blob: 2046da2aa46e41b4189b8b1deba6618d97f88e86 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080097#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070098#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700105#include <linux/string.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700106#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800107#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800108#include <linux/mutex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700109
110#include <asm/uaccess.h>
111#include <asm/cacheflush.h>
112#include <asm/tlbflush.h>
113#include <asm/page.h>
114
115/*
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126#ifdef CONFIG_DEBUG_SLAB
127#define DEBUG 1
128#define STATS 1
129#define FORCED_DEBUG 1
130#else
131#define DEBUG 0
132#define STATS 0
133#define FORCED_DEBUG 0
134#endif
135
Linus Torvalds1da177e2005-04-16 15:20:36 -0700136/* Shouldn't this be in a header file somewhere? */
137#define BYTES_PER_WORD sizeof(void *)
138
139#ifndef cache_line_size
140#define cache_line_size() L1_CACHE_BYTES
141#endif
142
143#ifndef ARCH_KMALLOC_MINALIGN
144/*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152#define ARCH_KMALLOC_MINALIGN 0
153#endif
154
155#ifndef ARCH_SLAB_MINALIGN
156/*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163#define ARCH_SLAB_MINALIGN 0
164#endif
165
166#ifndef ARCH_KMALLOC_FLAGS
167#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168#endif
169
170/* Legal flag mask for kmem_cache_create(). */
171#if DEBUG
172# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800174 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800179# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183#endif
184
185/*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700204typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700205#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800207#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700209
Linus Torvalds1da177e2005-04-16 15:20:36 -0700210/*
211 * struct slab
212 *
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
216 */
217struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800218 struct list_head list;
219 unsigned long colouroff;
220 void *s_mem; /* including colour offset */
221 unsigned int inuse; /* num of objs active in slab */
222 kmem_bufctl_t free;
223 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700224};
225
226/*
227 * struct slab_rcu
228 *
229 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
230 * arrange for kmem_freepages to be called via RCU. This is useful if
231 * we need to approach a kernel structure obliquely, from its address
232 * obtained without the usual locking. We can lock the structure to
233 * stabilize it and check it's still at the given address, only if we
234 * can be sure that the memory has not been meanwhile reused for some
235 * other kind of object (which our subsystem's lock might corrupt).
236 *
237 * rcu_read_lock before reading the address, then rcu_read_unlock after
238 * taking the spinlock within the structure expected at that address.
239 *
240 * We assume struct slab_rcu can overlay struct slab when destroying.
241 */
242struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800243 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800244 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800245 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700246};
247
248/*
249 * struct array_cache
250 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700265 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800266 void *entry[0]; /*
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
270 * [0] is for gcc 2.95. It should really be [].
271 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700272};
273
Andrew Mortona737b3e2006-03-22 00:08:11 -0800274/*
275 * bootstrap: The caches do not work without cpuarrays anymore, but the
276 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277 */
278#define BOOT_CPUCACHE_ENTRIES 1
279struct arraycache_init {
280 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800281 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700282};
283
284/*
Christoph Lametere498be72005-09-09 13:03:32 -0700285 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700286 */
287struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800288 struct list_head slabs_partial; /* partial list first, better asm code */
289 struct list_head slabs_full;
290 struct list_head slabs_free;
291 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800292 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800293 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800294 spinlock_t list_lock;
295 struct array_cache *shared; /* shared per node */
296 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800297 unsigned long next_reap; /* updated without locking */
298 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700299};
300
Christoph Lametere498be72005-09-09 13:03:32 -0700301/*
302 * Need this for bootstrapping a per node allocator.
303 */
304#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
306#define CACHE_CACHE 0
307#define SIZE_AC 1
308#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700309
Christoph Lametere498be72005-09-09 13:03:32 -0700310/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800311 * This function must be completely optimized away if a constant is passed to
312 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700313 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700314static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700315{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800316 extern void __bad_size(void);
317
Christoph Lametere498be72005-09-09 13:03:32 -0700318 if (__builtin_constant_p(size)) {
319 int i = 0;
320
321#define CACHE(x) \
322 if (size <=x) \
323 return i; \
324 else \
325 i++;
326#include "linux/kmalloc_sizes.h"
327#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800328 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700329 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800330 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700331 return 0;
332}
333
334#define INDEX_AC index_of(sizeof(struct arraycache_init))
335#define INDEX_L3 index_of(sizeof(struct kmem_list3))
336
Pekka Enberg5295a742006-02-01 03:05:48 -0800337static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700338{
339 INIT_LIST_HEAD(&parent->slabs_full);
340 INIT_LIST_HEAD(&parent->slabs_partial);
341 INIT_LIST_HEAD(&parent->slabs_free);
342 parent->shared = NULL;
343 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800344 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700345 spin_lock_init(&parent->list_lock);
346 parent->free_objects = 0;
347 parent->free_touched = 0;
348}
349
Andrew Mortona737b3e2006-03-22 00:08:11 -0800350#define MAKE_LIST(cachep, listp, slab, nodeid) \
351 do { \
352 INIT_LIST_HEAD(listp); \
353 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700354 } while (0)
355
Andrew Mortona737b3e2006-03-22 00:08:11 -0800356#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
357 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700358 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
359 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
360 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
361 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700362
363/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800364 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700365 *
366 * manages a cache.
367 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800368
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800369struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700370/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800371 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800372/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800373 unsigned int batchcount;
374 unsigned int limit;
375 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800376
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800377 unsigned int buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800378/* 3) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800379 struct kmem_list3 *nodelists[MAX_NUMNODES];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800380
Andrew Mortona737b3e2006-03-22 00:08:11 -0800381 unsigned int flags; /* constant flags */
382 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700383
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800384/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700385 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800386 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700387
388 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800389 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390
Andrew Mortona737b3e2006-03-22 00:08:11 -0800391 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800392 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800393 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800394 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800395 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396
397 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800398 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399
400 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800401 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800403/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800404 const char *name;
405 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700406
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800407/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800409 unsigned long num_active;
410 unsigned long num_allocations;
411 unsigned long high_mark;
412 unsigned long grown;
413 unsigned long reaped;
414 unsigned long errors;
415 unsigned long max_freeable;
416 unsigned long node_allocs;
417 unsigned long node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700418 unsigned long node_overflow;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800419 atomic_t allochit;
420 atomic_t allocmiss;
421 atomic_t freehit;
422 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700423#endif
424#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800425 /*
426 * If debugging is enabled, then the allocator can add additional
427 * fields and/or padding to every object. buffer_size contains the total
428 * object size including these internal fields, the following two
429 * variables contain the offset to the user object and its size.
430 */
431 int obj_offset;
432 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700433#endif
434};
435
436#define CFLGS_OFF_SLAB (0x80000000UL)
437#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
438
439#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800440/*
441 * Optimization question: fewer reaps means less probability for unnessary
442 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700443 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100444 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700445 * which could lock up otherwise freeable slabs.
446 */
447#define REAPTIMEOUT_CPUC (2*HZ)
448#define REAPTIMEOUT_LIST3 (4*HZ)
449
450#if STATS
451#define STATS_INC_ACTIVE(x) ((x)->num_active++)
452#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454#define STATS_INC_GROWN(x) ((x)->grown++)
455#define STATS_INC_REAPED(x) ((x)->reaped++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800456#define STATS_SET_HIGH(x) \
457 do { \
458 if ((x)->num_active > (x)->high_mark) \
459 (x)->high_mark = (x)->num_active; \
460 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700461#define STATS_INC_ERR(x) ((x)->errors++)
462#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700463#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700464#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800465#define STATS_SET_FREEABLE(x, i) \
466 do { \
467 if ((x)->max_freeable < i) \
468 (x)->max_freeable = i; \
469 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700470#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
471#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
472#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
473#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
474#else
475#define STATS_INC_ACTIVE(x) do { } while (0)
476#define STATS_DEC_ACTIVE(x) do { } while (0)
477#define STATS_INC_ALLOCED(x) do { } while (0)
478#define STATS_INC_GROWN(x) do { } while (0)
479#define STATS_INC_REAPED(x) do { } while (0)
480#define STATS_SET_HIGH(x) do { } while (0)
481#define STATS_INC_ERR(x) do { } while (0)
482#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700483#define STATS_INC_NODEFREES(x) do { } while (0)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700484#define STATS_INC_ACOVERFLOW(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800485#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486#define STATS_INC_ALLOCHIT(x) do { } while (0)
487#define STATS_INC_ALLOCMISS(x) do { } while (0)
488#define STATS_INC_FREEHIT(x) do { } while (0)
489#define STATS_INC_FREEMISS(x) do { } while (0)
490#endif
491
492#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -0800493/*
494 * Magic nums for obj red zoning.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700495 * Placed in the first word before and the first word after an obj.
496 */
497#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
498#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
499
500/* ...and for poisoning */
501#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
502#define POISON_FREE 0x6b /* for use-after-free poisoning */
503#define POISON_END 0xa5 /* end-byte of poisoning */
504
Andrew Mortona737b3e2006-03-22 00:08:11 -0800505/*
506 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800518static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521}
522
Pekka Enberg343e0d72006-02-01 03:05:50 -0800523static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800525 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526}
527
Pekka Enberg343e0d72006-02-01 03:05:50 -0800528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700532}
533
Pekka Enberg343e0d72006-02-01 03:05:50 -0800534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800538 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800539 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541}
542
Pekka Enberg343e0d72006-02-01 03:05:50 -0800543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547}
548
549#else
550
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
Andrew Mortona737b3e2006-03-22 00:08:11 -0800581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
Nick Piggin84097512006-03-22 00:08:34 -0800593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
Pekka Enberg065d41c2005-11-13 16:06:46 -0800595 return (struct kmem_cache *)page->lru.next;
596}
597
598static inline void page_set_slab(struct page *page, struct slab *slab)
599{
600 page->lru.prev = (struct list_head *)slab;
601}
602
603static inline struct slab *page_get_slab(struct page *page)
604{
Nick Piggin84097512006-03-22 00:08:34 -0800605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
Pekka Enberg065d41c2005-11-13 16:06:46 -0800607 return (struct slab *)page->lru.prev;
608}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700609
Pekka Enberg6ed5eb22006-02-01 03:05:49 -0800610static inline struct kmem_cache *virt_to_cache(const void *obj)
611{
612 struct page *page = virt_to_page(obj);
613 return page_get_cache(page);
614}
615
616static inline struct slab *virt_to_slab(const void *obj)
617{
618 struct page *page = virt_to_page(obj);
619 return page_get_slab(page);
620}
621
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800622static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
623 unsigned int idx)
624{
625 return slab->s_mem + cache->buffer_size * idx;
626}
627
628static inline unsigned int obj_to_index(struct kmem_cache *cache,
629 struct slab *slab, void *obj)
630{
631 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
632}
633
Andrew Mortona737b3e2006-03-22 00:08:11 -0800634/*
635 * These are the default caches for kmalloc. Custom caches can have other sizes.
636 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700637struct cache_sizes malloc_sizes[] = {
638#define CACHE(x) { .cs_size = (x) },
639#include <linux/kmalloc_sizes.h>
640 CACHE(ULONG_MAX)
641#undef CACHE
642};
643EXPORT_SYMBOL(malloc_sizes);
644
645/* Must match cache_sizes above. Out of line to keep cache footprint low. */
646struct cache_names {
647 char *name;
648 char *name_dma;
649};
650
651static struct cache_names __initdata cache_names[] = {
652#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
653#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800654 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700655#undef CACHE
656};
657
658static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800659 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700660static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662
663/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800664static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800665 .batchcount = 1,
666 .limit = BOOT_CPUCACHE_ENTRIES,
667 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800668 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800669 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700670#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -0800671 .obj_size = sizeof(struct kmem_cache),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700672#endif
673};
674
675/* Guard access to the cache-chain. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800676static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700677static struct list_head cache_chain;
678
679/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800680 * vm_enough_memory() looks at this to determine how many slab-allocated pages
681 * are possibly freeable under pressure
Linus Torvalds1da177e2005-04-16 15:20:36 -0700682 *
683 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
684 */
685atomic_t slab_reclaim_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700686
687/*
688 * chicken and egg problem: delay the per-cpu array allocation
689 * until the general caches are up.
690 */
691static enum {
692 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700693 PARTIAL_AC,
694 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700695 FULL
696} g_cpucache_up;
697
Mike Kravetz39d24e62006-05-15 09:44:13 -0700698/*
699 * used by boot code to determine if it can use slab based allocator
700 */
701int slab_is_available(void)
702{
703 return g_cpucache_up == FULL;
704}
705
Linus Torvalds1da177e2005-04-16 15:20:36 -0700706static DEFINE_PER_CPU(struct work_struct, reap_work);
707
Andrew Mortona737b3e2006-03-22 00:08:11 -0800708static void free_block(struct kmem_cache *cachep, void **objpp, int len,
709 int node);
Pekka Enberg343e0d72006-02-01 03:05:50 -0800710static void enable_cpucache(struct kmem_cache *cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800711static void cache_reap(void *unused);
Pekka Enberg343e0d72006-02-01 03:05:50 -0800712static int __node_shrink(struct kmem_cache *cachep, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700713
Pekka Enberg343e0d72006-02-01 03:05:50 -0800714static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700715{
716 return cachep->array[smp_processor_id()];
717}
718
Andrew Mortona737b3e2006-03-22 00:08:11 -0800719static inline struct kmem_cache *__find_general_cachep(size_t size,
720 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700721{
722 struct cache_sizes *csizep = malloc_sizes;
723
724#if DEBUG
725 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800726 * kmem_cache_create(), or __kmalloc(), before
727 * the generic caches are initialized.
728 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700729 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700730#endif
731 while (size > csizep->cs_size)
732 csizep++;
733
734 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700735 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700736 * has cs_{dma,}cachep==NULL. Thus no special case
737 * for large kmalloc calls required.
738 */
739 if (unlikely(gfpflags & GFP_DMA))
740 return csizep->cs_dmacachep;
741 return csizep->cs_cachep;
742}
743
Pekka Enberg343e0d72006-02-01 03:05:50 -0800744struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700745{
746 return __find_general_cachep(size, gfpflags);
747}
748EXPORT_SYMBOL(kmem_find_general_cachep);
749
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800750static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700751{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800752 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
753}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700754
Andrew Mortona737b3e2006-03-22 00:08:11 -0800755/*
756 * Calculate the number of objects and left-over bytes for a given buffer size.
757 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800758static void cache_estimate(unsigned long gfporder, size_t buffer_size,
759 size_t align, int flags, size_t *left_over,
760 unsigned int *num)
761{
762 int nr_objs;
763 size_t mgmt_size;
764 size_t slab_size = PAGE_SIZE << gfporder;
765
766 /*
767 * The slab management structure can be either off the slab or
768 * on it. For the latter case, the memory allocated for a
769 * slab is used for:
770 *
771 * - The struct slab
772 * - One kmem_bufctl_t for each object
773 * - Padding to respect alignment of @align
774 * - @buffer_size bytes for each object
775 *
776 * If the slab management structure is off the slab, then the
777 * alignment will already be calculated into the size. Because
778 * the slabs are all pages aligned, the objects will be at the
779 * correct alignment when allocated.
780 */
781 if (flags & CFLGS_OFF_SLAB) {
782 mgmt_size = 0;
783 nr_objs = slab_size / buffer_size;
784
785 if (nr_objs > SLAB_LIMIT)
786 nr_objs = SLAB_LIMIT;
787 } else {
788 /*
789 * Ignore padding for the initial guess. The padding
790 * is at most @align-1 bytes, and @buffer_size is at
791 * least @align. In the worst case, this result will
792 * be one greater than the number of objects that fit
793 * into the memory allocation when taking the padding
794 * into account.
795 */
796 nr_objs = (slab_size - sizeof(struct slab)) /
797 (buffer_size + sizeof(kmem_bufctl_t));
798
799 /*
800 * This calculated number will be either the right
801 * amount, or one greater than what we want.
802 */
803 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
804 > slab_size)
805 nr_objs--;
806
807 if (nr_objs > SLAB_LIMIT)
808 nr_objs = SLAB_LIMIT;
809
810 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700811 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800812 *num = nr_objs;
813 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700814}
815
816#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
817
Andrew Mortona737b3e2006-03-22 00:08:11 -0800818static void __slab_error(const char *function, struct kmem_cache *cachep,
819 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700820{
821 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800822 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700823 dump_stack();
824}
825
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800826#ifdef CONFIG_NUMA
827/*
828 * Special reaping functions for NUMA systems called from cache_reap().
829 * These take care of doing round robin flushing of alien caches (containing
830 * objects freed on different nodes from which they were allocated) and the
831 * flushing of remote pcps by calling drain_node_pages.
832 */
833static DEFINE_PER_CPU(unsigned long, reap_node);
834
835static void init_reap_node(int cpu)
836{
837 int node;
838
839 node = next_node(cpu_to_node(cpu), node_online_map);
840 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800841 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800842
843 __get_cpu_var(reap_node) = node;
844}
845
846static void next_reap_node(void)
847{
848 int node = __get_cpu_var(reap_node);
849
850 /*
851 * Also drain per cpu pages on remote zones
852 */
853 if (node != numa_node_id())
854 drain_node_pages(node);
855
856 node = next_node(node, node_online_map);
857 if (unlikely(node >= MAX_NUMNODES))
858 node = first_node(node_online_map);
859 __get_cpu_var(reap_node) = node;
860}
861
862#else
863#define init_reap_node(cpu) do { } while (0)
864#define next_reap_node(void) do { } while (0)
865#endif
866
Linus Torvalds1da177e2005-04-16 15:20:36 -0700867/*
868 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
869 * via the workqueue/eventd.
870 * Add the CPU number into the expiration time to minimize the possibility of
871 * the CPUs getting into lockstep and contending for the global cache chain
872 * lock.
873 */
874static void __devinit start_cpu_timer(int cpu)
875{
876 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
877
878 /*
879 * When this gets called from do_initcalls via cpucache_init(),
880 * init_workqueues() has already run, so keventd will be setup
881 * at that time.
882 */
883 if (keventd_up() && reap_work->func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800884 init_reap_node(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885 INIT_WORK(reap_work, cache_reap, NULL);
886 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
887 }
888}
889
Christoph Lametere498be72005-09-09 13:03:32 -0700890static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800891 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700892{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800893 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700894 struct array_cache *nc = NULL;
895
Christoph Lametere498be72005-09-09 13:03:32 -0700896 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897 if (nc) {
898 nc->avail = 0;
899 nc->limit = entries;
900 nc->batchcount = batchcount;
901 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700902 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700903 }
904 return nc;
905}
906
Christoph Lameter3ded1752006-03-25 03:06:44 -0800907/*
908 * Transfer objects in one arraycache to another.
909 * Locking must be handled by the caller.
910 *
911 * Return the number of entries transferred.
912 */
913static int transfer_objects(struct array_cache *to,
914 struct array_cache *from, unsigned int max)
915{
916 /* Figure out how many entries to transfer */
917 int nr = min(min(from->avail, max), to->limit - to->avail);
918
919 if (!nr)
920 return 0;
921
922 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
923 sizeof(void *) *nr);
924
925 from->avail -= nr;
926 to->avail += nr;
927 to->touched = 1;
928 return nr;
929}
930
Christoph Lametere498be72005-09-09 13:03:32 -0700931#ifdef CONFIG_NUMA
Pekka Enberg343e0d72006-02-01 03:05:50 -0800932static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -0800933static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -0800934
Pekka Enberg5295a742006-02-01 03:05:48 -0800935static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -0700936{
937 struct array_cache **ac_ptr;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800938 int memsize = sizeof(void *) * MAX_NUMNODES;
Christoph Lametere498be72005-09-09 13:03:32 -0700939 int i;
940
941 if (limit > 1)
942 limit = 12;
943 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
944 if (ac_ptr) {
945 for_each_node(i) {
946 if (i == node || !node_online(i)) {
947 ac_ptr[i] = NULL;
948 continue;
949 }
950 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
951 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800952 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -0700953 kfree(ac_ptr[i]);
954 kfree(ac_ptr);
955 return NULL;
956 }
957 }
958 }
959 return ac_ptr;
960}
961
Pekka Enberg5295a742006-02-01 03:05:48 -0800962static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -0700963{
964 int i;
965
966 if (!ac_ptr)
967 return;
Christoph Lametere498be72005-09-09 13:03:32 -0700968 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800969 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -0700970 kfree(ac_ptr);
971}
972
Pekka Enberg343e0d72006-02-01 03:05:50 -0800973static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -0800974 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -0700975{
976 struct kmem_list3 *rl3 = cachep->nodelists[node];
977
978 if (ac->avail) {
979 spin_lock(&rl3->list_lock);
Christoph Lametere00946f2006-03-25 03:06:45 -0800980 /*
981 * Stuff objects into the remote nodes shared array first.
982 * That way we could avoid the overhead of putting the objects
983 * into the free lists and getting them back later.
984 */
shin, jacob693f7d32006-04-28 10:54:37 -0500985 if (rl3->shared)
986 transfer_objects(rl3->shared, ac, ac->limit);
Christoph Lametere00946f2006-03-25 03:06:45 -0800987
Christoph Lameterff694162005-09-22 21:44:02 -0700988 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700989 ac->avail = 0;
990 spin_unlock(&rl3->list_lock);
991 }
992}
993
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800994/*
995 * Called from cache_reap() to regularly drain alien caches round robin.
996 */
997static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
998{
999 int node = __get_cpu_var(reap_node);
1000
1001 if (l3->alien) {
1002 struct array_cache *ac = l3->alien[node];
Christoph Lametere00946f2006-03-25 03:06:45 -08001003
1004 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001005 __drain_alien_cache(cachep, ac, node);
1006 spin_unlock_irq(&ac->lock);
1007 }
1008 }
1009}
1010
Andrew Mortona737b3e2006-03-22 00:08:11 -08001011static void drain_alien_cache(struct kmem_cache *cachep,
1012 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -07001013{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001014 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001015 struct array_cache *ac;
1016 unsigned long flags;
1017
1018 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001019 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001020 if (ac) {
1021 spin_lock_irqsave(&ac->lock, flags);
1022 __drain_alien_cache(cachep, ac, i);
1023 spin_unlock_irqrestore(&ac->lock, flags);
1024 }
1025 }
1026}
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001027
1028static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1029{
1030 struct slab *slabp = virt_to_slab(objp);
1031 int nodeid = slabp->nodeid;
1032 struct kmem_list3 *l3;
1033 struct array_cache *alien = NULL;
1034
1035 /*
1036 * Make sure we are not freeing a object from another node to the array
1037 * cache on this cpu.
1038 */
1039 if (likely(slabp->nodeid == numa_node_id()))
1040 return 0;
1041
1042 l3 = cachep->nodelists[numa_node_id()];
1043 STATS_INC_NODEFREES(cachep);
1044 if (l3->alien && l3->alien[nodeid]) {
1045 alien = l3->alien[nodeid];
1046 spin_lock(&alien->lock);
1047 if (unlikely(alien->avail == alien->limit)) {
1048 STATS_INC_ACOVERFLOW(cachep);
1049 __drain_alien_cache(cachep, alien, nodeid);
1050 }
1051 alien->entry[alien->avail++] = objp;
1052 spin_unlock(&alien->lock);
1053 } else {
1054 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1055 free_block(cachep, &objp, 1, nodeid);
1056 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1057 }
1058 return 1;
1059}
1060
Christoph Lametere498be72005-09-09 13:03:32 -07001061#else
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001062
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001063#define drain_alien_cache(cachep, alien) do { } while (0)
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001064#define reap_alien(cachep, l3) do { } while (0)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001065
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001066static inline struct array_cache **alloc_alien_cache(int node, int limit)
1067{
1068 return (struct array_cache **) 0x01020304ul;
1069}
1070
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001071static inline void free_alien_cache(struct array_cache **ac_ptr)
1072{
1073}
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001074
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001075static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1076{
1077 return 0;
1078}
1079
Christoph Lametere498be72005-09-09 13:03:32 -07001080#endif
1081
Chandra Seetharaman83d722f2006-04-24 19:35:21 -07001082static int cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001083 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001084{
1085 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001086 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001087 struct kmem_list3 *l3 = NULL;
1088 int node = cpu_to_node(cpu);
1089 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001090
1091 switch (action) {
1092 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001093 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001094 /*
1095 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001096 * alloc_arraycache's are going to use this list.
1097 * kmalloc_node allows us to add the slab to the right
1098 * kmem_list3 and not this cpu's kmem_list3
1099 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001100
Christoph Lametere498be72005-09-09 13:03:32 -07001101 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001102 /*
1103 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001104 * begin anything. Make sure some other cpu on this
1105 * node has not already allocated this
1106 */
1107 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001108 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1109 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001110 goto bad;
1111 kmem_list3_init(l3);
1112 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001113 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001114
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001115 /*
1116 * The l3s don't come and go as CPUs come and
1117 * go. cache_chain_mutex is sufficient
1118 * protection here.
1119 */
Christoph Lametere498be72005-09-09 13:03:32 -07001120 cachep->nodelists[node] = l3;
1121 }
1122
1123 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1124 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001125 (1 + nr_cpus_node(node)) *
1126 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001127 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1128 }
1129
Andrew Mortona737b3e2006-03-22 00:08:11 -08001130 /*
1131 * Now we can go ahead with allocating the shared arrays and
1132 * array caches
1133 */
Christoph Lametere498be72005-09-09 13:03:32 -07001134 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001135 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001136 struct array_cache *shared;
1137 struct array_cache **alien;
Tobias Klausercd105df2006-01-08 01:00:59 -08001138
Christoph Lametere498be72005-09-09 13:03:32 -07001139 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001140 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001141 if (!nc)
1142 goto bad;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001143 shared = alloc_arraycache(node,
1144 cachep->shared * cachep->batchcount,
1145 0xbaadf00d);
1146 if (!shared)
1147 goto bad;
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001148
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001149 alien = alloc_alien_cache(node, cachep->limit);
1150 if (!alien)
1151 goto bad;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001152 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001153 l3 = cachep->nodelists[node];
1154 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001155
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001156 spin_lock_irq(&l3->list_lock);
1157 if (!l3->shared) {
1158 /*
1159 * We are serialised from CPU_DEAD or
1160 * CPU_UP_CANCELLED by the cpucontrol lock
1161 */
1162 l3->shared = shared;
1163 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001164 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001165#ifdef CONFIG_NUMA
1166 if (!l3->alien) {
1167 l3->alien = alien;
1168 alien = NULL;
1169 }
1170#endif
1171 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001172 kfree(shared);
1173 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001174 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001175 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176 break;
1177 case CPU_ONLINE:
1178 start_cpu_timer(cpu);
1179 break;
1180#ifdef CONFIG_HOTPLUG_CPU
1181 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001182 /*
1183 * Even if all the cpus of a node are down, we don't free the
1184 * kmem_list3 of any cache. This to avoid a race between
1185 * cpu_down, and a kmalloc allocation from another cpu for
1186 * memory from the node of the cpu going down. The list3
1187 * structure is usually allocated from kmem_cache_create() and
1188 * gets destroyed at kmem_cache_destroy().
1189 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001190 /* fall thru */
1191 case CPU_UP_CANCELED:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001192 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001193 list_for_each_entry(cachep, &cache_chain, next) {
1194 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001195 struct array_cache *shared;
1196 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001197 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001198
Christoph Lametere498be72005-09-09 13:03:32 -07001199 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001200 /* cpu is dead; no one can alloc from it. */
1201 nc = cachep->array[cpu];
1202 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001203 l3 = cachep->nodelists[node];
1204
1205 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001206 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001207
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001208 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001209
1210 /* Free limit for this kmem_list3 */
1211 l3->free_limit -= cachep->batchcount;
1212 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001213 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001214
1215 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001216 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001217 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001218 }
Christoph Lametere498be72005-09-09 13:03:32 -07001219
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001220 shared = l3->shared;
1221 if (shared) {
Christoph Lametere498be72005-09-09 13:03:32 -07001222 free_block(cachep, l3->shared->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001223 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001224 l3->shared = NULL;
1225 }
Christoph Lametere498be72005-09-09 13:03:32 -07001226
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001227 alien = l3->alien;
1228 l3->alien = NULL;
1229
1230 spin_unlock_irq(&l3->list_lock);
1231
1232 kfree(shared);
1233 if (alien) {
1234 drain_alien_cache(cachep, alien);
1235 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001236 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001237free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001238 kfree(nc);
1239 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001240 /*
1241 * In the previous loop, all the objects were freed to
1242 * the respective cache's slabs, now we can go ahead and
1243 * shrink each nodelist to its limit.
1244 */
1245 list_for_each_entry(cachep, &cache_chain, next) {
1246 l3 = cachep->nodelists[node];
1247 if (!l3)
1248 continue;
1249 spin_lock_irq(&l3->list_lock);
1250 /* free slabs belonging to this node */
1251 __node_shrink(cachep, node);
1252 spin_unlock_irq(&l3->list_lock);
1253 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001254 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001255 break;
1256#endif
1257 }
1258 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001259bad:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001260 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001261 return NOTIFY_BAD;
1262}
1263
1264static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1265
Christoph Lametere498be72005-09-09 13:03:32 -07001266/*
1267 * swap the static kmem_list3 with kmalloced memory
1268 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001269static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1270 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001271{
1272 struct kmem_list3 *ptr;
1273
1274 BUG_ON(cachep->nodelists[nodeid] != list);
1275 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1276 BUG_ON(!ptr);
1277
1278 local_irq_disable();
1279 memcpy(ptr, list, sizeof(struct kmem_list3));
1280 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1281 cachep->nodelists[nodeid] = ptr;
1282 local_irq_enable();
1283}
1284
Andrew Mortona737b3e2006-03-22 00:08:11 -08001285/*
1286 * Initialisation. Called after the page allocator have been initialised and
1287 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001288 */
1289void __init kmem_cache_init(void)
1290{
1291 size_t left_over;
1292 struct cache_sizes *sizes;
1293 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001294 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001295 int order;
Christoph Lametere498be72005-09-09 13:03:32 -07001296
1297 for (i = 0; i < NUM_INIT_LISTS; i++) {
1298 kmem_list3_init(&initkmem_list3[i]);
1299 if (i < MAX_NUMNODES)
1300 cache_cache.nodelists[i] = NULL;
1301 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001302
1303 /*
1304 * Fragmentation resistance on low memory - only use bigger
1305 * page orders on machines with more than 32MB of memory.
1306 */
1307 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1308 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1309
Linus Torvalds1da177e2005-04-16 15:20:36 -07001310 /* Bootstrap is tricky, because several objects are allocated
1311 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001312 * 1) initialize the cache_cache cache: it contains the struct
1313 * kmem_cache structures of all caches, except cache_cache itself:
1314 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001315 * Initially an __init data area is used for the head array and the
1316 * kmem_list3 structures, it's replaced with a kmalloc allocated
1317 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001318 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001319 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001320 * An __init data area is used for the head array.
1321 * 3) Create the remaining kmalloc caches, with minimally sized
1322 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001323 * 4) Replace the __init data head arrays for cache_cache and the first
1324 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001325 * 5) Replace the __init data for kmem_list3 for cache_cache and
1326 * the other cache's with kmalloc allocated memory.
1327 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001328 */
1329
1330 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001331 INIT_LIST_HEAD(&cache_chain);
1332 list_add(&cache_cache.next, &cache_chain);
1333 cache_cache.colour_off = cache_line_size();
1334 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001335 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001336
Andrew Mortona737b3e2006-03-22 00:08:11 -08001337 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1338 cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001339
Jack Steiner07ed76b2006-03-07 21:55:46 -08001340 for (order = 0; order < MAX_ORDER; order++) {
1341 cache_estimate(order, cache_cache.buffer_size,
1342 cache_line_size(), 0, &left_over, &cache_cache.num);
1343 if (cache_cache.num)
1344 break;
1345 }
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001346 BUG_ON(!cache_cache.num);
Jack Steiner07ed76b2006-03-07 21:55:46 -08001347 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001348 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001349 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1350 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351
1352 /* 2+3) create the kmalloc caches */
1353 sizes = malloc_sizes;
1354 names = cache_names;
1355
Andrew Mortona737b3e2006-03-22 00:08:11 -08001356 /*
1357 * Initialize the caches that provide memory for the array cache and the
1358 * kmem_list3 structures first. Without this, further allocations will
1359 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001360 */
1361
1362 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001363 sizes[INDEX_AC].cs_size,
1364 ARCH_KMALLOC_MINALIGN,
1365 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1366 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001367
Andrew Mortona737b3e2006-03-22 00:08:11 -08001368 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001369 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001370 kmem_cache_create(names[INDEX_L3].name,
1371 sizes[INDEX_L3].cs_size,
1372 ARCH_KMALLOC_MINALIGN,
1373 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1374 NULL, NULL);
1375 }
Christoph Lametere498be72005-09-09 13:03:32 -07001376
Linus Torvalds1da177e2005-04-16 15:20:36 -07001377 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001378 /*
1379 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001380 * This should be particularly beneficial on SMP boxes, as it
1381 * eliminates "false sharing".
1382 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001383 * allow tighter packing of the smaller caches.
1384 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001385 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001386 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001387 sizes->cs_size,
1388 ARCH_KMALLOC_MINALIGN,
1389 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1390 NULL, NULL);
1391 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001392
Linus Torvalds1da177e2005-04-16 15:20:36 -07001393 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001394 sizes->cs_size,
1395 ARCH_KMALLOC_MINALIGN,
1396 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1397 SLAB_PANIC,
1398 NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399 sizes++;
1400 names++;
1401 }
1402 /* 4) Replace the bootstrap head arrays */
1403 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001404 void *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001405
Linus Torvalds1da177e2005-04-16 15:20:36 -07001406 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001407
Linus Torvalds1da177e2005-04-16 15:20:36 -07001408 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001409 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1410 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001411 sizeof(struct arraycache_init));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001412 cache_cache.array[smp_processor_id()] = ptr;
1413 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001414
Linus Torvalds1da177e2005-04-16 15:20:36 -07001415 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001416
Linus Torvalds1da177e2005-04-16 15:20:36 -07001417 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001418 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001419 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001420 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001421 sizeof(struct arraycache_init));
Christoph Lametere498be72005-09-09 13:03:32 -07001422 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001423 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001424 local_irq_enable();
1425 }
Christoph Lametere498be72005-09-09 13:03:32 -07001426 /* 5) Replace the bootstrap kmem_list3's */
1427 {
1428 int node;
1429 /* Replace the static kmem_list3 structures for the boot cpu */
1430 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001431 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432
Christoph Lametere498be72005-09-09 13:03:32 -07001433 for_each_online_node(node) {
1434 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001435 &initkmem_list3[SIZE_AC + node], node);
Christoph Lametere498be72005-09-09 13:03:32 -07001436
1437 if (INDEX_AC != INDEX_L3) {
1438 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001439 &initkmem_list3[SIZE_L3 + node],
1440 node);
Christoph Lametere498be72005-09-09 13:03:32 -07001441 }
1442 }
1443 }
1444
1445 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001447 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001448 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001449 list_for_each_entry(cachep, &cache_chain, next)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001450 enable_cpucache(cachep);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001451 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001452 }
1453
1454 /* Done! */
1455 g_cpucache_up = FULL;
1456
Andrew Mortona737b3e2006-03-22 00:08:11 -08001457 /*
1458 * Register a cpu startup notifier callback that initializes
1459 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001460 */
1461 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001462
Andrew Mortona737b3e2006-03-22 00:08:11 -08001463 /*
1464 * The reap timers are started later, with a module init call: That part
1465 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001466 */
1467}
1468
1469static int __init cpucache_init(void)
1470{
1471 int cpu;
1472
Andrew Mortona737b3e2006-03-22 00:08:11 -08001473 /*
1474 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001475 */
Christoph Lametere498be72005-09-09 13:03:32 -07001476 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001477 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001478 return 0;
1479}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001480__initcall(cpucache_init);
1481
1482/*
1483 * Interface to system's page allocator. No need to hold the cache-lock.
1484 *
1485 * If we requested dmaable memory, we will get it. Even if we
1486 * did not request dmaable memory, we might get it, but that
1487 * would be relatively rare and ignorable.
1488 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001489static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001490{
1491 struct page *page;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001492 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001493 int i;
1494
Luke Yangd6fef9d2006-04-10 22:52:56 -07001495#ifndef CONFIG_MMU
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001496 /*
1497 * Nommu uses slab's for process anonymous memory allocations, and thus
1498 * requires __GFP_COMP to properly refcount higher order allocations
Luke Yangd6fef9d2006-04-10 22:52:56 -07001499 */
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001500 flags |= __GFP_COMP;
Luke Yangd6fef9d2006-04-10 22:52:56 -07001501#endif
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001502 flags |= cachep->gfpflags;
1503
1504 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001505 if (!page)
1506 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001507
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001508 nr_pages = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001509 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001510 atomic_add(nr_pages, &slab_reclaim_pages);
1511 add_page_state(nr_slab, nr_pages);
1512 for (i = 0; i < nr_pages; i++)
1513 __SetPageSlab(page + i);
1514 return page_address(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001515}
1516
1517/*
1518 * Interface to system's page release.
1519 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001520static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001521{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001522 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001523 struct page *page = virt_to_page(addr);
1524 const unsigned long nr_freed = i;
1525
1526 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001527 BUG_ON(!PageSlab(page));
1528 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001529 page++;
1530 }
1531 sub_page_state(nr_slab, nr_freed);
1532 if (current->reclaim_state)
1533 current->reclaim_state->reclaimed_slab += nr_freed;
1534 free_pages((unsigned long)addr, cachep->gfporder);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001535 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1536 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001537}
1538
1539static void kmem_rcu_free(struct rcu_head *head)
1540{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001541 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001542 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001543
1544 kmem_freepages(cachep, slab_rcu->addr);
1545 if (OFF_SLAB(cachep))
1546 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1547}
1548
1549#if DEBUG
1550
1551#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001552static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001553 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001554{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001555 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001556
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001557 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001558
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001559 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001560 return;
1561
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001562 *addr++ = 0x12345678;
1563 *addr++ = caller;
1564 *addr++ = smp_processor_id();
1565 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566 {
1567 unsigned long *sptr = &caller;
1568 unsigned long svalue;
1569
1570 while (!kstack_end(sptr)) {
1571 svalue = *sptr++;
1572 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001573 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001574 size -= sizeof(unsigned long);
1575 if (size <= sizeof(unsigned long))
1576 break;
1577 }
1578 }
1579
1580 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001581 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001582}
1583#endif
1584
Pekka Enberg343e0d72006-02-01 03:05:50 -08001585static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001586{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001587 int size = obj_size(cachep);
1588 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001589
1590 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001591 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001592}
1593
1594static void dump_line(char *data, int offset, int limit)
1595{
1596 int i;
1597 printk(KERN_ERR "%03x:", offset);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001598 for (i = 0; i < limit; i++)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001599 printk(" %02x", (unsigned char)data[offset + i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001600 printk("\n");
1601}
1602#endif
1603
1604#if DEBUG
1605
Pekka Enberg343e0d72006-02-01 03:05:50 -08001606static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001607{
1608 int i, size;
1609 char *realobj;
1610
1611 if (cachep->flags & SLAB_RED_ZONE) {
1612 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001613 *dbg_redzone1(cachep, objp),
1614 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001615 }
1616
1617 if (cachep->flags & SLAB_STORE_USER) {
1618 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001619 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001620 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001621 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001622 printk("\n");
1623 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001624 realobj = (char *)objp + obj_offset(cachep);
1625 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001626 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001627 int limit;
1628 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001629 if (i + limit > size)
1630 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001631 dump_line(realobj, i, limit);
1632 }
1633}
1634
Pekka Enberg343e0d72006-02-01 03:05:50 -08001635static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001636{
1637 char *realobj;
1638 int size, i;
1639 int lines = 0;
1640
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001641 realobj = (char *)objp + obj_offset(cachep);
1642 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001643
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001644 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001645 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001646 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001647 exp = POISON_END;
1648 if (realobj[i] != exp) {
1649 int limit;
1650 /* Mismatch ! */
1651 /* Print header */
1652 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001653 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08001654 "Slab corruption: start=%p, len=%d\n",
1655 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001656 print_objinfo(cachep, objp, 0);
1657 }
1658 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001659 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001660 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001661 if (i + limit > size)
1662 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001663 dump_line(realobj, i, limit);
1664 i += 16;
1665 lines++;
1666 /* Limit to 5 lines */
1667 if (lines > 5)
1668 break;
1669 }
1670 }
1671 if (lines != 0) {
1672 /* Print some data about the neighboring objects, if they
1673 * exist:
1674 */
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08001675 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001676 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001677
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001678 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001679 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001680 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001681 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001682 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001683 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001684 print_objinfo(cachep, objp, 2);
1685 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001686 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001687 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001688 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001689 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001690 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001691 print_objinfo(cachep, objp, 2);
1692 }
1693 }
1694}
1695#endif
1696
Linus Torvalds1da177e2005-04-16 15:20:36 -07001697#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001698/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001699 * slab_destroy_objs - destroy a slab and its objects
1700 * @cachep: cache pointer being destroyed
1701 * @slabp: slab pointer being destroyed
1702 *
1703 * Call the registered destructor for each object in a slab that is being
1704 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001705 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001706static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001707{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001708 int i;
1709 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001710 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001711
1712 if (cachep->flags & SLAB_POISON) {
1713#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001714 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1715 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001716 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001717 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001718 else
1719 check_poison_obj(cachep, objp);
1720#else
1721 check_poison_obj(cachep, objp);
1722#endif
1723 }
1724 if (cachep->flags & SLAB_RED_ZONE) {
1725 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1726 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001727 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001728 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1729 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001730 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001731 }
1732 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001733 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001734 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001735}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001736#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001737static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001738{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001739 if (cachep->dtor) {
1740 int i;
1741 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001742 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001743 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001744 }
1745 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001746}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001747#endif
1748
Randy Dunlap911851e2006-03-22 00:08:14 -08001749/**
1750 * slab_destroy - destroy and release all objects in a slab
1751 * @cachep: cache pointer being destroyed
1752 * @slabp: slab pointer being destroyed
1753 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001754 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001755 * Before calling the slab must have been unlinked from the cache. The
1756 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001757 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001758static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001759{
1760 void *addr = slabp->s_mem - slabp->colouroff;
1761
1762 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001763 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1764 struct slab_rcu *slab_rcu;
1765
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001766 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001767 slab_rcu->cachep = cachep;
1768 slab_rcu->addr = addr;
1769 call_rcu(&slab_rcu->head, kmem_rcu_free);
1770 } else {
1771 kmem_freepages(cachep, addr);
1772 if (OFF_SLAB(cachep))
1773 kmem_cache_free(cachep->slabp_cache, slabp);
1774 }
1775}
1776
Andrew Mortona737b3e2006-03-22 00:08:11 -08001777/*
1778 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1779 * size of kmem_list3.
1780 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001781static void set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001782{
1783 int node;
1784
1785 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001786 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001787 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001788 REAPTIMEOUT_LIST3 +
1789 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001790 }
1791}
1792
Linus Torvalds1da177e2005-04-16 15:20:36 -07001793/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001794 * calculate_slab_order - calculate size (page order) of slabs
1795 * @cachep: pointer to the cache that is being created
1796 * @size: size of objects to be created in this cache.
1797 * @align: required alignment for the objects.
1798 * @flags: slab allocation flags
1799 *
1800 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001801 *
1802 * This could be made much more intelligent. For now, try to avoid using
1803 * high order pages for slabs. When the gfp() functions are more friendly
1804 * towards high-order requests, this should be changed.
1805 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001806static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001807 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001808{
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001809 unsigned long offslab_limit;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001810 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001811 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001812
Andrew Mortona737b3e2006-03-22 00:08:11 -08001813 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001814 unsigned int num;
1815 size_t remainder;
1816
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001817 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001818 if (!num)
1819 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001820
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001821 if (flags & CFLGS_OFF_SLAB) {
1822 /*
1823 * Max number of objs-per-slab for caches which
1824 * use off-slab slabs. Needed to avoid a possible
1825 * looping condition in cache_grow().
1826 */
1827 offslab_limit = size - sizeof(struct slab);
1828 offslab_limit /= sizeof(kmem_bufctl_t);
1829
1830 if (num > offslab_limit)
1831 break;
1832 }
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001833
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001834 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001835 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001836 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001837 left_over = remainder;
1838
1839 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08001840 * A VFS-reclaimable slab tends to have most allocations
1841 * as GFP_NOFS and we really don't want to have to be allocating
1842 * higher-order pages when we are unable to shrink dcache.
1843 */
1844 if (flags & SLAB_RECLAIM_ACCOUNT)
1845 break;
1846
1847 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001848 * Large number of objects is good, but very large slabs are
1849 * currently bad for the gfp()s.
1850 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001851 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001852 break;
1853
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001854 /*
1855 * Acceptable internal fragmentation?
1856 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001857 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001858 break;
1859 }
1860 return left_over;
1861}
1862
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08001863static void setup_cpu_cache(struct kmem_cache *cachep)
1864{
1865 if (g_cpucache_up == FULL) {
1866 enable_cpucache(cachep);
1867 return;
1868 }
1869 if (g_cpucache_up == NONE) {
1870 /*
1871 * Note: the first kmem_cache_create must create the cache
1872 * that's used by kmalloc(24), otherwise the creation of
1873 * further caches will BUG().
1874 */
1875 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1876
1877 /*
1878 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1879 * the first cache, then we need to set up all its list3s,
1880 * otherwise the creation of further caches will BUG().
1881 */
1882 set_up_list3s(cachep, SIZE_AC);
1883 if (INDEX_AC == INDEX_L3)
1884 g_cpucache_up = PARTIAL_L3;
1885 else
1886 g_cpucache_up = PARTIAL_AC;
1887 } else {
1888 cachep->array[smp_processor_id()] =
1889 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1890
1891 if (g_cpucache_up == PARTIAL_AC) {
1892 set_up_list3s(cachep, SIZE_L3);
1893 g_cpucache_up = PARTIAL_L3;
1894 } else {
1895 int node;
1896 for_each_online_node(node) {
1897 cachep->nodelists[node] =
1898 kmalloc_node(sizeof(struct kmem_list3),
1899 GFP_KERNEL, node);
1900 BUG_ON(!cachep->nodelists[node]);
1901 kmem_list3_init(cachep->nodelists[node]);
1902 }
1903 }
1904 }
1905 cachep->nodelists[numa_node_id()]->next_reap =
1906 jiffies + REAPTIMEOUT_LIST3 +
1907 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1908
1909 cpu_cache_get(cachep)->avail = 0;
1910 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1911 cpu_cache_get(cachep)->batchcount = 1;
1912 cpu_cache_get(cachep)->touched = 0;
1913 cachep->batchcount = 1;
1914 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1915}
1916
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001917/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918 * kmem_cache_create - Create a cache.
1919 * @name: A string which is used in /proc/slabinfo to identify this cache.
1920 * @size: The size of objects to be created in this cache.
1921 * @align: The required alignment for the objects.
1922 * @flags: SLAB flags
1923 * @ctor: A constructor for the objects.
1924 * @dtor: A destructor for the objects.
1925 *
1926 * Returns a ptr to the cache on success, NULL on failure.
1927 * Cannot be called within a int, but can be interrupted.
1928 * The @ctor is run when new pages are allocated by the cache
1929 * and the @dtor is run before the pages are handed back.
1930 *
1931 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08001932 * the module calling this has to destroy the cache before getting unloaded.
1933 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001934 * The flags are
1935 *
1936 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1937 * to catch references to uninitialised memory.
1938 *
1939 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1940 * for buffer overruns.
1941 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001942 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1943 * cacheline. This can be beneficial if you're counting cycles as closely
1944 * as davem.
1945 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001946struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001947kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001948 unsigned long flags,
1949 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08001950 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001951{
1952 size_t left_over, slab_size, ralign;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07001953 struct kmem_cache *cachep = NULL, *pc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001954
1955 /*
1956 * Sanity checks... these are all serious usage bugs.
1957 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001958 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001959 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001960 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1961 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001962 BUG();
1963 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001964
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08001965 /*
1966 * Prevent CPUs from coming and going.
1967 * lock_cpu_hotplug() nests outside cache_chain_mutex
1968 */
1969 lock_cpu_hotplug();
1970
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001971 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001972
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07001973 list_for_each_entry(pc, &cache_chain, next) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08001974 mm_segment_t old_fs = get_fs();
1975 char tmp;
1976 int res;
1977
1978 /*
1979 * This happens when the module gets unloaded and doesn't
1980 * destroy its slab cache and no-one else reuses the vmalloc
1981 * area of the module. Print a warning.
1982 */
1983 set_fs(KERNEL_DS);
1984 res = __get_user(tmp, pc->name);
1985 set_fs(old_fs);
1986 if (res) {
1987 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001988 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001989 continue;
1990 }
1991
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001992 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08001993 printk("kmem_cache_create: duplicate cache %s\n", name);
1994 dump_stack();
1995 goto oops;
1996 }
1997 }
1998
Linus Torvalds1da177e2005-04-16 15:20:36 -07001999#if DEBUG
2000 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2001 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2002 /* No constructor, but inital state check requested */
2003 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002004 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002005 flags &= ~SLAB_DEBUG_INITIAL;
2006 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002007#if FORCED_DEBUG
2008 /*
2009 * Enable redzoning and last user accounting, except for caches with
2010 * large objects, if the increased size would increase the object size
2011 * above the next power of two: caches with object sizes just above a
2012 * power of two have a significant amount of internal fragmentation.
2013 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002014 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002015 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016 if (!(flags & SLAB_DESTROY_BY_RCU))
2017 flags |= SLAB_POISON;
2018#endif
2019 if (flags & SLAB_DESTROY_BY_RCU)
2020 BUG_ON(flags & SLAB_POISON);
2021#endif
2022 if (flags & SLAB_DESTROY_BY_RCU)
2023 BUG_ON(dtor);
2024
2025 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002026 * Always checks flags, a caller might be expecting debug support which
2027 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002028 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002029 BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002030
Andrew Mortona737b3e2006-03-22 00:08:11 -08002031 /*
2032 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002033 * unaligned accesses for some archs when redzoning is used, and makes
2034 * sure any on-slab bufctl's are also correctly aligned.
2035 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002036 if (size & (BYTES_PER_WORD - 1)) {
2037 size += (BYTES_PER_WORD - 1);
2038 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002039 }
2040
Andrew Mortona737b3e2006-03-22 00:08:11 -08002041 /* calculate the final buffer alignment: */
2042
Linus Torvalds1da177e2005-04-16 15:20:36 -07002043 /* 1) arch recommendation: can be overridden for debug */
2044 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002045 /*
2046 * Default alignment: as specified by the arch code. Except if
2047 * an object is really small, then squeeze multiple objects into
2048 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002049 */
2050 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002051 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052 ralign /= 2;
2053 } else {
2054 ralign = BYTES_PER_WORD;
2055 }
2056 /* 2) arch mandated alignment: disables debug if necessary */
2057 if (ralign < ARCH_SLAB_MINALIGN) {
2058 ralign = ARCH_SLAB_MINALIGN;
2059 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002060 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061 }
2062 /* 3) caller mandated alignment: disables debug if necessary */
2063 if (ralign < align) {
2064 ralign = align;
2065 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002066 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002067 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002068 /*
2069 * 4) Store it. Note that the debug code below can reduce
Linus Torvalds1da177e2005-04-16 15:20:36 -07002070 * the alignment to BYTES_PER_WORD.
2071 */
2072 align = ralign;
2073
2074 /* Get cache's description obj. */
Pekka Enbergc5e3b832006-03-25 03:06:43 -08002075 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002076 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002077 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002078
2079#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002080 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002081
2082 if (flags & SLAB_RED_ZONE) {
2083 /* redzoning only works with word aligned caches */
2084 align = BYTES_PER_WORD;
2085
2086 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002087 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002088 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002089 }
2090 if (flags & SLAB_STORE_USER) {
2091 /* user store requires word alignment and
2092 * one word storage behind the end of the real
2093 * object.
2094 */
2095 align = BYTES_PER_WORD;
2096 size += BYTES_PER_WORD;
2097 }
2098#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002099 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002100 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2101 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002102 size = PAGE_SIZE;
2103 }
2104#endif
2105#endif
2106
2107 /* Determine if the slab management is 'on' or 'off' slab. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002108 if (size >= (PAGE_SIZE >> 3))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002109 /*
2110 * Size is large, assume best to place the slab management obj
2111 * off-slab (should allow better packing of objs).
2112 */
2113 flags |= CFLGS_OFF_SLAB;
2114
2115 size = ALIGN(size, align);
2116
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002117 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002118
2119 if (!cachep->num) {
2120 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2121 kmem_cache_free(&cache_cache, cachep);
2122 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002123 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002124 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002125 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2126 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002127
2128 /*
2129 * If the slab has been placed off-slab, and we have enough space then
2130 * move it on-slab. This is at the expense of any extra colouring.
2131 */
2132 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2133 flags &= ~CFLGS_OFF_SLAB;
2134 left_over -= slab_size;
2135 }
2136
2137 if (flags & CFLGS_OFF_SLAB) {
2138 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002139 slab_size =
2140 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002141 }
2142
2143 cachep->colour_off = cache_line_size();
2144 /* Offset must be a multiple of the alignment. */
2145 if (cachep->colour_off < align)
2146 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002147 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002148 cachep->slab_size = slab_size;
2149 cachep->flags = flags;
2150 cachep->gfpflags = 0;
2151 if (flags & SLAB_CACHE_DMA)
2152 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002153 cachep->buffer_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002154
2155 if (flags & CFLGS_OFF_SLAB)
Victor Fuscob2d55072005-09-10 00:26:36 -07002156 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002157 cachep->ctor = ctor;
2158 cachep->dtor = dtor;
2159 cachep->name = name;
2160
Linus Torvalds1da177e2005-04-16 15:20:36 -07002161
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002162 setup_cpu_cache(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002163
Linus Torvalds1da177e2005-04-16 15:20:36 -07002164 /* cache setup completed, link it into the list */
2165 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002166oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167 if (!cachep && (flags & SLAB_PANIC))
2168 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002169 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002170 mutex_unlock(&cache_chain_mutex);
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002171 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002172 return cachep;
2173}
2174EXPORT_SYMBOL(kmem_cache_create);
2175
2176#if DEBUG
2177static void check_irq_off(void)
2178{
2179 BUG_ON(!irqs_disabled());
2180}
2181
2182static void check_irq_on(void)
2183{
2184 BUG_ON(irqs_disabled());
2185}
2186
Pekka Enberg343e0d72006-02-01 03:05:50 -08002187static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002188{
2189#ifdef CONFIG_SMP
2190 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002191 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002192#endif
2193}
Christoph Lametere498be72005-09-09 13:03:32 -07002194
Pekka Enberg343e0d72006-02-01 03:05:50 -08002195static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002196{
2197#ifdef CONFIG_SMP
2198 check_irq_off();
2199 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2200#endif
2201}
2202
Linus Torvalds1da177e2005-04-16 15:20:36 -07002203#else
2204#define check_irq_off() do { } while(0)
2205#define check_irq_on() do { } while(0)
2206#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002207#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002208#endif
2209
Christoph Lameteraab22072006-03-22 00:09:06 -08002210static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2211 struct array_cache *ac,
2212 int force, int node);
2213
Linus Torvalds1da177e2005-04-16 15:20:36 -07002214static void do_drain(void *arg)
2215{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002216 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002217 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002218 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002219
2220 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002221 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002222 spin_lock(&cachep->nodelists[node]->list_lock);
2223 free_block(cachep, ac->entry, ac->avail, node);
2224 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002225 ac->avail = 0;
2226}
2227
Pekka Enberg343e0d72006-02-01 03:05:50 -08002228static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002229{
Christoph Lametere498be72005-09-09 13:03:32 -07002230 struct kmem_list3 *l3;
2231 int node;
2232
Andrew Mortona07fa392006-03-22 00:08:17 -08002233 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002234 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002235 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002236 l3 = cachep->nodelists[node];
Roland Dreiera4523a82006-05-15 11:41:00 -07002237 if (l3 && l3->alien)
2238 drain_alien_cache(cachep, l3->alien);
2239 }
2240
2241 for_each_online_node(node) {
2242 l3 = cachep->nodelists[node];
2243 if (l3)
Christoph Lameteraab22072006-03-22 00:09:06 -08002244 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002245 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002246}
2247
Pekka Enberg343e0d72006-02-01 03:05:50 -08002248static int __node_shrink(struct kmem_cache *cachep, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002249{
2250 struct slab *slabp;
Christoph Lametere498be72005-09-09 13:03:32 -07002251 struct kmem_list3 *l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252 int ret;
2253
Christoph Lametere498be72005-09-09 13:03:32 -07002254 for (;;) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002255 struct list_head *p;
2256
Christoph Lametere498be72005-09-09 13:03:32 -07002257 p = l3->slabs_free.prev;
2258 if (p == &l3->slabs_free)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002259 break;
2260
Christoph Lametere498be72005-09-09 13:03:32 -07002261 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002262#if DEBUG
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002263 BUG_ON(slabp->inuse);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002264#endif
2265 list_del(&slabp->list);
2266
Christoph Lametere498be72005-09-09 13:03:32 -07002267 l3->free_objects -= cachep->num;
2268 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002269 slab_destroy(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002270 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002271 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002272 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002273 return ret;
2274}
2275
Pekka Enberg343e0d72006-02-01 03:05:50 -08002276static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002277{
2278 int ret = 0, i = 0;
2279 struct kmem_list3 *l3;
2280
2281 drain_cpu_caches(cachep);
2282
2283 check_irq_on();
2284 for_each_online_node(i) {
2285 l3 = cachep->nodelists[i];
2286 if (l3) {
2287 spin_lock_irq(&l3->list_lock);
2288 ret += __node_shrink(cachep, i);
2289 spin_unlock_irq(&l3->list_lock);
2290 }
2291 }
2292 return (ret ? 1 : 0);
2293}
2294
Linus Torvalds1da177e2005-04-16 15:20:36 -07002295/**
2296 * kmem_cache_shrink - Shrink a cache.
2297 * @cachep: The cache to shrink.
2298 *
2299 * Releases as many slabs as possible for a cache.
2300 * To help debugging, a zero exit status indicates all slabs were released.
2301 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002302int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002303{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002304 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002305
2306 return __cache_shrink(cachep);
2307}
2308EXPORT_SYMBOL(kmem_cache_shrink);
2309
2310/**
2311 * kmem_cache_destroy - delete a cache
2312 * @cachep: the cache to destroy
2313 *
Pekka Enberg343e0d72006-02-01 03:05:50 -08002314 * Remove a struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002315 * Returns 0 on success.
2316 *
2317 * It is expected this function will be called by a module when it is
2318 * unloaded. This will remove the cache completely, and avoid a duplicate
2319 * cache being allocated each time a module is loaded and unloaded, if the
2320 * module doesn't have persistent in-kernel storage across loads and unloads.
2321 *
2322 * The cache must be empty before calling this function.
2323 *
2324 * The caller must guarantee that noone will allocate memory from the cache
2325 * during the kmem_cache_destroy().
2326 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002327int kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002328{
2329 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002330 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002331
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002332 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002333
2334 /* Don't let CPUs to come and go */
2335 lock_cpu_hotplug();
2336
2337 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002338 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002339 /*
2340 * the chain is never empty, cache_cache is never destroyed
2341 */
2342 list_del(&cachep->next);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002343 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002344
2345 if (__cache_shrink(cachep)) {
2346 slab_error(cachep, "Can't free all objects");
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002347 mutex_lock(&cache_chain_mutex);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002348 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002349 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002350 unlock_cpu_hotplug();
2351 return 1;
2352 }
2353
2354 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002355 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002356
Christoph Lametere498be72005-09-09 13:03:32 -07002357 for_each_online_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002358 kfree(cachep->array[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002359
2360 /* NUMA: free the list3 structures */
Christoph Lametere498be72005-09-09 13:03:32 -07002361 for_each_online_node(i) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002362 l3 = cachep->nodelists[i];
2363 if (l3) {
Christoph Lametere498be72005-09-09 13:03:32 -07002364 kfree(l3->shared);
2365 free_alien_cache(l3->alien);
2366 kfree(l3);
2367 }
2368 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002369 kmem_cache_free(&cache_cache, cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002370 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002371 return 0;
2372}
2373EXPORT_SYMBOL(kmem_cache_destroy);
2374
2375/* Get the memory for a slab management obj. */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002376static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002377 int colour_off, gfp_t local_flags,
2378 int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002379{
2380 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002381
Linus Torvalds1da177e2005-04-16 15:20:36 -07002382 if (OFF_SLAB(cachep)) {
2383 /* Slab management obj is off-slab. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002384 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2385 local_flags, nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002386 if (!slabp)
2387 return NULL;
2388 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002389 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002390 colour_off += cachep->slab_size;
2391 }
2392 slabp->inuse = 0;
2393 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002394 slabp->s_mem = objp + colour_off;
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002395 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002396 return slabp;
2397}
2398
2399static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2400{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002401 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002402}
2403
Pekka Enberg343e0d72006-02-01 03:05:50 -08002404static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002405 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002406{
2407 int i;
2408
2409 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002410 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002411#if DEBUG
2412 /* need to poison the objs? */
2413 if (cachep->flags & SLAB_POISON)
2414 poison_obj(cachep, objp, POISON_FREE);
2415 if (cachep->flags & SLAB_STORE_USER)
2416 *dbg_userword(cachep, objp) = NULL;
2417
2418 if (cachep->flags & SLAB_RED_ZONE) {
2419 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2420 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2421 }
2422 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002423 * Constructors are not allowed to allocate memory from the same
2424 * cache which they are a constructor for. Otherwise, deadlock.
2425 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002426 */
2427 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002428 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002429 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002430
2431 if (cachep->flags & SLAB_RED_ZONE) {
2432 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2433 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002434 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002435 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2436 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002437 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002438 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002439 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2440 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002441 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002442 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002443#else
2444 if (cachep->ctor)
2445 cachep->ctor(objp, cachep, ctor_flags);
2446#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002447 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002448 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002449 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002450 slabp->free = 0;
2451}
2452
Pekka Enberg343e0d72006-02-01 03:05:50 -08002453static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002454{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002455 if (flags & SLAB_DMA)
2456 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2457 else
2458 BUG_ON(cachep->gfpflags & GFP_DMA);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002459}
2460
Andrew Mortona737b3e2006-03-22 00:08:11 -08002461static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2462 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002463{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002464 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002465 kmem_bufctl_t next;
2466
2467 slabp->inuse++;
2468 next = slab_bufctl(slabp)[slabp->free];
2469#if DEBUG
2470 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2471 WARN_ON(slabp->nodeid != nodeid);
2472#endif
2473 slabp->free = next;
2474
2475 return objp;
2476}
2477
Andrew Mortona737b3e2006-03-22 00:08:11 -08002478static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2479 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002480{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002481 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002482
2483#if DEBUG
2484 /* Verify that the slab belongs to the intended node */
2485 WARN_ON(slabp->nodeid != nodeid);
2486
Al Viro871751e2006-03-25 03:06:39 -08002487 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002488 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002489 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002490 BUG();
2491 }
2492#endif
2493 slab_bufctl(slabp)[objnr] = slabp->free;
2494 slabp->free = objnr;
2495 slabp->inuse--;
2496}
2497
Pekka Enberg47768742006-06-23 02:03:07 -07002498/*
2499 * Map pages beginning at addr to the given cache and slab. This is required
2500 * for the slab allocator to be able to lookup the cache and slab of a
2501 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2502 */
2503static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2504 void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002505{
Pekka Enberg47768742006-06-23 02:03:07 -07002506 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002507 struct page *page;
2508
Pekka Enberg47768742006-06-23 02:03:07 -07002509 page = virt_to_page(addr);
Nick Piggin84097512006-03-22 00:08:34 -08002510
Pekka Enberg47768742006-06-23 02:03:07 -07002511 nr_pages = 1;
Nick Piggin84097512006-03-22 00:08:34 -08002512 if (likely(!PageCompound(page)))
Pekka Enberg47768742006-06-23 02:03:07 -07002513 nr_pages <<= cache->gfporder;
2514
Linus Torvalds1da177e2005-04-16 15:20:36 -07002515 do {
Pekka Enberg47768742006-06-23 02:03:07 -07002516 page_set_cache(page, cache);
2517 page_set_slab(page, slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002518 page++;
Pekka Enberg47768742006-06-23 02:03:07 -07002519 } while (--nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002520}
2521
2522/*
2523 * Grow (by 1) the number of slabs within a cache. This is called by
2524 * kmem_cache_alloc() when there are no active objs left in a cache.
2525 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002526static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002527{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002528 struct slab *slabp;
2529 void *objp;
2530 size_t offset;
2531 gfp_t local_flags;
2532 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002533 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002534
Andrew Mortona737b3e2006-03-22 00:08:11 -08002535 /*
2536 * Be lazy and only check for valid flags here, keeping it out of the
2537 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002538 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002539 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002540 if (flags & SLAB_NO_GROW)
2541 return 0;
2542
2543 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2544 local_flags = (flags & SLAB_LEVEL_MASK);
2545 if (!(local_flags & __GFP_WAIT))
2546 /*
2547 * Not allowed to sleep. Need to tell a constructor about
2548 * this - it might need to know...
2549 */
2550 ctor_flags |= SLAB_CTOR_ATOMIC;
2551
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002552 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002553 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002554 l3 = cachep->nodelists[nodeid];
2555 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002556
2557 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002558 offset = l3->colour_next;
2559 l3->colour_next++;
2560 if (l3->colour_next >= cachep->colour)
2561 l3->colour_next = 0;
2562 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002563
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002564 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002565
2566 if (local_flags & __GFP_WAIT)
2567 local_irq_enable();
2568
2569 /*
2570 * The test for missing atomic flag is performed here, rather than
2571 * the more obvious place, simply to reduce the critical path length
2572 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2573 * will eventually be caught here (where it matters).
2574 */
2575 kmem_flagcheck(cachep, flags);
2576
Andrew Mortona737b3e2006-03-22 00:08:11 -08002577 /*
2578 * Get mem for the objs. Attempt to allocate a physical page from
2579 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002580 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002581 objp = kmem_getpages(cachep, flags, nodeid);
2582 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002583 goto failed;
2584
2585 /* Get slab management. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002586 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002587 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002588 goto opps1;
2589
Christoph Lametere498be72005-09-09 13:03:32 -07002590 slabp->nodeid = nodeid;
Pekka Enberg47768742006-06-23 02:03:07 -07002591 slab_map_pages(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002592
2593 cache_init_objs(cachep, slabp, ctor_flags);
2594
2595 if (local_flags & __GFP_WAIT)
2596 local_irq_disable();
2597 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002598 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002599
2600 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002601 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002602 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002603 l3->free_objects += cachep->num;
2604 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002605 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002606opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002607 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002608failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002609 if (local_flags & __GFP_WAIT)
2610 local_irq_disable();
2611 return 0;
2612}
2613
2614#if DEBUG
2615
2616/*
2617 * Perform extra freeing checks:
2618 * - detect bad pointers.
2619 * - POISON/RED_ZONE checking
2620 * - destructor calls, for caches with POISON+dtor
2621 */
2622static void kfree_debugcheck(const void *objp)
2623{
2624 struct page *page;
2625
2626 if (!virt_addr_valid(objp)) {
2627 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002628 (unsigned long)objp);
2629 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002630 }
2631 page = virt_to_page(objp);
2632 if (!PageSlab(page)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002633 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2634 (unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002635 BUG();
2636 }
2637}
2638
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002639static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2640{
2641 unsigned long redzone1, redzone2;
2642
2643 redzone1 = *dbg_redzone1(cache, obj);
2644 redzone2 = *dbg_redzone2(cache, obj);
2645
2646 /*
2647 * Redzone is ok.
2648 */
2649 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2650 return;
2651
2652 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2653 slab_error(cache, "double free detected");
2654 else
2655 slab_error(cache, "memory outside object was overwritten");
2656
2657 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2658 obj, redzone1, redzone2);
2659}
2660
Pekka Enberg343e0d72006-02-01 03:05:50 -08002661static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002662 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002663{
2664 struct page *page;
2665 unsigned int objnr;
2666 struct slab *slabp;
2667
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002668 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002669 kfree_debugcheck(objp);
2670 page = virt_to_page(objp);
2671
Pekka Enberg065d41c2005-11-13 16:06:46 -08002672 if (page_get_cache(page) != cachep) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002673 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2674 "cache %p, got %p\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002675 page_get_cache(page), cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002676 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002677 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2678 page_get_cache(page)->name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002679 WARN_ON(1);
2680 }
Pekka Enberg065d41c2005-11-13 16:06:46 -08002681 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002682
2683 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002684 verify_redzone_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2686 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2687 }
2688 if (cachep->flags & SLAB_STORE_USER)
2689 *dbg_userword(cachep, objp) = caller;
2690
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002691 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002692
2693 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002694 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002695
2696 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002697 /*
2698 * Need to call the slab's constructor so the caller can
2699 * perform a verify of its state (debugging). Called without
2700 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002701 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002702 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002703 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002704 }
2705 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2706 /* we want to cache poison the object,
2707 * call the destruction callback
2708 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002709 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002710 }
Al Viro871751e2006-03-25 03:06:39 -08002711#ifdef CONFIG_DEBUG_SLAB_LEAK
2712 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2713#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002714 if (cachep->flags & SLAB_POISON) {
2715#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002716 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002717 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002718 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002719 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002720 } else {
2721 poison_obj(cachep, objp, POISON_FREE);
2722 }
2723#else
2724 poison_obj(cachep, objp, POISON_FREE);
2725#endif
2726 }
2727 return objp;
2728}
2729
Pekka Enberg343e0d72006-02-01 03:05:50 -08002730static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002731{
2732 kmem_bufctl_t i;
2733 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002734
Linus Torvalds1da177e2005-04-16 15:20:36 -07002735 /* Check slab's freelist to see if this obj is there. */
2736 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2737 entries++;
2738 if (entries > cachep->num || i >= cachep->num)
2739 goto bad;
2740 }
2741 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002742bad:
2743 printk(KERN_ERR "slab: Internal list corruption detected in "
2744 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2745 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002746 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002747 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002748 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002749 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002750 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002751 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002752 }
2753 printk("\n");
2754 BUG();
2755 }
2756}
2757#else
2758#define kfree_debugcheck(x) do { } while(0)
2759#define cache_free_debugcheck(x,objp,z) (objp)
2760#define check_slabp(x,y) do { } while(0)
2761#endif
2762
Pekka Enberg343e0d72006-02-01 03:05:50 -08002763static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002764{
2765 int batchcount;
2766 struct kmem_list3 *l3;
2767 struct array_cache *ac;
2768
2769 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002770 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002771retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002772 batchcount = ac->batchcount;
2773 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002774 /*
2775 * If there was little recent activity on this cache, then
2776 * perform only a partial refill. Otherwise we could generate
2777 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002778 */
2779 batchcount = BATCHREFILL_LIMIT;
2780 }
Christoph Lametere498be72005-09-09 13:03:32 -07002781 l3 = cachep->nodelists[numa_node_id()];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002782
Christoph Lametere498be72005-09-09 13:03:32 -07002783 BUG_ON(ac->avail > 0 || !l3);
2784 spin_lock(&l3->list_lock);
2785
Christoph Lameter3ded1752006-03-25 03:06:44 -08002786 /* See if we can refill from the shared array */
2787 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2788 goto alloc_done;
2789
Linus Torvalds1da177e2005-04-16 15:20:36 -07002790 while (batchcount > 0) {
2791 struct list_head *entry;
2792 struct slab *slabp;
2793 /* Get slab alloc is to come from. */
2794 entry = l3->slabs_partial.next;
2795 if (entry == &l3->slabs_partial) {
2796 l3->free_touched = 1;
2797 entry = l3->slabs_free.next;
2798 if (entry == &l3->slabs_free)
2799 goto must_grow;
2800 }
2801
2802 slabp = list_entry(entry, struct slab, list);
2803 check_slabp(cachep, slabp);
2804 check_spinlock_acquired(cachep);
2805 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002806 STATS_INC_ALLOCED(cachep);
2807 STATS_INC_ACTIVE(cachep);
2808 STATS_SET_HIGH(cachep);
2809
Matthew Dobson78d382d2006-02-01 03:05:47 -08002810 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2811 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002812 }
2813 check_slabp(cachep, slabp);
2814
2815 /* move slabp to correct slabp list: */
2816 list_del(&slabp->list);
2817 if (slabp->free == BUFCTL_END)
2818 list_add(&slabp->list, &l3->slabs_full);
2819 else
2820 list_add(&slabp->list, &l3->slabs_partial);
2821 }
2822
Andrew Mortona737b3e2006-03-22 00:08:11 -08002823must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002824 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002825alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07002826 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002827
2828 if (unlikely(!ac->avail)) {
2829 int x;
Christoph Lametere498be72005-09-09 13:03:32 -07002830 x = cache_grow(cachep, flags, numa_node_id());
2831
Andrew Mortona737b3e2006-03-22 00:08:11 -08002832 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002833 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002834 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002835 return NULL;
2836
Andrew Mortona737b3e2006-03-22 00:08:11 -08002837 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002838 goto retry;
2839 }
2840 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002841 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002842}
2843
Andrew Mortona737b3e2006-03-22 00:08:11 -08002844static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2845 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002846{
2847 might_sleep_if(flags & __GFP_WAIT);
2848#if DEBUG
2849 kmem_flagcheck(cachep, flags);
2850#endif
2851}
2852
2853#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08002854static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2855 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002856{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002857 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002858 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002859 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002860#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002861 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002862 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002863 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002864 else
2865 check_poison_obj(cachep, objp);
2866#else
2867 check_poison_obj(cachep, objp);
2868#endif
2869 poison_obj(cachep, objp, POISON_INUSE);
2870 }
2871 if (cachep->flags & SLAB_STORE_USER)
2872 *dbg_userword(cachep, objp) = caller;
2873
2874 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002875 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2876 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2877 slab_error(cachep, "double free, or memory outside"
2878 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002879 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08002880 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2881 objp, *dbg_redzone1(cachep, objp),
2882 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002883 }
2884 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2885 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2886 }
Al Viro871751e2006-03-25 03:06:39 -08002887#ifdef CONFIG_DEBUG_SLAB_LEAK
2888 {
2889 struct slab *slabp;
2890 unsigned objnr;
2891
2892 slabp = page_get_slab(virt_to_page(objp));
2893 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2894 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2895 }
2896#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002897 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002898 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002899 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002900
2901 if (!(flags & __GFP_WAIT))
2902 ctor_flags |= SLAB_CTOR_ATOMIC;
2903
2904 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002905 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002906 return objp;
2907}
2908#else
2909#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2910#endif
2911
Pekka Enberg343e0d72006-02-01 03:05:50 -08002912static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002913{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002914 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002915 struct array_cache *ac;
2916
Christoph Lameterdc85da12006-01-18 17:42:36 -08002917#ifdef CONFIG_NUMA
Paul Jacksonb2455392006-03-24 03:16:12 -08002918 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
Paul Jacksonc61afb12006-03-24 03:16:08 -08002919 objp = alternate_node_alloc(cachep, flags);
2920 if (objp != NULL)
2921 return objp;
Paul Jackson101a5002006-03-24 03:16:07 -08002922 }
Christoph Lameterdc85da12006-01-18 17:42:36 -08002923#endif
2924
Alok N Kataria5c382302005-09-27 21:45:46 -07002925 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002926 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002927 if (likely(ac->avail)) {
2928 STATS_INC_ALLOCHIT(cachep);
2929 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002930 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002931 } else {
2932 STATS_INC_ALLOCMISS(cachep);
2933 objp = cache_alloc_refill(cachep, flags);
2934 }
Alok N Kataria5c382302005-09-27 21:45:46 -07002935 return objp;
2936}
2937
Andrew Mortona737b3e2006-03-22 00:08:11 -08002938static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2939 gfp_t flags, void *caller)
Alok N Kataria5c382302005-09-27 21:45:46 -07002940{
2941 unsigned long save_flags;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002942 void *objp;
Alok N Kataria5c382302005-09-27 21:45:46 -07002943
2944 cache_alloc_debugcheck_before(cachep, flags);
2945
2946 local_irq_save(save_flags);
2947 objp = ____cache_alloc(cachep, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002948 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07002949 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
Pekka Enberg7fd6b142006-02-01 03:05:52 -08002950 caller);
Eric Dumazet34342e82005-09-03 15:55:06 -07002951 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002952 return objp;
2953}
2954
Christoph Lametere498be72005-09-09 13:03:32 -07002955#ifdef CONFIG_NUMA
2956/*
Paul Jacksonb2455392006-03-24 03:16:12 -08002957 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08002958 *
2959 * If we are in_interrupt, then process context, including cpusets and
2960 * mempolicy, may not apply and should not be used for allocation policy.
2961 */
2962static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2963{
2964 int nid_alloc, nid_here;
2965
2966 if (in_interrupt())
2967 return NULL;
2968 nid_alloc = nid_here = numa_node_id();
2969 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2970 nid_alloc = cpuset_mem_spread_node();
2971 else if (current->mempolicy)
2972 nid_alloc = slab_node(current->mempolicy);
2973 if (nid_alloc != nid_here)
2974 return __cache_alloc_node(cachep, flags, nid_alloc);
2975 return NULL;
2976}
2977
2978/*
Christoph Lametere498be72005-09-09 13:03:32 -07002979 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002980 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002981static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2982 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07002983{
2984 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002985 struct slab *slabp;
2986 struct kmem_list3 *l3;
2987 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002988 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002989
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002990 l3 = cachep->nodelists[nodeid];
2991 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07002992
Andrew Mortona737b3e2006-03-22 00:08:11 -08002993retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08002994 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002995 spin_lock(&l3->list_lock);
2996 entry = l3->slabs_partial.next;
2997 if (entry == &l3->slabs_partial) {
2998 l3->free_touched = 1;
2999 entry = l3->slabs_free.next;
3000 if (entry == &l3->slabs_free)
3001 goto must_grow;
3002 }
Christoph Lametere498be72005-09-09 13:03:32 -07003003
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003004 slabp = list_entry(entry, struct slab, list);
3005 check_spinlock_acquired_node(cachep, nodeid);
3006 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003007
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003008 STATS_INC_NODEALLOCS(cachep);
3009 STATS_INC_ACTIVE(cachep);
3010 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003011
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003012 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07003013
Matthew Dobson78d382d2006-02-01 03:05:47 -08003014 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003015 check_slabp(cachep, slabp);
3016 l3->free_objects--;
3017 /* move slabp to correct slabp list: */
3018 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07003019
Andrew Mortona737b3e2006-03-22 00:08:11 -08003020 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003021 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003022 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003023 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07003024
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003025 spin_unlock(&l3->list_lock);
3026 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07003027
Andrew Mortona737b3e2006-03-22 00:08:11 -08003028must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003029 spin_unlock(&l3->list_lock);
3030 x = cache_grow(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003031
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003032 if (!x)
3033 return NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003034
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003035 goto retry;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003036done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003037 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07003038}
3039#endif
3040
3041/*
3042 * Caller needs to acquire correct kmem_list's list_lock
3043 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003044static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003045 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003046{
3047 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07003048 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003049
3050 for (i = 0; i < nr_objects; i++) {
3051 void *objp = objpp[i];
3052 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003053
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003054 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07003055 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003056 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07003057 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003058 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08003059 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003060 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003061 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003062 check_slabp(cachep, slabp);
3063
3064 /* fixup slab chains */
3065 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003066 if (l3->free_objects > l3->free_limit) {
3067 l3->free_objects -= cachep->num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003068 slab_destroy(cachep, slabp);
3069 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003070 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003071 }
3072 } else {
3073 /* Unconditionally move a slab to the end of the
3074 * partial list on free - maximum time for the
3075 * other objects to be freed, too.
3076 */
Christoph Lametere498be72005-09-09 13:03:32 -07003077 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003078 }
3079 }
3080}
3081
Pekka Enberg343e0d72006-02-01 03:05:50 -08003082static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003083{
3084 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003085 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003086 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003087
3088 batchcount = ac->batchcount;
3089#if DEBUG
3090 BUG_ON(!batchcount || batchcount > ac->avail);
3091#endif
3092 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003093 l3 = cachep->nodelists[node];
Christoph Lametere498be72005-09-09 13:03:32 -07003094 spin_lock(&l3->list_lock);
3095 if (l3->shared) {
3096 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003097 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003098 if (max) {
3099 if (batchcount > max)
3100 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003101 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003102 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003103 shared_array->avail += batchcount;
3104 goto free_done;
3105 }
3106 }
3107
Christoph Lameterff694162005-09-22 21:44:02 -07003108 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003109free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003110#if STATS
3111 {
3112 int i = 0;
3113 struct list_head *p;
3114
Christoph Lametere498be72005-09-09 13:03:32 -07003115 p = l3->slabs_free.next;
3116 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003117 struct slab *slabp;
3118
3119 slabp = list_entry(p, struct slab, list);
3120 BUG_ON(slabp->inuse);
3121
3122 i++;
3123 p = p->next;
3124 }
3125 STATS_SET_FREEABLE(cachep, i);
3126 }
3127#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003128 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003129 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003130 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003131}
3132
3133/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003134 * Release an obj back to its cache. If the obj has a constructed state, it must
3135 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003136 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003137static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003138{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003139 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003140
3141 check_irq_off();
3142 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3143
Pekka Enberg729bd0b2006-06-23 02:03:05 -07003144 if (cache_free_alien(cachep, objp))
3145 return;
Christoph Lametere498be72005-09-09 13:03:32 -07003146
Linus Torvalds1da177e2005-04-16 15:20:36 -07003147 if (likely(ac->avail < ac->limit)) {
3148 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003149 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003150 return;
3151 } else {
3152 STATS_INC_FREEMISS(cachep);
3153 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003154 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003155 }
3156}
3157
3158/**
3159 * kmem_cache_alloc - Allocate an object
3160 * @cachep: The cache to allocate from.
3161 * @flags: See kmalloc().
3162 *
3163 * Allocate an object from this cache. The flags are only relevant
3164 * if the cache has no available objects.
3165 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003166void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003167{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003168 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003169}
3170EXPORT_SYMBOL(kmem_cache_alloc);
3171
3172/**
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003173 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3174 * @cache: The cache to allocate from.
3175 * @flags: See kmalloc().
3176 *
3177 * Allocate an object from this cache and set the allocated memory to zero.
3178 * The flags are only relevant if the cache has no available objects.
3179 */
3180void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3181{
3182 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3183 if (ret)
3184 memset(ret, 0, obj_size(cache));
3185 return ret;
3186}
3187EXPORT_SYMBOL(kmem_cache_zalloc);
3188
3189/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003190 * kmem_ptr_validate - check if an untrusted pointer might
3191 * be a slab entry.
3192 * @cachep: the cache we're checking against
3193 * @ptr: pointer to validate
3194 *
3195 * This verifies that the untrusted pointer looks sane:
3196 * it is _not_ a guarantee that the pointer is actually
3197 * part of the slab cache in question, but it at least
3198 * validates that the pointer can be dereferenced and
3199 * looks half-way sane.
3200 *
3201 * Currently only used for dentry validation.
3202 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003203int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003204{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003205 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003206 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003207 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003208 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003209 struct page *page;
3210
3211 if (unlikely(addr < min_addr))
3212 goto out;
3213 if (unlikely(addr > (unsigned long)high_memory - size))
3214 goto out;
3215 if (unlikely(addr & align_mask))
3216 goto out;
3217 if (unlikely(!kern_addr_valid(addr)))
3218 goto out;
3219 if (unlikely(!kern_addr_valid(addr + size - 1)))
3220 goto out;
3221 page = virt_to_page(ptr);
3222 if (unlikely(!PageSlab(page)))
3223 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003224 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003225 goto out;
3226 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003227out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003228 return 0;
3229}
3230
3231#ifdef CONFIG_NUMA
3232/**
3233 * kmem_cache_alloc_node - Allocate an object on the specified node
3234 * @cachep: The cache to allocate from.
3235 * @flags: See kmalloc().
3236 * @nodeid: node number of the target node.
3237 *
3238 * Identical to kmem_cache_alloc, except that this function is slow
3239 * and can sleep. And it will allocate memory on the given node, which
3240 * can improve the performance for cpu bound structures.
Christoph Lametere498be72005-09-09 13:03:32 -07003241 * New and improved: it will now make sure that the object gets
3242 * put on the correct node list so that there is no false sharing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003243 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003244void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003245{
Christoph Lametere498be72005-09-09 13:03:32 -07003246 unsigned long save_flags;
3247 void *ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003248
Christoph Lametere498be72005-09-09 13:03:32 -07003249 cache_alloc_debugcheck_before(cachep, flags);
3250 local_irq_save(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003251
3252 if (nodeid == -1 || nodeid == numa_node_id() ||
Andrew Mortona737b3e2006-03-22 00:08:11 -08003253 !cachep->nodelists[nodeid])
Alok N Kataria5c382302005-09-27 21:45:46 -07003254 ptr = ____cache_alloc(cachep, flags);
3255 else
3256 ptr = __cache_alloc_node(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003257 local_irq_restore(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003258
3259 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3260 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003261
Christoph Lametere498be72005-09-09 13:03:32 -07003262 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003263}
3264EXPORT_SYMBOL(kmem_cache_alloc_node);
3265
Al Virodd0fc662005-10-07 07:46:04 +01003266void *kmalloc_node(size_t size, gfp_t flags, int node)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003267{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003268 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003269
3270 cachep = kmem_find_general_cachep(size, flags);
3271 if (unlikely(cachep == NULL))
3272 return NULL;
3273 return kmem_cache_alloc_node(cachep, flags, node);
3274}
3275EXPORT_SYMBOL(kmalloc_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003276#endif
3277
3278/**
3279 * kmalloc - allocate memory
3280 * @size: how many bytes of memory are required.
3281 * @flags: the type of memory to allocate.
Randy Dunlap911851e2006-03-22 00:08:14 -08003282 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003283 *
3284 * kmalloc is the normal method of allocating memory
3285 * in the kernel.
3286 *
3287 * The @flags argument may be one of:
3288 *
3289 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3290 *
3291 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3292 *
3293 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3294 *
3295 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3296 * must be suitable for DMA. This can mean different things on different
3297 * platforms. For example, on i386, it means that the memory must come
3298 * from the first 16MB.
3299 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003300static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3301 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003302{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003303 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003304
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003305 /* If you want to save a few bytes .text space: replace
3306 * __ with kmem_.
3307 * Then kmalloc uses the uninlined functions instead of the inline
3308 * functions.
3309 */
3310 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003311 if (unlikely(cachep == NULL))
3312 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003313 return __cache_alloc(cachep, flags, caller);
3314}
3315
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003316
3317void *__kmalloc(size_t size, gfp_t flags)
3318{
Al Viro871751e2006-03-25 03:06:39 -08003319#ifndef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003320 return __do_kmalloc(size, flags, NULL);
Al Viro871751e2006-03-25 03:06:39 -08003321#else
3322 return __do_kmalloc(size, flags, __builtin_return_address(0));
3323#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003324}
3325EXPORT_SYMBOL(__kmalloc);
3326
Al Viro871751e2006-03-25 03:06:39 -08003327#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003328void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3329{
3330 return __do_kmalloc(size, flags, caller);
3331}
3332EXPORT_SYMBOL(__kmalloc_track_caller);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003333#endif
3334
Linus Torvalds1da177e2005-04-16 15:20:36 -07003335#ifdef CONFIG_SMP
3336/**
3337 * __alloc_percpu - allocate one copy of the object for every present
3338 * cpu in the system, zeroing them.
3339 * Objects should be dereferenced using the per_cpu_ptr macro only.
3340 *
3341 * @size: how many bytes of memory are required.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003342 */
Pekka Enbergf9f75002006-01-08 01:00:33 -08003343void *__alloc_percpu(size_t size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003344{
3345 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003346 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003347
3348 if (!pdata)
3349 return NULL;
3350
Christoph Lametere498be72005-09-09 13:03:32 -07003351 /*
3352 * Cannot use for_each_online_cpu since a cpu may come online
3353 * and we have no way of figuring out how to fix the array
3354 * that we have allocated then....
3355 */
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08003356 for_each_possible_cpu(i) {
Christoph Lametere498be72005-09-09 13:03:32 -07003357 int node = cpu_to_node(i);
3358
3359 if (node_online(node))
3360 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3361 else
3362 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003363
3364 if (!pdata->ptrs[i])
3365 goto unwind_oom;
3366 memset(pdata->ptrs[i], 0, size);
3367 }
3368
3369 /* Catch derefs w/o wrappers */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003370 return (void *)(~(unsigned long)pdata);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003371
Andrew Mortona737b3e2006-03-22 00:08:11 -08003372unwind_oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003373 while (--i >= 0) {
3374 if (!cpu_possible(i))
3375 continue;
3376 kfree(pdata->ptrs[i]);
3377 }
3378 kfree(pdata);
3379 return NULL;
3380}
3381EXPORT_SYMBOL(__alloc_percpu);
3382#endif
3383
3384/**
3385 * kmem_cache_free - Deallocate an object
3386 * @cachep: The cache the allocation was from.
3387 * @objp: The previously allocated object.
3388 *
3389 * Free an object which was previously allocated from this
3390 * cache.
3391 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003392void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003393{
3394 unsigned long flags;
3395
3396 local_irq_save(flags);
3397 __cache_free(cachep, objp);
3398 local_irq_restore(flags);
3399}
3400EXPORT_SYMBOL(kmem_cache_free);
3401
3402/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003403 * kfree - free previously allocated memory
3404 * @objp: pointer returned by kmalloc.
3405 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003406 * If @objp is NULL, no operation is performed.
3407 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003408 * Don't free memory not originally allocated by kmalloc()
3409 * or you will run into trouble.
3410 */
3411void kfree(const void *objp)
3412{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003413 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003414 unsigned long flags;
3415
3416 if (unlikely(!objp))
3417 return;
3418 local_irq_save(flags);
3419 kfree_debugcheck(objp);
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003420 c = virt_to_cache(objp);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003421 mutex_debug_check_no_locks_freed(objp, obj_size(c));
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003422 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003423 local_irq_restore(flags);
3424}
3425EXPORT_SYMBOL(kfree);
3426
3427#ifdef CONFIG_SMP
3428/**
3429 * free_percpu - free previously allocated percpu memory
3430 * @objp: pointer returned by alloc_percpu.
3431 *
3432 * Don't free memory not originally allocated by alloc_percpu()
3433 * The complemented objp is to check for that.
3434 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003435void free_percpu(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003436{
3437 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003438 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003439
Christoph Lametere498be72005-09-09 13:03:32 -07003440 /*
3441 * We allocate for all cpus so we cannot use for online cpu here.
3442 */
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08003443 for_each_possible_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003444 kfree(p->ptrs[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003445 kfree(p);
3446}
3447EXPORT_SYMBOL(free_percpu);
3448#endif
3449
Pekka Enberg343e0d72006-02-01 03:05:50 -08003450unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003451{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003452 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003453}
3454EXPORT_SYMBOL(kmem_cache_size);
3455
Pekka Enberg343e0d72006-02-01 03:05:50 -08003456const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003457{
3458 return cachep->name;
3459}
3460EXPORT_SYMBOL_GPL(kmem_cache_name);
3461
Christoph Lametere498be72005-09-09 13:03:32 -07003462/*
Christoph Lameter0718dc22006-03-25 03:06:47 -08003463 * This initializes kmem_list3 or resizes varioius caches for all nodes.
Christoph Lametere498be72005-09-09 13:03:32 -07003464 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003465static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003466{
3467 int node;
3468 struct kmem_list3 *l3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003469 struct array_cache *new_shared;
3470 struct array_cache **new_alien;
Christoph Lametere498be72005-09-09 13:03:32 -07003471
3472 for_each_online_node(node) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003473
Andrew Mortona737b3e2006-03-22 00:08:11 -08003474 new_alien = alloc_alien_cache(node, cachep->limit);
3475 if (!new_alien)
Christoph Lametere498be72005-09-09 13:03:32 -07003476 goto fail;
Christoph Lametercafeb022006-03-25 03:06:46 -08003477
Christoph Lameter0718dc22006-03-25 03:06:47 -08003478 new_shared = alloc_arraycache(node,
3479 cachep->shared*cachep->batchcount,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003480 0xbaadf00d);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003481 if (!new_shared) {
3482 free_alien_cache(new_alien);
Christoph Lametere498be72005-09-09 13:03:32 -07003483 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003484 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003485
Andrew Mortona737b3e2006-03-22 00:08:11 -08003486 l3 = cachep->nodelists[node];
3487 if (l3) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003488 struct array_cache *shared = l3->shared;
3489
Christoph Lametere498be72005-09-09 13:03:32 -07003490 spin_lock_irq(&l3->list_lock);
3491
Christoph Lametercafeb022006-03-25 03:06:46 -08003492 if (shared)
Christoph Lameter0718dc22006-03-25 03:06:47 -08003493 free_block(cachep, shared->entry,
3494 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003495
Christoph Lametercafeb022006-03-25 03:06:46 -08003496 l3->shared = new_shared;
3497 if (!l3->alien) {
Christoph Lametere498be72005-09-09 13:03:32 -07003498 l3->alien = new_alien;
3499 new_alien = NULL;
3500 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003501 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003502 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003503 spin_unlock_irq(&l3->list_lock);
Christoph Lametercafeb022006-03-25 03:06:46 -08003504 kfree(shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003505 free_alien_cache(new_alien);
3506 continue;
3507 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003508 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003509 if (!l3) {
3510 free_alien_cache(new_alien);
3511 kfree(new_shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003512 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003513 }
Christoph Lametere498be72005-09-09 13:03:32 -07003514
3515 kmem_list3_init(l3);
3516 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003517 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003518 l3->shared = new_shared;
Christoph Lametere498be72005-09-09 13:03:32 -07003519 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003520 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003521 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003522 cachep->nodelists[node] = l3;
3523 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003524 return 0;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003525
Andrew Mortona737b3e2006-03-22 00:08:11 -08003526fail:
Christoph Lameter0718dc22006-03-25 03:06:47 -08003527 if (!cachep->next.next) {
3528 /* Cache is not active yet. Roll back what we did */
3529 node--;
3530 while (node >= 0) {
3531 if (cachep->nodelists[node]) {
3532 l3 = cachep->nodelists[node];
3533
3534 kfree(l3->shared);
3535 free_alien_cache(l3->alien);
3536 kfree(l3);
3537 cachep->nodelists[node] = NULL;
3538 }
3539 node--;
3540 }
3541 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003542 return -ENOMEM;
Christoph Lametere498be72005-09-09 13:03:32 -07003543}
3544
Linus Torvalds1da177e2005-04-16 15:20:36 -07003545struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003546 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003547 struct array_cache *new[NR_CPUS];
3548};
3549
3550static void do_ccupdate_local(void *info)
3551{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003552 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003553 struct array_cache *old;
3554
3555 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003556 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003557
Linus Torvalds1da177e2005-04-16 15:20:36 -07003558 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3559 new->new[smp_processor_id()] = old;
3560}
3561
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003562/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003563static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3564 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003565{
3566 struct ccupdate_struct new;
Christoph Lametere498be72005-09-09 13:03:32 -07003567 int i, err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003568
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003569 memset(&new.new, 0, sizeof(new.new));
Christoph Lametere498be72005-09-09 13:03:32 -07003570 for_each_online_cpu(i) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003571 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3572 batchcount);
Christoph Lametere498be72005-09-09 13:03:32 -07003573 if (!new.new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003574 for (i--; i >= 0; i--)
3575 kfree(new.new[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07003576 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003577 }
3578 }
3579 new.cachep = cachep;
3580
Andrew Mortona07fa392006-03-22 00:08:17 -08003581 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003582
Linus Torvalds1da177e2005-04-16 15:20:36 -07003583 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003584 cachep->batchcount = batchcount;
3585 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003586 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003587
Christoph Lametere498be72005-09-09 13:03:32 -07003588 for_each_online_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003589 struct array_cache *ccold = new.new[i];
3590 if (!ccold)
3591 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003592 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003593 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003594 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003595 kfree(ccold);
3596 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003597
Christoph Lametere498be72005-09-09 13:03:32 -07003598 err = alloc_kmemlist(cachep);
3599 if (err) {
3600 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003601 cachep->name, -err);
Christoph Lametere498be72005-09-09 13:03:32 -07003602 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003603 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003604 return 0;
3605}
3606
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003607/* Called with cache_chain_mutex held always */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003608static void enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003609{
3610 int err;
3611 int limit, shared;
3612
Andrew Mortona737b3e2006-03-22 00:08:11 -08003613 /*
3614 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003615 * - create a LIFO ordering, i.e. return objects that are cache-warm
3616 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08003617 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07003618 * bufctl chains: array operations are cheaper.
3619 * The numbers are guessed, we should auto-tune as described by
3620 * Bonwick.
3621 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003622 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003623 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003624 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003625 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003626 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003627 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003628 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003629 limit = 54;
3630 else
3631 limit = 120;
3632
Andrew Mortona737b3e2006-03-22 00:08:11 -08003633 /*
3634 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07003635 * allocation behaviour: Most allocs on one cpu, most free operations
3636 * on another cpu. For these cases, an efficient object passing between
3637 * cpus is necessary. This is provided by a shared array. The array
3638 * replaces Bonwick's magazine layer.
3639 * On uniprocessor, it's functionally equivalent (but less efficient)
3640 * to a larger limit. Thus disabled by default.
3641 */
3642 shared = 0;
3643#ifdef CONFIG_SMP
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003644 if (cachep->buffer_size <= PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003645 shared = 8;
3646#endif
3647
3648#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003649 /*
3650 * With debugging enabled, large batchcount lead to excessively long
3651 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07003652 */
3653 if (limit > 32)
3654 limit = 32;
3655#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003656 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003657 if (err)
3658 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003659 cachep->name, -err);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003660}
3661
Christoph Lameter1b552532006-03-22 00:09:07 -08003662/*
3663 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003664 * necessary. Note that the l3 listlock also protects the array_cache
3665 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08003666 */
3667void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3668 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003669{
3670 int tofree;
3671
Christoph Lameter1b552532006-03-22 00:09:07 -08003672 if (!ac || !ac->avail)
3673 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003674 if (ac->touched && !force) {
3675 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003676 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08003677 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003678 if (ac->avail) {
3679 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3680 if (tofree > ac->avail)
3681 tofree = (ac->avail + 1) / 2;
3682 free_block(cachep, ac->entry, tofree, node);
3683 ac->avail -= tofree;
3684 memmove(ac->entry, &(ac->entry[tofree]),
3685 sizeof(void *) * ac->avail);
3686 }
Christoph Lameter1b552532006-03-22 00:09:07 -08003687 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003688 }
3689}
3690
3691/**
3692 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003693 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003694 *
3695 * Called from workqueue/eventd every few seconds.
3696 * Purpose:
3697 * - clear the per-cpu caches for this CPU.
3698 * - return freeable pages to the main free memory pool.
3699 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003700 * If we cannot acquire the cache chain mutex then just give up - we'll try
3701 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003702 */
3703static void cache_reap(void *unused)
3704{
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003705 struct kmem_cache *searchp;
Christoph Lametere498be72005-09-09 13:03:32 -07003706 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08003707 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003708
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003709 if (!mutex_trylock(&cache_chain_mutex)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003710 /* Give up. Setup the next iteration. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003711 schedule_delayed_work(&__get_cpu_var(reap_work),
3712 REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003713 return;
3714 }
3715
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003716 list_for_each_entry(searchp, &cache_chain, next) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003717 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003718 int tofree;
3719 struct slab *slabp;
3720
Linus Torvalds1da177e2005-04-16 15:20:36 -07003721 check_irq_on();
3722
Christoph Lameter35386e32006-03-22 00:09:05 -08003723 /*
3724 * We only take the l3 lock if absolutely necessary and we
3725 * have established with reasonable certainty that
3726 * we can do some work if the lock was obtained.
3727 */
Christoph Lameteraab22072006-03-22 00:09:06 -08003728 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08003729
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003730 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003731
Christoph Lameteraab22072006-03-22 00:09:06 -08003732 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003733
Christoph Lameter35386e32006-03-22 00:09:05 -08003734 /*
3735 * These are racy checks but it does not matter
3736 * if we skip one check or scan twice.
3737 */
Christoph Lametere498be72005-09-09 13:03:32 -07003738 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08003739 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003740
Christoph Lametere498be72005-09-09 13:03:32 -07003741 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003742
Christoph Lameteraab22072006-03-22 00:09:06 -08003743 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003744
Christoph Lametere498be72005-09-09 13:03:32 -07003745 if (l3->free_touched) {
3746 l3->free_touched = 0;
Christoph Lameter35386e32006-03-22 00:09:05 -08003747 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003748 }
3749
Andrew Mortona737b3e2006-03-22 00:08:11 -08003750 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3751 (5 * searchp->num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003752 do {
Christoph Lameter35386e32006-03-22 00:09:05 -08003753 /*
3754 * Do not lock if there are no free blocks.
3755 */
3756 if (list_empty(&l3->slabs_free))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003757 break;
3758
Christoph Lameter35386e32006-03-22 00:09:05 -08003759 spin_lock_irq(&l3->list_lock);
3760 p = l3->slabs_free.next;
3761 if (p == &(l3->slabs_free)) {
3762 spin_unlock_irq(&l3->list_lock);
3763 break;
3764 }
3765
Linus Torvalds1da177e2005-04-16 15:20:36 -07003766 slabp = list_entry(p, struct slab, list);
3767 BUG_ON(slabp->inuse);
3768 list_del(&slabp->list);
3769 STATS_INC_REAPED(searchp);
3770
Andrew Mortona737b3e2006-03-22 00:08:11 -08003771 /*
3772 * Safe to drop the lock. The slab is no longer linked
3773 * to the cache. searchp cannot disappear, we hold
Linus Torvalds1da177e2005-04-16 15:20:36 -07003774 * cache_chain_lock
3775 */
Christoph Lametere498be72005-09-09 13:03:32 -07003776 l3->free_objects -= searchp->num;
3777 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003778 slab_destroy(searchp, slabp);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003779 } while (--tofree > 0);
Christoph Lameter35386e32006-03-22 00:09:05 -08003780next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003781 cond_resched();
3782 }
3783 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003784 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003785 next_reap_node();
Andrew Mortona737b3e2006-03-22 00:08:11 -08003786 /* Set up the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003787 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003788}
3789
3790#ifdef CONFIG_PROC_FS
3791
Pekka Enberg85289f92006-01-08 01:00:36 -08003792static void print_slabinfo_header(struct seq_file *m)
3793{
3794 /*
3795 * Output format version, so at least we can change it
3796 * without _too_ many complaints.
3797 */
3798#if STATS
3799 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3800#else
3801 seq_puts(m, "slabinfo - version: 2.1\n");
3802#endif
3803 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3804 "<objperslab> <pagesperslab>");
3805 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3806 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3807#if STATS
3808 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003809 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
Pekka Enberg85289f92006-01-08 01:00:36 -08003810 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3811#endif
3812 seq_putc(m, '\n');
3813}
3814
Linus Torvalds1da177e2005-04-16 15:20:36 -07003815static void *s_start(struct seq_file *m, loff_t *pos)
3816{
3817 loff_t n = *pos;
3818 struct list_head *p;
3819
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003820 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08003821 if (!n)
3822 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003823 p = cache_chain.next;
3824 while (n--) {
3825 p = p->next;
3826 if (p == &cache_chain)
3827 return NULL;
3828 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08003829 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003830}
3831
3832static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3833{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003834 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003835 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003836 return cachep->next.next == &cache_chain ?
3837 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003838}
3839
3840static void s_stop(struct seq_file *m, void *p)
3841{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003842 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003843}
3844
3845static int s_show(struct seq_file *m, void *p)
3846{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003847 struct kmem_cache *cachep = p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003848 struct slab *slabp;
3849 unsigned long active_objs;
3850 unsigned long num_objs;
3851 unsigned long active_slabs = 0;
3852 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003853 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003854 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003855 int node;
3856 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003857
Linus Torvalds1da177e2005-04-16 15:20:36 -07003858 active_objs = 0;
3859 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003860 for_each_online_node(node) {
3861 l3 = cachep->nodelists[node];
3862 if (!l3)
3863 continue;
3864
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003865 check_irq_on();
3866 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003867
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003868 list_for_each_entry(slabp, &l3->slabs_full, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07003869 if (slabp->inuse != cachep->num && !error)
3870 error = "slabs_full accounting error";
3871 active_objs += cachep->num;
3872 active_slabs++;
3873 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003874 list_for_each_entry(slabp, &l3->slabs_partial, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07003875 if (slabp->inuse == cachep->num && !error)
3876 error = "slabs_partial inuse accounting error";
3877 if (!slabp->inuse && !error)
3878 error = "slabs_partial/inuse accounting error";
3879 active_objs += slabp->inuse;
3880 active_slabs++;
3881 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003882 list_for_each_entry(slabp, &l3->slabs_free, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07003883 if (slabp->inuse && !error)
3884 error = "slabs_free/inuse accounting error";
3885 num_slabs++;
3886 }
3887 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08003888 if (l3->shared)
3889 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07003890
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003891 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003892 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003893 num_slabs += active_slabs;
3894 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003895 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003896 error = "free_objects accounting error";
3897
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003898 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003899 if (error)
3900 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3901
3902 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003903 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003904 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003905 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003906 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003907 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003908 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003909#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003910 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003911 unsigned long high = cachep->high_mark;
3912 unsigned long allocs = cachep->num_allocations;
3913 unsigned long grown = cachep->grown;
3914 unsigned long reaped = cachep->reaped;
3915 unsigned long errors = cachep->errors;
3916 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003917 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07003918 unsigned long node_frees = cachep->node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003919 unsigned long overflows = cachep->node_overflow;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003920
Christoph Lametere498be72005-09-09 13:03:32 -07003921 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003922 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003923 reaped, errors, max_freeable, node_allocs,
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003924 node_frees, overflows);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003925 }
3926 /* cpu stats */
3927 {
3928 unsigned long allochit = atomic_read(&cachep->allochit);
3929 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3930 unsigned long freehit = atomic_read(&cachep->freehit);
3931 unsigned long freemiss = atomic_read(&cachep->freemiss);
3932
3933 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003934 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003935 }
3936#endif
3937 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07003938 return 0;
3939}
3940
3941/*
3942 * slabinfo_op - iterator that generates /proc/slabinfo
3943 *
3944 * Output layout:
3945 * cache-name
3946 * num-active-objs
3947 * total-objs
3948 * object size
3949 * num-active-slabs
3950 * total-slabs
3951 * num-pages-per-slab
3952 * + further values on SMP and with statistics enabled
3953 */
3954
3955struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003956 .start = s_start,
3957 .next = s_next,
3958 .stop = s_stop,
3959 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003960};
3961
3962#define MAX_SLABINFO_WRITE 128
3963/**
3964 * slabinfo_write - Tuning for the slab allocator
3965 * @file: unused
3966 * @buffer: user buffer
3967 * @count: data length
3968 * @ppos: unused
3969 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003970ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3971 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003972{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003973 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003974 int limit, batchcount, shared, res;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003975 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003976
Linus Torvalds1da177e2005-04-16 15:20:36 -07003977 if (count > MAX_SLABINFO_WRITE)
3978 return -EINVAL;
3979 if (copy_from_user(&kbuf, buffer, count))
3980 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003981 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07003982
3983 tmp = strchr(kbuf, ' ');
3984 if (!tmp)
3985 return -EINVAL;
3986 *tmp = '\0';
3987 tmp++;
3988 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3989 return -EINVAL;
3990
3991 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003992 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003993 res = -EINVAL;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003994 list_for_each_entry(cachep, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003995 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003996 if (limit < 1 || batchcount < 1 ||
3997 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003998 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003999 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07004000 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004001 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004002 }
4003 break;
4004 }
4005 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004006 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004007 if (res >= 0)
4008 res = count;
4009 return res;
4010}
Al Viro871751e2006-03-25 03:06:39 -08004011
4012#ifdef CONFIG_DEBUG_SLAB_LEAK
4013
4014static void *leaks_start(struct seq_file *m, loff_t *pos)
4015{
4016 loff_t n = *pos;
4017 struct list_head *p;
4018
4019 mutex_lock(&cache_chain_mutex);
4020 p = cache_chain.next;
4021 while (n--) {
4022 p = p->next;
4023 if (p == &cache_chain)
4024 return NULL;
4025 }
4026 return list_entry(p, struct kmem_cache, next);
4027}
4028
4029static inline int add_caller(unsigned long *n, unsigned long v)
4030{
4031 unsigned long *p;
4032 int l;
4033 if (!v)
4034 return 1;
4035 l = n[1];
4036 p = n + 2;
4037 while (l) {
4038 int i = l/2;
4039 unsigned long *q = p + 2 * i;
4040 if (*q == v) {
4041 q[1]++;
4042 return 1;
4043 }
4044 if (*q > v) {
4045 l = i;
4046 } else {
4047 p = q + 2;
4048 l -= i + 1;
4049 }
4050 }
4051 if (++n[1] == n[0])
4052 return 0;
4053 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4054 p[0] = v;
4055 p[1] = 1;
4056 return 1;
4057}
4058
4059static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4060{
4061 void *p;
4062 int i;
4063 if (n[0] == n[1])
4064 return;
4065 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4066 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4067 continue;
4068 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4069 return;
4070 }
4071}
4072
4073static void show_symbol(struct seq_file *m, unsigned long address)
4074{
4075#ifdef CONFIG_KALLSYMS
4076 char *modname;
4077 const char *name;
4078 unsigned long offset, size;
4079 char namebuf[KSYM_NAME_LEN+1];
4080
4081 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4082
4083 if (name) {
4084 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4085 if (modname)
4086 seq_printf(m, " [%s]", modname);
4087 return;
4088 }
4089#endif
4090 seq_printf(m, "%p", (void *)address);
4091}
4092
4093static int leaks_show(struct seq_file *m, void *p)
4094{
4095 struct kmem_cache *cachep = p;
Al Viro871751e2006-03-25 03:06:39 -08004096 struct slab *slabp;
4097 struct kmem_list3 *l3;
4098 const char *name;
4099 unsigned long *n = m->private;
4100 int node;
4101 int i;
4102
4103 if (!(cachep->flags & SLAB_STORE_USER))
4104 return 0;
4105 if (!(cachep->flags & SLAB_RED_ZONE))
4106 return 0;
4107
4108 /* OK, we can do it */
4109
4110 n[1] = 0;
4111
4112 for_each_online_node(node) {
4113 l3 = cachep->nodelists[node];
4114 if (!l3)
4115 continue;
4116
4117 check_irq_on();
4118 spin_lock_irq(&l3->list_lock);
4119
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004120 list_for_each_entry(slabp, &l3->slabs_full, list)
Al Viro871751e2006-03-25 03:06:39 -08004121 handle_slab(n, cachep, slabp);
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004122 list_for_each_entry(slabp, &l3->slabs_partial, list)
Al Viro871751e2006-03-25 03:06:39 -08004123 handle_slab(n, cachep, slabp);
Al Viro871751e2006-03-25 03:06:39 -08004124 spin_unlock_irq(&l3->list_lock);
4125 }
4126 name = cachep->name;
4127 if (n[0] == n[1]) {
4128 /* Increase the buffer size */
4129 mutex_unlock(&cache_chain_mutex);
4130 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4131 if (!m->private) {
4132 /* Too bad, we are really out */
4133 m->private = n;
4134 mutex_lock(&cache_chain_mutex);
4135 return -ENOMEM;
4136 }
4137 *(unsigned long *)m->private = n[0] * 2;
4138 kfree(n);
4139 mutex_lock(&cache_chain_mutex);
4140 /* Now make sure this entry will be retried */
4141 m->count = m->size;
4142 return 0;
4143 }
4144 for (i = 0; i < n[1]; i++) {
4145 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4146 show_symbol(m, n[2*i+2]);
4147 seq_putc(m, '\n');
4148 }
4149 return 0;
4150}
4151
4152struct seq_operations slabstats_op = {
4153 .start = leaks_start,
4154 .next = s_next,
4155 .stop = s_stop,
4156 .show = leaks_show,
4157};
4158#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004159#endif
4160
Manfred Spraul00e145b2005-09-03 15:55:07 -07004161/**
4162 * ksize - get the actual amount of memory allocated for a given object
4163 * @objp: Pointer to the object
4164 *
4165 * kmalloc may internally round up allocations and return more memory
4166 * than requested. ksize() can be used to determine the actual amount of
4167 * memory allocated. The caller may use this additional memory, even though
4168 * a smaller amount of memory was initially specified with the kmalloc call.
4169 * The caller must guarantee that objp points to a valid object previously
4170 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4171 * must not be freed during the duration of the call.
4172 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004173unsigned int ksize(const void *objp)
4174{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004175 if (unlikely(objp == NULL))
4176 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004177
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08004178 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004179}