct hfi1_devdata *dd)
10221{
10222 int i;
10223
10224 /* enable all PIO, SDMA, general, and Egress errors */
10225 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
10226 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
10227 write_csr(dd, SEND_ERR_MASK, ~0ull);
10228 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
10229
10230 /* enable all per-context and per-SDMA engine errors */
10231 for (i = 0; i < dd->chip_send_contexts; i++)
10232 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
10233 for (i = 0; i < dd->chip_sdma_engines; i++)
10234 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
10235
10236 /* set the local CU to AU mapping */
10237 assign_local_cm_au_table(dd, dd->vcu);
10238
10239 /*
10240 * Set reasonable default for Credit Return Timer
10241 * Don't set on Simulator - causes it to choke.
10242 */
10243 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
10244 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
10245}
10246
10247int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
10248{
10249 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
10250 unsigned sctxt;
10251 int ret = 0;
10252 u64 reg;
10253
10254 if (!rcd || !rcd->sc) {
10255 ret = -EINVAL;
10256 goto done;
10257 }
10258 sctxt = rcd->sc->hw_context;
10259 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
10260 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
10261 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
10262 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
10263 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
10264 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
10265 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
10266 /*
10267 * Enable send-side J_KEY integrity check, unless this is A0 h/w
10268 * (due to A0 erratum).
10269 */
10270 if (!is_a0(dd)) {
10271 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10272 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
10273 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10274 }
10275
10276 /* Enable J_KEY check on receive context. */
10277 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
10278 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
10279 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
10280 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
10281done:
10282 return ret;
10283}
10284
10285int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
10286{
10287 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
10288 unsigned sctxt;
10289 int ret = 0;
10290 u64 reg;
10291
10292 if (!rcd || !rcd->sc) {
10293 ret = -EINVAL;
10294 goto done;
10295 }
10296 sctxt = rcd->sc->hw_context;
10297 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
10298 /*
10299 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
10300 * This check would not have been enabled for A0 h/w, see
10301 * set_ctxt_jkey().
10302 */
10303 if (!is_a0(dd)) {
10304 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10305 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
10306 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10307 }
10308 /* Turn off the J_KEY on the receive side */
10309 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
10310done:
10311 return ret;
10312}
10313
10314int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
10315{
10316 struct hfi1_ctxtdata *rcd;
10317 unsigned sctxt;
10318 int ret = 0;
10319 u64 reg;
10320
10321 if (ctxt < dd->num_rcv_contexts)
10322 rcd = dd->rcd[ctxt];
10323 else {
10324 ret = -EINVAL;
10325 goto done;
10326 }
10327 if (!rcd || !rcd->sc) {
10328 ret = -EINVAL;
10329 goto done;
10330 }
10331 sctxt = rcd->sc->hw_context;
10332 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
10333 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
10334 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
10335 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10336 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
10337 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10338done:
10339 return ret;
10340}
10341
10342int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
10343{
10344 struct hfi1_ctxtdata *rcd;
10345 unsigned sctxt;
10346 int ret = 0;
10347 u64 reg;
10348
10349 if (ctxt < dd->num_rcv_contexts)
10350 rcd = dd->rcd[ctxt];
10351 else {
10352 ret = -EINVAL;
10353 goto done;
10354 }
10355 if (!rcd || !rcd->sc) {
10356 ret = -EINVAL;
10357 goto done;
10358 }
10359 sctxt = rcd->sc->hw_context;
10360 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10361 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
10362 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10363 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
10364done:
10365 return ret;
10366}
10367
10368/*
10369 * Start doing the clean up the the chip. Our clean up happens in multiple
10370 * stages and this is just the first.
10371 */
10372void hfi1_start_cleanup(struct hfi1_devdata *dd)
10373{
10374 free_cntrs(dd);
10375 free_rcverr(dd);
10376 clean_up_interrupts(dd);
10377}
10378
10379#define HFI_BASE_GUID(dev) \
10380 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
10381
10382/*
10383 * Certain chip functions need to be initialized only once per asic
10384 * instead of per-device. This function finds the peer device and
10385 * checks whether that chip initialization needs to be done by this
10386 * device.
10387 */
10388static void asic_should_init(struct hfi1_devdata *dd)
10389{
10390 unsigned long flags;
10391 struct hfi1_devdata *tmp, *peer = NULL;
10392
10393 spin_lock_irqsave(&hfi1_devs_lock, flags);
10394 /* Find our peer device */
10395 list_for_each_entry(tmp, &hfi1_dev_list, list) {
10396 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
10397 dd->unit != tmp->unit) {
10398 peer = tmp;
10399 break;
10400 }
10401 }
10402
10403 /*
10404 * "Claim" the ASIC for initialization if it hasn't been
10405 " "claimed" yet.
10406 */
10407 if (!peer || !(peer->flags & HFI1_DO_INIT_ASIC))
10408 dd->flags |= HFI1_DO_INIT_ASIC;
10409 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
10410}
10411
10412/**
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040010413 * Allocate and initialize the device structure for the hfi.
Mike Marciniszyn77241052015-07-30 15:17:43 -040010414 * @dev: the pci_dev for hfi1_ib device
10415 * @ent: pci_device_id struct for this dev
10416 *
10417 * Also allocates, initializes, and returns the devdata struct for this
10418 * device instance
10419 *
10420 * This is global, and is called directly at init to set up the
10421 * chip-specific function pointers for later use.
10422 */
10423struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
10424 const struct pci_device_id *ent)
10425{
10426 struct hfi1_devdata *dd;
10427 struct hfi1_pportdata *ppd;
10428 u64 reg;
10429 int i, ret;
10430 static const char * const inames[] = { /* implementation names */
10431 "RTL silicon",
10432 "RTL VCS simulation",
10433 "RTL FPGA emulation",
10434 "Functional simulator"
10435 };
10436
10437 dd = hfi1_alloc_devdata(pdev,
10438 NUM_IB_PORTS * sizeof(struct hfi1_pportdata));
10439 if (IS_ERR(dd))
10440 goto bail;
10441 ppd = dd->pport;
10442 for (i = 0; i < dd->num_pports; i++, ppd++) {
10443 int vl;
10444 /* init common fields */
10445 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
10446 /* DC supports 4 link widths */
10447 ppd->link_width_supported =
10448 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
10449 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
10450 ppd->link_width_downgrade_supported =
10451 ppd->link_width_supported;
10452 /* start out enabling only 4X */
10453 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
10454 ppd->link_width_downgrade_enabled =
10455 ppd->link_width_downgrade_supported;
10456 /* link width active is 0 when link is down */
10457 /* link width downgrade active is 0 when link is down */
10458
10459 if (num_vls < HFI1_MIN_VLS_SUPPORTED
10460 || num_vls > HFI1_MAX_VLS_SUPPORTED) {
10461 hfi1_early_err(&pdev->dev,
10462 "Invalid num_vls %u, using %u VLs\n",
10463 num_vls, HFI1_MAX_VLS_SUPPORTED);
10464 num_vls = HFI1_MAX_VLS_SUPPORTED;
10465 }
10466 ppd->vls_supported = num_vls;
10467 ppd->vls_operational = ppd->vls_supported;
10468 /* Set the default MTU. */
10469 for (vl = 0; vl < num_vls; vl++)
10470 dd->vld[vl].mtu = hfi1_max_mtu;
10471 dd->vld[15].mtu = MAX_MAD_PACKET;
10472 /*
10473 * Set the initial values to reasonable default, will be set
10474 * for real when link is up.
10475 */
10476 ppd->lstate = IB_PORT_DOWN;
10477 ppd->overrun_threshold = 0x4;
10478 ppd->phy_error_threshold = 0xf;
10479 ppd->port_crc_mode_enabled = link_crc_mask;
10480 /* initialize supported LTP CRC mode */
10481 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
10482 /* initialize enabled LTP CRC mode */
10483 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
10484 /* start in offline */
10485 ppd->host_link_state = HLS_DN_OFFLINE;
10486 init_vl_arb_caches(ppd);
10487 }
10488
10489 dd->link_default = HLS_DN_POLL;
10490
10491 /*
10492 * Do remaining PCIe setup and save PCIe values in dd.
10493 * Any error printing is already done by the init code.
10494 * On return, we have the chip mapped.
10495 */
10496 ret = hfi1_pcie_ddinit(dd, pdev, ent);
10497 if (ret < 0)
10498 goto bail_free;
10499
10500 /* verify that reads actually work, save revision for reset check */
10501 dd->revision = read_csr(dd, CCE_REVISION);
10502 if (dd->revision == ~(u64)0) {
10503 dd_dev_err(dd, "cannot read chip CSRs\n");
10504 ret = -EINVAL;
10505 goto bail_cleanup;
10506 }
10507 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
10508 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
10509 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
10510 & CCE_REVISION_CHIP_REV_MINOR_MASK;
10511
10512 /* obtain the hardware ID - NOT related to unit, which is a
10513 software enumeration */
10514 reg = read_csr(dd, CCE_REVISION2);
10515 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
10516 & CCE_REVISION2_HFI_ID_MASK;
10517 /* the variable size will remove unwanted bits */
10518 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
10519 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
10520 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
10521 dd->icode < ARRAY_SIZE(inames) ? inames[dd->icode] : "unknown",
10522 (int)dd->irev);
10523
10524 /* speeds the hardware can support */
10525 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
10526 /* speeds allowed to run at */
10527 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
10528 /* give a reasonable active value, will be set on link up */
10529 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
10530
10531 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
10532 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
10533 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
10534 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
10535 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
10536 /* fix up link widths for emulation _p */
10537 ppd = dd->pport;
10538 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
10539 ppd->link_width_supported =
10540 ppd->link_width_enabled =
10541 ppd->link_width_downgrade_supported =
10542 ppd->link_width_downgrade_enabled =
10543 OPA_LINK_WIDTH_1X;
10544 }
10545 /* insure num_vls isn't larger than number of sdma engines */
10546 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
10547 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
10548 num_vls, HFI1_MAX_VLS_SUPPORTED);
10549 ppd->vls_supported = num_vls = HFI1_MAX_VLS_SUPPORTED;
10550 ppd->vls_operational = ppd->vls_supported;
10551 }
10552
10553 /*
10554 * Convert the ns parameter to the 64 * cclocks used in the CSR.
10555 * Limit the max if larger than the field holds. If timeout is
10556 * non-zero, then the calculated field will be at least 1.
10557 *
10558 * Must be after icode is set up - the cclock rate depends
10559 * on knowing the hardware being used.
10560 */
10561 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
10562 if (dd->rcv_intr_timeout_csr >
10563 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
10564 dd->rcv_intr_timeout_csr =
10565 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
10566 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
10567 dd->rcv_intr_timeout_csr = 1;
10568
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040010569 /* needs to be done before we look for the peer device */
10570 read_guid(dd);
10571
10572 /* should this device init the ASIC block? */
10573 asic_should_init(dd);
10574
Mike Marciniszyn77241052015-07-30 15:17:43 -040010575 /* obtain chip sizes, reset chip CSRs */
10576 init_chip(dd);
10577
10578 /* read in the PCIe link speed information */
10579 ret = pcie_speeds(dd);
10580 if (ret)
10581 goto bail_cleanup;
10582
Mike Marciniszyn77241052015-07-30 15:17:43 -040010583 /* read in firmware */
10584 ret = hfi1_firmware_init(dd);
10585 if (ret)
10586 goto bail_cleanup;
10587
10588 /*
10589 * In general, the PCIe Gen3 transition must occur after the
10590 * chip has been idled (so it won't initiate any PCIe transactions
10591 * e.g. an interrupt) and before the driver changes any registers
10592 * (the transition will reset the registers).
10593 *
10594 * In particular, place this call after:
10595 * - init_chip() - the chip will not initiate any PCIe transactions
10596 * - pcie_speeds() - reads the current link speed
10597 * - hfi1_firmware_init() - the needed firmware is ready to be
10598 * downloaded
10599 */
10600 ret = do_pcie_gen3_transition(dd);
10601 if (ret)
10602 goto bail_cleanup;
10603
10604 /* start setting dd values and adjusting CSRs */
10605 init_early_variables(dd);
10606
10607 parse_platform_config(dd);
10608
10609 /* add board names as they are defined */
10610 dd->boardname = kmalloc(64, GFP_KERNEL);
10611 if (!dd->boardname)
10612 goto bail_cleanup;
10613 snprintf(dd->boardname, 64, "Board ID 0x%llx",
10614 dd->revision >> CCE_REVISION_BOARD_ID_LOWER_NIBBLE_SHIFT
10615 & CCE_REVISION_BOARD_ID_LOWER_NIBBLE_MASK);
10616
10617 snprintf(dd->boardversion, BOARD_VERS_MAX,
10618 "ChipABI %u.%u, %s, ChipRev %u.%u, SW Compat %llu\n",
10619 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
10620 dd->boardname,
10621 (u32)dd->majrev,
10622 (u32)dd->minrev,
10623 (dd->revision >> CCE_REVISION_SW_SHIFT)
10624 & CCE_REVISION_SW_MASK);
10625
10626 ret = set_up_context_variables(dd);
10627 if (ret)
10628 goto bail_cleanup;
10629
10630 /* set initial RXE CSRs */
10631 init_rxe(dd);
10632 /* set initial TXE CSRs */
10633 init_txe(dd);
10634 /* set initial non-RXE, non-TXE CSRs */
10635 init_other(dd);
10636 /* set up KDETH QP prefix in both RX and TX CSRs */
10637 init_kdeth_qp(dd);
10638
10639 /* send contexts must be set up before receive contexts */
10640 ret = init_send_contexts(dd);
10641 if (ret)
10642 goto bail_cleanup;
10643
10644 ret = hfi1_create_ctxts(dd);
10645 if (ret)
10646 goto bail_cleanup;
10647
10648 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
10649 /*
10650 * rcd[0] is guaranteed to be valid by this point. Also, all
10651 * context are using the same value, as per the module parameter.
10652 */
10653 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
10654
10655 ret = init_pervl_scs(dd);
10656 if (ret)
10657 goto bail_cleanup;
10658
10659 /* sdma init */
10660 for (i = 0; i < dd->num_pports; ++i) {
10661 ret = sdma_init(dd, i);
10662 if (ret)
10663 goto bail_cleanup;
10664 }
10665
10666 /* use contexts created by hfi1_create_ctxts */
10667 ret = set_up_interrupts(dd);
10668 if (ret)
10669 goto bail_cleanup;
10670
10671 /* set up LCB access - must be after set_up_interrupts() */
10672 init_lcb_access(dd);
10673
10674 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
10675 dd->base_guid & 0xFFFFFF);
10676
10677 dd->oui1 = dd->base_guid >> 56 & 0xFF;
10678 dd->oui2 = dd->base_guid >> 48 & 0xFF;
10679 dd->oui3 = dd->base_guid >> 40 & 0xFF;
10680
10681 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
10682 if (ret)
10683 goto bail_clear_intr;
10684 check_fabric_firmware_versions(dd);
10685
10686 thermal_init(dd);
10687
10688 ret = init_cntrs(dd);
10689 if (ret)
10690 goto bail_clear_intr;
10691
10692 ret = init_rcverr(dd);
10693 if (ret)
10694 goto bail_free_cntrs;
10695
10696 ret = eprom_init(dd);
10697 if (ret)
10698 goto bail_free_rcverr;
10699
10700 goto bail;
10701
10702bail_free_rcverr:
10703 free_rcverr(dd);
10704bail_free_cntrs:
10705 free_cntrs(dd);
10706bail_clear_intr:
10707 clean_up_interrupts(dd);
10708bail_cleanup:
10709 hfi1_pcie_ddcleanup(dd);
10710bail_free:
10711 hfi1_free_devdata(dd);
10712 dd = ERR_PTR(ret);
10713bail:
10714 return dd;
10715}
10716
10717static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
10718 u32 dw_len)
10719{
10720 u32 delta_cycles;
10721 u32 current_egress_rate = ppd->current_egress_rate;
10722 /* rates here are in units of 10^6 bits/sec */
10723
10724 if (desired_egress_rate == -1)
10725 return 0; /* shouldn't happen */
10726
10727 if (desired_egress_rate >= current_egress_rate)
10728 return 0; /* we can't help go faster, only slower */
10729
10730 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
10731 egress_cycles(dw_len * 4, current_egress_rate);
10732
10733 return (u16)delta_cycles;
10734}
10735
10736
10737/**
10738 * create_pbc - build a pbc for transmission
10739 * @flags: special case flags or-ed in built pbc
10740 * @srate: static rate
10741 * @vl: vl
10742 * @dwlen: dword length (header words + data words + pbc words)
10743 *
10744 * Create a PBC with the given flags, rate, VL, and length.
10745 *
10746 * NOTE: The PBC created will not insert any HCRC - all callers but one are
10747 * for verbs, which does not use this PSM feature. The lone other caller
10748 * is for the diagnostic interface which calls this if the user does not
10749 * supply their own PBC.
10750 */
10751u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
10752 u32 dw_len)
10753{
10754 u64 pbc, delay = 0;
10755
10756 if (unlikely(srate_mbs))
10757 delay = delay_cycles(ppd, srate_mbs, dw_len);
10758
10759 pbc = flags
10760 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
10761 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
10762 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
10763 | (dw_len & PBC_LENGTH_DWS_MASK)
10764 << PBC_LENGTH_DWS_SHIFT;
10765
10766 return pbc;
10767}
10768
10769#define SBUS_THERMAL 0x4f
10770#define SBUS_THERM_MONITOR_MODE 0x1
10771
10772#define THERM_FAILURE(dev, ret, reason) \
10773 dd_dev_err((dd), \
10774 "Thermal sensor initialization failed: %s (%d)\n", \
10775 (reason), (ret))
10776
10777/*
10778 * Initialize the Avago Thermal sensor.
10779 *
10780 * After initialization, enable polling of thermal sensor through
10781 * SBus interface. In order for this to work, the SBus Master
10782 * firmware has to be loaded due to the fact that the HW polling
10783 * logic uses SBus interrupts, which are not supported with
10784 * default firmware. Otherwise, no data will be returned through
10785 * the ASIC_STS_THERM CSR.
10786 */
10787static int thermal_init(struct hfi1_devdata *dd)
10788{
10789 int ret = 0;
10790
10791 if (dd->icode != ICODE_RTL_SILICON ||
10792 !(dd->flags & HFI1_DO_INIT_ASIC))
10793 return ret;
10794
10795 acquire_hw_mutex(dd);
10796 dd_dev_info(dd, "Initializing thermal sensor\n");
Jareer Abdel-Qader4ef98982015-11-06 20:07:00 -050010797 /* Disable polling of thermal readings */
10798 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
10799 msleep(100);
Mike Marciniszyn77241052015-07-30 15:17:43 -040010800 /* Thermal Sensor Initialization */
10801 /* Step 1: Reset the Thermal SBus Receiver */
10802 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
10803 RESET_SBUS_RECEIVER, 0);
10804 if (ret) {
10805 THERM_FAILURE(dd, ret, "Bus Reset");
10806 goto done;
10807 }
10808 /* Step 2: Set Reset bit in Thermal block */
10809 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
10810 WRITE_SBUS_RECEIVER, 0x1);
10811 if (ret) {
10812 THERM_FAILURE(dd, ret, "Therm Block Reset");
10813 goto done;
10814 }
10815 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
10816 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
10817 WRITE_SBUS_RECEIVER, 0x32);
10818 if (ret) {
10819 THERM_FAILURE(dd, ret, "Write Clock Div");
10820 goto done;
10821 }
10822 /* Step 4: Select temperature mode */
10823 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
10824 WRITE_SBUS_RECEIVER,
10825 SBUS_THERM_MONITOR_MODE);
10826 if (ret) {
10827 THERM_FAILURE(dd, ret, "Write Mode Sel");
10828 goto done;
10829 }
10830 /* Step 5: De-assert block reset and start conversion */
10831 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
10832 WRITE_SBUS_RECEIVER, 0x2);
10833 if (ret) {
10834 THERM_FAILURE(dd, ret, "Write Reset Deassert");
10835 goto done;
10836 }
10837 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
10838 msleep(22);
10839
10840 /* Enable polling of thermal readings */
10841 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
10842done:
10843 release_hw_mutex(dd);
10844 return ret;
10845}
10846
10847static void handle_temp_err(struct hfi1_devdata *dd)
10848{
10849 struct hfi1_pportdata *ppd = &dd->pport[0];
10850 /*
10851 * Thermal Critical Interrupt
10852 * Put the device into forced freeze mode, take link down to
10853 * offline, and put DC into reset.
10854 */
10855 dd_dev_emerg(dd,
10856 "Critical temperature reached! Forcing device into freeze mode!\n");
10857 dd->flags |= HFI1_FORCED_FREEZE;
10858 start_freeze_handling(ppd, FREEZE_SELF|FREEZE_ABORT);
10859 /*
10860 * Shut DC down as much and as quickly as possible.
10861 *
10862 * Step 1: Take the link down to OFFLINE. This will cause the
10863 * 8051 to put the Serdes in reset. However, we don't want to
10864 * go through the entire link state machine since we want to
10865 * shutdown ASAP. Furthermore, this is not a graceful shutdown
10866 * but rather an attempt to save the chip.
10867 * Code below is almost the same as quiet_serdes() but avoids
10868 * all the extra work and the sleeps.
10869 */
10870 ppd->driver_link_ready = 0;
10871 ppd->link_enabled = 0;
10872 set_physical_link_state(dd, PLS_OFFLINE |
10873 (OPA_LINKDOWN_REASON_SMA_DISABLED << 8));
10874 /*
10875 * Step 2: Shutdown LCB and 8051
10876 * After shutdown, do not restore DC_CFG_RESET value.
10877 */
10878 dc_shutdown(dd);
10879}