blob: ce7229bc6730267f9a23bbd70dcd75c35e7594a7 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Nicolas Geoffrayf3e2cc42014-02-18 18:37:26 +000017#include <string>
18#include <inttypes.h>
19
Brian Carlstrom7940e442013-07-12 13:46:57 -070020#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
Mark Mendelle19c91f2014-02-25 08:19:08 -080023#include "mirror/array.h"
24#include "mirror/string.h"
Brian Carlstrom7940e442013-07-12 13:46:57 -070025#include "x86_lir.h"
26
Brian Carlstrom7940e442013-07-12 13:46:57 -070027namespace art {
28
Vladimir Marko089142c2014-06-05 10:57:05 +010029static constexpr RegStorage core_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070030 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
31};
Vladimir Marko089142c2014-06-05 10:57:05 +010032static constexpr RegStorage core_regs_arr_64[] = {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +070033 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
buzbee091cc402014-03-31 10:14:40 -070034 rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
Brian Carlstrom7940e442013-07-12 13:46:57 -070035};
Vladimir Marko089142c2014-06-05 10:57:05 +010036static constexpr RegStorage core_regs_arr_64q[] = {
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070037 rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
Dmitry Petrochenkoa20468c2014-04-30 13:40:19 +070038 rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070039};
Vladimir Marko089142c2014-06-05 10:57:05 +010040static constexpr RegStorage sp_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070041 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
42};
Vladimir Marko089142c2014-06-05 10:57:05 +010043static constexpr RegStorage sp_regs_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070044 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
buzbee091cc402014-03-31 10:14:40 -070045 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
Brian Carlstrom7940e442013-07-12 13:46:57 -070046};
Vladimir Marko089142c2014-06-05 10:57:05 +010047static constexpr RegStorage dp_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070048 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
49};
Vladimir Marko089142c2014-06-05 10:57:05 +010050static constexpr RegStorage dp_regs_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070051 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
buzbee091cc402014-03-31 10:14:40 -070052 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
Brian Carlstrom7940e442013-07-12 13:46:57 -070053};
Vladimir Marko089142c2014-06-05 10:57:05 +010054static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +070055static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
Vladimir Marko089142c2014-06-05 10:57:05 +010056static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
57static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
58static constexpr RegStorage core_temps_arr_64[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070059 rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070060 rs_r8, rs_r9, rs_r10, rs_r11
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070061};
Vladimir Marko089142c2014-06-05 10:57:05 +010062static constexpr RegStorage core_temps_arr_64q[] = {
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070063 rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070064 rs_r8q, rs_r9q, rs_r10q, rs_r11q
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070065};
Vladimir Marko089142c2014-06-05 10:57:05 +010066static constexpr RegStorage sp_temps_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070067 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
68};
Vladimir Marko089142c2014-06-05 10:57:05 +010069static constexpr RegStorage sp_temps_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070070 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
buzbee091cc402014-03-31 10:14:40 -070071 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
buzbee091cc402014-03-31 10:14:40 -070072};
Vladimir Marko089142c2014-06-05 10:57:05 +010073static constexpr RegStorage dp_temps_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070074 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
75};
Vladimir Marko089142c2014-06-05 10:57:05 +010076static constexpr RegStorage dp_temps_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070077 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
buzbee091cc402014-03-31 10:14:40 -070078 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
buzbee091cc402014-03-31 10:14:40 -070079};
80
Vladimir Marko089142c2014-06-05 10:57:05 +010081static constexpr RegStorage xp_temps_arr_32[] = {
Mark Mendellfe945782014-05-22 09:52:36 -040082 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
83};
Vladimir Marko089142c2014-06-05 10:57:05 +010084static constexpr RegStorage xp_temps_arr_64[] = {
Mark Mendellfe945782014-05-22 09:52:36 -040085 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
Mark Mendellfe945782014-05-22 09:52:36 -040086 rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
Mark Mendellfe945782014-05-22 09:52:36 -040087};
88
Vladimir Marko089142c2014-06-05 10:57:05 +010089static constexpr ArrayRef<const RegStorage> empty_pool;
90static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
91static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
92static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
93static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
94static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
95static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
96static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
97static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
98static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
99static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
100static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
101static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
102static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
103static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
104static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
105static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
106static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700107
Vladimir Marko089142c2014-06-05 10:57:05 +0100108static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
109static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
Mark Mendellfe945782014-05-22 09:52:36 -0400110
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700111RegStorage rs_rX86_SP;
112
113X86NativeRegisterPool rX86_ARG0;
114X86NativeRegisterPool rX86_ARG1;
115X86NativeRegisterPool rX86_ARG2;
116X86NativeRegisterPool rX86_ARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700117X86NativeRegisterPool rX86_ARG4;
118X86NativeRegisterPool rX86_ARG5;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700119X86NativeRegisterPool rX86_FARG0;
120X86NativeRegisterPool rX86_FARG1;
121X86NativeRegisterPool rX86_FARG2;
122X86NativeRegisterPool rX86_FARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700123X86NativeRegisterPool rX86_FARG4;
124X86NativeRegisterPool rX86_FARG5;
125X86NativeRegisterPool rX86_FARG6;
126X86NativeRegisterPool rX86_FARG7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700127X86NativeRegisterPool rX86_RET0;
128X86NativeRegisterPool rX86_RET1;
129X86NativeRegisterPool rX86_INVOKE_TGT;
130X86NativeRegisterPool rX86_COUNT;
131
132RegStorage rs_rX86_ARG0;
133RegStorage rs_rX86_ARG1;
134RegStorage rs_rX86_ARG2;
135RegStorage rs_rX86_ARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700136RegStorage rs_rX86_ARG4;
137RegStorage rs_rX86_ARG5;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700138RegStorage rs_rX86_FARG0;
139RegStorage rs_rX86_FARG1;
140RegStorage rs_rX86_FARG2;
141RegStorage rs_rX86_FARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700142RegStorage rs_rX86_FARG4;
143RegStorage rs_rX86_FARG5;
144RegStorage rs_rX86_FARG6;
145RegStorage rs_rX86_FARG7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700146RegStorage rs_rX86_RET0;
147RegStorage rs_rX86_RET1;
148RegStorage rs_rX86_INVOKE_TGT;
149RegStorage rs_rX86_COUNT;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700150
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700151RegLocation X86Mir2Lir::LocCReturn() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000152 return x86_loc_c_return;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700153}
154
buzbeea0cd2d72014-06-01 09:33:49 -0700155RegLocation X86Mir2Lir::LocCReturnRef() {
156 // FIXME: return x86_loc_c_return_wide for x86_64 when wide refs supported.
157 return x86_loc_c_return;
158}
159
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700160RegLocation X86Mir2Lir::LocCReturnWide() {
Chao-ying Fua0147762014-06-06 18:38:49 -0700161 return Gen64Bit() ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162}
163
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700164RegLocation X86Mir2Lir::LocCReturnFloat() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000165 return x86_loc_c_return_float;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700166}
167
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700168RegLocation X86Mir2Lir::LocCReturnDouble() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000169 return x86_loc_c_return_double;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700170}
171
172// Return a target-dependent special register.
buzbee2700f7e2014-03-07 09:46:20 -0800173RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
buzbee091cc402014-03-31 10:14:40 -0700174 RegStorage res_reg = RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700175 switch (reg) {
buzbee091cc402014-03-31 10:14:40 -0700176 case kSelf: res_reg = RegStorage::InvalidReg(); break;
177 case kSuspend: res_reg = RegStorage::InvalidReg(); break;
178 case kLr: res_reg = RegStorage::InvalidReg(); break;
179 case kPc: res_reg = RegStorage::InvalidReg(); break;
180 case kSp: res_reg = rs_rX86_SP; break;
181 case kArg0: res_reg = rs_rX86_ARG0; break;
182 case kArg1: res_reg = rs_rX86_ARG1; break;
183 case kArg2: res_reg = rs_rX86_ARG2; break;
184 case kArg3: res_reg = rs_rX86_ARG3; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700185 case kArg4: res_reg = rs_rX86_ARG4; break;
186 case kArg5: res_reg = rs_rX86_ARG5; break;
buzbee091cc402014-03-31 10:14:40 -0700187 case kFArg0: res_reg = rs_rX86_FARG0; break;
188 case kFArg1: res_reg = rs_rX86_FARG1; break;
189 case kFArg2: res_reg = rs_rX86_FARG2; break;
190 case kFArg3: res_reg = rs_rX86_FARG3; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700191 case kFArg4: res_reg = rs_rX86_FARG4; break;
192 case kFArg5: res_reg = rs_rX86_FARG5; break;
193 case kFArg6: res_reg = rs_rX86_FARG6; break;
194 case kFArg7: res_reg = rs_rX86_FARG7; break;
buzbee091cc402014-03-31 10:14:40 -0700195 case kRet0: res_reg = rs_rX86_RET0; break;
196 case kRet1: res_reg = rs_rX86_RET1; break;
197 case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
198 case kHiddenArg: res_reg = rs_rAX; break;
Mark Mendelld3703d82014-06-09 15:10:50 -0400199 case kHiddenFpArg: DCHECK(!Gen64Bit()); res_reg = rs_fr0; break;
buzbee091cc402014-03-31 10:14:40 -0700200 case kCount: res_reg = rs_rX86_COUNT; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700201 default: res_reg = RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700202 }
buzbee091cc402014-03-31 10:14:40 -0700203 return res_reg;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700204}
205
Brian Carlstrom7940e442013-07-12 13:46:57 -0700206/*
207 * Decode the register id.
208 */
buzbee091cc402014-03-31 10:14:40 -0700209uint64_t X86Mir2Lir::GetRegMaskCommon(RegStorage reg) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700210 uint64_t seed;
211 int shift;
212 int reg_id;
213
buzbee091cc402014-03-31 10:14:40 -0700214 reg_id = reg.GetRegNum();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700215 /* Double registers in x86 are just a single FP register */
216 seed = 1;
217 /* FP register starts at bit position 16 */
Mark Mendellfe945782014-05-22 09:52:36 -0400218 shift = (reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700219 /* Expand the double register id into single offset */
220 shift += reg_id;
221 return (seed << shift);
222}
223
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700224uint64_t X86Mir2Lir::GetPCUseDefEncoding() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700225 /*
226 * FIXME: might make sense to use a virtual resource encoding bit for pc. Might be
227 * able to clean up some of the x86/Arm_Mips differences
228 */
229 LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
230 return 0ULL;
231}
232
buzbeeb48819d2013-09-14 16:15:25 -0700233void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) {
Dmitry Petrochenko6a58cb12014-04-02 17:27:59 +0700234 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
buzbeeb48819d2013-09-14 16:15:25 -0700235 DCHECK(!lir->flags.use_def_invalid);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700236
237 // X86-specific resource map setup here.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700238 if (flags & REG_USE_SP) {
buzbeeb48819d2013-09-14 16:15:25 -0700239 lir->u.m.use_mask |= ENCODE_X86_REG_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700240 }
241
242 if (flags & REG_DEF_SP) {
buzbeeb48819d2013-09-14 16:15:25 -0700243 lir->u.m.def_mask |= ENCODE_X86_REG_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700244 }
245
246 if (flags & REG_DEFA) {
buzbee091cc402014-03-31 10:14:40 -0700247 SetupRegMask(&lir->u.m.def_mask, rs_rAX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700248 }
249
250 if (flags & REG_DEFD) {
buzbee091cc402014-03-31 10:14:40 -0700251 SetupRegMask(&lir->u.m.def_mask, rs_rDX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700252 }
253 if (flags & REG_USEA) {
buzbee091cc402014-03-31 10:14:40 -0700254 SetupRegMask(&lir->u.m.use_mask, rs_rAX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700255 }
256
257 if (flags & REG_USEC) {
buzbee091cc402014-03-31 10:14:40 -0700258 SetupRegMask(&lir->u.m.use_mask, rs_rCX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700259 }
260
261 if (flags & REG_USED) {
buzbee091cc402014-03-31 10:14:40 -0700262 SetupRegMask(&lir->u.m.use_mask, rs_rDX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700263 }
Vladimir Marko70b797d2013-12-03 15:25:24 +0000264
265 if (flags & REG_USEB) {
buzbee091cc402014-03-31 10:14:40 -0700266 SetupRegMask(&lir->u.m.use_mask, rs_rBX.GetReg());
Vladimir Marko70b797d2013-12-03 15:25:24 +0000267 }
Mark Mendell4028a6c2014-02-19 20:06:20 -0800268
269 // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
270 if (lir->opcode == kX86RepneScasw) {
buzbee091cc402014-03-31 10:14:40 -0700271 SetupRegMask(&lir->u.m.use_mask, rs_rAX.GetReg());
272 SetupRegMask(&lir->u.m.use_mask, rs_rCX.GetReg());
273 SetupRegMask(&lir->u.m.use_mask, rs_rDI.GetReg());
274 SetupRegMask(&lir->u.m.def_mask, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -0800275 }
Serguei Katkove90501d2014-03-12 15:56:54 +0700276
277 if (flags & USE_FP_STACK) {
278 lir->u.m.use_mask |= ENCODE_X86_FP_STACK;
279 lir->u.m.def_mask |= ENCODE_X86_FP_STACK;
280 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700281}
282
283/* For dumping instructions */
284static const char* x86RegName[] = {
285 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
286 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
287};
288
289static const char* x86CondName[] = {
290 "O",
291 "NO",
292 "B/NAE/C",
293 "NB/AE/NC",
294 "Z/EQ",
295 "NZ/NE",
296 "BE/NA",
297 "NBE/A",
298 "S",
299 "NS",
300 "P/PE",
301 "NP/PO",
302 "L/NGE",
303 "NL/GE",
304 "LE/NG",
305 "NLE/G"
306};
307
308/*
309 * Interpret a format string and build a string no longer than size
310 * See format key in Assemble.cc.
311 */
312std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
313 std::string buf;
314 size_t i = 0;
315 size_t fmt_len = strlen(fmt);
316 while (i < fmt_len) {
317 if (fmt[i] != '!') {
318 buf += fmt[i];
319 i++;
320 } else {
321 i++;
322 DCHECK_LT(i, fmt_len);
323 char operand_number_ch = fmt[i];
324 i++;
325 if (operand_number_ch == '!') {
326 buf += "!";
327 } else {
328 int operand_number = operand_number_ch - '0';
329 DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands.
330 DCHECK_LT(i, fmt_len);
331 int operand = lir->operands[operand_number];
332 switch (fmt[i]) {
333 case 'c':
334 DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
335 buf += x86CondName[operand];
336 break;
337 case 'd':
338 buf += StringPrintf("%d", operand);
339 break;
340 case 'p': {
buzbee0d829482013-10-11 15:24:55 -0700341 EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700342 buf += StringPrintf("0x%08x", tab_rec->offset);
343 break;
344 }
345 case 'r':
buzbee091cc402014-03-31 10:14:40 -0700346 if (RegStorage::IsFloat(operand)) {
347 int fp_reg = RegStorage::RegNum(operand);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700348 buf += StringPrintf("xmm%d", fp_reg);
349 } else {
buzbee091cc402014-03-31 10:14:40 -0700350 int reg_num = RegStorage::RegNum(operand);
351 DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
352 buf += x86RegName[reg_num];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700353 }
354 break;
355 case 't':
Ian Rogers107c31e2014-01-23 20:55:29 -0800356 buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
357 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
358 lir->target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700359 break;
360 default:
361 buf += StringPrintf("DecodeError '%c'", fmt[i]);
362 break;
363 }
364 i++;
365 }
366 }
367 }
368 return buf;
369}
370
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700371void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700372 char buf[256];
373 buf[0] = 0;
374
375 if (mask == ENCODE_ALL) {
376 strcpy(buf, "all");
377 } else {
378 char num[8];
379 int i;
380
381 for (i = 0; i < kX86RegEnd; i++) {
382 if (mask & (1ULL << i)) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800383 snprintf(num, arraysize(num), "%d ", i);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700384 strcat(buf, num);
385 }
386 }
387
388 if (mask & ENCODE_CCODE) {
389 strcat(buf, "cc ");
390 }
391 /* Memory bits */
392 if (x86LIR && (mask & ENCODE_DALVIK_REG)) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800393 snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
394 DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
395 (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
Brian Carlstrom7940e442013-07-12 13:46:57 -0700396 }
397 if (mask & ENCODE_LITERAL) {
398 strcat(buf, "lit ");
399 }
400
401 if (mask & ENCODE_HEAP_REF) {
402 strcat(buf, "heap ");
403 }
404 if (mask & ENCODE_MUST_NOT_ALIAS) {
405 strcat(buf, "noalias ");
406 }
407 }
408 if (buf[0]) {
409 LOG(INFO) << prefix << ": " << buf;
410 }
411}
412
413void X86Mir2Lir::AdjustSpillMask() {
414 // Adjustment for LR spilling, x86 has no LR so nothing to do here
buzbee091cc402014-03-31 10:14:40 -0700415 core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700416 num_core_spills_++;
417}
418
419/*
420 * Mark a callee-save fp register as promoted. Note that
421 * vpush/vpop uses contiguous register lists so we must
422 * include any holes in the mask. Associate holes with
423 * Dalvik register INVALID_VREG (0xFFFFU).
424 */
buzbee091cc402014-03-31 10:14:40 -0700425void X86Mir2Lir::MarkPreservedSingle(int v_reg, RegStorage reg) {
426 UNIMPLEMENTED(FATAL) << "MarkPreservedSingle";
Brian Carlstrom7940e442013-07-12 13:46:57 -0700427}
428
buzbee091cc402014-03-31 10:14:40 -0700429void X86Mir2Lir::MarkPreservedDouble(int v_reg, RegStorage reg) {
430 UNIMPLEMENTED(FATAL) << "MarkPreservedDouble";
buzbee2700f7e2014-03-07 09:46:20 -0800431}
432
Mark Mendelle87f9b52014-04-30 14:13:18 -0400433RegStorage X86Mir2Lir::AllocateByteRegister() {
434 return AllocTypedTemp(false, kCoreReg);
435}
436
Brian Carlstrom7940e442013-07-12 13:46:57 -0700437/* Clobber all regs that might be used by an external C call */
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000438void X86Mir2Lir::ClobberCallerSave() {
buzbee091cc402014-03-31 10:14:40 -0700439 Clobber(rs_rAX);
440 Clobber(rs_rCX);
441 Clobber(rs_rDX);
442 Clobber(rs_rBX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700443}
444
445RegLocation X86Mir2Lir::GetReturnWideAlt() {
446 RegLocation res = LocCReturnWide();
buzbee091cc402014-03-31 10:14:40 -0700447 DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
448 DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
449 Clobber(rs_rAX);
450 Clobber(rs_rDX);
451 MarkInUse(rs_rAX);
452 MarkInUse(rs_rDX);
453 MarkWide(res.reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700454 return res;
455}
456
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700457RegLocation X86Mir2Lir::GetReturnAlt() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700458 RegLocation res = LocCReturn();
buzbee091cc402014-03-31 10:14:40 -0700459 res.reg.SetReg(rs_rDX.GetReg());
460 Clobber(rs_rDX);
461 MarkInUse(rs_rDX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700462 return res;
463}
464
Brian Carlstrom7940e442013-07-12 13:46:57 -0700465/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700466void X86Mir2Lir::LockCallTemps() {
buzbee091cc402014-03-31 10:14:40 -0700467 LockTemp(rs_rX86_ARG0);
468 LockTemp(rs_rX86_ARG1);
469 LockTemp(rs_rX86_ARG2);
470 LockTemp(rs_rX86_ARG3);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700471 if (Gen64Bit()) {
472 LockTemp(rs_rX86_ARG4);
473 LockTemp(rs_rX86_ARG5);
474 LockTemp(rs_rX86_FARG0);
475 LockTemp(rs_rX86_FARG1);
476 LockTemp(rs_rX86_FARG2);
477 LockTemp(rs_rX86_FARG3);
478 LockTemp(rs_rX86_FARG4);
479 LockTemp(rs_rX86_FARG5);
480 LockTemp(rs_rX86_FARG6);
481 LockTemp(rs_rX86_FARG7);
482 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700483}
484
485/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700486void X86Mir2Lir::FreeCallTemps() {
buzbee091cc402014-03-31 10:14:40 -0700487 FreeTemp(rs_rX86_ARG0);
488 FreeTemp(rs_rX86_ARG1);
489 FreeTemp(rs_rX86_ARG2);
490 FreeTemp(rs_rX86_ARG3);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700491 if (Gen64Bit()) {
492 FreeTemp(rs_rX86_ARG4);
493 FreeTemp(rs_rX86_ARG5);
494 FreeTemp(rs_rX86_FARG0);
495 FreeTemp(rs_rX86_FARG1);
496 FreeTemp(rs_rX86_FARG2);
497 FreeTemp(rs_rX86_FARG3);
498 FreeTemp(rs_rX86_FARG4);
499 FreeTemp(rs_rX86_FARG5);
500 FreeTemp(rs_rX86_FARG6);
501 FreeTemp(rs_rX86_FARG7);
502 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700503}
504
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800505bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
506 switch (opcode) {
507 case kX86LockCmpxchgMR:
508 case kX86LockCmpxchgAR:
Ian Rogers0f9b9c52014-06-09 01:32:12 -0700509 case kX86LockCmpxchg64M:
510 case kX86LockCmpxchg64A:
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800511 case kX86XchgMR:
512 case kX86Mfence:
513 // Atomic memory instructions provide full barrier.
514 return true;
515 default:
516 break;
517 }
518
519 // Conservative if cannot prove it provides full barrier.
520 return false;
521}
522
Andreas Gampeb14329f2014-05-15 11:16:06 -0700523bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700524#if ANDROID_SMP != 0
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800525 // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
526 LIR* mem_barrier = last_lir_insn_;
527
Andreas Gampeb14329f2014-05-15 11:16:06 -0700528 bool ret = false;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800529 /*
530 * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
531 * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
532 * to ensure is that there is a scheduling barrier in place.
533 */
534 if (barrier_kind == kStoreLoad) {
535 // If no LIR exists already that can be used a barrier, then generate an mfence.
536 if (mem_barrier == nullptr) {
537 mem_barrier = NewLIR0(kX86Mfence);
Andreas Gampeb14329f2014-05-15 11:16:06 -0700538 ret = true;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800539 }
540
541 // If last instruction does not provide full barrier, then insert an mfence.
542 if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
543 mem_barrier = NewLIR0(kX86Mfence);
Andreas Gampeb14329f2014-05-15 11:16:06 -0700544 ret = true;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800545 }
546 }
547
548 // Now ensure that a scheduling barrier is in place.
549 if (mem_barrier == nullptr) {
550 GenBarrier();
551 } else {
552 // Mark as a scheduling barrier.
553 DCHECK(!mem_barrier->flags.use_def_invalid);
554 mem_barrier->u.m.def_mask = ENCODE_ALL;
555 }
Andreas Gampeb14329f2014-05-15 11:16:06 -0700556 return ret;
557#else
558 return false;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700559#endif
560}
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000561
Brian Carlstrom7940e442013-07-12 13:46:57 -0700562void X86Mir2Lir::CompilerInitializeRegAlloc() {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700563 if (Gen64Bit()) {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700564 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
565 dp_regs_64, reserved_regs_64, reserved_regs_64q,
566 core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700567 } else {
buzbeeb01bf152014-05-13 15:59:07 -0700568 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
569 dp_regs_32, reserved_regs_32, empty_pool,
570 core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700571 }
buzbee091cc402014-03-31 10:14:40 -0700572
573 // Target-specific adjustments.
574
Mark Mendellfe945782014-05-22 09:52:36 -0400575 // Add in XMM registers.
Vladimir Marko089142c2014-06-05 10:57:05 +0100576 const ArrayRef<const RegStorage> *xp_temps = Gen64Bit() ? &xp_temps_64 : &xp_temps_32;
Mark Mendellfe945782014-05-22 09:52:36 -0400577 for (RegStorage reg : *xp_temps) {
578 RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
579 reginfo_map_.Put(reg.GetReg(), info);
580 info->SetIsTemp(true);
581 }
582
buzbee091cc402014-03-31 10:14:40 -0700583 // Alias single precision xmm to double xmms.
584 // TODO: as needed, add larger vector sizes - alias all to the largest.
585 GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
586 for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
587 int sp_reg_num = info->GetReg().GetRegNum();
Mark Mendellfe945782014-05-22 09:52:36 -0400588 RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
589 RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
590 // 128-bit xmm vector register's master storage should refer to itself.
591 DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
592
593 // Redirect 32-bit vector's master storage to 128-bit vector.
594 info->SetMaster(xp_reg_info);
595
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700596 RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
buzbee091cc402014-03-31 10:14:40 -0700597 RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
Mark Mendellfe945782014-05-22 09:52:36 -0400598 // Redirect 64-bit vector's master storage to 128-bit vector.
599 dp_reg_info->SetMaster(xp_reg_info);
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700600 // Singles should show a single 32-bit mask bit, at first referring to the low half.
601 DCHECK_EQ(info->StorageMask(), 0x1U);
602 }
603
604 if (Gen64Bit()) {
605 // Alias 32bit W registers to corresponding 64bit X registers.
606 GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
607 for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
608 int x_reg_num = info->GetReg().GetRegNum();
609 RegStorage x_reg = RegStorage::Solo64(x_reg_num);
610 RegisterInfo* x_reg_info = GetRegInfo(x_reg);
611 // 64bit X register's master storage should refer to itself.
612 DCHECK_EQ(x_reg_info, x_reg_info->Master());
613 // Redirect 32bit W master storage to 64bit X.
614 info->SetMaster(x_reg_info);
615 // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
616 DCHECK_EQ(info->StorageMask(), 0x1U);
617 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700618 }
buzbee091cc402014-03-31 10:14:40 -0700619
620 // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
621 // TODO: adjust for x86/hard float calling convention.
622 reg_pool_->next_core_reg_ = 2;
623 reg_pool_->next_sp_reg_ = 2;
624 reg_pool_->next_dp_reg_ = 1;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700625}
626
Brian Carlstrom7940e442013-07-12 13:46:57 -0700627void X86Mir2Lir::SpillCoreRegs() {
628 if (num_core_spills_ == 0) {
629 return;
630 }
631 // Spill mask not including fake return address register
buzbee091cc402014-03-31 10:14:40 -0700632 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700633 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700634 for (int reg = 0; mask; mask >>= 1, reg++) {
635 if (mask & 0x1) {
buzbee2700f7e2014-03-07 09:46:20 -0800636 StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700637 offset += GetInstructionSetPointerSize(cu_->instruction_set);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700638 }
639 }
640}
641
642void X86Mir2Lir::UnSpillCoreRegs() {
643 if (num_core_spills_ == 0) {
644 return;
645 }
646 // Spill mask not including fake return address register
buzbee091cc402014-03-31 10:14:40 -0700647 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700648 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700649 for (int reg = 0; mask; mask >>= 1, reg++) {
650 if (mask & 0x1) {
buzbee2700f7e2014-03-07 09:46:20 -0800651 LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700652 offset += GetInstructionSetPointerSize(cu_->instruction_set);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700653 }
654 }
655}
656
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700657bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700658 return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
659}
660
Vladimir Marko674744e2014-04-24 15:18:26 +0100661bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
662 return true;
663}
664
665RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
Chao-ying Fue0ccdc02014-06-06 17:32:37 -0700666 // X86_64 can handle any size.
667 if (Gen64Bit()) {
668 if (size == kReference) {
669 return kRefReg;
670 }
671 return kCoreReg;
672 }
673
Vladimir Marko674744e2014-04-24 15:18:26 +0100674 if (UNLIKELY(is_volatile)) {
675 // On x86, atomic 64-bit load/store requires an fp register.
676 // Smaller aligned load/store is atomic for both core and fp registers.
677 if (size == k64 || size == kDouble) {
678 return kFPReg;
679 }
680 }
681 return RegClassBySize(size);
682}
683
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700684X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena, bool gen64bit)
Mark Mendell55d0eac2014-02-06 11:02:52 -0800685 : Mir2Lir(cu, mir_graph, arena),
Ian Rogersdd7624d2014-03-14 17:43:00 -0700686 base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800687 method_address_insns_(arena, 100, kGrowableArrayMisc),
688 class_type_address_insns_(arena, 100, kGrowableArrayMisc),
Mark Mendellae9fd932014-02-10 16:14:35 -0800689 call_method_insns_(arena, 100, kGrowableArrayMisc),
Mark Mendelld65c51a2014-04-29 16:55:20 -0400690 stack_decrement_(nullptr), stack_increment_(nullptr), gen64bit_(gen64bit),
691 const_vectors_(nullptr) {
692 store_method_addr_used_ = false;
Ian Rogersdd7624d2014-03-14 17:43:00 -0700693 if (kIsDebugBuild) {
694 for (int i = 0; i < kX86Last; i++) {
695 if (X86Mir2Lir::EncodingMap[i].opcode != i) {
696 LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
Mark Mendelld65c51a2014-04-29 16:55:20 -0400697 << " is wrong: expecting " << i << ", seeing "
698 << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
Ian Rogersdd7624d2014-03-14 17:43:00 -0700699 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700700 }
701 }
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700702 if (Gen64Bit()) {
703 rs_rX86_SP = rs_rX86_SP_64;
704
705 rs_rX86_ARG0 = rs_rDI;
706 rs_rX86_ARG1 = rs_rSI;
707 rs_rX86_ARG2 = rs_rDX;
708 rs_rX86_ARG3 = rs_rCX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700709 rs_rX86_ARG4 = rs_r8;
710 rs_rX86_ARG5 = rs_r9;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700711 rs_rX86_FARG0 = rs_fr0;
712 rs_rX86_FARG1 = rs_fr1;
713 rs_rX86_FARG2 = rs_fr2;
714 rs_rX86_FARG3 = rs_fr3;
715 rs_rX86_FARG4 = rs_fr4;
716 rs_rX86_FARG5 = rs_fr5;
717 rs_rX86_FARG6 = rs_fr6;
718 rs_rX86_FARG7 = rs_fr7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700719 rX86_ARG0 = rDI;
720 rX86_ARG1 = rSI;
721 rX86_ARG2 = rDX;
722 rX86_ARG3 = rCX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700723 rX86_ARG4 = r8;
724 rX86_ARG5 = r9;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700725 rX86_FARG0 = fr0;
726 rX86_FARG1 = fr1;
727 rX86_FARG2 = fr2;
728 rX86_FARG3 = fr3;
729 rX86_FARG4 = fr4;
730 rX86_FARG5 = fr5;
731 rX86_FARG6 = fr6;
732 rX86_FARG7 = fr7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700733 } else {
734 rs_rX86_SP = rs_rX86_SP_32;
735
736 rs_rX86_ARG0 = rs_rAX;
737 rs_rX86_ARG1 = rs_rCX;
738 rs_rX86_ARG2 = rs_rDX;
739 rs_rX86_ARG3 = rs_rBX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700740 rs_rX86_ARG4 = RegStorage::InvalidReg();
741 rs_rX86_ARG5 = RegStorage::InvalidReg();
742 rs_rX86_FARG0 = rs_rAX;
743 rs_rX86_FARG1 = rs_rCX;
744 rs_rX86_FARG2 = rs_rDX;
745 rs_rX86_FARG3 = rs_rBX;
746 rs_rX86_FARG4 = RegStorage::InvalidReg();
747 rs_rX86_FARG5 = RegStorage::InvalidReg();
748 rs_rX86_FARG6 = RegStorage::InvalidReg();
749 rs_rX86_FARG7 = RegStorage::InvalidReg();
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700750 rX86_ARG0 = rAX;
751 rX86_ARG1 = rCX;
752 rX86_ARG2 = rDX;
753 rX86_ARG3 = rBX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700754 rX86_FARG0 = rAX;
755 rX86_FARG1 = rCX;
756 rX86_FARG2 = rDX;
757 rX86_FARG3 = rBX;
758 // TODO(64): Initialize with invalid reg
759// rX86_ARG4 = RegStorage::InvalidReg();
760// rX86_ARG5 = RegStorage::InvalidReg();
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700761 }
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700762 rs_rX86_RET0 = rs_rAX;
763 rs_rX86_RET1 = rs_rDX;
764 rs_rX86_INVOKE_TGT = rs_rAX;
765 rs_rX86_COUNT = rs_rCX;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700766 rX86_RET0 = rAX;
767 rX86_RET1 = rDX;
768 rX86_INVOKE_TGT = rAX;
769 rX86_COUNT = rCX;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700770}
771
772Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
773 ArenaAllocator* const arena) {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700774 return new X86Mir2Lir(cu, mir_graph, arena, false);
775}
776
777Mir2Lir* X86_64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
778 ArenaAllocator* const arena) {
779 return new X86Mir2Lir(cu, mir_graph, arena, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700780}
781
782// Not used in x86
Ian Rogersdd7624d2014-03-14 17:43:00 -0700783RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700784 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
buzbee2700f7e2014-03-07 09:46:20 -0800785 return RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700786}
787
Andreas Gampe2f244e92014-05-08 03:35:25 -0700788// Not used in x86
789RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
790 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
791 return RegStorage::InvalidReg();
792}
793
Dave Allisonb373e092014-02-20 16:06:36 -0800794LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
795 LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
796 return nullptr;
797}
798
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700799uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700800 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700801 return X86Mir2Lir::EncodingMap[opcode].flags;
802}
803
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700804const char* X86Mir2Lir::GetTargetInstName(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700805 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700806 return X86Mir2Lir::EncodingMap[opcode].name;
807}
808
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700809const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700810 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700811 return X86Mir2Lir::EncodingMap[opcode].fmt;
812}
813
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000814void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
815 // Can we do this directly to memory?
816 rl_dest = UpdateLocWide(rl_dest);
817 if ((rl_dest.location == kLocDalvikFrame) ||
818 (rl_dest.location == kLocCompilerTemp)) {
819 int32_t val_lo = Low32Bits(value);
820 int32_t val_hi = High32Bits(value);
buzbee2700f7e2014-03-07 09:46:20 -0800821 int r_base = TargetReg(kSp).GetReg();
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000822 int displacement = SRegOffset(rl_dest.s_reg_low);
823
buzbee2700f7e2014-03-07 09:46:20 -0800824 LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000825 AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
826 false /* is_load */, true /* is64bit */);
buzbee2700f7e2014-03-07 09:46:20 -0800827 store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000828 AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
829 false /* is_load */, true /* is64bit */);
830 return;
831 }
832
833 // Just use the standard code to do the generation.
834 Mir2Lir::GenConstWide(rl_dest, value);
835}
Mark Mendelle02d48f2014-01-15 11:19:23 -0800836
837// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
838void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
839 LOG(INFO) << "location: " << loc.location << ','
840 << (loc.wide ? " w" : " ")
841 << (loc.defined ? " D" : " ")
842 << (loc.is_const ? " c" : " ")
843 << (loc.fp ? " F" : " ")
844 << (loc.core ? " C" : " ")
845 << (loc.ref ? " r" : " ")
846 << (loc.high_word ? " h" : " ")
847 << (loc.home ? " H" : " ")
buzbee2700f7e2014-03-07 09:46:20 -0800848 << ", low: " << static_cast<int>(loc.reg.GetLowReg())
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000849 << ", high: " << static_cast<int>(loc.reg.GetHighReg())
Mark Mendelle02d48f2014-01-15 11:19:23 -0800850 << ", s_reg: " << loc.s_reg_low
851 << ", orig: " << loc.orig_sreg;
852}
853
Mark Mendell67c39c42014-01-31 17:28:00 -0800854void X86Mir2Lir::Materialize() {
855 // A good place to put the analysis before starting.
856 AnalyzeMIR();
857
858 // Now continue with regular code generation.
859 Mir2Lir::Materialize();
860}
861
Jeff Hao49161ce2014-03-12 11:05:25 -0700862void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
Mark Mendell55d0eac2014-02-06 11:02:52 -0800863 SpecialTargetRegister symbolic_reg) {
864 /*
865 * For x86, just generate a 32 bit move immediate instruction, that will be filled
866 * in at 'link time'. For now, put a unique value based on target to ensure that
867 * code deduplication works.
868 */
Jeff Hao49161ce2014-03-12 11:05:25 -0700869 int target_method_idx = target_method.dex_method_index;
870 const DexFile* target_dex_file = target_method.dex_file;
871 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
872 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800873
Jeff Hao49161ce2014-03-12 11:05:25 -0700874 // Generate the move instruction with the unique pointer and save index, dex_file, and type.
buzbee2700f7e2014-03-07 09:46:20 -0800875 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
Jeff Hao49161ce2014-03-12 11:05:25 -0700876 static_cast<int>(target_method_id_ptr), target_method_idx,
877 WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800878 AppendLIR(move);
879 method_address_insns_.Insert(move);
880}
881
882void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
883 /*
884 * For x86, just generate a 32 bit move immediate instruction, that will be filled
885 * in at 'link time'. For now, put a unique value based on target to ensure that
886 * code deduplication works.
887 */
888 const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
889 uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
890
891 // Generate the move instruction with the unique pointer and save index and type.
buzbee2700f7e2014-03-07 09:46:20 -0800892 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800893 static_cast<int>(ptr), type_idx);
894 AppendLIR(move);
895 class_type_address_insns_.Insert(move);
896}
897
Jeff Hao49161ce2014-03-12 11:05:25 -0700898LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800899 /*
900 * For x86, just generate a 32 bit call relative instruction, that will be filled
901 * in at 'link time'. For now, put a unique value based on target to ensure that
902 * code deduplication works.
903 */
Jeff Hao49161ce2014-03-12 11:05:25 -0700904 int target_method_idx = target_method.dex_method_index;
905 const DexFile* target_dex_file = target_method.dex_file;
906 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
907 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800908
Jeff Hao49161ce2014-03-12 11:05:25 -0700909 // Generate the call instruction with the unique pointer and save index, dex_file, and type.
910 LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
911 target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800912 AppendLIR(call);
913 call_method_insns_.Insert(call);
914 return call;
915}
916
Mark Mendelld65c51a2014-04-29 16:55:20 -0400917/*
918 * @brief Enter a 32 bit quantity into a buffer
919 * @param buf buffer.
920 * @param data Data value.
921 */
922
923static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
924 buf.push_back(data & 0xff);
925 buf.push_back((data >> 8) & 0xff);
926 buf.push_back((data >> 16) & 0xff);
927 buf.push_back((data >> 24) & 0xff);
928}
929
Mark Mendell55d0eac2014-02-06 11:02:52 -0800930void X86Mir2Lir::InstallLiteralPools() {
931 // These are handled differently for x86.
932 DCHECK(code_literal_list_ == nullptr);
933 DCHECK(method_literal_list_ == nullptr);
934 DCHECK(class_literal_list_ == nullptr);
935
Mark Mendelld65c51a2014-04-29 16:55:20 -0400936 // Align to 16 byte boundary. We have implicit knowledge that the start of the method is
937 // on a 4 byte boundary. How can I check this if it changes (other than aligned loads
938 // will fail at runtime)?
939 if (const_vectors_ != nullptr) {
940 int align_size = (16-4) - (code_buffer_.size() & 0xF);
941 if (align_size < 0) {
942 align_size += 16;
943 }
944
945 while (align_size > 0) {
946 code_buffer_.push_back(0);
947 align_size--;
948 }
949 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
950 PushWord(code_buffer_, p->operands[0]);
951 PushWord(code_buffer_, p->operands[1]);
952 PushWord(code_buffer_, p->operands[2]);
953 PushWord(code_buffer_, p->operands[3]);
954 }
955 }
956
Mark Mendell55d0eac2014-02-06 11:02:52 -0800957 // Handle the fixups for methods.
958 for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
959 LIR* p = method_address_insns_.Get(i);
960 DCHECK_EQ(p->opcode, kX86Mov32RI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700961 uint32_t target_method_idx = p->operands[2];
962 const DexFile* target_dex_file =
963 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
Mark Mendell55d0eac2014-02-06 11:02:52 -0800964
965 // The offset to patch is the last 4 bytes of the instruction.
966 int patch_offset = p->offset + p->flags.size - 4;
967 cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
968 cu_->method_idx, cu_->invoke_type,
Jeff Hao49161ce2014-03-12 11:05:25 -0700969 target_method_idx, target_dex_file,
970 static_cast<InvokeType>(p->operands[4]),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800971 patch_offset);
972 }
973
974 // Handle the fixups for class types.
975 for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
976 LIR* p = class_type_address_insns_.Get(i);
977 DCHECK_EQ(p->opcode, kX86Mov32RI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700978 uint32_t target_method_idx = p->operands[2];
Mark Mendell55d0eac2014-02-06 11:02:52 -0800979
980 // The offset to patch is the last 4 bytes of the instruction.
981 int patch_offset = p->offset + p->flags.size - 4;
982 cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
Jeff Hao49161ce2014-03-12 11:05:25 -0700983 cu_->method_idx, target_method_idx, patch_offset);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800984 }
985
986 // And now the PC-relative calls to methods.
987 for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
988 LIR* p = call_method_insns_.Get(i);
989 DCHECK_EQ(p->opcode, kX86CallI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700990 uint32_t target_method_idx = p->operands[1];
991 const DexFile* target_dex_file =
992 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
Mark Mendell55d0eac2014-02-06 11:02:52 -0800993
994 // The offset to patch is the last 4 bytes of the instruction.
995 int patch_offset = p->offset + p->flags.size - 4;
996 cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
Jeff Hao49161ce2014-03-12 11:05:25 -0700997 cu_->method_idx, cu_->invoke_type,
998 target_method_idx, target_dex_file,
999 static_cast<InvokeType>(p->operands[3]),
Mark Mendell55d0eac2014-02-06 11:02:52 -08001000 patch_offset, -4 /* offset */);
1001 }
1002
1003 // And do the normal processing.
1004 Mir2Lir::InstallLiteralPools();
1005}
1006
Mark Mendell4028a6c2014-02-19 20:06:20 -08001007/*
1008 * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff,
1009 * otherwise bails to standard library code.
1010 */
1011bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1012 ClobberCallerSave();
1013 LockCallTemps(); // Using fixed registers
1014
1015 // EAX: 16 bit character being searched.
1016 // ECX: count: number of words to be searched.
1017 // EDI: String being searched.
1018 // EDX: temporary during execution.
1019 // EBX: temporary during execution.
1020
1021 RegLocation rl_obj = info->args[0];
1022 RegLocation rl_char = info->args[1];
buzbeea44d4f52014-03-05 11:26:39 -08001023 RegLocation rl_start; // Note: only present in III flavor or IndexOf.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001024
1025 uint32_t char_value =
1026 rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1027
1028 if (char_value > 0xFFFF) {
1029 // We have to punt to the real String.indexOf.
1030 return false;
1031 }
1032
1033 // Okay, we are commited to inlining this.
buzbeea0cd2d72014-06-01 09:33:49 -07001034 RegLocation rl_return = GetReturn(kCoreReg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001035 RegLocation rl_dest = InlineTarget(info);
1036
1037 // Is the string non-NULL?
buzbee2700f7e2014-03-07 09:46:20 -08001038 LoadValueDirectFixed(rl_obj, rs_rDX);
1039 GenNullCheck(rs_rDX, info->opt_flags);
Vladimir Marko3bc86152014-03-13 14:11:28 +00001040 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001041
1042 // Does the character fit in 16 bits?
Mingyao Yang3a74d152014-04-21 15:39:44 -07001043 LIR* slowpath_branch = nullptr;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001044 if (rl_char.is_const) {
1045 // We need the value in EAX.
buzbee2700f7e2014-03-07 09:46:20 -08001046 LoadConstantNoClobber(rs_rAX, char_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001047 } else {
1048 // Character is not a constant; compare at runtime.
buzbee2700f7e2014-03-07 09:46:20 -08001049 LoadValueDirectFixed(rl_char, rs_rAX);
Mingyao Yang3a74d152014-04-21 15:39:44 -07001050 slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001051 }
1052
1053 // From here down, we know that we are looking for a char that fits in 16 bits.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001054 // Location of reference to data array within the String object.
1055 int value_offset = mirror::String::ValueOffset().Int32Value();
1056 // Location of count within the String object.
1057 int count_offset = mirror::String::CountOffset().Int32Value();
1058 // Starting offset within data array.
1059 int offset_offset = mirror::String::OffsetOffset().Int32Value();
1060 // Start of char data with array_.
1061 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
Mark Mendell4028a6c2014-02-19 20:06:20 -08001062
1063 // Character is in EAX.
1064 // Object pointer is in EDX.
1065
1066 // We need to preserve EDI, but have no spare registers, so push it on the stack.
1067 // We have to remember that all stack addresses after this are offset by sizeof(EDI).
buzbee091cc402014-03-31 10:14:40 -07001068 NewLIR1(kX86Push32R, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -08001069
1070 // Compute the number of words to search in to rCX.
buzbee695d13a2014-04-19 13:32:20 -07001071 Load32Disp(rs_rDX, count_offset, rs_rCX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001072 LIR *length_compare = nullptr;
1073 int start_value = 0;
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001074 bool is_index_on_stack = false;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001075 if (zero_based) {
1076 // We have to handle an empty string. Use special instruction JECXZ.
1077 length_compare = NewLIR0(kX86Jecxz8);
1078 } else {
buzbeea44d4f52014-03-05 11:26:39 -08001079 rl_start = info->args[2];
Mark Mendell4028a6c2014-02-19 20:06:20 -08001080 // We have to offset by the start index.
1081 if (rl_start.is_const) {
1082 start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1083 start_value = std::max(start_value, 0);
1084
1085 // Is the start > count?
buzbee2700f7e2014-03-07 09:46:20 -08001086 length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001087
1088 if (start_value != 0) {
buzbee2700f7e2014-03-07 09:46:20 -08001089 OpRegImm(kOpSub, rs_rCX, start_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001090 }
1091 } else {
1092 // Runtime start index.
buzbee30adc732014-05-09 15:10:18 -07001093 rl_start = UpdateLocTyped(rl_start, kCoreReg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001094 if (rl_start.location == kLocPhysReg) {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001095 // Handle "start index < 0" case.
1096 OpRegReg(kOpXor, rs_rBX, rs_rBX);
1097 OpRegReg(kOpCmp, rl_start.reg, rs_rBX);
1098 OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX);
1099
1100 // The length of the string should be greater than the start index.
buzbee2700f7e2014-03-07 09:46:20 -08001101 length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1102 OpRegReg(kOpSub, rs_rCX, rl_start.reg);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001103 if (rl_start.reg == rs_rDI) {
1104 // The special case. We will use EDI further, so lets put start index to stack.
buzbee091cc402014-03-31 10:14:40 -07001105 NewLIR1(kX86Push32R, rs_rDI.GetReg());
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001106 is_index_on_stack = true;
1107 }
Mark Mendell4028a6c2014-02-19 20:06:20 -08001108 } else {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001109 // Load the start index from stack, remembering that we pushed EDI.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001110 int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
buzbee695d13a2014-04-19 13:32:20 -07001111 Load32Disp(rs_rX86_SP, displacement, rs_rBX);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001112 OpRegReg(kOpXor, rs_rDI, rs_rDI);
1113 OpRegReg(kOpCmp, rs_rBX, rs_rDI);
1114 OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI);
1115
1116 length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr);
1117 OpRegReg(kOpSub, rs_rCX, rs_rBX);
1118 // Put the start index to stack.
buzbee091cc402014-03-31 10:14:40 -07001119 NewLIR1(kX86Push32R, rs_rBX.GetReg());
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001120 is_index_on_stack = true;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001121 }
1122 }
1123 }
1124 DCHECK(length_compare != nullptr);
1125
1126 // ECX now contains the count in words to be searched.
1127
1128 // Load the address of the string into EBX.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001129 // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
buzbee695d13a2014-04-19 13:32:20 -07001130 Load32Disp(rs_rDX, value_offset, rs_rDI);
1131 Load32Disp(rs_rDX, offset_offset, rs_rBX);
buzbee2700f7e2014-03-07 09:46:20 -08001132 OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001133
1134 // Now compute into EDI where the search will start.
1135 if (zero_based || rl_start.is_const) {
1136 if (start_value == 0) {
buzbee2700f7e2014-03-07 09:46:20 -08001137 OpRegCopy(rs_rDI, rs_rBX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001138 } else {
buzbee091cc402014-03-31 10:14:40 -07001139 NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001140 }
1141 } else {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001142 if (is_index_on_stack == true) {
1143 // Load the start index from stack.
buzbee091cc402014-03-31 10:14:40 -07001144 NewLIR1(kX86Pop32R, rs_rDX.GetReg());
buzbee2700f7e2014-03-07 09:46:20 -08001145 OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001146 } else {
1147 OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001148 }
1149 }
1150
1151 // EDI now contains the start of the string to be searched.
1152 // We are all prepared to do the search for the character.
1153 NewLIR0(kX86RepneScasw);
1154
1155 // Did we find a match?
1156 LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1157
1158 // yes, we matched. Compute the index of the result.
1159 // index = ((curr_ptr - orig_ptr) / 2) - 1.
buzbee2700f7e2014-03-07 09:46:20 -08001160 OpRegReg(kOpSub, rs_rDI, rs_rBX);
1161 OpRegImm(kOpAsr, rs_rDI, 1);
buzbee091cc402014-03-31 10:14:40 -07001162 NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001163 LIR *all_done = NewLIR1(kX86Jmp8, 0);
1164
1165 // Failed to match; return -1.
1166 LIR *not_found = NewLIR0(kPseudoTargetLabel);
1167 length_compare->target = not_found;
1168 failed_branch->target = not_found;
buzbee2700f7e2014-03-07 09:46:20 -08001169 LoadConstantNoClobber(rl_return.reg, -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001170
1171 // And join up at the end.
1172 all_done->target = NewLIR0(kPseudoTargetLabel);
1173 // Restore EDI from the stack.
buzbee091cc402014-03-31 10:14:40 -07001174 NewLIR1(kX86Pop32R, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -08001175
1176 // Out of line code returns here.
Mingyao Yang3a74d152014-04-21 15:39:44 -07001177 if (slowpath_branch != nullptr) {
Mark Mendell4028a6c2014-02-19 20:06:20 -08001178 LIR *return_point = NewLIR0(kPseudoTargetLabel);
Mingyao Yang3a74d152014-04-21 15:39:44 -07001179 AddIntrinsicSlowPath(info, slowpath_branch, return_point);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001180 }
1181
1182 StoreValue(rl_dest, rl_return);
1183 return true;
1184}
1185
Mark Mendellae9fd932014-02-10 16:14:35 -08001186/*
Mark Mendellae9fd932014-02-10 16:14:35 -08001187 * @brief Enter an 'advance LOC' into the FDE buffer
1188 * @param buf FDE buffer.
1189 * @param increment Amount by which to increase the current location.
1190 */
1191static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1192 if (increment < 64) {
1193 // Encoding in opcode.
1194 buf.push_back(0x1 << 6 | increment);
1195 } else if (increment < 256) {
1196 // Single byte delta.
1197 buf.push_back(0x02);
1198 buf.push_back(increment);
1199 } else if (increment < 256 * 256) {
1200 // Two byte delta.
1201 buf.push_back(0x03);
1202 buf.push_back(increment & 0xff);
1203 buf.push_back((increment >> 8) & 0xff);
1204 } else {
1205 // Four byte delta.
1206 buf.push_back(0x04);
1207 PushWord(buf, increment);
1208 }
1209}
1210
1211
1212std::vector<uint8_t>* X86CFIInitialization() {
1213 return X86Mir2Lir::ReturnCommonCallFrameInformation();
1214}
1215
1216std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1217 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1218
1219 // Length of the CIE (except for this field).
1220 PushWord(*cfi_info, 16);
1221
1222 // CIE id.
1223 PushWord(*cfi_info, 0xFFFFFFFFU);
1224
1225 // Version: 3.
1226 cfi_info->push_back(0x03);
1227
1228 // Augmentation: empty string.
1229 cfi_info->push_back(0x0);
1230
1231 // Code alignment: 1.
1232 cfi_info->push_back(0x01);
1233
1234 // Data alignment: -4.
1235 cfi_info->push_back(0x7C);
1236
1237 // Return address register (R8).
1238 cfi_info->push_back(0x08);
1239
1240 // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1241 cfi_info->push_back(0x0C);
1242 cfi_info->push_back(0x04);
1243 cfi_info->push_back(0x04);
1244
1245 // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1246 cfi_info->push_back(0x2 << 6 | 0x08);
1247 cfi_info->push_back(0x01);
1248
1249 // And 2 Noops to align to 4 byte boundary.
1250 cfi_info->push_back(0x0);
1251 cfi_info->push_back(0x0);
1252
1253 DCHECK_EQ(cfi_info->size() & 3, 0U);
1254 return cfi_info;
1255}
1256
1257static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1258 uint8_t buffer[12];
1259 uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1260 for (uint8_t *p = buffer; p < ptr; p++) {
1261 buf.push_back(*p);
1262 }
1263}
1264
1265std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1266 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1267
1268 // Generate the FDE for the method.
1269 DCHECK_NE(data_offset_, 0U);
1270
1271 // Length (will be filled in later in this routine).
1272 PushWord(*cfi_info, 0);
1273
1274 // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1275 // one CIE for the whole debug_frame section.
1276 PushWord(*cfi_info, 0);
1277
1278 // 'initial_location' (filled in by linker).
1279 PushWord(*cfi_info, 0);
1280
1281 // 'address_range' (number of bytes in the method).
1282 PushWord(*cfi_info, data_offset_);
1283
1284 // The instructions in the FDE.
1285 if (stack_decrement_ != nullptr) {
1286 // Advance LOC to just past the stack decrement.
1287 uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1288 AdvanceLoc(*cfi_info, pc);
1289
1290 // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1291 cfi_info->push_back(0x0e);
1292 EncodeUnsignedLeb128(*cfi_info, frame_size_);
1293
1294 // We continue with that stack until the epilogue.
1295 if (stack_increment_ != nullptr) {
1296 uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1297 AdvanceLoc(*cfi_info, new_pc - pc);
1298
1299 // We probably have code snippets after the epilogue, so save the
1300 // current state: DW_CFA_remember_state.
1301 cfi_info->push_back(0x0a);
1302
1303 // We have now popped the stack: DW_CFA_def_cfa_offset 4. There is only the return
1304 // PC on the stack now.
1305 cfi_info->push_back(0x0e);
1306 EncodeUnsignedLeb128(*cfi_info, 4);
1307
1308 // Everything after that is the same as before the epilogue.
1309 // Stack bump was followed by RET instruction.
1310 LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1311 if (post_ret_insn != nullptr) {
1312 pc = new_pc;
1313 new_pc = post_ret_insn->offset;
1314 AdvanceLoc(*cfi_info, new_pc - pc);
1315 // Restore the state: DW_CFA_restore_state.
1316 cfi_info->push_back(0x0b);
1317 }
1318 }
1319 }
1320
1321 // Padding to a multiple of 4
1322 while ((cfi_info->size() & 3) != 0) {
1323 // DW_CFA_nop is encoded as 0.
1324 cfi_info->push_back(0);
1325 }
1326
1327 // Set the length of the FDE inside the generated bytes.
1328 uint32_t length = cfi_info->size() - 4;
1329 (*cfi_info)[0] = length;
1330 (*cfi_info)[1] = length >> 8;
1331 (*cfi_info)[2] = length >> 16;
1332 (*cfi_info)[3] = length >> 24;
1333 return cfi_info;
1334}
1335
Mark Mendelld65c51a2014-04-29 16:55:20 -04001336void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1337 switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1338 case kMirOpConstVector:
1339 GenConst128(bb, mir);
1340 break;
Mark Mendellfe945782014-05-22 09:52:36 -04001341 case kMirOpMoveVector:
1342 GenMoveVector(bb, mir);
1343 break;
1344 case kMirOpPackedMultiply:
1345 GenMultiplyVector(bb, mir);
1346 break;
1347 case kMirOpPackedAddition:
1348 GenAddVector(bb, mir);
1349 break;
1350 case kMirOpPackedSubtract:
1351 GenSubtractVector(bb, mir);
1352 break;
1353 case kMirOpPackedShiftLeft:
1354 GenShiftLeftVector(bb, mir);
1355 break;
1356 case kMirOpPackedSignedShiftRight:
1357 GenSignedShiftRightVector(bb, mir);
1358 break;
1359 case kMirOpPackedUnsignedShiftRight:
1360 GenUnsignedShiftRightVector(bb, mir);
1361 break;
1362 case kMirOpPackedAnd:
1363 GenAndVector(bb, mir);
1364 break;
1365 case kMirOpPackedOr:
1366 GenOrVector(bb, mir);
1367 break;
1368 case kMirOpPackedXor:
1369 GenXorVector(bb, mir);
1370 break;
1371 case kMirOpPackedAddReduce:
1372 GenAddReduceVector(bb, mir);
1373 break;
1374 case kMirOpPackedReduce:
1375 GenReduceVector(bb, mir);
1376 break;
1377 case kMirOpPackedSet:
1378 GenSetVector(bb, mir);
1379 break;
Mark Mendelld65c51a2014-04-29 16:55:20 -04001380 default:
1381 break;
1382 }
1383}
1384
1385void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1386 int type_size = mir->dalvikInsn.vA;
1387 // We support 128 bit vectors.
1388 DCHECK_EQ(type_size & 0xFFFF, 128);
Mark Mendellfe945782014-05-22 09:52:36 -04001389 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
Mark Mendelld65c51a2014-04-29 16:55:20 -04001390 uint32_t *args = mir->dalvikInsn.arg;
Mark Mendellfe945782014-05-22 09:52:36 -04001391 int reg = rs_dest.GetReg();
Mark Mendelld65c51a2014-04-29 16:55:20 -04001392 // Check for all 0 case.
1393 if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1394 NewLIR2(kX86XorpsRR, reg, reg);
1395 return;
1396 }
1397 // Okay, load it from the constant vector area.
1398 LIR *data_target = ScanVectorLiteral(mir);
1399 if (data_target == nullptr) {
1400 data_target = AddVectorLiteral(mir);
1401 }
1402
1403 // Address the start of the method.
1404 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
Chao-ying Fue0ccdc02014-06-06 17:32:37 -07001405 if (rl_method.wide) {
1406 rl_method = LoadValueWide(rl_method, kCoreReg);
1407 } else {
1408 rl_method = LoadValue(rl_method, kCoreReg);
1409 }
Mark Mendelld65c51a2014-04-29 16:55:20 -04001410
1411 // Load the proper value from the literal area.
1412 // We don't know the proper offset for the value, so pick one that will force
1413 // 4 byte offset. We will fix this up in the assembler later to have the right
1414 // value.
1415 LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(), 256 /* bogus */);
1416 load->flags.fixup = kFixupLoad;
1417 load->target = data_target;
1418 SetMemRefType(load, true, kLiteral);
1419}
1420
Mark Mendellfe945782014-05-22 09:52:36 -04001421void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1422 // We only support 128 bit registers.
1423 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1424 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1425 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
1426 NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1427}
1428
1429void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1430 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1431 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1432 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1433 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1434 int opcode = 0;
1435 switch (opsize) {
1436 case k32:
1437 opcode = kX86PmulldRR;
1438 break;
1439 case kSignedHalf:
1440 opcode = kX86PmullwRR;
1441 break;
1442 case kSingle:
1443 opcode = kX86MulpsRR;
1444 break;
1445 case kDouble:
1446 opcode = kX86MulpdRR;
1447 break;
1448 default:
1449 LOG(FATAL) << "Unsupported vector multiply " << opsize;
1450 break;
1451 }
1452 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1453}
1454
1455void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1456 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1457 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1458 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1459 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1460 int opcode = 0;
1461 switch (opsize) {
1462 case k32:
1463 opcode = kX86PadddRR;
1464 break;
1465 case kSignedHalf:
1466 case kUnsignedHalf:
1467 opcode = kX86PaddwRR;
1468 break;
1469 case kUnsignedByte:
1470 case kSignedByte:
1471 opcode = kX86PaddbRR;
1472 break;
1473 case kSingle:
1474 opcode = kX86AddpsRR;
1475 break;
1476 case kDouble:
1477 opcode = kX86AddpdRR;
1478 break;
1479 default:
1480 LOG(FATAL) << "Unsupported vector addition " << opsize;
1481 break;
1482 }
1483 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1484}
1485
1486void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1487 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1488 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1489 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1490 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1491 int opcode = 0;
1492 switch (opsize) {
1493 case k32:
1494 opcode = kX86PsubdRR;
1495 break;
1496 case kSignedHalf:
1497 case kUnsignedHalf:
1498 opcode = kX86PsubwRR;
1499 break;
1500 case kUnsignedByte:
1501 case kSignedByte:
1502 opcode = kX86PsubbRR;
1503 break;
1504 case kSingle:
1505 opcode = kX86SubpsRR;
1506 break;
1507 case kDouble:
1508 opcode = kX86SubpdRR;
1509 break;
1510 default:
1511 LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1512 break;
1513 }
1514 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1515}
1516
1517void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1518 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1519 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1520 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1521 int imm = mir->dalvikInsn.vC;
1522 int opcode = 0;
1523 switch (opsize) {
1524 case k32:
1525 opcode = kX86PslldRI;
1526 break;
1527 case k64:
1528 opcode = kX86PsllqRI;
1529 break;
1530 case kSignedHalf:
1531 case kUnsignedHalf:
1532 opcode = kX86PsllwRI;
1533 break;
1534 default:
1535 LOG(FATAL) << "Unsupported vector shift left " << opsize;
1536 break;
1537 }
1538 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1539}
1540
1541void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1542 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1543 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1544 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1545 int imm = mir->dalvikInsn.vC;
1546 int opcode = 0;
1547 switch (opsize) {
1548 case k32:
1549 opcode = kX86PsradRI;
1550 break;
1551 case kSignedHalf:
1552 case kUnsignedHalf:
1553 opcode = kX86PsrawRI;
1554 break;
1555 default:
1556 LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1557 break;
1558 }
1559 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1560}
1561
1562void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1563 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1564 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1565 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1566 int imm = mir->dalvikInsn.vC;
1567 int opcode = 0;
1568 switch (opsize) {
1569 case k32:
1570 opcode = kX86PsrldRI;
1571 break;
1572 case k64:
1573 opcode = kX86PsrlqRI;
1574 break;
1575 case kSignedHalf:
1576 case kUnsignedHalf:
1577 opcode = kX86PsrlwRI;
1578 break;
1579 default:
1580 LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1581 break;
1582 }
1583 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1584}
1585
1586void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1587 // We only support 128 bit registers.
1588 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1589 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1590 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1591 NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1592}
1593
1594void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1595 // We only support 128 bit registers.
1596 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1597 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1598 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1599 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1600}
1601
1602void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1603 // We only support 128 bit registers.
1604 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1605 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1606 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1607 NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1608}
1609
1610void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1611 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1612 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1613 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1614 int imm = mir->dalvikInsn.vC;
1615 int opcode = 0;
1616 switch (opsize) {
1617 case k32:
1618 opcode = kX86PhadddRR;
1619 break;
1620 case kSignedHalf:
1621 case kUnsignedHalf:
1622 opcode = kX86PhaddwRR;
1623 break;
1624 default:
1625 LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1626 break;
1627 }
1628 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1629}
1630
1631void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1632 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1633 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1634 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1635 int index = mir->dalvikInsn.arg[0];
1636 int opcode = 0;
1637 switch (opsize) {
1638 case k32:
1639 opcode = kX86PextrdRRI;
1640 break;
1641 case kSignedHalf:
1642 case kUnsignedHalf:
1643 opcode = kX86PextrwRRI;
1644 break;
1645 case kUnsignedByte:
1646 case kSignedByte:
1647 opcode = kX86PextrbRRI;
1648 break;
1649 default:
1650 LOG(FATAL) << "Unsupported vector reduce " << opsize;
1651 break;
1652 }
1653 // We need to extract to a GPR.
1654 RegStorage temp = AllocTemp();
1655 NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
1656
1657 // Assume that the destination VR is in the def for the mir.
1658 RegLocation rl_dest = mir_graph_->GetDest(mir);
1659 RegLocation rl_temp =
1660 {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
1661 StoreValue(rl_dest, rl_temp);
1662}
1663
1664void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1665 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1666 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1667 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1668 int op_low = 0, op_high = 0;
1669 switch (opsize) {
1670 case k32:
1671 op_low = kX86PshufdRRI;
1672 break;
1673 case kSignedHalf:
1674 case kUnsignedHalf:
1675 // Handles low quadword.
1676 op_low = kX86PshuflwRRI;
1677 // Handles upper quadword.
1678 op_high = kX86PshufdRRI;
1679 break;
1680 default:
1681 LOG(FATAL) << "Unsupported vector set " << opsize;
1682 break;
1683 }
1684
1685 // Load the value from the VR into a GPR.
1686 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
1687 rl_src = LoadValue(rl_src, kCoreReg);
1688
1689 // Load the value into the XMM register.
1690 NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
1691
1692 // Now shuffle the value across the destination.
1693 NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1694
1695 // And then repeat as needed.
1696 if (op_high != 0) {
1697 NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1698 }
1699}
1700
1701
Mark Mendelld65c51a2014-04-29 16:55:20 -04001702LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
1703 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1704 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1705 if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
1706 args[2] == p->operands[2] && args[3] == p->operands[3]) {
1707 return p;
1708 }
1709 }
1710 return nullptr;
1711}
1712
1713LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
1714 LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
1715 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1716 new_value->operands[0] = args[0];
1717 new_value->operands[1] = args[1];
1718 new_value->operands[2] = args[2];
1719 new_value->operands[3] = args[3];
1720 new_value->next = const_vectors_;
1721 if (const_vectors_ == nullptr) {
1722 estimated_native_code_size_ += 12; // Amount needed to align to 16 byte boundary.
1723 }
1724 estimated_native_code_size_ += 16; // Space for one vector.
1725 const_vectors_ = new_value;
1726 return new_value;
1727}
1728
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001729// ------------ ABI support: mapping of args to physical registers -------------
1730RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
1731 const RegStorage coreArgMappingToPhysicalReg[] = {rs_rX86_ARG1, rs_rX86_ARG2, rs_rX86_ARG3, rs_rX86_ARG4, rs_rX86_ARG5};
1732 const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
1733 const RegStorage fpArgMappingToPhysicalReg[] = {rs_rX86_FARG0, rs_rX86_FARG1, rs_rX86_FARG2, rs_rX86_FARG3,
1734 rs_rX86_FARG4, rs_rX86_FARG5, rs_rX86_FARG6, rs_rX86_FARG7};
1735 const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
1736
1737 RegStorage result = RegStorage::InvalidReg();
1738 if (is_double_or_float) {
1739 if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
1740 result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
1741 if (result.Valid()) {
1742 result = is_wide ? RegStorage::FloatSolo64(result.GetReg()) : RegStorage::FloatSolo32(result.GetReg());
1743 }
1744 }
1745 } else {
1746 if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
1747 result = coreArgMappingToPhysicalReg[cur_core_reg_++];
1748 if (result.Valid()) {
1749 result = is_wide ? RegStorage::Solo64(result.GetReg()) : RegStorage::Solo32(result.GetReg());
1750 }
1751 }
1752 }
1753 return result;
1754}
1755
1756RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
1757 DCHECK(IsInitialized());
1758 auto res = mapping_.find(in_position);
1759 return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
1760}
1761
1762void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
1763 DCHECK(mapper != nullptr);
1764 max_mapped_in_ = -1;
1765 is_there_stack_mapped_ = false;
1766 for (int in_position = 0; in_position < count; in_position++) {
1767 RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
1768 if (reg.Valid()) {
1769 mapping_[in_position] = reg;
1770 max_mapped_in_ = std::max(max_mapped_in_, in_position);
1771 if (reg.Is64BitSolo()) {
1772 // We covered 2 args, so skip the next one
1773 in_position++;
1774 }
1775 } else {
1776 is_there_stack_mapped_ = true;
1777 }
1778 }
1779 initialized_ = true;
1780}
1781
1782RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
1783 if (!Gen64Bit()) {
1784 return GetCoreArgMappingToPhysicalReg(arg_num);
1785 }
1786
1787 if (!in_to_reg_storage_mapping_.IsInitialized()) {
1788 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1789 RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
1790
1791 InToRegStorageX86_64Mapper mapper;
1792 in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
1793 }
1794 return in_to_reg_storage_mapping_.Get(arg_num);
1795}
1796
1797RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
1798 // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
1799 // Not used for 64-bit, TODO: Move X86_32 to the same framework
1800 switch (core_arg_num) {
1801 case 0:
1802 return rs_rX86_ARG1;
1803 case 1:
1804 return rs_rX86_ARG2;
1805 case 2:
1806 return rs_rX86_ARG3;
1807 default:
1808 return RegStorage::InvalidReg();
1809 }
1810}
1811
1812// ---------End of ABI support: mapping of args to physical registers -------------
1813
1814/*
1815 * If there are any ins passed in registers that have not been promoted
1816 * to a callee-save register, flush them to the frame. Perform initial
1817 * assignment of promoted arguments.
1818 *
1819 * ArgLocs is an array of location records describing the incoming arguments
1820 * with one location record per word of argument.
1821 */
1822void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
1823 if (!Gen64Bit()) return Mir2Lir::FlushIns(ArgLocs, rl_method);
1824 /*
1825 * Dummy up a RegLocation for the incoming Method*
1826 * It will attempt to keep kArg0 live (or copy it to home location
1827 * if promoted).
1828 */
1829
1830 RegLocation rl_src = rl_method;
1831 rl_src.location = kLocPhysReg;
1832 rl_src.reg = TargetReg(kArg0);
1833 rl_src.home = false;
1834 MarkLive(rl_src);
1835 StoreValue(rl_method, rl_src);
1836 // If Method* has been promoted, explicitly flush
1837 if (rl_method.location == kLocPhysReg) {
1838 StoreRefDisp(TargetReg(kSp), 0, TargetReg(kArg0));
1839 }
1840
1841 if (cu_->num_ins == 0) {
1842 return;
1843 }
1844
1845 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1846 /*
1847 * Copy incoming arguments to their proper home locations.
1848 * NOTE: an older version of dx had an issue in which
1849 * it would reuse static method argument registers.
1850 * This could result in the same Dalvik virtual register
1851 * being promoted to both core and fp regs. To account for this,
1852 * we only copy to the corresponding promoted physical register
1853 * if it matches the type of the SSA name for the incoming
1854 * argument. It is also possible that long and double arguments
1855 * end up half-promoted. In those cases, we must flush the promoted
1856 * half to memory as well.
1857 */
1858 for (int i = 0; i < cu_->num_ins; i++) {
1859 PromotionMap* v_map = &promotion_map_[start_vreg + i];
1860 RegStorage reg = RegStorage::InvalidReg();
1861 // get reg corresponding to input
1862 reg = GetArgMappingToPhysicalReg(i);
1863
1864 if (reg.Valid()) {
1865 // If arriving in register
1866 bool need_flush = true;
1867 RegLocation* t_loc = &ArgLocs[i];
1868 if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
1869 OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
1870 need_flush = false;
1871 } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
1872 OpRegCopy(RegStorage::Solo32(v_map->FpReg), reg);
1873 need_flush = false;
1874 } else {
1875 need_flush = true;
1876 }
1877
1878 // For wide args, force flush if not fully promoted
1879 if (t_loc->wide) {
1880 PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
1881 // Is only half promoted?
1882 need_flush |= (p_map->core_location != v_map->core_location) ||
1883 (p_map->fp_location != v_map->fp_location);
1884 }
1885 if (need_flush) {
1886 if (t_loc->wide && t_loc->fp) {
1887 StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, k64);
1888 // Increment i to skip the next one
1889 i++;
1890 } else if (t_loc->wide && !t_loc->fp) {
1891 StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, k64);
1892 // Increment i to skip the next one
1893 i++;
1894 } else {
1895 Store32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), reg);
1896 }
1897 }
1898 } else {
1899 // If arriving in frame & promoted
1900 if (v_map->core_location == kLocPhysReg) {
1901 Load32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->core_reg));
1902 }
1903 if (v_map->fp_location == kLocPhysReg) {
1904 Load32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->FpReg));
1905 }
1906 }
1907 }
1908}
1909
1910/*
1911 * Load up to 5 arguments, the first three of which will be in
1912 * kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
1913 * and as part of the load sequence, it must be replaced with
1914 * the target method pointer. Note, this may also be called
1915 * for "range" variants if the number of arguments is 5 or fewer.
1916 */
1917int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
1918 int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
1919 const MethodReference& target_method,
1920 uint32_t vtable_idx, uintptr_t direct_code,
1921 uintptr_t direct_method, InvokeType type, bool skip_this) {
1922 if (!Gen64Bit()) {
1923 return Mir2Lir::GenDalvikArgsNoRange(info,
1924 call_state, pcrLabel, next_call_insn,
1925 target_method,
1926 vtable_idx, direct_code,
1927 direct_method, type, skip_this);
1928 }
1929 return GenDalvikArgsRange(info,
1930 call_state, pcrLabel, next_call_insn,
1931 target_method,
1932 vtable_idx, direct_code,
1933 direct_method, type, skip_this);
1934}
1935
1936/*
1937 * May have 0+ arguments (also used for jumbo). Note that
1938 * source virtual registers may be in physical registers, so may
1939 * need to be flushed to home location before copying. This
1940 * applies to arg3 and above (see below).
1941 *
1942 * Two general strategies:
1943 * If < 20 arguments
1944 * Pass args 3-18 using vldm/vstm block copy
1945 * Pass arg0, arg1 & arg2 in kArg1-kArg3
1946 * If 20+ arguments
1947 * Pass args arg19+ using memcpy block copy
1948 * Pass arg0, arg1 & arg2 in kArg1-kArg3
1949 *
1950 */
1951int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
1952 LIR** pcrLabel, NextCallInsn next_call_insn,
1953 const MethodReference& target_method,
1954 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
1955 InvokeType type, bool skip_this) {
1956 if (!Gen64Bit()) {
1957 return Mir2Lir::GenDalvikArgsRange(info, call_state,
1958 pcrLabel, next_call_insn,
1959 target_method,
1960 vtable_idx, direct_code, direct_method,
1961 type, skip_this);
1962 }
1963
1964 /* If no arguments, just return */
1965 if (info->num_arg_words == 0)
1966 return call_state;
1967
1968 const int start_index = skip_this ? 1 : 0;
1969
1970 InToRegStorageX86_64Mapper mapper;
1971 InToRegStorageMapping in_to_reg_storage_mapping;
1972 in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
1973 const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
1974 const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
1975 in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
1976 int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
1977
1978 // Fisrt of all, check whether it make sense to use bulk copying
1979 // Optimization is aplicable only for range case
1980 // TODO: make a constant instead of 2
1981 if (info->is_range && regs_left_to_pass_via_stack >= 2) {
1982 // Scan the rest of the args - if in phys_reg flush to memory
1983 for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
1984 RegLocation loc = info->args[next_arg];
1985 if (loc.wide) {
1986 loc = UpdateLocWide(loc);
1987 if (loc.location == kLocPhysReg) {
1988 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64);
1989 }
1990 next_arg += 2;
1991 } else {
1992 loc = UpdateLoc(loc);
1993 if (loc.location == kLocPhysReg) {
1994 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32);
1995 }
1996 next_arg++;
1997 }
1998 }
1999
2000 // Logic below assumes that Method pointer is at offset zero from SP.
2001 DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2002
2003 // The rest can be copied together
2004 int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2005 int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
2006
2007 int current_src_offset = start_offset;
2008 int current_dest_offset = outs_offset;
2009
2010 while (regs_left_to_pass_via_stack > 0) {
2011 // This is based on the knowledge that the stack itself is 16-byte aligned.
2012 bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2013 bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2014 size_t bytes_to_move;
2015
2016 /*
2017 * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2018 * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2019 * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2020 * We do this because we could potentially do a smaller move to align.
2021 */
2022 if (regs_left_to_pass_via_stack == 4 ||
2023 (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2024 // Moving 128-bits via xmm register.
2025 bytes_to_move = sizeof(uint32_t) * 4;
2026
2027 // Allocate a free xmm temp. Since we are working through the calling sequence,
2028 // we expect to have an xmm temporary available. AllocTempDouble will abort if
2029 // there are no free registers.
2030 RegStorage temp = AllocTempDouble();
2031
2032 LIR* ld1 = nullptr;
2033 LIR* ld2 = nullptr;
2034 LIR* st1 = nullptr;
2035 LIR* st2 = nullptr;
2036
2037 /*
2038 * The logic is similar for both loads and stores. If we have 16-byte alignment,
2039 * do an aligned move. If we have 8-byte alignment, then do the move in two
2040 * parts. This approach prevents possible cache line splits. Finally, fall back
2041 * to doing an unaligned move. In most cases we likely won't split the cache
2042 * line but we cannot prove it and thus take a conservative approach.
2043 */
2044 bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2045 bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2046
2047 if (src_is_16b_aligned) {
2048 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
2049 } else if (src_is_8b_aligned) {
2050 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
2051 ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1),
2052 kMovHi128FP);
2053 } else {
2054 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
2055 }
2056
2057 if (dest_is_16b_aligned) {
2058 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
2059 } else if (dest_is_8b_aligned) {
2060 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
2061 st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1),
2062 temp, kMovHi128FP);
2063 } else {
2064 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
2065 }
2066
2067 // TODO If we could keep track of aliasing information for memory accesses that are wider
2068 // than 64-bit, we wouldn't need to set up a barrier.
2069 if (ld1 != nullptr) {
2070 if (ld2 != nullptr) {
2071 // For 64-bit load we can actually set up the aliasing information.
2072 AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2073 AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2074 } else {
2075 // Set barrier for 128-bit load.
2076 SetMemRefType(ld1, true /* is_load */, kDalvikReg);
2077 ld1->u.m.def_mask = ENCODE_ALL;
2078 }
2079 }
2080 if (st1 != nullptr) {
2081 if (st2 != nullptr) {
2082 // For 64-bit store we can actually set up the aliasing information.
2083 AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2084 AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2085 } else {
2086 // Set barrier for 128-bit store.
2087 SetMemRefType(st1, false /* is_load */, kDalvikReg);
2088 st1->u.m.def_mask = ENCODE_ALL;
2089 }
2090 }
2091
2092 // Free the temporary used for the data movement.
2093 FreeTemp(temp);
2094 } else {
2095 // Moving 32-bits via general purpose register.
2096 bytes_to_move = sizeof(uint32_t);
2097
2098 // Instead of allocating a new temp, simply reuse one of the registers being used
2099 // for argument passing.
2100 RegStorage temp = TargetReg(kArg3);
2101
2102 // Now load the argument VR and store to the outs.
2103 Load32Disp(TargetReg(kSp), current_src_offset, temp);
2104 Store32Disp(TargetReg(kSp), current_dest_offset, temp);
2105 }
2106
2107 current_src_offset += bytes_to_move;
2108 current_dest_offset += bytes_to_move;
2109 regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2110 }
2111 DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2112 }
2113
2114 // Now handle rest not registers if they are
2115 if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2116 RegStorage regSingle = TargetReg(kArg2);
2117 RegStorage regWide = RegStorage::Solo64(TargetReg(kArg3).GetReg());
2118 for (int i = start_index; i <= last_mapped_in + regs_left_to_pass_via_stack; i++) {
2119 RegLocation rl_arg = info->args[i];
2120 rl_arg = UpdateRawLoc(rl_arg);
2121 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2122 if (!reg.Valid()) {
2123 int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2124
2125 if (rl_arg.wide) {
2126 if (rl_arg.location == kLocPhysReg) {
2127 StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k64);
2128 } else {
2129 LoadValueDirectWideFixed(rl_arg, regWide);
2130 StoreBaseDisp(TargetReg(kSp), out_offset, regWide, k64);
2131 }
2132 i++;
2133 } else {
2134 if (rl_arg.location == kLocPhysReg) {
2135 StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k32);
2136 } else {
2137 LoadValueDirectFixed(rl_arg, regSingle);
2138 StoreBaseDisp(TargetReg(kSp), out_offset, regSingle, k32);
2139 }
2140 }
2141 call_state = next_call_insn(cu_, info, call_state, target_method,
2142 vtable_idx, direct_code, direct_method, type);
2143 }
2144 }
2145 }
2146
2147 // Finish with mapped registers
2148 for (int i = start_index; i <= last_mapped_in; i++) {
2149 RegLocation rl_arg = info->args[i];
2150 rl_arg = UpdateRawLoc(rl_arg);
2151 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2152 if (reg.Valid()) {
2153 if (rl_arg.wide) {
2154 LoadValueDirectWideFixed(rl_arg, reg);
2155 i++;
2156 } else {
2157 LoadValueDirectFixed(rl_arg, reg);
2158 }
2159 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2160 direct_code, direct_method, type);
2161 }
2162 }
2163
2164 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2165 direct_code, direct_method, type);
2166 if (pcrLabel) {
2167 if (Runtime::Current()->ExplicitNullChecks()) {
2168 *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags);
2169 } else {
2170 *pcrLabel = nullptr;
2171 // In lieu of generating a check for kArg1 being null, we need to
2172 // perform a load when doing implicit checks.
2173 RegStorage tmp = AllocTemp();
2174 Load32Disp(TargetReg(kArg1), 0, tmp);
2175 MarkPossibleNullPointerException(info->opt_flags);
2176 FreeTemp(tmp);
2177 }
2178 }
2179 return call_state;
2180}
2181
Brian Carlstrom7934ac22013-07-26 10:54:15 -07002182} // namespace art
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002183