blob: 68c6576a7951b853c8714cc6f0140a73d455c226 [file] [log] [blame]
Anthony Barbier871448e2017-03-24 14:54:29 +00001/*
2 * Copyright (c) 2017 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLFullyConnectedLayer.h"
25
Kaizen8938bd32017-09-28 14:38:23 +010026#include "arm_compute/core/Size2D.h"
Anthony Barbier871448e2017-03-24 14:54:29 +000027#include "arm_compute/core/Validate.h"
Anthony Barbierf45d5a92018-01-24 16:23:15 +000028#include "arm_compute/core/utils/misc/ShapeCalculator.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000029#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
Anthony Barbier871448e2017-03-24 14:54:29 +000030#include "arm_compute/runtime/CL/CLScheduler.h"
Kaizen8938bd32017-09-28 14:38:23 +010031#include "support/ToolchainSupport.h"
Anthony Barbier871448e2017-03-24 14:54:29 +000032
Anthony Barbiera4376382017-04-12 15:12:46 +010033#include <algorithm>
Anthony Barbiera4376382017-04-12 15:12:46 +010034
Anthony Barbier871448e2017-03-24 14:54:29 +000035using namespace arm_compute;
Anthony Barbierf45d5a92018-01-24 16:23:15 +000036using namespace arm_compute::misc::shape_calculator;
37
38namespace
39{
40Status validate_mm(const ITensorInfo &input, const ITensorInfo &weights, const ITensorInfo &output, bool is_interleaved_transposed)
41{
42 const GPUTarget gpu_target = CLScheduler::get().target();
43
44 if(is_data_type_quantized_asymmetric(input.data_type()))
45 {
46 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
47 // Extract and negate input and weights offset
48 const QuantizationInfo input_quantization_info(input.quantization_info().scale, -input.quantization_info().offset);
49 const QuantizationInfo weights_quantization_info(weights.quantization_info().scale, -weights.quantization_info().offset);
50
51 // Validate gemmlowp function
52 ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyCore::validate(&input.clone()->set_quantization_info(input_quantization_info),
53 &weights.clone()->set_quantization_info(weights_quantization_info),
54 &output));
55 }
56 else
57 {
58 ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixMultiplyKernel::validate(&input, &weights, &output, 1.f, is_interleaved_transposed, gpu_target));
59 }
60
61 return Status{};
62}
63} // namespace
Anthony Barbier871448e2017-03-24 14:54:29 +000064
Kaizen8938bd32017-09-28 14:38:23 +010065void CLFullyConnectedLayerReshapeWeights::configure(const ICLTensor *input, ICLTensor *output)
66{
67 auto k = arm_compute::support::cpp14::make_unique<CLTransposeKernel>();
68 k->configure(input, output);
69 _kernel = std::move(k);
70}
71
Anthony Barbierf45d5a92018-01-24 16:23:15 +000072Status CLFullyConnectedLayerReshapeWeights::validate(const ITensorInfo *input, const ITensorInfo *output)
73{
74 return CLTransposeKernel::validate(input, output);
75}
76
Kaizen8938bd32017-09-28 14:38:23 +010077CLFullyConnectedLayer::CLFullyConnectedLayer(std::shared_ptr<IMemoryManager> memory_manager)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000078 : _memory_group(memory_manager), _im2col_kernel(), _reshape_weights_kernel(), _mm_kernel(), _mm_gemmlowp(memory_manager), _gemmlowp_output_stage(), _accumulate_biases_kernel(), _im2col_output(),
79 _gemmlowp_output(), _reshape_weights_output(), _are_weights_reshaped(true), _is_fc_after_conv(true), _accumulate_biases(false), _is_quantized(false)
Anthony Barbierdbdab852017-06-23 15:42:00 +010080{
81}
82
Anthony Barbier8140e1e2017-12-14 23:48:46 +000083void CLFullyConnectedLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output, bool is_interleaved_transposed)
84{
85 if(_is_quantized)
86 {
87 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
88 // Extract and negate input and weights offset
89 const QuantizationInfo input_quantization_info = input->info()->quantization_info();
90 const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();
91
92 input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
93 weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
94
95 // Configure gemmlowp function
96 _mm_gemmlowp.configure(input, weights, output);
97
98 // Revert back QuantizatioInfo as input and weights could be used in other fully connected layers
99 input->info()->set_quantization_info(input_quantization_info);
100 weights->info()->set_quantization_info(weights_quantization_info);
101 }
102 else
103 {
104 // Configure matrix multiply kernel
105 _mm_kernel.set_target(CLScheduler::get().target());
106 _mm_kernel.configure(input, weights, output, 1.f, is_interleaved_transposed);
107 }
108}
109
Kaizen8938bd32017-09-28 14:38:23 +0100110void CLFullyConnectedLayer::configure_conv_fc(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100111{
Kaizen8938bd32017-09-28 14:38:23 +0100112 ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))));
Anthony Barbierdbdab852017-06-23 15:42:00 +0100113
Anthony Barbiera4376382017-04-12 15:12:46 +0100114 // If the fully connected layer is called after a convolution layer, the input tensor must be linearized
Anthony Barbier871448e2017-03-24 14:54:29 +0000115
Anthony Barbiera4376382017-04-12 15:12:46 +0100116 // Initialize output tensor for im2col
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000117 TensorShape shape_im2col = compute_im2col_shape(*input->info());
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000118 _im2col_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col));
Anthony Barbier871448e2017-03-24 14:54:29 +0000119
Anthony Barbiera4376382017-04-12 15:12:46 +0100120 // Configure im2col kernel
Kaizen8938bd32017-09-28 14:38:23 +0100121 _memory_group.manage(&_im2col_output);
122 _im2col_kernel.configure(input, &_im2col_output, Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false);
Anthony Barbiera4376382017-04-12 15:12:46 +0100123
Anthony Barbiera4376382017-04-12 15:12:46 +0100124 // Configure matrix multiply kernel
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000125 configure_mm(&_im2col_output, weights, output, false);
Anthony Barbiera4376382017-04-12 15:12:46 +0100126
127 // Allocate the output tensor for im2col once all the configure methods have been called
128 _im2col_output.allocator()->allocate();
129}
130
Kaizen8938bd32017-09-28 14:38:23 +0100131void CLFullyConnectedLayer::configure_fc_fc(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
Anthony Barbiera4376382017-04-12 15:12:46 +0100132{
133 ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1));
134
135 // Configure matrix multiply kernel
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000136 configure_mm(input, weights, output, false);
Anthony Barbiera4376382017-04-12 15:12:46 +0100137}
138
Anthony Barbierdbdab852017-06-23 15:42:00 +0100139void CLFullyConnectedLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, bool transpose_weights, bool are_weights_reshaped)
Anthony Barbiera4376382017-04-12 15:12:46 +0100140{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000141 ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
142
143 // Perform validate step
144 ARM_COMPUTE_ERROR_THROW_ON(CLFullyConnectedLayer::validate(input->info(),
145 weights->info(),
146 biases != nullptr ? biases->info() : nullptr,
147 output->info(),
148 transpose_weights,
149 are_weights_reshaped));
Anthony Barbiera4376382017-04-12 15:12:46 +0100150
Kaizen8938bd32017-09-28 14:38:23 +0100151 _are_weights_reshaped = transpose_weights ? are_weights_reshaped : true;
Anthony Barbierdbdab852017-06-23 15:42:00 +0100152 _is_fc_after_conv = true;
Anthony Barbierdbdab852017-06-23 15:42:00 +0100153 _accumulate_biases = false;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000154 _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
Anthony Barbiera4376382017-04-12 15:12:46 +0100155
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000156 // Configure gemmlowp output
157 if(_is_quantized)
158 {
159 _gemmlowp_output.allocator()->init(output->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32));
160 }
161
162 // Configure accumulate biases kernel for non quantized asymmetric types
163 if(biases != nullptr && !_is_quantized)
Anthony Barbier871448e2017-03-24 14:54:29 +0000164 {
Anthony Barbiera4376382017-04-12 15:12:46 +0100165 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
166
167 _accumulate_biases = true;
168
169 // Configure accumulate biases kernel
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000170 _accumulate_biases_kernel.set_target(CLScheduler::get().target());
Anthony Barbiera4376382017-04-12 15:12:46 +0100171 _accumulate_biases_kernel.configure(output, biases);
Anthony Barbier871448e2017-03-24 14:54:29 +0000172 }
173
Anthony Barbiera4376382017-04-12 15:12:46 +0100174 // With the Fully Connected layer we can have 4 different cases:
175 // 1) Convolution layer -> Fully Connected layer without batches
176 // 2) Fully Connected layer -> Fully Connected layer without batches
177 // 3) Convolution layer -> Fully Connected layer with batches
178 // 4) Fully Connected layer -> Fully Connected layer with batches
Anthony Barbier871448e2017-03-24 14:54:29 +0000179
Anthony Barbierdbdab852017-06-23 15:42:00 +0100180 const ICLTensor *weights_to_use = weights;
181
Kaizen8938bd32017-09-28 14:38:23 +0100182 if(!_are_weights_reshaped)
Anthony Barbier871448e2017-03-24 14:54:29 +0000183 {
Kaizen8938bd32017-09-28 14:38:23 +0100184 weights_to_use = &_reshape_weights_output;
Anthony Barbiera4376382017-04-12 15:12:46 +0100185
Kaizen8938bd32017-09-28 14:38:23 +0100186 // Reshape the weights
187 _reshape_weights_kernel.configure(weights, &_reshape_weights_output);
Anthony Barbierdbdab852017-06-23 15:42:00 +0100188 }
189
Kaizen8938bd32017-09-28 14:38:23 +0100190 // Check if we have a fully connected layer with batches
191 const bool is_batched_fc_layer = output->info()->dimension(1) > 1;
192
193 if(is_batched_fc_layer)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100194 {
195 _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3,
196 input->info()->tensor_shape().cend(),
197 output->info()->tensor_shape().cbegin() + 1));
Anthony Barbiera4376382017-04-12 15:12:46 +0100198 }
199 else
200 {
Kaizen8938bd32017-09-28 14:38:23 +0100201 _is_fc_after_conv = input->info()->num_dimensions() > 1;
202 }
Anthony Barbiera4376382017-04-12 15:12:46 +0100203
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000204 ICLTensor *tmp_output = (_is_quantized) ? &_gemmlowp_output : output;
Kaizen8938bd32017-09-28 14:38:23 +0100205 if(_is_fc_after_conv)
206 {
207 // Fully Connected layer after a Convolution Layer without batches
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000208 configure_conv_fc(input, weights_to_use, tmp_output);
Kaizen8938bd32017-09-28 14:38:23 +0100209 }
210 else
211 {
212 // Fully Connected layer after a Fully Connected Layer without batches
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000213 configure_fc_fc(input, weights_to_use, tmp_output);
214 }
215
216 // Configure output stage for asymmetric quantized types
217 if(_is_quantized)
218 {
219 float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output->info()->quantization_info().scale;
220 int output_multiplier, output_shift;
221 quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
222 _gemmlowp_output_stage.configure(&_gemmlowp_output, biases, output, output_multiplier, output_shift, output->info()->quantization_info().offset);
223 _gemmlowp_output.allocator()->allocate();
Anthony Barbiera4376382017-04-12 15:12:46 +0100224 }
225
Anthony Barbierdbdab852017-06-23 15:42:00 +0100226 // Allocate the transpose tensor if the are_weights_reshaped flag is false and once all the configure methods have been called
Kaizen8938bd32017-09-28 14:38:23 +0100227 if(!_are_weights_reshaped)
Anthony Barbiera4376382017-04-12 15:12:46 +0100228 {
Kaizen8938bd32017-09-28 14:38:23 +0100229 // Allocate the tensor for the weights reshaped
230 _reshape_weights_output.allocator()->allocate();
Anthony Barbier871448e2017-03-24 14:54:29 +0000231 }
232}
233
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000234Status CLFullyConnectedLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, bool transpose_weights, bool are_weights_reshaped)
235{
236 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
237 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32);
238 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
239 ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
240
241 bool weights_reshaped = transpose_weights ? are_weights_reshaped : true;
242 bool is_fc_after_conv = true;
243 bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
244 const GPUTarget gpu_target = CLScheduler::get().target();
245
246 const ITensorInfo &im2col_input = TensorInfo(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_im2col_shape(*input)));
247 const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
248 const ITensorInfo &gemmlowp_output = TensorInfo(output->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32));
249
250 // Configure accumulate biases kernel for non quantized asymmetric types
251 if(biases != nullptr && !is_quantized)
252 {
253 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
254 ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixAccumulateBiasesKernel::validate(output, biases, gpu_target));
255 }
256
257 // With the Fully Connected layer we can have 4 different cases:
258 // 1) Convolution layer -> Fully Connected layer without batches
259 // 2) Fully Connected layer -> Fully Connected layer without batches
260 // 3) Convolution layer -> Fully Connected layer with batches
261 // 4) Fully Connected layer -> Fully Connected layer with batches
262
263 const ITensorInfo *input_to_use = input;
264 const ITensorInfo *weights_to_use = weights;
265 const ITensorInfo *tmp_output = (is_quantized) ? &gemmlowp_output : output;
266
267 if(!weights_reshaped)
268 {
269 // Validate reshape weights kernel
270 ARM_COMPUTE_RETURN_ON_ERROR(CLFullyConnectedLayerReshapeWeights::validate(weights, &reshaped_weights));
271 weights_to_use = &reshaped_weights;
272 }
273
274 // Check if we have a fully connected layer with batches
275 const bool is_batched_fc_layer = output->dimension(1) > 1;
276
277 if(is_batched_fc_layer)
278 {
279 is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->tensor_shape().cbegin() + 3,
280 input->tensor_shape().cend(),
281 output->tensor_shape().cbegin() + 1));
282 }
283 else
284 {
285 is_fc_after_conv = input->num_dimensions() > 1;
286 }
287
288 if(is_fc_after_conv)
289 {
290 // Fully Connected layer after a Convolution Layer without batches
291 ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (input->dimension(0) * input->dimension(1) * input->dimension(2))));
292
293 // Validate im2col kernel
294 ARM_COMPUTE_RETURN_ON_ERROR(CLIm2ColKernel::validate(input, &im2col_input, Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false));
295 input_to_use = &im2col_input;
296 }
297 else
298 {
299 // Fully Connected layer after a Fully Connected Layer without batches
300 ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != weights_to_use->dimension(1));
301 }
302 // Validate matrix multiply kernel
303 ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(*input_to_use, *weights_to_use, *tmp_output, false));
304
305 // Validate output stage for asymmetric quantized types
306 if(is_quantized)
307 {
308 ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::validate(&gemmlowp_output, biases, output));
309 }
310
311 return Status{};
312}
313
Anthony Barbier871448e2017-03-24 14:54:29 +0000314void CLFullyConnectedLayer::run()
315{
Anthony Barbierdbdab852017-06-23 15:42:00 +0100316 // Reshape of the weights (happens only once)
317 if(!_are_weights_reshaped)
Anthony Barbiera4376382017-04-12 15:12:46 +0100318 {
Anthony Barbierdbdab852017-06-23 15:42:00 +0100319 _are_weights_reshaped = true;
320 _reshape_weights_kernel.run();
Anthony Barbiera4376382017-04-12 15:12:46 +0100321 }
322
Kaizen8938bd32017-09-28 14:38:23 +0100323 _memory_group.acquire();
324
Anthony Barbiera4376382017-04-12 15:12:46 +0100325 // Linearize input if it comes from a convolutional layer
Anthony Barbierdbdab852017-06-23 15:42:00 +0100326 if(_is_fc_after_conv)
Anthony Barbiera4376382017-04-12 15:12:46 +0100327 {
328 CLScheduler::get().enqueue(_im2col_kernel, false);
329 }
330
Anthony Barbiera4376382017-04-12 15:12:46 +0100331 // Run matrix multiply
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000332 if(_is_quantized)
333 {
334 _mm_gemmlowp.run();
335 }
336 else
337 {
338 CLScheduler::get().enqueue(_mm_kernel, !_accumulate_biases);
339 }
Anthony Barbiera4376382017-04-12 15:12:46 +0100340
341 // Accumulate biases if provided
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000342 if(_is_quantized)
Anthony Barbiera4376382017-04-12 15:12:46 +0100343 {
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000344 _gemmlowp_output_stage.run();
345 }
346 else
347 {
348 if(_accumulate_biases)
349 {
350 CLScheduler::get().enqueue(_accumulate_biases_kernel);
351 }
Anthony Barbiera4376382017-04-12 15:12:46 +0100352 }
Kaizen8938bd32017-09-28 14:38:23 +0100353
354 _memory_group.release();
Anthony Barbier871448e2017-03-24 14:54:29 +0000355}