blob: 7efcf2545cfaa2025b6205c2ce20b9d6cf861c7d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Olaf Weber3e57ecf2006-06-09 14:48:12 +10002 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
Nathan Scott7b718762005-11-02 14:58:39 +11003 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Nathan Scotta844f452005-11-02 14:38:42 +110021#include "xfs_bit.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110023#include "xfs_inum.h"
24#include "xfs_imap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070029#include "xfs_dir2.h"
30#include "xfs_dmapi.h"
31#include "xfs_mount.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include "xfs_bmap_btree.h"
Nathan Scotta844f452005-11-02 14:38:42 +110033#include "xfs_alloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include "xfs_ialloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include "xfs_dir2_sf.h"
Nathan Scotta844f452005-11-02 14:38:42 +110036#include "xfs_attr_sf.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include "xfs_dinode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070038#include "xfs_inode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include "xfs_buf_item.h"
Nathan Scotta844f452005-11-02 14:38:42 +110040#include "xfs_inode_item.h"
41#include "xfs_btree.h"
42#include "xfs_alloc.h"
43#include "xfs_ialloc.h"
44#include "xfs_bmap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#include "xfs_rw.h"
46#include "xfs_error.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include "xfs_utils.h"
48#include "xfs_dir2_trace.h"
49#include "xfs_quota.h"
50#include "xfs_mac.h"
51#include "xfs_acl.h"
52
53
54kmem_zone_t *xfs_ifork_zone;
55kmem_zone_t *xfs_inode_zone;
56kmem_zone_t *xfs_chashlist_zone;
57
58/*
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
61 */
62#define XFS_ITRUNC_MAX_EXTENTS 2
63
64STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68
69
70#ifdef DEBUG
71/*
72 * Make sure that the extents in the given memory buffer
73 * are valid.
74 */
75STATIC void
76xfs_validate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110077 xfs_ifork_t *ifp,
Linus Torvalds1da177e2005-04-16 15:20:36 -070078 int nrecs,
79 int disk,
80 xfs_exntfmt_t fmt)
81{
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110082 xfs_bmbt_rec_t *ep;
Linus Torvalds1da177e2005-04-16 15:20:36 -070083 xfs_bmbt_irec_t irec;
84 xfs_bmbt_rec_t rec;
85 int i;
86
87 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110088 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -070089 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
90 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
91 if (disk)
92 xfs_bmbt_disk_get_all(&rec, &irec);
93 else
94 xfs_bmbt_get_all(&rec, &irec);
95 if (fmt == XFS_EXTFMT_NOSTATE)
96 ASSERT(irec.br_state == XFS_EXT_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -070097 }
98}
99#else /* DEBUG */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100100#define xfs_validate_extents(ifp, nrecs, disk, fmt)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700101#endif /* DEBUG */
102
103/*
104 * Check that none of the inode's in the buffer have a next
105 * unlinked field of 0.
106 */
107#if defined(DEBUG)
108void
109xfs_inobp_check(
110 xfs_mount_t *mp,
111 xfs_buf_t *bp)
112{
113 int i;
114 int j;
115 xfs_dinode_t *dip;
116
117 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
118
119 for (i = 0; i < j; i++) {
120 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
121 i * mp->m_sb.sb_inodesize);
122 if (!dip->di_next_unlinked) {
123 xfs_fs_cmn_err(CE_ALERT, mp,
124 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
125 bp);
126 ASSERT(dip->di_next_unlinked);
127 }
128 }
129}
130#endif
131
132/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700133 * This routine is called to map an inode number within a file
134 * system to the buffer containing the on-disk version of the
135 * inode. It returns a pointer to the buffer containing the
136 * on-disk inode in the bpp parameter, and in the dip parameter
137 * it returns a pointer to the on-disk inode within that buffer.
138 *
139 * If a non-zero error is returned, then the contents of bpp and
140 * dipp are undefined.
141 *
142 * Use xfs_imap() to determine the size and location of the
143 * buffer to read from disk.
144 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000145STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146xfs_inotobp(
147 xfs_mount_t *mp,
148 xfs_trans_t *tp,
149 xfs_ino_t ino,
150 xfs_dinode_t **dipp,
151 xfs_buf_t **bpp,
152 int *offset)
153{
154 int di_ok;
155 xfs_imap_t imap;
156 xfs_buf_t *bp;
157 int error;
158 xfs_dinode_t *dip;
159
160 /*
Nathan Scottc41564b2006-03-29 08:55:14 +1000161 * Call the space management code to find the location of the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162 * inode on disk.
163 */
164 imap.im_blkno = 0;
165 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
166 if (error != 0) {
167 cmn_err(CE_WARN,
168 "xfs_inotobp: xfs_imap() returned an "
169 "error %d on %s. Returning error.", error, mp->m_fsname);
170 return error;
171 }
172
173 /*
174 * If the inode number maps to a block outside the bounds of the
175 * file system then return NULL rather than calling read_buf
176 * and panicing when we get an error from the driver.
177 */
178 if ((imap.im_blkno + imap.im_len) >
179 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
180 cmn_err(CE_WARN,
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100181 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700182 "of the file system %s. Returning EINVAL.",
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100183 (unsigned long long)imap.im_blkno,
184 imap.im_len, mp->m_fsname);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700185 return XFS_ERROR(EINVAL);
186 }
187
188 /*
189 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
190 * default to just a read_buf() call.
191 */
192 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
193 (int)imap.im_len, XFS_BUF_LOCK, &bp);
194
195 if (error) {
196 cmn_err(CE_WARN,
197 "xfs_inotobp: xfs_trans_read_buf() returned an "
198 "error %d on %s. Returning error.", error, mp->m_fsname);
199 return error;
200 }
201 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
202 di_ok =
203 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
204 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
205 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
206 XFS_RANDOM_ITOBP_INOTOBP))) {
207 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
208 xfs_trans_brelse(tp, bp);
209 cmn_err(CE_WARN,
210 "xfs_inotobp: XFS_TEST_ERROR() returned an "
211 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
212 return XFS_ERROR(EFSCORRUPTED);
213 }
214
215 xfs_inobp_check(mp, bp);
216
217 /*
218 * Set *dipp to point to the on-disk inode in the buffer.
219 */
220 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
221 *bpp = bp;
222 *offset = imap.im_boffset;
223 return 0;
224}
225
226
227/*
228 * This routine is called to map an inode to the buffer containing
229 * the on-disk version of the inode. It returns a pointer to the
230 * buffer containing the on-disk inode in the bpp parameter, and in
231 * the dip parameter it returns a pointer to the on-disk inode within
232 * that buffer.
233 *
234 * If a non-zero error is returned, then the contents of bpp and
235 * dipp are undefined.
236 *
237 * If the inode is new and has not yet been initialized, use xfs_imap()
238 * to determine the size and location of the buffer to read from disk.
239 * If the inode has already been mapped to its buffer and read in once,
240 * then use the mapping information stored in the inode rather than
241 * calling xfs_imap(). This allows us to avoid the overhead of looking
242 * at the inode btree for small block file systems (see xfs_dilocate()).
243 * We can tell whether the inode has been mapped in before by comparing
244 * its disk block address to 0. Only uninitialized inodes will have
245 * 0 for the disk block address.
246 */
247int
248xfs_itobp(
249 xfs_mount_t *mp,
250 xfs_trans_t *tp,
251 xfs_inode_t *ip,
252 xfs_dinode_t **dipp,
253 xfs_buf_t **bpp,
Nathan Scottb12dd342006-03-17 17:26:04 +1100254 xfs_daddr_t bno,
255 uint imap_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700256{
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000257 xfs_imap_t imap;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258 xfs_buf_t *bp;
259 int error;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700260 int i;
261 int ni;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700262
263 if (ip->i_blkno == (xfs_daddr_t)0) {
264 /*
265 * Call the space management code to find the location of the
266 * inode on disk.
267 */
268 imap.im_blkno = bno;
Nathan Scottb12dd342006-03-17 17:26:04 +1100269 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
270 XFS_IMAP_LOOKUP | imap_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700271 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700272
273 /*
274 * If the inode number maps to a block outside the bounds
275 * of the file system then return NULL rather than calling
276 * read_buf and panicing when we get an error from the
277 * driver.
278 */
279 if ((imap.im_blkno + imap.im_len) >
280 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
281#ifdef DEBUG
282 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
283 "(imap.im_blkno (0x%llx) "
284 "+ imap.im_len (0x%llx)) > "
285 " XFS_FSB_TO_BB(mp, "
286 "mp->m_sb.sb_dblocks) (0x%llx)",
287 (unsigned long long) imap.im_blkno,
288 (unsigned long long) imap.im_len,
289 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
290#endif /* DEBUG */
291 return XFS_ERROR(EINVAL);
292 }
293
294 /*
295 * Fill in the fields in the inode that will be used to
296 * map the inode to its buffer from now on.
297 */
298 ip->i_blkno = imap.im_blkno;
299 ip->i_len = imap.im_len;
300 ip->i_boffset = imap.im_boffset;
301 } else {
302 /*
303 * We've already mapped the inode once, so just use the
304 * mapping that we saved the first time.
305 */
306 imap.im_blkno = ip->i_blkno;
307 imap.im_len = ip->i_len;
308 imap.im_boffset = ip->i_boffset;
309 }
310 ASSERT(bno == 0 || bno == imap.im_blkno);
311
312 /*
313 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
314 * default to just a read_buf() call.
315 */
316 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
317 (int)imap.im_len, XFS_BUF_LOCK, &bp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700318 if (error) {
319#ifdef DEBUG
320 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
321 "xfs_trans_read_buf() returned error %d, "
322 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
323 error, (unsigned long long) imap.im_blkno,
324 (unsigned long long) imap.im_len);
325#endif /* DEBUG */
326 return error;
327 }
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000328
Linus Torvalds1da177e2005-04-16 15:20:36 -0700329 /*
330 * Validate the magic number and version of every inode in the buffer
331 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000332 * No validation is done here in userspace (xfs_repair).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700333 */
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000334#if !defined(__KERNEL__)
335 ni = 0;
336#elif defined(DEBUG)
Nathan Scott41ff7152006-07-28 17:05:51 +1000337 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000338#else /* usual case */
Nathan Scott41ff7152006-07-28 17:05:51 +1000339 ni = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700340#endif
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000341
Linus Torvalds1da177e2005-04-16 15:20:36 -0700342 for (i = 0; i < ni; i++) {
343 int di_ok;
344 xfs_dinode_t *dip;
345
346 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
347 (i << mp->m_sb.sb_inodelog));
348 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
349 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
Nathan Scott41ff7152006-07-28 17:05:51 +1000350 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
351 XFS_ERRTAG_ITOBP_INOTOBP,
352 XFS_RANDOM_ITOBP_INOTOBP))) {
353 if (imap_flags & XFS_IMAP_BULKSTAT) {
354 xfs_trans_brelse(tp, bp);
355 return XFS_ERROR(EINVAL);
356 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700357#ifdef DEBUG
Nathan Scott41ff7152006-07-28 17:05:51 +1000358 cmn_err(CE_ALERT,
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000359 "Device %s - bad inode magic/vsn "
360 "daddr %lld #%d (magic=%x)",
Nathan Scottb6574522006-06-09 15:29:40 +1000361 XFS_BUFTARG_NAME(mp->m_ddev_targp),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700362 (unsigned long long)imap.im_blkno, i,
363 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
364#endif
365 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
366 mp, dip);
367 xfs_trans_brelse(tp, bp);
368 return XFS_ERROR(EFSCORRUPTED);
369 }
370 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700371
372 xfs_inobp_check(mp, bp);
373
374 /*
375 * Mark the buffer as an inode buffer now that it looks good
376 */
377 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
378
379 /*
380 * Set *dipp to point to the on-disk inode in the buffer.
381 */
382 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
383 *bpp = bp;
384 return 0;
385}
386
387/*
388 * Move inode type and inode format specific information from the
389 * on-disk inode to the in-core inode. For fifos, devs, and sockets
390 * this means set if_rdev to the proper value. For files, directories,
391 * and symlinks this means to bring in the in-line data or extent
392 * pointers. For a file in B-tree format, only the root is immediately
393 * brought in-core. The rest will be in-lined in if_extents when it
394 * is first referenced (see xfs_iread_extents()).
395 */
396STATIC int
397xfs_iformat(
398 xfs_inode_t *ip,
399 xfs_dinode_t *dip)
400{
401 xfs_attr_shortform_t *atp;
402 int size;
403 int error;
404 xfs_fsize_t di_size;
405 ip->i_df.if_ext_max =
406 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
407 error = 0;
408
409 if (unlikely(
410 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
411 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
412 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100413 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
414 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415 (unsigned long long)ip->i_ino,
416 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
417 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
418 (unsigned long long)
419 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
420 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
421 ip->i_mount, dip);
422 return XFS_ERROR(EFSCORRUPTED);
423 }
424
425 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100426 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
427 "corrupt dinode %Lu, forkoff = 0x%x.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700428 (unsigned long long)ip->i_ino,
429 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
430 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
431 ip->i_mount, dip);
432 return XFS_ERROR(EFSCORRUPTED);
433 }
434
435 switch (ip->i_d.di_mode & S_IFMT) {
436 case S_IFIFO:
437 case S_IFCHR:
438 case S_IFBLK:
439 case S_IFSOCK:
440 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
441 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
442 ip->i_mount, dip);
443 return XFS_ERROR(EFSCORRUPTED);
444 }
445 ip->i_d.di_size = 0;
446 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
447 break;
448
449 case S_IFREG:
450 case S_IFLNK:
451 case S_IFDIR:
452 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
453 case XFS_DINODE_FMT_LOCAL:
454 /*
455 * no local regular files yet
456 */
457 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100458 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
459 "corrupt inode %Lu "
460 "(local format for regular file).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700461 (unsigned long long) ip->i_ino);
462 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
463 XFS_ERRLEVEL_LOW,
464 ip->i_mount, dip);
465 return XFS_ERROR(EFSCORRUPTED);
466 }
467
468 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
469 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100470 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
471 "corrupt inode %Lu "
472 "(bad size %Ld for local inode).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700473 (unsigned long long) ip->i_ino,
474 (long long) di_size);
475 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
476 XFS_ERRLEVEL_LOW,
477 ip->i_mount, dip);
478 return XFS_ERROR(EFSCORRUPTED);
479 }
480
481 size = (int)di_size;
482 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
483 break;
484 case XFS_DINODE_FMT_EXTENTS:
485 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
486 break;
487 case XFS_DINODE_FMT_BTREE:
488 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
489 break;
490 default:
491 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
492 ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
494 }
495 break;
496
497 default:
498 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
499 return XFS_ERROR(EFSCORRUPTED);
500 }
501 if (error) {
502 return error;
503 }
504 if (!XFS_DFORK_Q(dip))
505 return 0;
506 ASSERT(ip->i_afp == NULL);
507 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
508 ip->i_afp->if_ext_max =
509 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
510 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
511 case XFS_DINODE_FMT_LOCAL:
512 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
Nathan Scott3b244aa2006-03-17 17:29:25 +1100513 size = be16_to_cpu(atp->hdr.totsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
515 break;
516 case XFS_DINODE_FMT_EXTENTS:
517 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
518 break;
519 case XFS_DINODE_FMT_BTREE:
520 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
521 break;
522 default:
523 error = XFS_ERROR(EFSCORRUPTED);
524 break;
525 }
526 if (error) {
527 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
528 ip->i_afp = NULL;
529 xfs_idestroy_fork(ip, XFS_DATA_FORK);
530 }
531 return error;
532}
533
534/*
535 * The file is in-lined in the on-disk inode.
536 * If it fits into if_inline_data, then copy
537 * it there, otherwise allocate a buffer for it
538 * and copy the data there. Either way, set
539 * if_data to point at the data.
540 * If we allocate a buffer for the data, make
541 * sure that its size is a multiple of 4 and
542 * record the real size in i_real_bytes.
543 */
544STATIC int
545xfs_iformat_local(
546 xfs_inode_t *ip,
547 xfs_dinode_t *dip,
548 int whichfork,
549 int size)
550{
551 xfs_ifork_t *ifp;
552 int real_size;
553
554 /*
555 * If the size is unreasonable, then something
556 * is wrong and we just bail out rather than crash in
557 * kmem_alloc() or memcpy() below.
558 */
559 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100560 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
561 "corrupt inode %Lu "
562 "(bad size %d for local fork, size = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700563 (unsigned long long) ip->i_ino, size,
564 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
565 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
566 ip->i_mount, dip);
567 return XFS_ERROR(EFSCORRUPTED);
568 }
569 ifp = XFS_IFORK_PTR(ip, whichfork);
570 real_size = 0;
571 if (size == 0)
572 ifp->if_u1.if_data = NULL;
573 else if (size <= sizeof(ifp->if_u2.if_inline_data))
574 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
575 else {
576 real_size = roundup(size, 4);
577 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
578 }
579 ifp->if_bytes = size;
580 ifp->if_real_bytes = real_size;
581 if (size)
582 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
583 ifp->if_flags &= ~XFS_IFEXTENTS;
584 ifp->if_flags |= XFS_IFINLINE;
585 return 0;
586}
587
588/*
589 * The file consists of a set of extents all
590 * of which fit into the on-disk inode.
591 * If there are few enough extents to fit into
592 * the if_inline_ext, then copy them there.
593 * Otherwise allocate a buffer for them and copy
594 * them into it. Either way, set if_extents
595 * to point at the extents.
596 */
597STATIC int
598xfs_iformat_extents(
599 xfs_inode_t *ip,
600 xfs_dinode_t *dip,
601 int whichfork)
602{
603 xfs_bmbt_rec_t *ep, *dp;
604 xfs_ifork_t *ifp;
605 int nex;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700606 int size;
607 int i;
608
609 ifp = XFS_IFORK_PTR(ip, whichfork);
610 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
611 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
612
613 /*
614 * If the number of extents is unreasonable, then something
615 * is wrong and we just bail out rather than crash in
616 * kmem_alloc() or memcpy() below.
617 */
618 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100619 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
620 "corrupt inode %Lu ((a)extents = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700621 (unsigned long long) ip->i_ino, nex);
622 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
623 ip->i_mount, dip);
624 return XFS_ERROR(EFSCORRUPTED);
625 }
626
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100627 ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700628 if (nex == 0)
629 ifp->if_u1.if_extents = NULL;
630 else if (nex <= XFS_INLINE_EXTS)
631 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100632 else
633 xfs_iext_add(ifp, 0, nex);
634
Linus Torvalds1da177e2005-04-16 15:20:36 -0700635 ifp->if_bytes = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700636 if (size) {
637 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100638 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
639 for (i = 0; i < nex; i++, dp++) {
640 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700641 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
642 ARCH_CONVERT);
643 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
644 ARCH_CONVERT);
645 }
646 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
647 whichfork);
648 if (whichfork != XFS_DATA_FORK ||
649 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
650 if (unlikely(xfs_check_nostate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100651 ifp, 0, nex))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700652 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
653 XFS_ERRLEVEL_LOW,
654 ip->i_mount);
655 return XFS_ERROR(EFSCORRUPTED);
656 }
657 }
658 ifp->if_flags |= XFS_IFEXTENTS;
659 return 0;
660}
661
662/*
663 * The file has too many extents to fit into
664 * the inode, so they are in B-tree format.
665 * Allocate a buffer for the root of the B-tree
666 * and copy the root into it. The i_extents
667 * field will remain NULL until all of the
668 * extents are read in (when they are needed).
669 */
670STATIC int
671xfs_iformat_btree(
672 xfs_inode_t *ip,
673 xfs_dinode_t *dip,
674 int whichfork)
675{
676 xfs_bmdr_block_t *dfp;
677 xfs_ifork_t *ifp;
678 /* REFERENCED */
679 int nrecs;
680 int size;
681
682 ifp = XFS_IFORK_PTR(ip, whichfork);
683 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
684 size = XFS_BMAP_BROOT_SPACE(dfp);
685 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
686
687 /*
688 * blow out if -- fork has less extents than can fit in
689 * fork (fork shouldn't be a btree format), root btree
690 * block has more records than can fit into the fork,
691 * or the number of extents is greater than the number of
692 * blocks.
693 */
694 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
695 || XFS_BMDR_SPACE_CALC(nrecs) >
696 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
697 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100698 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
699 "corrupt inode %Lu (btree).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700700 (unsigned long long) ip->i_ino);
701 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
702 ip->i_mount);
703 return XFS_ERROR(EFSCORRUPTED);
704 }
705
706 ifp->if_broot_bytes = size;
707 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
708 ASSERT(ifp->if_broot != NULL);
709 /*
710 * Copy and convert from the on-disk structure
711 * to the in-memory structure.
712 */
713 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
714 ifp->if_broot, size);
715 ifp->if_flags &= ~XFS_IFEXTENTS;
716 ifp->if_flags |= XFS_IFBROOT;
717
718 return 0;
719}
720
721/*
722 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
723 * and native format
724 *
725 * buf = on-disk representation
726 * dip = native representation
727 * dir = direction - +ve -> disk to native
728 * -ve -> native to disk
729 */
730void
731xfs_xlate_dinode_core(
732 xfs_caddr_t buf,
733 xfs_dinode_core_t *dip,
734 int dir)
735{
736 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
737 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
738 xfs_arch_t arch = ARCH_CONVERT;
739
740 ASSERT(dir);
741
742 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
743 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
744 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
745 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
746 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
747 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
748 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
749 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
750 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
751
752 if (dir > 0) {
753 memcpy(mem_core->di_pad, buf_core->di_pad,
754 sizeof(buf_core->di_pad));
755 } else {
756 memcpy(buf_core->di_pad, mem_core->di_pad,
757 sizeof(buf_core->di_pad));
758 }
759
760 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
761
762 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
763 dir, arch);
764 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
765 dir, arch);
766 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
767 dir, arch);
768 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
769 dir, arch);
770 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
771 dir, arch);
772 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
773 dir, arch);
774 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
775 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
776 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
777 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
778 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
779 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
780 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
781 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
782 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
783 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
784 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
785}
786
787STATIC uint
788_xfs_dic2xflags(
Linus Torvalds1da177e2005-04-16 15:20:36 -0700789 __uint16_t di_flags)
790{
791 uint flags = 0;
792
793 if (di_flags & XFS_DIFLAG_ANY) {
794 if (di_flags & XFS_DIFLAG_REALTIME)
795 flags |= XFS_XFLAG_REALTIME;
796 if (di_flags & XFS_DIFLAG_PREALLOC)
797 flags |= XFS_XFLAG_PREALLOC;
798 if (di_flags & XFS_DIFLAG_IMMUTABLE)
799 flags |= XFS_XFLAG_IMMUTABLE;
800 if (di_flags & XFS_DIFLAG_APPEND)
801 flags |= XFS_XFLAG_APPEND;
802 if (di_flags & XFS_DIFLAG_SYNC)
803 flags |= XFS_XFLAG_SYNC;
804 if (di_flags & XFS_DIFLAG_NOATIME)
805 flags |= XFS_XFLAG_NOATIME;
806 if (di_flags & XFS_DIFLAG_NODUMP)
807 flags |= XFS_XFLAG_NODUMP;
808 if (di_flags & XFS_DIFLAG_RTINHERIT)
809 flags |= XFS_XFLAG_RTINHERIT;
810 if (di_flags & XFS_DIFLAG_PROJINHERIT)
811 flags |= XFS_XFLAG_PROJINHERIT;
812 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
813 flags |= XFS_XFLAG_NOSYMLINKS;
Nathan Scottdd9f4382006-01-11 15:28:28 +1100814 if (di_flags & XFS_DIFLAG_EXTSIZE)
815 flags |= XFS_XFLAG_EXTSIZE;
816 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
817 flags |= XFS_XFLAG_EXTSZINHERIT;
Barry Naujokd3446ea2006-06-09 14:54:19 +1000818 if (di_flags & XFS_DIFLAG_NODEFRAG)
819 flags |= XFS_XFLAG_NODEFRAG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700820 }
821
822 return flags;
823}
824
825uint
826xfs_ip2xflags(
827 xfs_inode_t *ip)
828{
829 xfs_dinode_core_t *dic = &ip->i_d;
830
Nathan Scotta916e2b2006-06-09 17:12:17 +1000831 return _xfs_dic2xflags(dic->di_flags) |
832 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700833}
834
835uint
836xfs_dic2xflags(
837 xfs_dinode_core_t *dic)
838{
Nathan Scotta916e2b2006-06-09 17:12:17 +1000839 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
840 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700841}
842
843/*
844 * Given a mount structure and an inode number, return a pointer
Nathan Scottc41564b2006-03-29 08:55:14 +1000845 * to a newly allocated in-core inode corresponding to the given
Linus Torvalds1da177e2005-04-16 15:20:36 -0700846 * inode number.
847 *
848 * Initialize the inode's attributes and extent pointers if it
849 * already has them (it will not if the inode has no links).
850 */
851int
852xfs_iread(
853 xfs_mount_t *mp,
854 xfs_trans_t *tp,
855 xfs_ino_t ino,
856 xfs_inode_t **ipp,
Nathan Scott745b1f472006-09-28 11:02:23 +1000857 xfs_daddr_t bno,
858 uint imap_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859{
860 xfs_buf_t *bp;
861 xfs_dinode_t *dip;
862 xfs_inode_t *ip;
863 int error;
864
865 ASSERT(xfs_inode_zone != NULL);
866
867 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
868 ip->i_ino = ino;
869 ip->i_mount = mp;
David Chinnerf273ab82006-09-28 11:06:03 +1000870 spin_lock_init(&ip->i_flags_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700871
872 /*
873 * Get pointer's to the on-disk inode and the buffer containing it.
874 * If the inode number refers to a block outside the file system
875 * then xfs_itobp() will return NULL. In this case we should
876 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
877 * know that this is a new incore inode.
878 */
Nathan Scott745b1f472006-09-28 11:02:23 +1000879 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
Nathan Scottb12dd342006-03-17 17:26:04 +1100880 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700881 kmem_zone_free(xfs_inode_zone, ip);
882 return error;
883 }
884
885 /*
886 * Initialize inode's trace buffers.
887 * Do this before xfs_iformat in case it adds entries.
888 */
889#ifdef XFS_BMAP_TRACE
890 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
891#endif
892#ifdef XFS_BMBT_TRACE
893 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
894#endif
895#ifdef XFS_RW_TRACE
896 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
897#endif
898#ifdef XFS_ILOCK_TRACE
899 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
900#endif
901#ifdef XFS_DIR2_TRACE
902 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
903#endif
904
905 /*
906 * If we got something that isn't an inode it means someone
907 * (nfs or dmi) has a stale handle.
908 */
909 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
910 kmem_zone_free(xfs_inode_zone, ip);
911 xfs_trans_brelse(tp, bp);
912#ifdef DEBUG
913 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
914 "dip->di_core.di_magic (0x%x) != "
915 "XFS_DINODE_MAGIC (0x%x)",
916 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
917 XFS_DINODE_MAGIC);
918#endif /* DEBUG */
919 return XFS_ERROR(EINVAL);
920 }
921
922 /*
923 * If the on-disk inode is already linked to a directory
924 * entry, copy all of the inode into the in-core inode.
925 * xfs_iformat() handles copying in the inode format
926 * specific information.
927 * Otherwise, just get the truly permanent information.
928 */
929 if (dip->di_core.di_mode) {
930 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
931 &(ip->i_d), 1);
932 error = xfs_iformat(ip, dip);
933 if (error) {
934 kmem_zone_free(xfs_inode_zone, ip);
935 xfs_trans_brelse(tp, bp);
936#ifdef DEBUG
937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 "xfs_iformat() returned error %d",
939 error);
940#endif /* DEBUG */
941 return error;
942 }
943 } else {
944 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
945 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
946 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
947 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
948 /*
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
954 */
955 ip->i_d.di_mode = 0;
956 /*
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
959 */
960 ip->i_df.if_ext_max =
961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
962 }
963
964 INIT_LIST_HEAD(&ip->i_reclaim);
965
966 /*
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
976 */
977 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 ip->i_d.di_nlink = ip->i_d.di_onlink;
979 ip->i_d.di_onlink = 0;
980 ip->i_d.di_projid = 0;
981 }
982
983 ip->i_delayed_blks = 0;
984
985 /*
986 * Mark the buffer containing the inode as something to keep
987 * around for a while. This helps to keep recently accessed
988 * meta-data in-core longer.
989 */
990 XFS_BUF_SET_REF(bp, XFS_INO_REF);
991
992 /*
993 * Use xfs_trans_brelse() to release the buffer containing the
994 * on-disk inode, because it was acquired with xfs_trans_read_buf()
995 * in xfs_itobp() above. If tp is NULL, this is just a normal
996 * brelse(). If we're within a transaction, then xfs_trans_brelse()
997 * will only release the buffer if it is not dirty within the
998 * transaction. It will be OK to release the buffer in this case,
999 * because inodes on disk are never destroyed and we will be
1000 * locking the new in-core inode before putting it in the hash
1001 * table where other processes can find it. Thus we don't have
1002 * to worry about the inode being changed just because we released
1003 * the buffer.
1004 */
1005 xfs_trans_brelse(tp, bp);
1006 *ipp = ip;
1007 return 0;
1008}
1009
1010/*
1011 * Read in extents from a btree-format inode.
1012 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1013 */
1014int
1015xfs_iread_extents(
1016 xfs_trans_t *tp,
1017 xfs_inode_t *ip,
1018 int whichfork)
1019{
1020 int error;
1021 xfs_ifork_t *ifp;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001022 xfs_extnum_t nextents;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023 size_t size;
1024
1025 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1026 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1027 ip->i_mount);
1028 return XFS_ERROR(EFSCORRUPTED);
1029 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001030 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1031 size = nextents * sizeof(xfs_bmbt_rec_t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 ifp = XFS_IFORK_PTR(ip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001033
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034 /*
1035 * We know that the size is valid (it's checked in iformat_btree)
1036 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037 ifp->if_lastex = NULLEXTNUM;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001038 ifp->if_bytes = ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039 ifp->if_flags |= XFS_IFEXTENTS;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001040 xfs_iext_add(ifp, 0, nextents);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001041 error = xfs_bmap_read_extents(tp, ip, whichfork);
1042 if (error) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001043 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001044 ifp->if_flags &= ~XFS_IFEXTENTS;
1045 return error;
1046 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001047 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001048 return 0;
1049}
1050
1051/*
1052 * Allocate an inode on disk and return a copy of its in-core version.
1053 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1054 * appropriately within the inode. The uid and gid for the inode are
1055 * set according to the contents of the given cred structure.
1056 *
1057 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1058 * has a free inode available, call xfs_iget()
1059 * to obtain the in-core version of the allocated inode. Finally,
1060 * fill in the inode and log its initial contents. In this case,
1061 * ialloc_context would be set to NULL and call_again set to false.
1062 *
1063 * If xfs_dialloc() does not have an available inode,
1064 * it will replenish its supply by doing an allocation. Since we can
1065 * only do one allocation within a transaction without deadlocks, we
1066 * must commit the current transaction before returning the inode itself.
1067 * In this case, therefore, we will set call_again to true and return.
1068 * The caller should then commit the current transaction, start a new
1069 * transaction, and call xfs_ialloc() again to actually get the inode.
1070 *
1071 * To ensure that some other process does not grab the inode that
1072 * was allocated during the first call to xfs_ialloc(), this routine
1073 * also returns the [locked] bp pointing to the head of the freelist
1074 * as ialloc_context. The caller should hold this buffer across
1075 * the commit and pass it back into this routine on the second call.
1076 */
1077int
1078xfs_ialloc(
1079 xfs_trans_t *tp,
1080 xfs_inode_t *pip,
1081 mode_t mode,
Nathan Scott31b084a2005-05-05 13:25:00 -07001082 xfs_nlink_t nlink,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001083 xfs_dev_t rdev,
1084 cred_t *cr,
1085 xfs_prid_t prid,
1086 int okalloc,
1087 xfs_buf_t **ialloc_context,
1088 boolean_t *call_again,
1089 xfs_inode_t **ipp)
1090{
1091 xfs_ino_t ino;
1092 xfs_inode_t *ip;
Nathan Scott67fcaa72006-06-09 17:00:52 +10001093 bhv_vnode_t *vp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001094 uint flags;
1095 int error;
1096
1097 /*
1098 * Call the space management code to pick
1099 * the on-disk inode to be allocated.
1100 */
1101 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1102 ialloc_context, call_again, &ino);
1103 if (error != 0) {
1104 return error;
1105 }
1106 if (*call_again || ino == NULLFSINO) {
1107 *ipp = NULL;
1108 return 0;
1109 }
1110 ASSERT(*ialloc_context == NULL);
1111
1112 /*
1113 * Get the in-core inode with the lock held exclusively.
1114 * This is because we're setting fields here we need
1115 * to prevent others from looking at until we're done.
1116 */
1117 error = xfs_trans_iget(tp->t_mountp, tp, ino,
Nathan Scott745b1f472006-09-28 11:02:23 +10001118 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001119 if (error != 0) {
1120 return error;
1121 }
1122 ASSERT(ip != NULL);
1123
1124 vp = XFS_ITOV(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001125 ip->i_d.di_mode = (__uint16_t)mode;
1126 ip->i_d.di_onlink = 0;
1127 ip->i_d.di_nlink = nlink;
1128 ASSERT(ip->i_d.di_nlink == nlink);
1129 ip->i_d.di_uid = current_fsuid(cr);
1130 ip->i_d.di_gid = current_fsgid(cr);
1131 ip->i_d.di_projid = prid;
1132 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1133
1134 /*
1135 * If the superblock version is up to where we support new format
1136 * inodes and this is currently an old format inode, then change
1137 * the inode version number now. This way we only do the conversion
1138 * here rather than here and in the flush/logging code.
1139 */
1140 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1141 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1142 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1143 /*
1144 * We've already zeroed the old link count, the projid field,
1145 * and the pad field.
1146 */
1147 }
1148
1149 /*
1150 * Project ids won't be stored on disk if we are using a version 1 inode.
1151 */
1152 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1153 xfs_bump_ino_vers2(tp, ip);
1154
1155 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1156 ip->i_d.di_gid = pip->i_d.di_gid;
1157 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1158 ip->i_d.di_mode |= S_ISGID;
1159 }
1160 }
1161
1162 /*
1163 * If the group ID of the new file does not match the effective group
1164 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1165 * (and only if the irix_sgid_inherit compatibility variable is set).
1166 */
1167 if ((irix_sgid_inherit) &&
1168 (ip->i_d.di_mode & S_ISGID) &&
1169 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1170 ip->i_d.di_mode &= ~S_ISGID;
1171 }
1172
1173 ip->i_d.di_size = 0;
1174 ip->i_d.di_nextents = 0;
1175 ASSERT(ip->i_d.di_nblocks == 0);
1176 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1177 /*
1178 * di_gen will have been taken care of in xfs_iread.
1179 */
1180 ip->i_d.di_extsize = 0;
1181 ip->i_d.di_dmevmask = 0;
1182 ip->i_d.di_dmstate = 0;
1183 ip->i_d.di_flags = 0;
1184 flags = XFS_ILOG_CORE;
1185 switch (mode & S_IFMT) {
1186 case S_IFIFO:
1187 case S_IFCHR:
1188 case S_IFBLK:
1189 case S_IFSOCK:
1190 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1191 ip->i_df.if_u2.if_rdev = rdev;
1192 ip->i_df.if_flags = 0;
1193 flags |= XFS_ILOG_DEV;
1194 break;
1195 case S_IFREG:
1196 case S_IFDIR:
1197 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
Nathan Scott365ca832005-06-21 15:39:12 +10001198 uint di_flags = 0;
1199
1200 if ((mode & S_IFMT) == S_IFDIR) {
1201 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1202 di_flags |= XFS_DIFLAG_RTINHERIT;
Nathan Scottdd9f4382006-01-11 15:28:28 +11001203 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1204 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1205 ip->i_d.di_extsize = pip->i_d.di_extsize;
1206 }
1207 } else if ((mode & S_IFMT) == S_IFREG) {
Nathan Scott365ca832005-06-21 15:39:12 +10001208 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1209 di_flags |= XFS_DIFLAG_REALTIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001210 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1211 }
Nathan Scottdd9f4382006-01-11 15:28:28 +11001212 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1213 di_flags |= XFS_DIFLAG_EXTSIZE;
1214 ip->i_d.di_extsize = pip->i_d.di_extsize;
1215 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216 }
1217 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1218 xfs_inherit_noatime)
Nathan Scott365ca832005-06-21 15:39:12 +10001219 di_flags |= XFS_DIFLAG_NOATIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001220 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1221 xfs_inherit_nodump)
Nathan Scott365ca832005-06-21 15:39:12 +10001222 di_flags |= XFS_DIFLAG_NODUMP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001223 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1224 xfs_inherit_sync)
Nathan Scott365ca832005-06-21 15:39:12 +10001225 di_flags |= XFS_DIFLAG_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001226 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1227 xfs_inherit_nosymlinks)
Nathan Scott365ca832005-06-21 15:39:12 +10001228 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1229 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1230 di_flags |= XFS_DIFLAG_PROJINHERIT;
Barry Naujokd3446ea2006-06-09 14:54:19 +10001231 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1232 xfs_inherit_nodefrag)
1233 di_flags |= XFS_DIFLAG_NODEFRAG;
Nathan Scott365ca832005-06-21 15:39:12 +10001234 ip->i_d.di_flags |= di_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001235 }
1236 /* FALLTHROUGH */
1237 case S_IFLNK:
1238 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1239 ip->i_df.if_flags = XFS_IFEXTENTS;
1240 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1241 ip->i_df.if_u1.if_extents = NULL;
1242 break;
1243 default:
1244 ASSERT(0);
1245 }
1246 /*
1247 * Attribute fork settings for new inode.
1248 */
1249 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1250 ip->i_d.di_anextents = 0;
1251
1252 /*
1253 * Log the new values stuffed into the inode.
1254 */
1255 xfs_trans_log_inode(tp, ip, flags);
1256
Nathan Scottb83bd132006-06-09 16:48:30 +10001257 /* now that we have an i_mode we can setup inode ops and unlock */
1258 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001259
1260 *ipp = ip;
1261 return 0;
1262}
1263
1264/*
1265 * Check to make sure that there are no blocks allocated to the
1266 * file beyond the size of the file. We don't check this for
1267 * files with fixed size extents or real time extents, but we
1268 * at least do it for regular files.
1269 */
1270#ifdef DEBUG
1271void
1272xfs_isize_check(
1273 xfs_mount_t *mp,
1274 xfs_inode_t *ip,
1275 xfs_fsize_t isize)
1276{
1277 xfs_fileoff_t map_first;
1278 int nimaps;
1279 xfs_bmbt_irec_t imaps[2];
1280
1281 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1282 return;
1283
Nathan Scottdd9f4382006-01-11 15:28:28 +11001284 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001285 return;
1286
1287 nimaps = 2;
1288 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1289 /*
1290 * The filesystem could be shutting down, so bmapi may return
1291 * an error.
1292 */
1293 if (xfs_bmapi(NULL, ip, map_first,
1294 (XFS_B_TO_FSB(mp,
1295 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1296 map_first),
1297 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001298 NULL, NULL))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001299 return;
1300 ASSERT(nimaps == 1);
1301 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1302}
1303#endif /* DEBUG */
1304
1305/*
1306 * Calculate the last possible buffered byte in a file. This must
1307 * include data that was buffered beyond the EOF by the write code.
1308 * This also needs to deal with overflowing the xfs_fsize_t type
1309 * which can happen for sizes near the limit.
1310 *
1311 * We also need to take into account any blocks beyond the EOF. It
1312 * may be the case that they were buffered by a write which failed.
1313 * In that case the pages will still be in memory, but the inode size
1314 * will never have been updated.
1315 */
1316xfs_fsize_t
1317xfs_file_last_byte(
1318 xfs_inode_t *ip)
1319{
1320 xfs_mount_t *mp;
1321 xfs_fsize_t last_byte;
1322 xfs_fileoff_t last_block;
1323 xfs_fileoff_t size_last_block;
1324 int error;
1325
1326 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1327
1328 mp = ip->i_mount;
1329 /*
1330 * Only check for blocks beyond the EOF if the extents have
1331 * been read in. This eliminates the need for the inode lock,
1332 * and it also saves us from looking when it really isn't
1333 * necessary.
1334 */
1335 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1336 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1337 XFS_DATA_FORK);
1338 if (error) {
1339 last_block = 0;
1340 }
1341 } else {
1342 last_block = 0;
1343 }
1344 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1345 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1346
1347 last_byte = XFS_FSB_TO_B(mp, last_block);
1348 if (last_byte < 0) {
1349 return XFS_MAXIOFFSET(mp);
1350 }
1351 last_byte += (1 << mp->m_writeio_log);
1352 if (last_byte < 0) {
1353 return XFS_MAXIOFFSET(mp);
1354 }
1355 return last_byte;
1356}
1357
1358#if defined(XFS_RW_TRACE)
1359STATIC void
1360xfs_itrunc_trace(
1361 int tag,
1362 xfs_inode_t *ip,
1363 int flag,
1364 xfs_fsize_t new_size,
1365 xfs_off_t toss_start,
1366 xfs_off_t toss_finish)
1367{
1368 if (ip->i_rwtrace == NULL) {
1369 return;
1370 }
1371
1372 ktrace_enter(ip->i_rwtrace,
1373 (void*)((long)tag),
1374 (void*)ip,
1375 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1376 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1377 (void*)((long)flag),
1378 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1379 (void*)(unsigned long)(new_size & 0xffffffff),
1380 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1381 (void*)(unsigned long)(toss_start & 0xffffffff),
1382 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1383 (void*)(unsigned long)(toss_finish & 0xffffffff),
1384 (void*)(unsigned long)current_cpu(),
Yingping Luf1fdc842006-03-22 12:44:15 +11001385 (void*)(unsigned long)current_pid(),
1386 (void*)NULL,
1387 (void*)NULL,
1388 (void*)NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001389}
1390#else
1391#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1392#endif
1393
1394/*
1395 * Start the truncation of the file to new_size. The new size
1396 * must be smaller than the current size. This routine will
1397 * clear the buffer and page caches of file data in the removed
1398 * range, and xfs_itruncate_finish() will remove the underlying
1399 * disk blocks.
1400 *
1401 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1402 * must NOT have the inode lock held at all. This is because we're
1403 * calling into the buffer/page cache code and we can't hold the
1404 * inode lock when we do so.
1405 *
David Chinner38e22992006-03-22 12:47:15 +11001406 * We need to wait for any direct I/Os in flight to complete before we
1407 * proceed with the truncate. This is needed to prevent the extents
1408 * being read or written by the direct I/Os from being removed while the
1409 * I/O is in flight as there is no other method of synchronising
1410 * direct I/O with the truncate operation. Also, because we hold
1411 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1412 * started until the truncate completes and drops the lock. Essentially,
1413 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1414 * between direct I/Os and the truncate operation.
1415 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001416 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1417 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1418 * in the case that the caller is locking things out of order and
1419 * may not be able to call xfs_itruncate_finish() with the inode lock
1420 * held without dropping the I/O lock. If the caller must drop the
1421 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1422 * must be called again with all the same restrictions as the initial
1423 * call.
1424 */
1425void
1426xfs_itruncate_start(
1427 xfs_inode_t *ip,
1428 uint flags,
1429 xfs_fsize_t new_size)
1430{
1431 xfs_fsize_t last_byte;
1432 xfs_off_t toss_start;
1433 xfs_mount_t *mp;
Nathan Scott67fcaa72006-06-09 17:00:52 +10001434 bhv_vnode_t *vp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001435
1436 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1437 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1438 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1439 (flags == XFS_ITRUNC_MAYBE));
1440
1441 mp = ip->i_mount;
1442 vp = XFS_ITOV(ip);
Yingping Lu9fa80462006-03-22 12:44:35 +11001443
1444 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1445
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446 /*
Nathan Scott67fcaa72006-06-09 17:00:52 +10001447 * Call toss_pages or flushinval_pages to get rid of pages
Linus Torvalds1da177e2005-04-16 15:20:36 -07001448 * overlapping the region being removed. We have to use
Nathan Scott67fcaa72006-06-09 17:00:52 +10001449 * the less efficient flushinval_pages in the case that the
Linus Torvalds1da177e2005-04-16 15:20:36 -07001450 * caller may not be able to finish the truncate without
1451 * dropping the inode's I/O lock. Make sure
1452 * to catch any pages brought in by buffers overlapping
1453 * the EOF by searching out beyond the isize by our
1454 * block size. We round new_size up to a block boundary
1455 * so that we don't toss things on the same block as
1456 * new_size but before it.
1457 *
Nathan Scott67fcaa72006-06-09 17:00:52 +10001458 * Before calling toss_page or flushinval_pages, make sure to
Linus Torvalds1da177e2005-04-16 15:20:36 -07001459 * call remapf() over the same region if the file is mapped.
1460 * This frees up mapped file references to the pages in the
Nathan Scott67fcaa72006-06-09 17:00:52 +10001461 * given range and for the flushinval_pages case it ensures
Linus Torvalds1da177e2005-04-16 15:20:36 -07001462 * that we get the latest mapped changes flushed out.
1463 */
1464 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1465 toss_start = XFS_FSB_TO_B(mp, toss_start);
1466 if (toss_start < 0) {
1467 /*
1468 * The place to start tossing is beyond our maximum
1469 * file size, so there is no way that the data extended
1470 * out there.
1471 */
1472 return;
1473 }
1474 last_byte = xfs_file_last_byte(ip);
1475 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1476 last_byte);
1477 if (last_byte > toss_start) {
1478 if (flags & XFS_ITRUNC_DEFINITE) {
Nathan Scott67fcaa72006-06-09 17:00:52 +10001479 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001480 } else {
Nathan Scott67fcaa72006-06-09 17:00:52 +10001481 bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001482 }
1483 }
1484
1485#ifdef DEBUG
1486 if (new_size == 0) {
1487 ASSERT(VN_CACHED(vp) == 0);
1488 }
1489#endif
1490}
1491
1492/*
1493 * Shrink the file to the given new_size. The new
1494 * size must be smaller than the current size.
1495 * This will free up the underlying blocks
1496 * in the removed range after a call to xfs_itruncate_start()
1497 * or xfs_atruncate_start().
1498 *
1499 * The transaction passed to this routine must have made
1500 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1501 * This routine may commit the given transaction and
1502 * start new ones, so make sure everything involved in
1503 * the transaction is tidy before calling here.
1504 * Some transaction will be returned to the caller to be
1505 * committed. The incoming transaction must already include
1506 * the inode, and both inode locks must be held exclusively.
1507 * The inode must also be "held" within the transaction. On
1508 * return the inode will be "held" within the returned transaction.
1509 * This routine does NOT require any disk space to be reserved
1510 * for it within the transaction.
1511 *
1512 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1513 * and it indicates the fork which is to be truncated. For the
1514 * attribute fork we only support truncation to size 0.
1515 *
1516 * We use the sync parameter to indicate whether or not the first
1517 * transaction we perform might have to be synchronous. For the attr fork,
1518 * it needs to be so if the unlink of the inode is not yet known to be
1519 * permanent in the log. This keeps us from freeing and reusing the
1520 * blocks of the attribute fork before the unlink of the inode becomes
1521 * permanent.
1522 *
1523 * For the data fork, we normally have to run synchronously if we're
1524 * being called out of the inactive path or we're being called
1525 * out of the create path where we're truncating an existing file.
1526 * Either way, the truncate needs to be sync so blocks don't reappear
1527 * in the file with altered data in case of a crash. wsync filesystems
1528 * can run the first case async because anything that shrinks the inode
1529 * has to run sync so by the time we're called here from inactive, the
1530 * inode size is permanently set to 0.
1531 *
1532 * Calls from the truncate path always need to be sync unless we're
1533 * in a wsync filesystem and the file has already been unlinked.
1534 *
1535 * The caller is responsible for correctly setting the sync parameter.
1536 * It gets too hard for us to guess here which path we're being called
1537 * out of just based on inode state.
1538 */
1539int
1540xfs_itruncate_finish(
1541 xfs_trans_t **tp,
1542 xfs_inode_t *ip,
1543 xfs_fsize_t new_size,
1544 int fork,
1545 int sync)
1546{
1547 xfs_fsblock_t first_block;
1548 xfs_fileoff_t first_unmap_block;
1549 xfs_fileoff_t last_block;
1550 xfs_filblks_t unmap_len=0;
1551 xfs_mount_t *mp;
1552 xfs_trans_t *ntp;
1553 int done;
1554 int committed;
1555 xfs_bmap_free_t free_list;
1556 int error;
1557
1558 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1559 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1560 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1561 ASSERT(*tp != NULL);
1562 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1563 ASSERT(ip->i_transp == *tp);
1564 ASSERT(ip->i_itemp != NULL);
1565 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1566
1567
1568 ntp = *tp;
1569 mp = (ntp)->t_mountp;
1570 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1571
1572 /*
1573 * We only support truncating the entire attribute fork.
1574 */
1575 if (fork == XFS_ATTR_FORK) {
1576 new_size = 0LL;
1577 }
1578 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1579 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1580 /*
1581 * The first thing we do is set the size to new_size permanently
1582 * on disk. This way we don't have to worry about anyone ever
1583 * being able to look at the data being freed even in the face
1584 * of a crash. What we're getting around here is the case where
1585 * we free a block, it is allocated to another file, it is written
1586 * to, and then we crash. If the new data gets written to the
1587 * file but the log buffers containing the free and reallocation
1588 * don't, then we'd end up with garbage in the blocks being freed.
1589 * As long as we make the new_size permanent before actually
1590 * freeing any blocks it doesn't matter if they get writtten to.
1591 *
1592 * The callers must signal into us whether or not the size
1593 * setting here must be synchronous. There are a few cases
1594 * where it doesn't have to be synchronous. Those cases
1595 * occur if the file is unlinked and we know the unlink is
1596 * permanent or if the blocks being truncated are guaranteed
1597 * to be beyond the inode eof (regardless of the link count)
1598 * and the eof value is permanent. Both of these cases occur
1599 * only on wsync-mounted filesystems. In those cases, we're
1600 * guaranteed that no user will ever see the data in the blocks
1601 * that are being truncated so the truncate can run async.
1602 * In the free beyond eof case, the file may wind up with
1603 * more blocks allocated to it than it needs if we crash
1604 * and that won't get fixed until the next time the file
1605 * is re-opened and closed but that's ok as that shouldn't
1606 * be too many blocks.
1607 *
1608 * However, we can't just make all wsync xactions run async
1609 * because there's one call out of the create path that needs
1610 * to run sync where it's truncating an existing file to size
1611 * 0 whose size is > 0.
1612 *
1613 * It's probably possible to come up with a test in this
1614 * routine that would correctly distinguish all the above
1615 * cases from the values of the function parameters and the
1616 * inode state but for sanity's sake, I've decided to let the
1617 * layers above just tell us. It's simpler to correctly figure
1618 * out in the layer above exactly under what conditions we
1619 * can run async and I think it's easier for others read and
1620 * follow the logic in case something has to be changed.
1621 * cscope is your friend -- rcc.
1622 *
1623 * The attribute fork is much simpler.
1624 *
1625 * For the attribute fork we allow the caller to tell us whether
1626 * the unlink of the inode that led to this call is yet permanent
1627 * in the on disk log. If it is not and we will be freeing extents
1628 * in this inode then we make the first transaction synchronous
1629 * to make sure that the unlink is permanent by the time we free
1630 * the blocks.
1631 */
1632 if (fork == XFS_DATA_FORK) {
1633 if (ip->i_d.di_nextents > 0) {
1634 ip->i_d.di_size = new_size;
1635 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1636 }
1637 } else if (sync) {
1638 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1639 if (ip->i_d.di_anextents > 0)
1640 xfs_trans_set_sync(ntp);
1641 }
1642 ASSERT(fork == XFS_DATA_FORK ||
1643 (fork == XFS_ATTR_FORK &&
1644 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1645 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1646
1647 /*
1648 * Since it is possible for space to become allocated beyond
1649 * the end of the file (in a crash where the space is allocated
1650 * but the inode size is not yet updated), simply remove any
1651 * blocks which show up between the new EOF and the maximum
1652 * possible file size. If the first block to be removed is
1653 * beyond the maximum file size (ie it is the same as last_block),
1654 * then there is nothing to do.
1655 */
1656 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1657 ASSERT(first_unmap_block <= last_block);
1658 done = 0;
1659 if (last_block == first_unmap_block) {
1660 done = 1;
1661 } else {
1662 unmap_len = last_block - first_unmap_block + 1;
1663 }
1664 while (!done) {
1665 /*
1666 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1667 * will tell us whether it freed the entire range or
1668 * not. If this is a synchronous mount (wsync),
1669 * then we can tell bunmapi to keep all the
1670 * transactions asynchronous since the unlink
1671 * transaction that made this inode inactive has
1672 * already hit the disk. There's no danger of
1673 * the freed blocks being reused, there being a
1674 * crash, and the reused blocks suddenly reappearing
1675 * in this file with garbage in them once recovery
1676 * runs.
1677 */
1678 XFS_BMAP_INIT(&free_list, &first_block);
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001679 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1680 first_unmap_block, unmap_len,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001681 XFS_BMAPI_AFLAG(fork) |
1682 (sync ? 0 : XFS_BMAPI_ASYNC),
1683 XFS_ITRUNC_MAX_EXTENTS,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001684 &first_block, &free_list,
1685 NULL, &done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001686 if (error) {
1687 /*
1688 * If the bunmapi call encounters an error,
1689 * return to the caller where the transaction
1690 * can be properly aborted. We just need to
1691 * make sure we're not holding any resources
1692 * that we were not when we came in.
1693 */
1694 xfs_bmap_cancel(&free_list);
1695 return error;
1696 }
1697
1698 /*
1699 * Duplicate the transaction that has the permanent
1700 * reservation and commit the old transaction.
1701 */
Eric Sandeenf7c99b62007-02-10 18:37:16 +11001702 error = xfs_bmap_finish(tp, &free_list, &committed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001703 ntp = *tp;
1704 if (error) {
1705 /*
1706 * If the bmap finish call encounters an error,
1707 * return to the caller where the transaction
1708 * can be properly aborted. We just need to
1709 * make sure we're not holding any resources
1710 * that we were not when we came in.
1711 *
1712 * Aborting from this point might lose some
1713 * blocks in the file system, but oh well.
1714 */
1715 xfs_bmap_cancel(&free_list);
1716 if (committed) {
1717 /*
1718 * If the passed in transaction committed
1719 * in xfs_bmap_finish(), then we want to
1720 * add the inode to this one before returning.
1721 * This keeps things simple for the higher
1722 * level code, because it always knows that
1723 * the inode is locked and held in the
1724 * transaction that returns to it whether
1725 * errors occur or not. We don't mark the
1726 * inode dirty so that this transaction can
1727 * be easily aborted if possible.
1728 */
1729 xfs_trans_ijoin(ntp, ip,
1730 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1731 xfs_trans_ihold(ntp, ip);
1732 }
1733 return error;
1734 }
1735
1736 if (committed) {
1737 /*
1738 * The first xact was committed,
1739 * so add the inode to the new one.
1740 * Mark it dirty so it will be logged
1741 * and moved forward in the log as
1742 * part of every commit.
1743 */
1744 xfs_trans_ijoin(ntp, ip,
1745 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1746 xfs_trans_ihold(ntp, ip);
1747 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1748 }
1749 ntp = xfs_trans_dup(ntp);
1750 (void) xfs_trans_commit(*tp, 0, NULL);
1751 *tp = ntp;
1752 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1753 XFS_TRANS_PERM_LOG_RES,
1754 XFS_ITRUNCATE_LOG_COUNT);
1755 /*
1756 * Add the inode being truncated to the next chained
1757 * transaction.
1758 */
1759 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1760 xfs_trans_ihold(ntp, ip);
1761 if (error)
1762 return (error);
1763 }
1764 /*
1765 * Only update the size in the case of the data fork, but
1766 * always re-log the inode so that our permanent transaction
1767 * can keep on rolling it forward in the log.
1768 */
1769 if (fork == XFS_DATA_FORK) {
1770 xfs_isize_check(mp, ip, new_size);
1771 ip->i_d.di_size = new_size;
1772 }
1773 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1774 ASSERT((new_size != 0) ||
1775 (fork == XFS_ATTR_FORK) ||
1776 (ip->i_delayed_blks == 0));
1777 ASSERT((new_size != 0) ||
1778 (fork == XFS_ATTR_FORK) ||
1779 (ip->i_d.di_nextents == 0));
1780 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1781 return 0;
1782}
1783
1784
1785/*
1786 * xfs_igrow_start
1787 *
1788 * Do the first part of growing a file: zero any data in the last
1789 * block that is beyond the old EOF. We need to do this before
1790 * the inode is joined to the transaction to modify the i_size.
1791 * That way we can drop the inode lock and call into the buffer
1792 * cache to get the buffer mapping the EOF.
1793 */
1794int
1795xfs_igrow_start(
1796 xfs_inode_t *ip,
1797 xfs_fsize_t new_size,
1798 cred_t *credp)
1799{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001800 int error;
1801
1802 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1803 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1804 ASSERT(new_size > ip->i_d.di_size);
1805
Linus Torvalds1da177e2005-04-16 15:20:36 -07001806 /*
1807 * Zero any pages that may have been created by
1808 * xfs_write_file() beyond the end of the file
1809 * and any blocks between the old and new file sizes.
1810 */
Eric Sandeen24ee8082006-01-11 15:34:32 +11001811 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
Lachlan McIlroy68160162007-02-10 18:36:47 +11001812 ip->i_d.di_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813 return error;
1814}
1815
1816/*
1817 * xfs_igrow_finish
1818 *
1819 * This routine is called to extend the size of a file.
1820 * The inode must have both the iolock and the ilock locked
1821 * for update and it must be a part of the current transaction.
1822 * The xfs_igrow_start() function must have been called previously.
1823 * If the change_flag is not zero, the inode change timestamp will
1824 * be updated.
1825 */
1826void
1827xfs_igrow_finish(
1828 xfs_trans_t *tp,
1829 xfs_inode_t *ip,
1830 xfs_fsize_t new_size,
1831 int change_flag)
1832{
1833 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1834 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1835 ASSERT(ip->i_transp == tp);
1836 ASSERT(new_size > ip->i_d.di_size);
1837
1838 /*
1839 * Update the file size. Update the inode change timestamp
1840 * if change_flag set.
1841 */
1842 ip->i_d.di_size = new_size;
1843 if (change_flag)
1844 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1845 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1846
1847}
1848
1849
1850/*
1851 * This is called when the inode's link count goes to 0.
1852 * We place the on-disk inode on a list in the AGI. It
1853 * will be pulled from this list when the inode is freed.
1854 */
1855int
1856xfs_iunlink(
1857 xfs_trans_t *tp,
1858 xfs_inode_t *ip)
1859{
1860 xfs_mount_t *mp;
1861 xfs_agi_t *agi;
1862 xfs_dinode_t *dip;
1863 xfs_buf_t *agibp;
1864 xfs_buf_t *ibp;
1865 xfs_agnumber_t agno;
1866 xfs_daddr_t agdaddr;
1867 xfs_agino_t agino;
1868 short bucket_index;
1869 int offset;
1870 int error;
1871 int agi_ok;
1872
1873 ASSERT(ip->i_d.di_nlink == 0);
1874 ASSERT(ip->i_d.di_mode != 0);
1875 ASSERT(ip->i_transp == tp);
1876
1877 mp = tp->t_mountp;
1878
1879 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1880 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1881
1882 /*
1883 * Get the agi buffer first. It ensures lock ordering
1884 * on the list.
1885 */
1886 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1887 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1888 if (error) {
1889 return error;
1890 }
1891 /*
1892 * Validate the magic number of the agi block.
1893 */
1894 agi = XFS_BUF_TO_AGI(agibp);
1895 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001896 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1897 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001898 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1899 XFS_RANDOM_IUNLINK))) {
1900 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1901 xfs_trans_brelse(tp, agibp);
1902 return XFS_ERROR(EFSCORRUPTED);
1903 }
1904 /*
1905 * Get the index into the agi hash table for the
1906 * list this inode will go on.
1907 */
1908 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1909 ASSERT(agino != 0);
1910 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1911 ASSERT(agi->agi_unlinked[bucket_index]);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001912 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001913
Christoph Hellwig16259e72005-11-02 15:11:25 +11001914 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001915 /*
1916 * There is already another inode in the bucket we need
1917 * to add ourselves to. Add us at the front of the list.
1918 * Here we put the head pointer into our next pointer,
1919 * and then we fall through to point the head at us.
1920 */
Nathan Scottb12dd342006-03-17 17:26:04 +11001921 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001922 if (error) {
1923 return error;
1924 }
1925 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1926 ASSERT(dip->di_next_unlinked);
1927 /* both on-disk, don't endian flip twice */
1928 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1929 offset = ip->i_boffset +
1930 offsetof(xfs_dinode_t, di_next_unlinked);
1931 xfs_trans_inode_buf(tp, ibp);
1932 xfs_trans_log_buf(tp, ibp, offset,
1933 (offset + sizeof(xfs_agino_t) - 1));
1934 xfs_inobp_check(mp, ibp);
1935 }
1936
1937 /*
1938 * Point the bucket head pointer at the inode being inserted.
1939 */
1940 ASSERT(agino != 0);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001941 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001942 offset = offsetof(xfs_agi_t, agi_unlinked) +
1943 (sizeof(xfs_agino_t) * bucket_index);
1944 xfs_trans_log_buf(tp, agibp, offset,
1945 (offset + sizeof(xfs_agino_t) - 1));
1946 return 0;
1947}
1948
1949/*
1950 * Pull the on-disk inode from the AGI unlinked list.
1951 */
1952STATIC int
1953xfs_iunlink_remove(
1954 xfs_trans_t *tp,
1955 xfs_inode_t *ip)
1956{
1957 xfs_ino_t next_ino;
1958 xfs_mount_t *mp;
1959 xfs_agi_t *agi;
1960 xfs_dinode_t *dip;
1961 xfs_buf_t *agibp;
1962 xfs_buf_t *ibp;
1963 xfs_agnumber_t agno;
1964 xfs_daddr_t agdaddr;
1965 xfs_agino_t agino;
1966 xfs_agino_t next_agino;
1967 xfs_buf_t *last_ibp;
Nathan Scott6fdf8cc2006-06-28 10:13:52 +10001968 xfs_dinode_t *last_dip = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001969 short bucket_index;
Nathan Scott6fdf8cc2006-06-28 10:13:52 +10001970 int offset, last_offset = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001971 int error;
1972 int agi_ok;
1973
1974 /*
1975 * First pull the on-disk inode from the AGI unlinked list.
1976 */
1977 mp = tp->t_mountp;
1978
1979 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1980 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1981
1982 /*
1983 * Get the agi buffer first. It ensures lock ordering
1984 * on the list.
1985 */
1986 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1987 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1988 if (error) {
1989 cmn_err(CE_WARN,
1990 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1991 error, mp->m_fsname);
1992 return error;
1993 }
1994 /*
1995 * Validate the magic number of the agi block.
1996 */
1997 agi = XFS_BUF_TO_AGI(agibp);
1998 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001999 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2000 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002001 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2002 XFS_RANDOM_IUNLINK_REMOVE))) {
2003 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2004 mp, agi);
2005 xfs_trans_brelse(tp, agibp);
2006 cmn_err(CE_WARN,
2007 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2008 mp->m_fsname);
2009 return XFS_ERROR(EFSCORRUPTED);
2010 }
2011 /*
2012 * Get the index into the agi hash table for the
2013 * list this inode will go on.
2014 */
2015 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2016 ASSERT(agino != 0);
2017 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
Christoph Hellwig16259e72005-11-02 15:11:25 +11002018 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002019 ASSERT(agi->agi_unlinked[bucket_index]);
2020
Christoph Hellwig16259e72005-11-02 15:11:25 +11002021 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002022 /*
2023 * We're at the head of the list. Get the inode's
2024 * on-disk buffer to see if there is anyone after us
2025 * on the list. Only modify our next pointer if it
2026 * is not already NULLAGINO. This saves us the overhead
2027 * of dealing with the buffer when there is no need to
2028 * change it.
2029 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002030 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002031 if (error) {
2032 cmn_err(CE_WARN,
2033 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2034 error, mp->m_fsname);
2035 return error;
2036 }
2037 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2038 ASSERT(next_agino != 0);
2039 if (next_agino != NULLAGINO) {
2040 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2041 offset = ip->i_boffset +
2042 offsetof(xfs_dinode_t, di_next_unlinked);
2043 xfs_trans_inode_buf(tp, ibp);
2044 xfs_trans_log_buf(tp, ibp, offset,
2045 (offset + sizeof(xfs_agino_t) - 1));
2046 xfs_inobp_check(mp, ibp);
2047 } else {
2048 xfs_trans_brelse(tp, ibp);
2049 }
2050 /*
2051 * Point the bucket head pointer at the next inode.
2052 */
2053 ASSERT(next_agino != 0);
2054 ASSERT(next_agino != agino);
Christoph Hellwig16259e72005-11-02 15:11:25 +11002055 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002056 offset = offsetof(xfs_agi_t, agi_unlinked) +
2057 (sizeof(xfs_agino_t) * bucket_index);
2058 xfs_trans_log_buf(tp, agibp, offset,
2059 (offset + sizeof(xfs_agino_t) - 1));
2060 } else {
2061 /*
2062 * We need to search the list for the inode being freed.
2063 */
Christoph Hellwig16259e72005-11-02 15:11:25 +11002064 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002065 last_ibp = NULL;
2066 while (next_agino != agino) {
2067 /*
2068 * If the last inode wasn't the one pointing to
2069 * us, then release its buffer since we're not
2070 * going to do anything with it.
2071 */
2072 if (last_ibp != NULL) {
2073 xfs_trans_brelse(tp, last_ibp);
2074 }
2075 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2076 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2077 &last_ibp, &last_offset);
2078 if (error) {
2079 cmn_err(CE_WARN,
2080 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2081 error, mp->m_fsname);
2082 return error;
2083 }
2084 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2085 ASSERT(next_agino != NULLAGINO);
2086 ASSERT(next_agino != 0);
2087 }
2088 /*
2089 * Now last_ibp points to the buffer previous to us on
2090 * the unlinked list. Pull us from the list.
2091 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002092 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002093 if (error) {
2094 cmn_err(CE_WARN,
2095 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2096 error, mp->m_fsname);
2097 return error;
2098 }
2099 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2100 ASSERT(next_agino != 0);
2101 ASSERT(next_agino != agino);
2102 if (next_agino != NULLAGINO) {
2103 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2104 offset = ip->i_boffset +
2105 offsetof(xfs_dinode_t, di_next_unlinked);
2106 xfs_trans_inode_buf(tp, ibp);
2107 xfs_trans_log_buf(tp, ibp, offset,
2108 (offset + sizeof(xfs_agino_t) - 1));
2109 xfs_inobp_check(mp, ibp);
2110 } else {
2111 xfs_trans_brelse(tp, ibp);
2112 }
2113 /*
2114 * Point the previous inode on the list to the next inode.
2115 */
2116 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2117 ASSERT(next_agino != 0);
2118 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2119 xfs_trans_inode_buf(tp, last_ibp);
2120 xfs_trans_log_buf(tp, last_ibp, offset,
2121 (offset + sizeof(xfs_agino_t) - 1));
2122 xfs_inobp_check(mp, last_ibp);
2123 }
2124 return 0;
2125}
2126
David Chinner7989cb82007-02-10 18:34:56 +11002127STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002128{
2129 return (((ip->i_itemp == NULL) ||
2130 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2131 (ip->i_update_core == 0));
2132}
2133
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002134STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002135xfs_ifree_cluster(
2136 xfs_inode_t *free_ip,
2137 xfs_trans_t *tp,
2138 xfs_ino_t inum)
2139{
2140 xfs_mount_t *mp = free_ip->i_mount;
2141 int blks_per_cluster;
2142 int nbufs;
2143 int ninodes;
2144 int i, j, found, pre_flushed;
2145 xfs_daddr_t blkno;
2146 xfs_buf_t *bp;
2147 xfs_ihash_t *ih;
2148 xfs_inode_t *ip, **ip_found;
2149 xfs_inode_log_item_t *iip;
2150 xfs_log_item_t *lip;
2151 SPLDECL(s);
2152
2153 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2154 blks_per_cluster = 1;
2155 ninodes = mp->m_sb.sb_inopblock;
2156 nbufs = XFS_IALLOC_BLOCKS(mp);
2157 } else {
2158 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2159 mp->m_sb.sb_blocksize;
2160 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2161 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2162 }
2163
2164 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2165
2166 for (j = 0; j < nbufs; j++, inum += ninodes) {
2167 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2168 XFS_INO_TO_AGBNO(mp, inum));
2169
2170
2171 /*
2172 * Look for each inode in memory and attempt to lock it,
2173 * we can be racing with flush and tail pushing here.
2174 * any inode we get the locks on, add to an array of
2175 * inode items to process later.
2176 *
2177 * The get the buffer lock, we could beat a flush
2178 * or tail pushing thread to the lock here, in which
2179 * case they will go looking for the inode buffer
2180 * and fail, we need some other form of interlock
2181 * here.
2182 */
2183 found = 0;
2184 for (i = 0; i < ninodes; i++) {
2185 ih = XFS_IHASH(mp, inum + i);
2186 read_lock(&ih->ih_lock);
2187 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2188 if (ip->i_ino == inum + i)
2189 break;
2190 }
2191
2192 /* Inode not in memory or we found it already,
2193 * nothing to do
2194 */
David Chinner7a18c382006-11-11 18:04:54 +11002195 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002196 read_unlock(&ih->ih_lock);
2197 continue;
2198 }
2199
2200 if (xfs_inode_clean(ip)) {
2201 read_unlock(&ih->ih_lock);
2202 continue;
2203 }
2204
2205 /* If we can get the locks then add it to the
2206 * list, otherwise by the time we get the bp lock
2207 * below it will already be attached to the
2208 * inode buffer.
2209 */
2210
2211 /* This inode will already be locked - by us, lets
2212 * keep it that way.
2213 */
2214
2215 if (ip == free_ip) {
2216 if (xfs_iflock_nowait(ip)) {
David Chinner7a18c382006-11-11 18:04:54 +11002217 xfs_iflags_set(ip, XFS_ISTALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002218 if (xfs_inode_clean(ip)) {
2219 xfs_ifunlock(ip);
2220 } else {
2221 ip_found[found++] = ip;
2222 }
2223 }
2224 read_unlock(&ih->ih_lock);
2225 continue;
2226 }
2227
2228 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2229 if (xfs_iflock_nowait(ip)) {
David Chinner7a18c382006-11-11 18:04:54 +11002230 xfs_iflags_set(ip, XFS_ISTALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002231
2232 if (xfs_inode_clean(ip)) {
2233 xfs_ifunlock(ip);
2234 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2235 } else {
2236 ip_found[found++] = ip;
2237 }
2238 } else {
2239 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2240 }
2241 }
2242
2243 read_unlock(&ih->ih_lock);
2244 }
2245
2246 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2247 mp->m_bsize * blks_per_cluster,
2248 XFS_BUF_LOCK);
2249
2250 pre_flushed = 0;
2251 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2252 while (lip) {
2253 if (lip->li_type == XFS_LI_INODE) {
2254 iip = (xfs_inode_log_item_t *)lip;
2255 ASSERT(iip->ili_logged == 1);
2256 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2257 AIL_LOCK(mp,s);
2258 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2259 AIL_UNLOCK(mp, s);
David Chinnere5ffd2b2006-11-21 18:55:33 +11002260 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002261 pre_flushed++;
2262 }
2263 lip = lip->li_bio_list;
2264 }
2265
2266 for (i = 0; i < found; i++) {
2267 ip = ip_found[i];
2268 iip = ip->i_itemp;
2269
2270 if (!iip) {
2271 ip->i_update_core = 0;
2272 xfs_ifunlock(ip);
2273 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2274 continue;
2275 }
2276
2277 iip->ili_last_fields = iip->ili_format.ilf_fields;
2278 iip->ili_format.ilf_fields = 0;
2279 iip->ili_logged = 1;
2280 AIL_LOCK(mp,s);
2281 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2282 AIL_UNLOCK(mp, s);
2283
2284 xfs_buf_attach_iodone(bp,
2285 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2286 xfs_istale_done, (xfs_log_item_t *)iip);
2287 if (ip != free_ip) {
2288 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2289 }
2290 }
2291
2292 if (found || pre_flushed)
2293 xfs_trans_stale_inode_buf(tp, bp);
2294 xfs_trans_binval(tp, bp);
2295 }
2296
2297 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2298}
2299
2300/*
2301 * This is called to return an inode to the inode free list.
2302 * The inode should already be truncated to 0 length and have
2303 * no pages associated with it. This routine also assumes that
2304 * the inode is already a part of the transaction.
2305 *
2306 * The on-disk copy of the inode will have been added to the list
2307 * of unlinked inodes in the AGI. We need to remove the inode from
2308 * that list atomically with respect to freeing it here.
2309 */
2310int
2311xfs_ifree(
2312 xfs_trans_t *tp,
2313 xfs_inode_t *ip,
2314 xfs_bmap_free_t *flist)
2315{
2316 int error;
2317 int delete;
2318 xfs_ino_t first_ino;
2319
2320 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2321 ASSERT(ip->i_transp == tp);
2322 ASSERT(ip->i_d.di_nlink == 0);
2323 ASSERT(ip->i_d.di_nextents == 0);
2324 ASSERT(ip->i_d.di_anextents == 0);
2325 ASSERT((ip->i_d.di_size == 0) ||
2326 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2327 ASSERT(ip->i_d.di_nblocks == 0);
2328
2329 /*
2330 * Pull the on-disk inode from the AGI unlinked list.
2331 */
2332 error = xfs_iunlink_remove(tp, ip);
2333 if (error != 0) {
2334 return error;
2335 }
2336
2337 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2338 if (error != 0) {
2339 return error;
2340 }
2341 ip->i_d.di_mode = 0; /* mark incore inode as free */
2342 ip->i_d.di_flags = 0;
2343 ip->i_d.di_dmevmask = 0;
2344 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2345 ip->i_df.if_ext_max =
2346 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2347 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2348 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2349 /*
2350 * Bump the generation count so no one will be confused
2351 * by reincarnations of this inode.
2352 */
2353 ip->i_d.di_gen++;
2354 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2355
2356 if (delete) {
2357 xfs_ifree_cluster(ip, tp, first_ino);
2358 }
2359
2360 return 0;
2361}
2362
2363/*
2364 * Reallocate the space for if_broot based on the number of records
2365 * being added or deleted as indicated in rec_diff. Move the records
2366 * and pointers in if_broot to fit the new size. When shrinking this
2367 * will eliminate holes between the records and pointers created by
2368 * the caller. When growing this will create holes to be filled in
2369 * by the caller.
2370 *
2371 * The caller must not request to add more records than would fit in
2372 * the on-disk inode root. If the if_broot is currently NULL, then
2373 * if we adding records one will be allocated. The caller must also
2374 * not request that the number of records go below zero, although
2375 * it can go to zero.
2376 *
2377 * ip -- the inode whose if_broot area is changing
2378 * ext_diff -- the change in the number of records, positive or negative,
2379 * requested for the if_broot array.
2380 */
2381void
2382xfs_iroot_realloc(
2383 xfs_inode_t *ip,
2384 int rec_diff,
2385 int whichfork)
2386{
2387 int cur_max;
2388 xfs_ifork_t *ifp;
2389 xfs_bmbt_block_t *new_broot;
2390 int new_max;
2391 size_t new_size;
2392 char *np;
2393 char *op;
2394
2395 /*
2396 * Handle the degenerate case quietly.
2397 */
2398 if (rec_diff == 0) {
2399 return;
2400 }
2401
2402 ifp = XFS_IFORK_PTR(ip, whichfork);
2403 if (rec_diff > 0) {
2404 /*
2405 * If there wasn't any memory allocated before, just
2406 * allocate it now and get out.
2407 */
2408 if (ifp->if_broot_bytes == 0) {
2409 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2410 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2411 KM_SLEEP);
2412 ifp->if_broot_bytes = (int)new_size;
2413 return;
2414 }
2415
2416 /*
2417 * If there is already an existing if_broot, then we need
2418 * to realloc() it and shift the pointers to their new
2419 * location. The records don't change location because
2420 * they are kept butted up against the btree block header.
2421 */
2422 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2423 new_max = cur_max + rec_diff;
2424 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2425 ifp->if_broot = (xfs_bmbt_block_t *)
2426 kmem_realloc(ifp->if_broot,
2427 new_size,
2428 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2429 KM_SLEEP);
2430 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2431 ifp->if_broot_bytes);
2432 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2433 (int)new_size);
2434 ifp->if_broot_bytes = (int)new_size;
2435 ASSERT(ifp->if_broot_bytes <=
2436 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2437 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2438 return;
2439 }
2440
2441 /*
2442 * rec_diff is less than 0. In this case, we are shrinking the
2443 * if_broot buffer. It must already exist. If we go to zero
2444 * records, just get rid of the root and clear the status bit.
2445 */
2446 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2447 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2448 new_max = cur_max + rec_diff;
2449 ASSERT(new_max >= 0);
2450 if (new_max > 0)
2451 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2452 else
2453 new_size = 0;
2454 if (new_size > 0) {
2455 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2456 /*
2457 * First copy over the btree block header.
2458 */
2459 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2460 } else {
2461 new_broot = NULL;
2462 ifp->if_flags &= ~XFS_IFBROOT;
2463 }
2464
2465 /*
2466 * Only copy the records and pointers if there are any.
2467 */
2468 if (new_max > 0) {
2469 /*
2470 * First copy the records.
2471 */
2472 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2473 ifp->if_broot_bytes);
2474 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2475 (int)new_size);
2476 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2477
2478 /*
2479 * Then copy the pointers.
2480 */
2481 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2482 ifp->if_broot_bytes);
2483 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2484 (int)new_size);
2485 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2486 }
2487 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2488 ifp->if_broot = new_broot;
2489 ifp->if_broot_bytes = (int)new_size;
2490 ASSERT(ifp->if_broot_bytes <=
2491 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2492 return;
2493}
2494
2495
2496/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002497 * This is called when the amount of space needed for if_data
2498 * is increased or decreased. The change in size is indicated by
2499 * the number of bytes that need to be added or deleted in the
2500 * byte_diff parameter.
2501 *
2502 * If the amount of space needed has decreased below the size of the
2503 * inline buffer, then switch to using the inline buffer. Otherwise,
2504 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2505 * to what is needed.
2506 *
2507 * ip -- the inode whose if_data area is changing
2508 * byte_diff -- the change in the number of bytes, positive or negative,
2509 * requested for the if_data array.
2510 */
2511void
2512xfs_idata_realloc(
2513 xfs_inode_t *ip,
2514 int byte_diff,
2515 int whichfork)
2516{
2517 xfs_ifork_t *ifp;
2518 int new_size;
2519 int real_size;
2520
2521 if (byte_diff == 0) {
2522 return;
2523 }
2524
2525 ifp = XFS_IFORK_PTR(ip, whichfork);
2526 new_size = (int)ifp->if_bytes + byte_diff;
2527 ASSERT(new_size >= 0);
2528
2529 if (new_size == 0) {
2530 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2531 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2532 }
2533 ifp->if_u1.if_data = NULL;
2534 real_size = 0;
2535 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2536 /*
2537 * If the valid extents/data can fit in if_inline_ext/data,
2538 * copy them from the malloc'd vector and free it.
2539 */
2540 if (ifp->if_u1.if_data == NULL) {
2541 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2542 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2543 ASSERT(ifp->if_real_bytes != 0);
2544 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2545 new_size);
2546 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2547 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2548 }
2549 real_size = 0;
2550 } else {
2551 /*
2552 * Stuck with malloc/realloc.
2553 * For inline data, the underlying buffer must be
2554 * a multiple of 4 bytes in size so that it can be
2555 * logged and stay on word boundaries. We enforce
2556 * that here.
2557 */
2558 real_size = roundup(new_size, 4);
2559 if (ifp->if_u1.if_data == NULL) {
2560 ASSERT(ifp->if_real_bytes == 0);
2561 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2562 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2563 /*
2564 * Only do the realloc if the underlying size
2565 * is really changing.
2566 */
2567 if (ifp->if_real_bytes != real_size) {
2568 ifp->if_u1.if_data =
2569 kmem_realloc(ifp->if_u1.if_data,
2570 real_size,
2571 ifp->if_real_bytes,
2572 KM_SLEEP);
2573 }
2574 } else {
2575 ASSERT(ifp->if_real_bytes == 0);
2576 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2577 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2578 ifp->if_bytes);
2579 }
2580 }
2581 ifp->if_real_bytes = real_size;
2582 ifp->if_bytes = new_size;
2583 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2584}
2585
2586
2587
2588
2589/*
2590 * Map inode to disk block and offset.
2591 *
2592 * mp -- the mount point structure for the current file system
2593 * tp -- the current transaction
2594 * ino -- the inode number of the inode to be located
2595 * imap -- this structure is filled in with the information necessary
2596 * to retrieve the given inode from disk
2597 * flags -- flags to pass to xfs_dilocate indicating whether or not
2598 * lookups in the inode btree were OK or not
2599 */
2600int
2601xfs_imap(
2602 xfs_mount_t *mp,
2603 xfs_trans_t *tp,
2604 xfs_ino_t ino,
2605 xfs_imap_t *imap,
2606 uint flags)
2607{
2608 xfs_fsblock_t fsbno;
2609 int len;
2610 int off;
2611 int error;
2612
2613 fsbno = imap->im_blkno ?
2614 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2615 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2616 if (error != 0) {
2617 return error;
2618 }
2619 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2620 imap->im_len = XFS_FSB_TO_BB(mp, len);
2621 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2622 imap->im_ioffset = (ushort)off;
2623 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2624 return 0;
2625}
2626
2627void
2628xfs_idestroy_fork(
2629 xfs_inode_t *ip,
2630 int whichfork)
2631{
2632 xfs_ifork_t *ifp;
2633
2634 ifp = XFS_IFORK_PTR(ip, whichfork);
2635 if (ifp->if_broot != NULL) {
2636 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2637 ifp->if_broot = NULL;
2638 }
2639
2640 /*
2641 * If the format is local, then we can't have an extents
2642 * array so just look for an inline data array. If we're
2643 * not local then we may or may not have an extents list,
2644 * so check and free it up if we do.
2645 */
2646 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2647 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2648 (ifp->if_u1.if_data != NULL)) {
2649 ASSERT(ifp->if_real_bytes != 0);
2650 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2651 ifp->if_u1.if_data = NULL;
2652 ifp->if_real_bytes = 0;
2653 }
2654 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11002655 ((ifp->if_flags & XFS_IFEXTIREC) ||
2656 ((ifp->if_u1.if_extents != NULL) &&
2657 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002658 ASSERT(ifp->if_real_bytes != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002659 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002660 }
2661 ASSERT(ifp->if_u1.if_extents == NULL ||
2662 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2663 ASSERT(ifp->if_real_bytes == 0);
2664 if (whichfork == XFS_ATTR_FORK) {
2665 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2666 ip->i_afp = NULL;
2667 }
2668}
2669
2670/*
2671 * This is called free all the memory associated with an inode.
2672 * It must free the inode itself and any buffers allocated for
2673 * if_extents/if_data and if_broot. It must also free the lock
2674 * associated with the inode.
2675 */
2676void
2677xfs_idestroy(
2678 xfs_inode_t *ip)
2679{
2680
2681 switch (ip->i_d.di_mode & S_IFMT) {
2682 case S_IFREG:
2683 case S_IFDIR:
2684 case S_IFLNK:
2685 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2686 break;
2687 }
2688 if (ip->i_afp)
2689 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2690 mrfree(&ip->i_lock);
2691 mrfree(&ip->i_iolock);
2692 freesema(&ip->i_flock);
2693#ifdef XFS_BMAP_TRACE
2694 ktrace_free(ip->i_xtrace);
2695#endif
2696#ifdef XFS_BMBT_TRACE
2697 ktrace_free(ip->i_btrace);
2698#endif
2699#ifdef XFS_RW_TRACE
2700 ktrace_free(ip->i_rwtrace);
2701#endif
2702#ifdef XFS_ILOCK_TRACE
2703 ktrace_free(ip->i_lock_trace);
2704#endif
2705#ifdef XFS_DIR2_TRACE
2706 ktrace_free(ip->i_dir_trace);
2707#endif
2708 if (ip->i_itemp) {
David Chinnerf74eaf52007-02-10 18:36:04 +11002709 /*
2710 * Only if we are shutting down the fs will we see an
2711 * inode still in the AIL. If it is there, we should remove
2712 * it to prevent a use-after-free from occurring.
2713 */
2714 xfs_mount_t *mp = ip->i_mount;
2715 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2716 int s;
2717
2718 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2719 XFS_FORCED_SHUTDOWN(ip->i_mount));
2720 if (lip->li_flags & XFS_LI_IN_AIL) {
2721 AIL_LOCK(mp, s);
2722 if (lip->li_flags & XFS_LI_IN_AIL)
2723 xfs_trans_delete_ail(mp, lip, s);
2724 else
2725 AIL_UNLOCK(mp, s);
2726 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002727 xfs_inode_item_destroy(ip);
2728 }
2729 kmem_zone_free(xfs_inode_zone, ip);
2730}
2731
2732
2733/*
2734 * Increment the pin count of the given buffer.
2735 * This value is protected by ipinlock spinlock in the mount structure.
2736 */
2737void
2738xfs_ipin(
2739 xfs_inode_t *ip)
2740{
2741 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2742
2743 atomic_inc(&ip->i_pincount);
2744}
2745
2746/*
2747 * Decrement the pin count of the given inode, and wake up
2748 * anyone in xfs_iwait_unpin() if the count goes to 0. The
Nathan Scottc41564b2006-03-29 08:55:14 +10002749 * inode must have been previously pinned with a call to xfs_ipin().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002750 */
2751void
2752xfs_iunpin(
2753 xfs_inode_t *ip)
2754{
2755 ASSERT(atomic_read(&ip->i_pincount) > 0);
2756
David Chinner4c606582006-11-11 18:05:00 +11002757 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
David Chinnerf273ab82006-09-28 11:06:03 +10002758
David Chinner4c606582006-11-11 18:05:00 +11002759 /*
2760 * If the inode is currently being reclaimed, the link between
2761 * the bhv_vnode and the xfs_inode will be broken after the
2762 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2763 * set, then we can move forward and mark the linux inode dirty
2764 * knowing that it is still valid as it won't freed until after
2765 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2766 * i_flags_lock is used to synchronise the setting of the
2767 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2768 * can execute atomically w.r.t to reclaim by holding this lock
2769 * here.
2770 *
2771 * However, we still need to issue the unpin wakeup call as the
2772 * inode reclaim may be blocked waiting for the inode to become
2773 * unpinned.
2774 */
2775
David Chinner7a18c382006-11-11 18:04:54 +11002776 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
Nathan Scott67fcaa72006-06-09 17:00:52 +10002777 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
David Chinner4c606582006-11-11 18:05:00 +11002778 struct inode *inode = NULL;
2779
2780 BUG_ON(vp == NULL);
2781 inode = vn_to_inode(vp);
2782 BUG_ON(inode->i_state & I_CLEAR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002783
David Chinner58829e42006-04-11 15:11:20 +10002784 /* make sync come back and flush this inode */
David Chinner4c606582006-11-11 18:05:00 +11002785 if (!(inode->i_state & (I_NEW|I_FREEING)))
2786 mark_inode_dirty_sync(inode);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002787 }
David Chinnerf273ab82006-09-28 11:06:03 +10002788 spin_unlock(&ip->i_flags_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002789 wake_up(&ip->i_ipin_wait);
2790 }
2791}
2792
2793/*
2794 * This is called to wait for the given inode to be unpinned.
2795 * It will sleep until this happens. The caller must have the
2796 * inode locked in at least shared mode so that the buffer cannot
2797 * be subsequently pinned once someone is waiting for it to be
2798 * unpinned.
2799 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002800STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002801xfs_iunpin_wait(
2802 xfs_inode_t *ip)
2803{
2804 xfs_inode_log_item_t *iip;
2805 xfs_lsn_t lsn;
2806
2807 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2808
2809 if (atomic_read(&ip->i_pincount) == 0) {
2810 return;
2811 }
2812
2813 iip = ip->i_itemp;
2814 if (iip && iip->ili_last_lsn) {
2815 lsn = iip->ili_last_lsn;
2816 } else {
2817 lsn = (xfs_lsn_t)0;
2818 }
2819
2820 /*
2821 * Give the log a push so we don't wait here too long.
2822 */
2823 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2824
2825 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2826}
2827
2828
2829/*
2830 * xfs_iextents_copy()
2831 *
2832 * This is called to copy the REAL extents (as opposed to the delayed
2833 * allocation extents) from the inode into the given buffer. It
2834 * returns the number of bytes copied into the buffer.
2835 *
2836 * If there are no delayed allocation extents, then we can just
2837 * memcpy() the extents into the buffer. Otherwise, we need to
2838 * examine each extent in turn and skip those which are delayed.
2839 */
2840int
2841xfs_iextents_copy(
2842 xfs_inode_t *ip,
2843 xfs_bmbt_rec_t *buffer,
2844 int whichfork)
2845{
2846 int copied;
2847 xfs_bmbt_rec_t *dest_ep;
2848 xfs_bmbt_rec_t *ep;
2849#ifdef XFS_BMAP_TRACE
2850 static char fname[] = "xfs_iextents_copy";
2851#endif
2852 int i;
2853 xfs_ifork_t *ifp;
2854 int nrecs;
2855 xfs_fsblock_t start_block;
2856
2857 ifp = XFS_IFORK_PTR(ip, whichfork);
2858 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2859 ASSERT(ifp->if_bytes > 0);
2860
2861 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2862 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2863 ASSERT(nrecs > 0);
2864
2865 /*
2866 * There are some delayed allocation extents in the
2867 * inode, so copy the extents one at a time and skip
2868 * the delayed ones. There must be at least one
2869 * non-delayed extent.
2870 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002871 dest_ep = buffer;
2872 copied = 0;
2873 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002874 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002875 start_block = xfs_bmbt_get_startblock(ep);
2876 if (ISNULLSTARTBLOCK(start_block)) {
2877 /*
2878 * It's a delayed allocation extent, so skip it.
2879 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002880 continue;
2881 }
2882
2883 /* Translate to on disk format */
2884 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2885 (__uint64_t*)&dest_ep->l0);
2886 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2887 (__uint64_t*)&dest_ep->l1);
2888 dest_ep++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002889 copied++;
2890 }
2891 ASSERT(copied != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002892 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002893
2894 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2895}
2896
2897/*
2898 * Each of the following cases stores data into the same region
2899 * of the on-disk inode, so only one of them can be valid at
2900 * any given time. While it is possible to have conflicting formats
2901 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2902 * in EXTENTS format, this can only happen when the fork has
2903 * changed formats after being modified but before being flushed.
2904 * In these cases, the format always takes precedence, because the
2905 * format indicates the current state of the fork.
2906 */
2907/*ARGSUSED*/
2908STATIC int
2909xfs_iflush_fork(
2910 xfs_inode_t *ip,
2911 xfs_dinode_t *dip,
2912 xfs_inode_log_item_t *iip,
2913 int whichfork,
2914 xfs_buf_t *bp)
2915{
2916 char *cp;
2917 xfs_ifork_t *ifp;
2918 xfs_mount_t *mp;
2919#ifdef XFS_TRANS_DEBUG
2920 int first;
2921#endif
2922 static const short brootflag[2] =
2923 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2924 static const short dataflag[2] =
2925 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2926 static const short extflag[2] =
2927 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2928
2929 if (iip == NULL)
2930 return 0;
2931 ifp = XFS_IFORK_PTR(ip, whichfork);
2932 /*
2933 * This can happen if we gave up in iformat in an error path,
2934 * for the attribute fork.
2935 */
2936 if (ifp == NULL) {
2937 ASSERT(whichfork == XFS_ATTR_FORK);
2938 return 0;
2939 }
2940 cp = XFS_DFORK_PTR(dip, whichfork);
2941 mp = ip->i_mount;
2942 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2943 case XFS_DINODE_FMT_LOCAL:
2944 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2945 (ifp->if_bytes > 0)) {
2946 ASSERT(ifp->if_u1.if_data != NULL);
2947 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2948 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2949 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002950 break;
2951
2952 case XFS_DINODE_FMT_EXTENTS:
2953 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2954 !(iip->ili_format.ilf_fields & extflag[whichfork]));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002955 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2956 (ifp->if_bytes == 0));
2957 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2958 (ifp->if_bytes > 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002959 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2960 (ifp->if_bytes > 0)) {
2961 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2962 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2963 whichfork);
2964 }
2965 break;
2966
2967 case XFS_DINODE_FMT_BTREE:
2968 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2969 (ifp->if_broot_bytes > 0)) {
2970 ASSERT(ifp->if_broot != NULL);
2971 ASSERT(ifp->if_broot_bytes <=
2972 (XFS_IFORK_SIZE(ip, whichfork) +
2973 XFS_BROOT_SIZE_ADJ));
2974 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2975 (xfs_bmdr_block_t *)cp,
2976 XFS_DFORK_SIZE(dip, mp, whichfork));
2977 }
2978 break;
2979
2980 case XFS_DINODE_FMT_DEV:
2981 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2982 ASSERT(whichfork == XFS_DATA_FORK);
2983 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2984 }
2985 break;
2986
2987 case XFS_DINODE_FMT_UUID:
2988 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2989 ASSERT(whichfork == XFS_DATA_FORK);
2990 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2991 sizeof(uuid_t));
2992 }
2993 break;
2994
2995 default:
2996 ASSERT(0);
2997 break;
2998 }
2999
3000 return 0;
3001}
3002
3003/*
3004 * xfs_iflush() will write a modified inode's changes out to the
3005 * inode's on disk home. The caller must have the inode lock held
3006 * in at least shared mode and the inode flush semaphore must be
3007 * held as well. The inode lock will still be held upon return from
3008 * the call and the caller is free to unlock it.
3009 * The inode flush lock will be unlocked when the inode reaches the disk.
3010 * The flags indicate how the inode's buffer should be written out.
3011 */
3012int
3013xfs_iflush(
3014 xfs_inode_t *ip,
3015 uint flags)
3016{
3017 xfs_inode_log_item_t *iip;
3018 xfs_buf_t *bp;
3019 xfs_dinode_t *dip;
3020 xfs_mount_t *mp;
3021 int error;
3022 /* REFERENCED */
3023 xfs_chash_t *ch;
3024 xfs_inode_t *iq;
3025 int clcount; /* count of inodes clustered */
3026 int bufwasdelwri;
3027 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3028 SPLDECL(s);
3029
3030 XFS_STATS_INC(xs_iflush_count);
3031
3032 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
Al Viro0d8fee32006-06-19 08:41:30 +10003033 ASSERT(issemalocked(&(ip->i_flock)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003034 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3035 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3036
3037 iip = ip->i_itemp;
3038 mp = ip->i_mount;
3039
3040 /*
3041 * If the inode isn't dirty, then just release the inode
3042 * flush lock and do nothing.
3043 */
3044 if ((ip->i_update_core == 0) &&
3045 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3046 ASSERT((iip != NULL) ?
3047 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3048 xfs_ifunlock(ip);
3049 return 0;
3050 }
3051
3052 /*
3053 * We can't flush the inode until it is unpinned, so
3054 * wait for it. We know noone new can pin it, because
3055 * we are holding the inode lock shared and you need
3056 * to hold it exclusively to pin the inode.
3057 */
3058 xfs_iunpin_wait(ip);
3059
3060 /*
3061 * This may have been unpinned because the filesystem is shutting
3062 * down forcibly. If that's the case we must not write this inode
3063 * to disk, because the log record didn't make it to disk!
3064 */
3065 if (XFS_FORCED_SHUTDOWN(mp)) {
3066 ip->i_update_core = 0;
3067 if (iip)
3068 iip->ili_format.ilf_fields = 0;
3069 xfs_ifunlock(ip);
3070 return XFS_ERROR(EIO);
3071 }
3072
3073 /*
3074 * Get the buffer containing the on-disk inode.
3075 */
Nathan Scottb12dd342006-03-17 17:26:04 +11003076 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3077 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003078 xfs_ifunlock(ip);
3079 return error;
3080 }
3081
3082 /*
3083 * Decide how buffer will be flushed out. This is done before
3084 * the call to xfs_iflush_int because this field is zeroed by it.
3085 */
3086 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3087 /*
3088 * Flush out the inode buffer according to the directions
3089 * of the caller. In the cases where the caller has given
3090 * us a choice choose the non-delwri case. This is because
3091 * the inode is in the AIL and we need to get it out soon.
3092 */
3093 switch (flags) {
3094 case XFS_IFLUSH_SYNC:
3095 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3096 flags = 0;
3097 break;
3098 case XFS_IFLUSH_ASYNC:
3099 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3100 flags = INT_ASYNC;
3101 break;
3102 case XFS_IFLUSH_DELWRI:
3103 flags = INT_DELWRI;
3104 break;
3105 default:
3106 ASSERT(0);
3107 flags = 0;
3108 break;
3109 }
3110 } else {
3111 switch (flags) {
3112 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3113 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3114 case XFS_IFLUSH_DELWRI:
3115 flags = INT_DELWRI;
3116 break;
3117 case XFS_IFLUSH_ASYNC:
3118 flags = INT_ASYNC;
3119 break;
3120 case XFS_IFLUSH_SYNC:
3121 flags = 0;
3122 break;
3123 default:
3124 ASSERT(0);
3125 flags = 0;
3126 break;
3127 }
3128 }
3129
3130 /*
3131 * First flush out the inode that xfs_iflush was called with.
3132 */
3133 error = xfs_iflush_int(ip, bp);
3134 if (error) {
3135 goto corrupt_out;
3136 }
3137
3138 /*
3139 * inode clustering:
3140 * see if other inodes can be gathered into this write
3141 */
3142
3143 ip->i_chash->chl_buf = bp;
3144
3145 ch = XFS_CHASH(mp, ip->i_blkno);
3146 s = mutex_spinlock(&ch->ch_lock);
3147
3148 clcount = 0;
3149 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3150 /*
3151 * Do an un-protected check to see if the inode is dirty and
3152 * is a candidate for flushing. These checks will be repeated
3153 * later after the appropriate locks are acquired.
3154 */
3155 iip = iq->i_itemp;
3156 if ((iq->i_update_core == 0) &&
3157 ((iip == NULL) ||
3158 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3159 xfs_ipincount(iq) == 0) {
3160 continue;
3161 }
3162
3163 /*
3164 * Try to get locks. If any are unavailable,
3165 * then this inode cannot be flushed and is skipped.
3166 */
3167
3168 /* get inode locks (just i_lock) */
3169 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3170 /* get inode flush lock */
3171 if (xfs_iflock_nowait(iq)) {
3172 /* check if pinned */
3173 if (xfs_ipincount(iq) == 0) {
3174 /* arriving here means that
3175 * this inode can be flushed.
3176 * first re-check that it's
3177 * dirty
3178 */
3179 iip = iq->i_itemp;
3180 if ((iq->i_update_core != 0)||
3181 ((iip != NULL) &&
3182 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3183 clcount++;
3184 error = xfs_iflush_int(iq, bp);
3185 if (error) {
3186 xfs_iunlock(iq,
3187 XFS_ILOCK_SHARED);
3188 goto cluster_corrupt_out;
3189 }
3190 } else {
3191 xfs_ifunlock(iq);
3192 }
3193 } else {
3194 xfs_ifunlock(iq);
3195 }
3196 }
3197 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3198 }
3199 }
3200 mutex_spinunlock(&ch->ch_lock, s);
3201
3202 if (clcount) {
3203 XFS_STATS_INC(xs_icluster_flushcnt);
3204 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3205 }
3206
3207 /*
3208 * If the buffer is pinned then push on the log so we won't
3209 * get stuck waiting in the write for too long.
3210 */
3211 if (XFS_BUF_ISPINNED(bp)){
3212 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3213 }
3214
3215 if (flags & INT_DELWRI) {
3216 xfs_bdwrite(mp, bp);
3217 } else if (flags & INT_ASYNC) {
3218 xfs_bawrite(mp, bp);
3219 } else {
3220 error = xfs_bwrite(mp, bp);
3221 }
3222 return error;
3223
3224corrupt_out:
3225 xfs_buf_relse(bp);
Nathan Scott7d04a332006-06-09 14:58:38 +10003226 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003227 xfs_iflush_abort(ip);
3228 /*
3229 * Unlocks the flush lock
3230 */
3231 return XFS_ERROR(EFSCORRUPTED);
3232
3233cluster_corrupt_out:
3234 /* Corruption detected in the clustering loop. Invalidate the
3235 * inode buffer and shut down the filesystem.
3236 */
3237 mutex_spinunlock(&ch->ch_lock, s);
3238
3239 /*
3240 * Clean up the buffer. If it was B_DELWRI, just release it --
3241 * brelse can handle it with no problems. If not, shut down the
3242 * filesystem before releasing the buffer.
3243 */
3244 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3245 xfs_buf_relse(bp);
3246 }
3247
Nathan Scott7d04a332006-06-09 14:58:38 +10003248 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003249
3250 if(!bufwasdelwri) {
3251 /*
3252 * Just like incore_relse: if we have b_iodone functions,
3253 * mark the buffer as an error and call them. Otherwise
3254 * mark it as stale and brelse.
3255 */
3256 if (XFS_BUF_IODONE_FUNC(bp)) {
3257 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3258 XFS_BUF_UNDONE(bp);
3259 XFS_BUF_STALE(bp);
3260 XFS_BUF_SHUT(bp);
3261 XFS_BUF_ERROR(bp,EIO);
3262 xfs_biodone(bp);
3263 } else {
3264 XFS_BUF_STALE(bp);
3265 xfs_buf_relse(bp);
3266 }
3267 }
3268
3269 xfs_iflush_abort(iq);
3270 /*
3271 * Unlocks the flush lock
3272 */
3273 return XFS_ERROR(EFSCORRUPTED);
3274}
3275
3276
3277STATIC int
3278xfs_iflush_int(
3279 xfs_inode_t *ip,
3280 xfs_buf_t *bp)
3281{
3282 xfs_inode_log_item_t *iip;
3283 xfs_dinode_t *dip;
3284 xfs_mount_t *mp;
3285#ifdef XFS_TRANS_DEBUG
3286 int first;
3287#endif
3288 SPLDECL(s);
3289
3290 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
Al Viro0d8fee32006-06-19 08:41:30 +10003291 ASSERT(issemalocked(&(ip->i_flock)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003292 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3293 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3294
3295 iip = ip->i_itemp;
3296 mp = ip->i_mount;
3297
3298
3299 /*
3300 * If the inode isn't dirty, then just release the inode
3301 * flush lock and do nothing.
3302 */
3303 if ((ip->i_update_core == 0) &&
3304 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3305 xfs_ifunlock(ip);
3306 return 0;
3307 }
3308
3309 /* set *dip = inode's place in the buffer */
3310 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3311
3312 /*
3313 * Clear i_update_core before copying out the data.
3314 * This is for coordination with our timestamp updates
3315 * that don't hold the inode lock. They will always
3316 * update the timestamps BEFORE setting i_update_core,
3317 * so if we clear i_update_core after they set it we
3318 * are guaranteed to see their updates to the timestamps.
3319 * I believe that this depends on strongly ordered memory
3320 * semantics, but we have that. We use the SYNCHRONIZE
3321 * macro to make sure that the compiler does not reorder
3322 * the i_update_core access below the data copy below.
3323 */
3324 ip->i_update_core = 0;
3325 SYNCHRONIZE();
3326
Christoph Hellwig42fe2b12006-01-11 15:35:17 +11003327 /*
3328 * Make sure to get the latest atime from the Linux inode.
3329 */
3330 xfs_synchronize_atime(ip);
3331
Linus Torvalds1da177e2005-04-16 15:20:36 -07003332 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3333 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3334 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3335 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3336 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3337 goto corrupt_out;
3338 }
3339 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3340 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3341 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3342 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3343 ip->i_ino, ip, ip->i_d.di_magic);
3344 goto corrupt_out;
3345 }
3346 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3347 if (XFS_TEST_ERROR(
3348 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3349 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3350 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3351 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3352 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3353 ip->i_ino, ip);
3354 goto corrupt_out;
3355 }
3356 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3357 if (XFS_TEST_ERROR(
3358 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3359 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3360 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3361 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3362 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3363 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3364 ip->i_ino, ip);
3365 goto corrupt_out;
3366 }
3367 }
3368 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3369 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3370 XFS_RANDOM_IFLUSH_5)) {
3371 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3372 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3373 ip->i_ino,
3374 ip->i_d.di_nextents + ip->i_d.di_anextents,
3375 ip->i_d.di_nblocks,
3376 ip);
3377 goto corrupt_out;
3378 }
3379 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3380 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3381 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3382 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3383 ip->i_ino, ip->i_d.di_forkoff, ip);
3384 goto corrupt_out;
3385 }
3386 /*
3387 * bump the flush iteration count, used to detect flushes which
3388 * postdate a log record during recovery.
3389 */
3390
3391 ip->i_d.di_flushiter++;
3392
3393 /*
3394 * Copy the dirty parts of the inode into the on-disk
3395 * inode. We always copy out the core of the inode,
3396 * because if the inode is dirty at all the core must
3397 * be.
3398 */
3399 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3400
3401 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3402 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3403 ip->i_d.di_flushiter = 0;
3404
3405 /*
3406 * If this is really an old format inode and the superblock version
3407 * has not been updated to support only new format inodes, then
3408 * convert back to the old inode format. If the superblock version
3409 * has been updated, then make the conversion permanent.
3410 */
3411 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3412 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3413 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3414 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3415 /*
3416 * Convert it back.
3417 */
3418 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3419 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3420 } else {
3421 /*
3422 * The superblock version has already been bumped,
3423 * so just make the conversion to the new inode
3424 * format permanent.
3425 */
3426 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3427 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3428 ip->i_d.di_onlink = 0;
3429 dip->di_core.di_onlink = 0;
3430 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3431 memset(&(dip->di_core.di_pad[0]), 0,
3432 sizeof(dip->di_core.di_pad));
3433 ASSERT(ip->i_d.di_projid == 0);
3434 }
3435 }
3436
3437 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3438 goto corrupt_out;
3439 }
3440
3441 if (XFS_IFORK_Q(ip)) {
3442 /*
3443 * The only error from xfs_iflush_fork is on the data fork.
3444 */
3445 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3446 }
3447 xfs_inobp_check(mp, bp);
3448
3449 /*
3450 * We've recorded everything logged in the inode, so we'd
3451 * like to clear the ilf_fields bits so we don't log and
3452 * flush things unnecessarily. However, we can't stop
3453 * logging all this information until the data we've copied
3454 * into the disk buffer is written to disk. If we did we might
3455 * overwrite the copy of the inode in the log with all the
3456 * data after re-logging only part of it, and in the face of
3457 * a crash we wouldn't have all the data we need to recover.
3458 *
3459 * What we do is move the bits to the ili_last_fields field.
3460 * When logging the inode, these bits are moved back to the
3461 * ilf_fields field. In the xfs_iflush_done() routine we
3462 * clear ili_last_fields, since we know that the information
3463 * those bits represent is permanently on disk. As long as
3464 * the flush completes before the inode is logged again, then
3465 * both ilf_fields and ili_last_fields will be cleared.
3466 *
3467 * We can play with the ilf_fields bits here, because the inode
3468 * lock must be held exclusively in order to set bits there
3469 * and the flush lock protects the ili_last_fields bits.
3470 * Set ili_logged so the flush done
3471 * routine can tell whether or not to look in the AIL.
3472 * Also, store the current LSN of the inode so that we can tell
3473 * whether the item has moved in the AIL from xfs_iflush_done().
3474 * In order to read the lsn we need the AIL lock, because
3475 * it is a 64 bit value that cannot be read atomically.
3476 */
3477 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3478 iip->ili_last_fields = iip->ili_format.ilf_fields;
3479 iip->ili_format.ilf_fields = 0;
3480 iip->ili_logged = 1;
3481
3482 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3483 AIL_LOCK(mp,s);
3484 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3485 AIL_UNLOCK(mp, s);
3486
3487 /*
3488 * Attach the function xfs_iflush_done to the inode's
3489 * buffer. This will remove the inode from the AIL
3490 * and unlock the inode's flush lock when the inode is
3491 * completely written to disk.
3492 */
3493 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3494 xfs_iflush_done, (xfs_log_item_t *)iip);
3495
3496 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3497 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3498 } else {
3499 /*
3500 * We're flushing an inode which is not in the AIL and has
3501 * not been logged but has i_update_core set. For this
3502 * case we can use a B_DELWRI flush and immediately drop
3503 * the inode flush lock because we can avoid the whole
3504 * AIL state thing. It's OK to drop the flush lock now,
3505 * because we've already locked the buffer and to do anything
3506 * you really need both.
3507 */
3508 if (iip != NULL) {
3509 ASSERT(iip->ili_logged == 0);
3510 ASSERT(iip->ili_last_fields == 0);
3511 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3512 }
3513 xfs_ifunlock(ip);
3514 }
3515
3516 return 0;
3517
3518corrupt_out:
3519 return XFS_ERROR(EFSCORRUPTED);
3520}
3521
3522
3523/*
Christoph Hellwigefa80272005-06-21 15:37:17 +10003524 * Flush all inactive inodes in mp.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003525 */
Christoph Hellwigefa80272005-06-21 15:37:17 +10003526void
Linus Torvalds1da177e2005-04-16 15:20:36 -07003527xfs_iflush_all(
Christoph Hellwigefa80272005-06-21 15:37:17 +10003528 xfs_mount_t *mp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003529{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003530 xfs_inode_t *ip;
Nathan Scott67fcaa72006-06-09 17:00:52 +10003531 bhv_vnode_t *vp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003532
Christoph Hellwigefa80272005-06-21 15:37:17 +10003533 again:
3534 XFS_MOUNT_ILOCK(mp);
3535 ip = mp->m_inodes;
3536 if (ip == NULL)
3537 goto out;
3538
3539 do {
3540 /* Make sure we skip markers inserted by sync */
3541 if (ip->i_mount == NULL) {
3542 ip = ip->i_mnext;
3543 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003544 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003545
Christoph Hellwigefa80272005-06-21 15:37:17 +10003546 vp = XFS_ITOV_NULL(ip);
3547 if (!vp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003548 XFS_MOUNT_IUNLOCK(mp);
Christoph Hellwigefa80272005-06-21 15:37:17 +10003549 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3550 goto again;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003551 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003552
Christoph Hellwigefa80272005-06-21 15:37:17 +10003553 ASSERT(vn_count(vp) == 0);
3554
3555 ip = ip->i_mnext;
3556 } while (ip != mp->m_inodes);
3557 out:
3558 XFS_MOUNT_IUNLOCK(mp);
3559}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003560
3561/*
3562 * xfs_iaccess: check accessibility of inode for mode.
3563 */
3564int
3565xfs_iaccess(
3566 xfs_inode_t *ip,
3567 mode_t mode,
3568 cred_t *cr)
3569{
3570 int error;
3571 mode_t orgmode = mode;
Nathan Scottec86dc02006-03-17 17:25:36 +11003572 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003573
3574 if (mode & S_IWUSR) {
3575 umode_t imode = inode->i_mode;
3576
3577 if (IS_RDONLY(inode) &&
3578 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3579 return XFS_ERROR(EROFS);
3580
3581 if (IS_IMMUTABLE(inode))
3582 return XFS_ERROR(EACCES);
3583 }
3584
3585 /*
3586 * If there's an Access Control List it's used instead of
3587 * the mode bits.
3588 */
3589 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3590 return error ? XFS_ERROR(error) : 0;
3591
3592 if (current_fsuid(cr) != ip->i_d.di_uid) {
3593 mode >>= 3;
3594 if (!in_group_p((gid_t)ip->i_d.di_gid))
3595 mode >>= 3;
3596 }
3597
3598 /*
3599 * If the DACs are ok we don't need any capability check.
3600 */
3601 if ((ip->i_d.di_mode & mode) == mode)
3602 return 0;
3603 /*
3604 * Read/write DACs are always overridable.
3605 * Executable DACs are overridable if at least one exec bit is set.
3606 */
3607 if (!(orgmode & S_IXUSR) ||
3608 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3609 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3610 return 0;
3611
3612 if ((orgmode == S_IRUSR) ||
3613 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3614 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3615 return 0;
3616#ifdef NOISE
3617 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3618#endif /* NOISE */
3619 return XFS_ERROR(EACCES);
3620 }
3621 return XFS_ERROR(EACCES);
3622}
3623
3624/*
3625 * xfs_iroundup: round up argument to next power of two
3626 */
3627uint
3628xfs_iroundup(
3629 uint v)
3630{
3631 int i;
3632 uint m;
3633
3634 if ((v & (v - 1)) == 0)
3635 return v;
3636 ASSERT((v & 0x80000000) == 0);
3637 if ((v & (v + 1)) == 0)
3638 return v + 1;
3639 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3640 if (v & m)
3641 continue;
3642 v |= m;
3643 if ((v & (v + 1)) == 0)
3644 return v + 1;
3645 }
3646 ASSERT(0);
3647 return( 0 );
3648}
3649
Linus Torvalds1da177e2005-04-16 15:20:36 -07003650#ifdef XFS_ILOCK_TRACE
3651ktrace_t *xfs_ilock_trace_buf;
3652
3653void
3654xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3655{
3656 ktrace_enter(ip->i_lock_trace,
3657 (void *)ip,
3658 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3659 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3660 (void *)ra, /* caller of ilock */
3661 (void *)(unsigned long)current_cpu(),
3662 (void *)(unsigned long)current_pid(),
3663 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3664}
3665#endif
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003666
3667/*
3668 * Return a pointer to the extent record at file index idx.
3669 */
3670xfs_bmbt_rec_t *
3671xfs_iext_get_ext(
3672 xfs_ifork_t *ifp, /* inode fork pointer */
3673 xfs_extnum_t idx) /* index of target extent */
3674{
3675 ASSERT(idx >= 0);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003676 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3677 return ifp->if_u1.if_ext_irec->er_extbuf;
3678 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3679 xfs_ext_irec_t *erp; /* irec pointer */
3680 int erp_idx = 0; /* irec index */
3681 xfs_extnum_t page_idx = idx; /* ext index in target list */
3682
3683 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3684 return &erp->er_extbuf[page_idx];
3685 } else if (ifp->if_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003686 return &ifp->if_u1.if_extents[idx];
3687 } else {
3688 return NULL;
3689 }
3690}
3691
3692/*
3693 * Insert new item(s) into the extent records for incore inode
3694 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3695 */
3696void
3697xfs_iext_insert(
3698 xfs_ifork_t *ifp, /* inode fork pointer */
3699 xfs_extnum_t idx, /* starting index of new items */
3700 xfs_extnum_t count, /* number of inserted items */
3701 xfs_bmbt_irec_t *new) /* items to insert */
3702{
3703 xfs_bmbt_rec_t *ep; /* extent record pointer */
3704 xfs_extnum_t i; /* extent record index */
3705
3706 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3707 xfs_iext_add(ifp, idx, count);
3708 for (i = idx; i < idx + count; i++, new++) {
3709 ep = xfs_iext_get_ext(ifp, i);
3710 xfs_bmbt_set_all(ep, new);
3711 }
3712}
3713
3714/*
3715 * This is called when the amount of space required for incore file
3716 * extents needs to be increased. The ext_diff parameter stores the
3717 * number of new extents being added and the idx parameter contains
3718 * the extent index where the new extents will be added. If the new
3719 * extents are being appended, then we just need to (re)allocate and
3720 * initialize the space. Otherwise, if the new extents are being
3721 * inserted into the middle of the existing entries, a bit more work
3722 * is required to make room for the new extents to be inserted. The
3723 * caller is responsible for filling in the new extent entries upon
3724 * return.
3725 */
3726void
3727xfs_iext_add(
3728 xfs_ifork_t *ifp, /* inode fork pointer */
3729 xfs_extnum_t idx, /* index to begin adding exts */
Nathan Scottc41564b2006-03-29 08:55:14 +10003730 int ext_diff) /* number of extents to add */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003731{
3732 int byte_diff; /* new bytes being added */
3733 int new_size; /* size of extents after adding */
3734 xfs_extnum_t nextents; /* number of extents in file */
3735
3736 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3737 ASSERT((idx >= 0) && (idx <= nextents));
3738 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3739 new_size = ifp->if_bytes + byte_diff;
3740 /*
3741 * If the new number of extents (nextents + ext_diff)
3742 * fits inside the inode, then continue to use the inline
3743 * extent buffer.
3744 */
3745 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3746 if (idx < nextents) {
3747 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3748 &ifp->if_u2.if_inline_ext[idx],
3749 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3750 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3751 }
3752 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3753 ifp->if_real_bytes = 0;
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003754 ifp->if_lastex = nextents + ext_diff;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003755 }
3756 /*
3757 * Otherwise use a linear (direct) extent list.
3758 * If the extents are currently inside the inode,
3759 * xfs_iext_realloc_direct will switch us from
3760 * inline to direct extent allocation mode.
3761 */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003762 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003763 xfs_iext_realloc_direct(ifp, new_size);
3764 if (idx < nextents) {
3765 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3766 &ifp->if_u1.if_extents[idx],
3767 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3768 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3769 }
3770 }
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003771 /* Indirection array */
3772 else {
3773 xfs_ext_irec_t *erp;
3774 int erp_idx = 0;
3775 int page_idx = idx;
3776
3777 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3778 if (ifp->if_flags & XFS_IFEXTIREC) {
3779 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3780 } else {
3781 xfs_iext_irec_init(ifp);
3782 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3783 erp = ifp->if_u1.if_ext_irec;
3784 }
3785 /* Extents fit in target extent page */
3786 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3787 if (page_idx < erp->er_extcount) {
3788 memmove(&erp->er_extbuf[page_idx + ext_diff],
3789 &erp->er_extbuf[page_idx],
3790 (erp->er_extcount - page_idx) *
3791 sizeof(xfs_bmbt_rec_t));
3792 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3793 }
3794 erp->er_extcount += ext_diff;
3795 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3796 }
3797 /* Insert a new extent page */
3798 else if (erp) {
3799 xfs_iext_add_indirect_multi(ifp,
3800 erp_idx, page_idx, ext_diff);
3801 }
3802 /*
3803 * If extent(s) are being appended to the last page in
3804 * the indirection array and the new extent(s) don't fit
3805 * in the page, then erp is NULL and erp_idx is set to
3806 * the next index needed in the indirection array.
3807 */
3808 else {
3809 int count = ext_diff;
3810
3811 while (count) {
3812 erp = xfs_iext_irec_new(ifp, erp_idx);
3813 erp->er_extcount = count;
3814 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3815 if (count) {
3816 erp_idx++;
3817 }
3818 }
3819 }
3820 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003821 ifp->if_bytes = new_size;
3822}
3823
3824/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003825 * This is called when incore extents are being added to the indirection
3826 * array and the new extents do not fit in the target extent list. The
3827 * erp_idx parameter contains the irec index for the target extent list
3828 * in the indirection array, and the idx parameter contains the extent
3829 * index within the list. The number of extents being added is stored
3830 * in the count parameter.
3831 *
3832 * |-------| |-------|
3833 * | | | | idx - number of extents before idx
3834 * | idx | | count |
3835 * | | | | count - number of extents being inserted at idx
3836 * |-------| |-------|
3837 * | count | | nex2 | nex2 - number of extents after idx + count
3838 * |-------| |-------|
3839 */
3840void
3841xfs_iext_add_indirect_multi(
3842 xfs_ifork_t *ifp, /* inode fork pointer */
3843 int erp_idx, /* target extent irec index */
3844 xfs_extnum_t idx, /* index within target list */
3845 int count) /* new extents being added */
3846{
3847 int byte_diff; /* new bytes being added */
3848 xfs_ext_irec_t *erp; /* pointer to irec entry */
3849 xfs_extnum_t ext_diff; /* number of extents to add */
3850 xfs_extnum_t ext_cnt; /* new extents still needed */
3851 xfs_extnum_t nex2; /* extents after idx + count */
3852 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3853 int nlists; /* number of irec's (lists) */
3854
3855 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3856 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3857 nex2 = erp->er_extcount - idx;
3858 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3859
3860 /*
3861 * Save second part of target extent list
3862 * (all extents past */
3863 if (nex2) {
3864 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3865 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3866 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3867 erp->er_extcount -= nex2;
3868 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3869 memset(&erp->er_extbuf[idx], 0, byte_diff);
3870 }
3871
3872 /*
3873 * Add the new extents to the end of the target
3874 * list, then allocate new irec record(s) and
3875 * extent buffer(s) as needed to store the rest
3876 * of the new extents.
3877 */
3878 ext_cnt = count;
3879 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3880 if (ext_diff) {
3881 erp->er_extcount += ext_diff;
3882 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3883 ext_cnt -= ext_diff;
3884 }
3885 while (ext_cnt) {
3886 erp_idx++;
3887 erp = xfs_iext_irec_new(ifp, erp_idx);
3888 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3889 erp->er_extcount = ext_diff;
3890 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3891 ext_cnt -= ext_diff;
3892 }
3893
3894 /* Add nex2 extents back to indirection array */
3895 if (nex2) {
3896 xfs_extnum_t ext_avail;
3897 int i;
3898
3899 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3900 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3901 i = 0;
3902 /*
3903 * If nex2 extents fit in the current page, append
3904 * nex2_ep after the new extents.
3905 */
3906 if (nex2 <= ext_avail) {
3907 i = erp->er_extcount;
3908 }
3909 /*
3910 * Otherwise, check if space is available in the
3911 * next page.
3912 */
3913 else if ((erp_idx < nlists - 1) &&
3914 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3915 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3916 erp_idx++;
3917 erp++;
3918 /* Create a hole for nex2 extents */
3919 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3920 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3921 }
3922 /*
3923 * Final choice, create a new extent page for
3924 * nex2 extents.
3925 */
3926 else {
3927 erp_idx++;
3928 erp = xfs_iext_irec_new(ifp, erp_idx);
3929 }
3930 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3931 kmem_free(nex2_ep, byte_diff);
3932 erp->er_extcount += nex2;
3933 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3934 }
3935}
3936
3937/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003938 * This is called when the amount of space required for incore file
3939 * extents needs to be decreased. The ext_diff parameter stores the
3940 * number of extents to be removed and the idx parameter contains
3941 * the extent index where the extents will be removed from.
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003942 *
3943 * If the amount of space needed has decreased below the linear
3944 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3945 * extent array. Otherwise, use kmem_realloc() to adjust the
3946 * size to what is needed.
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003947 */
3948void
3949xfs_iext_remove(
3950 xfs_ifork_t *ifp, /* inode fork pointer */
3951 xfs_extnum_t idx, /* index to begin removing exts */
3952 int ext_diff) /* number of extents to remove */
3953{
3954 xfs_extnum_t nextents; /* number of extents in file */
3955 int new_size; /* size of extents after removal */
3956
3957 ASSERT(ext_diff > 0);
3958 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3959 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3960
3961 if (new_size == 0) {
3962 xfs_iext_destroy(ifp);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003963 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3964 xfs_iext_remove_indirect(ifp, idx, ext_diff);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003965 } else if (ifp->if_real_bytes) {
3966 xfs_iext_remove_direct(ifp, idx, ext_diff);
3967 } else {
3968 xfs_iext_remove_inline(ifp, idx, ext_diff);
3969 }
3970 ifp->if_bytes = new_size;
3971}
3972
3973/*
3974 * This removes ext_diff extents from the inline buffer, beginning
3975 * at extent index idx.
3976 */
3977void
3978xfs_iext_remove_inline(
3979 xfs_ifork_t *ifp, /* inode fork pointer */
3980 xfs_extnum_t idx, /* index to begin removing exts */
3981 int ext_diff) /* number of extents to remove */
3982{
3983 int nextents; /* number of extents in file */
3984
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003985 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003986 ASSERT(idx < XFS_INLINE_EXTS);
3987 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3988 ASSERT(((nextents - ext_diff) > 0) &&
3989 (nextents - ext_diff) < XFS_INLINE_EXTS);
3990
3991 if (idx + ext_diff < nextents) {
3992 memmove(&ifp->if_u2.if_inline_ext[idx],
3993 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3994 (nextents - (idx + ext_diff)) *
3995 sizeof(xfs_bmbt_rec_t));
3996 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3997 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3998 } else {
3999 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4000 ext_diff * sizeof(xfs_bmbt_rec_t));
4001 }
4002}
4003
4004/*
4005 * This removes ext_diff extents from a linear (direct) extent list,
4006 * beginning at extent index idx. If the extents are being removed
4007 * from the end of the list (ie. truncate) then we just need to re-
4008 * allocate the list to remove the extra space. Otherwise, if the
4009 * extents are being removed from the middle of the existing extent
4010 * entries, then we first need to move the extent records beginning
4011 * at idx + ext_diff up in the list to overwrite the records being
4012 * removed, then remove the extra space via kmem_realloc.
4013 */
4014void
4015xfs_iext_remove_direct(
4016 xfs_ifork_t *ifp, /* inode fork pointer */
4017 xfs_extnum_t idx, /* index to begin removing exts */
4018 int ext_diff) /* number of extents to remove */
4019{
4020 xfs_extnum_t nextents; /* number of extents in file */
4021 int new_size; /* size of extents after removal */
4022
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004023 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004024 new_size = ifp->if_bytes -
4025 (ext_diff * sizeof(xfs_bmbt_rec_t));
4026 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4027
4028 if (new_size == 0) {
4029 xfs_iext_destroy(ifp);
4030 return;
4031 }
4032 /* Move extents up in the list (if needed) */
4033 if (idx + ext_diff < nextents) {
4034 memmove(&ifp->if_u1.if_extents[idx],
4035 &ifp->if_u1.if_extents[idx + ext_diff],
4036 (nextents - (idx + ext_diff)) *
4037 sizeof(xfs_bmbt_rec_t));
4038 }
4039 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4040 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4041 /*
4042 * Reallocate the direct extent list. If the extents
4043 * will fit inside the inode then xfs_iext_realloc_direct
4044 * will switch from direct to inline extent allocation
4045 * mode for us.
4046 */
4047 xfs_iext_realloc_direct(ifp, new_size);
4048 ifp->if_bytes = new_size;
4049}
4050
4051/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004052 * This is called when incore extents are being removed from the
4053 * indirection array and the extents being removed span multiple extent
4054 * buffers. The idx parameter contains the file extent index where we
4055 * want to begin removing extents, and the count parameter contains
4056 * how many extents need to be removed.
4057 *
4058 * |-------| |-------|
4059 * | nex1 | | | nex1 - number of extents before idx
4060 * |-------| | count |
4061 * | | | | count - number of extents being removed at idx
4062 * | count | |-------|
4063 * | | | nex2 | nex2 - number of extents after idx + count
4064 * |-------| |-------|
4065 */
4066void
4067xfs_iext_remove_indirect(
4068 xfs_ifork_t *ifp, /* inode fork pointer */
4069 xfs_extnum_t idx, /* index to begin removing extents */
4070 int count) /* number of extents to remove */
4071{
4072 xfs_ext_irec_t *erp; /* indirection array pointer */
4073 int erp_idx = 0; /* indirection array index */
4074 xfs_extnum_t ext_cnt; /* extents left to remove */
4075 xfs_extnum_t ext_diff; /* extents to remove in current list */
4076 xfs_extnum_t nex1; /* number of extents before idx */
4077 xfs_extnum_t nex2; /* extents after idx + count */
Nathan Scottc41564b2006-03-29 08:55:14 +10004078 int nlists; /* entries in indirection array */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004079 int page_idx = idx; /* index in target extent list */
4080
4081 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4082 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4083 ASSERT(erp != NULL);
4084 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4085 nex1 = page_idx;
4086 ext_cnt = count;
4087 while (ext_cnt) {
4088 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4089 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4090 /*
4091 * Check for deletion of entire list;
4092 * xfs_iext_irec_remove() updates extent offsets.
4093 */
4094 if (ext_diff == erp->er_extcount) {
4095 xfs_iext_irec_remove(ifp, erp_idx);
4096 ext_cnt -= ext_diff;
4097 nex1 = 0;
4098 if (ext_cnt) {
4099 ASSERT(erp_idx < ifp->if_real_bytes /
4100 XFS_IEXT_BUFSZ);
4101 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4102 nex1 = 0;
4103 continue;
4104 } else {
4105 break;
4106 }
4107 }
4108 /* Move extents up (if needed) */
4109 if (nex2) {
4110 memmove(&erp->er_extbuf[nex1],
4111 &erp->er_extbuf[nex1 + ext_diff],
4112 nex2 * sizeof(xfs_bmbt_rec_t));
4113 }
4114 /* Zero out rest of page */
4115 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4116 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4117 /* Update remaining counters */
4118 erp->er_extcount -= ext_diff;
4119 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4120 ext_cnt -= ext_diff;
4121 nex1 = 0;
4122 erp_idx++;
4123 erp++;
4124 }
4125 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4126 xfs_iext_irec_compact(ifp);
4127}
4128
4129/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004130 * Create, destroy, or resize a linear (direct) block of extents.
4131 */
4132void
4133xfs_iext_realloc_direct(
4134 xfs_ifork_t *ifp, /* inode fork pointer */
4135 int new_size) /* new size of extents */
4136{
4137 int rnew_size; /* real new size of extents */
4138
4139 rnew_size = new_size;
4140
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004141 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4142 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4143 (new_size != ifp->if_real_bytes)));
4144
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004145 /* Free extent records */
4146 if (new_size == 0) {
4147 xfs_iext_destroy(ifp);
4148 }
4149 /* Resize direct extent list and zero any new bytes */
4150 else if (ifp->if_real_bytes) {
4151 /* Check if extents will fit inside the inode */
4152 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4153 xfs_iext_direct_to_inline(ifp, new_size /
4154 (uint)sizeof(xfs_bmbt_rec_t));
4155 ifp->if_bytes = new_size;
4156 return;
4157 }
4158 if ((new_size & (new_size - 1)) != 0) {
4159 rnew_size = xfs_iroundup(new_size);
4160 }
4161 if (rnew_size != ifp->if_real_bytes) {
4162 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4163 kmem_realloc(ifp->if_u1.if_extents,
4164 rnew_size,
4165 ifp->if_real_bytes,
4166 KM_SLEEP);
4167 }
4168 if (rnew_size > ifp->if_real_bytes) {
4169 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4170 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4171 rnew_size - ifp->if_real_bytes);
4172 }
4173 }
4174 /*
4175 * Switch from the inline extent buffer to a direct
4176 * extent list. Be sure to include the inline extent
4177 * bytes in new_size.
4178 */
4179 else {
4180 new_size += ifp->if_bytes;
4181 if ((new_size & (new_size - 1)) != 0) {
4182 rnew_size = xfs_iroundup(new_size);
4183 }
4184 xfs_iext_inline_to_direct(ifp, rnew_size);
4185 }
4186 ifp->if_real_bytes = rnew_size;
4187 ifp->if_bytes = new_size;
4188}
4189
4190/*
4191 * Switch from linear (direct) extent records to inline buffer.
4192 */
4193void
4194xfs_iext_direct_to_inline(
4195 xfs_ifork_t *ifp, /* inode fork pointer */
4196 xfs_extnum_t nextents) /* number of extents in file */
4197{
4198 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4199 ASSERT(nextents <= XFS_INLINE_EXTS);
4200 /*
4201 * The inline buffer was zeroed when we switched
4202 * from inline to direct extent allocation mode,
4203 * so we don't need to clear it here.
4204 */
4205 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4206 nextents * sizeof(xfs_bmbt_rec_t));
Mandy Kirkconnellfe6c1e72006-06-09 14:51:25 +10004207 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004208 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4209 ifp->if_real_bytes = 0;
4210}
4211
4212/*
4213 * Switch from inline buffer to linear (direct) extent records.
4214 * new_size should already be rounded up to the next power of 2
4215 * by the caller (when appropriate), so use new_size as it is.
4216 * However, since new_size may be rounded up, we can't update
4217 * if_bytes here. It is the caller's responsibility to update
4218 * if_bytes upon return.
4219 */
4220void
4221xfs_iext_inline_to_direct(
4222 xfs_ifork_t *ifp, /* inode fork pointer */
4223 int new_size) /* number of extents in file */
4224{
4225 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4226 kmem_alloc(new_size, KM_SLEEP);
4227 memset(ifp->if_u1.if_extents, 0, new_size);
4228 if (ifp->if_bytes) {
4229 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4230 ifp->if_bytes);
4231 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4232 sizeof(xfs_bmbt_rec_t));
4233 }
4234 ifp->if_real_bytes = new_size;
4235}
4236
4237/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004238 * Resize an extent indirection array to new_size bytes.
4239 */
4240void
4241xfs_iext_realloc_indirect(
4242 xfs_ifork_t *ifp, /* inode fork pointer */
4243 int new_size) /* new indirection array size */
4244{
4245 int nlists; /* number of irec's (ex lists) */
4246 int size; /* current indirection array size */
4247
4248 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4249 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4250 size = nlists * sizeof(xfs_ext_irec_t);
4251 ASSERT(ifp->if_real_bytes);
4252 ASSERT((new_size >= 0) && (new_size != size));
4253 if (new_size == 0) {
4254 xfs_iext_destroy(ifp);
4255 } else {
4256 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4257 kmem_realloc(ifp->if_u1.if_ext_irec,
4258 new_size, size, KM_SLEEP);
4259 }
4260}
4261
4262/*
4263 * Switch from indirection array to linear (direct) extent allocations.
4264 */
4265void
4266xfs_iext_indirect_to_direct(
4267 xfs_ifork_t *ifp) /* inode fork pointer */
4268{
4269 xfs_bmbt_rec_t *ep; /* extent record pointer */
4270 xfs_extnum_t nextents; /* number of extents in file */
4271 int size; /* size of file extents */
4272
4273 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4274 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4275 ASSERT(nextents <= XFS_LINEAR_EXTS);
4276 size = nextents * sizeof(xfs_bmbt_rec_t);
4277
4278 xfs_iext_irec_compact_full(ifp);
4279 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4280
4281 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4282 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4283 ifp->if_flags &= ~XFS_IFEXTIREC;
4284 ifp->if_u1.if_extents = ep;
4285 ifp->if_bytes = size;
4286 if (nextents < XFS_LINEAR_EXTS) {
4287 xfs_iext_realloc_direct(ifp, size);
4288 }
4289}
4290
4291/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004292 * Free incore file extents.
4293 */
4294void
4295xfs_iext_destroy(
4296 xfs_ifork_t *ifp) /* inode fork pointer */
4297{
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004298 if (ifp->if_flags & XFS_IFEXTIREC) {
4299 int erp_idx;
4300 int nlists;
4301
4302 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4303 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4304 xfs_iext_irec_remove(ifp, erp_idx);
4305 }
4306 ifp->if_flags &= ~XFS_IFEXTIREC;
4307 } else if (ifp->if_real_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004308 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4309 } else if (ifp->if_bytes) {
4310 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4311 sizeof(xfs_bmbt_rec_t));
4312 }
4313 ifp->if_u1.if_extents = NULL;
4314 ifp->if_real_bytes = 0;
4315 ifp->if_bytes = 0;
4316}
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004317
4318/*
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004319 * Return a pointer to the extent record for file system block bno.
4320 */
4321xfs_bmbt_rec_t * /* pointer to found extent record */
4322xfs_iext_bno_to_ext(
4323 xfs_ifork_t *ifp, /* inode fork pointer */
4324 xfs_fileoff_t bno, /* block number to search for */
4325 xfs_extnum_t *idxp) /* index of target extent */
4326{
4327 xfs_bmbt_rec_t *base; /* pointer to first extent */
4328 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4329 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4330 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
Nathan Scottc41564b2006-03-29 08:55:14 +10004331 int high; /* upper boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004332 xfs_extnum_t idx = 0; /* index of target extent */
Nathan Scottc41564b2006-03-29 08:55:14 +10004333 int low; /* lower boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004334 xfs_extnum_t nextents; /* number of file extents */
4335 xfs_fileoff_t startoff = 0; /* start offset of extent */
4336
4337 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4338 if (nextents == 0) {
4339 *idxp = 0;
4340 return NULL;
4341 }
4342 low = 0;
4343 if (ifp->if_flags & XFS_IFEXTIREC) {
4344 /* Find target extent list */
4345 int erp_idx = 0;
4346 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4347 base = erp->er_extbuf;
4348 high = erp->er_extcount - 1;
4349 } else {
4350 base = ifp->if_u1.if_extents;
4351 high = nextents - 1;
4352 }
4353 /* Binary search extent records */
4354 while (low <= high) {
4355 idx = (low + high) >> 1;
4356 ep = base + idx;
4357 startoff = xfs_bmbt_get_startoff(ep);
4358 blockcount = xfs_bmbt_get_blockcount(ep);
4359 if (bno < startoff) {
4360 high = idx - 1;
4361 } else if (bno >= startoff + blockcount) {
4362 low = idx + 1;
4363 } else {
4364 /* Convert back to file-based extent index */
4365 if (ifp->if_flags & XFS_IFEXTIREC) {
4366 idx += erp->er_extoff;
4367 }
4368 *idxp = idx;
4369 return ep;
4370 }
4371 }
4372 /* Convert back to file-based extent index */
4373 if (ifp->if_flags & XFS_IFEXTIREC) {
4374 idx += erp->er_extoff;
4375 }
4376 if (bno >= startoff + blockcount) {
4377 if (++idx == nextents) {
4378 ep = NULL;
4379 } else {
4380 ep = xfs_iext_get_ext(ifp, idx);
4381 }
4382 }
4383 *idxp = idx;
4384 return ep;
4385}
4386
4387/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004388 * Return a pointer to the indirection array entry containing the
4389 * extent record for filesystem block bno. Store the index of the
4390 * target irec in *erp_idxp.
4391 */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004392xfs_ext_irec_t * /* pointer to found extent record */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004393xfs_iext_bno_to_irec(
4394 xfs_ifork_t *ifp, /* inode fork pointer */
4395 xfs_fileoff_t bno, /* block number to search for */
4396 int *erp_idxp) /* irec index of target ext list */
4397{
4398 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4399 xfs_ext_irec_t *erp_next; /* next indirection array entry */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004400 int erp_idx; /* indirection array index */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004401 int nlists; /* number of extent irec's (lists) */
4402 int high; /* binary search upper limit */
4403 int low; /* binary search lower limit */
4404
4405 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4406 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4407 erp_idx = 0;
4408 low = 0;
4409 high = nlists - 1;
4410 while (low <= high) {
4411 erp_idx = (low + high) >> 1;
4412 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4413 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4414 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4415 high = erp_idx - 1;
4416 } else if (erp_next && bno >=
4417 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4418 low = erp_idx + 1;
4419 } else {
4420 break;
4421 }
4422 }
4423 *erp_idxp = erp_idx;
4424 return erp;
4425}
4426
4427/*
4428 * Return a pointer to the indirection array entry containing the
4429 * extent record at file extent index *idxp. Store the index of the
4430 * target irec in *erp_idxp and store the page index of the target
4431 * extent record in *idxp.
4432 */
4433xfs_ext_irec_t *
4434xfs_iext_idx_to_irec(
4435 xfs_ifork_t *ifp, /* inode fork pointer */
4436 xfs_extnum_t *idxp, /* extent index (file -> page) */
4437 int *erp_idxp, /* pointer to target irec */
4438 int realloc) /* new bytes were just added */
4439{
4440 xfs_ext_irec_t *prev; /* pointer to previous irec */
4441 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4442 int erp_idx; /* indirection array index */
4443 int nlists; /* number of irec's (ex lists) */
4444 int high; /* binary search upper limit */
4445 int low; /* binary search lower limit */
4446 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4447
4448 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4449 ASSERT(page_idx >= 0 && page_idx <=
4450 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4451 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4452 erp_idx = 0;
4453 low = 0;
4454 high = nlists - 1;
4455
4456 /* Binary search extent irec's */
4457 while (low <= high) {
4458 erp_idx = (low + high) >> 1;
4459 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4460 prev = erp_idx > 0 ? erp - 1 : NULL;
4461 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4462 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4463 high = erp_idx - 1;
4464 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4465 (page_idx == erp->er_extoff + erp->er_extcount &&
4466 !realloc)) {
4467 low = erp_idx + 1;
4468 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4469 erp->er_extcount == XFS_LINEAR_EXTS) {
4470 ASSERT(realloc);
4471 page_idx = 0;
4472 erp_idx++;
4473 erp = erp_idx < nlists ? erp + 1 : NULL;
4474 break;
4475 } else {
4476 page_idx -= erp->er_extoff;
4477 break;
4478 }
4479 }
4480 *idxp = page_idx;
4481 *erp_idxp = erp_idx;
4482 return(erp);
4483}
4484
4485/*
4486 * Allocate and initialize an indirection array once the space needed
4487 * for incore extents increases above XFS_IEXT_BUFSZ.
4488 */
4489void
4490xfs_iext_irec_init(
4491 xfs_ifork_t *ifp) /* inode fork pointer */
4492{
4493 xfs_ext_irec_t *erp; /* indirection array pointer */
4494 xfs_extnum_t nextents; /* number of extents in file */
4495
4496 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4497 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4498 ASSERT(nextents <= XFS_LINEAR_EXTS);
4499
4500 erp = (xfs_ext_irec_t *)
4501 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4502
4503 if (nextents == 0) {
4504 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4505 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4506 } else if (!ifp->if_real_bytes) {
4507 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4508 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4509 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4510 }
4511 erp->er_extbuf = ifp->if_u1.if_extents;
4512 erp->er_extcount = nextents;
4513 erp->er_extoff = 0;
4514
4515 ifp->if_flags |= XFS_IFEXTIREC;
4516 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4517 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4518 ifp->if_u1.if_ext_irec = erp;
4519
4520 return;
4521}
4522
4523/*
4524 * Allocate and initialize a new entry in the indirection array.
4525 */
4526xfs_ext_irec_t *
4527xfs_iext_irec_new(
4528 xfs_ifork_t *ifp, /* inode fork pointer */
4529 int erp_idx) /* index for new irec */
4530{
4531 xfs_ext_irec_t *erp; /* indirection array pointer */
4532 int i; /* loop counter */
4533 int nlists; /* number of irec's (ex lists) */
4534
4535 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4536 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4537
4538 /* Resize indirection array */
4539 xfs_iext_realloc_indirect(ifp, ++nlists *
4540 sizeof(xfs_ext_irec_t));
4541 /*
4542 * Move records down in the array so the
4543 * new page can use erp_idx.
4544 */
4545 erp = ifp->if_u1.if_ext_irec;
4546 for (i = nlists - 1; i > erp_idx; i--) {
4547 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4548 }
4549 ASSERT(i == erp_idx);
4550
4551 /* Initialize new extent record */
4552 erp = ifp->if_u1.if_ext_irec;
4553 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4554 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4555 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4556 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4557 erp[erp_idx].er_extcount = 0;
4558 erp[erp_idx].er_extoff = erp_idx > 0 ?
4559 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4560 return (&erp[erp_idx]);
4561}
4562
4563/*
4564 * Remove a record from the indirection array.
4565 */
4566void
4567xfs_iext_irec_remove(
4568 xfs_ifork_t *ifp, /* inode fork pointer */
4569 int erp_idx) /* irec index to remove */
4570{
4571 xfs_ext_irec_t *erp; /* indirection array pointer */
4572 int i; /* loop counter */
4573 int nlists; /* number of irec's (ex lists) */
4574
4575 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4576 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4577 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4578 if (erp->er_extbuf) {
4579 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4580 -erp->er_extcount);
4581 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4582 }
4583 /* Compact extent records */
4584 erp = ifp->if_u1.if_ext_irec;
4585 for (i = erp_idx; i < nlists - 1; i++) {
4586 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4587 }
4588 /*
4589 * Manually free the last extent record from the indirection
4590 * array. A call to xfs_iext_realloc_indirect() with a size
4591 * of zero would result in a call to xfs_iext_destroy() which
4592 * would in turn call this function again, creating a nasty
4593 * infinite loop.
4594 */
4595 if (--nlists) {
4596 xfs_iext_realloc_indirect(ifp,
4597 nlists * sizeof(xfs_ext_irec_t));
4598 } else {
4599 kmem_free(ifp->if_u1.if_ext_irec,
4600 sizeof(xfs_ext_irec_t));
4601 }
4602 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4603}
4604
4605/*
4606 * This is called to clean up large amounts of unused memory allocated
4607 * by the indirection array. Before compacting anything though, verify
4608 * that the indirection array is still needed and switch back to the
4609 * linear extent list (or even the inline buffer) if possible. The
4610 * compaction policy is as follows:
4611 *
4612 * Full Compaction: Extents fit into a single page (or inline buffer)
4613 * Full Compaction: Extents occupy less than 10% of allocated space
4614 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4615 * No Compaction: Extents occupy at least 50% of allocated space
4616 */
4617void
4618xfs_iext_irec_compact(
4619 xfs_ifork_t *ifp) /* inode fork pointer */
4620{
4621 xfs_extnum_t nextents; /* number of extents in file */
4622 int nlists; /* number of irec's (ex lists) */
4623
4624 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4625 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4626 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4627
4628 if (nextents == 0) {
4629 xfs_iext_destroy(ifp);
4630 } else if (nextents <= XFS_INLINE_EXTS) {
4631 xfs_iext_indirect_to_direct(ifp);
4632 xfs_iext_direct_to_inline(ifp, nextents);
4633 } else if (nextents <= XFS_LINEAR_EXTS) {
4634 xfs_iext_indirect_to_direct(ifp);
4635 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4636 xfs_iext_irec_compact_full(ifp);
4637 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4638 xfs_iext_irec_compact_pages(ifp);
4639 }
4640}
4641
4642/*
4643 * Combine extents from neighboring extent pages.
4644 */
4645void
4646xfs_iext_irec_compact_pages(
4647 xfs_ifork_t *ifp) /* inode fork pointer */
4648{
4649 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4650 int erp_idx = 0; /* indirection array index */
4651 int nlists; /* number of irec's (ex lists) */
4652
4653 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4654 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4655 while (erp_idx < nlists - 1) {
4656 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4657 erp_next = erp + 1;
4658 if (erp_next->er_extcount <=
4659 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4660 memmove(&erp->er_extbuf[erp->er_extcount],
4661 erp_next->er_extbuf, erp_next->er_extcount *
4662 sizeof(xfs_bmbt_rec_t));
4663 erp->er_extcount += erp_next->er_extcount;
4664 /*
4665 * Free page before removing extent record
4666 * so er_extoffs don't get modified in
4667 * xfs_iext_irec_remove.
4668 */
4669 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4670 erp_next->er_extbuf = NULL;
4671 xfs_iext_irec_remove(ifp, erp_idx + 1);
4672 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4673 } else {
4674 erp_idx++;
4675 }
4676 }
4677}
4678
4679/*
4680 * Fully compact the extent records managed by the indirection array.
4681 */
4682void
4683xfs_iext_irec_compact_full(
4684 xfs_ifork_t *ifp) /* inode fork pointer */
4685{
4686 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4687 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4688 int erp_idx = 0; /* extent irec index */
4689 int ext_avail; /* empty entries in ex list */
4690 int ext_diff; /* number of exts to add */
4691 int nlists; /* number of irec's (ex lists) */
4692
4693 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4694 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4695 erp = ifp->if_u1.if_ext_irec;
4696 ep = &erp->er_extbuf[erp->er_extcount];
4697 erp_next = erp + 1;
4698 ep_next = erp_next->er_extbuf;
4699 while (erp_idx < nlists - 1) {
4700 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4701 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4702 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4703 erp->er_extcount += ext_diff;
4704 erp_next->er_extcount -= ext_diff;
4705 /* Remove next page */
4706 if (erp_next->er_extcount == 0) {
4707 /*
4708 * Free page before removing extent record
4709 * so er_extoffs don't get modified in
4710 * xfs_iext_irec_remove.
4711 */
4712 kmem_free(erp_next->er_extbuf,
4713 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4714 erp_next->er_extbuf = NULL;
4715 xfs_iext_irec_remove(ifp, erp_idx + 1);
4716 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4717 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4718 /* Update next page */
4719 } else {
4720 /* Move rest of page up to become next new page */
4721 memmove(erp_next->er_extbuf, ep_next,
4722 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4723 ep_next = erp_next->er_extbuf;
4724 memset(&ep_next[erp_next->er_extcount], 0,
4725 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4726 sizeof(xfs_bmbt_rec_t));
4727 }
4728 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4729 erp_idx++;
4730 if (erp_idx < nlists)
4731 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4732 else
4733 break;
4734 }
4735 ep = &erp->er_extbuf[erp->er_extcount];
4736 erp_next = erp + 1;
4737 ep_next = erp_next->er_extbuf;
4738 }
4739}
4740
4741/*
4742 * This is called to update the er_extoff field in the indirection
4743 * array when extents have been added or removed from one of the
4744 * extent lists. erp_idx contains the irec index to begin updating
4745 * at and ext_diff contains the number of extents that were added
4746 * or removed.
4747 */
4748void
4749xfs_iext_irec_update_extoffs(
4750 xfs_ifork_t *ifp, /* inode fork pointer */
4751 int erp_idx, /* irec index to update */
4752 int ext_diff) /* number of new extents */
4753{
4754 int i; /* loop counter */
4755 int nlists; /* number of irec's (ex lists */
4756
4757 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4758 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4759 for (i = erp_idx; i < nlists; i++) {
4760 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4761 }
4762}