blob: 88e0d7e54ade4b76fe207f9746583b7408127b79 [file] [log] [blame]
Kaizenbf8b01d2017-10-12 14:26:51 +01001/*
Jenkins4ba87db2019-05-23 17:11:51 +01002 * Copyright (c) 2017-2019 ARM Limited.
Kaizenbf8b01d2017-10-12 14:26:51 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
Kaizenbf8b01d2017-10-12 14:26:51 +010025#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000026#include "utils/CommonGraphOptions.h"
Kaizenbf8b01d2017-10-12 14:26:51 +010027#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
Anthony Barbierf45d5a92018-01-24 16:23:15 +000030using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010031using namespace arm_compute::graph::frontend;
Kaizenbf8b01d2017-10-12 14:26:51 +010032using namespace arm_compute::graph_utils;
33
Jenkinsb9abeae2018-11-22 11:58:08 +000034/** Example demonstrating how to implement AlexNet's network using the Compute Library's graph API */
Anthony Barbierf45d5a92018-01-24 16:23:15 +000035class GraphAlexnetExample : public Example
Kaizenbf8b01d2017-10-12 14:26:51 +010036{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000037public:
Jenkins52ba29e2018-08-29 15:32:11 +000038 GraphAlexnetExample()
39 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "AlexNet")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000040 {
Jenkins52ba29e2018-08-29 15:32:11 +000041 }
42 bool do_setup(int argc, char **argv) override
43 {
44 // Parse arguments
45 cmd_parser.parse(argc, argv);
46
47 // Consume common parameters
48 common_params = consume_common_graph_parameters(common_opts);
49
50 // Return when help menu is requested
51 if(common_params.help)
52 {
53 cmd_parser.print_help(argv[0]);
54 return false;
55 }
56
Jenkins52ba29e2018-08-29 15:32:11 +000057 // Checks
58 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
59
60 // Print parameter values
61 std::cout << common_params << std::endl;
62
63 // Get trainable parameters data path
64 std::string data_path = common_params.data_path;
Anthony Barbier8a3da6f2017-10-23 18:55:17 +010065
Anthony Barbier06ea0482018-02-22 15:45:35 +000066 // Create a preprocessor object
67 const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
68 std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
Kaizenbf8b01d2017-10-12 14:26:51 +010069
Jenkins52ba29e2018-08-29 15:32:11 +000070 // Create input descriptor
71 const TensorShape tensor_shape = permute_shape(TensorShape(227U, 227U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
72 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
Anthony Barbier06ea0482018-02-22 15:45:35 +000073
Jenkins52ba29e2018-08-29 15:32:11 +000074 // Set weights trained layout
75 const DataLayout weights_layout = DataLayout::NCHW;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000076
Jenkins52ba29e2018-08-29 15:32:11 +000077 graph << common_params.target
78 << common_params.fast_math_hint
79 << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000080 // Layer 1
81 << ConvolutionLayer(
82 11U, 11U, 96U,
Jenkins52ba29e2018-08-29 15:32:11 +000083 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000084 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_b.npy"),
85 PadStrideInfo(4, 4, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +010086 .set_name("conv1")
87 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu1")
88 << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm1")
89 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000090 // Layer 2
Anthony Barbierf45d5a92018-01-24 16:23:15 +000091 << ConvolutionLayer(
92 5U, 5U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +000093 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000094 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_b.npy"),
95 PadStrideInfo(1, 1, 2, 2), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +010096 .set_name("conv2")
97 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu2")
98 << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm2")
99 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000100 // Layer 3
101 << ConvolutionLayer(
102 3U, 3U, 384U,
Jenkins52ba29e2018-08-29 15:32:11 +0000103 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000104 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_b.npy"),
105 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100106 .set_name("conv3")
107 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu3")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000108 // Layer 4
109 << ConvolutionLayer(
110 3U, 3U, 384U,
Jenkins52ba29e2018-08-29 15:32:11 +0000111 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000112 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_b.npy"),
113 PadStrideInfo(1, 1, 1, 1), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +0100114 .set_name("conv4")
115 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu4")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000116 // Layer 5
117 << ConvolutionLayer(
118 3U, 3U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000119 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000120 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_b.npy"),
121 PadStrideInfo(1, 1, 1, 1), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +0100122 .set_name("conv5")
123 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu5")
124 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000125 // Layer 6
126 << FullyConnectedLayer(
127 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000128 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000129 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100130 .set_name("fc6")
131 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu6")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000132 // Layer 7
133 << FullyConnectedLayer(
134 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000135 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000136 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100137 .set_name("fc7")
138 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu7")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000139 // Layer 8
140 << FullyConnectedLayer(
141 1000U,
Jenkins52ba29e2018-08-29 15:32:11 +0000142 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000143 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100144 .set_name("fc8")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000145 // Softmax
Jenkinsb3a371b2018-05-23 11:36:53 +0100146 << SoftmaxLayer().set_name("prob")
Jenkins52ba29e2018-08-29 15:32:11 +0000147 << OutputLayer(get_output_accessor(common_params, 5));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000148
Jenkinsb3a371b2018-05-23 11:36:53 +0100149 // Finalize graph
150 GraphConfig config;
Jenkins975dfe12019-09-02 11:47:54 +0100151
Jenkins52ba29e2018-08-29 15:32:11 +0000152 config.num_threads = common_params.threads;
153 config.use_tuner = common_params.enable_tuner;
Jenkins4ba87db2019-05-23 17:11:51 +0100154 config.tuner_mode = common_params.tuner_mode;
Jenkins52ba29e2018-08-29 15:32:11 +0000155 config.tuner_file = common_params.tuner_file;
156
Jenkins975dfe12019-09-02 11:47:54 +0100157 // Load the precompiled kernels from a file into the kernel library, in this way the next time they are needed
158 // compilation won't be required.
159 if(common_params.enable_cl_cache)
160 {
161 restore_program_cache_from_file();
162 }
163
Jenkins52ba29e2018-08-29 15:32:11 +0000164 graph.finalize(common_params.target, config);
165
Jenkins975dfe12019-09-02 11:47:54 +0100166 // Save the opencl kernels to a file
167 if(common_opts.enable_cl_cache)
168 {
169 save_program_cache_to_file();
170 }
171
Jenkins52ba29e2018-08-29 15:32:11 +0000172 return true;
Kaizenbf8b01d2017-10-12 14:26:51 +0100173 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000174 void do_run() override
Kaizenbf8b01d2017-10-12 14:26:51 +0100175 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000176 // Run graph
177 graph.run();
Kaizenbf8b01d2017-10-12 14:26:51 +0100178 }
179
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000180private:
Jenkins52ba29e2018-08-29 15:32:11 +0000181 CommandLineParser cmd_parser;
182 CommonGraphOptions common_opts;
183 CommonGraphParams common_params;
184 Stream graph;
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000185};
Kaizenbf8b01d2017-10-12 14:26:51 +0100186
187/** Main program for AlexNet
188 *
Jenkinsb9abeae2018-11-22 11:58:08 +0000189 * Model is based on:
190 * https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
191 * "ImageNet Classification with Deep Convolutional Neural Networks"
192 * Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E
193 *
Jenkins514be652019-02-28 12:25:18 +0000194 * Provenance: https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
195 *
Jenkins52ba29e2018-08-29 15:32:11 +0000196 * @note To list all the possible arguments execute the binary appended with the --help option
197 *
Kaizenbf8b01d2017-10-12 14:26:51 +0100198 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000199 * @param[in] argv Arguments
200 *
201 * @return Return code
Kaizenbf8b01d2017-10-12 14:26:51 +0100202 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000203int main(int argc, char **argv)
Kaizenbf8b01d2017-10-12 14:26:51 +0100204{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000205 return arm_compute::utils::run_example<GraphAlexnetExample>(argc, argv);
Kaizenbf8b01d2017-10-12 14:26:51 +0100206}