blob: dfe1cb94a70f868113f1527766dcf805926e7af5 [file] [log] [blame]
Timur Tabi17467f22008-01-11 18:15:26 +01001/*
2 * Freescale DMA ALSA SoC PCM driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +00006 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
Timur Tabi17467f22008-01-11 18:15:26 +010011 *
12 * This driver implements ASoC support for the Elo DMA controller, which is
13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14 * the PCM driver is what handles the DMA buffer.
15 */
16
17#include <linux/module.h>
18#include <linux/init.h>
19#include <linux/platform_device.h>
20#include <linux/dma-mapping.h>
21#include <linux/interrupt.h>
22#include <linux/delay.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090023#include <linux/gfp.h>
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000024#include <linux/of_platform.h>
25#include <linux/list.h>
Timur Tabi17467f22008-01-11 18:15:26 +010026
Timur Tabi17467f22008-01-11 18:15:26 +010027#include <sound/core.h>
28#include <sound/pcm.h>
29#include <sound/pcm_params.h>
30#include <sound/soc.h>
31
32#include <asm/io.h>
33
34#include "fsl_dma.h"
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000035#include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
Timur Tabi17467f22008-01-11 18:15:26 +010036
37/*
38 * The formats that the DMA controller supports, which is anything
39 * that is 8, 16, or 32 bits.
40 */
41#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
42 SNDRV_PCM_FMTBIT_U8 | \
43 SNDRV_PCM_FMTBIT_S16_LE | \
44 SNDRV_PCM_FMTBIT_S16_BE | \
45 SNDRV_PCM_FMTBIT_U16_LE | \
46 SNDRV_PCM_FMTBIT_U16_BE | \
47 SNDRV_PCM_FMTBIT_S24_LE | \
48 SNDRV_PCM_FMTBIT_S24_BE | \
49 SNDRV_PCM_FMTBIT_U24_LE | \
50 SNDRV_PCM_FMTBIT_U24_BE | \
51 SNDRV_PCM_FMTBIT_S32_LE | \
52 SNDRV_PCM_FMTBIT_S32_BE | \
53 SNDRV_PCM_FMTBIT_U32_LE | \
54 SNDRV_PCM_FMTBIT_U32_BE)
55
56#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
57 SNDRV_PCM_RATE_CONTINUOUS)
58
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000059struct dma_object {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000060 struct snd_soc_platform_driver dai;
Timur Tabi17467f22008-01-11 18:15:26 +010061 dma_addr_t ssi_stx_phys;
62 dma_addr_t ssi_srx_phys;
Timur Tabi8e9d8692010-08-06 12:16:12 -050063 unsigned int ssi_fifo_depth;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000064 struct ccsr_dma_channel __iomem *channel;
65 unsigned int irq;
66 bool assigned;
67 char path[1];
68};
Timur Tabi17467f22008-01-11 18:15:26 +010069
70/*
71 * The number of DMA links to use. Two is the bare minimum, but if you
72 * have really small links you might need more.
73 */
74#define NUM_DMA_LINKS 2
75
76/** fsl_dma_private: p-substream DMA data
77 *
78 * Each substream has a 1-to-1 association with a DMA channel.
79 *
80 * The link[] array is first because it needs to be aligned on a 32-byte
81 * boundary, so putting it first will ensure alignment without padding the
82 * structure.
83 *
84 * @link[]: array of link descriptors
Timur Tabi17467f22008-01-11 18:15:26 +010085 * @dma_channel: pointer to the DMA channel's registers
86 * @irq: IRQ for this DMA channel
87 * @substream: pointer to the substream object, needed by the ISR
88 * @ssi_sxx_phys: bus address of the STX or SRX register to use
89 * @ld_buf_phys: physical address of the LD buffer
90 * @current_link: index into link[] of the link currently being processed
91 * @dma_buf_phys: physical address of the DMA buffer
92 * @dma_buf_next: physical address of the next period to process
93 * @dma_buf_end: physical address of the byte after the end of the DMA
94 * @buffer period_size: the size of a single period
95 * @num_periods: the number of periods in the DMA buffer
96 */
97struct fsl_dma_private {
98 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
Timur Tabi17467f22008-01-11 18:15:26 +010099 struct ccsr_dma_channel __iomem *dma_channel;
100 unsigned int irq;
101 struct snd_pcm_substream *substream;
102 dma_addr_t ssi_sxx_phys;
Timur Tabi8e9d8692010-08-06 12:16:12 -0500103 unsigned int ssi_fifo_depth;
Timur Tabi17467f22008-01-11 18:15:26 +0100104 dma_addr_t ld_buf_phys;
105 unsigned int current_link;
106 dma_addr_t dma_buf_phys;
107 dma_addr_t dma_buf_next;
108 dma_addr_t dma_buf_end;
109 size_t period_size;
110 unsigned int num_periods;
111};
112
113/**
114 * fsl_dma_hardare: define characteristics of the PCM hardware.
115 *
116 * The PCM hardware is the Freescale DMA controller. This structure defines
117 * the capabilities of that hardware.
118 *
119 * Since the sampling rate and data format are not controlled by the DMA
120 * controller, we specify no limits for those values. The only exception is
121 * period_bytes_min, which is set to a reasonably low value to prevent the
122 * DMA controller from generating too many interrupts per second.
123 *
124 * Since each link descriptor has a 32-bit byte count field, we set
125 * period_bytes_max to the largest 32-bit number. We also have no maximum
126 * number of periods.
Timur Tabibe41e942008-07-28 17:04:39 -0500127 *
128 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
129 * limitation in the SSI driver requires the sample rates for playback and
130 * capture to be the same.
Timur Tabi17467f22008-01-11 18:15:26 +0100131 */
132static const struct snd_pcm_hardware fsl_dma_hardware = {
133
Timur Tabi4052ce42008-01-17 17:44:49 +0100134 .info = SNDRV_PCM_INFO_INTERLEAVED |
135 SNDRV_PCM_INFO_MMAP |
Timur Tabibe41e942008-07-28 17:04:39 -0500136 SNDRV_PCM_INFO_MMAP_VALID |
Timur Tabi3a638ff2009-03-06 18:39:34 -0600137 SNDRV_PCM_INFO_JOINT_DUPLEX |
138 SNDRV_PCM_INFO_PAUSE,
Timur Tabi17467f22008-01-11 18:15:26 +0100139 .formats = FSLDMA_PCM_FORMATS,
140 .rates = FSLDMA_PCM_RATES,
141 .rate_min = 5512,
142 .rate_max = 192000,
143 .period_bytes_min = 512, /* A reasonable limit */
144 .period_bytes_max = (u32) -1,
145 .periods_min = NUM_DMA_LINKS,
146 .periods_max = (unsigned int) -1,
147 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
148};
149
150/**
151 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
152 *
153 * This function should be called by the ISR whenever the DMA controller
154 * halts data transfer.
155 */
156static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
157{
158 unsigned long flags;
159
160 snd_pcm_stream_lock_irqsave(substream, flags);
161
162 if (snd_pcm_running(substream))
163 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164
165 snd_pcm_stream_unlock_irqrestore(substream, flags);
166}
167
168/**
169 * fsl_dma_update_pointers - update LD pointers to point to the next period
170 *
171 * As each period is completed, this function changes the the link
172 * descriptor pointers for that period to point to the next period.
173 */
174static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
175{
176 struct fsl_dma_link_descriptor *link =
177 &dma_private->link[dma_private->current_link];
178
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500179 /* Update our link descriptors to point to the next period. On a 36-bit
180 * system, we also need to update the ESAD bits. We also set (keep) the
181 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
182 */
183 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
184 link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
185#ifdef CONFIG_PHYS_64BIT
186 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
187 upper_32_bits(dma_private->dma_buf_next));
188#endif
189 } else {
190 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
191#ifdef CONFIG_PHYS_64BIT
192 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
193 upper_32_bits(dma_private->dma_buf_next));
194#endif
195 }
Timur Tabi17467f22008-01-11 18:15:26 +0100196
197 /* Update our variables for next time */
198 dma_private->dma_buf_next += dma_private->period_size;
199
200 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
201 dma_private->dma_buf_next = dma_private->dma_buf_phys;
202
203 if (++dma_private->current_link >= NUM_DMA_LINKS)
204 dma_private->current_link = 0;
205}
206
207/**
208 * fsl_dma_isr: interrupt handler for the DMA controller
209 *
210 * @irq: IRQ of the DMA channel
211 * @dev_id: pointer to the dma_private structure for this DMA channel
212 */
213static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
214{
215 struct fsl_dma_private *dma_private = dev_id;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000216 struct snd_pcm_substream *substream = dma_private->substream;
217 struct snd_soc_pcm_runtime *rtd = substream->private_data;
218 struct device *dev = rtd->platform->dev;
Timur Tabi17467f22008-01-11 18:15:26 +0100219 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
220 irqreturn_t ret = IRQ_NONE;
221 u32 sr, sr2 = 0;
222
223 /* We got an interrupt, so read the status register to see what we
224 were interrupted for.
225 */
226 sr = in_be32(&dma_channel->sr);
227
228 if (sr & CCSR_DMA_SR_TE) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000229 dev_err(dev, "dma transmit error\n");
230 fsl_dma_abort_stream(substream);
Timur Tabi17467f22008-01-11 18:15:26 +0100231 sr2 |= CCSR_DMA_SR_TE;
232 ret = IRQ_HANDLED;
233 }
234
235 if (sr & CCSR_DMA_SR_CH)
236 ret = IRQ_HANDLED;
237
238 if (sr & CCSR_DMA_SR_PE) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000239 dev_err(dev, "dma programming error\n");
240 fsl_dma_abort_stream(substream);
Timur Tabi17467f22008-01-11 18:15:26 +0100241 sr2 |= CCSR_DMA_SR_PE;
242 ret = IRQ_HANDLED;
243 }
244
245 if (sr & CCSR_DMA_SR_EOLNI) {
246 sr2 |= CCSR_DMA_SR_EOLNI;
247 ret = IRQ_HANDLED;
248 }
249
250 if (sr & CCSR_DMA_SR_CB)
251 ret = IRQ_HANDLED;
252
253 if (sr & CCSR_DMA_SR_EOSI) {
Timur Tabi17467f22008-01-11 18:15:26 +0100254 /* Tell ALSA we completed a period. */
255 snd_pcm_period_elapsed(substream);
256
257 /*
258 * Update our link descriptors to point to the next period. We
259 * only need to do this if the number of periods is not equal to
260 * the number of links.
261 */
262 if (dma_private->num_periods != NUM_DMA_LINKS)
263 fsl_dma_update_pointers(dma_private);
264
265 sr2 |= CCSR_DMA_SR_EOSI;
266 ret = IRQ_HANDLED;
267 }
268
269 if (sr & CCSR_DMA_SR_EOLSI) {
270 sr2 |= CCSR_DMA_SR_EOLSI;
271 ret = IRQ_HANDLED;
272 }
273
274 /* Clear the bits that we set */
275 if (sr2)
276 out_be32(&dma_channel->sr, sr2);
277
278 return ret;
279}
280
281/**
282 * fsl_dma_new: initialize this PCM driver.
283 *
284 * This function is called when the codec driver calls snd_soc_new_pcms(),
Mark Brown87506542008-11-18 20:50:34 +0000285 * once for each .dai_link in the machine driver's snd_soc_card
Timur Tabi17467f22008-01-11 18:15:26 +0100286 * structure.
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500287 *
288 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
289 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
290 * is specified. Therefore, any DMA buffers we allocate will always be in low
291 * memory, but we support for 36-bit physical addresses anyway.
292 *
293 * Regardless of where the memory is actually allocated, since the device can
294 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
Timur Tabi17467f22008-01-11 18:15:26 +0100295 */
Liam Girdwood8cf7b2b2008-07-07 16:08:00 +0100296static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
Timur Tabi17467f22008-01-11 18:15:26 +0100297 struct snd_pcm *pcm)
298{
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500299 static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
Timur Tabi17467f22008-01-11 18:15:26 +0100300 int ret;
301
302 if (!card->dev->dma_mask)
303 card->dev->dma_mask = &fsl_dma_dmamask;
304
305 if (!card->dev->coherent_dma_mask)
306 card->dev->coherent_dma_mask = fsl_dma_dmamask;
307
Anton Vorontsov5c15a682009-04-04 22:33:19 +0400308 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
Timur Tabi17467f22008-01-11 18:15:26 +0100309 fsl_dma_hardware.buffer_bytes_max,
310 &pcm->streams[0].substream->dma_buffer);
311 if (ret) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000312 dev_err(card->dev, "can't allocate playback dma buffer\n");
313 return ret;
Timur Tabi17467f22008-01-11 18:15:26 +0100314 }
315
Anton Vorontsov5c15a682009-04-04 22:33:19 +0400316 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
Timur Tabi17467f22008-01-11 18:15:26 +0100317 fsl_dma_hardware.buffer_bytes_max,
318 &pcm->streams[1].substream->dma_buffer);
319 if (ret) {
320 snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000321 dev_err(card->dev, "can't allocate capture dma buffer\n");
322 return ret;
Timur Tabi17467f22008-01-11 18:15:26 +0100323 }
324
325 return 0;
326}
327
328/**
329 * fsl_dma_open: open a new substream.
330 *
331 * Each substream has its own DMA buffer.
Timur Tabibf9c8c92008-08-01 14:58:44 -0500332 *
333 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
334 * descriptors that ping-pong from one period to the next. For example, if
335 * there are six periods and two link descriptors, this is how they look
336 * before playback starts:
337 *
338 * The last link descriptor
339 * ____________ points back to the first
340 * | |
341 * V |
342 * ___ ___ |
343 * | |->| |->|
344 * |___| |___|
345 * | |
346 * | |
347 * V V
348 * _________________________________________
349 * | | | | | | | The DMA buffer is
350 * | | | | | | | divided into 6 parts
351 * |______|______|______|______|______|______|
352 *
353 * and here's how they look after the first period is finished playing:
354 *
355 * ____________
356 * | |
357 * V |
358 * ___ ___ |
359 * | |->| |->|
360 * |___| |___|
361 * | |
362 * |______________
363 * | |
364 * V V
365 * _________________________________________
366 * | | | | | | |
367 * | | | | | | |
368 * |______|______|______|______|______|______|
369 *
370 * The first link descriptor now points to the third period. The DMA
371 * controller is currently playing the second period. When it finishes, it
372 * will jump back to the first descriptor and play the third period.
373 *
374 * There are four reasons we do this:
375 *
376 * 1. The only way to get the DMA controller to automatically restart the
377 * transfer when it gets to the end of the buffer is to use chaining
378 * mode. Basic direct mode doesn't offer that feature.
379 * 2. We need to receive an interrupt at the end of every period. The DMA
380 * controller can generate an interrupt at the end of every link transfer
381 * (aka segment). Making each period into a DMA segment will give us the
382 * interrupts we need.
383 * 3. By creating only two link descriptors, regardless of the number of
384 * periods, we do not need to reallocate the link descriptors if the
385 * number of periods changes.
386 * 4. All of the audio data is still stored in a single, contiguous DMA
387 * buffer, which is what ALSA expects. We're just dividing it into
388 * contiguous parts, and creating a link descriptor for each one.
Timur Tabi17467f22008-01-11 18:15:26 +0100389 */
390static int fsl_dma_open(struct snd_pcm_substream *substream)
391{
392 struct snd_pcm_runtime *runtime = substream->runtime;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000393 struct snd_soc_pcm_runtime *rtd = substream->private_data;
394 struct device *dev = rtd->platform->dev;
395 struct dma_object *dma =
396 container_of(rtd->platform->driver, struct dma_object, dai);
Timur Tabi17467f22008-01-11 18:15:26 +0100397 struct fsl_dma_private *dma_private;
Timur Tabibf9c8c92008-08-01 14:58:44 -0500398 struct ccsr_dma_channel __iomem *dma_channel;
Timur Tabi17467f22008-01-11 18:15:26 +0100399 dma_addr_t ld_buf_phys;
Timur Tabibf9c8c92008-08-01 14:58:44 -0500400 u64 temp_link; /* Pointer to next link descriptor */
401 u32 mr;
Timur Tabi17467f22008-01-11 18:15:26 +0100402 unsigned int channel;
403 int ret = 0;
Timur Tabibf9c8c92008-08-01 14:58:44 -0500404 unsigned int i;
Timur Tabi17467f22008-01-11 18:15:26 +0100405
406 /*
407 * Reject any DMA buffer whose size is not a multiple of the period
408 * size. We need to make sure that the DMA buffer can be evenly divided
409 * into periods.
410 */
411 ret = snd_pcm_hw_constraint_integer(runtime,
412 SNDRV_PCM_HW_PARAM_PERIODS);
413 if (ret < 0) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000414 dev_err(dev, "invalid buffer size\n");
Timur Tabi17467f22008-01-11 18:15:26 +0100415 return ret;
416 }
417
418 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
419
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000420 if (dma->assigned) {
421 dev_err(dev, "dma channel already assigned\n");
Timur Tabi17467f22008-01-11 18:15:26 +0100422 return -EBUSY;
423 }
424
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000425 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
426 &ld_buf_phys, GFP_KERNEL);
Timur Tabi17467f22008-01-11 18:15:26 +0100427 if (!dma_private) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000428 dev_err(dev, "can't allocate dma private data\n");
Timur Tabi17467f22008-01-11 18:15:26 +0100429 return -ENOMEM;
430 }
431 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000432 dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
Timur Tabi17467f22008-01-11 18:15:26 +0100433 else
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000434 dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
Timur Tabi17467f22008-01-11 18:15:26 +0100435
Timur Tabi8e9d8692010-08-06 12:16:12 -0500436 dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000437 dma_private->dma_channel = dma->channel;
438 dma_private->irq = dma->irq;
Timur Tabi17467f22008-01-11 18:15:26 +0100439 dma_private->substream = substream;
440 dma_private->ld_buf_phys = ld_buf_phys;
441 dma_private->dma_buf_phys = substream->dma_buffer.addr;
442
Timur Tabi17467f22008-01-11 18:15:26 +0100443 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
444 if (ret) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000445 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
Timur Tabi17467f22008-01-11 18:15:26 +0100446 dma_private->irq, ret);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000447 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
Timur Tabi17467f22008-01-11 18:15:26 +0100448 dma_private, dma_private->ld_buf_phys);
449 return ret;
450 }
451
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000452 dma->assigned = 1;
Timur Tabi17467f22008-01-11 18:15:26 +0100453
454 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
455 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
456 runtime->private_data = dma_private;
457
Timur Tabibf9c8c92008-08-01 14:58:44 -0500458 /* Program the fixed DMA controller parameters */
Timur Tabi17467f22008-01-11 18:15:26 +0100459
Timur Tabibf9c8c92008-08-01 14:58:44 -0500460 dma_channel = dma_private->dma_channel;
Timur Tabi17467f22008-01-11 18:15:26 +0100461
Timur Tabi17467f22008-01-11 18:15:26 +0100462 temp_link = dma_private->ld_buf_phys +
463 sizeof(struct fsl_dma_link_descriptor);
464
465 for (i = 0; i < NUM_DMA_LINKS; i++) {
Timur Tabi85ef2372009-02-05 17:56:02 -0600466 dma_private->link[i].next = cpu_to_be64(temp_link);
Timur Tabi17467f22008-01-11 18:15:26 +0100467
Timur Tabi17467f22008-01-11 18:15:26 +0100468 temp_link += sizeof(struct fsl_dma_link_descriptor);
469 }
470 /* The last link descriptor points to the first */
471 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
472
473 /* Tell the DMA controller where the first link descriptor is */
474 out_be32(&dma_channel->clndar,
475 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
476 out_be32(&dma_channel->eclndar,
477 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
478
479 /* The manual says the BCR must be clear before enabling EMP */
480 out_be32(&dma_channel->bcr, 0);
481
482 /*
483 * Program the mode register for interrupts, external master control,
484 * and source/destination hold. Also clear the Channel Abort bit.
485 */
486 mr = in_be32(&dma_channel->mr) &
487 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
488
489 /*
490 * We want External Master Start and External Master Pause enabled,
491 * because the SSI is controlling the DMA controller. We want the DMA
492 * controller to be set up in advance, and then we signal only the SSI
Timur Tabibf9c8c92008-08-01 14:58:44 -0500493 * to start transferring.
Timur Tabi17467f22008-01-11 18:15:26 +0100494 *
495 * We want End-Of-Segment Interrupts enabled, because this will generate
496 * an interrupt at the end of each segment (each link descriptor
497 * represents one segment). Each DMA segment is the same thing as an
498 * ALSA period, so this is how we get an interrupt at the end of every
499 * period.
500 *
501 * We want Error Interrupt enabled, so that we can get an error if
502 * the DMA controller is mis-programmed somehow.
503 */
504 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
505 CCSR_DMA_MR_EMS_EN;
506
507 /* For playback, we want the destination address to be held. For
508 capture, set the source address to be held. */
509 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
510 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
511
512 out_be32(&dma_channel->mr, mr);
513
514 return 0;
515}
516
517/**
Timur Tabibf9c8c92008-08-01 14:58:44 -0500518 * fsl_dma_hw_params: continue initializing the DMA links
519 *
520 * This function obtains hardware parameters about the opened stream and
521 * programs the DMA controller accordingly.
522 *
Timur Tabi85ef2372009-02-05 17:56:02 -0600523 * One drawback of big-endian is that when copying integers of different
524 * sizes to a fixed-sized register, the address to which the integer must be
525 * copied is dependent on the size of the integer.
Timur Tabi17467f22008-01-11 18:15:26 +0100526 *
527 * For example, if P is the address of a 32-bit register, and X is a 32-bit
528 * integer, then X should be copied to address P. However, if X is a 16-bit
529 * integer, then it should be copied to P+2. If X is an 8-bit register,
530 * then it should be copied to P+3.
531 *
532 * So for playback of 8-bit samples, the DMA controller must transfer single
533 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
534 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
535 *
536 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
537 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
538 * and 8 bytes at a time). So we do not support packed 24-bit samples.
539 * 24-bit data must be padded to 32 bits.
540 */
Timur Tabi85ef2372009-02-05 17:56:02 -0600541static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
542 struct snd_pcm_hw_params *hw_params)
Timur Tabi17467f22008-01-11 18:15:26 +0100543{
544 struct snd_pcm_runtime *runtime = substream->runtime;
545 struct fsl_dma_private *dma_private = runtime->private_data;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000546 struct snd_soc_pcm_runtime *rtd = substream->private_data;
547 struct device *dev = rtd->platform->dev;
Timur Tabi17467f22008-01-11 18:15:26 +0100548
Timur Tabi85ef2372009-02-05 17:56:02 -0600549 /* Number of bits per sample */
Timur Tabi8e9d8692010-08-06 12:16:12 -0500550 unsigned int sample_bits =
Timur Tabi85ef2372009-02-05 17:56:02 -0600551 snd_pcm_format_physical_width(params_format(hw_params));
552
553 /* Number of bytes per frame */
Timur Tabi8e9d8692010-08-06 12:16:12 -0500554 unsigned int sample_bytes = sample_bits / 8;
Timur Tabi85ef2372009-02-05 17:56:02 -0600555
556 /* Bus address of SSI STX register */
557 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
558
559 /* Size of the DMA buffer, in bytes */
560 size_t buffer_size = params_buffer_bytes(hw_params);
561
562 /* Number of bytes per period */
563 size_t period_size = params_period_bytes(hw_params);
564
565 /* Pointer to next period */
566 dma_addr_t temp_addr = substream->dma_buffer.addr;
567
568 /* Pointer to DMA controller */
569 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
570
571 u32 mr; /* DMA Mode Register */
572
573 unsigned int i;
574
575 /* Initialize our DMA tracking variables */
576 dma_private->period_size = period_size;
577 dma_private->num_periods = params_periods(hw_params);
578 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
579 dma_private->dma_buf_next = dma_private->dma_buf_phys +
580 (NUM_DMA_LINKS * period_size);
581
582 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
583 /* This happens if the number of periods == NUM_DMA_LINKS */
584 dma_private->dma_buf_next = dma_private->dma_buf_phys;
Timur Tabi17467f22008-01-11 18:15:26 +0100585
586 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
587 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
588
Timur Tabi85ef2372009-02-05 17:56:02 -0600589 /* Due to a quirk of the SSI's STX register, the target address
590 * for the DMA operations depends on the sample size. So we calculate
591 * that offset here. While we're at it, also tell the DMA controller
592 * how much data to transfer per sample.
593 */
Timur Tabi8e9d8692010-08-06 12:16:12 -0500594 switch (sample_bits) {
Timur Tabi17467f22008-01-11 18:15:26 +0100595 case 8:
596 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
597 ssi_sxx_phys += 3;
598 break;
599 case 16:
600 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
601 ssi_sxx_phys += 2;
602 break;
603 case 32:
604 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
605 break;
606 default:
Timur Tabi85ef2372009-02-05 17:56:02 -0600607 /* We should never get here */
Timur Tabi8e9d8692010-08-06 12:16:12 -0500608 dev_err(dev, "unsupported sample size %u\n", sample_bits);
Timur Tabi17467f22008-01-11 18:15:26 +0100609 return -EINVAL;
610 }
611
Timur Tabi17467f22008-01-11 18:15:26 +0100612 /*
Timur Tabi8e9d8692010-08-06 12:16:12 -0500613 * BWC determines how many bytes are sent/received before the DMA
614 * controller checks the SSI to see if it needs to stop. BWC should
615 * always be a multiple of the frame size, so that we always transmit
616 * whole frames. Each frame occupies two slots in the FIFO. The
617 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
618 * (MR[BWC] can only represent even powers of two).
619 *
620 * To simplify the process, we set BWC to the largest value that is
621 * less than or equal to the FIFO watermark. For playback, this ensures
622 * that we transfer the maximum amount without overrunning the FIFO.
623 * For capture, this ensures that we transfer the maximum amount without
624 * underrunning the FIFO.
625 *
626 * f = SSI FIFO depth
627 * w = SSI watermark value (which equals f - 2)
628 * b = DMA bandwidth count (in bytes)
629 * s = sample size (in bytes, which equals frame_size * 2)
630 *
631 * For playback, we never transmit more than the transmit FIFO
632 * watermark, otherwise we might write more data than the FIFO can hold.
633 * The watermark is equal to the FIFO depth minus two.
634 *
635 * For capture, two equations must hold:
636 * w > f - (b / s)
637 * w >= b / s
638 *
639 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
640 * b = s * w, which is equal to
641 * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
Timur Tabi17467f22008-01-11 18:15:26 +0100642 */
Timur Tabi8e9d8692010-08-06 12:16:12 -0500643 mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
Timur Tabi17467f22008-01-11 18:15:26 +0100644
645 out_be32(&dma_channel->mr, mr);
646
Timur Tabi17467f22008-01-11 18:15:26 +0100647 for (i = 0; i < NUM_DMA_LINKS; i++) {
648 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
649
Timur Tabi85ef2372009-02-05 17:56:02 -0600650 link->count = cpu_to_be32(period_size);
651
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500652 /* The snoop bit tells the DMA controller whether it should tell
Timur Tabi85ef2372009-02-05 17:56:02 -0600653 * the ECM to snoop during a read or write to an address. For
654 * audio, we use DMA to transfer data between memory and an I/O
655 * device (the SSI's STX0 or SRX0 register). Snooping is only
656 * needed if there is a cache, so we need to snoop memory
657 * addresses only. For playback, that means we snoop the source
658 * but not the destination. For capture, we snoop the
659 * destination but not the source.
660 *
661 * Note that failing to snoop properly is unlikely to cause
662 * cache incoherency if the period size is larger than the
663 * size of L1 cache. This is because filling in one period will
664 * flush out the data for the previous period. So if you
665 * increased period_bytes_min to a large enough size, you might
666 * get more performance by not snooping, and you'll still be
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500667 * okay. You'll need to update fsl_dma_update_pointers() also.
Timur Tabi85ef2372009-02-05 17:56:02 -0600668 */
669 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
670 link->source_addr = cpu_to_be32(temp_addr);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500671 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
672 upper_32_bits(temp_addr));
Timur Tabi85ef2372009-02-05 17:56:02 -0600673
Timur Tabi17467f22008-01-11 18:15:26 +0100674 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500675 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
676 upper_32_bits(ssi_sxx_phys));
Timur Tabi85ef2372009-02-05 17:56:02 -0600677 } else {
Timur Tabi17467f22008-01-11 18:15:26 +0100678 link->source_addr = cpu_to_be32(ssi_sxx_phys);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500679 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
680 upper_32_bits(ssi_sxx_phys));
Timur Tabi85ef2372009-02-05 17:56:02 -0600681
682 link->dest_addr = cpu_to_be32(temp_addr);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500683 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
684 upper_32_bits(temp_addr));
Timur Tabi85ef2372009-02-05 17:56:02 -0600685 }
686
687 temp_addr += period_size;
Timur Tabi17467f22008-01-11 18:15:26 +0100688 }
689
690 return 0;
691}
692
693/**
694 * fsl_dma_pointer: determine the current position of the DMA transfer
695 *
696 * This function is called by ALSA when ALSA wants to know where in the
697 * stream buffer the hardware currently is.
698 *
699 * For playback, the SAR register contains the physical address of the most
700 * recent DMA transfer. For capture, the value is in the DAR register.
701 *
702 * The base address of the buffer is stored in the source_addr field of the
703 * first link descriptor.
704 */
705static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
706{
707 struct snd_pcm_runtime *runtime = substream->runtime;
708 struct fsl_dma_private *dma_private = runtime->private_data;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000709 struct snd_soc_pcm_runtime *rtd = substream->private_data;
710 struct device *dev = rtd->platform->dev;
Timur Tabi17467f22008-01-11 18:15:26 +0100711 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
712 dma_addr_t position;
713 snd_pcm_uframes_t frames;
714
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500715 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
716 * only have 32-bit DMA addresses. This function is typically called
717 * in interrupt context, so we need to optimize it.
718 */
719 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
Timur Tabi17467f22008-01-11 18:15:26 +0100720 position = in_be32(&dma_channel->sar);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500721#ifdef CONFIG_PHYS_64BIT
722 position |= (u64)(in_be32(&dma_channel->satr) &
723 CCSR_DMA_ATR_ESAD_MASK) << 32;
724#endif
725 } else {
Timur Tabi17467f22008-01-11 18:15:26 +0100726 position = in_be32(&dma_channel->dar);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500727#ifdef CONFIG_PHYS_64BIT
728 position |= (u64)(in_be32(&dma_channel->datr) &
729 CCSR_DMA_ATR_ESAD_MASK) << 32;
730#endif
731 }
Timur Tabi17467f22008-01-11 18:15:26 +0100732
Timur Tabia4d11fe2009-03-25 18:20:37 -0500733 /*
734 * When capture is started, the SSI immediately starts to fill its FIFO.
735 * This means that the DMA controller is not started until the FIFO is
736 * full. However, ALSA calls this function before that happens, when
737 * MR.DAR is still zero. In this case, just return zero to indicate
738 * that nothing has been received yet.
739 */
740 if (!position)
741 return 0;
742
743 if ((position < dma_private->dma_buf_phys) ||
744 (position > dma_private->dma_buf_end)) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000745 dev_err(dev, "dma pointer is out of range, halting stream\n");
Timur Tabia4d11fe2009-03-25 18:20:37 -0500746 return SNDRV_PCM_POS_XRUN;
747 }
748
Timur Tabi17467f22008-01-11 18:15:26 +0100749 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
750
751 /*
752 * If the current address is just past the end of the buffer, wrap it
753 * around.
754 */
755 if (frames == runtime->buffer_size)
756 frames = 0;
757
758 return frames;
759}
760
761/**
762 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
763 *
764 * Release the resources allocated in fsl_dma_hw_params() and de-program the
765 * registers.
766 *
767 * This function can be called multiple times.
768 */
769static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
770{
771 struct snd_pcm_runtime *runtime = substream->runtime;
772 struct fsl_dma_private *dma_private = runtime->private_data;
773
774 if (dma_private) {
775 struct ccsr_dma_channel __iomem *dma_channel;
776
777 dma_channel = dma_private->dma_channel;
778
779 /* Stop the DMA */
780 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
781 out_be32(&dma_channel->mr, 0);
782
783 /* Reset all the other registers */
784 out_be32(&dma_channel->sr, -1);
785 out_be32(&dma_channel->clndar, 0);
786 out_be32(&dma_channel->eclndar, 0);
787 out_be32(&dma_channel->satr, 0);
788 out_be32(&dma_channel->sar, 0);
789 out_be32(&dma_channel->datr, 0);
790 out_be32(&dma_channel->dar, 0);
791 out_be32(&dma_channel->bcr, 0);
792 out_be32(&dma_channel->nlndar, 0);
793 out_be32(&dma_channel->enlndar, 0);
794 }
795
796 return 0;
797}
798
799/**
800 * fsl_dma_close: close the stream.
801 */
802static int fsl_dma_close(struct snd_pcm_substream *substream)
803{
804 struct snd_pcm_runtime *runtime = substream->runtime;
805 struct fsl_dma_private *dma_private = runtime->private_data;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000806 struct snd_soc_pcm_runtime *rtd = substream->private_data;
807 struct device *dev = rtd->platform->dev;
808 struct dma_object *dma =
809 container_of(rtd->platform->driver, struct dma_object, dai);
Timur Tabi17467f22008-01-11 18:15:26 +0100810
811 if (dma_private) {
812 if (dma_private->irq)
813 free_irq(dma_private->irq, dma_private);
814
815 if (dma_private->ld_buf_phys) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000816 dma_unmap_single(dev, dma_private->ld_buf_phys,
817 sizeof(dma_private->link),
818 DMA_TO_DEVICE);
Timur Tabi17467f22008-01-11 18:15:26 +0100819 }
820
821 /* Deallocate the fsl_dma_private structure */
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000822 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
823 dma_private, dma_private->ld_buf_phys);
Timur Tabi17467f22008-01-11 18:15:26 +0100824 substream->runtime->private_data = NULL;
825 }
826
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000827 dma->assigned = 0;
Timur Tabi17467f22008-01-11 18:15:26 +0100828
829 return 0;
830}
831
832/*
833 * Remove this PCM driver.
834 */
835static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
836{
837 struct snd_pcm_substream *substream;
838 unsigned int i;
839
840 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
841 substream = pcm->streams[i].substream;
842 if (substream) {
843 snd_dma_free_pages(&substream->dma_buffer);
844 substream->dma_buffer.area = NULL;
845 substream->dma_buffer.addr = 0;
846 }
847 }
848}
849
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000850/**
851 * find_ssi_node -- returns the SSI node that points to his DMA channel node
852 *
853 * Although this DMA driver attempts to operate independently of the other
854 * devices, it still needs to determine some information about the SSI device
855 * that it's working with. Unfortunately, the device tree does not contain
856 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
857 * other way. So we need to scan the device tree for SSI nodes until we find
858 * the one that points to the given DMA channel node. It's ugly, but at least
859 * it's contained in this one function.
860 */
861static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
862{
863 struct device_node *ssi_np, *np;
864
865 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
866 /* Check each DMA phandle to see if it points to us. We
867 * assume that device_node pointers are a valid comparison.
868 */
869 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
870 if (np == dma_channel_np)
871 return ssi_np;
872
873 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
874 if (np == dma_channel_np)
875 return ssi_np;
876 }
877
878 return NULL;
879}
880
Timur Tabi17467f22008-01-11 18:15:26 +0100881static struct snd_pcm_ops fsl_dma_ops = {
882 .open = fsl_dma_open,
883 .close = fsl_dma_close,
884 .ioctl = snd_pcm_lib_ioctl,
885 .hw_params = fsl_dma_hw_params,
886 .hw_free = fsl_dma_hw_free,
Timur Tabi17467f22008-01-11 18:15:26 +0100887 .pointer = fsl_dma_pointer,
888};
889
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000890static int __devinit fsl_soc_dma_probe(struct of_device *of_dev,
891 const struct of_device_id *match)
892 {
893 struct dma_object *dma;
894 struct device_node *np = of_dev->dev.of_node;
895 struct device_node *ssi_np;
896 struct resource res;
Timur Tabi8e9d8692010-08-06 12:16:12 -0500897 const uint32_t *iprop;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000898 int ret;
899
900 /* Find the SSI node that points to us. */
901 ssi_np = find_ssi_node(np);
902 if (!ssi_np) {
903 dev_err(&of_dev->dev, "cannot find parent SSI node\n");
904 return -ENODEV;
905 }
906
907 ret = of_address_to_resource(ssi_np, 0, &res);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000908 if (ret) {
Timur Tabi8e9d8692010-08-06 12:16:12 -0500909 dev_err(&of_dev->dev, "could not determine resources for %s\n",
910 ssi_np->full_name);
911 of_node_put(ssi_np);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000912 return ret;
913 }
914
915 dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
916 if (!dma) {
917 dev_err(&of_dev->dev, "could not allocate dma object\n");
Timur Tabi8e9d8692010-08-06 12:16:12 -0500918 of_node_put(ssi_np);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000919 return -ENOMEM;
920 }
921
922 strcpy(dma->path, np->full_name);
923 dma->dai.ops = &fsl_dma_ops;
924 dma->dai.pcm_new = fsl_dma_new;
925 dma->dai.pcm_free = fsl_dma_free_dma_buffers;
926
927 /* Store the SSI-specific information that we need */
928 dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
929 dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
930
Timur Tabi8e9d8692010-08-06 12:16:12 -0500931 iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
932 if (iprop)
933 dma->ssi_fifo_depth = *iprop;
934 else
935 /* Older 8610 DTs didn't have the fifo-depth property */
936 dma->ssi_fifo_depth = 8;
937
938 of_node_put(ssi_np);
939
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000940 ret = snd_soc_register_platform(&of_dev->dev, &dma->dai);
941 if (ret) {
942 dev_err(&of_dev->dev, "could not register platform\n");
943 kfree(dma);
944 return ret;
945 }
946
947 dma->channel = of_iomap(np, 0);
948 dma->irq = irq_of_parse_and_map(np, 0);
Timur Tabi87a06322010-08-03 17:55:28 -0500949
950 dev_set_drvdata(&of_dev->dev, dma);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000951
952 return 0;
953}
954
955static int __devexit fsl_soc_dma_remove(struct of_device *of_dev)
956{
Timur Tabi87a06322010-08-03 17:55:28 -0500957 struct dma_object *dma = dev_get_drvdata(&of_dev->dev);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000958
Timur Tabi87a06322010-08-03 17:55:28 -0500959 snd_soc_unregister_platform(&of_dev->dev);
960 iounmap(dma->channel);
961 irq_dispose_mapping(dma->irq);
962 kfree(dma);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000963
964 return 0;
965}
966
967static const struct of_device_id fsl_soc_dma_ids[] = {
968 { .compatible = "fsl,ssi-dma-channel", },
969 {}
Timur Tabi17467f22008-01-11 18:15:26 +0100970};
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000971MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
Timur Tabi17467f22008-01-11 18:15:26 +0100972
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000973static struct of_platform_driver fsl_soc_dma_driver = {
974 .driver = {
975 .name = "fsl-pcm-audio",
976 .owner = THIS_MODULE,
977 .of_match_table = fsl_soc_dma_ids,
978 },
979 .probe = fsl_soc_dma_probe,
980 .remove = __devexit_p(fsl_soc_dma_remove),
981};
982
983static int __init fsl_soc_dma_init(void)
984{
985 pr_info("Freescale Elo DMA ASoC PCM Driver\n");
986
987 return of_register_platform_driver(&fsl_soc_dma_driver);
988}
989
990static void __exit fsl_soc_dma_exit(void)
991{
992 of_unregister_platform_driver(&fsl_soc_dma_driver);
993}
994
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000995module_init(fsl_soc_dma_init);
996module_exit(fsl_soc_dma_exit);
Mark Brown958e7922008-12-03 19:58:17 +0000997
Timur Tabi17467f22008-01-11 18:15:26 +0100998MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000999MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
1000MODULE_LICENSE("GPL v2");