blob: e2494f0ce86bab801d4771250ae1dd837edf74e0 [file] [log] [blame]
Anton Kirilov5ec62182016-10-13 20:16:02 +01001/*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "intrinsics_arm_vixl.h"
18
19#include "arch/arm/instruction_set_features_arm.h"
Andreas Gampec6ea7d02017-02-01 16:46:28 -080020#include "art_method.h"
Anton Kirilov5ec62182016-10-13 20:16:02 +010021#include "code_generator_arm_vixl.h"
22#include "common_arm.h"
Andreas Gampe09659c22017-09-18 18:23:32 -070023#include "heap_poisoning.h"
Anton Kirilov5ec62182016-10-13 20:16:02 +010024#include "lock_word.h"
25#include "mirror/array-inl.h"
Andreas Gampec15a2f42017-04-21 12:09:39 -070026#include "mirror/object_array-inl.h"
Andreas Gampec6ea7d02017-02-01 16:46:28 -080027#include "mirror/reference.h"
28#include "mirror/string.h"
29#include "scoped_thread_state_change-inl.h"
Andreas Gampeb486a982017-06-01 13:45:54 -070030#include "thread-current-inl.h"
Anton Kirilov5ec62182016-10-13 20:16:02 +010031
32#include "aarch32/constants-aarch32.h"
33
34namespace art {
35namespace arm {
36
37#define __ assembler->GetVIXLAssembler()->
38
39using helpers::DRegisterFrom;
40using helpers::HighRegisterFrom;
41using helpers::InputDRegisterAt;
42using helpers::InputRegisterAt;
43using helpers::InputSRegisterAt;
44using helpers::InputVRegisterAt;
45using helpers::Int32ConstantFrom;
46using helpers::LocationFrom;
47using helpers::LowRegisterFrom;
48using helpers::LowSRegisterFrom;
xueliang.zhong53463ba2017-02-16 15:18:03 +000049using helpers::HighSRegisterFrom;
Anton Kirilov5ec62182016-10-13 20:16:02 +010050using helpers::OutputDRegister;
xueliang.zhongc032e742016-03-28 16:44:32 +010051using helpers::OutputSRegister;
Anton Kirilov5ec62182016-10-13 20:16:02 +010052using helpers::OutputRegister;
53using helpers::OutputVRegister;
54using helpers::RegisterFrom;
55using helpers::SRegisterFrom;
xueliang.zhongc032e742016-03-28 16:44:32 +010056using helpers::DRegisterFromS;
Anton Kirilov5ec62182016-10-13 20:16:02 +010057
58using namespace vixl::aarch32; // NOLINT(build/namespaces)
59
Artem Serov0fb37192016-12-06 18:13:40 +000060using vixl::ExactAssemblyScope;
61using vixl::CodeBufferCheckScope;
62
Anton Kirilov5ec62182016-10-13 20:16:02 +010063ArmVIXLAssembler* IntrinsicCodeGeneratorARMVIXL::GetAssembler() {
64 return codegen_->GetAssembler();
65}
66
67ArenaAllocator* IntrinsicCodeGeneratorARMVIXL::GetAllocator() {
68 return codegen_->GetGraph()->GetArena();
69}
70
71// Default slow-path for fallback (calling the managed code to handle the intrinsic) in an
72// intrinsified call. This will copy the arguments into the positions for a regular call.
73//
74// Note: The actual parameters are required to be in the locations given by the invoke's location
75// summary. If an intrinsic modifies those locations before a slowpath call, they must be
76// restored!
77//
78// Note: If an invoke wasn't sharpened, we will put down an invoke-virtual here. That's potentially
79// sub-optimal (compared to a direct pointer call), but this is a slow-path.
80
81class IntrinsicSlowPathARMVIXL : public SlowPathCodeARMVIXL {
82 public:
83 explicit IntrinsicSlowPathARMVIXL(HInvoke* invoke)
84 : SlowPathCodeARMVIXL(invoke), invoke_(invoke) {}
85
86 Location MoveArguments(CodeGenerator* codegen) {
Artem Serovd4cc5b22016-11-04 11:19:09 +000087 InvokeDexCallingConventionVisitorARMVIXL calling_convention_visitor;
Anton Kirilov5ec62182016-10-13 20:16:02 +010088 IntrinsicVisitor::MoveArguments(invoke_, codegen, &calling_convention_visitor);
89 return calling_convention_visitor.GetMethodLocation();
90 }
91
92 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
93 ArmVIXLAssembler* assembler = down_cast<ArmVIXLAssembler*>(codegen->GetAssembler());
94 __ Bind(GetEntryLabel());
95
96 SaveLiveRegisters(codegen, invoke_->GetLocations());
97
98 Location method_loc = MoveArguments(codegen);
99
100 if (invoke_->IsInvokeStaticOrDirect()) {
Vladimir Markoe7197bf2017-06-02 17:00:23 +0100101 codegen->GenerateStaticOrDirectCall(invoke_->AsInvokeStaticOrDirect(), method_loc, this);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100102 } else {
Vladimir Markoe7197bf2017-06-02 17:00:23 +0100103 codegen->GenerateVirtualCall(invoke_->AsInvokeVirtual(), method_loc, this);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100104 }
Anton Kirilov5ec62182016-10-13 20:16:02 +0100105
106 // Copy the result back to the expected output.
107 Location out = invoke_->GetLocations()->Out();
108 if (out.IsValid()) {
109 DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory.
110 DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
111 codegen->MoveFromReturnRegister(out, invoke_->GetType());
112 }
113
114 RestoreLiveRegisters(codegen, invoke_->GetLocations());
115 __ B(GetExitLabel());
116 }
117
118 const char* GetDescription() const OVERRIDE { return "IntrinsicSlowPath"; }
119
120 private:
121 // The instruction where this slow path is happening.
122 HInvoke* const invoke_;
123
124 DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathARMVIXL);
125};
126
Roland Levillain9cc0ea82017-03-16 11:25:59 +0000127// Compute base address for the System.arraycopy intrinsic in `base`.
128static void GenSystemArrayCopyBaseAddress(ArmVIXLAssembler* assembler,
129 Primitive::Type type,
130 const vixl32::Register& array,
131 const Location& pos,
132 const vixl32::Register& base) {
133 // This routine is only used by the SystemArrayCopy intrinsic at the
134 // moment. We can allow Primitive::kPrimNot as `type` to implement
135 // the SystemArrayCopyChar intrinsic.
136 DCHECK_EQ(type, Primitive::kPrimNot);
137 const int32_t element_size = Primitive::ComponentSize(type);
138 const uint32_t element_size_shift = Primitive::ComponentSizeShift(type);
139 const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value();
140
141 if (pos.IsConstant()) {
142 int32_t constant = Int32ConstantFrom(pos);
143 __ Add(base, array, element_size * constant + data_offset);
144 } else {
145 __ Add(base, array, Operand(RegisterFrom(pos), vixl32::LSL, element_size_shift));
146 __ Add(base, base, data_offset);
147 }
148}
149
150// Compute end address for the System.arraycopy intrinsic in `end`.
151static void GenSystemArrayCopyEndAddress(ArmVIXLAssembler* assembler,
152 Primitive::Type type,
153 const Location& copy_length,
154 const vixl32::Register& base,
155 const vixl32::Register& end) {
156 // This routine is only used by the SystemArrayCopy intrinsic at the
157 // moment. We can allow Primitive::kPrimNot as `type` to implement
158 // the SystemArrayCopyChar intrinsic.
159 DCHECK_EQ(type, Primitive::kPrimNot);
160 const int32_t element_size = Primitive::ComponentSize(type);
161 const uint32_t element_size_shift = Primitive::ComponentSizeShift(type);
162
163 if (copy_length.IsConstant()) {
164 int32_t constant = Int32ConstantFrom(copy_length);
165 __ Add(end, base, element_size * constant);
166 } else {
167 __ Add(end, base, Operand(RegisterFrom(copy_length), vixl32::LSL, element_size_shift));
168 }
169}
170
Anton Kirilov5ec62182016-10-13 20:16:02 +0100171// Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
172class ReadBarrierSystemArrayCopySlowPathARMVIXL : public SlowPathCodeARMVIXL {
173 public:
174 explicit ReadBarrierSystemArrayCopySlowPathARMVIXL(HInstruction* instruction)
175 : SlowPathCodeARMVIXL(instruction) {
176 DCHECK(kEmitCompilerReadBarrier);
177 DCHECK(kUseBakerReadBarrier);
178 }
179
180 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
181 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
182 ArmVIXLAssembler* assembler = arm_codegen->GetAssembler();
183 LocationSummary* locations = instruction_->GetLocations();
184 DCHECK(locations->CanCall());
185 DCHECK(instruction_->IsInvokeStaticOrDirect())
186 << "Unexpected instruction in read barrier arraycopy slow path: "
187 << instruction_->DebugName();
188 DCHECK(instruction_->GetLocations()->Intrinsified());
189 DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
190
Roland Levillain9cc0ea82017-03-16 11:25:59 +0000191 Primitive::Type type = Primitive::kPrimNot;
192 const int32_t element_size = Primitive::ComponentSize(type);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100193
194 vixl32::Register dest = InputRegisterAt(instruction_, 2);
195 Location dest_pos = locations->InAt(3);
196 vixl32::Register src_curr_addr = RegisterFrom(locations->GetTemp(0));
197 vixl32::Register dst_curr_addr = RegisterFrom(locations->GetTemp(1));
198 vixl32::Register src_stop_addr = RegisterFrom(locations->GetTemp(2));
199 vixl32::Register tmp = RegisterFrom(locations->GetTemp(3));
200
201 __ Bind(GetEntryLabel());
202 // Compute the base destination address in `dst_curr_addr`.
Roland Levillain9cc0ea82017-03-16 11:25:59 +0000203 GenSystemArrayCopyBaseAddress(assembler, type, dest, dest_pos, dst_curr_addr);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100204
205 vixl32::Label loop;
206 __ Bind(&loop);
207 __ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex));
208 assembler->MaybeUnpoisonHeapReference(tmp);
209 // TODO: Inline the mark bit check before calling the runtime?
210 // tmp = ReadBarrier::Mark(tmp);
211 // No need to save live registers; it's taken care of by the
212 // entrypoint. Also, there is no need to update the stack mask,
213 // as this runtime call will not trigger a garbage collection.
214 // (See ReadBarrierMarkSlowPathARM::EmitNativeCode for more
215 // explanations.)
216 DCHECK(!tmp.IsSP());
217 DCHECK(!tmp.IsLR());
218 DCHECK(!tmp.IsPC());
219 // IP is used internally by the ReadBarrierMarkRegX entry point
220 // as a temporary (and not preserved). It thus cannot be used by
221 // any live register in this slow path.
222 DCHECK(!src_curr_addr.Is(ip));
223 DCHECK(!dst_curr_addr.Is(ip));
224 DCHECK(!src_stop_addr.Is(ip));
225 DCHECK(!tmp.Is(ip));
226 DCHECK(tmp.IsRegister()) << tmp;
Roland Levillain9cc0ea82017-03-16 11:25:59 +0000227 // TODO: Load the entrypoint once before the loop, instead of
228 // loading it at every iteration.
Anton Kirilov5ec62182016-10-13 20:16:02 +0100229 int32_t entry_point_offset =
Roland Levillain97c46462017-05-11 14:04:03 +0100230 Thread::ReadBarrierMarkEntryPointsOffset<kArmPointerSize>(tmp.GetCode());
Anton Kirilov5ec62182016-10-13 20:16:02 +0100231 // This runtime call does not require a stack map.
232 arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
233 assembler->MaybePoisonHeapReference(tmp);
234 __ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex));
235 __ Cmp(src_curr_addr, src_stop_addr);
Artem Serov517d9f62016-12-12 15:51:15 +0000236 __ B(ne, &loop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100237 __ B(GetExitLabel());
238 }
239
240 const char* GetDescription() const OVERRIDE {
241 return "ReadBarrierSystemArrayCopySlowPathARMVIXL";
242 }
243
244 private:
245 DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARMVIXL);
246};
247
248IntrinsicLocationsBuilderARMVIXL::IntrinsicLocationsBuilderARMVIXL(CodeGeneratorARMVIXL* codegen)
249 : arena_(codegen->GetGraph()->GetArena()),
Nicolas Geoffray331605a2017-03-01 11:01:41 +0000250 codegen_(codegen),
Anton Kirilov5ec62182016-10-13 20:16:02 +0100251 assembler_(codegen->GetAssembler()),
252 features_(codegen->GetInstructionSetFeatures()) {}
253
254bool IntrinsicLocationsBuilderARMVIXL::TryDispatch(HInvoke* invoke) {
255 Dispatch(invoke);
256 LocationSummary* res = invoke->GetLocations();
257 if (res == nullptr) {
258 return false;
259 }
260 return res->Intrinsified();
261}
262
263static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
264 LocationSummary* locations = new (arena) LocationSummary(invoke,
265 LocationSummary::kNoCall,
266 kIntrinsified);
267 locations->SetInAt(0, Location::RequiresFpuRegister());
268 locations->SetOut(Location::RequiresRegister());
269}
270
271static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
272 LocationSummary* locations = new (arena) LocationSummary(invoke,
273 LocationSummary::kNoCall,
274 kIntrinsified);
275 locations->SetInAt(0, Location::RequiresRegister());
276 locations->SetOut(Location::RequiresFpuRegister());
277}
278
279static void MoveFPToInt(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) {
280 Location input = locations->InAt(0);
281 Location output = locations->Out();
282 if (is64bit) {
283 __ Vmov(LowRegisterFrom(output), HighRegisterFrom(output), DRegisterFrom(input));
284 } else {
285 __ Vmov(RegisterFrom(output), SRegisterFrom(input));
286 }
287}
288
289static void MoveIntToFP(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) {
290 Location input = locations->InAt(0);
291 Location output = locations->Out();
292 if (is64bit) {
293 __ Vmov(DRegisterFrom(output), LowRegisterFrom(input), HighRegisterFrom(input));
294 } else {
295 __ Vmov(SRegisterFrom(output), RegisterFrom(input));
296 }
297}
298
299void IntrinsicLocationsBuilderARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
300 CreateFPToIntLocations(arena_, invoke);
301}
302void IntrinsicLocationsBuilderARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
303 CreateIntToFPLocations(arena_, invoke);
304}
305
306void IntrinsicCodeGeneratorARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
307 MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
308}
309void IntrinsicCodeGeneratorARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
310 MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
311}
312
313void IntrinsicLocationsBuilderARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
314 CreateFPToIntLocations(arena_, invoke);
315}
316void IntrinsicLocationsBuilderARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) {
317 CreateIntToFPLocations(arena_, invoke);
318}
319
320void IntrinsicCodeGeneratorARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
321 MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
322}
323void IntrinsicCodeGeneratorARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) {
324 MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
325}
326
327static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
328 LocationSummary* locations = new (arena) LocationSummary(invoke,
329 LocationSummary::kNoCall,
330 kIntrinsified);
331 locations->SetInAt(0, Location::RequiresRegister());
332 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
333}
334
Vladimir Marko1819e412017-08-29 17:02:56 +0100335static void CreateLongToLongLocationsWithOverlap(ArenaAllocator* arena, HInvoke* invoke) {
Petre-Ionut Tudor27292e62017-08-04 16:06:45 +0100336 LocationSummary* locations = new (arena) LocationSummary(invoke,
337 LocationSummary::kNoCall,
338 kIntrinsified);
339 locations->SetInAt(0, Location::RequiresRegister());
340 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
341}
342
Anton Kirilov5ec62182016-10-13 20:16:02 +0100343static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
344 LocationSummary* locations = new (arena) LocationSummary(invoke,
345 LocationSummary::kNoCall,
346 kIntrinsified);
347 locations->SetInAt(0, Location::RequiresFpuRegister());
348 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
349}
350
Anton Kirilov6f644202017-02-27 18:29:45 +0000351static void GenNumberOfLeadingZeros(HInvoke* invoke,
Anton Kirilov5ec62182016-10-13 20:16:02 +0100352 Primitive::Type type,
Anton Kirilov6f644202017-02-27 18:29:45 +0000353 CodeGeneratorARMVIXL* codegen) {
354 ArmVIXLAssembler* assembler = codegen->GetAssembler();
355 LocationSummary* locations = invoke->GetLocations();
Anton Kirilov5ec62182016-10-13 20:16:02 +0100356 Location in = locations->InAt(0);
357 vixl32::Register out = RegisterFrom(locations->Out());
358
359 DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong));
360
361 if (type == Primitive::kPrimLong) {
362 vixl32::Register in_reg_lo = LowRegisterFrom(in);
363 vixl32::Register in_reg_hi = HighRegisterFrom(in);
364 vixl32::Label end;
Anton Kirilov6f644202017-02-27 18:29:45 +0000365 vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &end);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100366 __ Clz(out, in_reg_hi);
Anton Kirilov6f644202017-02-27 18:29:45 +0000367 __ CompareAndBranchIfNonZero(in_reg_hi, final_label, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100368 __ Clz(out, in_reg_lo);
369 __ Add(out, out, 32);
Anton Kirilov6f644202017-02-27 18:29:45 +0000370 if (end.IsReferenced()) {
371 __ Bind(&end);
372 }
Anton Kirilov5ec62182016-10-13 20:16:02 +0100373 } else {
374 __ Clz(out, RegisterFrom(in));
375 }
376}
377
378void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
379 CreateIntToIntLocations(arena_, invoke);
380}
381
382void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000383 GenNumberOfLeadingZeros(invoke, Primitive::kPrimInt, codegen_);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100384}
385
386void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
Vladimir Marko1819e412017-08-29 17:02:56 +0100387 CreateLongToLongLocationsWithOverlap(arena_, invoke);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100388}
389
390void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000391 GenNumberOfLeadingZeros(invoke, Primitive::kPrimLong, codegen_);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100392}
393
Anton Kirilov6f644202017-02-27 18:29:45 +0000394static void GenNumberOfTrailingZeros(HInvoke* invoke,
Anton Kirilov5ec62182016-10-13 20:16:02 +0100395 Primitive::Type type,
Anton Kirilov6f644202017-02-27 18:29:45 +0000396 CodeGeneratorARMVIXL* codegen) {
Anton Kirilov5ec62182016-10-13 20:16:02 +0100397 DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong));
398
Anton Kirilov6f644202017-02-27 18:29:45 +0000399 ArmVIXLAssembler* assembler = codegen->GetAssembler();
400 LocationSummary* locations = invoke->GetLocations();
Anton Kirilov5ec62182016-10-13 20:16:02 +0100401 vixl32::Register out = RegisterFrom(locations->Out());
402
403 if (type == Primitive::kPrimLong) {
404 vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
405 vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
406 vixl32::Label end;
Anton Kirilov6f644202017-02-27 18:29:45 +0000407 vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &end);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100408 __ Rbit(out, in_reg_lo);
409 __ Clz(out, out);
Anton Kirilov6f644202017-02-27 18:29:45 +0000410 __ CompareAndBranchIfNonZero(in_reg_lo, final_label, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100411 __ Rbit(out, in_reg_hi);
412 __ Clz(out, out);
413 __ Add(out, out, 32);
Anton Kirilov6f644202017-02-27 18:29:45 +0000414 if (end.IsReferenced()) {
415 __ Bind(&end);
416 }
Anton Kirilov5ec62182016-10-13 20:16:02 +0100417 } else {
418 vixl32::Register in = RegisterFrom(locations->InAt(0));
419 __ Rbit(out, in);
420 __ Clz(out, out);
421 }
422}
423
424void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
Vladimir Marko1819e412017-08-29 17:02:56 +0100425 CreateIntToIntLocations(arena_, invoke);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100426}
427
428void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000429 GenNumberOfTrailingZeros(invoke, Primitive::kPrimInt, codegen_);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100430}
431
432void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
Vladimir Marko1819e412017-08-29 17:02:56 +0100433 CreateLongToLongLocationsWithOverlap(arena_, invoke);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100434}
435
436void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000437 GenNumberOfTrailingZeros(invoke, Primitive::kPrimLong, codegen_);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100438}
439
440static void MathAbsFP(HInvoke* invoke, ArmVIXLAssembler* assembler) {
441 __ Vabs(OutputVRegister(invoke), InputVRegisterAt(invoke, 0));
442}
443
444void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsDouble(HInvoke* invoke) {
445 CreateFPToFPLocations(arena_, invoke);
446}
447
448void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsDouble(HInvoke* invoke) {
449 MathAbsFP(invoke, GetAssembler());
450}
451
452void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsFloat(HInvoke* invoke) {
453 CreateFPToFPLocations(arena_, invoke);
454}
455
456void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsFloat(HInvoke* invoke) {
457 MathAbsFP(invoke, GetAssembler());
458}
459
460static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) {
461 LocationSummary* locations = new (arena) LocationSummary(invoke,
462 LocationSummary::kNoCall,
463 kIntrinsified);
464 locations->SetInAt(0, Location::RequiresRegister());
465 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
466
467 locations->AddTemp(Location::RequiresRegister());
468}
469
470static void GenAbsInteger(LocationSummary* locations,
471 bool is64bit,
472 ArmVIXLAssembler* assembler) {
473 Location in = locations->InAt(0);
474 Location output = locations->Out();
475
476 vixl32::Register mask = RegisterFrom(locations->GetTemp(0));
477
478 if (is64bit) {
479 vixl32::Register in_reg_lo = LowRegisterFrom(in);
480 vixl32::Register in_reg_hi = HighRegisterFrom(in);
481 vixl32::Register out_reg_lo = LowRegisterFrom(output);
482 vixl32::Register out_reg_hi = HighRegisterFrom(output);
483
484 DCHECK(!out_reg_lo.Is(in_reg_hi)) << "Diagonal overlap unexpected.";
485
486 __ Asr(mask, in_reg_hi, 31);
487 __ Adds(out_reg_lo, in_reg_lo, mask);
488 __ Adc(out_reg_hi, in_reg_hi, mask);
489 __ Eor(out_reg_lo, mask, out_reg_lo);
490 __ Eor(out_reg_hi, mask, out_reg_hi);
491 } else {
492 vixl32::Register in_reg = RegisterFrom(in);
493 vixl32::Register out_reg = RegisterFrom(output);
494
495 __ Asr(mask, in_reg, 31);
496 __ Add(out_reg, in_reg, mask);
497 __ Eor(out_reg, mask, out_reg);
498 }
499}
500
501void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsInt(HInvoke* invoke) {
502 CreateIntToIntPlusTemp(arena_, invoke);
503}
504
505void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsInt(HInvoke* invoke) {
506 GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
507}
508
509
510void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsLong(HInvoke* invoke) {
511 CreateIntToIntPlusTemp(arena_, invoke);
512}
513
514void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsLong(HInvoke* invoke) {
515 GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
516}
517
Anton Kirilov6f644202017-02-27 18:29:45 +0000518static void GenMinMaxFloat(HInvoke* invoke, bool is_min, CodeGeneratorARMVIXL* codegen) {
519 ArmVIXLAssembler* assembler = codegen->GetAssembler();
xueliang.zhongc032e742016-03-28 16:44:32 +0100520 Location op1_loc = invoke->GetLocations()->InAt(0);
521 Location op2_loc = invoke->GetLocations()->InAt(1);
522 Location out_loc = invoke->GetLocations()->Out();
523
524 // Optimization: don't generate any code if inputs are the same.
525 if (op1_loc.Equals(op2_loc)) {
526 DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in location builder.
527 return;
528 }
529
530 vixl32::SRegister op1 = SRegisterFrom(op1_loc);
531 vixl32::SRegister op2 = SRegisterFrom(op2_loc);
532 vixl32::SRegister out = OutputSRegister(invoke);
533 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
534 const vixl32::Register temp1 = temps.Acquire();
535 vixl32::Register temp2 = RegisterFrom(invoke->GetLocations()->GetTemp(0));
536 vixl32::Label nan, done;
Anton Kirilov6f644202017-02-27 18:29:45 +0000537 vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &done);
xueliang.zhongc032e742016-03-28 16:44:32 +0100538
539 DCHECK(op1.Is(out));
540
541 __ Vcmp(op1, op2);
542 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
543 __ B(vs, &nan, /* far_target */ false); // if un-ordered, go to NaN handling.
544
545 // op1 <> op2
546 vixl32::ConditionType cond = is_min ? gt : lt;
547 {
548 ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(),
549 2 * kMaxInstructionSizeInBytes,
550 CodeBufferCheckScope::kMaximumSize);
551 __ it(cond);
552 __ vmov(cond, F32, out, op2);
553 }
Anton Kirilov6f644202017-02-27 18:29:45 +0000554 // for <>(not equal), we've done min/max calculation.
555 __ B(ne, final_label, /* far_target */ false);
xueliang.zhongc032e742016-03-28 16:44:32 +0100556
557 // handle op1 == op2, max(+0.0,-0.0), min(+0.0,-0.0).
558 __ Vmov(temp1, op1);
559 __ Vmov(temp2, op2);
560 if (is_min) {
561 __ Orr(temp1, temp1, temp2);
562 } else {
563 __ And(temp1, temp1, temp2);
564 }
565 __ Vmov(out, temp1);
Anton Kirilov6f644202017-02-27 18:29:45 +0000566 __ B(final_label);
xueliang.zhongc032e742016-03-28 16:44:32 +0100567
568 // handle NaN input.
569 __ Bind(&nan);
570 __ Movt(temp1, High16Bits(kNanFloat)); // 0x7FC0xxxx is a NaN.
571 __ Vmov(out, temp1);
572
Anton Kirilov6f644202017-02-27 18:29:45 +0000573 if (done.IsReferenced()) {
574 __ Bind(&done);
575 }
xueliang.zhongc032e742016-03-28 16:44:32 +0100576}
577
578static void CreateFPFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
579 LocationSummary* locations = new (arena) LocationSummary(invoke,
580 LocationSummary::kNoCall,
581 kIntrinsified);
582 locations->SetInAt(0, Location::RequiresFpuRegister());
583 locations->SetInAt(1, Location::RequiresFpuRegister());
584 locations->SetOut(Location::SameAsFirstInput());
585}
586
587void IntrinsicLocationsBuilderARMVIXL::VisitMathMinFloatFloat(HInvoke* invoke) {
588 CreateFPFPToFPLocations(arena_, invoke);
589 invoke->GetLocations()->AddTemp(Location::RequiresRegister());
590}
591
592void IntrinsicCodeGeneratorARMVIXL::VisitMathMinFloatFloat(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000593 GenMinMaxFloat(invoke, /* is_min */ true, codegen_);
xueliang.zhongc032e742016-03-28 16:44:32 +0100594}
595
596void IntrinsicLocationsBuilderARMVIXL::VisitMathMaxFloatFloat(HInvoke* invoke) {
597 CreateFPFPToFPLocations(arena_, invoke);
598 invoke->GetLocations()->AddTemp(Location::RequiresRegister());
599}
600
601void IntrinsicCodeGeneratorARMVIXL::VisitMathMaxFloatFloat(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000602 GenMinMaxFloat(invoke, /* is_min */ false, codegen_);
xueliang.zhongc032e742016-03-28 16:44:32 +0100603}
604
Anton Kirilov6f644202017-02-27 18:29:45 +0000605static void GenMinMaxDouble(HInvoke* invoke, bool is_min, CodeGeneratorARMVIXL* codegen) {
606 ArmVIXLAssembler* assembler = codegen->GetAssembler();
xueliang.zhongc032e742016-03-28 16:44:32 +0100607 Location op1_loc = invoke->GetLocations()->InAt(0);
608 Location op2_loc = invoke->GetLocations()->InAt(1);
609 Location out_loc = invoke->GetLocations()->Out();
610
611 // Optimization: don't generate any code if inputs are the same.
612 if (op1_loc.Equals(op2_loc)) {
613 DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in.
614 return;
615 }
616
617 vixl32::DRegister op1 = DRegisterFrom(op1_loc);
618 vixl32::DRegister op2 = DRegisterFrom(op2_loc);
619 vixl32::DRegister out = OutputDRegister(invoke);
620 vixl32::Label handle_nan_eq, done;
Anton Kirilov6f644202017-02-27 18:29:45 +0000621 vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &done);
xueliang.zhongc032e742016-03-28 16:44:32 +0100622
623 DCHECK(op1.Is(out));
624
625 __ Vcmp(op1, op2);
626 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
627 __ B(vs, &handle_nan_eq, /* far_target */ false); // if un-ordered, go to NaN handling.
628
629 // op1 <> op2
630 vixl32::ConditionType cond = is_min ? gt : lt;
631 {
632 ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(),
633 2 * kMaxInstructionSizeInBytes,
634 CodeBufferCheckScope::kMaximumSize);
635 __ it(cond);
636 __ vmov(cond, F64, out, op2);
637 }
Anton Kirilov6f644202017-02-27 18:29:45 +0000638 // for <>(not equal), we've done min/max calculation.
639 __ B(ne, final_label, /* far_target */ false);
xueliang.zhongc032e742016-03-28 16:44:32 +0100640
641 // handle op1 == op2, max(+0.0,-0.0).
642 if (!is_min) {
643 __ Vand(F64, out, op1, op2);
Anton Kirilov6f644202017-02-27 18:29:45 +0000644 __ B(final_label);
xueliang.zhongc032e742016-03-28 16:44:32 +0100645 }
646
647 // handle op1 == op2, min(+0.0,-0.0), NaN input.
648 __ Bind(&handle_nan_eq);
649 __ Vorr(F64, out, op1, op2); // assemble op1/-0.0/NaN.
650
Anton Kirilov6f644202017-02-27 18:29:45 +0000651 if (done.IsReferenced()) {
652 __ Bind(&done);
653 }
xueliang.zhongc032e742016-03-28 16:44:32 +0100654}
655
656void IntrinsicLocationsBuilderARMVIXL::VisitMathMinDoubleDouble(HInvoke* invoke) {
657 CreateFPFPToFPLocations(arena_, invoke);
658}
659
660void IntrinsicCodeGeneratorARMVIXL::VisitMathMinDoubleDouble(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000661 GenMinMaxDouble(invoke, /* is_min */ true , codegen_);
xueliang.zhongc032e742016-03-28 16:44:32 +0100662}
663
664void IntrinsicLocationsBuilderARMVIXL::VisitMathMaxDoubleDouble(HInvoke* invoke) {
665 CreateFPFPToFPLocations(arena_, invoke);
666}
667
668void IntrinsicCodeGeneratorARMVIXL::VisitMathMaxDoubleDouble(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000669 GenMinMaxDouble(invoke, /* is_min */ false, codegen_);
xueliang.zhongc032e742016-03-28 16:44:32 +0100670}
671
672static void GenMinMaxLong(HInvoke* invoke, bool is_min, ArmVIXLAssembler* assembler) {
673 Location op1_loc = invoke->GetLocations()->InAt(0);
674 Location op2_loc = invoke->GetLocations()->InAt(1);
675 Location out_loc = invoke->GetLocations()->Out();
676
677 // Optimization: don't generate any code if inputs are the same.
678 if (op1_loc.Equals(op2_loc)) {
679 DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in location builder.
680 return;
681 }
682
683 vixl32::Register op1_lo = LowRegisterFrom(op1_loc);
684 vixl32::Register op1_hi = HighRegisterFrom(op1_loc);
685 vixl32::Register op2_lo = LowRegisterFrom(op2_loc);
686 vixl32::Register op2_hi = HighRegisterFrom(op2_loc);
687 vixl32::Register out_lo = LowRegisterFrom(out_loc);
688 vixl32::Register out_hi = HighRegisterFrom(out_loc);
689 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
690 const vixl32::Register temp = temps.Acquire();
691
692 DCHECK(op1_lo.Is(out_lo));
693 DCHECK(op1_hi.Is(out_hi));
694
695 // Compare op1 >= op2, or op1 < op2.
696 __ Cmp(out_lo, op2_lo);
697 __ Sbcs(temp, out_hi, op2_hi);
698
699 // Now GE/LT condition code is correct for the long comparison.
700 {
701 vixl32::ConditionType cond = is_min ? ge : lt;
702 ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(),
703 3 * kMaxInstructionSizeInBytes,
704 CodeBufferCheckScope::kMaximumSize);
705 __ itt(cond);
706 __ mov(cond, out_lo, op2_lo);
707 __ mov(cond, out_hi, op2_hi);
708 }
709}
710
711static void CreateLongLongToLongLocations(ArenaAllocator* arena, HInvoke* invoke) {
712 LocationSummary* locations = new (arena) LocationSummary(invoke,
713 LocationSummary::kNoCall,
714 kIntrinsified);
715 locations->SetInAt(0, Location::RequiresRegister());
716 locations->SetInAt(1, Location::RequiresRegister());
717 locations->SetOut(Location::SameAsFirstInput());
718}
719
720void IntrinsicLocationsBuilderARMVIXL::VisitMathMinLongLong(HInvoke* invoke) {
721 CreateLongLongToLongLocations(arena_, invoke);
722}
723
724void IntrinsicCodeGeneratorARMVIXL::VisitMathMinLongLong(HInvoke* invoke) {
725 GenMinMaxLong(invoke, /* is_min */ true, GetAssembler());
726}
727
728void IntrinsicLocationsBuilderARMVIXL::VisitMathMaxLongLong(HInvoke* invoke) {
729 CreateLongLongToLongLocations(arena_, invoke);
730}
731
732void IntrinsicCodeGeneratorARMVIXL::VisitMathMaxLongLong(HInvoke* invoke) {
733 GenMinMaxLong(invoke, /* is_min */ false, GetAssembler());
734}
735
Anton Kirilov5ec62182016-10-13 20:16:02 +0100736static void GenMinMax(HInvoke* invoke, bool is_min, ArmVIXLAssembler* assembler) {
737 vixl32::Register op1 = InputRegisterAt(invoke, 0);
738 vixl32::Register op2 = InputRegisterAt(invoke, 1);
739 vixl32::Register out = OutputRegister(invoke);
740
741 __ Cmp(op1, op2);
742
743 {
Artem Serov0fb37192016-12-06 18:13:40 +0000744 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
745 3 * kMaxInstructionSizeInBytes,
746 CodeBufferCheckScope::kMaximumSize);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100747
748 __ ite(is_min ? lt : gt);
749 __ mov(is_min ? lt : gt, out, op1);
750 __ mov(is_min ? ge : le, out, op2);
751 }
752}
753
754static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
755 LocationSummary* locations = new (arena) LocationSummary(invoke,
756 LocationSummary::kNoCall,
757 kIntrinsified);
758 locations->SetInAt(0, Location::RequiresRegister());
759 locations->SetInAt(1, Location::RequiresRegister());
760 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
761}
762
763void IntrinsicLocationsBuilderARMVIXL::VisitMathMinIntInt(HInvoke* invoke) {
764 CreateIntIntToIntLocations(arena_, invoke);
765}
766
767void IntrinsicCodeGeneratorARMVIXL::VisitMathMinIntInt(HInvoke* invoke) {
768 GenMinMax(invoke, /* is_min */ true, GetAssembler());
769}
770
771void IntrinsicLocationsBuilderARMVIXL::VisitMathMaxIntInt(HInvoke* invoke) {
772 CreateIntIntToIntLocations(arena_, invoke);
773}
774
775void IntrinsicCodeGeneratorARMVIXL::VisitMathMaxIntInt(HInvoke* invoke) {
776 GenMinMax(invoke, /* is_min */ false, GetAssembler());
777}
778
779void IntrinsicLocationsBuilderARMVIXL::VisitMathSqrt(HInvoke* invoke) {
780 CreateFPToFPLocations(arena_, invoke);
781}
782
783void IntrinsicCodeGeneratorARMVIXL::VisitMathSqrt(HInvoke* invoke) {
784 ArmVIXLAssembler* assembler = GetAssembler();
785 __ Vsqrt(OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
786}
787
xueliang.zhong6099d5e2016-04-20 18:44:56 +0100788void IntrinsicLocationsBuilderARMVIXL::VisitMathRint(HInvoke* invoke) {
789 if (features_.HasARMv8AInstructions()) {
790 CreateFPToFPLocations(arena_, invoke);
791 }
792}
793
794void IntrinsicCodeGeneratorARMVIXL::VisitMathRint(HInvoke* invoke) {
795 DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions());
796 ArmVIXLAssembler* assembler = GetAssembler();
797 __ Vrintn(F64, F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
798}
799
xueliang.zhong53463ba2017-02-16 15:18:03 +0000800void IntrinsicLocationsBuilderARMVIXL::VisitMathRoundFloat(HInvoke* invoke) {
801 if (features_.HasARMv8AInstructions()) {
802 LocationSummary* locations = new (arena_) LocationSummary(invoke,
803 LocationSummary::kNoCall,
804 kIntrinsified);
805 locations->SetInAt(0, Location::RequiresFpuRegister());
806 locations->SetOut(Location::RequiresRegister());
807 locations->AddTemp(Location::RequiresFpuRegister());
808 }
809}
810
811void IntrinsicCodeGeneratorARMVIXL::VisitMathRoundFloat(HInvoke* invoke) {
812 DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions());
813
814 ArmVIXLAssembler* assembler = GetAssembler();
815 vixl32::SRegister in_reg = InputSRegisterAt(invoke, 0);
816 vixl32::Register out_reg = OutputRegister(invoke);
817 vixl32::SRegister temp1 = LowSRegisterFrom(invoke->GetLocations()->GetTemp(0));
818 vixl32::SRegister temp2 = HighSRegisterFrom(invoke->GetLocations()->GetTemp(0));
819 vixl32::Label done;
820 vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &done);
821
822 // Round to nearest integer, ties away from zero.
823 __ Vcvta(S32, F32, temp1, in_reg);
824 __ Vmov(out_reg, temp1);
825
826 // For positive, zero or NaN inputs, rounding is done.
827 __ Cmp(out_reg, 0);
828 __ B(ge, final_label, /* far_target */ false);
829
830 // Handle input < 0 cases.
831 // If input is negative but not a tie, previous result (round to nearest) is valid.
832 // If input is a negative tie, change rounding direction to positive infinity, out_reg += 1.
833 __ Vrinta(F32, F32, temp1, in_reg);
834 __ Vmov(temp2, 0.5);
835 __ Vsub(F32, temp1, in_reg, temp1);
836 __ Vcmp(F32, temp1, temp2);
837 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
838 {
839 // Use ExactAsemblyScope here because we are using IT.
840 ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(),
841 2 * kMaxInstructionSizeInBytes,
842 CodeBufferCheckScope::kMaximumSize);
843 __ it(eq);
844 __ add(eq, out_reg, out_reg, 1);
845 }
846
847 if (done.IsReferenced()) {
848 __ Bind(&done);
849 }
850}
851
Anton Kirilov5ec62182016-10-13 20:16:02 +0100852void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) {
853 CreateIntToIntLocations(arena_, invoke);
854}
855
856void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) {
857 ArmVIXLAssembler* assembler = GetAssembler();
858 // Ignore upper 4B of long address.
Scott Wakelingb77051e2016-11-21 19:46:00 +0000859 __ Ldrsb(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100860}
861
862void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) {
863 CreateIntToIntLocations(arena_, invoke);
864}
865
866void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) {
867 ArmVIXLAssembler* assembler = GetAssembler();
868 // Ignore upper 4B of long address.
Scott Wakelingb77051e2016-11-21 19:46:00 +0000869 __ Ldr(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100870}
871
872void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) {
873 CreateIntToIntLocations(arena_, invoke);
874}
875
876void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) {
877 ArmVIXLAssembler* assembler = GetAssembler();
878 // Ignore upper 4B of long address.
879 vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0));
880 // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
881 // exception. So we can't use ldrd as addr may be unaligned.
882 vixl32::Register lo = LowRegisterFrom(invoke->GetLocations()->Out());
883 vixl32::Register hi = HighRegisterFrom(invoke->GetLocations()->Out());
884 if (addr.Is(lo)) {
885 __ Ldr(hi, MemOperand(addr, 4));
Scott Wakelingb77051e2016-11-21 19:46:00 +0000886 __ Ldr(lo, MemOperand(addr));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100887 } else {
Scott Wakelingb77051e2016-11-21 19:46:00 +0000888 __ Ldr(lo, MemOperand(addr));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100889 __ Ldr(hi, MemOperand(addr, 4));
890 }
891}
892
893void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) {
894 CreateIntToIntLocations(arena_, invoke);
895}
896
897void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) {
898 ArmVIXLAssembler* assembler = GetAssembler();
899 // Ignore upper 4B of long address.
Scott Wakelingb77051e2016-11-21 19:46:00 +0000900 __ Ldrsh(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100901}
902
903static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
904 LocationSummary* locations = new (arena) LocationSummary(invoke,
905 LocationSummary::kNoCall,
906 kIntrinsified);
907 locations->SetInAt(0, Location::RequiresRegister());
908 locations->SetInAt(1, Location::RequiresRegister());
909}
910
911void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) {
912 CreateIntIntToVoidLocations(arena_, invoke);
913}
914
915void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) {
916 ArmVIXLAssembler* assembler = GetAssembler();
Scott Wakelingb77051e2016-11-21 19:46:00 +0000917 __ Strb(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100918}
919
920void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) {
921 CreateIntIntToVoidLocations(arena_, invoke);
922}
923
924void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) {
925 ArmVIXLAssembler* assembler = GetAssembler();
Scott Wakelingb77051e2016-11-21 19:46:00 +0000926 __ Str(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100927}
928
929void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) {
930 CreateIntIntToVoidLocations(arena_, invoke);
931}
932
933void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) {
934 ArmVIXLAssembler* assembler = GetAssembler();
935 // Ignore upper 4B of long address.
936 vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0));
937 // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
938 // exception. So we can't use ldrd as addr may be unaligned.
Scott Wakelingb77051e2016-11-21 19:46:00 +0000939 __ Str(LowRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100940 __ Str(HighRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr, 4));
941}
942
943void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) {
944 CreateIntIntToVoidLocations(arena_, invoke);
945}
946
947void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) {
948 ArmVIXLAssembler* assembler = GetAssembler();
Scott Wakelingb77051e2016-11-21 19:46:00 +0000949 __ Strh(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100950}
951
952void IntrinsicLocationsBuilderARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) {
953 LocationSummary* locations = new (arena_) LocationSummary(invoke,
954 LocationSummary::kNoCall,
955 kIntrinsified);
956 locations->SetOut(Location::RequiresRegister());
957}
958
959void IntrinsicCodeGeneratorARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) {
960 ArmVIXLAssembler* assembler = GetAssembler();
961 __ Ldr(OutputRegister(invoke),
962 MemOperand(tr, Thread::PeerOffset<kArmPointerSize>().Int32Value()));
963}
964
965static void GenUnsafeGet(HInvoke* invoke,
966 Primitive::Type type,
967 bool is_volatile,
968 CodeGeneratorARMVIXL* codegen) {
969 LocationSummary* locations = invoke->GetLocations();
970 ArmVIXLAssembler* assembler = codegen->GetAssembler();
971 Location base_loc = locations->InAt(1);
972 vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer.
973 Location offset_loc = locations->InAt(2);
974 vixl32::Register offset = LowRegisterFrom(offset_loc); // Long offset, lo part only.
975 Location trg_loc = locations->Out();
976
977 switch (type) {
978 case Primitive::kPrimInt: {
979 vixl32::Register trg = RegisterFrom(trg_loc);
980 __ Ldr(trg, MemOperand(base, offset));
981 if (is_volatile) {
982 __ Dmb(vixl32::ISH);
983 }
984 break;
985 }
986
987 case Primitive::kPrimNot: {
988 vixl32::Register trg = RegisterFrom(trg_loc);
989 if (kEmitCompilerReadBarrier) {
990 if (kUseBakerReadBarrier) {
991 Location temp = locations->GetTemp(0);
992 codegen->GenerateReferenceLoadWithBakerReadBarrier(
993 invoke, trg_loc, base, 0U, offset_loc, TIMES_1, temp, /* needs_null_check */ false);
994 if (is_volatile) {
995 __ Dmb(vixl32::ISH);
996 }
997 } else {
998 __ Ldr(trg, MemOperand(base, offset));
999 if (is_volatile) {
1000 __ Dmb(vixl32::ISH);
1001 }
1002 codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0U, offset_loc);
1003 }
1004 } else {
1005 __ Ldr(trg, MemOperand(base, offset));
1006 if (is_volatile) {
1007 __ Dmb(vixl32::ISH);
1008 }
1009 assembler->MaybeUnpoisonHeapReference(trg);
1010 }
1011 break;
1012 }
1013
1014 case Primitive::kPrimLong: {
1015 vixl32::Register trg_lo = LowRegisterFrom(trg_loc);
1016 vixl32::Register trg_hi = HighRegisterFrom(trg_loc);
1017 if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
Artem Serov657022c2016-11-23 14:19:38 +00001018 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
1019 const vixl32::Register temp_reg = temps.Acquire();
1020 __ Add(temp_reg, base, offset);
1021 __ Ldrexd(trg_lo, trg_hi, MemOperand(temp_reg));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001022 } else {
1023 __ Ldrd(trg_lo, trg_hi, MemOperand(base, offset));
1024 }
1025 if (is_volatile) {
1026 __ Dmb(vixl32::ISH);
1027 }
1028 break;
1029 }
1030
1031 default:
1032 LOG(FATAL) << "Unexpected type " << type;
1033 UNREACHABLE();
1034 }
1035}
1036
1037static void CreateIntIntIntToIntLocations(ArenaAllocator* arena,
1038 HInvoke* invoke,
1039 Primitive::Type type) {
1040 bool can_call = kEmitCompilerReadBarrier &&
1041 (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
1042 invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
1043 LocationSummary* locations = new (arena) LocationSummary(invoke,
1044 (can_call
1045 ? LocationSummary::kCallOnSlowPath
1046 : LocationSummary::kNoCall),
1047 kIntrinsified);
1048 if (can_call && kUseBakerReadBarrier) {
1049 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
1050 }
1051 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
1052 locations->SetInAt(1, Location::RequiresRegister());
1053 locations->SetInAt(2, Location::RequiresRegister());
1054 locations->SetOut(Location::RequiresRegister(),
1055 (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
1056 if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1057 // We need a temporary register for the read barrier marking slow
Roland Levillain9983e302017-07-14 14:34:22 +01001058 // path in CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001059 locations->AddTemp(Location::RequiresRegister());
1060 }
1061}
1062
1063void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGet(HInvoke* invoke) {
1064 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
1065}
1066void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) {
1067 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
1068}
1069void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) {
1070 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
1071}
1072void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
1073 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
1074}
1075void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) {
1076 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
1077}
1078void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
1079 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
1080}
1081
1082void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGet(HInvoke* invoke) {
1083 GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_);
1084}
1085void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) {
1086 GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_);
1087}
1088void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) {
1089 GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_);
1090}
1091void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
1092 GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_);
1093}
1094void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) {
1095 GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_);
1096}
1097void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
1098 GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_);
1099}
1100
1101static void CreateIntIntIntIntToVoid(ArenaAllocator* arena,
1102 const ArmInstructionSetFeatures& features,
1103 Primitive::Type type,
1104 bool is_volatile,
1105 HInvoke* invoke) {
1106 LocationSummary* locations = new (arena) LocationSummary(invoke,
1107 LocationSummary::kNoCall,
1108 kIntrinsified);
1109 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
1110 locations->SetInAt(1, Location::RequiresRegister());
1111 locations->SetInAt(2, Location::RequiresRegister());
1112 locations->SetInAt(3, Location::RequiresRegister());
1113
1114 if (type == Primitive::kPrimLong) {
1115 // Potentially need temps for ldrexd-strexd loop.
1116 if (is_volatile && !features.HasAtomicLdrdAndStrd()) {
1117 locations->AddTemp(Location::RequiresRegister()); // Temp_lo.
1118 locations->AddTemp(Location::RequiresRegister()); // Temp_hi.
1119 }
1120 } else if (type == Primitive::kPrimNot) {
1121 // Temps for card-marking.
1122 locations->AddTemp(Location::RequiresRegister()); // Temp.
1123 locations->AddTemp(Location::RequiresRegister()); // Card.
1124 }
1125}
1126
1127void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePut(HInvoke* invoke) {
1128 CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke);
1129}
1130void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) {
1131 CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke);
1132}
1133void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) {
1134 CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ true, invoke);
1135}
1136void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObject(HInvoke* invoke) {
1137 CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke);
1138}
1139void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
1140 CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke);
1141}
1142void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
1143 CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ true, invoke);
1144}
1145void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLong(HInvoke* invoke) {
1146 CreateIntIntIntIntToVoid(
1147 arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke);
1148}
1149void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) {
1150 CreateIntIntIntIntToVoid(
1151 arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke);
1152}
1153void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) {
1154 CreateIntIntIntIntToVoid(
1155 arena_, features_, Primitive::kPrimLong, /* is_volatile */ true, invoke);
1156}
1157
1158static void GenUnsafePut(LocationSummary* locations,
1159 Primitive::Type type,
1160 bool is_volatile,
1161 bool is_ordered,
1162 CodeGeneratorARMVIXL* codegen) {
1163 ArmVIXLAssembler* assembler = codegen->GetAssembler();
1164
1165 vixl32::Register base = RegisterFrom(locations->InAt(1)); // Object pointer.
1166 vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Long offset, lo part only.
1167 vixl32::Register value;
1168
1169 if (is_volatile || is_ordered) {
1170 __ Dmb(vixl32::ISH);
1171 }
1172
1173 if (type == Primitive::kPrimLong) {
1174 vixl32::Register value_lo = LowRegisterFrom(locations->InAt(3));
1175 vixl32::Register value_hi = HighRegisterFrom(locations->InAt(3));
1176 value = value_lo;
1177 if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
1178 vixl32::Register temp_lo = RegisterFrom(locations->GetTemp(0));
1179 vixl32::Register temp_hi = RegisterFrom(locations->GetTemp(1));
1180 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
1181 const vixl32::Register temp_reg = temps.Acquire();
1182
1183 __ Add(temp_reg, base, offset);
1184 vixl32::Label loop_head;
1185 __ Bind(&loop_head);
Scott Wakelingb77051e2016-11-21 19:46:00 +00001186 __ Ldrexd(temp_lo, temp_hi, MemOperand(temp_reg));
1187 __ Strexd(temp_lo, value_lo, value_hi, MemOperand(temp_reg));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001188 __ Cmp(temp_lo, 0);
Artem Serov517d9f62016-12-12 15:51:15 +00001189 __ B(ne, &loop_head, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001190 } else {
1191 __ Strd(value_lo, value_hi, MemOperand(base, offset));
1192 }
1193 } else {
1194 value = RegisterFrom(locations->InAt(3));
1195 vixl32::Register source = value;
1196 if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
1197 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
1198 __ Mov(temp, value);
1199 assembler->PoisonHeapReference(temp);
1200 source = temp;
1201 }
1202 __ Str(source, MemOperand(base, offset));
1203 }
1204
1205 if (is_volatile) {
1206 __ Dmb(vixl32::ISH);
1207 }
1208
1209 if (type == Primitive::kPrimNot) {
1210 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
1211 vixl32::Register card = RegisterFrom(locations->GetTemp(1));
1212 bool value_can_be_null = true; // TODO: Worth finding out this information?
1213 codegen->MarkGCCard(temp, card, base, value, value_can_be_null);
1214 }
1215}
1216
1217void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePut(HInvoke* invoke) {
1218 GenUnsafePut(invoke->GetLocations(),
1219 Primitive::kPrimInt,
1220 /* is_volatile */ false,
1221 /* is_ordered */ false,
1222 codegen_);
1223}
1224void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) {
1225 GenUnsafePut(invoke->GetLocations(),
1226 Primitive::kPrimInt,
1227 /* is_volatile */ false,
1228 /* is_ordered */ true,
1229 codegen_);
1230}
1231void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) {
1232 GenUnsafePut(invoke->GetLocations(),
1233 Primitive::kPrimInt,
1234 /* is_volatile */ true,
1235 /* is_ordered */ false,
1236 codegen_);
1237}
1238void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObject(HInvoke* invoke) {
1239 GenUnsafePut(invoke->GetLocations(),
1240 Primitive::kPrimNot,
1241 /* is_volatile */ false,
1242 /* is_ordered */ false,
1243 codegen_);
1244}
1245void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
1246 GenUnsafePut(invoke->GetLocations(),
1247 Primitive::kPrimNot,
1248 /* is_volatile */ false,
1249 /* is_ordered */ true,
1250 codegen_);
1251}
1252void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
1253 GenUnsafePut(invoke->GetLocations(),
1254 Primitive::kPrimNot,
1255 /* is_volatile */ true,
1256 /* is_ordered */ false,
1257 codegen_);
1258}
1259void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLong(HInvoke* invoke) {
1260 GenUnsafePut(invoke->GetLocations(),
1261 Primitive::kPrimLong,
1262 /* is_volatile */ false,
1263 /* is_ordered */ false,
1264 codegen_);
1265}
1266void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) {
1267 GenUnsafePut(invoke->GetLocations(),
1268 Primitive::kPrimLong,
1269 /* is_volatile */ false,
1270 /* is_ordered */ true,
1271 codegen_);
1272}
1273void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) {
1274 GenUnsafePut(invoke->GetLocations(),
1275 Primitive::kPrimLong,
1276 /* is_volatile */ true,
1277 /* is_ordered */ false,
1278 codegen_);
1279}
1280
1281static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* arena,
1282 HInvoke* invoke,
1283 Primitive::Type type) {
1284 bool can_call = kEmitCompilerReadBarrier &&
1285 kUseBakerReadBarrier &&
1286 (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
1287 LocationSummary* locations = new (arena) LocationSummary(invoke,
1288 (can_call
1289 ? LocationSummary::kCallOnSlowPath
1290 : LocationSummary::kNoCall),
1291 kIntrinsified);
1292 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
1293 locations->SetInAt(1, Location::RequiresRegister());
1294 locations->SetInAt(2, Location::RequiresRegister());
1295 locations->SetInAt(3, Location::RequiresRegister());
1296 locations->SetInAt(4, Location::RequiresRegister());
1297
1298 // If heap poisoning is enabled, we don't want the unpoisoning
1299 // operations to potentially clobber the output. Likewise when
1300 // emitting a (Baker) read barrier, which may call.
1301 Location::OutputOverlap overlaps =
1302 ((kPoisonHeapReferences && type == Primitive::kPrimNot) || can_call)
1303 ? Location::kOutputOverlap
1304 : Location::kNoOutputOverlap;
1305 locations->SetOut(Location::RequiresRegister(), overlaps);
1306
1307 // Temporary registers used in CAS. In the object case
1308 // (UnsafeCASObject intrinsic), these are also used for
1309 // card-marking, and possibly for (Baker) read barrier.
1310 locations->AddTemp(Location::RequiresRegister()); // Pointer.
1311 locations->AddTemp(Location::RequiresRegister()); // Temp 1.
1312}
1313
1314static void GenCas(HInvoke* invoke, Primitive::Type type, CodeGeneratorARMVIXL* codegen) {
1315 DCHECK_NE(type, Primitive::kPrimLong);
1316
1317 ArmVIXLAssembler* assembler = codegen->GetAssembler();
1318 LocationSummary* locations = invoke->GetLocations();
1319
1320 Location out_loc = locations->Out();
1321 vixl32::Register out = OutputRegister(invoke); // Boolean result.
1322
1323 vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer.
1324 Location offset_loc = locations->InAt(2);
1325 vixl32::Register offset = LowRegisterFrom(offset_loc); // Offset (discard high 4B).
1326 vixl32::Register expected = InputRegisterAt(invoke, 3); // Expected.
1327 vixl32::Register value = InputRegisterAt(invoke, 4); // Value.
1328
1329 Location tmp_ptr_loc = locations->GetTemp(0);
1330 vixl32::Register tmp_ptr = RegisterFrom(tmp_ptr_loc); // Pointer to actual memory.
1331 vixl32::Register tmp = RegisterFrom(locations->GetTemp(1)); // Value in memory.
1332
1333 if (type == Primitive::kPrimNot) {
1334 // The only read barrier implementation supporting the
1335 // UnsafeCASObject intrinsic is the Baker-style read barriers.
1336 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
1337
1338 // Mark card for object assuming new value is stored. Worst case we will mark an unchanged
1339 // object and scan the receiver at the next GC for nothing.
1340 bool value_can_be_null = true; // TODO: Worth finding out this information?
1341 codegen->MarkGCCard(tmp_ptr, tmp, base, value, value_can_be_null);
1342
1343 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1344 // Need to make sure the reference stored in the field is a to-space
1345 // one before attempting the CAS or the CAS could fail incorrectly.
Roland Levillainff487002017-03-07 16:50:01 +00001346 codegen->UpdateReferenceFieldWithBakerReadBarrier(
Anton Kirilov5ec62182016-10-13 20:16:02 +01001347 invoke,
1348 out_loc, // Unused, used only as a "temporary" within the read barrier.
1349 base,
Roland Levillainff487002017-03-07 16:50:01 +00001350 /* field_offset */ offset_loc,
Anton Kirilov5ec62182016-10-13 20:16:02 +01001351 tmp_ptr_loc,
1352 /* needs_null_check */ false,
Roland Levillainff487002017-03-07 16:50:01 +00001353 tmp);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001354 }
1355 }
1356
1357 // Prevent reordering with prior memory operations.
1358 // Emit a DMB ISH instruction instead of an DMB ISHST one, as the
1359 // latter allows a preceding load to be delayed past the STXR
1360 // instruction below.
1361 __ Dmb(vixl32::ISH);
1362
1363 __ Add(tmp_ptr, base, offset);
1364
1365 if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
1366 codegen->GetAssembler()->PoisonHeapReference(expected);
1367 if (value.Is(expected)) {
1368 // Do not poison `value`, as it is the same register as
1369 // `expected`, which has just been poisoned.
1370 } else {
1371 codegen->GetAssembler()->PoisonHeapReference(value);
1372 }
1373 }
1374
1375 // do {
1376 // tmp = [r_ptr] - expected;
1377 // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
1378 // result = tmp != 0;
1379
1380 vixl32::Label loop_head;
1381 __ Bind(&loop_head);
1382
Scott Wakelingb77051e2016-11-21 19:46:00 +00001383 __ Ldrex(tmp, MemOperand(tmp_ptr));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001384
1385 __ Subs(tmp, tmp, expected);
1386
1387 {
Artem Serov0fb37192016-12-06 18:13:40 +00001388 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1389 3 * kMaxInstructionSizeInBytes,
1390 CodeBufferCheckScope::kMaximumSize);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001391
1392 __ itt(eq);
Scott Wakelingb77051e2016-11-21 19:46:00 +00001393 __ strex(eq, tmp, value, MemOperand(tmp_ptr));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001394 __ cmp(eq, tmp, 1);
1395 }
1396
Artem Serov517d9f62016-12-12 15:51:15 +00001397 __ B(eq, &loop_head, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001398
1399 __ Dmb(vixl32::ISH);
1400
1401 __ Rsbs(out, tmp, 1);
1402
1403 {
Artem Serov0fb37192016-12-06 18:13:40 +00001404 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1405 2 * kMaxInstructionSizeInBytes,
1406 CodeBufferCheckScope::kMaximumSize);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001407
1408 __ it(cc);
1409 __ mov(cc, out, 0);
1410 }
1411
1412 if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
1413 codegen->GetAssembler()->UnpoisonHeapReference(expected);
1414 if (value.Is(expected)) {
1415 // Do not unpoison `value`, as it is the same register as
1416 // `expected`, which has just been unpoisoned.
1417 } else {
1418 codegen->GetAssembler()->UnpoisonHeapReference(value);
1419 }
1420 }
1421}
1422
1423void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) {
1424 CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimInt);
1425}
1426void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) {
1427 // The only read barrier implementation supporting the
1428 // UnsafeCASObject intrinsic is the Baker-style read barriers.
1429 if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
1430 return;
1431 }
1432
1433 CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimNot);
1434}
1435void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) {
1436 GenCas(invoke, Primitive::kPrimInt, codegen_);
1437}
1438void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) {
1439 // The only read barrier implementation supporting the
1440 // UnsafeCASObject intrinsic is the Baker-style read barriers.
1441 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
1442
1443 GenCas(invoke, Primitive::kPrimNot, codegen_);
1444}
1445
1446void IntrinsicLocationsBuilderARMVIXL::VisitStringCompareTo(HInvoke* invoke) {
1447 // The inputs plus one temp.
1448 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1449 invoke->InputAt(1)->CanBeNull()
1450 ? LocationSummary::kCallOnSlowPath
1451 : LocationSummary::kNoCall,
1452 kIntrinsified);
1453 locations->SetInAt(0, Location::RequiresRegister());
1454 locations->SetInAt(1, Location::RequiresRegister());
1455 locations->AddTemp(Location::RequiresRegister());
1456 locations->AddTemp(Location::RequiresRegister());
1457 locations->AddTemp(Location::RequiresRegister());
1458 // Need temporary registers for String compression's feature.
1459 if (mirror::kUseStringCompression) {
1460 locations->AddTemp(Location::RequiresRegister());
Anton Kirilov5ec62182016-10-13 20:16:02 +01001461 }
1462 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
1463}
1464
1465void IntrinsicCodeGeneratorARMVIXL::VisitStringCompareTo(HInvoke* invoke) {
1466 ArmVIXLAssembler* assembler = GetAssembler();
1467 LocationSummary* locations = invoke->GetLocations();
1468
1469 vixl32::Register str = InputRegisterAt(invoke, 0);
1470 vixl32::Register arg = InputRegisterAt(invoke, 1);
1471 vixl32::Register out = OutputRegister(invoke);
1472
1473 vixl32::Register temp0 = RegisterFrom(locations->GetTemp(0));
1474 vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
1475 vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2));
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001476 vixl32::Register temp3;
Anton Kirilov5ec62182016-10-13 20:16:02 +01001477 if (mirror::kUseStringCompression) {
1478 temp3 = RegisterFrom(locations->GetTemp(3));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001479 }
1480
1481 vixl32::Label loop;
1482 vixl32::Label find_char_diff;
1483 vixl32::Label end;
1484 vixl32::Label different_compression;
1485
1486 // Get offsets of count and value fields within a string object.
1487 const int32_t count_offset = mirror::String::CountOffset().Int32Value();
1488 const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
1489
1490 // Note that the null check must have been done earlier.
1491 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1492
1493 // Take slow path and throw if input can be and is null.
1494 SlowPathCodeARMVIXL* slow_path = nullptr;
1495 const bool can_slow_path = invoke->InputAt(1)->CanBeNull();
1496 if (can_slow_path) {
1497 slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
1498 codegen_->AddSlowPath(slow_path);
xueliang.zhongf51bc622016-11-04 09:23:32 +00001499 __ CompareAndBranchIfZero(arg, slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01001500 }
1501
1502 // Reference equality check, return 0 if same reference.
1503 __ Subs(out, str, arg);
1504 __ B(eq, &end);
1505
Anton Kirilov5ec62182016-10-13 20:16:02 +01001506 if (mirror::kUseStringCompression) {
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001507 // Load `count` fields of this and argument strings.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001508 __ Ldr(temp3, MemOperand(str, count_offset));
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001509 __ Ldr(temp2, MemOperand(arg, count_offset));
1510 // Extract lengths from the `count` fields.
1511 __ Lsr(temp0, temp3, 1u);
1512 __ Lsr(temp1, temp2, 1u);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001513 } else {
1514 // Load lengths of this and argument strings.
1515 __ Ldr(temp0, MemOperand(str, count_offset));
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001516 __ Ldr(temp1, MemOperand(arg, count_offset));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001517 }
1518 // out = length diff.
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001519 __ Subs(out, temp0, temp1);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001520 // temp0 = min(len(str), len(arg)).
1521
1522 {
Artem Serov0fb37192016-12-06 18:13:40 +00001523 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1524 2 * kMaxInstructionSizeInBytes,
1525 CodeBufferCheckScope::kMaximumSize);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001526
1527 __ it(gt);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001528 __ mov(gt, temp0, temp1);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001529 }
1530
Anton Kirilov5ec62182016-10-13 20:16:02 +01001531 // Shorter string is empty?
xueliang.zhongf51bc622016-11-04 09:23:32 +00001532 // Note that mirror::kUseStringCompression==true introduces lots of instructions,
1533 // which makes &end label far away from this branch and makes it not 'CBZ-encodable'.
1534 __ CompareAndBranchIfZero(temp0, &end, mirror::kUseStringCompression);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001535
1536 if (mirror::kUseStringCompression) {
1537 // Check if both strings using same compression style to use this comparison loop.
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001538 __ Eors(temp2, temp2, temp3);
1539 __ Lsrs(temp2, temp2, 1u);
1540 __ B(cs, &different_compression);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001541 // For string compression, calculate the number of bytes to compare (not chars).
1542 // This could in theory exceed INT32_MAX, so treat temp0 as unsigned.
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001543 __ Lsls(temp3, temp3, 31u); // Extract purely the compression flag.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001544
Artem Serov0fb37192016-12-06 18:13:40 +00001545 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1546 2 * kMaxInstructionSizeInBytes,
1547 CodeBufferCheckScope::kMaximumSize);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001548
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001549 __ it(ne);
1550 __ add(ne, temp0, temp0, temp0);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001551 }
1552
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001553 // Store offset of string value in preparation for comparison loop.
1554 __ Mov(temp1, value_offset);
1555
Anton Kirilov5ec62182016-10-13 20:16:02 +01001556 // Assertions that must hold in order to compare multiple characters at a time.
1557 CHECK_ALIGNED(value_offset, 8);
1558 static_assert(IsAligned<8>(kObjectAlignment),
1559 "String data must be 8-byte aligned for unrolled CompareTo loop.");
1560
Scott Wakelingb77051e2016-11-21 19:46:00 +00001561 const unsigned char_size = Primitive::ComponentSize(Primitive::kPrimChar);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001562 DCHECK_EQ(char_size, 2u);
1563
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001564 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
1565
Anton Kirilov5ec62182016-10-13 20:16:02 +01001566 vixl32::Label find_char_diff_2nd_cmp;
1567 // Unrolled loop comparing 4x16-bit chars per iteration (ok because of string data alignment).
1568 __ Bind(&loop);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001569 vixl32::Register temp_reg = temps.Acquire();
Anton Kirilov5ec62182016-10-13 20:16:02 +01001570 __ Ldr(temp_reg, MemOperand(str, temp1));
1571 __ Ldr(temp2, MemOperand(arg, temp1));
1572 __ Cmp(temp_reg, temp2);
Artem Serov517d9f62016-12-12 15:51:15 +00001573 __ B(ne, &find_char_diff, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001574 __ Add(temp1, temp1, char_size * 2);
1575
1576 __ Ldr(temp_reg, MemOperand(str, temp1));
1577 __ Ldr(temp2, MemOperand(arg, temp1));
1578 __ Cmp(temp_reg, temp2);
Artem Serov517d9f62016-12-12 15:51:15 +00001579 __ B(ne, &find_char_diff_2nd_cmp, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001580 __ Add(temp1, temp1, char_size * 2);
1581 // With string compression, we have compared 8 bytes, otherwise 4 chars.
1582 __ Subs(temp0, temp0, (mirror::kUseStringCompression ? 8 : 4));
Artem Serov517d9f62016-12-12 15:51:15 +00001583 __ B(hi, &loop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001584 __ B(&end);
1585
1586 __ Bind(&find_char_diff_2nd_cmp);
1587 if (mirror::kUseStringCompression) {
1588 __ Subs(temp0, temp0, 4); // 4 bytes previously compared.
Artem Serov517d9f62016-12-12 15:51:15 +00001589 __ B(ls, &end, /* far_target */ false); // Was the second comparison fully beyond the end?
Anton Kirilov5ec62182016-10-13 20:16:02 +01001590 } else {
1591 // Without string compression, we can start treating temp0 as signed
1592 // and rely on the signed comparison below.
1593 __ Sub(temp0, temp0, 2);
1594 }
1595
1596 // Find the single character difference.
1597 __ Bind(&find_char_diff);
1598 // Get the bit position of the first character that differs.
1599 __ Eor(temp1, temp2, temp_reg);
1600 __ Rbit(temp1, temp1);
1601 __ Clz(temp1, temp1);
1602
1603 // temp0 = number of characters remaining to compare.
1604 // (Without string compression, it could be < 1 if a difference is found by the second CMP
1605 // in the comparison loop, and after the end of the shorter string data).
1606
1607 // Without string compression (temp1 >> 4) = character where difference occurs between the last
1608 // two words compared, in the interval [0,1].
1609 // (0 for low half-word different, 1 for high half-word different).
1610 // With string compression, (temp1 << 3) = byte where the difference occurs,
1611 // in the interval [0,3].
1612
1613 // If temp0 <= (temp1 >> (kUseStringCompression ? 3 : 4)), the difference occurs outside
1614 // the remaining string data, so just return length diff (out).
1615 // The comparison is unsigned for string compression, otherwise signed.
1616 __ Cmp(temp0, Operand(temp1, vixl32::LSR, (mirror::kUseStringCompression ? 3 : 4)));
Artem Serov517d9f62016-12-12 15:51:15 +00001617 __ B((mirror::kUseStringCompression ? ls : le), &end, /* far_target */ false);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001618
Anton Kirilov5ec62182016-10-13 20:16:02 +01001619 // Extract the characters and calculate the difference.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001620 if (mirror::kUseStringCompression) {
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001621 // For compressed strings we need to clear 0x7 from temp1, for uncompressed we need to clear
1622 // 0xf. We also need to prepare the character extraction mask `uncompressed ? 0xffffu : 0xffu`.
1623 // The compression flag is now in the highest bit of temp3, so let's play some tricks.
Anton Kirilovb88c4842016-11-14 14:37:00 +00001624 __ Orr(temp3, temp3, 0xffu << 23); // uncompressed ? 0xff800000u : 0x7ff80000u
1625 __ Bic(temp1, temp1, Operand(temp3, vixl32::LSR, 31 - 3)); // &= ~(uncompressed ? 0xfu : 0x7u)
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001626 __ Asr(temp3, temp3, 7u); // uncompressed ? 0xffff0000u : 0xff0000u.
1627 __ Lsr(temp2, temp2, temp1); // Extract second character.
1628 __ Lsr(temp3, temp3, 16u); // uncompressed ? 0xffffu : 0xffu
1629 __ Lsr(out, temp_reg, temp1); // Extract first character.
Anton Kirilovb88c4842016-11-14 14:37:00 +00001630 __ And(temp2, temp2, temp3);
1631 __ And(out, out, temp3);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001632 } else {
Anton Kirilovb88c4842016-11-14 14:37:00 +00001633 __ Bic(temp1, temp1, 0xf);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001634 __ Lsr(temp2, temp2, temp1);
1635 __ Lsr(out, temp_reg, temp1);
Anton Kirilovb88c4842016-11-14 14:37:00 +00001636 __ Movt(temp2, 0);
1637 __ Movt(out, 0);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001638 }
Anton Kirilov5ec62182016-10-13 20:16:02 +01001639
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001640 __ Sub(out, out, temp2);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001641 temps.Release(temp_reg);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001642
1643 if (mirror::kUseStringCompression) {
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001644 __ B(&end);
1645 __ Bind(&different_compression);
1646
1647 // Comparison for different compression style.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001648 const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte);
1649 DCHECK_EQ(c_char_size, 1u);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001650
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001651 // We want to free up the temp3, currently holding `str.count`, for comparison.
1652 // So, we move it to the bottom bit of the iteration count `temp0` which we tnen
1653 // need to treat as unsigned. Start by freeing the bit with an ADD and continue
1654 // further down by a LSRS+SBC which will flip the meaning of the flag but allow
1655 // `subs temp0, #2; bhi different_compression_loop` to serve as the loop condition.
Anton Kirilovb88c4842016-11-14 14:37:00 +00001656 __ Add(temp0, temp0, temp0); // Unlike LSL, this ADD is always 16-bit.
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001657 // `temp1` will hold the compressed data pointer, `temp2` the uncompressed data pointer.
Anton Kirilovb88c4842016-11-14 14:37:00 +00001658 __ Mov(temp1, str);
1659 __ Mov(temp2, arg);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001660 __ Lsrs(temp3, temp3, 1u); // Continue the move of the compression flag.
1661 {
Artem Serov0fb37192016-12-06 18:13:40 +00001662 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1663 3 * kMaxInstructionSizeInBytes,
1664 CodeBufferCheckScope::kMaximumSize);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001665 __ itt(cs); // Interleave with selection of temp1 and temp2.
1666 __ mov(cs, temp1, arg); // Preserves flags.
1667 __ mov(cs, temp2, str); // Preserves flags.
1668 }
Anton Kirilovb88c4842016-11-14 14:37:00 +00001669 __ Sbc(temp0, temp0, 0); // Complete the move of the compression flag.
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001670
1671 // Adjust temp1 and temp2 from string pointers to data pointers.
Anton Kirilovb88c4842016-11-14 14:37:00 +00001672 __ Add(temp1, temp1, value_offset);
1673 __ Add(temp2, temp2, value_offset);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001674
1675 vixl32::Label different_compression_loop;
1676 vixl32::Label different_compression_diff;
1677
1678 // Main loop for different compression.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001679 temp_reg = temps.Acquire();
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001680 __ Bind(&different_compression_loop);
1681 __ Ldrb(temp_reg, MemOperand(temp1, c_char_size, PostIndex));
1682 __ Ldrh(temp3, MemOperand(temp2, char_size, PostIndex));
Anton Kirilovb88c4842016-11-14 14:37:00 +00001683 __ Cmp(temp_reg, temp3);
Artem Serov517d9f62016-12-12 15:51:15 +00001684 __ B(ne, &different_compression_diff, /* far_target */ false);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001685 __ Subs(temp0, temp0, 2);
Artem Serov517d9f62016-12-12 15:51:15 +00001686 __ B(hi, &different_compression_loop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001687 __ B(&end);
1688
1689 // Calculate the difference.
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001690 __ Bind(&different_compression_diff);
1691 __ Sub(out, temp_reg, temp3);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001692 temps.Release(temp_reg);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001693 // Flip the difference if the `arg` is compressed.
1694 // `temp0` contains inverted `str` compression flag, i.e the same as `arg` compression flag.
1695 __ Lsrs(temp0, temp0, 1u);
1696 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
1697 "Expecting 0=compressed, 1=uncompressed");
1698
Artem Serov0fb37192016-12-06 18:13:40 +00001699 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1700 2 * kMaxInstructionSizeInBytes,
1701 CodeBufferCheckScope::kMaximumSize);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001702 __ it(cc);
1703 __ rsb(cc, out, out, 0);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001704 }
1705
1706 __ Bind(&end);
1707
1708 if (can_slow_path) {
1709 __ Bind(slow_path->GetExitLabel());
1710 }
1711}
1712
Vladimir Marko984519c2017-08-23 10:45:29 +01001713// The cut off for unrolling the loop in String.equals() intrinsic for const strings.
1714// The normal loop plus the pre-header is 9 instructions (18-26 bytes) without string compression
1715// and 12 instructions (24-32 bytes) with string compression. We can compare up to 4 bytes in 4
1716// instructions (LDR+LDR+CMP+BNE) and up to 8 bytes in 6 instructions (LDRD+LDRD+CMP+BNE+CMP+BNE).
1717// Allow up to 12 instructions (32 bytes) for the unrolled loop.
1718constexpr size_t kShortConstStringEqualsCutoffInBytes = 16;
1719
1720static const char* GetConstString(HInstruction* candidate, uint32_t* utf16_length) {
1721 if (candidate->IsLoadString()) {
1722 HLoadString* load_string = candidate->AsLoadString();
1723 const DexFile& dex_file = load_string->GetDexFile();
1724 return dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), utf16_length);
1725 }
1726 return nullptr;
1727}
1728
Anton Kirilov5ec62182016-10-13 20:16:02 +01001729void IntrinsicLocationsBuilderARMVIXL::VisitStringEquals(HInvoke* invoke) {
1730 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1731 LocationSummary::kNoCall,
1732 kIntrinsified);
1733 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1734 locations->SetInAt(0, Location::RequiresRegister());
1735 locations->SetInAt(1, Location::RequiresRegister());
Vladimir Marko984519c2017-08-23 10:45:29 +01001736
Anton Kirilov5ec62182016-10-13 20:16:02 +01001737 // Temporary registers to store lengths of strings and for calculations.
1738 // Using instruction cbz requires a low register, so explicitly set a temp to be R0.
1739 locations->AddTemp(LocationFrom(r0));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001740
Vladimir Marko984519c2017-08-23 10:45:29 +01001741 // For the generic implementation and for long const strings we need an extra temporary.
1742 // We do not need it for short const strings, up to 4 bytes, see code generation below.
1743 uint32_t const_string_length = 0u;
1744 const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length);
1745 if (const_string == nullptr) {
1746 const_string = GetConstString(invoke->InputAt(1), &const_string_length);
1747 }
1748 bool is_compressed =
1749 mirror::kUseStringCompression &&
1750 const_string != nullptr &&
1751 mirror::String::DexFileStringAllASCII(const_string, const_string_length);
1752 if (const_string == nullptr || const_string_length > (is_compressed ? 4u : 2u)) {
1753 locations->AddTemp(Location::RequiresRegister());
1754 }
1755
1756 // TODO: If the String.equals() is used only for an immediately following HIf, we can
1757 // mark it as emitted-at-use-site and emit branches directly to the appropriate blocks.
1758 // Then we shall need an extra temporary register instead of the output register.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001759 locations->SetOut(Location::RequiresRegister());
1760}
1761
1762void IntrinsicCodeGeneratorARMVIXL::VisitStringEquals(HInvoke* invoke) {
1763 ArmVIXLAssembler* assembler = GetAssembler();
1764 LocationSummary* locations = invoke->GetLocations();
1765
1766 vixl32::Register str = InputRegisterAt(invoke, 0);
1767 vixl32::Register arg = InputRegisterAt(invoke, 1);
1768 vixl32::Register out = OutputRegister(invoke);
1769
1770 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001771
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001772 vixl32::Label loop;
Anton Kirilov5ec62182016-10-13 20:16:02 +01001773 vixl32::Label end;
1774 vixl32::Label return_true;
1775 vixl32::Label return_false;
Anton Kirilov6f644202017-02-27 18:29:45 +00001776 vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &end);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001777
1778 // Get offsets of count, value, and class fields within a string object.
1779 const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
1780 const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
1781 const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
1782
1783 // Note that the null check must have been done earlier.
1784 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1785
1786 StringEqualsOptimizations optimizations(invoke);
1787 if (!optimizations.GetArgumentNotNull()) {
1788 // Check if input is null, return false if it is.
xueliang.zhongf51bc622016-11-04 09:23:32 +00001789 __ CompareAndBranchIfZero(arg, &return_false, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001790 }
1791
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001792 // Reference equality check, return true if same reference.
1793 __ Cmp(str, arg);
Artem Serov517d9f62016-12-12 15:51:15 +00001794 __ B(eq, &return_true, /* far_target */ false);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001795
Anton Kirilov5ec62182016-10-13 20:16:02 +01001796 if (!optimizations.GetArgumentIsString()) {
1797 // Instanceof check for the argument by comparing class fields.
1798 // All string objects must have the same type since String cannot be subclassed.
1799 // Receiver must be a string object, so its class field is equal to all strings' class fields.
1800 // If the argument is a string object, its class field must be equal to receiver's class field.
1801 __ Ldr(temp, MemOperand(str, class_offset));
Vladimir Marko984519c2017-08-23 10:45:29 +01001802 __ Ldr(out, MemOperand(arg, class_offset));
1803 __ Cmp(temp, out);
Artem Serov517d9f62016-12-12 15:51:15 +00001804 __ B(ne, &return_false, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001805 }
1806
Vladimir Marko984519c2017-08-23 10:45:29 +01001807 // Check if one of the inputs is a const string. Do not special-case both strings
1808 // being const, such cases should be handled by constant folding if needed.
1809 uint32_t const_string_length = 0u;
1810 const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length);
1811 if (const_string == nullptr) {
1812 const_string = GetConstString(invoke->InputAt(1), &const_string_length);
1813 if (const_string != nullptr) {
1814 std::swap(str, arg); // Make sure the const string is in `str`.
1815 }
1816 }
1817 bool is_compressed =
1818 mirror::kUseStringCompression &&
1819 const_string != nullptr &&
1820 mirror::String::DexFileStringAllASCII(const_string, const_string_length);
1821
1822 if (const_string != nullptr) {
1823 // Load `count` field of the argument string and check if it matches the const string.
1824 // Also compares the compression style, if differs return false.
1825 __ Ldr(temp, MemOperand(arg, count_offset));
1826 __ Cmp(temp, Operand(mirror::String::GetFlaggedCount(const_string_length, is_compressed)));
1827 __ B(ne, &return_false, /* far_target */ false);
1828 } else {
1829 // Load `count` fields of this and argument strings.
1830 __ Ldr(temp, MemOperand(str, count_offset));
1831 __ Ldr(out, MemOperand(arg, count_offset));
1832 // Check if `count` fields are equal, return false if they're not.
1833 // Also compares the compression style, if differs return false.
1834 __ Cmp(temp, out);
1835 __ B(ne, &return_false, /* far_target */ false);
1836 }
Anton Kirilov5ec62182016-10-13 20:16:02 +01001837
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001838 // Assertions that must hold in order to compare strings 4 bytes at a time.
Vladimir Marko984519c2017-08-23 10:45:29 +01001839 // Ok to do this because strings are zero-padded to kObjectAlignment.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001840 DCHECK_ALIGNED(value_offset, 4);
1841 static_assert(IsAligned<4>(kObjectAlignment), "String data must be aligned for fast compare.");
1842
Vladimir Marko984519c2017-08-23 10:45:29 +01001843 if (const_string != nullptr &&
1844 const_string_length <= (is_compressed ? kShortConstStringEqualsCutoffInBytes
1845 : kShortConstStringEqualsCutoffInBytes / 2u)) {
1846 // Load and compare the contents. Though we know the contents of the short const string
1847 // at compile time, materializing constants may be more code than loading from memory.
1848 int32_t offset = value_offset;
1849 size_t remaining_bytes =
1850 RoundUp(is_compressed ? const_string_length : const_string_length * 2u, 4u);
1851 while (remaining_bytes > sizeof(uint32_t)) {
1852 vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
1853 UseScratchRegisterScope scratch_scope(assembler->GetVIXLAssembler());
1854 vixl32::Register temp2 = scratch_scope.Acquire();
1855 __ Ldrd(temp, temp1, MemOperand(str, offset));
1856 __ Ldrd(temp2, out, MemOperand(arg, offset));
1857 __ Cmp(temp, temp2);
1858 __ B(ne, &return_false, /* far_label */ false);
1859 __ Cmp(temp1, out);
1860 __ B(ne, &return_false, /* far_label */ false);
1861 offset += 2u * sizeof(uint32_t);
1862 remaining_bytes -= 2u * sizeof(uint32_t);
1863 }
1864 if (remaining_bytes != 0u) {
1865 __ Ldr(temp, MemOperand(str, offset));
1866 __ Ldr(out, MemOperand(arg, offset));
1867 __ Cmp(temp, out);
1868 __ B(ne, &return_false, /* far_label */ false);
1869 }
1870 } else {
1871 // Return true if both strings are empty. Even with string compression `count == 0` means empty.
1872 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
1873 "Expecting 0=compressed, 1=uncompressed");
1874 __ CompareAndBranchIfZero(temp, &return_true, /* far_target */ false);
1875
1876 if (mirror::kUseStringCompression) {
1877 // For string compression, calculate the number of bytes to compare (not chars).
1878 // This could in theory exceed INT32_MAX, so treat temp as unsigned.
1879 __ Lsrs(temp, temp, 1u); // Extract length and check compression flag.
1880 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1881 2 * kMaxInstructionSizeInBytes,
1882 CodeBufferCheckScope::kMaximumSize);
1883 __ it(cs); // If uncompressed,
1884 __ add(cs, temp, temp, temp); // double the byte count.
1885 }
1886
1887 vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
1888 UseScratchRegisterScope scratch_scope(assembler->GetVIXLAssembler());
1889 vixl32::Register temp2 = scratch_scope.Acquire();
1890
1891 // Store offset of string value in preparation for comparison loop.
1892 __ Mov(temp1, value_offset);
1893
1894 // Loop to compare strings 4 bytes at a time starting at the front of the string.
1895 __ Bind(&loop);
1896 __ Ldr(out, MemOperand(str, temp1));
1897 __ Ldr(temp2, MemOperand(arg, temp1));
1898 __ Add(temp1, temp1, Operand::From(sizeof(uint32_t)));
1899 __ Cmp(out, temp2);
1900 __ B(ne, &return_false, /* far_target */ false);
1901 // With string compression, we have compared 4 bytes, otherwise 2 chars.
1902 __ Subs(temp, temp, mirror::kUseStringCompression ? 4 : 2);
1903 __ B(hi, &loop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001904 }
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001905
Anton Kirilov5ec62182016-10-13 20:16:02 +01001906 // Return true and exit the function.
1907 // If loop does not result in returning false, we return true.
1908 __ Bind(&return_true);
1909 __ Mov(out, 1);
Anton Kirilov6f644202017-02-27 18:29:45 +00001910 __ B(final_label);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001911
1912 // Return false and exit the function.
1913 __ Bind(&return_false);
1914 __ Mov(out, 0);
Anton Kirilov6f644202017-02-27 18:29:45 +00001915
1916 if (end.IsReferenced()) {
1917 __ Bind(&end);
1918 }
Anton Kirilov5ec62182016-10-13 20:16:02 +01001919}
1920
1921static void GenerateVisitStringIndexOf(HInvoke* invoke,
1922 ArmVIXLAssembler* assembler,
1923 CodeGeneratorARMVIXL* codegen,
1924 ArenaAllocator* allocator,
1925 bool start_at_zero) {
1926 LocationSummary* locations = invoke->GetLocations();
1927
1928 // Note that the null check must have been done earlier.
1929 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1930
1931 // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
1932 // or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
1933 SlowPathCodeARMVIXL* slow_path = nullptr;
1934 HInstruction* code_point = invoke->InputAt(1);
1935 if (code_point->IsIntConstant()) {
Anton Kirilov644032c2016-12-06 17:51:43 +00001936 if (static_cast<uint32_t>(Int32ConstantFrom(code_point)) >
Anton Kirilov5ec62182016-10-13 20:16:02 +01001937 std::numeric_limits<uint16_t>::max()) {
1938 // Always needs the slow-path. We could directly dispatch to it, but this case should be
1939 // rare, so for simplicity just put the full slow-path down and branch unconditionally.
1940 slow_path = new (allocator) IntrinsicSlowPathARMVIXL(invoke);
1941 codegen->AddSlowPath(slow_path);
1942 __ B(slow_path->GetEntryLabel());
1943 __ Bind(slow_path->GetExitLabel());
1944 return;
1945 }
1946 } else if (code_point->GetType() != Primitive::kPrimChar) {
1947 vixl32::Register char_reg = InputRegisterAt(invoke, 1);
1948 // 0xffff is not modified immediate but 0x10000 is, so use `>= 0x10000` instead of `> 0xffff`.
1949 __ Cmp(char_reg, static_cast<uint32_t>(std::numeric_limits<uint16_t>::max()) + 1);
1950 slow_path = new (allocator) IntrinsicSlowPathARMVIXL(invoke);
1951 codegen->AddSlowPath(slow_path);
1952 __ B(hs, slow_path->GetEntryLabel());
1953 }
1954
1955 if (start_at_zero) {
1956 vixl32::Register tmp_reg = RegisterFrom(locations->GetTemp(0));
1957 DCHECK(tmp_reg.Is(r2));
1958 // Start-index = 0.
1959 __ Mov(tmp_reg, 0);
1960 }
1961
1962 codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
1963 CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>();
1964
1965 if (slow_path != nullptr) {
1966 __ Bind(slow_path->GetExitLabel());
1967 }
1968}
1969
1970void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOf(HInvoke* invoke) {
1971 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1972 LocationSummary::kCallOnMainAndSlowPath,
1973 kIntrinsified);
1974 // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
1975 // best to align the inputs accordingly.
1976 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1977 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
1978 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
1979 locations->SetOut(LocationFrom(r0));
1980
1981 // Need to send start-index=0.
1982 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
1983}
1984
1985void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOf(HInvoke* invoke) {
1986 GenerateVisitStringIndexOf(
1987 invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true);
1988}
1989
1990void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) {
1991 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1992 LocationSummary::kCallOnMainAndSlowPath,
1993 kIntrinsified);
1994 // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
1995 // best to align the inputs accordingly.
1996 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1997 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
1998 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
1999 locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
2000 locations->SetOut(LocationFrom(r0));
2001}
2002
2003void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) {
2004 GenerateVisitStringIndexOf(
2005 invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false);
2006}
2007
2008void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) {
2009 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2010 LocationSummary::kCallOnMainAndSlowPath,
2011 kIntrinsified);
2012 InvokeRuntimeCallingConventionARMVIXL calling_convention;
2013 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
2014 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
2015 locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
2016 locations->SetInAt(3, LocationFrom(calling_convention.GetRegisterAt(3)));
2017 locations->SetOut(LocationFrom(r0));
2018}
2019
2020void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) {
2021 ArmVIXLAssembler* assembler = GetAssembler();
2022 vixl32::Register byte_array = InputRegisterAt(invoke, 0);
2023 __ Cmp(byte_array, 0);
2024 SlowPathCodeARMVIXL* slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
2025 codegen_->AddSlowPath(slow_path);
2026 __ B(eq, slow_path->GetEntryLabel());
2027
2028 codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
2029 CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
2030 __ Bind(slow_path->GetExitLabel());
2031}
2032
2033void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) {
2034 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2035 LocationSummary::kCallOnMainOnly,
2036 kIntrinsified);
2037 InvokeRuntimeCallingConventionARMVIXL calling_convention;
2038 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
2039 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
2040 locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
2041 locations->SetOut(LocationFrom(r0));
2042}
2043
2044void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) {
2045 // No need to emit code checking whether `locations->InAt(2)` is a null
2046 // pointer, as callers of the native method
2047 //
2048 // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
2049 //
2050 // all include a null check on `data` before calling that method.
2051 codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
2052 CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
2053}
2054
2055void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) {
2056 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2057 LocationSummary::kCallOnMainAndSlowPath,
2058 kIntrinsified);
2059 InvokeRuntimeCallingConventionARMVIXL calling_convention;
2060 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
2061 locations->SetOut(LocationFrom(r0));
2062}
2063
2064void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) {
2065 ArmVIXLAssembler* assembler = GetAssembler();
2066 vixl32::Register string_to_copy = InputRegisterAt(invoke, 0);
2067 __ Cmp(string_to_copy, 0);
2068 SlowPathCodeARMVIXL* slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
2069 codegen_->AddSlowPath(slow_path);
2070 __ B(eq, slow_path->GetEntryLabel());
2071
2072 codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path);
2073 CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
2074
2075 __ Bind(slow_path->GetExitLabel());
2076}
2077
2078void IntrinsicLocationsBuilderARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) {
2079 // The only read barrier implementation supporting the
2080 // SystemArrayCopy intrinsic is the Baker-style read barriers.
2081 if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
2082 return;
2083 }
2084
2085 CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
2086 LocationSummary* locations = invoke->GetLocations();
2087 if (locations == nullptr) {
2088 return;
2089 }
2090
2091 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
2092 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
2093 HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
2094
2095 if (src_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(src_pos->GetValue())) {
2096 locations->SetInAt(1, Location::RequiresRegister());
2097 }
2098 if (dest_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(dest_pos->GetValue())) {
2099 locations->SetInAt(3, Location::RequiresRegister());
2100 }
2101 if (length != nullptr && !assembler_->ShifterOperandCanAlwaysHold(length->GetValue())) {
2102 locations->SetInAt(4, Location::RequiresRegister());
2103 }
2104 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2105 // Temporary register IP cannot be used in
2106 // ReadBarrierSystemArrayCopySlowPathARM (because that register
2107 // is clobbered by ReadBarrierMarkRegX entry points). Get an extra
2108 // temporary register from the register allocator.
2109 locations->AddTemp(Location::RequiresRegister());
Vladimir Markoeee1c0e2017-04-21 17:58:41 +01002110 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen_);
2111 arm_codegen->MaybeAddBakerCcEntrypointTempForFields(locations);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002112 }
2113}
2114
2115static void CheckPosition(ArmVIXLAssembler* assembler,
2116 Location pos,
2117 vixl32::Register input,
2118 Location length,
2119 SlowPathCodeARMVIXL* slow_path,
2120 vixl32::Register temp,
2121 bool length_is_input_length = false) {
2122 // Where is the length in the Array?
2123 const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
2124
2125 if (pos.IsConstant()) {
2126 int32_t pos_const = Int32ConstantFrom(pos);
2127 if (pos_const == 0) {
2128 if (!length_is_input_length) {
2129 // Check that length(input) >= length.
2130 __ Ldr(temp, MemOperand(input, length_offset));
2131 if (length.IsConstant()) {
2132 __ Cmp(temp, Int32ConstantFrom(length));
2133 } else {
2134 __ Cmp(temp, RegisterFrom(length));
2135 }
2136 __ B(lt, slow_path->GetEntryLabel());
2137 }
2138 } else {
2139 // Check that length(input) >= pos.
2140 __ Ldr(temp, MemOperand(input, length_offset));
2141 __ Subs(temp, temp, pos_const);
2142 __ B(lt, slow_path->GetEntryLabel());
2143
2144 // Check that (length(input) - pos) >= length.
2145 if (length.IsConstant()) {
2146 __ Cmp(temp, Int32ConstantFrom(length));
2147 } else {
2148 __ Cmp(temp, RegisterFrom(length));
2149 }
2150 __ B(lt, slow_path->GetEntryLabel());
2151 }
2152 } else if (length_is_input_length) {
2153 // The only way the copy can succeed is if pos is zero.
2154 vixl32::Register pos_reg = RegisterFrom(pos);
xueliang.zhongf51bc622016-11-04 09:23:32 +00002155 __ CompareAndBranchIfNonZero(pos_reg, slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002156 } else {
2157 // Check that pos >= 0.
2158 vixl32::Register pos_reg = RegisterFrom(pos);
2159 __ Cmp(pos_reg, 0);
2160 __ B(lt, slow_path->GetEntryLabel());
2161
2162 // Check that pos <= length(input).
2163 __ Ldr(temp, MemOperand(input, length_offset));
2164 __ Subs(temp, temp, pos_reg);
2165 __ B(lt, slow_path->GetEntryLabel());
2166
2167 // Check that (length(input) - pos) >= length.
2168 if (length.IsConstant()) {
2169 __ Cmp(temp, Int32ConstantFrom(length));
2170 } else {
2171 __ Cmp(temp, RegisterFrom(length));
2172 }
2173 __ B(lt, slow_path->GetEntryLabel());
2174 }
2175}
2176
2177void IntrinsicCodeGeneratorARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) {
2178 // The only read barrier implementation supporting the
2179 // SystemArrayCopy intrinsic is the Baker-style read barriers.
2180 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
2181
2182 ArmVIXLAssembler* assembler = GetAssembler();
2183 LocationSummary* locations = invoke->GetLocations();
2184
2185 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2186 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
2187 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
2188 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
2189 uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
2190
2191 vixl32::Register src = InputRegisterAt(invoke, 0);
2192 Location src_pos = locations->InAt(1);
2193 vixl32::Register dest = InputRegisterAt(invoke, 2);
2194 Location dest_pos = locations->InAt(3);
2195 Location length = locations->InAt(4);
2196 Location temp1_loc = locations->GetTemp(0);
2197 vixl32::Register temp1 = RegisterFrom(temp1_loc);
2198 Location temp2_loc = locations->GetTemp(1);
2199 vixl32::Register temp2 = RegisterFrom(temp2_loc);
2200 Location temp3_loc = locations->GetTemp(2);
2201 vixl32::Register temp3 = RegisterFrom(temp3_loc);
2202
2203 SlowPathCodeARMVIXL* intrinsic_slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
2204 codegen_->AddSlowPath(intrinsic_slow_path);
2205
2206 vixl32::Label conditions_on_positions_validated;
2207 SystemArrayCopyOptimizations optimizations(invoke);
2208
2209 // If source and destination are the same, we go to slow path if we need to do
2210 // forward copying.
2211 if (src_pos.IsConstant()) {
2212 int32_t src_pos_constant = Int32ConstantFrom(src_pos);
2213 if (dest_pos.IsConstant()) {
2214 int32_t dest_pos_constant = Int32ConstantFrom(dest_pos);
2215 if (optimizations.GetDestinationIsSource()) {
2216 // Checked when building locations.
2217 DCHECK_GE(src_pos_constant, dest_pos_constant);
2218 } else if (src_pos_constant < dest_pos_constant) {
2219 __ Cmp(src, dest);
2220 __ B(eq, intrinsic_slow_path->GetEntryLabel());
2221 }
2222
2223 // Checked when building locations.
2224 DCHECK(!optimizations.GetDestinationIsSource()
2225 || (src_pos_constant >= Int32ConstantFrom(dest_pos)));
2226 } else {
2227 if (!optimizations.GetDestinationIsSource()) {
2228 __ Cmp(src, dest);
Artem Serov517d9f62016-12-12 15:51:15 +00002229 __ B(ne, &conditions_on_positions_validated, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002230 }
2231 __ Cmp(RegisterFrom(dest_pos), src_pos_constant);
2232 __ B(gt, intrinsic_slow_path->GetEntryLabel());
2233 }
2234 } else {
2235 if (!optimizations.GetDestinationIsSource()) {
2236 __ Cmp(src, dest);
Artem Serov517d9f62016-12-12 15:51:15 +00002237 __ B(ne, &conditions_on_positions_validated, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002238 }
2239 if (dest_pos.IsConstant()) {
2240 int32_t dest_pos_constant = Int32ConstantFrom(dest_pos);
2241 __ Cmp(RegisterFrom(src_pos), dest_pos_constant);
2242 } else {
2243 __ Cmp(RegisterFrom(src_pos), RegisterFrom(dest_pos));
2244 }
2245 __ B(lt, intrinsic_slow_path->GetEntryLabel());
2246 }
2247
2248 __ Bind(&conditions_on_positions_validated);
2249
2250 if (!optimizations.GetSourceIsNotNull()) {
2251 // Bail out if the source is null.
xueliang.zhongf51bc622016-11-04 09:23:32 +00002252 __ CompareAndBranchIfZero(src, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002253 }
2254
2255 if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
2256 // Bail out if the destination is null.
xueliang.zhongf51bc622016-11-04 09:23:32 +00002257 __ CompareAndBranchIfZero(dest, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002258 }
2259
2260 // If the length is negative, bail out.
2261 // We have already checked in the LocationsBuilder for the constant case.
2262 if (!length.IsConstant() &&
2263 !optimizations.GetCountIsSourceLength() &&
2264 !optimizations.GetCountIsDestinationLength()) {
2265 __ Cmp(RegisterFrom(length), 0);
2266 __ B(lt, intrinsic_slow_path->GetEntryLabel());
2267 }
2268
2269 // Validity checks: source.
2270 CheckPosition(assembler,
2271 src_pos,
2272 src,
2273 length,
2274 intrinsic_slow_path,
2275 temp1,
2276 optimizations.GetCountIsSourceLength());
2277
2278 // Validity checks: dest.
2279 CheckPosition(assembler,
2280 dest_pos,
2281 dest,
2282 length,
2283 intrinsic_slow_path,
2284 temp1,
2285 optimizations.GetCountIsDestinationLength());
2286
2287 if (!optimizations.GetDoesNotNeedTypeCheck()) {
2288 // Check whether all elements of the source array are assignable to the component
2289 // type of the destination array. We do two checks: the classes are the same,
2290 // or the destination is Object[]. If none of these checks succeed, we go to the
2291 // slow path.
2292
2293 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2294 if (!optimizations.GetSourceIsNonPrimitiveArray()) {
2295 // /* HeapReference<Class> */ temp1 = src->klass_
2296 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2297 invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check */ false);
2298 // Bail out if the source is not a non primitive array.
2299 // /* HeapReference<Class> */ temp1 = temp1->component_type_
2300 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2301 invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
xueliang.zhongf51bc622016-11-04 09:23:32 +00002302 __ CompareAndBranchIfZero(temp1, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002303 // If heap poisoning is enabled, `temp1` has been unpoisoned
2304 // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
2305 // /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_);
2306 __ Ldrh(temp1, MemOperand(temp1, primitive_offset));
2307 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
xueliang.zhongf51bc622016-11-04 09:23:32 +00002308 __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002309 }
2310
2311 // /* HeapReference<Class> */ temp1 = dest->klass_
2312 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2313 invoke, temp1_loc, dest, class_offset, temp2_loc, /* needs_null_check */ false);
2314
2315 if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
2316 // Bail out if the destination is not a non primitive array.
2317 //
2318 // Register `temp1` is not trashed by the read barrier emitted
2319 // by GenerateFieldLoadWithBakerReadBarrier below, as that
2320 // method produces a call to a ReadBarrierMarkRegX entry point,
2321 // which saves all potentially live registers, including
2322 // temporaries such a `temp1`.
2323 // /* HeapReference<Class> */ temp2 = temp1->component_type_
2324 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2325 invoke, temp2_loc, temp1, component_offset, temp3_loc, /* needs_null_check */ false);
xueliang.zhongf51bc622016-11-04 09:23:32 +00002326 __ CompareAndBranchIfZero(temp2, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002327 // If heap poisoning is enabled, `temp2` has been unpoisoned
2328 // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
2329 // /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_);
2330 __ Ldrh(temp2, MemOperand(temp2, primitive_offset));
2331 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
xueliang.zhongf51bc622016-11-04 09:23:32 +00002332 __ CompareAndBranchIfNonZero(temp2, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002333 }
2334
2335 // For the same reason given earlier, `temp1` is not trashed by the
2336 // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
2337 // /* HeapReference<Class> */ temp2 = src->klass_
2338 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2339 invoke, temp2_loc, src, class_offset, temp3_loc, /* needs_null_check */ false);
2340 // Note: if heap poisoning is on, we are comparing two unpoisoned references here.
2341 __ Cmp(temp1, temp2);
2342
2343 if (optimizations.GetDestinationIsTypedObjectArray()) {
2344 vixl32::Label do_copy;
Artem Serov517d9f62016-12-12 15:51:15 +00002345 __ B(eq, &do_copy, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002346 // /* HeapReference<Class> */ temp1 = temp1->component_type_
2347 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2348 invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
2349 // /* HeapReference<Class> */ temp1 = temp1->super_class_
2350 // We do not need to emit a read barrier for the following
2351 // heap reference load, as `temp1` is only used in a
2352 // comparison with null below, and this reference is not
2353 // kept afterwards.
2354 __ Ldr(temp1, MemOperand(temp1, super_offset));
xueliang.zhongf51bc622016-11-04 09:23:32 +00002355 __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002356 __ Bind(&do_copy);
2357 } else {
2358 __ B(ne, intrinsic_slow_path->GetEntryLabel());
2359 }
2360 } else {
2361 // Non read barrier code.
2362
2363 // /* HeapReference<Class> */ temp1 = dest->klass_
2364 __ Ldr(temp1, MemOperand(dest, class_offset));
2365 // /* HeapReference<Class> */ temp2 = src->klass_
2366 __ Ldr(temp2, MemOperand(src, class_offset));
2367 bool did_unpoison = false;
2368 if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
2369 !optimizations.GetSourceIsNonPrimitiveArray()) {
2370 // One or two of the references need to be unpoisoned. Unpoison them
2371 // both to make the identity check valid.
2372 assembler->MaybeUnpoisonHeapReference(temp1);
2373 assembler->MaybeUnpoisonHeapReference(temp2);
2374 did_unpoison = true;
2375 }
2376
2377 if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
2378 // Bail out if the destination is not a non primitive array.
2379 // /* HeapReference<Class> */ temp3 = temp1->component_type_
2380 __ Ldr(temp3, MemOperand(temp1, component_offset));
xueliang.zhongf51bc622016-11-04 09:23:32 +00002381 __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002382 assembler->MaybeUnpoisonHeapReference(temp3);
2383 // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
2384 __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
2385 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
xueliang.zhongf51bc622016-11-04 09:23:32 +00002386 __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002387 }
2388
2389 if (!optimizations.GetSourceIsNonPrimitiveArray()) {
2390 // Bail out if the source is not a non primitive array.
2391 // /* HeapReference<Class> */ temp3 = temp2->component_type_
2392 __ Ldr(temp3, MemOperand(temp2, component_offset));
xueliang.zhongf51bc622016-11-04 09:23:32 +00002393 __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002394 assembler->MaybeUnpoisonHeapReference(temp3);
2395 // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
2396 __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
2397 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
xueliang.zhongf51bc622016-11-04 09:23:32 +00002398 __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002399 }
2400
2401 __ Cmp(temp1, temp2);
2402
2403 if (optimizations.GetDestinationIsTypedObjectArray()) {
2404 vixl32::Label do_copy;
Artem Serov517d9f62016-12-12 15:51:15 +00002405 __ B(eq, &do_copy, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002406 if (!did_unpoison) {
2407 assembler->MaybeUnpoisonHeapReference(temp1);
2408 }
2409 // /* HeapReference<Class> */ temp1 = temp1->component_type_
2410 __ Ldr(temp1, MemOperand(temp1, component_offset));
2411 assembler->MaybeUnpoisonHeapReference(temp1);
2412 // /* HeapReference<Class> */ temp1 = temp1->super_class_
2413 __ Ldr(temp1, MemOperand(temp1, super_offset));
2414 // No need to unpoison the result, we're comparing against null.
xueliang.zhongf51bc622016-11-04 09:23:32 +00002415 __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002416 __ Bind(&do_copy);
2417 } else {
2418 __ B(ne, intrinsic_slow_path->GetEntryLabel());
2419 }
2420 }
2421 } else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
2422 DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
2423 // Bail out if the source is not a non primitive array.
2424 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2425 // /* HeapReference<Class> */ temp1 = src->klass_
2426 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2427 invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check */ false);
2428 // /* HeapReference<Class> */ temp3 = temp1->component_type_
2429 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2430 invoke, temp3_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
xueliang.zhongf51bc622016-11-04 09:23:32 +00002431 __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002432 // If heap poisoning is enabled, `temp3` has been unpoisoned
2433 // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
2434 } else {
2435 // /* HeapReference<Class> */ temp1 = src->klass_
2436 __ Ldr(temp1, MemOperand(src, class_offset));
2437 assembler->MaybeUnpoisonHeapReference(temp1);
2438 // /* HeapReference<Class> */ temp3 = temp1->component_type_
2439 __ Ldr(temp3, MemOperand(temp1, component_offset));
xueliang.zhongf51bc622016-11-04 09:23:32 +00002440 __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002441 assembler->MaybeUnpoisonHeapReference(temp3);
2442 }
2443 // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
2444 __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
2445 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
xueliang.zhongf51bc622016-11-04 09:23:32 +00002446 __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002447 }
2448
Roland Levillain1663d162017-03-17 15:15:21 +00002449 if (length.IsConstant() && Int32ConstantFrom(length) == 0) {
2450 // Null constant length: not need to emit the loop code at all.
Anton Kirilov5ec62182016-10-13 20:16:02 +01002451 } else {
Roland Levillain1663d162017-03-17 15:15:21 +00002452 vixl32::Label done;
2453 const Primitive::Type type = Primitive::kPrimNot;
2454 const int32_t element_size = Primitive::ComponentSize(type);
2455
2456 if (length.IsRegister()) {
2457 // Don't enter the copy loop if the length is null.
2458 __ CompareAndBranchIfZero(RegisterFrom(length), &done, /* is_far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002459 }
Roland Levillain1663d162017-03-17 15:15:21 +00002460
2461 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2462 // TODO: Also convert this intrinsic to the IsGcMarking strategy?
2463
2464 // SystemArrayCopy implementation for Baker read barriers (see
Roland Levillain9983e302017-07-14 14:34:22 +01002465 // also CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier):
Roland Levillain1663d162017-03-17 15:15:21 +00002466 //
2467 // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
2468 // lfence; // Load fence or artificial data dependency to prevent load-load reordering
2469 // bool is_gray = (rb_state == ReadBarrier::GrayState());
2470 // if (is_gray) {
2471 // // Slow-path copy.
2472 // do {
2473 // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
2474 // } while (src_ptr != end_ptr)
2475 // } else {
2476 // // Fast-path copy.
2477 // do {
2478 // *dest_ptr++ = *src_ptr++;
2479 // } while (src_ptr != end_ptr)
2480 // }
2481
2482 // /* int32_t */ monitor = src->monitor_
2483 __ Ldr(temp2, MemOperand(src, monitor_offset));
2484 // /* LockWord */ lock_word = LockWord(monitor)
2485 static_assert(sizeof(LockWord) == sizeof(int32_t),
2486 "art::LockWord and int32_t have different sizes.");
2487
2488 // Introduce a dependency on the lock_word including the rb_state,
2489 // which shall prevent load-load reordering without using
2490 // a memory barrier (which would be more expensive).
2491 // `src` is unchanged by this operation, but its value now depends
2492 // on `temp2`.
2493 __ Add(src, src, Operand(temp2, vixl32::LSR, 32));
2494
2495 // Compute the base source address in `temp1`.
2496 // Note that `temp1` (the base source address) is computed from
2497 // `src` (and `src_pos`) here, and thus honors the artificial
2498 // dependency of `src` on `temp2`.
2499 GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1);
2500 // Compute the end source address in `temp3`.
2501 GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3);
2502 // The base destination address is computed later, as `temp2` is
2503 // used for intermediate computations.
2504
2505 // Slow path used to copy array when `src` is gray.
2506 // Note that the base destination address is computed in `temp2`
2507 // by the slow path code.
2508 SlowPathCodeARMVIXL* read_barrier_slow_path =
2509 new (GetAllocator()) ReadBarrierSystemArrayCopySlowPathARMVIXL(invoke);
2510 codegen_->AddSlowPath(read_barrier_slow_path);
2511
2512 // Given the numeric representation, it's enough to check the low bit of the
2513 // rb_state. We do that by shifting the bit out of the lock word with LSRS
2514 // which can be a 16-bit instruction unlike the TST immediate.
2515 static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
2516 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
2517 __ Lsrs(temp2, temp2, LockWord::kReadBarrierStateShift + 1);
2518 // Carry flag is the last bit shifted out by LSRS.
2519 __ B(cs, read_barrier_slow_path->GetEntryLabel());
2520
2521 // Fast-path copy.
2522 // Compute the base destination address in `temp2`.
2523 GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2);
2524 // Iterate over the arrays and do a raw copy of the objects. We don't need to
2525 // poison/unpoison.
2526 vixl32::Label loop;
2527 __ Bind(&loop);
2528 {
2529 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2530 const vixl32::Register temp_reg = temps.Acquire();
2531 __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex));
2532 __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex));
2533 }
2534 __ Cmp(temp1, temp3);
2535 __ B(ne, &loop, /* far_target */ false);
2536
2537 __ Bind(read_barrier_slow_path->GetExitLabel());
2538 } else {
2539 // Non read barrier code.
2540 // Compute the base source address in `temp1`.
2541 GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1);
2542 // Compute the base destination address in `temp2`.
2543 GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2);
2544 // Compute the end source address in `temp3`.
2545 GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3);
2546 // Iterate over the arrays and do a raw copy of the objects. We don't need to
2547 // poison/unpoison.
2548 vixl32::Label loop;
2549 __ Bind(&loop);
2550 {
2551 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2552 const vixl32::Register temp_reg = temps.Acquire();
2553 __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex));
2554 __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex));
2555 }
2556 __ Cmp(temp1, temp3);
2557 __ B(ne, &loop, /* far_target */ false);
2558 }
Anton Kirilov5ec62182016-10-13 20:16:02 +01002559 __ Bind(&done);
2560 }
2561
2562 // We only need one card marking on the destination array.
2563 codegen_->MarkGCCard(temp1, temp2, dest, NoReg, /* value_can_be_null */ false);
2564
2565 __ Bind(intrinsic_slow_path->GetExitLabel());
2566}
2567
2568static void CreateFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
2569 // If the graph is debuggable, all callee-saved floating-point registers are blocked by
2570 // the code generator. Furthermore, the register allocator creates fixed live intervals
2571 // for all caller-saved registers because we are doing a function call. As a result, if
2572 // the input and output locations are unallocated, the register allocator runs out of
2573 // registers and fails; however, a debuggable graph is not the common case.
2574 if (invoke->GetBlock()->GetGraph()->IsDebuggable()) {
2575 return;
2576 }
2577
2578 DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
2579 DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble);
2580 DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble);
2581
2582 LocationSummary* const locations = new (arena) LocationSummary(invoke,
2583 LocationSummary::kCallOnMainOnly,
2584 kIntrinsified);
2585 const InvokeRuntimeCallingConventionARMVIXL calling_convention;
2586
2587 locations->SetInAt(0, Location::RequiresFpuRegister());
2588 locations->SetOut(Location::RequiresFpuRegister());
2589 // Native code uses the soft float ABI.
2590 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
2591 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1)));
2592}
2593
2594static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
2595 // If the graph is debuggable, all callee-saved floating-point registers are blocked by
2596 // the code generator. Furthermore, the register allocator creates fixed live intervals
2597 // for all caller-saved registers because we are doing a function call. As a result, if
2598 // the input and output locations are unallocated, the register allocator runs out of
2599 // registers and fails; however, a debuggable graph is not the common case.
2600 if (invoke->GetBlock()->GetGraph()->IsDebuggable()) {
2601 return;
2602 }
2603
2604 DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
2605 DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble);
2606 DCHECK_EQ(invoke->InputAt(1)->GetType(), Primitive::kPrimDouble);
2607 DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble);
2608
2609 LocationSummary* const locations = new (arena) LocationSummary(invoke,
2610 LocationSummary::kCallOnMainOnly,
2611 kIntrinsified);
2612 const InvokeRuntimeCallingConventionARMVIXL calling_convention;
2613
2614 locations->SetInAt(0, Location::RequiresFpuRegister());
2615 locations->SetInAt(1, Location::RequiresFpuRegister());
2616 locations->SetOut(Location::RequiresFpuRegister());
2617 // Native code uses the soft float ABI.
2618 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
2619 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1)));
2620 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
2621 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(3)));
2622}
2623
2624static void GenFPToFPCall(HInvoke* invoke,
2625 ArmVIXLAssembler* assembler,
2626 CodeGeneratorARMVIXL* codegen,
2627 QuickEntrypointEnum entry) {
2628 LocationSummary* const locations = invoke->GetLocations();
2629
2630 DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
2631 DCHECK(locations->WillCall() && locations->Intrinsified());
2632
2633 // Native code uses the soft float ABI.
2634 __ Vmov(RegisterFrom(locations->GetTemp(0)),
2635 RegisterFrom(locations->GetTemp(1)),
2636 InputDRegisterAt(invoke, 0));
2637 codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
2638 __ Vmov(OutputDRegister(invoke),
2639 RegisterFrom(locations->GetTemp(0)),
2640 RegisterFrom(locations->GetTemp(1)));
2641}
2642
2643static void GenFPFPToFPCall(HInvoke* invoke,
2644 ArmVIXLAssembler* assembler,
2645 CodeGeneratorARMVIXL* codegen,
2646 QuickEntrypointEnum entry) {
2647 LocationSummary* const locations = invoke->GetLocations();
2648
2649 DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
2650 DCHECK(locations->WillCall() && locations->Intrinsified());
2651
2652 // Native code uses the soft float ABI.
2653 __ Vmov(RegisterFrom(locations->GetTemp(0)),
2654 RegisterFrom(locations->GetTemp(1)),
2655 InputDRegisterAt(invoke, 0));
2656 __ Vmov(RegisterFrom(locations->GetTemp(2)),
2657 RegisterFrom(locations->GetTemp(3)),
2658 InputDRegisterAt(invoke, 1));
2659 codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
2660 __ Vmov(OutputDRegister(invoke),
2661 RegisterFrom(locations->GetTemp(0)),
2662 RegisterFrom(locations->GetTemp(1)));
2663}
2664
2665void IntrinsicLocationsBuilderARMVIXL::VisitMathCos(HInvoke* invoke) {
2666 CreateFPToFPCallLocations(arena_, invoke);
2667}
2668
2669void IntrinsicCodeGeneratorARMVIXL::VisitMathCos(HInvoke* invoke) {
2670 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCos);
2671}
2672
2673void IntrinsicLocationsBuilderARMVIXL::VisitMathSin(HInvoke* invoke) {
2674 CreateFPToFPCallLocations(arena_, invoke);
2675}
2676
2677void IntrinsicCodeGeneratorARMVIXL::VisitMathSin(HInvoke* invoke) {
2678 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSin);
2679}
2680
2681void IntrinsicLocationsBuilderARMVIXL::VisitMathAcos(HInvoke* invoke) {
2682 CreateFPToFPCallLocations(arena_, invoke);
2683}
2684
2685void IntrinsicCodeGeneratorARMVIXL::VisitMathAcos(HInvoke* invoke) {
2686 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAcos);
2687}
2688
2689void IntrinsicLocationsBuilderARMVIXL::VisitMathAsin(HInvoke* invoke) {
2690 CreateFPToFPCallLocations(arena_, invoke);
2691}
2692
2693void IntrinsicCodeGeneratorARMVIXL::VisitMathAsin(HInvoke* invoke) {
2694 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAsin);
2695}
2696
2697void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan(HInvoke* invoke) {
2698 CreateFPToFPCallLocations(arena_, invoke);
2699}
2700
2701void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan(HInvoke* invoke) {
2702 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan);
2703}
2704
2705void IntrinsicLocationsBuilderARMVIXL::VisitMathCbrt(HInvoke* invoke) {
2706 CreateFPToFPCallLocations(arena_, invoke);
2707}
2708
2709void IntrinsicCodeGeneratorARMVIXL::VisitMathCbrt(HInvoke* invoke) {
2710 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCbrt);
2711}
2712
2713void IntrinsicLocationsBuilderARMVIXL::VisitMathCosh(HInvoke* invoke) {
2714 CreateFPToFPCallLocations(arena_, invoke);
2715}
2716
2717void IntrinsicCodeGeneratorARMVIXL::VisitMathCosh(HInvoke* invoke) {
2718 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCosh);
2719}
2720
2721void IntrinsicLocationsBuilderARMVIXL::VisitMathExp(HInvoke* invoke) {
2722 CreateFPToFPCallLocations(arena_, invoke);
2723}
2724
2725void IntrinsicCodeGeneratorARMVIXL::VisitMathExp(HInvoke* invoke) {
2726 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExp);
2727}
2728
2729void IntrinsicLocationsBuilderARMVIXL::VisitMathExpm1(HInvoke* invoke) {
2730 CreateFPToFPCallLocations(arena_, invoke);
2731}
2732
2733void IntrinsicCodeGeneratorARMVIXL::VisitMathExpm1(HInvoke* invoke) {
2734 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExpm1);
2735}
2736
2737void IntrinsicLocationsBuilderARMVIXL::VisitMathLog(HInvoke* invoke) {
2738 CreateFPToFPCallLocations(arena_, invoke);
2739}
2740
2741void IntrinsicCodeGeneratorARMVIXL::VisitMathLog(HInvoke* invoke) {
2742 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog);
2743}
2744
2745void IntrinsicLocationsBuilderARMVIXL::VisitMathLog10(HInvoke* invoke) {
2746 CreateFPToFPCallLocations(arena_, invoke);
2747}
2748
2749void IntrinsicCodeGeneratorARMVIXL::VisitMathLog10(HInvoke* invoke) {
2750 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog10);
2751}
2752
2753void IntrinsicLocationsBuilderARMVIXL::VisitMathSinh(HInvoke* invoke) {
2754 CreateFPToFPCallLocations(arena_, invoke);
2755}
2756
2757void IntrinsicCodeGeneratorARMVIXL::VisitMathSinh(HInvoke* invoke) {
2758 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSinh);
2759}
2760
2761void IntrinsicLocationsBuilderARMVIXL::VisitMathTan(HInvoke* invoke) {
2762 CreateFPToFPCallLocations(arena_, invoke);
2763}
2764
2765void IntrinsicCodeGeneratorARMVIXL::VisitMathTan(HInvoke* invoke) {
2766 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTan);
2767}
2768
2769void IntrinsicLocationsBuilderARMVIXL::VisitMathTanh(HInvoke* invoke) {
2770 CreateFPToFPCallLocations(arena_, invoke);
2771}
2772
2773void IntrinsicCodeGeneratorARMVIXL::VisitMathTanh(HInvoke* invoke) {
2774 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTanh);
2775}
2776
2777void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan2(HInvoke* invoke) {
2778 CreateFPFPToFPCallLocations(arena_, invoke);
2779}
2780
2781void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan2(HInvoke* invoke) {
2782 GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan2);
2783}
2784
2785void IntrinsicLocationsBuilderARMVIXL::VisitMathHypot(HInvoke* invoke) {
2786 CreateFPFPToFPCallLocations(arena_, invoke);
2787}
2788
2789void IntrinsicCodeGeneratorARMVIXL::VisitMathHypot(HInvoke* invoke) {
2790 GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickHypot);
2791}
2792
2793void IntrinsicLocationsBuilderARMVIXL::VisitMathNextAfter(HInvoke* invoke) {
2794 CreateFPFPToFPCallLocations(arena_, invoke);
2795}
2796
2797void IntrinsicCodeGeneratorARMVIXL::VisitMathNextAfter(HInvoke* invoke) {
2798 GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickNextAfter);
2799}
2800
2801void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverse(HInvoke* invoke) {
2802 CreateIntToIntLocations(arena_, invoke);
2803}
2804
2805void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverse(HInvoke* invoke) {
2806 ArmVIXLAssembler* assembler = GetAssembler();
2807 __ Rbit(OutputRegister(invoke), InputRegisterAt(invoke, 0));
2808}
2809
2810void IntrinsicLocationsBuilderARMVIXL::VisitLongReverse(HInvoke* invoke) {
Vladimir Marko1819e412017-08-29 17:02:56 +01002811 CreateLongToLongLocationsWithOverlap(arena_, invoke);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002812}
2813
2814void IntrinsicCodeGeneratorARMVIXL::VisitLongReverse(HInvoke* invoke) {
2815 ArmVIXLAssembler* assembler = GetAssembler();
2816 LocationSummary* locations = invoke->GetLocations();
2817
2818 vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
2819 vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
2820 vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
2821 vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
2822
2823 __ Rbit(out_reg_lo, in_reg_hi);
2824 __ Rbit(out_reg_hi, in_reg_lo);
2825}
2826
2827void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) {
2828 CreateIntToIntLocations(arena_, invoke);
2829}
2830
2831void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) {
2832 ArmVIXLAssembler* assembler = GetAssembler();
2833 __ Rev(OutputRegister(invoke), InputRegisterAt(invoke, 0));
2834}
2835
2836void IntrinsicLocationsBuilderARMVIXL::VisitLongReverseBytes(HInvoke* invoke) {
Vladimir Marko1819e412017-08-29 17:02:56 +01002837 CreateLongToLongLocationsWithOverlap(arena_, invoke);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002838}
2839
2840void IntrinsicCodeGeneratorARMVIXL::VisitLongReverseBytes(HInvoke* invoke) {
2841 ArmVIXLAssembler* assembler = GetAssembler();
2842 LocationSummary* locations = invoke->GetLocations();
2843
2844 vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
2845 vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
2846 vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
2847 vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
2848
2849 __ Rev(out_reg_lo, in_reg_hi);
2850 __ Rev(out_reg_hi, in_reg_lo);
2851}
2852
2853void IntrinsicLocationsBuilderARMVIXL::VisitShortReverseBytes(HInvoke* invoke) {
2854 CreateIntToIntLocations(arena_, invoke);
2855}
2856
2857void IntrinsicCodeGeneratorARMVIXL::VisitShortReverseBytes(HInvoke* invoke) {
2858 ArmVIXLAssembler* assembler = GetAssembler();
2859 __ Revsh(OutputRegister(invoke), InputRegisterAt(invoke, 0));
2860}
2861
2862static void GenBitCount(HInvoke* instr, Primitive::Type type, ArmVIXLAssembler* assembler) {
2863 DCHECK(Primitive::IsIntOrLongType(type)) << type;
2864 DCHECK_EQ(instr->GetType(), Primitive::kPrimInt);
2865 DCHECK_EQ(Primitive::PrimitiveKind(instr->InputAt(0)->GetType()), type);
2866
2867 bool is_long = type == Primitive::kPrimLong;
2868 LocationSummary* locations = instr->GetLocations();
2869 Location in = locations->InAt(0);
2870 vixl32::Register src_0 = is_long ? LowRegisterFrom(in) : RegisterFrom(in);
2871 vixl32::Register src_1 = is_long ? HighRegisterFrom(in) : src_0;
2872 vixl32::SRegister tmp_s = LowSRegisterFrom(locations->GetTemp(0));
2873 vixl32::DRegister tmp_d = DRegisterFrom(locations->GetTemp(0));
2874 vixl32::Register out_r = OutputRegister(instr);
2875
2876 // Move data from core register(s) to temp D-reg for bit count calculation, then move back.
2877 // According to Cortex A57 and A72 optimization guides, compared to transferring to full D-reg,
2878 // transferring data from core reg to upper or lower half of vfp D-reg requires extra latency,
2879 // That's why for integer bit count, we use 'vmov d0, r0, r0' instead of 'vmov d0[0], r0'.
2880 __ Vmov(tmp_d, src_1, src_0); // Temp DReg |--src_1|--src_0|
2881 __ Vcnt(Untyped8, tmp_d, tmp_d); // Temp DReg |c|c|c|c|c|c|c|c|
2882 __ Vpaddl(U8, tmp_d, tmp_d); // Temp DReg |--c|--c|--c|--c|
2883 __ Vpaddl(U16, tmp_d, tmp_d); // Temp DReg |------c|------c|
2884 if (is_long) {
2885 __ Vpaddl(U32, tmp_d, tmp_d); // Temp DReg |--------------c|
2886 }
2887 __ Vmov(out_r, tmp_s);
2888}
2889
2890void IntrinsicLocationsBuilderARMVIXL::VisitIntegerBitCount(HInvoke* invoke) {
2891 CreateIntToIntLocations(arena_, invoke);
2892 invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
2893}
2894
2895void IntrinsicCodeGeneratorARMVIXL::VisitIntegerBitCount(HInvoke* invoke) {
2896 GenBitCount(invoke, Primitive::kPrimInt, GetAssembler());
2897}
2898
2899void IntrinsicLocationsBuilderARMVIXL::VisitLongBitCount(HInvoke* invoke) {
2900 VisitIntegerBitCount(invoke);
2901}
2902
2903void IntrinsicCodeGeneratorARMVIXL::VisitLongBitCount(HInvoke* invoke) {
2904 GenBitCount(invoke, Primitive::kPrimLong, GetAssembler());
2905}
2906
Petre-Ionut Tudor27292e62017-08-04 16:06:45 +01002907static void GenHighestOneBit(HInvoke* invoke,
2908 Primitive::Type type,
2909 CodeGeneratorARMVIXL* codegen) {
2910 DCHECK(Primitive::IsIntOrLongType(type));
2911
2912 ArmVIXLAssembler* assembler = codegen->GetAssembler();
2913 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2914 const vixl32::Register temp = temps.Acquire();
2915
2916 if (type == Primitive::kPrimLong) {
2917 LocationSummary* locations = invoke->GetLocations();
2918 Location in = locations->InAt(0);
2919 Location out = locations->Out();
2920
2921 vixl32::Register in_reg_lo = LowRegisterFrom(in);
2922 vixl32::Register in_reg_hi = HighRegisterFrom(in);
2923 vixl32::Register out_reg_lo = LowRegisterFrom(out);
2924 vixl32::Register out_reg_hi = HighRegisterFrom(out);
2925
2926 __ Mov(temp, 0x80000000); // Modified immediate.
2927 __ Clz(out_reg_lo, in_reg_lo);
2928 __ Clz(out_reg_hi, in_reg_hi);
2929 __ Lsr(out_reg_lo, temp, out_reg_lo);
2930 __ Lsrs(out_reg_hi, temp, out_reg_hi);
2931
2932 // Discard result for lowest 32 bits if highest 32 bits are not zero.
2933 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
2934 // we check that the output is in a low register, so that a 16-bit MOV
2935 // encoding can be used. If output is in a high register, then we generate
2936 // 4 more bytes of code to avoid a branch.
2937 Operand mov_src(0);
2938 if (!out_reg_lo.IsLow()) {
2939 __ Mov(LeaveFlags, temp, 0);
2940 mov_src = Operand(temp);
2941 }
2942 ExactAssemblyScope it_scope(codegen->GetVIXLAssembler(),
2943 2 * vixl32::k16BitT32InstructionSizeInBytes,
2944 CodeBufferCheckScope::kExactSize);
2945 __ it(ne);
2946 __ mov(ne, out_reg_lo, mov_src);
2947 } else {
2948 vixl32::Register out = OutputRegister(invoke);
2949 vixl32::Register in = InputRegisterAt(invoke, 0);
2950
2951 __ Mov(temp, 0x80000000); // Modified immediate.
2952 __ Clz(out, in);
2953 __ Lsr(out, temp, out);
2954 }
2955}
2956
2957void IntrinsicLocationsBuilderARMVIXL::VisitIntegerHighestOneBit(HInvoke* invoke) {
2958 CreateIntToIntLocations(arena_, invoke);
2959}
2960
2961void IntrinsicCodeGeneratorARMVIXL::VisitIntegerHighestOneBit(HInvoke* invoke) {
2962 GenHighestOneBit(invoke, Primitive::kPrimInt, codegen_);
2963}
2964
2965void IntrinsicLocationsBuilderARMVIXL::VisitLongHighestOneBit(HInvoke* invoke) {
Vladimir Marko1819e412017-08-29 17:02:56 +01002966 CreateLongToLongLocationsWithOverlap(arena_, invoke);
Petre-Ionut Tudor27292e62017-08-04 16:06:45 +01002967}
2968
2969void IntrinsicCodeGeneratorARMVIXL::VisitLongHighestOneBit(HInvoke* invoke) {
2970 GenHighestOneBit(invoke, Primitive::kPrimLong, codegen_);
2971}
2972
2973static void GenLowestOneBit(HInvoke* invoke,
2974 Primitive::Type type,
2975 CodeGeneratorARMVIXL* codegen) {
2976 DCHECK(Primitive::IsIntOrLongType(type));
2977
2978 ArmVIXLAssembler* assembler = codegen->GetAssembler();
2979 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2980 const vixl32::Register temp = temps.Acquire();
2981
2982 if (type == Primitive::kPrimLong) {
2983 LocationSummary* locations = invoke->GetLocations();
2984 Location in = locations->InAt(0);
2985 Location out = locations->Out();
2986
2987 vixl32::Register in_reg_lo = LowRegisterFrom(in);
2988 vixl32::Register in_reg_hi = HighRegisterFrom(in);
2989 vixl32::Register out_reg_lo = LowRegisterFrom(out);
2990 vixl32::Register out_reg_hi = HighRegisterFrom(out);
2991
2992 __ Rsb(out_reg_hi, in_reg_hi, 0);
2993 __ Rsb(out_reg_lo, in_reg_lo, 0);
2994 __ And(out_reg_hi, out_reg_hi, in_reg_hi);
2995 // The result of this operation is 0 iff in_reg_lo is 0
2996 __ Ands(out_reg_lo, out_reg_lo, in_reg_lo);
2997
2998 // Discard result for highest 32 bits if lowest 32 bits are not zero.
2999 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
3000 // we check that the output is in a low register, so that a 16-bit MOV
3001 // encoding can be used. If output is in a high register, then we generate
3002 // 4 more bytes of code to avoid a branch.
3003 Operand mov_src(0);
3004 if (!out_reg_lo.IsLow()) {
3005 __ Mov(LeaveFlags, temp, 0);
3006 mov_src = Operand(temp);
3007 }
3008 ExactAssemblyScope it_scope(codegen->GetVIXLAssembler(),
3009 2 * vixl32::k16BitT32InstructionSizeInBytes,
3010 CodeBufferCheckScope::kExactSize);
3011 __ it(ne);
3012 __ mov(ne, out_reg_hi, mov_src);
3013 } else {
3014 vixl32::Register out = OutputRegister(invoke);
3015 vixl32::Register in = InputRegisterAt(invoke, 0);
3016
3017 __ Rsb(temp, in, 0);
3018 __ And(out, temp, in);
3019 }
3020}
3021
3022void IntrinsicLocationsBuilderARMVIXL::VisitIntegerLowestOneBit(HInvoke* invoke) {
3023 CreateIntToIntLocations(arena_, invoke);
3024}
3025
3026void IntrinsicCodeGeneratorARMVIXL::VisitIntegerLowestOneBit(HInvoke* invoke) {
3027 GenLowestOneBit(invoke, Primitive::kPrimInt, codegen_);
3028}
3029
3030void IntrinsicLocationsBuilderARMVIXL::VisitLongLowestOneBit(HInvoke* invoke) {
Vladimir Marko1819e412017-08-29 17:02:56 +01003031 CreateLongToLongLocationsWithOverlap(arena_, invoke);
Petre-Ionut Tudor27292e62017-08-04 16:06:45 +01003032}
3033
3034void IntrinsicCodeGeneratorARMVIXL::VisitLongLowestOneBit(HInvoke* invoke) {
3035 GenLowestOneBit(invoke, Primitive::kPrimLong, codegen_);
3036}
3037
Anton Kirilov5ec62182016-10-13 20:16:02 +01003038void IntrinsicLocationsBuilderARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) {
3039 LocationSummary* locations = new (arena_) LocationSummary(invoke,
3040 LocationSummary::kNoCall,
3041 kIntrinsified);
3042 locations->SetInAt(0, Location::RequiresRegister());
3043 locations->SetInAt(1, Location::RequiresRegister());
3044 locations->SetInAt(2, Location::RequiresRegister());
3045 locations->SetInAt(3, Location::RequiresRegister());
3046 locations->SetInAt(4, Location::RequiresRegister());
3047
3048 // Temporary registers to store lengths of strings and for calculations.
3049 locations->AddTemp(Location::RequiresRegister());
3050 locations->AddTemp(Location::RequiresRegister());
3051 locations->AddTemp(Location::RequiresRegister());
3052}
3053
3054void IntrinsicCodeGeneratorARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) {
3055 ArmVIXLAssembler* assembler = GetAssembler();
3056 LocationSummary* locations = invoke->GetLocations();
3057
3058 // Check assumption that sizeof(Char) is 2 (used in scaling below).
3059 const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
3060 DCHECK_EQ(char_size, 2u);
3061
3062 // Location of data in char array buffer.
3063 const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
3064
3065 // Location of char array data in string.
3066 const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
3067
3068 // void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin);
3069 // Since getChars() calls getCharsNoCheck() - we use registers rather than constants.
3070 vixl32::Register srcObj = InputRegisterAt(invoke, 0);
3071 vixl32::Register srcBegin = InputRegisterAt(invoke, 1);
3072 vixl32::Register srcEnd = InputRegisterAt(invoke, 2);
3073 vixl32::Register dstObj = InputRegisterAt(invoke, 3);
3074 vixl32::Register dstBegin = InputRegisterAt(invoke, 4);
3075
3076 vixl32::Register num_chr = RegisterFrom(locations->GetTemp(0));
3077 vixl32::Register src_ptr = RegisterFrom(locations->GetTemp(1));
3078 vixl32::Register dst_ptr = RegisterFrom(locations->GetTemp(2));
3079
3080 vixl32::Label done, compressed_string_loop;
Anton Kirilov6f644202017-02-27 18:29:45 +00003081 vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &done);
Anton Kirilov5ec62182016-10-13 20:16:02 +01003082 // dst to be copied.
3083 __ Add(dst_ptr, dstObj, data_offset);
3084 __ Add(dst_ptr, dst_ptr, Operand(dstBegin, vixl32::LSL, 1));
3085
3086 __ Subs(num_chr, srcEnd, srcBegin);
3087 // Early out for valid zero-length retrievals.
Anton Kirilov6f644202017-02-27 18:29:45 +00003088 __ B(eq, final_label, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01003089
3090 // src range to copy.
3091 __ Add(src_ptr, srcObj, value_offset);
3092
3093 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
3094 vixl32::Register temp;
3095 vixl32::Label compressed_string_preloop;
3096 if (mirror::kUseStringCompression) {
3097 // Location of count in string.
3098 const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
3099 temp = temps.Acquire();
3100 // String's length.
3101 __ Ldr(temp, MemOperand(srcObj, count_offset));
Vladimir Markofdaf0f42016-10-13 19:29:53 +01003102 __ Tst(temp, 1);
Anton Kirilov5ec62182016-10-13 20:16:02 +01003103 temps.Release(temp);
Artem Serov517d9f62016-12-12 15:51:15 +00003104 __ B(eq, &compressed_string_preloop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01003105 }
3106 __ Add(src_ptr, src_ptr, Operand(srcBegin, vixl32::LSL, 1));
3107
3108 // Do the copy.
3109 vixl32::Label loop, remainder;
3110
3111 temp = temps.Acquire();
3112 // Save repairing the value of num_chr on the < 4 character path.
3113 __ Subs(temp, num_chr, 4);
Artem Serov517d9f62016-12-12 15:51:15 +00003114 __ B(lt, &remainder, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01003115
3116 // Keep the result of the earlier subs, we are going to fetch at least 4 characters.
3117 __ Mov(num_chr, temp);
3118
3119 // Main loop used for longer fetches loads and stores 4x16-bit characters at a time.
3120 // (LDRD/STRD fault on unaligned addresses and it's not worth inlining extra code
3121 // to rectify these everywhere this intrinsic applies.)
3122 __ Bind(&loop);
3123 __ Ldr(temp, MemOperand(src_ptr, char_size * 2));
3124 __ Subs(num_chr, num_chr, 4);
3125 __ Str(temp, MemOperand(dst_ptr, char_size * 2));
3126 __ Ldr(temp, MemOperand(src_ptr, char_size * 4, PostIndex));
3127 __ Str(temp, MemOperand(dst_ptr, char_size * 4, PostIndex));
3128 temps.Release(temp);
Artem Serov517d9f62016-12-12 15:51:15 +00003129 __ B(ge, &loop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01003130
3131 __ Adds(num_chr, num_chr, 4);
Anton Kirilov6f644202017-02-27 18:29:45 +00003132 __ B(eq, final_label, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01003133
3134 // Main loop for < 4 character case and remainder handling. Loads and stores one
3135 // 16-bit Java character at a time.
3136 __ Bind(&remainder);
3137 temp = temps.Acquire();
3138 __ Ldrh(temp, MemOperand(src_ptr, char_size, PostIndex));
3139 __ Subs(num_chr, num_chr, 1);
3140 __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex));
3141 temps.Release(temp);
Artem Serov517d9f62016-12-12 15:51:15 +00003142 __ B(gt, &remainder, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01003143
3144 if (mirror::kUseStringCompression) {
Anton Kirilov6f644202017-02-27 18:29:45 +00003145 __ B(final_label);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01003146
Anton Kirilov5ec62182016-10-13 20:16:02 +01003147 const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte);
3148 DCHECK_EQ(c_char_size, 1u);
3149 // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time.
3150 __ Bind(&compressed_string_preloop);
3151 __ Add(src_ptr, src_ptr, srcBegin);
3152 __ Bind(&compressed_string_loop);
3153 temp = temps.Acquire();
3154 __ Ldrb(temp, MemOperand(src_ptr, c_char_size, PostIndex));
3155 __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex));
3156 temps.Release(temp);
3157 __ Subs(num_chr, num_chr, 1);
Artem Serov517d9f62016-12-12 15:51:15 +00003158 __ B(gt, &compressed_string_loop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01003159 }
3160
Anton Kirilov6f644202017-02-27 18:29:45 +00003161 if (done.IsReferenced()) {
3162 __ Bind(&done);
3163 }
Anton Kirilov5ec62182016-10-13 20:16:02 +01003164}
3165
3166void IntrinsicLocationsBuilderARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) {
3167 CreateFPToIntLocations(arena_, invoke);
3168}
3169
3170void IntrinsicCodeGeneratorARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) {
3171 ArmVIXLAssembler* const assembler = GetAssembler();
3172 const vixl32::Register out = OutputRegister(invoke);
3173 // Shifting left by 1 bit makes the value encodable as an immediate operand;
3174 // we don't care about the sign bit anyway.
3175 constexpr uint32_t infinity = kPositiveInfinityFloat << 1U;
3176
3177 __ Vmov(out, InputSRegisterAt(invoke, 0));
3178 // We don't care about the sign bit, so shift left.
3179 __ Lsl(out, out, 1);
3180 __ Eor(out, out, infinity);
Anton Kirilov5601d4e2017-05-11 19:33:50 +01003181 codegen_->GenerateConditionWithZero(kCondEQ, out, out);
Anton Kirilov5ec62182016-10-13 20:16:02 +01003182}
3183
3184void IntrinsicLocationsBuilderARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) {
3185 CreateFPToIntLocations(arena_, invoke);
3186}
3187
3188void IntrinsicCodeGeneratorARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) {
3189 ArmVIXLAssembler* const assembler = GetAssembler();
3190 const vixl32::Register out = OutputRegister(invoke);
3191 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
3192 const vixl32::Register temp = temps.Acquire();
3193 // The highest 32 bits of double precision positive infinity separated into
3194 // two constants encodable as immediate operands.
3195 constexpr uint32_t infinity_high = 0x7f000000U;
3196 constexpr uint32_t infinity_high2 = 0x00f00000U;
3197
3198 static_assert((infinity_high | infinity_high2) ==
3199 static_cast<uint32_t>(kPositiveInfinityDouble >> 32U),
3200 "The constants do not add up to the high 32 bits of double "
3201 "precision positive infinity.");
3202 __ Vmov(temp, out, InputDRegisterAt(invoke, 0));
3203 __ Eor(out, out, infinity_high);
3204 __ Eor(out, out, infinity_high2);
3205 // We don't care about the sign bit, so shift left.
3206 __ Orr(out, temp, Operand(out, vixl32::LSL, 1));
Anton Kirilov5601d4e2017-05-11 19:33:50 +01003207 codegen_->GenerateConditionWithZero(kCondEQ, out, out);
Anton Kirilov5ec62182016-10-13 20:16:02 +01003208}
3209
Artem Serov9aee2d42017-01-06 15:58:31 +00003210void IntrinsicLocationsBuilderARMVIXL::VisitMathCeil(HInvoke* invoke) {
3211 if (features_.HasARMv8AInstructions()) {
3212 CreateFPToFPLocations(arena_, invoke);
3213 }
3214}
3215
3216void IntrinsicCodeGeneratorARMVIXL::VisitMathCeil(HInvoke* invoke) {
3217 ArmVIXLAssembler* assembler = GetAssembler();
3218 DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions());
3219 __ Vrintp(F64, F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
3220}
3221
3222void IntrinsicLocationsBuilderARMVIXL::VisitMathFloor(HInvoke* invoke) {
3223 if (features_.HasARMv8AInstructions()) {
3224 CreateFPToFPLocations(arena_, invoke);
3225 }
3226}
3227
3228void IntrinsicCodeGeneratorARMVIXL::VisitMathFloor(HInvoke* invoke) {
3229 ArmVIXLAssembler* assembler = GetAssembler();
3230 DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions());
3231 __ Vrintm(F64, F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
3232}
3233
Nicolas Geoffray331605a2017-03-01 11:01:41 +00003234void IntrinsicLocationsBuilderARMVIXL::VisitIntegerValueOf(HInvoke* invoke) {
3235 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3236 IntrinsicVisitor::ComputeIntegerValueOfLocations(
3237 invoke,
3238 codegen_,
3239 LocationFrom(r0),
3240 LocationFrom(calling_convention.GetRegisterAt(0)));
3241}
3242
3243void IntrinsicCodeGeneratorARMVIXL::VisitIntegerValueOf(HInvoke* invoke) {
3244 IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo();
3245 LocationSummary* locations = invoke->GetLocations();
3246 ArmVIXLAssembler* const assembler = GetAssembler();
3247
3248 vixl32::Register out = RegisterFrom(locations->Out());
3249 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
3250 vixl32::Register temp = temps.Acquire();
3251 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3252 vixl32::Register argument = calling_convention.GetRegisterAt(0);
3253 if (invoke->InputAt(0)->IsConstant()) {
3254 int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
3255 if (value >= info.low && value <= info.high) {
3256 // Just embed the j.l.Integer in the code.
3257 ScopedObjectAccess soa(Thread::Current());
3258 mirror::Object* boxed = info.cache->Get(value + (-info.low));
3259 DCHECK(boxed != nullptr && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(boxed));
3260 uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(boxed));
3261 __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
3262 } else {
3263 // Allocate and initialize a new j.l.Integer.
3264 // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
3265 // JIT object table.
3266 uint32_t address =
3267 dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer));
3268 __ Ldr(argument, codegen_->DeduplicateBootImageAddressLiteral(address));
3269 codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
3270 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
3271 __ Mov(temp, value);
3272 assembler->StoreToOffset(kStoreWord, temp, out, info.value_offset);
3273 // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
3274 // one.
3275 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
3276 }
3277 } else {
3278 vixl32::Register in = RegisterFrom(locations->InAt(0));
3279 // Check bounds of our cache.
3280 __ Add(out, in, -info.low);
3281 __ Cmp(out, info.high - info.low + 1);
3282 vixl32::Label allocate, done;
Anton Kirilovfd522532017-05-10 12:46:57 +01003283 __ B(hs, &allocate, /* is_far_target */ false);
Nicolas Geoffray331605a2017-03-01 11:01:41 +00003284 // If the value is within the bounds, load the j.l.Integer directly from the array.
3285 uint32_t data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
3286 uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.cache));
3287 __ Ldr(temp, codegen_->DeduplicateBootImageAddressLiteral(data_offset + address));
3288 codegen_->LoadFromShiftedRegOffset(Primitive::kPrimNot, locations->Out(), temp, out);
3289 assembler->MaybeUnpoisonHeapReference(out);
3290 __ B(&done);
3291 __ Bind(&allocate);
3292 // Otherwise allocate and initialize a new j.l.Integer.
3293 address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer));
3294 __ Ldr(argument, codegen_->DeduplicateBootImageAddressLiteral(address));
3295 codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
3296 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
3297 assembler->StoreToOffset(kStoreWord, in, out, info.value_offset);
3298 // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
3299 // one.
3300 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
3301 __ Bind(&done);
3302 }
3303}
3304
Nicolas Geoffray365719c2017-03-08 13:11:50 +00003305void IntrinsicLocationsBuilderARMVIXL::VisitThreadInterrupted(HInvoke* invoke) {
3306 LocationSummary* locations = new (arena_) LocationSummary(invoke,
3307 LocationSummary::kNoCall,
3308 kIntrinsified);
3309 locations->SetOut(Location::RequiresRegister());
3310}
3311
3312void IntrinsicCodeGeneratorARMVIXL::VisitThreadInterrupted(HInvoke* invoke) {
3313 ArmVIXLAssembler* assembler = GetAssembler();
3314 vixl32::Register out = RegisterFrom(invoke->GetLocations()->Out());
3315 int32_t offset = Thread::InterruptedOffset<kArmPointerSize>().Int32Value();
3316 __ Ldr(out, MemOperand(tr, offset));
3317 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
3318 vixl32::Register temp = temps.Acquire();
3319 vixl32::Label done;
Anton Kirilovfd522532017-05-10 12:46:57 +01003320 vixl32::Label* const final_label = codegen_->GetFinalLabel(invoke, &done);
3321 __ CompareAndBranchIfZero(out, final_label, /* far_target */ false);
Nicolas Geoffray365719c2017-03-08 13:11:50 +00003322 __ Dmb(vixl32::ISH);
3323 __ Mov(temp, 0);
3324 assembler->StoreToOffset(kStoreWord, temp, tr, offset);
3325 __ Dmb(vixl32::ISH);
Anton Kirilovfd522532017-05-10 12:46:57 +01003326 if (done.IsReferenced()) {
3327 __ Bind(&done);
3328 }
Nicolas Geoffray365719c2017-03-08 13:11:50 +00003329}
3330
Anton Kirilov5ec62182016-10-13 20:16:02 +01003331UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathRoundDouble) // Could be done by changing rounding mode, maybe?
Anton Kirilov5ec62182016-10-13 20:16:02 +01003332UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeCASLong) // High register pressure.
3333UNIMPLEMENTED_INTRINSIC(ARMVIXL, SystemArrayCopyChar)
Vladimir Markod254f5c2017-06-02 15:18:36 +00003334UNIMPLEMENTED_INTRINSIC(ARMVIXL, ReferenceGetReferent)
Anton Kirilov5ec62182016-10-13 20:16:02 +01003335
Aart Bikff7d89c2016-11-07 08:49:28 -08003336UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringStringIndexOf);
3337UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringStringIndexOfAfter);
Aart Bik71bf7b42016-11-16 10:17:46 -08003338UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferAppend);
3339UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferLength);
3340UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferToString);
3341UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppend);
3342UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderLength);
3343UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderToString);
Aart Bikff7d89c2016-11-07 08:49:28 -08003344
Anton Kirilov5ec62182016-10-13 20:16:02 +01003345// 1.8.
3346UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddInt)
3347UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddLong)
3348UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetInt)
3349UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetLong)
3350UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetObject)
3351
3352UNREACHABLE_INTRINSICS(ARMVIXL)
3353
3354#undef __
3355
3356} // namespace arm
3357} // namespace art