blob: 5a6f56d63756b2f49f7949f8627f8a424da62dd4 [file] [log] [blame]
Timur Tabi17467f22008-01-11 18:15:26 +01001/*
2 * Freescale DMA ALSA SoC PCM driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +00006 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
Timur Tabi17467f22008-01-11 18:15:26 +010011 *
12 * This driver implements ASoC support for the Elo DMA controller, which is
13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14 * the PCM driver is what handles the DMA buffer.
15 */
16
17#include <linux/module.h>
18#include <linux/init.h>
19#include <linux/platform_device.h>
20#include <linux/dma-mapping.h>
21#include <linux/interrupt.h>
22#include <linux/delay.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090023#include <linux/gfp.h>
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000024#include <linux/of_platform.h>
25#include <linux/list.h>
Timur Tabi17467f22008-01-11 18:15:26 +010026
Timur Tabi17467f22008-01-11 18:15:26 +010027#include <sound/core.h>
28#include <sound/pcm.h>
29#include <sound/pcm_params.h>
30#include <sound/soc.h>
31
32#include <asm/io.h>
33
34#include "fsl_dma.h"
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000035#include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
Timur Tabi17467f22008-01-11 18:15:26 +010036
37/*
38 * The formats that the DMA controller supports, which is anything
39 * that is 8, 16, or 32 bits.
40 */
41#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
42 SNDRV_PCM_FMTBIT_U8 | \
43 SNDRV_PCM_FMTBIT_S16_LE | \
44 SNDRV_PCM_FMTBIT_S16_BE | \
45 SNDRV_PCM_FMTBIT_U16_LE | \
46 SNDRV_PCM_FMTBIT_U16_BE | \
47 SNDRV_PCM_FMTBIT_S24_LE | \
48 SNDRV_PCM_FMTBIT_S24_BE | \
49 SNDRV_PCM_FMTBIT_U24_LE | \
50 SNDRV_PCM_FMTBIT_U24_BE | \
51 SNDRV_PCM_FMTBIT_S32_LE | \
52 SNDRV_PCM_FMTBIT_S32_BE | \
53 SNDRV_PCM_FMTBIT_U32_LE | \
54 SNDRV_PCM_FMTBIT_U32_BE)
55
56#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
57 SNDRV_PCM_RATE_CONTINUOUS)
58
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000059struct dma_object {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000060 struct snd_soc_platform_driver dai;
Timur Tabi17467f22008-01-11 18:15:26 +010061 dma_addr_t ssi_stx_phys;
62 dma_addr_t ssi_srx_phys;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000063 struct ccsr_dma_channel __iomem *channel;
64 unsigned int irq;
65 bool assigned;
66 char path[1];
67};
Timur Tabi17467f22008-01-11 18:15:26 +010068
69/*
70 * The number of DMA links to use. Two is the bare minimum, but if you
71 * have really small links you might need more.
72 */
73#define NUM_DMA_LINKS 2
74
75/** fsl_dma_private: p-substream DMA data
76 *
77 * Each substream has a 1-to-1 association with a DMA channel.
78 *
79 * The link[] array is first because it needs to be aligned on a 32-byte
80 * boundary, so putting it first will ensure alignment without padding the
81 * structure.
82 *
83 * @link[]: array of link descriptors
Timur Tabi17467f22008-01-11 18:15:26 +010084 * @dma_channel: pointer to the DMA channel's registers
85 * @irq: IRQ for this DMA channel
86 * @substream: pointer to the substream object, needed by the ISR
87 * @ssi_sxx_phys: bus address of the STX or SRX register to use
88 * @ld_buf_phys: physical address of the LD buffer
89 * @current_link: index into link[] of the link currently being processed
90 * @dma_buf_phys: physical address of the DMA buffer
91 * @dma_buf_next: physical address of the next period to process
92 * @dma_buf_end: physical address of the byte after the end of the DMA
93 * @buffer period_size: the size of a single period
94 * @num_periods: the number of periods in the DMA buffer
95 */
96struct fsl_dma_private {
97 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
Timur Tabi17467f22008-01-11 18:15:26 +010098 struct ccsr_dma_channel __iomem *dma_channel;
99 unsigned int irq;
100 struct snd_pcm_substream *substream;
101 dma_addr_t ssi_sxx_phys;
102 dma_addr_t ld_buf_phys;
103 unsigned int current_link;
104 dma_addr_t dma_buf_phys;
105 dma_addr_t dma_buf_next;
106 dma_addr_t dma_buf_end;
107 size_t period_size;
108 unsigned int num_periods;
109};
110
111/**
112 * fsl_dma_hardare: define characteristics of the PCM hardware.
113 *
114 * The PCM hardware is the Freescale DMA controller. This structure defines
115 * the capabilities of that hardware.
116 *
117 * Since the sampling rate and data format are not controlled by the DMA
118 * controller, we specify no limits for those values. The only exception is
119 * period_bytes_min, which is set to a reasonably low value to prevent the
120 * DMA controller from generating too many interrupts per second.
121 *
122 * Since each link descriptor has a 32-bit byte count field, we set
123 * period_bytes_max to the largest 32-bit number. We also have no maximum
124 * number of periods.
Timur Tabibe41e942008-07-28 17:04:39 -0500125 *
126 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
127 * limitation in the SSI driver requires the sample rates for playback and
128 * capture to be the same.
Timur Tabi17467f22008-01-11 18:15:26 +0100129 */
130static const struct snd_pcm_hardware fsl_dma_hardware = {
131
Timur Tabi4052ce42008-01-17 17:44:49 +0100132 .info = SNDRV_PCM_INFO_INTERLEAVED |
133 SNDRV_PCM_INFO_MMAP |
Timur Tabibe41e942008-07-28 17:04:39 -0500134 SNDRV_PCM_INFO_MMAP_VALID |
Timur Tabi3a638ff2009-03-06 18:39:34 -0600135 SNDRV_PCM_INFO_JOINT_DUPLEX |
136 SNDRV_PCM_INFO_PAUSE,
Timur Tabi17467f22008-01-11 18:15:26 +0100137 .formats = FSLDMA_PCM_FORMATS,
138 .rates = FSLDMA_PCM_RATES,
139 .rate_min = 5512,
140 .rate_max = 192000,
141 .period_bytes_min = 512, /* A reasonable limit */
142 .period_bytes_max = (u32) -1,
143 .periods_min = NUM_DMA_LINKS,
144 .periods_max = (unsigned int) -1,
145 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
146};
147
148/**
149 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
150 *
151 * This function should be called by the ISR whenever the DMA controller
152 * halts data transfer.
153 */
154static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
155{
156 unsigned long flags;
157
158 snd_pcm_stream_lock_irqsave(substream, flags);
159
160 if (snd_pcm_running(substream))
161 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
162
163 snd_pcm_stream_unlock_irqrestore(substream, flags);
164}
165
166/**
167 * fsl_dma_update_pointers - update LD pointers to point to the next period
168 *
169 * As each period is completed, this function changes the the link
170 * descriptor pointers for that period to point to the next period.
171 */
172static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
173{
174 struct fsl_dma_link_descriptor *link =
175 &dma_private->link[dma_private->current_link];
176
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500177 /* Update our link descriptors to point to the next period. On a 36-bit
178 * system, we also need to update the ESAD bits. We also set (keep) the
179 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
180 */
181 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
182 link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
183#ifdef CONFIG_PHYS_64BIT
184 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
185 upper_32_bits(dma_private->dma_buf_next));
186#endif
187 } else {
188 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
189#ifdef CONFIG_PHYS_64BIT
190 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
191 upper_32_bits(dma_private->dma_buf_next));
192#endif
193 }
Timur Tabi17467f22008-01-11 18:15:26 +0100194
195 /* Update our variables for next time */
196 dma_private->dma_buf_next += dma_private->period_size;
197
198 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
199 dma_private->dma_buf_next = dma_private->dma_buf_phys;
200
201 if (++dma_private->current_link >= NUM_DMA_LINKS)
202 dma_private->current_link = 0;
203}
204
205/**
206 * fsl_dma_isr: interrupt handler for the DMA controller
207 *
208 * @irq: IRQ of the DMA channel
209 * @dev_id: pointer to the dma_private structure for this DMA channel
210 */
211static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
212{
213 struct fsl_dma_private *dma_private = dev_id;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000214 struct snd_pcm_substream *substream = dma_private->substream;
215 struct snd_soc_pcm_runtime *rtd = substream->private_data;
216 struct device *dev = rtd->platform->dev;
Timur Tabi17467f22008-01-11 18:15:26 +0100217 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
218 irqreturn_t ret = IRQ_NONE;
219 u32 sr, sr2 = 0;
220
221 /* We got an interrupt, so read the status register to see what we
222 were interrupted for.
223 */
224 sr = in_be32(&dma_channel->sr);
225
226 if (sr & CCSR_DMA_SR_TE) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000227 dev_err(dev, "dma transmit error\n");
228 fsl_dma_abort_stream(substream);
Timur Tabi17467f22008-01-11 18:15:26 +0100229 sr2 |= CCSR_DMA_SR_TE;
230 ret = IRQ_HANDLED;
231 }
232
233 if (sr & CCSR_DMA_SR_CH)
234 ret = IRQ_HANDLED;
235
236 if (sr & CCSR_DMA_SR_PE) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000237 dev_err(dev, "dma programming error\n");
238 fsl_dma_abort_stream(substream);
Timur Tabi17467f22008-01-11 18:15:26 +0100239 sr2 |= CCSR_DMA_SR_PE;
240 ret = IRQ_HANDLED;
241 }
242
243 if (sr & CCSR_DMA_SR_EOLNI) {
244 sr2 |= CCSR_DMA_SR_EOLNI;
245 ret = IRQ_HANDLED;
246 }
247
248 if (sr & CCSR_DMA_SR_CB)
249 ret = IRQ_HANDLED;
250
251 if (sr & CCSR_DMA_SR_EOSI) {
Timur Tabi17467f22008-01-11 18:15:26 +0100252 /* Tell ALSA we completed a period. */
253 snd_pcm_period_elapsed(substream);
254
255 /*
256 * Update our link descriptors to point to the next period. We
257 * only need to do this if the number of periods is not equal to
258 * the number of links.
259 */
260 if (dma_private->num_periods != NUM_DMA_LINKS)
261 fsl_dma_update_pointers(dma_private);
262
263 sr2 |= CCSR_DMA_SR_EOSI;
264 ret = IRQ_HANDLED;
265 }
266
267 if (sr & CCSR_DMA_SR_EOLSI) {
268 sr2 |= CCSR_DMA_SR_EOLSI;
269 ret = IRQ_HANDLED;
270 }
271
272 /* Clear the bits that we set */
273 if (sr2)
274 out_be32(&dma_channel->sr, sr2);
275
276 return ret;
277}
278
279/**
280 * fsl_dma_new: initialize this PCM driver.
281 *
282 * This function is called when the codec driver calls snd_soc_new_pcms(),
Mark Brown87506542008-11-18 20:50:34 +0000283 * once for each .dai_link in the machine driver's snd_soc_card
Timur Tabi17467f22008-01-11 18:15:26 +0100284 * structure.
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500285 *
286 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
287 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
288 * is specified. Therefore, any DMA buffers we allocate will always be in low
289 * memory, but we support for 36-bit physical addresses anyway.
290 *
291 * Regardless of where the memory is actually allocated, since the device can
292 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
Timur Tabi17467f22008-01-11 18:15:26 +0100293 */
Liam Girdwood8cf7b2b2008-07-07 16:08:00 +0100294static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
Timur Tabi17467f22008-01-11 18:15:26 +0100295 struct snd_pcm *pcm)
296{
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500297 static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
Timur Tabi17467f22008-01-11 18:15:26 +0100298 int ret;
299
300 if (!card->dev->dma_mask)
301 card->dev->dma_mask = &fsl_dma_dmamask;
302
303 if (!card->dev->coherent_dma_mask)
304 card->dev->coherent_dma_mask = fsl_dma_dmamask;
305
Timur Tabic04019d2010-08-19 16:43:42 -0500306 /* Some codecs have separate DAIs for playback and capture, so we
307 * should allocate a DMA buffer only for the streams that are valid.
308 */
309
310 if (dai->driver->playback.channels_min) {
311 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
312 fsl_dma_hardware.buffer_bytes_max,
313 &pcm->streams[0].substream->dma_buffer);
314 if (ret) {
315 dev_err(card->dev, "can't alloc playback dma buffer\n");
316 return ret;
317 }
Timur Tabi17467f22008-01-11 18:15:26 +0100318 }
319
Timur Tabic04019d2010-08-19 16:43:42 -0500320 if (dai->driver->capture.channels_min) {
321 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
322 fsl_dma_hardware.buffer_bytes_max,
323 &pcm->streams[1].substream->dma_buffer);
324 if (ret) {
325 snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
326 dev_err(card->dev, "can't alloc capture dma buffer\n");
327 return ret;
328 }
Timur Tabi17467f22008-01-11 18:15:26 +0100329 }
330
331 return 0;
332}
333
334/**
335 * fsl_dma_open: open a new substream.
336 *
337 * Each substream has its own DMA buffer.
Timur Tabibf9c8c92008-08-01 14:58:44 -0500338 *
339 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
340 * descriptors that ping-pong from one period to the next. For example, if
341 * there are six periods and two link descriptors, this is how they look
342 * before playback starts:
343 *
344 * The last link descriptor
345 * ____________ points back to the first
346 * | |
347 * V |
348 * ___ ___ |
349 * | |->| |->|
350 * |___| |___|
351 * | |
352 * | |
353 * V V
354 * _________________________________________
355 * | | | | | | | The DMA buffer is
356 * | | | | | | | divided into 6 parts
357 * |______|______|______|______|______|______|
358 *
359 * and here's how they look after the first period is finished playing:
360 *
361 * ____________
362 * | |
363 * V |
364 * ___ ___ |
365 * | |->| |->|
366 * |___| |___|
367 * | |
368 * |______________
369 * | |
370 * V V
371 * _________________________________________
372 * | | | | | | |
373 * | | | | | | |
374 * |______|______|______|______|______|______|
375 *
376 * The first link descriptor now points to the third period. The DMA
377 * controller is currently playing the second period. When it finishes, it
378 * will jump back to the first descriptor and play the third period.
379 *
380 * There are four reasons we do this:
381 *
382 * 1. The only way to get the DMA controller to automatically restart the
383 * transfer when it gets to the end of the buffer is to use chaining
384 * mode. Basic direct mode doesn't offer that feature.
385 * 2. We need to receive an interrupt at the end of every period. The DMA
386 * controller can generate an interrupt at the end of every link transfer
387 * (aka segment). Making each period into a DMA segment will give us the
388 * interrupts we need.
389 * 3. By creating only two link descriptors, regardless of the number of
390 * periods, we do not need to reallocate the link descriptors if the
391 * number of periods changes.
392 * 4. All of the audio data is still stored in a single, contiguous DMA
393 * buffer, which is what ALSA expects. We're just dividing it into
394 * contiguous parts, and creating a link descriptor for each one.
Timur Tabi17467f22008-01-11 18:15:26 +0100395 */
396static int fsl_dma_open(struct snd_pcm_substream *substream)
397{
398 struct snd_pcm_runtime *runtime = substream->runtime;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000399 struct snd_soc_pcm_runtime *rtd = substream->private_data;
400 struct device *dev = rtd->platform->dev;
401 struct dma_object *dma =
402 container_of(rtd->platform->driver, struct dma_object, dai);
Timur Tabi17467f22008-01-11 18:15:26 +0100403 struct fsl_dma_private *dma_private;
Timur Tabibf9c8c92008-08-01 14:58:44 -0500404 struct ccsr_dma_channel __iomem *dma_channel;
Timur Tabi17467f22008-01-11 18:15:26 +0100405 dma_addr_t ld_buf_phys;
Timur Tabibf9c8c92008-08-01 14:58:44 -0500406 u64 temp_link; /* Pointer to next link descriptor */
407 u32 mr;
Timur Tabi17467f22008-01-11 18:15:26 +0100408 unsigned int channel;
409 int ret = 0;
Timur Tabibf9c8c92008-08-01 14:58:44 -0500410 unsigned int i;
Timur Tabi17467f22008-01-11 18:15:26 +0100411
412 /*
413 * Reject any DMA buffer whose size is not a multiple of the period
414 * size. We need to make sure that the DMA buffer can be evenly divided
415 * into periods.
416 */
417 ret = snd_pcm_hw_constraint_integer(runtime,
418 SNDRV_PCM_HW_PARAM_PERIODS);
419 if (ret < 0) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000420 dev_err(dev, "invalid buffer size\n");
Timur Tabi17467f22008-01-11 18:15:26 +0100421 return ret;
422 }
423
424 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
425
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000426 if (dma->assigned) {
427 dev_err(dev, "dma channel already assigned\n");
Timur Tabi17467f22008-01-11 18:15:26 +0100428 return -EBUSY;
429 }
430
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000431 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
432 &ld_buf_phys, GFP_KERNEL);
Timur Tabi17467f22008-01-11 18:15:26 +0100433 if (!dma_private) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000434 dev_err(dev, "can't allocate dma private data\n");
Timur Tabi17467f22008-01-11 18:15:26 +0100435 return -ENOMEM;
436 }
437 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000438 dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
Timur Tabi17467f22008-01-11 18:15:26 +0100439 else
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000440 dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
Timur Tabi17467f22008-01-11 18:15:26 +0100441
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000442 dma_private->dma_channel = dma->channel;
443 dma_private->irq = dma->irq;
Timur Tabi17467f22008-01-11 18:15:26 +0100444 dma_private->substream = substream;
445 dma_private->ld_buf_phys = ld_buf_phys;
446 dma_private->dma_buf_phys = substream->dma_buffer.addr;
447
Timur Tabi17467f22008-01-11 18:15:26 +0100448 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
449 if (ret) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000450 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
Timur Tabi17467f22008-01-11 18:15:26 +0100451 dma_private->irq, ret);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000452 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
Timur Tabi17467f22008-01-11 18:15:26 +0100453 dma_private, dma_private->ld_buf_phys);
454 return ret;
455 }
456
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000457 dma->assigned = 1;
Timur Tabi17467f22008-01-11 18:15:26 +0100458
459 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
460 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
461 runtime->private_data = dma_private;
462
Timur Tabibf9c8c92008-08-01 14:58:44 -0500463 /* Program the fixed DMA controller parameters */
Timur Tabi17467f22008-01-11 18:15:26 +0100464
Timur Tabibf9c8c92008-08-01 14:58:44 -0500465 dma_channel = dma_private->dma_channel;
Timur Tabi17467f22008-01-11 18:15:26 +0100466
Timur Tabi17467f22008-01-11 18:15:26 +0100467 temp_link = dma_private->ld_buf_phys +
468 sizeof(struct fsl_dma_link_descriptor);
469
470 for (i = 0; i < NUM_DMA_LINKS; i++) {
Timur Tabi85ef2372009-02-05 17:56:02 -0600471 dma_private->link[i].next = cpu_to_be64(temp_link);
Timur Tabi17467f22008-01-11 18:15:26 +0100472
Timur Tabi17467f22008-01-11 18:15:26 +0100473 temp_link += sizeof(struct fsl_dma_link_descriptor);
474 }
475 /* The last link descriptor points to the first */
476 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
477
478 /* Tell the DMA controller where the first link descriptor is */
479 out_be32(&dma_channel->clndar,
480 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
481 out_be32(&dma_channel->eclndar,
482 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
483
484 /* The manual says the BCR must be clear before enabling EMP */
485 out_be32(&dma_channel->bcr, 0);
486
487 /*
488 * Program the mode register for interrupts, external master control,
489 * and source/destination hold. Also clear the Channel Abort bit.
490 */
491 mr = in_be32(&dma_channel->mr) &
492 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
493
494 /*
495 * We want External Master Start and External Master Pause enabled,
496 * because the SSI is controlling the DMA controller. We want the DMA
497 * controller to be set up in advance, and then we signal only the SSI
Timur Tabibf9c8c92008-08-01 14:58:44 -0500498 * to start transferring.
Timur Tabi17467f22008-01-11 18:15:26 +0100499 *
500 * We want End-Of-Segment Interrupts enabled, because this will generate
501 * an interrupt at the end of each segment (each link descriptor
502 * represents one segment). Each DMA segment is the same thing as an
503 * ALSA period, so this is how we get an interrupt at the end of every
504 * period.
505 *
506 * We want Error Interrupt enabled, so that we can get an error if
507 * the DMA controller is mis-programmed somehow.
508 */
509 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
510 CCSR_DMA_MR_EMS_EN;
511
512 /* For playback, we want the destination address to be held. For
513 capture, set the source address to be held. */
514 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
515 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
516
517 out_be32(&dma_channel->mr, mr);
518
519 return 0;
520}
521
522/**
Timur Tabibf9c8c92008-08-01 14:58:44 -0500523 * fsl_dma_hw_params: continue initializing the DMA links
524 *
525 * This function obtains hardware parameters about the opened stream and
526 * programs the DMA controller accordingly.
527 *
Timur Tabi85ef2372009-02-05 17:56:02 -0600528 * One drawback of big-endian is that when copying integers of different
529 * sizes to a fixed-sized register, the address to which the integer must be
530 * copied is dependent on the size of the integer.
Timur Tabi17467f22008-01-11 18:15:26 +0100531 *
532 * For example, if P is the address of a 32-bit register, and X is a 32-bit
533 * integer, then X should be copied to address P. However, if X is a 16-bit
534 * integer, then it should be copied to P+2. If X is an 8-bit register,
535 * then it should be copied to P+3.
536 *
537 * So for playback of 8-bit samples, the DMA controller must transfer single
538 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
539 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
540 *
541 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
542 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
543 * and 8 bytes at a time). So we do not support packed 24-bit samples.
544 * 24-bit data must be padded to 32 bits.
545 */
Timur Tabi85ef2372009-02-05 17:56:02 -0600546static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
547 struct snd_pcm_hw_params *hw_params)
Timur Tabi17467f22008-01-11 18:15:26 +0100548{
549 struct snd_pcm_runtime *runtime = substream->runtime;
550 struct fsl_dma_private *dma_private = runtime->private_data;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000551 struct snd_soc_pcm_runtime *rtd = substream->private_data;
552 struct device *dev = rtd->platform->dev;
Timur Tabi17467f22008-01-11 18:15:26 +0100553
Timur Tabi85ef2372009-02-05 17:56:02 -0600554 /* Number of bits per sample */
555 unsigned int sample_size =
556 snd_pcm_format_physical_width(params_format(hw_params));
557
558 /* Number of bytes per frame */
559 unsigned int frame_size = 2 * (sample_size / 8);
560
561 /* Bus address of SSI STX register */
562 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
563
564 /* Size of the DMA buffer, in bytes */
565 size_t buffer_size = params_buffer_bytes(hw_params);
566
567 /* Number of bytes per period */
568 size_t period_size = params_period_bytes(hw_params);
569
570 /* Pointer to next period */
571 dma_addr_t temp_addr = substream->dma_buffer.addr;
572
573 /* Pointer to DMA controller */
574 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
575
576 u32 mr; /* DMA Mode Register */
577
578 unsigned int i;
579
580 /* Initialize our DMA tracking variables */
581 dma_private->period_size = period_size;
582 dma_private->num_periods = params_periods(hw_params);
583 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
584 dma_private->dma_buf_next = dma_private->dma_buf_phys +
585 (NUM_DMA_LINKS * period_size);
586
587 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
588 /* This happens if the number of periods == NUM_DMA_LINKS */
589 dma_private->dma_buf_next = dma_private->dma_buf_phys;
Timur Tabi17467f22008-01-11 18:15:26 +0100590
591 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
592 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
593
Timur Tabi85ef2372009-02-05 17:56:02 -0600594 /* Due to a quirk of the SSI's STX register, the target address
595 * for the DMA operations depends on the sample size. So we calculate
596 * that offset here. While we're at it, also tell the DMA controller
597 * how much data to transfer per sample.
598 */
599 switch (sample_size) {
Timur Tabi17467f22008-01-11 18:15:26 +0100600 case 8:
601 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
602 ssi_sxx_phys += 3;
603 break;
604 case 16:
605 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
606 ssi_sxx_phys += 2;
607 break;
608 case 32:
609 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
610 break;
611 default:
Timur Tabi85ef2372009-02-05 17:56:02 -0600612 /* We should never get here */
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000613 dev_err(dev, "unsupported sample size %u\n", sample_size);
Timur Tabi17467f22008-01-11 18:15:26 +0100614 return -EINVAL;
615 }
616
Timur Tabi17467f22008-01-11 18:15:26 +0100617 /*
618 * BWC should always be a multiple of the frame size. BWC determines
619 * how many bytes are sent/received before the DMA controller checks the
620 * SSI to see if it needs to stop. For playback, the transmit FIFO can
621 * hold three frames, so we want to send two frames at a time. For
622 * capture, the receive FIFO is triggered when it contains one frame, so
623 * we want to receive one frame at a time.
624 */
Timur Tabi17467f22008-01-11 18:15:26 +0100625 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
626 mr |= CCSR_DMA_MR_BWC(2 * frame_size);
627 else
628 mr |= CCSR_DMA_MR_BWC(frame_size);
629
630 out_be32(&dma_channel->mr, mr);
631
Timur Tabi17467f22008-01-11 18:15:26 +0100632 for (i = 0; i < NUM_DMA_LINKS; i++) {
633 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
634
Timur Tabi85ef2372009-02-05 17:56:02 -0600635 link->count = cpu_to_be32(period_size);
636
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500637 /* The snoop bit tells the DMA controller whether it should tell
Timur Tabi85ef2372009-02-05 17:56:02 -0600638 * the ECM to snoop during a read or write to an address. For
639 * audio, we use DMA to transfer data between memory and an I/O
640 * device (the SSI's STX0 or SRX0 register). Snooping is only
641 * needed if there is a cache, so we need to snoop memory
642 * addresses only. For playback, that means we snoop the source
643 * but not the destination. For capture, we snoop the
644 * destination but not the source.
645 *
646 * Note that failing to snoop properly is unlikely to cause
647 * cache incoherency if the period size is larger than the
648 * size of L1 cache. This is because filling in one period will
649 * flush out the data for the previous period. So if you
650 * increased period_bytes_min to a large enough size, you might
651 * get more performance by not snooping, and you'll still be
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500652 * okay. You'll need to update fsl_dma_update_pointers() also.
Timur Tabi85ef2372009-02-05 17:56:02 -0600653 */
654 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
655 link->source_addr = cpu_to_be32(temp_addr);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500656 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
657 upper_32_bits(temp_addr));
Timur Tabi85ef2372009-02-05 17:56:02 -0600658
Timur Tabi17467f22008-01-11 18:15:26 +0100659 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500660 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
661 upper_32_bits(ssi_sxx_phys));
Timur Tabi85ef2372009-02-05 17:56:02 -0600662 } else {
Timur Tabi17467f22008-01-11 18:15:26 +0100663 link->source_addr = cpu_to_be32(ssi_sxx_phys);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500664 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
665 upper_32_bits(ssi_sxx_phys));
Timur Tabi85ef2372009-02-05 17:56:02 -0600666
667 link->dest_addr = cpu_to_be32(temp_addr);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500668 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
669 upper_32_bits(temp_addr));
Timur Tabi85ef2372009-02-05 17:56:02 -0600670 }
671
672 temp_addr += period_size;
Timur Tabi17467f22008-01-11 18:15:26 +0100673 }
674
675 return 0;
676}
677
678/**
679 * fsl_dma_pointer: determine the current position of the DMA transfer
680 *
681 * This function is called by ALSA when ALSA wants to know where in the
682 * stream buffer the hardware currently is.
683 *
684 * For playback, the SAR register contains the physical address of the most
685 * recent DMA transfer. For capture, the value is in the DAR register.
686 *
687 * The base address of the buffer is stored in the source_addr field of the
688 * first link descriptor.
689 */
690static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
691{
692 struct snd_pcm_runtime *runtime = substream->runtime;
693 struct fsl_dma_private *dma_private = runtime->private_data;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000694 struct snd_soc_pcm_runtime *rtd = substream->private_data;
695 struct device *dev = rtd->platform->dev;
Timur Tabi17467f22008-01-11 18:15:26 +0100696 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
697 dma_addr_t position;
698 snd_pcm_uframes_t frames;
699
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500700 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
701 * only have 32-bit DMA addresses. This function is typically called
702 * in interrupt context, so we need to optimize it.
703 */
704 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
Timur Tabi17467f22008-01-11 18:15:26 +0100705 position = in_be32(&dma_channel->sar);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500706#ifdef CONFIG_PHYS_64BIT
707 position |= (u64)(in_be32(&dma_channel->satr) &
708 CCSR_DMA_ATR_ESAD_MASK) << 32;
709#endif
710 } else {
Timur Tabi17467f22008-01-11 18:15:26 +0100711 position = in_be32(&dma_channel->dar);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500712#ifdef CONFIG_PHYS_64BIT
713 position |= (u64)(in_be32(&dma_channel->datr) &
714 CCSR_DMA_ATR_ESAD_MASK) << 32;
715#endif
716 }
Timur Tabi17467f22008-01-11 18:15:26 +0100717
Timur Tabia4d11fe2009-03-25 18:20:37 -0500718 /*
719 * When capture is started, the SSI immediately starts to fill its FIFO.
720 * This means that the DMA controller is not started until the FIFO is
721 * full. However, ALSA calls this function before that happens, when
722 * MR.DAR is still zero. In this case, just return zero to indicate
723 * that nothing has been received yet.
724 */
725 if (!position)
726 return 0;
727
728 if ((position < dma_private->dma_buf_phys) ||
729 (position > dma_private->dma_buf_end)) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000730 dev_err(dev, "dma pointer is out of range, halting stream\n");
Timur Tabia4d11fe2009-03-25 18:20:37 -0500731 return SNDRV_PCM_POS_XRUN;
732 }
733
Timur Tabi17467f22008-01-11 18:15:26 +0100734 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
735
736 /*
737 * If the current address is just past the end of the buffer, wrap it
738 * around.
739 */
740 if (frames == runtime->buffer_size)
741 frames = 0;
742
743 return frames;
744}
745
746/**
747 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
748 *
749 * Release the resources allocated in fsl_dma_hw_params() and de-program the
750 * registers.
751 *
752 * This function can be called multiple times.
753 */
754static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
755{
756 struct snd_pcm_runtime *runtime = substream->runtime;
757 struct fsl_dma_private *dma_private = runtime->private_data;
758
759 if (dma_private) {
760 struct ccsr_dma_channel __iomem *dma_channel;
761
762 dma_channel = dma_private->dma_channel;
763
764 /* Stop the DMA */
765 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
766 out_be32(&dma_channel->mr, 0);
767
768 /* Reset all the other registers */
769 out_be32(&dma_channel->sr, -1);
770 out_be32(&dma_channel->clndar, 0);
771 out_be32(&dma_channel->eclndar, 0);
772 out_be32(&dma_channel->satr, 0);
773 out_be32(&dma_channel->sar, 0);
774 out_be32(&dma_channel->datr, 0);
775 out_be32(&dma_channel->dar, 0);
776 out_be32(&dma_channel->bcr, 0);
777 out_be32(&dma_channel->nlndar, 0);
778 out_be32(&dma_channel->enlndar, 0);
779 }
780
781 return 0;
782}
783
784/**
785 * fsl_dma_close: close the stream.
786 */
787static int fsl_dma_close(struct snd_pcm_substream *substream)
788{
789 struct snd_pcm_runtime *runtime = substream->runtime;
790 struct fsl_dma_private *dma_private = runtime->private_data;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000791 struct snd_soc_pcm_runtime *rtd = substream->private_data;
792 struct device *dev = rtd->platform->dev;
793 struct dma_object *dma =
794 container_of(rtd->platform->driver, struct dma_object, dai);
Timur Tabi17467f22008-01-11 18:15:26 +0100795
796 if (dma_private) {
797 if (dma_private->irq)
798 free_irq(dma_private->irq, dma_private);
799
800 if (dma_private->ld_buf_phys) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000801 dma_unmap_single(dev, dma_private->ld_buf_phys,
802 sizeof(dma_private->link),
803 DMA_TO_DEVICE);
Timur Tabi17467f22008-01-11 18:15:26 +0100804 }
805
806 /* Deallocate the fsl_dma_private structure */
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000807 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
808 dma_private, dma_private->ld_buf_phys);
Timur Tabi17467f22008-01-11 18:15:26 +0100809 substream->runtime->private_data = NULL;
810 }
811
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000812 dma->assigned = 0;
Timur Tabi17467f22008-01-11 18:15:26 +0100813
814 return 0;
815}
816
817/*
818 * Remove this PCM driver.
819 */
820static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
821{
822 struct snd_pcm_substream *substream;
823 unsigned int i;
824
825 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
826 substream = pcm->streams[i].substream;
827 if (substream) {
828 snd_dma_free_pages(&substream->dma_buffer);
829 substream->dma_buffer.area = NULL;
830 substream->dma_buffer.addr = 0;
831 }
832 }
833}
834
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000835/**
836 * find_ssi_node -- returns the SSI node that points to his DMA channel node
837 *
838 * Although this DMA driver attempts to operate independently of the other
839 * devices, it still needs to determine some information about the SSI device
840 * that it's working with. Unfortunately, the device tree does not contain
841 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
842 * other way. So we need to scan the device tree for SSI nodes until we find
843 * the one that points to the given DMA channel node. It's ugly, but at least
844 * it's contained in this one function.
845 */
846static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
847{
848 struct device_node *ssi_np, *np;
849
850 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
851 /* Check each DMA phandle to see if it points to us. We
852 * assume that device_node pointers are a valid comparison.
853 */
854 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
855 if (np == dma_channel_np)
856 return ssi_np;
857
858 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
859 if (np == dma_channel_np)
860 return ssi_np;
861 }
862
863 return NULL;
864}
865
Timur Tabi17467f22008-01-11 18:15:26 +0100866static struct snd_pcm_ops fsl_dma_ops = {
867 .open = fsl_dma_open,
868 .close = fsl_dma_close,
869 .ioctl = snd_pcm_lib_ioctl,
870 .hw_params = fsl_dma_hw_params,
871 .hw_free = fsl_dma_hw_free,
Timur Tabi17467f22008-01-11 18:15:26 +0100872 .pointer = fsl_dma_pointer,
873};
874
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000875static int __devinit fsl_soc_dma_probe(struct of_device *of_dev,
876 const struct of_device_id *match)
877 {
878 struct dma_object *dma;
879 struct device_node *np = of_dev->dev.of_node;
880 struct device_node *ssi_np;
881 struct resource res;
882 int ret;
883
884 /* Find the SSI node that points to us. */
885 ssi_np = find_ssi_node(np);
886 if (!ssi_np) {
887 dev_err(&of_dev->dev, "cannot find parent SSI node\n");
888 return -ENODEV;
889 }
890
891 ret = of_address_to_resource(ssi_np, 0, &res);
892 of_node_put(ssi_np);
893 if (ret) {
894 dev_err(&of_dev->dev, "could not determine device resources\n");
895 return ret;
896 }
897
898 dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
899 if (!dma) {
900 dev_err(&of_dev->dev, "could not allocate dma object\n");
901 return -ENOMEM;
902 }
903
904 strcpy(dma->path, np->full_name);
905 dma->dai.ops = &fsl_dma_ops;
906 dma->dai.pcm_new = fsl_dma_new;
907 dma->dai.pcm_free = fsl_dma_free_dma_buffers;
908
909 /* Store the SSI-specific information that we need */
910 dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
911 dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
912
913 ret = snd_soc_register_platform(&of_dev->dev, &dma->dai);
914 if (ret) {
915 dev_err(&of_dev->dev, "could not register platform\n");
916 kfree(dma);
917 return ret;
918 }
919
920 dma->channel = of_iomap(np, 0);
921 dma->irq = irq_of_parse_and_map(np, 0);
Timur Tabi87a06322010-08-03 17:55:28 -0500922
923 dev_set_drvdata(&of_dev->dev, dma);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000924
925 return 0;
926}
927
928static int __devexit fsl_soc_dma_remove(struct of_device *of_dev)
929{
Timur Tabi87a06322010-08-03 17:55:28 -0500930 struct dma_object *dma = dev_get_drvdata(&of_dev->dev);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000931
Timur Tabi87a06322010-08-03 17:55:28 -0500932 snd_soc_unregister_platform(&of_dev->dev);
933 iounmap(dma->channel);
934 irq_dispose_mapping(dma->irq);
935 kfree(dma);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000936
937 return 0;
938}
939
940static const struct of_device_id fsl_soc_dma_ids[] = {
941 { .compatible = "fsl,ssi-dma-channel", },
942 {}
Timur Tabi17467f22008-01-11 18:15:26 +0100943};
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000944MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
Timur Tabi17467f22008-01-11 18:15:26 +0100945
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000946static struct of_platform_driver fsl_soc_dma_driver = {
947 .driver = {
948 .name = "fsl-pcm-audio",
949 .owner = THIS_MODULE,
950 .of_match_table = fsl_soc_dma_ids,
951 },
952 .probe = fsl_soc_dma_probe,
953 .remove = __devexit_p(fsl_soc_dma_remove),
954};
955
956static int __init fsl_soc_dma_init(void)
957{
958 pr_info("Freescale Elo DMA ASoC PCM Driver\n");
959
960 return of_register_platform_driver(&fsl_soc_dma_driver);
961}
962
963static void __exit fsl_soc_dma_exit(void)
964{
965 of_unregister_platform_driver(&fsl_soc_dma_driver);
966}
967
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000968module_init(fsl_soc_dma_init);
969module_exit(fsl_soc_dma_exit);
Mark Brown958e7922008-12-03 19:58:17 +0000970
Timur Tabi17467f22008-01-11 18:15:26 +0100971MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000972MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
973MODULE_LICENSE("GPL v2");