blob: b7edc0149ea91eb3d8e5dd3c83177572c9c1e715 [file] [log] [blame]
Douglas Gregord2baafd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregorbb461502008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregor10f3c502008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregor3d4492e2008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregorddfd9d52008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
Douglas Gregore819caf2009-02-12 00:15:05 +000042 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000045 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000050 ICC_Conversion,
Douglas Gregorfcb19192009-02-11 23:02:49 +000051 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000052 ICC_Conversion
53 };
54 return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
Douglas Gregore819caf2009-02-12 00:15:05 +000069 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000072 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000077 ICR_Conversion,
Douglas Gregorfcb19192009-02-11 23:02:49 +000078 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000079 ICR_Conversion
80 };
81 return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
Douglas Gregore819caf2009-02-12 00:15:05 +000095 "Complex promotion",
Douglas Gregord2baafd2008-10-21 16:13:35 +000096 "Integral conversion",
97 "Floating conversion",
Douglas Gregore819caf2009-02-12 00:15:05 +000098 "Complex conversion",
Douglas Gregord2baafd2008-10-21 16:13:35 +000099 "Floating-integral conversion",
Douglas Gregore819caf2009-02-12 00:15:05 +0000100 "Complex-real conversion",
Douglas Gregord2baafd2008-10-21 16:13:35 +0000101 "Pointer conversion",
102 "Pointer-to-member conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +0000103 "Boolean conversion",
Douglas Gregorfcb19192009-02-11 23:02:49 +0000104 "Compatible-types conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +0000105 "Derived-to-base conversion"
Douglas Gregord2baafd2008-10-21 16:13:35 +0000106 };
107 return Name[Kind];
108}
109
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
Sebastian Redl9bc16ad2009-03-29 22:46:24 +0000119 RRefBinding = false;
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000120 CopyConstructor = 0;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000121}
122
Douglas Gregord2baafd2008-10-21 16:13:35 +0000123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127 ImplicitConversionRank Rank = ICR_Exact_Match;
128 if (GetConversionRank(First) > Rank)
129 Rank = GetConversionRank(First);
130 if (GetConversionRank(Second) > Rank)
131 Rank = GetConversionRank(Second);
132 if (GetConversionRank(Third) > Rank)
133 Rank = GetConversionRank(Third);
134 return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146 // Note that FromType has not necessarily been transformed by the
147 // array-to-pointer or function-to-pointer implicit conversions, so
148 // check for their presence as well as checking whether FromType is
149 // a pointer.
150 if (ToType->isBooleanType() &&
Douglas Gregor80402cf2008-12-23 00:53:59 +0000151 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregord2baafd2008-10-21 16:13:35 +0000152 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153 return true;
154
155 return false;
156}
157
Douglas Gregor14046502008-10-23 00:40:37 +0000158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169 // Note that FromType has not necessarily been transformed by the
170 // array-to-pointer implicit conversion, so check for its presence
171 // and redo the conversion to get a pointer.
172 if (First == ICK_Array_To_Pointer)
173 FromType = Context.getArrayDecayedType(FromType);
174
175 if (Second == ICK_Pointer_Conversion)
176 if (const PointerType* ToPtrType = ToType->getAsPointerType())
177 return ToPtrType->getPointeeType()->isVoidType();
178
179 return false;
180}
181
Douglas Gregord2baafd2008-10-21 16:13:35 +0000182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185 bool PrintedSomething = false;
186 if (First != ICK_Identity) {
187 fprintf(stderr, "%s", GetImplicitConversionName(First));
188 PrintedSomething = true;
189 }
190
191 if (Second != ICK_Identity) {
192 if (PrintedSomething) {
193 fprintf(stderr, " -> ");
194 }
195 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000196
197 if (CopyConstructor) {
198 fprintf(stderr, " (by copy constructor)");
199 } else if (DirectBinding) {
200 fprintf(stderr, " (direct reference binding)");
201 } else if (ReferenceBinding) {
202 fprintf(stderr, " (reference binding)");
203 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000204 PrintedSomething = true;
205 }
206
207 if (Third != ICK_Identity) {
208 if (PrintedSomething) {
209 fprintf(stderr, " -> ");
210 }
211 fprintf(stderr, "%s", GetImplicitConversionName(Third));
212 PrintedSomething = true;
213 }
214
215 if (!PrintedSomething) {
216 fprintf(stderr, "No conversions required");
217 }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223 if (Before.First || Before.Second || Before.Third) {
224 Before.DebugPrint();
225 fprintf(stderr, " -> ");
226 }
Chris Lattner271d4c22008-11-24 05:29:24 +0000227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregord2baafd2008-10-21 16:13:35 +0000228 if (After.First || After.Second || After.Third) {
229 fprintf(stderr, " -> ");
230 After.DebugPrint();
231 }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237 switch (ConversionKind) {
238 case StandardConversion:
239 fprintf(stderr, "Standard conversion: ");
240 Standard.DebugPrint();
241 break;
242 case UserDefinedConversion:
243 fprintf(stderr, "User-defined conversion: ");
244 UserDefined.DebugPrint();
245 break;
246 case EllipsisConversion:
247 fprintf(stderr, "Ellipsis conversion");
248 break;
249 case BadConversion:
250 fprintf(stderr, "Bad conversion");
251 break;
252 }
253
254 fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267// void f(int, float); // #1
268// void f(int, int); // #2
269// int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1. By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290 // Is this new function an overload of every function in the
291 // overload set?
292 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293 FuncEnd = Ovl->function_end();
294 for (; Func != FuncEnd; ++Func) {
295 if (!IsOverload(New, *Func, MatchedDecl)) {
296 MatchedDecl = Func;
297 return false;
298 }
299 }
300
301 // This function overloads every function in the overload set.
302 return true;
Douglas Gregorb60eb752009-06-25 22:08:12 +0000303 } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
304 return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
305 else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
Douglas Gregorbf6bc302009-06-24 16:50:40 +0000306 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
307 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
308
309 // C++ [temp.fct]p2:
310 // A function template can be overloaded with other function templates
311 // and with normal (non-template) functions.
312 if ((OldTemplate == 0) != (NewTemplate == 0))
313 return true;
314
Douglas Gregord2baafd2008-10-21 16:13:35 +0000315 // Is the function New an overload of the function Old?
316 QualType OldQType = Context.getCanonicalType(Old->getType());
317 QualType NewQType = Context.getCanonicalType(New->getType());
318
319 // Compare the signatures (C++ 1.3.10) of the two functions to
320 // determine whether they are overloads. If we find any mismatch
321 // in the signature, they are overloads.
322
323 // If either of these functions is a K&R-style function (no
324 // prototype), then we consider them to have matching signatures.
Douglas Gregor4fa58902009-02-26 23:50:07 +0000325 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
326 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
Douglas Gregord2baafd2008-10-21 16:13:35 +0000327 return false;
328
Douglas Gregorbf6bc302009-06-24 16:50:40 +0000329 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
330 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000331
332 // The signature of a function includes the types of its
333 // parameters (C++ 1.3.10), which includes the presence or absence
334 // of the ellipsis; see C++ DR 357).
335 if (OldQType != NewQType &&
336 (OldType->getNumArgs() != NewType->getNumArgs() ||
337 OldType->isVariadic() != NewType->isVariadic() ||
338 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
339 NewType->arg_type_begin())))
340 return true;
341
Douglas Gregorbf6bc302009-06-24 16:50:40 +0000342 // C++ [temp.over.link]p4:
343 // The signature of a function template consists of its function
344 // signature, its return type and its template parameter list. The names
345 // of the template parameters are significant only for establishing the
346 // relationship between the template parameters and the rest of the
347 // signature.
348 //
349 // We check the return type and template parameter lists for function
350 // templates first; the remaining checks follow.
351 if (NewTemplate &&
352 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
353 OldTemplate->getTemplateParameters(),
354 false, false, SourceLocation()) ||
355 OldType->getResultType() != NewType->getResultType()))
356 return true;
357
Douglas Gregord2baafd2008-10-21 16:13:35 +0000358 // If the function is a class member, its signature includes the
359 // cv-qualifiers (if any) on the function itself.
360 //
361 // As part of this, also check whether one of the member functions
362 // is static, in which case they are not overloads (C++
363 // 13.1p2). While not part of the definition of the signature,
364 // this check is important to determine whether these functions
365 // can be overloaded.
366 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
367 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
368 if (OldMethod && NewMethod &&
369 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregora7b56a32008-11-21 15:36:28 +0000370 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregord2baafd2008-10-21 16:13:35 +0000371 return true;
372
373 // The signatures match; this is not an overload.
374 return false;
375 } else {
376 // (C++ 13p1):
377 // Only function declarations can be overloaded; object and type
378 // declarations cannot be overloaded.
379 return false;
380 }
381}
382
Douglas Gregor81c29152008-10-29 00:13:59 +0000383/// TryImplicitConversion - Attempt to perform an implicit conversion
384/// from the given expression (Expr) to the given type (ToType). This
385/// function returns an implicit conversion sequence that can be used
386/// to perform the initialization. Given
Douglas Gregord2baafd2008-10-21 16:13:35 +0000387///
388/// void f(float f);
389/// void g(int i) { f(i); }
390///
391/// this routine would produce an implicit conversion sequence to
392/// describe the initialization of f from i, which will be a standard
393/// conversion sequence containing an lvalue-to-rvalue conversion (C++
394/// 4.1) followed by a floating-integral conversion (C++ 4.9).
395//
396/// Note that this routine only determines how the conversion can be
397/// performed; it does not actually perform the conversion. As such,
398/// it will not produce any diagnostics if no conversion is available,
399/// but will instead return an implicit conversion sequence of kind
400/// "BadConversion".
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000401///
402/// If @p SuppressUserConversions, then user-defined conversions are
403/// not permitted.
Douglas Gregor6214d8a2009-01-14 15:45:31 +0000404/// If @p AllowExplicit, then explicit user-defined conversions are
405/// permitted.
Sebastian Redla55834a2009-04-12 17:16:29 +0000406/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
407/// no matter its actual lvalueness.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000408ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000409Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor6214d8a2009-01-14 15:45:31 +0000410 bool SuppressUserConversions,
Sebastian Redla55834a2009-04-12 17:16:29 +0000411 bool AllowExplicit, bool ForceRValue)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000412{
413 ImplicitConversionSequence ICS;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000414 if (IsStandardConversion(From, ToType, ICS.Standard))
415 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000416 else if (getLangOptions().CPlusPlus &&
417 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
Sebastian Redla55834a2009-04-12 17:16:29 +0000418 !SuppressUserConversions, AllowExplicit,
419 ForceRValue)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000420 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000421 // C++ [over.ics.user]p4:
422 // A conversion of an expression of class type to the same class
423 // type is given Exact Match rank, and a conversion of an
424 // expression of class type to a base class of that type is
425 // given Conversion rank, in spite of the fact that a copy
426 // constructor (i.e., a user-defined conversion function) is
427 // called for those cases.
428 if (CXXConstructorDecl *Constructor
429 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregord9176392009-02-02 22:11:10 +0000430 QualType FromCanon
431 = Context.getCanonicalType(From->getType().getUnqualifiedType());
432 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
433 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000434 // Turn this into a "standard" conversion sequence, so that it
435 // gets ranked with standard conversion sequences.
Douglas Gregore640ab62008-11-03 17:51:48 +0000436 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
437 ICS.Standard.setAsIdentityConversion();
438 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
439 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000440 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregord9176392009-02-02 22:11:10 +0000441 if (ToCanon != FromCanon)
Douglas Gregore640ab62008-11-03 17:51:48 +0000442 ICS.Standard.Second = ICK_Derived_To_Base;
443 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000444 }
Douglas Gregorb206cc42009-01-30 23:27:23 +0000445
446 // C++ [over.best.ics]p4:
447 // However, when considering the argument of a user-defined
448 // conversion function that is a candidate by 13.3.1.3 when
449 // invoked for the copying of the temporary in the second step
450 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
451 // 13.3.1.6 in all cases, only standard conversion sequences and
452 // ellipsis conversion sequences are allowed.
453 if (SuppressUserConversions &&
454 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
455 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000456 } else
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000457 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000458
459 return ICS;
460}
461
462/// IsStandardConversion - Determines whether there is a standard
463/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
464/// expression From to the type ToType. Standard conversion sequences
465/// only consider non-class types; for conversions that involve class
466/// types, use TryImplicitConversion. If a conversion exists, SCS will
467/// contain the standard conversion sequence required to perform this
468/// conversion and this routine will return true. Otherwise, this
469/// routine will return false and the value of SCS is unspecified.
470bool
471Sema::IsStandardConversion(Expr* From, QualType ToType,
472 StandardConversionSequence &SCS)
473{
Douglas Gregord2baafd2008-10-21 16:13:35 +0000474 QualType FromType = From->getType();
475
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000476 // Standard conversions (C++ [conv])
Douglas Gregor70d26122008-11-12 17:17:38 +0000477 SCS.setAsIdentityConversion();
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000478 SCS.Deprecated = false;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000479 SCS.IncompatibleObjC = false;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000480 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000481 SCS.CopyConstructor = 0;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000482
Douglas Gregorfcb19192009-02-11 23:02:49 +0000483 // There are no standard conversions for class types in C++, so
484 // abort early. When overloading in C, however, we do permit
485 if (FromType->isRecordType() || ToType->isRecordType()) {
486 if (getLangOptions().CPlusPlus)
487 return false;
488
489 // When we're overloading in C, we allow, as standard conversions,
490 }
491
Douglas Gregord2baafd2008-10-21 16:13:35 +0000492 // The first conversion can be an lvalue-to-rvalue conversion,
493 // array-to-pointer conversion, or function-to-pointer conversion
494 // (C++ 4p1).
495
496 // Lvalue-to-rvalue conversion (C++ 4.1):
497 // An lvalue (3.10) of a non-function, non-array type T can be
498 // converted to an rvalue.
499 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
500 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor45014fd2008-11-10 20:40:00 +0000501 !FromType->isFunctionType() && !FromType->isArrayType() &&
Douglas Gregor00fe3f62009-03-13 18:40:31 +0000502 Context.getCanonicalType(FromType) != Context.OverloadTy) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000503 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000504
505 // If T is a non-class type, the type of the rvalue is the
506 // cv-unqualified version of T. Otherwise, the type of the rvalue
Douglas Gregorfcb19192009-02-11 23:02:49 +0000507 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
508 // just strip the qualifiers because they don't matter.
509
510 // FIXME: Doesn't see through to qualifiers behind a typedef!
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000511 FromType = FromType.getUnqualifiedType();
Douglas Gregord2baafd2008-10-21 16:13:35 +0000512 }
513 // Array-to-pointer conversion (C++ 4.2)
514 else if (FromType->isArrayType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000515 SCS.First = ICK_Array_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000516
517 // An lvalue or rvalue of type "array of N T" or "array of unknown
518 // bound of T" can be converted to an rvalue of type "pointer to
519 // T" (C++ 4.2p1).
520 FromType = Context.getArrayDecayedType(FromType);
521
522 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
523 // This conversion is deprecated. (C++ D.4).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000524 SCS.Deprecated = true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000525
526 // For the purpose of ranking in overload resolution
527 // (13.3.3.1.1), this conversion is considered an
528 // array-to-pointer conversion followed by a qualification
529 // conversion (4.4). (C++ 4.2p2)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000530 SCS.Second = ICK_Identity;
531 SCS.Third = ICK_Qualification;
532 SCS.ToTypePtr = ToType.getAsOpaquePtr();
533 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000534 }
535 }
536 // Function-to-pointer conversion (C++ 4.3).
537 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000538 SCS.First = ICK_Function_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000539
540 // An lvalue of function type T can be converted to an rvalue of
541 // type "pointer to T." The result is a pointer to the
542 // function. (C++ 4.3p1).
543 FromType = Context.getPointerType(FromType);
Sebastian Redl7434fc32009-02-04 21:23:32 +0000544 }
Douglas Gregor45014fd2008-11-10 20:40:00 +0000545 // Address of overloaded function (C++ [over.over]).
546 else if (FunctionDecl *Fn
547 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
548 SCS.First = ICK_Function_To_Pointer;
549
550 // We were able to resolve the address of the overloaded function,
551 // so we can convert to the type of that function.
552 FromType = Fn->getType();
Sebastian Redlce6fff02009-03-16 23:22:08 +0000553 if (ToType->isLValueReferenceType())
554 FromType = Context.getLValueReferenceType(FromType);
555 else if (ToType->isRValueReferenceType())
556 FromType = Context.getRValueReferenceType(FromType);
Sebastian Redl7434fc32009-02-04 21:23:32 +0000557 else if (ToType->isMemberPointerType()) {
558 // Resolve address only succeeds if both sides are member pointers,
559 // but it doesn't have to be the same class. See DR 247.
560 // Note that this means that the type of &Derived::fn can be
561 // Ret (Base::*)(Args) if the fn overload actually found is from the
562 // base class, even if it was brought into the derived class via a
563 // using declaration. The standard isn't clear on this issue at all.
564 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
565 FromType = Context.getMemberPointerType(FromType,
566 Context.getTypeDeclType(M->getParent()).getTypePtr());
567 } else
Douglas Gregor45014fd2008-11-10 20:40:00 +0000568 FromType = Context.getPointerType(FromType);
569 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000570 // We don't require any conversions for the first step.
571 else {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000572 SCS.First = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000573 }
574
575 // The second conversion can be an integral promotion, floating
576 // point promotion, integral conversion, floating point conversion,
577 // floating-integral conversion, pointer conversion,
578 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregorfcb19192009-02-11 23:02:49 +0000579 // For overloading in C, this can also be a "compatible-type"
580 // conversion.
Douglas Gregor6fd35572008-12-19 17:40:08 +0000581 bool IncompatibleObjC = false;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000582 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000583 // The unqualified versions of the types are the same: there's no
584 // conversion to do.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000585 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000586 }
587 // Integral promotion (C++ 4.5).
588 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000589 SCS.Second = ICK_Integral_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000590 FromType = ToType.getUnqualifiedType();
591 }
592 // Floating point promotion (C++ 4.6).
593 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000594 SCS.Second = ICK_Floating_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000595 FromType = ToType.getUnqualifiedType();
596 }
Douglas Gregore819caf2009-02-12 00:15:05 +0000597 // Complex promotion (Clang extension)
598 else if (IsComplexPromotion(FromType, ToType)) {
599 SCS.Second = ICK_Complex_Promotion;
600 FromType = ToType.getUnqualifiedType();
601 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000602 // Integral conversions (C++ 4.7).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000603 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000604 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000605 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000606 SCS.Second = ICK_Integral_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000607 FromType = ToType.getUnqualifiedType();
608 }
609 // Floating point conversions (C++ 4.8).
610 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000611 SCS.Second = ICK_Floating_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000612 FromType = ToType.getUnqualifiedType();
613 }
Douglas Gregore819caf2009-02-12 00:15:05 +0000614 // Complex conversions (C99 6.3.1.6)
615 else if (FromType->isComplexType() && ToType->isComplexType()) {
616 SCS.Second = ICK_Complex_Conversion;
617 FromType = ToType.getUnqualifiedType();
618 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000619 // Floating-integral conversions (C++ 4.9).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000620 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000621 else if ((FromType->isFloatingType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000622 ToType->isIntegralType() && !ToType->isBooleanType() &&
623 !ToType->isEnumeralType()) ||
Douglas Gregord2baafd2008-10-21 16:13:35 +0000624 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625 ToType->isFloatingType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000626 SCS.Second = ICK_Floating_Integral;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000627 FromType = ToType.getUnqualifiedType();
628 }
Douglas Gregore819caf2009-02-12 00:15:05 +0000629 // Complex-real conversions (C99 6.3.1.7)
630 else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631 (ToType->isComplexType() && FromType->isArithmeticType())) {
632 SCS.Second = ICK_Complex_Real;
633 FromType = ToType.getUnqualifiedType();
634 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000635 // Pointer conversions (C++ 4.10).
Douglas Gregor6fd35572008-12-19 17:40:08 +0000636 else if (IsPointerConversion(From, FromType, ToType, FromType,
637 IncompatibleObjC)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000638 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000639 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000640 }
Sebastian Redlba387562009-01-25 19:43:20 +0000641 // Pointer to member conversions (4.11).
642 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
643 SCS.Second = ICK_Pointer_Member;
644 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000645 // Boolean conversions (C++ 4.12).
Douglas Gregord2baafd2008-10-21 16:13:35 +0000646 else if (ToType->isBooleanType() &&
647 (FromType->isArithmeticType() ||
648 FromType->isEnumeralType() ||
Douglas Gregor80402cf2008-12-23 00:53:59 +0000649 FromType->isPointerType() ||
Sebastian Redlba387562009-01-25 19:43:20 +0000650 FromType->isBlockPointerType() ||
Sebastian Redl5d0ead72009-05-10 18:38:11 +0000651 FromType->isMemberPointerType() ||
652 FromType->isNullPtrType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000653 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000654 FromType = Context.BoolTy;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000655 }
656 // Compatible conversions (Clang extension for C function overloading)
657 else if (!getLangOptions().CPlusPlus &&
658 Context.typesAreCompatible(ToType, FromType)) {
659 SCS.Second = ICK_Compatible_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000660 } else {
661 // No second conversion required.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000662 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000663 }
664
Douglas Gregor81c29152008-10-29 00:13:59 +0000665 QualType CanonFrom;
666 QualType CanonTo;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000667 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000668 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000669 SCS.Third = ICK_Qualification;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000670 FromType = ToType;
Douglas Gregor81c29152008-10-29 00:13:59 +0000671 CanonFrom = Context.getCanonicalType(FromType);
672 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000673 } else {
674 // No conversion required
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000675 SCS.Third = ICK_Identity;
676
677 // C++ [over.best.ics]p6:
678 // [...] Any difference in top-level cv-qualification is
679 // subsumed by the initialization itself and does not constitute
680 // a conversion. [...]
Douglas Gregor81c29152008-10-29 00:13:59 +0000681 CanonFrom = Context.getCanonicalType(FromType);
682 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000683 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor81c29152008-10-29 00:13:59 +0000684 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
685 FromType = ToType;
686 CanonFrom = CanonTo;
687 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000688 }
689
690 // If we have not converted the argument type to the parameter type,
691 // this is a bad conversion sequence.
Douglas Gregor81c29152008-10-29 00:13:59 +0000692 if (CanonFrom != CanonTo)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000693 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000694
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000695 SCS.ToTypePtr = FromType.getAsOpaquePtr();
696 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000697}
698
699/// IsIntegralPromotion - Determines whether the conversion from the
700/// expression From (whose potentially-adjusted type is FromType) to
701/// ToType is an integral promotion (C++ 4.5). If so, returns true and
702/// sets PromotedType to the promoted type.
703bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
704{
705 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redl12aee862008-11-04 15:59:10 +0000706 // All integers are built-in.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000707 if (!To) {
708 return false;
709 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000710
711 // An rvalue of type char, signed char, unsigned char, short int, or
712 // unsigned short int can be converted to an rvalue of type int if
713 // int can represent all the values of the source type; otherwise,
714 // the source rvalue can be converted to an rvalue of type unsigned
715 // int (C++ 4.5p1).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000716 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000717 if (// We can promote any signed, promotable integer type to an int
718 (FromType->isSignedIntegerType() ||
719 // We can promote any unsigned integer type whose size is
720 // less than int to an int.
721 (!FromType->isSignedIntegerType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000722 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000723 return To->getKind() == BuiltinType::Int;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000724 }
725
Douglas Gregord2baafd2008-10-21 16:13:35 +0000726 return To->getKind() == BuiltinType::UInt;
727 }
728
729 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
730 // can be converted to an rvalue of the first of the following types
731 // that can represent all the values of its underlying type: int,
732 // unsigned int, long, or unsigned long (C++ 4.5p2).
733 if ((FromType->isEnumeralType() || FromType->isWideCharType())
734 && ToType->isIntegerType()) {
735 // Determine whether the type we're converting from is signed or
736 // unsigned.
737 bool FromIsSigned;
738 uint64_t FromSize = Context.getTypeSize(FromType);
739 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
740 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
741 FromIsSigned = UnderlyingType->isSignedIntegerType();
742 } else {
743 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
744 FromIsSigned = true;
745 }
746
747 // The types we'll try to promote to, in the appropriate
748 // order. Try each of these types.
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000749 QualType PromoteTypes[6] = {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000750 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000751 Context.LongTy, Context.UnsignedLongTy ,
752 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregord2baafd2008-10-21 16:13:35 +0000753 };
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000754 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000755 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
756 if (FromSize < ToSize ||
757 (FromSize == ToSize &&
758 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
759 // We found the type that we can promote to. If this is the
760 // type we wanted, we have a promotion. Otherwise, no
761 // promotion.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000762 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregord2baafd2008-10-21 16:13:35 +0000763 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
764 }
765 }
766 }
767
768 // An rvalue for an integral bit-field (9.6) can be converted to an
769 // rvalue of type int if int can represent all the values of the
770 // bit-field; otherwise, it can be converted to unsigned int if
771 // unsigned int can represent all the values of the bit-field. If
772 // the bit-field is larger yet, no integral promotion applies to
773 // it. If the bit-field has an enumerated type, it is treated as any
774 // other value of that type for promotion purposes (C++ 4.5p3).
Mike Stumpe127ae32009-05-16 07:39:55 +0000775 // FIXME: We should delay checking of bit-fields until we actually perform the
776 // conversion.
Douglas Gregor531434b2009-05-02 02:18:30 +0000777 using llvm::APSInt;
778 if (From)
779 if (FieldDecl *MemberDecl = From->getBitField()) {
Douglas Gregor82d44772008-12-20 23:49:58 +0000780 APSInt BitWidth;
Douglas Gregor531434b2009-05-02 02:18:30 +0000781 if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
782 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
783 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
784 ToSize = Context.getTypeSize(ToType);
Douglas Gregor82d44772008-12-20 23:49:58 +0000785
786 // Are we promoting to an int from a bitfield that fits in an int?
787 if (BitWidth < ToSize ||
788 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
789 return To->getKind() == BuiltinType::Int;
790 }
791
792 // Are we promoting to an unsigned int from an unsigned bitfield
793 // that fits into an unsigned int?
794 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
795 return To->getKind() == BuiltinType::UInt;
796 }
797
798 return false;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000799 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000800 }
Douglas Gregor531434b2009-05-02 02:18:30 +0000801
Douglas Gregord2baafd2008-10-21 16:13:35 +0000802 // An rvalue of type bool can be converted to an rvalue of type int,
803 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000804 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000805 return true;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000806 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000807
808 return false;
809}
810
811/// IsFloatingPointPromotion - Determines whether the conversion from
812/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
813/// returns true and sets PromotedType to the promoted type.
814bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
815{
816 /// An rvalue of type float can be converted to an rvalue of type
817 /// double. (C++ 4.6p1).
818 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
Douglas Gregore819caf2009-02-12 00:15:05 +0000819 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000820 if (FromBuiltin->getKind() == BuiltinType::Float &&
821 ToBuiltin->getKind() == BuiltinType::Double)
822 return true;
823
Douglas Gregore819caf2009-02-12 00:15:05 +0000824 // C99 6.3.1.5p1:
825 // When a float is promoted to double or long double, or a
826 // double is promoted to long double [...].
827 if (!getLangOptions().CPlusPlus &&
828 (FromBuiltin->getKind() == BuiltinType::Float ||
829 FromBuiltin->getKind() == BuiltinType::Double) &&
830 (ToBuiltin->getKind() == BuiltinType::LongDouble))
831 return true;
832 }
833
Douglas Gregord2baafd2008-10-21 16:13:35 +0000834 return false;
835}
836
Douglas Gregore819caf2009-02-12 00:15:05 +0000837/// \brief Determine if a conversion is a complex promotion.
838///
839/// A complex promotion is defined as a complex -> complex conversion
840/// where the conversion between the underlying real types is a
Douglas Gregor4ff48512009-02-12 00:26:06 +0000841/// floating-point or integral promotion.
Douglas Gregore819caf2009-02-12 00:15:05 +0000842bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
843 const ComplexType *FromComplex = FromType->getAsComplexType();
844 if (!FromComplex)
845 return false;
846
847 const ComplexType *ToComplex = ToType->getAsComplexType();
848 if (!ToComplex)
849 return false;
850
851 return IsFloatingPointPromotion(FromComplex->getElementType(),
Douglas Gregor4ff48512009-02-12 00:26:06 +0000852 ToComplex->getElementType()) ||
853 IsIntegralPromotion(0, FromComplex->getElementType(),
854 ToComplex->getElementType());
Douglas Gregore819caf2009-02-12 00:15:05 +0000855}
856
Douglas Gregor24a90a52008-11-26 23:31:11 +0000857/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
858/// the pointer type FromPtr to a pointer to type ToPointee, with the
859/// same type qualifiers as FromPtr has on its pointee type. ToType,
860/// if non-empty, will be a pointer to ToType that may or may not have
861/// the right set of qualifiers on its pointee.
862static QualType
863BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
864 QualType ToPointee, QualType ToType,
865 ASTContext &Context) {
866 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
867 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
868 unsigned Quals = CanonFromPointee.getCVRQualifiers();
869
870 // Exact qualifier match -> return the pointer type we're converting to.
871 if (CanonToPointee.getCVRQualifiers() == Quals) {
872 // ToType is exactly what we need. Return it.
873 if (ToType.getTypePtr())
874 return ToType;
875
876 // Build a pointer to ToPointee. It has the right qualifiers
877 // already.
878 return Context.getPointerType(ToPointee);
879 }
880
881 // Just build a canonical type that has the right qualifiers.
882 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
883}
884
Douglas Gregord2baafd2008-10-21 16:13:35 +0000885/// IsPointerConversion - Determines whether the conversion of the
886/// expression From, which has the (possibly adjusted) type FromType,
887/// can be converted to the type ToType via a pointer conversion (C++
888/// 4.10). If so, returns true and places the converted type (that
889/// might differ from ToType in its cv-qualifiers at some level) into
890/// ConvertedType.
Douglas Gregor9036ef72008-11-27 00:15:41 +0000891///
Douglas Gregor3f5a00c2008-11-27 01:19:21 +0000892/// This routine also supports conversions to and from block pointers
893/// and conversions with Objective-C's 'id', 'id<protocols...>', and
894/// pointers to interfaces. FIXME: Once we've determined the
895/// appropriate overloading rules for Objective-C, we may want to
896/// split the Objective-C checks into a different routine; however,
897/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor6fd35572008-12-19 17:40:08 +0000898/// conversions, so for now they live here. IncompatibleObjC will be
899/// set if the conversion is an allowed Objective-C conversion that
900/// should result in a warning.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000901bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor6fd35572008-12-19 17:40:08 +0000902 QualType& ConvertedType,
903 bool &IncompatibleObjC)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000904{
Douglas Gregor6fd35572008-12-19 17:40:08 +0000905 IncompatibleObjC = false;
Douglas Gregor932778b2008-12-19 19:13:09 +0000906 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
907 return true;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000908
Douglas Gregorf1d75712008-12-22 20:51:52 +0000909 // Conversion from a null pointer constant to any Objective-C pointer type.
910 if (Context.isObjCObjectPointerType(ToType) &&
911 From->isNullPointerConstant(Context)) {
912 ConvertedType = ToType;
913 return true;
914 }
915
Douglas Gregor9036ef72008-11-27 00:15:41 +0000916 // Blocks: Block pointers can be converted to void*.
917 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
918 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
919 ConvertedType = ToType;
920 return true;
921 }
922 // Blocks: A null pointer constant can be converted to a block
923 // pointer type.
924 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
925 ConvertedType = ToType;
926 return true;
927 }
928
Sebastian Redl5d0ead72009-05-10 18:38:11 +0000929 // If the left-hand-side is nullptr_t, the right side can be a null
930 // pointer constant.
931 if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
932 ConvertedType = ToType;
933 return true;
934 }
935
Douglas Gregord2baafd2008-10-21 16:13:35 +0000936 const PointerType* ToTypePtr = ToType->getAsPointerType();
937 if (!ToTypePtr)
938 return false;
939
940 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
941 if (From->isNullPointerConstant(Context)) {
942 ConvertedType = ToType;
943 return true;
944 }
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000945
Douglas Gregor24a90a52008-11-26 23:31:11 +0000946 // Beyond this point, both types need to be pointers.
947 const PointerType *FromTypePtr = FromType->getAsPointerType();
948 if (!FromTypePtr)
949 return false;
950
951 QualType FromPointeeType = FromTypePtr->getPointeeType();
952 QualType ToPointeeType = ToTypePtr->getPointeeType();
953
Douglas Gregord2baafd2008-10-21 16:13:35 +0000954 // An rvalue of type "pointer to cv T," where T is an object type,
955 // can be converted to an rvalue of type "pointer to cv void" (C++
956 // 4.10p2).
Douglas Gregor26ea1222009-03-24 20:32:41 +0000957 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000958 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
959 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000960 ToType, Context);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000961 return true;
962 }
963
Douglas Gregorfcb19192009-02-11 23:02:49 +0000964 // When we're overloading in C, we allow a special kind of pointer
965 // conversion for compatible-but-not-identical pointee types.
966 if (!getLangOptions().CPlusPlus &&
967 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
968 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
969 ToPointeeType,
970 ToType, Context);
971 return true;
972 }
973
Douglas Gregor14046502008-10-23 00:40:37 +0000974 // C++ [conv.ptr]p3:
975 //
976 // An rvalue of type "pointer to cv D," where D is a class type,
977 // can be converted to an rvalue of type "pointer to cv B," where
978 // B is a base class (clause 10) of D. If B is an inaccessible
979 // (clause 11) or ambiguous (10.2) base class of D, a program that
980 // necessitates this conversion is ill-formed. The result of the
981 // conversion is a pointer to the base class sub-object of the
982 // derived class object. The null pointer value is converted to
983 // the null pointer value of the destination type.
984 //
Douglas Gregorbb461502008-10-24 04:54:22 +0000985 // Note that we do not check for ambiguity or inaccessibility
986 // here. That is handled by CheckPointerConversion.
Douglas Gregorfcb19192009-02-11 23:02:49 +0000987 if (getLangOptions().CPlusPlus &&
988 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
Douglas Gregor24a90a52008-11-26 23:31:11 +0000989 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000990 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
991 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000992 ToType, Context);
993 return true;
994 }
Douglas Gregor14046502008-10-23 00:40:37 +0000995
Douglas Gregor932778b2008-12-19 19:13:09 +0000996 return false;
997}
998
999/// isObjCPointerConversion - Determines whether this is an
1000/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1001/// with the same arguments and return values.
1002bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1003 QualType& ConvertedType,
1004 bool &IncompatibleObjC) {
1005 if (!getLangOptions().ObjC1)
1006 return false;
1007
1008 // Conversions with Objective-C's id<...>.
1009 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
1010 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
1011 ConvertedType = ToType;
1012 return true;
1013 }
1014
Douglas Gregor80402cf2008-12-23 00:53:59 +00001015 // Beyond this point, both types need to be pointers or block pointers.
1016 QualType ToPointeeType;
Douglas Gregor932778b2008-12-19 19:13:09 +00001017 const PointerType* ToTypePtr = ToType->getAsPointerType();
Douglas Gregor80402cf2008-12-23 00:53:59 +00001018 if (ToTypePtr)
1019 ToPointeeType = ToTypePtr->getPointeeType();
1020 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
1021 ToPointeeType = ToBlockPtr->getPointeeType();
1022 else
Douglas Gregor932778b2008-12-19 19:13:09 +00001023 return false;
1024
Douglas Gregor80402cf2008-12-23 00:53:59 +00001025 QualType FromPointeeType;
Douglas Gregor932778b2008-12-19 19:13:09 +00001026 const PointerType *FromTypePtr = FromType->getAsPointerType();
Douglas Gregor80402cf2008-12-23 00:53:59 +00001027 if (FromTypePtr)
1028 FromPointeeType = FromTypePtr->getPointeeType();
1029 else if (const BlockPointerType *FromBlockPtr
1030 = FromType->getAsBlockPointerType())
1031 FromPointeeType = FromBlockPtr->getPointeeType();
1032 else
Douglas Gregor932778b2008-12-19 19:13:09 +00001033 return false;
1034
Douglas Gregor24a90a52008-11-26 23:31:11 +00001035 // Objective C++: We're able to convert from a pointer to an
1036 // interface to a pointer to a different interface.
1037 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
1038 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1039 if (FromIface && ToIface &&
1040 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregor80402cf2008-12-23 00:53:59 +00001041 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor8bb7ad82008-11-27 00:52:49 +00001042 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001043 ToType, Context);
1044 return true;
1045 }
1046
Douglas Gregor6fd35572008-12-19 17:40:08 +00001047 if (FromIface && ToIface &&
1048 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1049 // Okay: this is some kind of implicit downcast of Objective-C
1050 // interfaces, which is permitted. However, we're going to
1051 // complain about it.
1052 IncompatibleObjC = true;
Douglas Gregor80402cf2008-12-23 00:53:59 +00001053 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor6fd35572008-12-19 17:40:08 +00001054 ToPointeeType,
1055 ToType, Context);
1056 return true;
1057 }
1058
Douglas Gregor24a90a52008-11-26 23:31:11 +00001059 // Objective C++: We're able to convert between "id" and a pointer
1060 // to any interface (in both directions).
Steve Naroff17c03822009-02-12 17:52:19 +00001061 if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1062 || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +00001063 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1064 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001065 ToType, Context);
1066 return true;
1067 }
Douglas Gregor14046502008-10-23 00:40:37 +00001068
Douglas Gregord0c653a2008-12-18 23:43:31 +00001069 // Objective C++: Allow conversions between the Objective-C "id" and
1070 // "Class", in either direction.
Steve Naroff17c03822009-02-12 17:52:19 +00001071 if ((Context.isObjCIdStructType(FromPointeeType) &&
1072 Context.isObjCClassStructType(ToPointeeType)) ||
1073 (Context.isObjCClassStructType(FromPointeeType) &&
1074 Context.isObjCIdStructType(ToPointeeType))) {
Douglas Gregord0c653a2008-12-18 23:43:31 +00001075 ConvertedType = ToType;
1076 return true;
1077 }
1078
Douglas Gregor932778b2008-12-19 19:13:09 +00001079 // If we have pointers to pointers, recursively check whether this
1080 // is an Objective-C conversion.
1081 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1082 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1083 IncompatibleObjC)) {
1084 // We always complain about this conversion.
1085 IncompatibleObjC = true;
1086 ConvertedType = ToType;
1087 return true;
1088 }
1089
Douglas Gregor80402cf2008-12-23 00:53:59 +00001090 // If we have pointers to functions or blocks, check whether the only
Douglas Gregor932778b2008-12-19 19:13:09 +00001091 // differences in the argument and result types are in Objective-C
1092 // pointer conversions. If so, we permit the conversion (but
1093 // complain about it).
Douglas Gregor4fa58902009-02-26 23:50:07 +00001094 const FunctionProtoType *FromFunctionType
1095 = FromPointeeType->getAsFunctionProtoType();
1096 const FunctionProtoType *ToFunctionType
1097 = ToPointeeType->getAsFunctionProtoType();
Douglas Gregor932778b2008-12-19 19:13:09 +00001098 if (FromFunctionType && ToFunctionType) {
1099 // If the function types are exactly the same, this isn't an
1100 // Objective-C pointer conversion.
1101 if (Context.getCanonicalType(FromPointeeType)
1102 == Context.getCanonicalType(ToPointeeType))
1103 return false;
1104
1105 // Perform the quick checks that will tell us whether these
1106 // function types are obviously different.
1107 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1108 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1109 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1110 return false;
1111
1112 bool HasObjCConversion = false;
1113 if (Context.getCanonicalType(FromFunctionType->getResultType())
1114 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1115 // Okay, the types match exactly. Nothing to do.
1116 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1117 ToFunctionType->getResultType(),
1118 ConvertedType, IncompatibleObjC)) {
1119 // Okay, we have an Objective-C pointer conversion.
1120 HasObjCConversion = true;
1121 } else {
1122 // Function types are too different. Abort.
1123 return false;
1124 }
1125
1126 // Check argument types.
1127 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1128 ArgIdx != NumArgs; ++ArgIdx) {
1129 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1130 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1131 if (Context.getCanonicalType(FromArgType)
1132 == Context.getCanonicalType(ToArgType)) {
1133 // Okay, the types match exactly. Nothing to do.
1134 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1135 ConvertedType, IncompatibleObjC)) {
1136 // Okay, we have an Objective-C pointer conversion.
1137 HasObjCConversion = true;
1138 } else {
1139 // Argument types are too different. Abort.
1140 return false;
1141 }
1142 }
1143
1144 if (HasObjCConversion) {
1145 // We had an Objective-C conversion. Allow this pointer
1146 // conversion, but complain about it.
1147 ConvertedType = ToType;
1148 IncompatibleObjC = true;
1149 return true;
1150 }
1151 }
1152
Sebastian Redlba387562009-01-25 19:43:20 +00001153 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001154}
1155
Douglas Gregorbb461502008-10-24 04:54:22 +00001156/// CheckPointerConversion - Check the pointer conversion from the
1157/// expression From to the type ToType. This routine checks for
1158/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1159/// conversions for which IsPointerConversion has already returned
1160/// true. It returns true and produces a diagnostic if there was an
1161/// error, or returns false otherwise.
1162bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1163 QualType FromType = From->getType();
1164
1165 if (const PointerType *FromPtrType = FromType->getAsPointerType())
1166 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Douglas Gregorbb461502008-10-24 04:54:22 +00001167 QualType FromPointeeType = FromPtrType->getPointeeType(),
1168 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregord0c653a2008-12-18 23:43:31 +00001169
1170 // Objective-C++ conversions are always okay.
Mike Stumpe127ae32009-05-16 07:39:55 +00001171 // FIXME: We should have a different class of conversions for the
1172 // Objective-C++ implicit conversions.
Steve Naroff17c03822009-02-12 17:52:19 +00001173 if (Context.isObjCIdStructType(FromPointeeType) ||
1174 Context.isObjCIdStructType(ToPointeeType) ||
1175 Context.isObjCClassStructType(FromPointeeType) ||
1176 Context.isObjCClassStructType(ToPointeeType))
Douglas Gregord0c653a2008-12-18 23:43:31 +00001177 return false;
1178
Douglas Gregorbb461502008-10-24 04:54:22 +00001179 if (FromPointeeType->isRecordType() &&
1180 ToPointeeType->isRecordType()) {
1181 // We must have a derived-to-base conversion. Check an
1182 // ambiguous or inaccessible conversion.
Douglas Gregor651d1cc2008-10-24 16:17:19 +00001183 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1184 From->getExprLoc(),
1185 From->getSourceRange());
Douglas Gregorbb461502008-10-24 04:54:22 +00001186 }
1187 }
1188
1189 return false;
1190}
1191
Sebastian Redlba387562009-01-25 19:43:20 +00001192/// IsMemberPointerConversion - Determines whether the conversion of the
1193/// expression From, which has the (possibly adjusted) type FromType, can be
1194/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1195/// If so, returns true and places the converted type (that might differ from
1196/// ToType in its cv-qualifiers at some level) into ConvertedType.
1197bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1198 QualType ToType, QualType &ConvertedType)
1199{
1200 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1201 if (!ToTypePtr)
1202 return false;
1203
1204 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1205 if (From->isNullPointerConstant(Context)) {
1206 ConvertedType = ToType;
1207 return true;
1208 }
1209
1210 // Otherwise, both types have to be member pointers.
1211 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1212 if (!FromTypePtr)
1213 return false;
1214
1215 // A pointer to member of B can be converted to a pointer to member of D,
1216 // where D is derived from B (C++ 4.11p2).
1217 QualType FromClass(FromTypePtr->getClass(), 0);
1218 QualType ToClass(ToTypePtr->getClass(), 0);
1219 // FIXME: What happens when these are dependent? Is this function even called?
1220
1221 if (IsDerivedFrom(ToClass, FromClass)) {
1222 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1223 ToClass.getTypePtr());
1224 return true;
1225 }
1226
1227 return false;
1228}
1229
1230/// CheckMemberPointerConversion - Check the member pointer conversion from the
1231/// expression From to the type ToType. This routine checks for ambiguous or
1232/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1233/// for which IsMemberPointerConversion has already returned true. It returns
1234/// true and produces a diagnostic if there was an error, or returns false
1235/// otherwise.
1236bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1237 QualType FromType = From->getType();
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001238 const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1239 if (!FromPtrType)
1240 return false;
Sebastian Redlba387562009-01-25 19:43:20 +00001241
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001242 const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1243 assert(ToPtrType && "No member pointer cast has a target type "
1244 "that is not a member pointer.");
Sebastian Redlba387562009-01-25 19:43:20 +00001245
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001246 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1247 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redlba387562009-01-25 19:43:20 +00001248
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001249 // FIXME: What about dependent types?
1250 assert(FromClass->isRecordType() && "Pointer into non-class.");
1251 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redlba387562009-01-25 19:43:20 +00001252
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001253 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1254 /*DetectVirtual=*/true);
1255 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1256 assert(DerivationOkay &&
1257 "Should not have been called if derivation isn't OK.");
1258 (void)DerivationOkay;
Sebastian Redlba387562009-01-25 19:43:20 +00001259
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001260 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1261 getUnqualifiedType())) {
1262 // Derivation is ambiguous. Redo the check to find the exact paths.
1263 Paths.clear();
1264 Paths.setRecordingPaths(true);
1265 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1266 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1267 (void)StillOkay;
Sebastian Redlba387562009-01-25 19:43:20 +00001268
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001269 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1270 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1271 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1272 return true;
Sebastian Redlba387562009-01-25 19:43:20 +00001273 }
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001274
Douglas Gregor2e047592009-02-28 01:32:25 +00001275 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001276 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1277 << FromClass << ToClass << QualType(VBase, 0)
1278 << From->getSourceRange();
1279 return true;
1280 }
1281
Sebastian Redlba387562009-01-25 19:43:20 +00001282 return false;
1283}
1284
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001285/// IsQualificationConversion - Determines whether the conversion from
1286/// an rvalue of type FromType to ToType is a qualification conversion
1287/// (C++ 4.4).
1288bool
1289Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1290{
1291 FromType = Context.getCanonicalType(FromType);
1292 ToType = Context.getCanonicalType(ToType);
1293
1294 // If FromType and ToType are the same type, this is not a
1295 // qualification conversion.
1296 if (FromType == ToType)
1297 return false;
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001298
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001299 // (C++ 4.4p4):
1300 // A conversion can add cv-qualifiers at levels other than the first
1301 // in multi-level pointers, subject to the following rules: [...]
1302 bool PreviousToQualsIncludeConst = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001303 bool UnwrappedAnyPointer = false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001304 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001305 // Within each iteration of the loop, we check the qualifiers to
1306 // determine if this still looks like a qualification
1307 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001308 // pointers or pointers-to-members and do it all again
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001309 // until there are no more pointers or pointers-to-members left to
1310 // unwrap.
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001311 UnwrappedAnyPointer = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001312
1313 // -- for every j > 0, if const is in cv 1,j then const is in cv
1314 // 2,j, and similarly for volatile.
Douglas Gregore5db4f72008-10-22 00:38:21 +00001315 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001316 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001317
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001318 // -- if the cv 1,j and cv 2,j are different, then const is in
1319 // every cv for 0 < k < j.
1320 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001321 && !PreviousToQualsIncludeConst)
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001322 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001323
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001324 // Keep track of whether all prior cv-qualifiers in the "to" type
1325 // include const.
1326 PreviousToQualsIncludeConst
1327 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001328 }
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001329
1330 // We are left with FromType and ToType being the pointee types
1331 // after unwrapping the original FromType and ToType the same number
1332 // of types. If we unwrapped any pointers, and if FromType and
1333 // ToType have the same unqualified type (since we checked
1334 // qualifiers above), then this is a qualification conversion.
1335 return UnwrappedAnyPointer &&
1336 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1337}
1338
Douglas Gregorb206cc42009-01-30 23:27:23 +00001339/// Determines whether there is a user-defined conversion sequence
1340/// (C++ [over.ics.user]) that converts expression From to the type
1341/// ToType. If such a conversion exists, User will contain the
1342/// user-defined conversion sequence that performs such a conversion
1343/// and this routine will return true. Otherwise, this routine returns
1344/// false and User is unspecified.
1345///
1346/// \param AllowConversionFunctions true if the conversion should
1347/// consider conversion functions at all. If false, only constructors
1348/// will be considered.
1349///
1350/// \param AllowExplicit true if the conversion should consider C++0x
1351/// "explicit" conversion functions as well as non-explicit conversion
1352/// functions (C++0x [class.conv.fct]p2).
Sebastian Redla55834a2009-04-12 17:16:29 +00001353///
1354/// \param ForceRValue true if the expression should be treated as an rvalue
1355/// for overload resolution.
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001356bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00001357 UserDefinedConversionSequence& User,
Douglas Gregorb206cc42009-01-30 23:27:23 +00001358 bool AllowConversionFunctions,
Sebastian Redla55834a2009-04-12 17:16:29 +00001359 bool AllowExplicit, bool ForceRValue)
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001360{
1361 OverloadCandidateSet CandidateSet;
Douglas Gregor2e047592009-02-28 01:32:25 +00001362 if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1363 if (CXXRecordDecl *ToRecordDecl
1364 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1365 // C++ [over.match.ctor]p1:
1366 // When objects of class type are direct-initialized (8.5), or
1367 // copy-initialized from an expression of the same or a
1368 // derived class type (8.5), overload resolution selects the
1369 // constructor. [...] For copy-initialization, the candidate
1370 // functions are all the converting constructors (12.3.1) of
1371 // that class. The argument list is the expression-list within
1372 // the parentheses of the initializer.
1373 DeclarationName ConstructorName
1374 = Context.DeclarationNames.getCXXConstructorName(
1375 Context.getCanonicalType(ToType).getUnqualifiedType());
1376 DeclContext::lookup_iterator Con, ConEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00001377 for (llvm::tie(Con, ConEnd)
Argiris Kirtzidisab6e38a2009-06-30 02:36:12 +00001378 = ToRecordDecl->lookup(ConstructorName);
Douglas Gregor2e047592009-02-28 01:32:25 +00001379 Con != ConEnd; ++Con) {
1380 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1381 if (Constructor->isConvertingConstructor())
1382 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00001383 /*SuppressUserConversions=*/true, ForceRValue);
Douglas Gregor2e047592009-02-28 01:32:25 +00001384 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001385 }
1386 }
1387
Douglas Gregorb206cc42009-01-30 23:27:23 +00001388 if (!AllowConversionFunctions) {
1389 // Don't allow any conversion functions to enter the overload set.
Douglas Gregor2e047592009-02-28 01:32:25 +00001390 } else if (const RecordType *FromRecordType
1391 = From->getType()->getAsRecordType()) {
1392 if (CXXRecordDecl *FromRecordDecl
1393 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1394 // Add all of the conversion functions as candidates.
1395 // FIXME: Look for conversions in base classes!
1396 OverloadedFunctionDecl *Conversions
1397 = FromRecordDecl->getConversionFunctions();
1398 for (OverloadedFunctionDecl::function_iterator Func
1399 = Conversions->function_begin();
1400 Func != Conversions->function_end(); ++Func) {
1401 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1402 if (AllowExplicit || !Conv->isExplicit())
1403 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1404 }
Douglas Gregor60714f92008-11-07 22:36:19 +00001405 }
1406 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001407
1408 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00001409 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001410 case OR_Success:
1411 // Record the standard conversion we used and the conversion function.
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001412 if (CXXConstructorDecl *Constructor
1413 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1414 // C++ [over.ics.user]p1:
1415 // If the user-defined conversion is specified by a
1416 // constructor (12.3.1), the initial standard conversion
1417 // sequence converts the source type to the type required by
1418 // the argument of the constructor.
1419 //
1420 // FIXME: What about ellipsis conversions?
1421 QualType ThisType = Constructor->getThisType(Context);
1422 User.Before = Best->Conversions[0].Standard;
1423 User.ConversionFunction = Constructor;
1424 User.After.setAsIdentityConversion();
1425 User.After.FromTypePtr
1426 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1427 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1428 return true;
Douglas Gregor60714f92008-11-07 22:36:19 +00001429 } else if (CXXConversionDecl *Conversion
1430 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1431 // C++ [over.ics.user]p1:
1432 //
1433 // [...] If the user-defined conversion is specified by a
1434 // conversion function (12.3.2), the initial standard
1435 // conversion sequence converts the source type to the
1436 // implicit object parameter of the conversion function.
1437 User.Before = Best->Conversions[0].Standard;
1438 User.ConversionFunction = Conversion;
1439
1440 // C++ [over.ics.user]p2:
1441 // The second standard conversion sequence converts the
1442 // result of the user-defined conversion to the target type
1443 // for the sequence. Since an implicit conversion sequence
1444 // is an initialization, the special rules for
1445 // initialization by user-defined conversion apply when
1446 // selecting the best user-defined conversion for a
1447 // user-defined conversion sequence (see 13.3.3 and
1448 // 13.3.3.1).
1449 User.After = Best->FinalConversion;
1450 return true;
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001451 } else {
Douglas Gregor60714f92008-11-07 22:36:19 +00001452 assert(false && "Not a constructor or conversion function?");
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001453 return false;
1454 }
1455
1456 case OR_No_Viable_Function:
Douglas Gregoraa57e862009-02-18 21:56:37 +00001457 case OR_Deleted:
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001458 // No conversion here! We're done.
1459 return false;
1460
1461 case OR_Ambiguous:
1462 // FIXME: See C++ [over.best.ics]p10 for the handling of
1463 // ambiguous conversion sequences.
1464 return false;
1465 }
1466
1467 return false;
1468}
1469
Douglas Gregord2baafd2008-10-21 16:13:35 +00001470/// CompareImplicitConversionSequences - Compare two implicit
1471/// conversion sequences to determine whether one is better than the
1472/// other or if they are indistinguishable (C++ 13.3.3.2).
1473ImplicitConversionSequence::CompareKind
1474Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1475 const ImplicitConversionSequence& ICS2)
1476{
1477 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1478 // conversion sequences (as defined in 13.3.3.1)
1479 // -- a standard conversion sequence (13.3.3.1.1) is a better
1480 // conversion sequence than a user-defined conversion sequence or
1481 // an ellipsis conversion sequence, and
1482 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1483 // conversion sequence than an ellipsis conversion sequence
1484 // (13.3.3.1.3).
1485 //
1486 if (ICS1.ConversionKind < ICS2.ConversionKind)
1487 return ImplicitConversionSequence::Better;
1488 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1489 return ImplicitConversionSequence::Worse;
1490
1491 // Two implicit conversion sequences of the same form are
1492 // indistinguishable conversion sequences unless one of the
1493 // following rules apply: (C++ 13.3.3.2p3):
1494 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1495 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1496 else if (ICS1.ConversionKind ==
1497 ImplicitConversionSequence::UserDefinedConversion) {
1498 // User-defined conversion sequence U1 is a better conversion
1499 // sequence than another user-defined conversion sequence U2 if
1500 // they contain the same user-defined conversion function or
1501 // constructor and if the second standard conversion sequence of
1502 // U1 is better than the second standard conversion sequence of
1503 // U2 (C++ 13.3.3.2p3).
1504 if (ICS1.UserDefined.ConversionFunction ==
1505 ICS2.UserDefined.ConversionFunction)
1506 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1507 ICS2.UserDefined.After);
1508 }
1509
1510 return ImplicitConversionSequence::Indistinguishable;
1511}
1512
1513/// CompareStandardConversionSequences - Compare two standard
1514/// conversion sequences to determine whether one is better than the
1515/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1516ImplicitConversionSequence::CompareKind
1517Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1518 const StandardConversionSequence& SCS2)
1519{
1520 // Standard conversion sequence S1 is a better conversion sequence
1521 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1522
1523 // -- S1 is a proper subsequence of S2 (comparing the conversion
1524 // sequences in the canonical form defined by 13.3.3.1.1,
1525 // excluding any Lvalue Transformation; the identity conversion
1526 // sequence is considered to be a subsequence of any
1527 // non-identity conversion sequence) or, if not that,
1528 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1529 // Neither is a proper subsequence of the other. Do nothing.
1530 ;
1531 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1532 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1533 (SCS1.Second == ICK_Identity &&
1534 SCS1.Third == ICK_Identity))
1535 // SCS1 is a proper subsequence of SCS2.
1536 return ImplicitConversionSequence::Better;
1537 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1538 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1539 (SCS2.Second == ICK_Identity &&
1540 SCS2.Third == ICK_Identity))
1541 // SCS2 is a proper subsequence of SCS1.
1542 return ImplicitConversionSequence::Worse;
1543
1544 // -- the rank of S1 is better than the rank of S2 (by the rules
1545 // defined below), or, if not that,
1546 ImplicitConversionRank Rank1 = SCS1.getRank();
1547 ImplicitConversionRank Rank2 = SCS2.getRank();
1548 if (Rank1 < Rank2)
1549 return ImplicitConversionSequence::Better;
1550 else if (Rank2 < Rank1)
1551 return ImplicitConversionSequence::Worse;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001552
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001553 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1554 // are indistinguishable unless one of the following rules
1555 // applies:
1556
1557 // A conversion that is not a conversion of a pointer, or
1558 // pointer to member, to bool is better than another conversion
1559 // that is such a conversion.
1560 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1561 return SCS2.isPointerConversionToBool()
1562 ? ImplicitConversionSequence::Better
1563 : ImplicitConversionSequence::Worse;
1564
Douglas Gregor14046502008-10-23 00:40:37 +00001565 // C++ [over.ics.rank]p4b2:
1566 //
1567 // If class B is derived directly or indirectly from class A,
Douglas Gregor0e343382008-10-29 14:50:44 +00001568 // conversion of B* to A* is better than conversion of B* to
1569 // void*, and conversion of A* to void* is better than conversion
1570 // of B* to void*.
Douglas Gregor14046502008-10-23 00:40:37 +00001571 bool SCS1ConvertsToVoid
1572 = SCS1.isPointerConversionToVoidPointer(Context);
1573 bool SCS2ConvertsToVoid
1574 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregor0e343382008-10-29 14:50:44 +00001575 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1576 // Exactly one of the conversion sequences is a conversion to
1577 // a void pointer; it's the worse conversion.
Douglas Gregor14046502008-10-23 00:40:37 +00001578 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1579 : ImplicitConversionSequence::Worse;
Douglas Gregor0e343382008-10-29 14:50:44 +00001580 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1581 // Neither conversion sequence converts to a void pointer; compare
1582 // their derived-to-base conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001583 if (ImplicitConversionSequence::CompareKind DerivedCK
1584 = CompareDerivedToBaseConversions(SCS1, SCS2))
1585 return DerivedCK;
Douglas Gregor0e343382008-10-29 14:50:44 +00001586 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1587 // Both conversion sequences are conversions to void
1588 // pointers. Compare the source types to determine if there's an
1589 // inheritance relationship in their sources.
1590 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1591 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1592
1593 // Adjust the types we're converting from via the array-to-pointer
1594 // conversion, if we need to.
1595 if (SCS1.First == ICK_Array_To_Pointer)
1596 FromType1 = Context.getArrayDecayedType(FromType1);
1597 if (SCS2.First == ICK_Array_To_Pointer)
1598 FromType2 = Context.getArrayDecayedType(FromType2);
1599
1600 QualType FromPointee1
1601 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1602 QualType FromPointee2
1603 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1604
1605 if (IsDerivedFrom(FromPointee2, FromPointee1))
1606 return ImplicitConversionSequence::Better;
1607 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1608 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001609
1610 // Objective-C++: If one interface is more specific than the
1611 // other, it is the better one.
1612 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1613 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1614 if (FromIface1 && FromIface1) {
1615 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1616 return ImplicitConversionSequence::Better;
1617 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1618 return ImplicitConversionSequence::Worse;
1619 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001620 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001621
1622 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1623 // bullet 3).
Douglas Gregor14046502008-10-23 00:40:37 +00001624 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001625 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregor14046502008-10-23 00:40:37 +00001626 return QualCK;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001627
Douglas Gregor0e343382008-10-29 14:50:44 +00001628 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
Sebastian Redl8a8b3512009-03-22 23:49:27 +00001629 // C++0x [over.ics.rank]p3b4:
1630 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1631 // implicit object parameter of a non-static member function declared
1632 // without a ref-qualifier, and S1 binds an rvalue reference to an
1633 // rvalue and S2 binds an lvalue reference.
Sebastian Redldfc30332009-03-29 15:27:50 +00001634 // FIXME: We don't know if we're dealing with the implicit object parameter,
1635 // or if the member function in this case has a ref qualifier.
1636 // (Of course, we don't have ref qualifiers yet.)
1637 if (SCS1.RRefBinding != SCS2.RRefBinding)
1638 return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1639 : ImplicitConversionSequence::Worse;
Sebastian Redl8a8b3512009-03-22 23:49:27 +00001640
1641 // C++ [over.ics.rank]p3b4:
1642 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1643 // which the references refer are the same type except for
1644 // top-level cv-qualifiers, and the type to which the reference
1645 // initialized by S2 refers is more cv-qualified than the type
1646 // to which the reference initialized by S1 refers.
Sebastian Redldfc30332009-03-29 15:27:50 +00001647 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1648 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
Douglas Gregor0e343382008-10-29 14:50:44 +00001649 T1 = Context.getCanonicalType(T1);
1650 T2 = Context.getCanonicalType(T2);
1651 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1652 if (T2.isMoreQualifiedThan(T1))
1653 return ImplicitConversionSequence::Better;
1654 else if (T1.isMoreQualifiedThan(T2))
1655 return ImplicitConversionSequence::Worse;
1656 }
1657 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001658
1659 return ImplicitConversionSequence::Indistinguishable;
1660}
1661
1662/// CompareQualificationConversions - Compares two standard conversion
1663/// sequences to determine whether they can be ranked based on their
1664/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1665ImplicitConversionSequence::CompareKind
1666Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1667 const StandardConversionSequence& SCS2)
1668{
Douglas Gregor4459bbe2008-10-22 15:04:37 +00001669 // C++ 13.3.3.2p3:
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001670 // -- S1 and S2 differ only in their qualification conversion and
1671 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1672 // cv-qualification signature of type T1 is a proper subset of
1673 // the cv-qualification signature of type T2, and S1 is not the
1674 // deprecated string literal array-to-pointer conversion (4.2).
1675 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1676 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1677 return ImplicitConversionSequence::Indistinguishable;
1678
1679 // FIXME: the example in the standard doesn't use a qualification
1680 // conversion (!)
1681 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1682 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1683 T1 = Context.getCanonicalType(T1);
1684 T2 = Context.getCanonicalType(T2);
1685
1686 // If the types are the same, we won't learn anything by unwrapped
1687 // them.
1688 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1689 return ImplicitConversionSequence::Indistinguishable;
1690
1691 ImplicitConversionSequence::CompareKind Result
1692 = ImplicitConversionSequence::Indistinguishable;
1693 while (UnwrapSimilarPointerTypes(T1, T2)) {
1694 // Within each iteration of the loop, we check the qualifiers to
1695 // determine if this still looks like a qualification
1696 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001697 // pointers or pointers-to-members and do it all again
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001698 // until there are no more pointers or pointers-to-members left
1699 // to unwrap. This essentially mimics what
1700 // IsQualificationConversion does, but here we're checking for a
1701 // strict subset of qualifiers.
1702 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1703 // The qualifiers are the same, so this doesn't tell us anything
1704 // about how the sequences rank.
1705 ;
1706 else if (T2.isMoreQualifiedThan(T1)) {
1707 // T1 has fewer qualifiers, so it could be the better sequence.
1708 if (Result == ImplicitConversionSequence::Worse)
1709 // Neither has qualifiers that are a subset of the other's
1710 // qualifiers.
1711 return ImplicitConversionSequence::Indistinguishable;
1712
1713 Result = ImplicitConversionSequence::Better;
1714 } else if (T1.isMoreQualifiedThan(T2)) {
1715 // T2 has fewer qualifiers, so it could be the better sequence.
1716 if (Result == ImplicitConversionSequence::Better)
1717 // Neither has qualifiers that are a subset of the other's
1718 // qualifiers.
1719 return ImplicitConversionSequence::Indistinguishable;
1720
1721 Result = ImplicitConversionSequence::Worse;
1722 } else {
1723 // Qualifiers are disjoint.
1724 return ImplicitConversionSequence::Indistinguishable;
1725 }
1726
1727 // If the types after this point are equivalent, we're done.
1728 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1729 break;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001730 }
1731
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001732 // Check that the winning standard conversion sequence isn't using
1733 // the deprecated string literal array to pointer conversion.
1734 switch (Result) {
1735 case ImplicitConversionSequence::Better:
1736 if (SCS1.Deprecated)
1737 Result = ImplicitConversionSequence::Indistinguishable;
1738 break;
1739
1740 case ImplicitConversionSequence::Indistinguishable:
1741 break;
1742
1743 case ImplicitConversionSequence::Worse:
1744 if (SCS2.Deprecated)
1745 Result = ImplicitConversionSequence::Indistinguishable;
1746 break;
1747 }
1748
1749 return Result;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001750}
1751
Douglas Gregor14046502008-10-23 00:40:37 +00001752/// CompareDerivedToBaseConversions - Compares two standard conversion
1753/// sequences to determine whether they can be ranked based on their
Douglas Gregor24a90a52008-11-26 23:31:11 +00001754/// various kinds of derived-to-base conversions (C++
1755/// [over.ics.rank]p4b3). As part of these checks, we also look at
1756/// conversions between Objective-C interface types.
Douglas Gregor14046502008-10-23 00:40:37 +00001757ImplicitConversionSequence::CompareKind
1758Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1759 const StandardConversionSequence& SCS2) {
1760 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1761 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1762 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1763 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1764
1765 // Adjust the types we're converting from via the array-to-pointer
1766 // conversion, if we need to.
1767 if (SCS1.First == ICK_Array_To_Pointer)
1768 FromType1 = Context.getArrayDecayedType(FromType1);
1769 if (SCS2.First == ICK_Array_To_Pointer)
1770 FromType2 = Context.getArrayDecayedType(FromType2);
1771
1772 // Canonicalize all of the types.
1773 FromType1 = Context.getCanonicalType(FromType1);
1774 ToType1 = Context.getCanonicalType(ToType1);
1775 FromType2 = Context.getCanonicalType(FromType2);
1776 ToType2 = Context.getCanonicalType(ToType2);
1777
Douglas Gregor0e343382008-10-29 14:50:44 +00001778 // C++ [over.ics.rank]p4b3:
Douglas Gregor14046502008-10-23 00:40:37 +00001779 //
1780 // If class B is derived directly or indirectly from class A and
1781 // class C is derived directly or indirectly from B,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001782 //
1783 // For Objective-C, we let A, B, and C also be Objective-C
1784 // interfaces.
Douglas Gregor0e343382008-10-29 14:50:44 +00001785
1786 // Compare based on pointer conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001787 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor3f5a00c2008-11-27 01:19:21 +00001788 SCS2.Second == ICK_Pointer_Conversion &&
1789 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1790 FromType1->isPointerType() && FromType2->isPointerType() &&
1791 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregor14046502008-10-23 00:40:37 +00001792 QualType FromPointee1
1793 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1794 QualType ToPointee1
1795 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1796 QualType FromPointee2
1797 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1798 QualType ToPointee2
1799 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregor24a90a52008-11-26 23:31:11 +00001800
1801 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1802 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1803 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1804 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1805
Douglas Gregor0e343382008-10-29 14:50:44 +00001806 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregor14046502008-10-23 00:40:37 +00001807 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1808 if (IsDerivedFrom(ToPointee1, ToPointee2))
1809 return ImplicitConversionSequence::Better;
1810 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1811 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001812
1813 if (ToIface1 && ToIface2) {
1814 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1815 return ImplicitConversionSequence::Better;
1816 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1817 return ImplicitConversionSequence::Worse;
1818 }
Douglas Gregor14046502008-10-23 00:40:37 +00001819 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001820
1821 // -- conversion of B* to A* is better than conversion of C* to A*,
1822 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1823 if (IsDerivedFrom(FromPointee2, FromPointee1))
1824 return ImplicitConversionSequence::Better;
1825 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1826 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001827
1828 if (FromIface1 && FromIface2) {
1829 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1830 return ImplicitConversionSequence::Better;
1831 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1832 return ImplicitConversionSequence::Worse;
1833 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001834 }
Douglas Gregor14046502008-10-23 00:40:37 +00001835 }
1836
Douglas Gregor0e343382008-10-29 14:50:44 +00001837 // Compare based on reference bindings.
1838 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1839 SCS1.Second == ICK_Derived_To_Base) {
1840 // -- binding of an expression of type C to a reference of type
1841 // B& is better than binding an expression of type C to a
1842 // reference of type A&,
1843 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1844 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1845 if (IsDerivedFrom(ToType1, ToType2))
1846 return ImplicitConversionSequence::Better;
1847 else if (IsDerivedFrom(ToType2, ToType1))
1848 return ImplicitConversionSequence::Worse;
1849 }
1850
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001851 // -- binding of an expression of type B to a reference of type
1852 // A& is better than binding an expression of type C to a
1853 // reference of type A&,
Douglas Gregor0e343382008-10-29 14:50:44 +00001854 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1855 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1856 if (IsDerivedFrom(FromType2, FromType1))
1857 return ImplicitConversionSequence::Better;
1858 else if (IsDerivedFrom(FromType1, FromType2))
1859 return ImplicitConversionSequence::Worse;
1860 }
1861 }
1862
1863
1864 // FIXME: conversion of A::* to B::* is better than conversion of
1865 // A::* to C::*,
1866
1867 // FIXME: conversion of B::* to C::* is better than conversion of
1868 // A::* to C::*, and
1869
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001870 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1871 SCS1.Second == ICK_Derived_To_Base) {
1872 // -- conversion of C to B is better than conversion of C to A,
1873 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1874 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1875 if (IsDerivedFrom(ToType1, ToType2))
1876 return ImplicitConversionSequence::Better;
1877 else if (IsDerivedFrom(ToType2, ToType1))
1878 return ImplicitConversionSequence::Worse;
1879 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001880
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001881 // -- conversion of B to A is better than conversion of C to A.
1882 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1883 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1884 if (IsDerivedFrom(FromType2, FromType1))
1885 return ImplicitConversionSequence::Better;
1886 else if (IsDerivedFrom(FromType1, FromType2))
1887 return ImplicitConversionSequence::Worse;
1888 }
1889 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001890
Douglas Gregor14046502008-10-23 00:40:37 +00001891 return ImplicitConversionSequence::Indistinguishable;
1892}
1893
Douglas Gregor81c29152008-10-29 00:13:59 +00001894/// TryCopyInitialization - Try to copy-initialize a value of type
1895/// ToType from the expression From. Return the implicit conversion
1896/// sequence required to pass this argument, which may be a bad
1897/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001898/// a parameter of this type). If @p SuppressUserConversions, then we
Sebastian Redla55834a2009-04-12 17:16:29 +00001899/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1900/// then we treat @p From as an rvalue, even if it is an lvalue.
Douglas Gregor81c29152008-10-29 00:13:59 +00001901ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001902Sema::TryCopyInitialization(Expr *From, QualType ToType,
Sebastian Redla55834a2009-04-12 17:16:29 +00001903 bool SuppressUserConversions, bool ForceRValue) {
Douglas Gregorfcb19192009-02-11 23:02:49 +00001904 if (ToType->isReferenceType()) {
Douglas Gregor81c29152008-10-29 00:13:59 +00001905 ImplicitConversionSequence ICS;
Sebastian Redla55834a2009-04-12 17:16:29 +00001906 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1907 /*AllowExplicit=*/false, ForceRValue);
Douglas Gregor81c29152008-10-29 00:13:59 +00001908 return ICS;
1909 } else {
Sebastian Redla55834a2009-04-12 17:16:29 +00001910 return TryImplicitConversion(From, ToType, SuppressUserConversions,
1911 ForceRValue);
Douglas Gregor81c29152008-10-29 00:13:59 +00001912 }
1913}
1914
Sebastian Redla55834a2009-04-12 17:16:29 +00001915/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1916/// the expression @p From. Returns true (and emits a diagnostic) if there was
1917/// an error, returns false if the initialization succeeded. Elidable should
1918/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1919/// differently in C++0x for this case.
Douglas Gregor81c29152008-10-29 00:13:59 +00001920bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
Sebastian Redla55834a2009-04-12 17:16:29 +00001921 const char* Flavor, bool Elidable) {
Douglas Gregor81c29152008-10-29 00:13:59 +00001922 if (!getLangOptions().CPlusPlus) {
1923 // In C, argument passing is the same as performing an assignment.
1924 QualType FromType = From->getType();
Douglas Gregor144b06c2009-04-29 22:16:16 +00001925
Douglas Gregor81c29152008-10-29 00:13:59 +00001926 AssignConvertType ConvTy =
1927 CheckSingleAssignmentConstraints(ToType, From);
Douglas Gregor144b06c2009-04-29 22:16:16 +00001928 if (ConvTy != Compatible &&
1929 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1930 ConvTy = Compatible;
1931
Douglas Gregor81c29152008-10-29 00:13:59 +00001932 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1933 FromType, From, Flavor);
Douglas Gregor81c29152008-10-29 00:13:59 +00001934 }
Sebastian Redla55834a2009-04-12 17:16:29 +00001935
Chris Lattner271d4c22008-11-24 05:29:24 +00001936 if (ToType->isReferenceType())
1937 return CheckReferenceInit(From, ToType);
1938
Sebastian Redla55834a2009-04-12 17:16:29 +00001939 if (!PerformImplicitConversion(From, ToType, Flavor,
1940 /*AllowExplicit=*/false, Elidable))
Chris Lattner271d4c22008-11-24 05:29:24 +00001941 return false;
Sebastian Redla55834a2009-04-12 17:16:29 +00001942
Chris Lattner271d4c22008-11-24 05:29:24 +00001943 return Diag(From->getSourceRange().getBegin(),
1944 diag::err_typecheck_convert_incompatible)
1945 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor81c29152008-10-29 00:13:59 +00001946}
1947
Douglas Gregor5ed15042008-11-18 23:14:02 +00001948/// TryObjectArgumentInitialization - Try to initialize the object
1949/// parameter of the given member function (@c Method) from the
1950/// expression @p From.
1951ImplicitConversionSequence
1952Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1953 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1954 unsigned MethodQuals = Method->getTypeQualifiers();
1955 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1956
1957 // Set up the conversion sequence as a "bad" conversion, to allow us
1958 // to exit early.
1959 ImplicitConversionSequence ICS;
1960 ICS.Standard.setAsIdentityConversion();
1961 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1962
1963 // We need to have an object of class type.
1964 QualType FromType = From->getType();
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001965 if (const PointerType *PT = FromType->getAsPointerType())
1966 FromType = PT->getPointeeType();
1967
1968 assert(FromType->isRecordType());
Douglas Gregor5ed15042008-11-18 23:14:02 +00001969
1970 // The implicit object parmeter is has the type "reference to cv X",
1971 // where X is the class of which the function is a member
1972 // (C++ [over.match.funcs]p4). However, when finding an implicit
1973 // conversion sequence for the argument, we are not allowed to
1974 // create temporaries or perform user-defined conversions
1975 // (C++ [over.match.funcs]p5). We perform a simplified version of
1976 // reference binding here, that allows class rvalues to bind to
1977 // non-constant references.
1978
1979 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1980 // with the implicit object parameter (C++ [over.match.funcs]p5).
1981 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1982 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1983 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1984 return ICS;
1985
1986 // Check that we have either the same type or a derived type. It
1987 // affects the conversion rank.
1988 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1989 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1990 ICS.Standard.Second = ICK_Identity;
1991 else if (IsDerivedFrom(FromType, ClassType))
1992 ICS.Standard.Second = ICK_Derived_To_Base;
1993 else
1994 return ICS;
1995
1996 // Success. Mark this as a reference binding.
1997 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1998 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1999 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2000 ICS.Standard.ReferenceBinding = true;
2001 ICS.Standard.DirectBinding = true;
Sebastian Redl9bc16ad2009-03-29 22:46:24 +00002002 ICS.Standard.RRefBinding = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002003 return ICS;
2004}
2005
2006/// PerformObjectArgumentInitialization - Perform initialization of
2007/// the implicit object parameter for the given Method with the given
2008/// expression.
2009bool
2010Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00002011 QualType FromRecordType, DestType;
2012 QualType ImplicitParamRecordType =
2013 Method->getThisType(Context)->getAsPointerType()->getPointeeType();
2014
2015 if (const PointerType *PT = From->getType()->getAsPointerType()) {
2016 FromRecordType = PT->getPointeeType();
2017 DestType = Method->getThisType(Context);
2018 } else {
2019 FromRecordType = From->getType();
2020 DestType = ImplicitParamRecordType;
2021 }
2022
Douglas Gregor5ed15042008-11-18 23:14:02 +00002023 ImplicitConversionSequence ICS
2024 = TryObjectArgumentInitialization(From, Method);
2025 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2026 return Diag(From->getSourceRange().getBegin(),
Chris Lattner8ba580c2008-11-19 05:08:23 +00002027 diag::err_implicit_object_parameter_init)
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00002028 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2029
Douglas Gregor5ed15042008-11-18 23:14:02 +00002030 if (ICS.Standard.Second == ICK_Derived_To_Base &&
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00002031 CheckDerivedToBaseConversion(FromRecordType,
2032 ImplicitParamRecordType,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002033 From->getSourceRange().getBegin(),
2034 From->getSourceRange()))
2035 return true;
2036
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00002037 ImpCastExprToType(From, DestType, /*isLvalue=*/true);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002038 return false;
2039}
2040
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002041/// TryContextuallyConvertToBool - Attempt to contextually convert the
2042/// expression From to bool (C++0x [conv]p3).
2043ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2044 return TryImplicitConversion(From, Context.BoolTy, false, true);
2045}
2046
2047/// PerformContextuallyConvertToBool - Perform a contextual conversion
2048/// of the expression From to bool (C++0x [conv]p3).
2049bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2050 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2051 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2052 return false;
2053
2054 return Diag(From->getSourceRange().getBegin(),
2055 diag::err_typecheck_bool_condition)
2056 << From->getType() << From->getSourceRange();
2057}
2058
Douglas Gregord2baafd2008-10-21 16:13:35 +00002059/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002060/// candidate functions, using the given function call arguments. If
2061/// @p SuppressUserConversions, then don't allow user-defined
2062/// conversions via constructors or conversion operators.
Sebastian Redla55834a2009-04-12 17:16:29 +00002063/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2064/// hacky way to implement the overloading rules for elidable copy
2065/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregord2baafd2008-10-21 16:13:35 +00002066void
2067Sema::AddOverloadCandidate(FunctionDecl *Function,
2068 Expr **Args, unsigned NumArgs,
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002069 OverloadCandidateSet& CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00002070 bool SuppressUserConversions,
2071 bool ForceRValue)
Douglas Gregord2baafd2008-10-21 16:13:35 +00002072{
Douglas Gregor4fa58902009-02-26 23:50:07 +00002073 const FunctionProtoType* Proto
2074 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
Douglas Gregord2baafd2008-10-21 16:13:35 +00002075 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregor60714f92008-11-07 22:36:19 +00002076 assert(!isa<CXXConversionDecl>(Function) &&
2077 "Use AddConversionCandidate for conversion functions");
Douglas Gregorb60eb752009-06-25 22:08:12 +00002078 assert(!Function->getDescribedFunctionTemplate() &&
2079 "Use AddTemplateOverloadCandidate for function templates");
2080
Douglas Gregor3257fb52008-12-22 05:46:06 +00002081 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
Sebastian Redlbd261962009-04-16 17:51:27 +00002082 if (!isa<CXXConstructorDecl>(Method)) {
2083 // If we get here, it's because we're calling a member function
2084 // that is named without a member access expression (e.g.,
2085 // "this->f") that was either written explicitly or created
2086 // implicitly. This can happen with a qualified call to a member
2087 // function, e.g., X::f(). We use a NULL object as the implied
2088 // object argument (C++ [over.call.func]p3).
2089 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2090 SuppressUserConversions, ForceRValue);
2091 return;
2092 }
2093 // We treat a constructor like a non-member function, since its object
2094 // argument doesn't participate in overload resolution.
Douglas Gregor3257fb52008-12-22 05:46:06 +00002095 }
2096
2097
Douglas Gregord2baafd2008-10-21 16:13:35 +00002098 // Add this candidate
2099 CandidateSet.push_back(OverloadCandidate());
2100 OverloadCandidate& Candidate = CandidateSet.back();
2101 Candidate.Function = Function;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002102 Candidate.Viable = true;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002103 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002104 Candidate.IgnoreObjectArgument = false;
Douglas Gregord2baafd2008-10-21 16:13:35 +00002105
2106 unsigned NumArgsInProto = Proto->getNumArgs();
2107
2108 // (C++ 13.3.2p2): A candidate function having fewer than m
2109 // parameters is viable only if it has an ellipsis in its parameter
2110 // list (8.3.5).
2111 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2112 Candidate.Viable = false;
2113 return;
2114 }
2115
2116 // (C++ 13.3.2p2): A candidate function having more than m parameters
2117 // is viable only if the (m+1)st parameter has a default argument
2118 // (8.3.6). For the purposes of overload resolution, the
2119 // parameter list is truncated on the right, so that there are
2120 // exactly m parameters.
2121 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2122 if (NumArgs < MinRequiredArgs) {
2123 // Not enough arguments.
2124 Candidate.Viable = false;
2125 return;
2126 }
2127
2128 // Determine the implicit conversion sequences for each of the
2129 // arguments.
Douglas Gregord2baafd2008-10-21 16:13:35 +00002130 Candidate.Conversions.resize(NumArgs);
2131 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2132 if (ArgIdx < NumArgsInProto) {
2133 // (C++ 13.3.2p3): for F to be a viable function, there shall
2134 // exist for each argument an implicit conversion sequence
2135 // (13.3.3.1) that converts that argument to the corresponding
2136 // parameter of F.
2137 QualType ParamType = Proto->getArgType(ArgIdx);
2138 Candidate.Conversions[ArgIdx]
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002139 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redla55834a2009-04-12 17:16:29 +00002140 SuppressUserConversions, ForceRValue);
Douglas Gregord2baafd2008-10-21 16:13:35 +00002141 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00002142 == ImplicitConversionSequence::BadConversion) {
Douglas Gregord2baafd2008-10-21 16:13:35 +00002143 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002144 break;
2145 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00002146 } else {
2147 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2148 // argument for which there is no corresponding parameter is
2149 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2150 Candidate.Conversions[ArgIdx].ConversionKind
2151 = ImplicitConversionSequence::EllipsisConversion;
2152 }
2153 }
2154}
2155
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002156/// \brief Add all of the function declarations in the given function set to
2157/// the overload canddiate set.
2158void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2159 Expr **Args, unsigned NumArgs,
2160 OverloadCandidateSet& CandidateSet,
2161 bool SuppressUserConversions) {
2162 for (FunctionSet::const_iterator F = Functions.begin(),
2163 FEnd = Functions.end();
Douglas Gregor993a0602009-06-27 21:05:07 +00002164 F != FEnd; ++F) {
2165 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2166 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2167 SuppressUserConversions);
2168 else
Douglas Gregorc9a03b72009-06-30 23:57:56 +00002169 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2170 /*FIXME: explicit args */false, 0, 0,
2171 Args, NumArgs, CandidateSet,
Douglas Gregor993a0602009-06-27 21:05:07 +00002172 SuppressUserConversions);
2173 }
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002174}
2175
Douglas Gregor5ed15042008-11-18 23:14:02 +00002176/// AddMethodCandidate - Adds the given C++ member function to the set
2177/// of candidate functions, using the given function call arguments
2178/// and the object argument (@c Object). For example, in a call
2179/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2180/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2181/// allow user-defined conversions via constructors or conversion
Sebastian Redla55834a2009-04-12 17:16:29 +00002182/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2183/// a slightly hacky way to implement the overloading rules for elidable copy
2184/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregor5ed15042008-11-18 23:14:02 +00002185void
2186Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2187 Expr **Args, unsigned NumArgs,
2188 OverloadCandidateSet& CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00002189 bool SuppressUserConversions, bool ForceRValue)
Douglas Gregor5ed15042008-11-18 23:14:02 +00002190{
Douglas Gregor4fa58902009-02-26 23:50:07 +00002191 const FunctionProtoType* Proto
2192 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
Douglas Gregor5ed15042008-11-18 23:14:02 +00002193 assert(Proto && "Methods without a prototype cannot be overloaded");
Sebastian Redlbd261962009-04-16 17:51:27 +00002194 assert(!isa<CXXConversionDecl>(Method) &&
Douglas Gregor5ed15042008-11-18 23:14:02 +00002195 "Use AddConversionCandidate for conversion functions");
Sebastian Redlbd261962009-04-16 17:51:27 +00002196 assert(!isa<CXXConstructorDecl>(Method) &&
2197 "Use AddOverloadCandidate for constructors");
Douglas Gregor5ed15042008-11-18 23:14:02 +00002198
2199 // Add this candidate
2200 CandidateSet.push_back(OverloadCandidate());
2201 OverloadCandidate& Candidate = CandidateSet.back();
2202 Candidate.Function = Method;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002203 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002204 Candidate.IgnoreObjectArgument = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002205
2206 unsigned NumArgsInProto = Proto->getNumArgs();
2207
2208 // (C++ 13.3.2p2): A candidate function having fewer than m
2209 // parameters is viable only if it has an ellipsis in its parameter
2210 // list (8.3.5).
2211 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2212 Candidate.Viable = false;
2213 return;
2214 }
2215
2216 // (C++ 13.3.2p2): A candidate function having more than m parameters
2217 // is viable only if the (m+1)st parameter has a default argument
2218 // (8.3.6). For the purposes of overload resolution, the
2219 // parameter list is truncated on the right, so that there are
2220 // exactly m parameters.
2221 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2222 if (NumArgs < MinRequiredArgs) {
2223 // Not enough arguments.
2224 Candidate.Viable = false;
2225 return;
2226 }
2227
2228 Candidate.Viable = true;
2229 Candidate.Conversions.resize(NumArgs + 1);
2230
Douglas Gregor3257fb52008-12-22 05:46:06 +00002231 if (Method->isStatic() || !Object)
2232 // The implicit object argument is ignored.
2233 Candidate.IgnoreObjectArgument = true;
2234 else {
2235 // Determine the implicit conversion sequence for the object
2236 // parameter.
2237 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2238 if (Candidate.Conversions[0].ConversionKind
2239 == ImplicitConversionSequence::BadConversion) {
2240 Candidate.Viable = false;
2241 return;
2242 }
Douglas Gregor5ed15042008-11-18 23:14:02 +00002243 }
2244
2245 // Determine the implicit conversion sequences for each of the
2246 // arguments.
2247 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2248 if (ArgIdx < NumArgsInProto) {
2249 // (C++ 13.3.2p3): for F to be a viable function, there shall
2250 // exist for each argument an implicit conversion sequence
2251 // (13.3.3.1) that converts that argument to the corresponding
2252 // parameter of F.
2253 QualType ParamType = Proto->getArgType(ArgIdx);
2254 Candidate.Conversions[ArgIdx + 1]
2255 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redla55834a2009-04-12 17:16:29 +00002256 SuppressUserConversions, ForceRValue);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002257 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2258 == ImplicitConversionSequence::BadConversion) {
2259 Candidate.Viable = false;
2260 break;
2261 }
2262 } else {
2263 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2264 // argument for which there is no corresponding parameter is
2265 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2266 Candidate.Conversions[ArgIdx + 1].ConversionKind
2267 = ImplicitConversionSequence::EllipsisConversion;
2268 }
2269 }
2270}
2271
Douglas Gregorb60eb752009-06-25 22:08:12 +00002272/// \brief Add a C++ function template as a candidate in the candidate set,
2273/// using template argument deduction to produce an appropriate function
2274/// template specialization.
2275void
2276Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
Douglas Gregorc9a03b72009-06-30 23:57:56 +00002277 bool HasExplicitTemplateArgs,
2278 const TemplateArgument *ExplicitTemplateArgs,
2279 unsigned NumExplicitTemplateArgs,
Douglas Gregorb60eb752009-06-25 22:08:12 +00002280 Expr **Args, unsigned NumArgs,
2281 OverloadCandidateSet& CandidateSet,
2282 bool SuppressUserConversions,
2283 bool ForceRValue) {
2284 // C++ [over.match.funcs]p7:
2285 // In each case where a candidate is a function template, candidate
2286 // function template specializations are generated using template argument
2287 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
2288 // candidate functions in the usual way.113) A given name can refer to one
2289 // or more function templates and also to a set of overloaded non-template
2290 // functions. In such a case, the candidate functions generated from each
2291 // function template are combined with the set of non-template candidate
2292 // functions.
2293 TemplateDeductionInfo Info(Context);
2294 FunctionDecl *Specialization = 0;
2295 if (TemplateDeductionResult Result
Douglas Gregorc9a03b72009-06-30 23:57:56 +00002296 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2297 ExplicitTemplateArgs, NumExplicitTemplateArgs,
2298 Args, NumArgs, Specialization, Info)) {
Douglas Gregorb60eb752009-06-25 22:08:12 +00002299 // FIXME: Record what happened with template argument deduction, so
2300 // that we can give the user a beautiful diagnostic.
2301 (void)Result;
2302 return;
2303 }
2304
2305 // Add the function template specialization produced by template argument
2306 // deduction as a candidate.
2307 assert(Specialization && "Missing function template specialization?");
2308 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2309 SuppressUserConversions, ForceRValue);
2310}
2311
Douglas Gregor60714f92008-11-07 22:36:19 +00002312/// AddConversionCandidate - Add a C++ conversion function as a
2313/// candidate in the candidate set (C++ [over.match.conv],
2314/// C++ [over.match.copy]). From is the expression we're converting from,
2315/// and ToType is the type that we're eventually trying to convert to
2316/// (which may or may not be the same type as the type that the
2317/// conversion function produces).
2318void
2319Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2320 Expr *From, QualType ToType,
2321 OverloadCandidateSet& CandidateSet) {
2322 // Add this candidate
2323 CandidateSet.push_back(OverloadCandidate());
2324 OverloadCandidate& Candidate = CandidateSet.back();
2325 Candidate.Function = Conversion;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002326 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002327 Candidate.IgnoreObjectArgument = false;
Douglas Gregor60714f92008-11-07 22:36:19 +00002328 Candidate.FinalConversion.setAsIdentityConversion();
2329 Candidate.FinalConversion.FromTypePtr
2330 = Conversion->getConversionType().getAsOpaquePtr();
2331 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2332
Douglas Gregor5ed15042008-11-18 23:14:02 +00002333 // Determine the implicit conversion sequence for the implicit
2334 // object parameter.
Douglas Gregor60714f92008-11-07 22:36:19 +00002335 Candidate.Viable = true;
2336 Candidate.Conversions.resize(1);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002337 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregor60714f92008-11-07 22:36:19 +00002338
Douglas Gregor60714f92008-11-07 22:36:19 +00002339 if (Candidate.Conversions[0].ConversionKind
2340 == ImplicitConversionSequence::BadConversion) {
2341 Candidate.Viable = false;
2342 return;
2343 }
2344
2345 // To determine what the conversion from the result of calling the
2346 // conversion function to the type we're eventually trying to
2347 // convert to (ToType), we need to synthesize a call to the
2348 // conversion function and attempt copy initialization from it. This
2349 // makes sure that we get the right semantics with respect to
2350 // lvalues/rvalues and the type. Fortunately, we can allocate this
2351 // call on the stack and we don't need its arguments to be
2352 // well-formed.
2353 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2354 SourceLocation());
2355 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregor70d26122008-11-12 17:17:38 +00002356 &ConversionRef, false);
Ted Kremenek362abcd2009-02-09 20:51:47 +00002357
2358 // Note that it is safe to allocate CallExpr on the stack here because
2359 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2360 // allocator).
2361 CallExpr Call(Context, &ConversionFn, 0, 0,
Douglas Gregor60714f92008-11-07 22:36:19 +00002362 Conversion->getConversionType().getNonReferenceType(),
2363 SourceLocation());
2364 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2365 switch (ICS.ConversionKind) {
2366 case ImplicitConversionSequence::StandardConversion:
2367 Candidate.FinalConversion = ICS.Standard;
2368 break;
2369
2370 case ImplicitConversionSequence::BadConversion:
2371 Candidate.Viable = false;
2372 break;
2373
2374 default:
2375 assert(false &&
2376 "Can only end up with a standard conversion sequence or failure");
2377 }
2378}
2379
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002380/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2381/// converts the given @c Object to a function pointer via the
2382/// conversion function @c Conversion, and then attempts to call it
2383/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2384/// the type of function that we'll eventually be calling.
2385void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
Douglas Gregor4fa58902009-02-26 23:50:07 +00002386 const FunctionProtoType *Proto,
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002387 Expr *Object, Expr **Args, unsigned NumArgs,
2388 OverloadCandidateSet& CandidateSet) {
2389 CandidateSet.push_back(OverloadCandidate());
2390 OverloadCandidate& Candidate = CandidateSet.back();
2391 Candidate.Function = 0;
2392 Candidate.Surrogate = Conversion;
2393 Candidate.Viable = true;
2394 Candidate.IsSurrogate = true;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002395 Candidate.IgnoreObjectArgument = false;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002396 Candidate.Conversions.resize(NumArgs + 1);
2397
2398 // Determine the implicit conversion sequence for the implicit
2399 // object parameter.
2400 ImplicitConversionSequence ObjectInit
2401 = TryObjectArgumentInitialization(Object, Conversion);
2402 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2403 Candidate.Viable = false;
2404 return;
2405 }
2406
2407 // The first conversion is actually a user-defined conversion whose
2408 // first conversion is ObjectInit's standard conversion (which is
2409 // effectively a reference binding). Record it as such.
2410 Candidate.Conversions[0].ConversionKind
2411 = ImplicitConversionSequence::UserDefinedConversion;
2412 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2413 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2414 Candidate.Conversions[0].UserDefined.After
2415 = Candidate.Conversions[0].UserDefined.Before;
2416 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2417
2418 // Find the
2419 unsigned NumArgsInProto = Proto->getNumArgs();
2420
2421 // (C++ 13.3.2p2): A candidate function having fewer than m
2422 // parameters is viable only if it has an ellipsis in its parameter
2423 // list (8.3.5).
2424 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2425 Candidate.Viable = false;
2426 return;
2427 }
2428
2429 // Function types don't have any default arguments, so just check if
2430 // we have enough arguments.
2431 if (NumArgs < NumArgsInProto) {
2432 // Not enough arguments.
2433 Candidate.Viable = false;
2434 return;
2435 }
2436
2437 // Determine the implicit conversion sequences for each of the
2438 // arguments.
2439 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2440 if (ArgIdx < NumArgsInProto) {
2441 // (C++ 13.3.2p3): for F to be a viable function, there shall
2442 // exist for each argument an implicit conversion sequence
2443 // (13.3.3.1) that converts that argument to the corresponding
2444 // parameter of F.
2445 QualType ParamType = Proto->getArgType(ArgIdx);
2446 Candidate.Conversions[ArgIdx + 1]
2447 = TryCopyInitialization(Args[ArgIdx], ParamType,
2448 /*SuppressUserConversions=*/false);
2449 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2450 == ImplicitConversionSequence::BadConversion) {
2451 Candidate.Viable = false;
2452 break;
2453 }
2454 } else {
2455 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2456 // argument for which there is no corresponding parameter is
2457 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2458 Candidate.Conversions[ArgIdx + 1].ConversionKind
2459 = ImplicitConversionSequence::EllipsisConversion;
2460 }
2461 }
2462}
2463
Mike Stumpe127ae32009-05-16 07:39:55 +00002464// FIXME: This will eventually be removed, once we've migrated all of the
2465// operator overloading logic over to the scheme used by binary operators, which
2466// works for template instantiation.
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002467void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
Douglas Gregor48a87322009-02-04 16:44:47 +00002468 SourceLocation OpLoc,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002469 Expr **Args, unsigned NumArgs,
Douglas Gregor48a87322009-02-04 16:44:47 +00002470 OverloadCandidateSet& CandidateSet,
2471 SourceRange OpRange) {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002472
2473 FunctionSet Functions;
2474
2475 QualType T1 = Args[0]->getType();
2476 QualType T2;
2477 if (NumArgs > 1)
2478 T2 = Args[1]->getType();
2479
2480 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
Douglas Gregorde72f3e2009-05-19 00:01:19 +00002481 if (S)
2482 LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002483 ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2484 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2485 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2486 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2487}
2488
2489/// \brief Add overload candidates for overloaded operators that are
2490/// member functions.
2491///
2492/// Add the overloaded operator candidates that are member functions
2493/// for the operator Op that was used in an operator expression such
2494/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2495/// CandidateSet will store the added overload candidates. (C++
2496/// [over.match.oper]).
2497void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2498 SourceLocation OpLoc,
2499 Expr **Args, unsigned NumArgs,
2500 OverloadCandidateSet& CandidateSet,
2501 SourceRange OpRange) {
Douglas Gregor5ed15042008-11-18 23:14:02 +00002502 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2503
2504 // C++ [over.match.oper]p3:
2505 // For a unary operator @ with an operand of a type whose
2506 // cv-unqualified version is T1, and for a binary operator @ with
2507 // a left operand of a type whose cv-unqualified version is T1 and
2508 // a right operand of a type whose cv-unqualified version is T2,
2509 // three sets of candidate functions, designated member
2510 // candidates, non-member candidates and built-in candidates, are
2511 // constructed as follows:
2512 QualType T1 = Args[0]->getType();
2513 QualType T2;
2514 if (NumArgs > 1)
2515 T2 = Args[1]->getType();
2516
2517 // -- If T1 is a class type, the set of member candidates is the
2518 // result of the qualified lookup of T1::operator@
2519 // (13.3.1.1.1); otherwise, the set of member candidates is
2520 // empty.
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002521 // FIXME: Lookup in base classes, too!
Douglas Gregor5ed15042008-11-18 23:14:02 +00002522 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregorddfd9d52008-12-23 00:26:44 +00002523 DeclContext::lookup_const_iterator Oper, OperEnd;
Argiris Kirtzidisab6e38a2009-06-30 02:36:12 +00002524 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00002525 Oper != OperEnd; ++Oper)
2526 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2527 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002528 /*SuppressUserConversions=*/false);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002529 }
Douglas Gregor5ed15042008-11-18 23:14:02 +00002530}
2531
Douglas Gregor70d26122008-11-12 17:17:38 +00002532/// AddBuiltinCandidate - Add a candidate for a built-in
2533/// operator. ResultTy and ParamTys are the result and parameter types
2534/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregorab141112009-01-13 00:52:54 +00002535/// arguments being passed to the candidate. IsAssignmentOperator
2536/// should be true when this built-in candidate is an assignment
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002537/// operator. NumContextualBoolArguments is the number of arguments
2538/// (at the beginning of the argument list) that will be contextually
2539/// converted to bool.
Douglas Gregor70d26122008-11-12 17:17:38 +00002540void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2541 Expr **Args, unsigned NumArgs,
Douglas Gregorab141112009-01-13 00:52:54 +00002542 OverloadCandidateSet& CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002543 bool IsAssignmentOperator,
2544 unsigned NumContextualBoolArguments) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002545 // Add this candidate
2546 CandidateSet.push_back(OverloadCandidate());
2547 OverloadCandidate& Candidate = CandidateSet.back();
2548 Candidate.Function = 0;
Douglas Gregor6b5e34f2008-12-12 02:00:36 +00002549 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002550 Candidate.IgnoreObjectArgument = false;
Douglas Gregor70d26122008-11-12 17:17:38 +00002551 Candidate.BuiltinTypes.ResultTy = ResultTy;
2552 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2553 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2554
2555 // Determine the implicit conversion sequences for each of the
2556 // arguments.
2557 Candidate.Viable = true;
2558 Candidate.Conversions.resize(NumArgs);
2559 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregorab141112009-01-13 00:52:54 +00002560 // C++ [over.match.oper]p4:
2561 // For the built-in assignment operators, conversions of the
2562 // left operand are restricted as follows:
2563 // -- no temporaries are introduced to hold the left operand, and
2564 // -- no user-defined conversions are applied to the left
2565 // operand to achieve a type match with the left-most
2566 // parameter of a built-in candidate.
2567 //
2568 // We block these conversions by turning off user-defined
2569 // conversions, since that is the only way that initialization of
2570 // a reference to a non-class type can occur from something that
2571 // is not of the same type.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002572 if (ArgIdx < NumContextualBoolArguments) {
2573 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2574 "Contextual conversion to bool requires bool type");
2575 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2576 } else {
2577 Candidate.Conversions[ArgIdx]
2578 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2579 ArgIdx == 0 && IsAssignmentOperator);
2580 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002581 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00002582 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002583 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002584 break;
2585 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002586 }
2587}
2588
2589/// BuiltinCandidateTypeSet - A set of types that will be used for the
2590/// candidate operator functions for built-in operators (C++
2591/// [over.built]). The types are separated into pointer types and
2592/// enumeration types.
2593class BuiltinCandidateTypeSet {
2594 /// TypeSet - A set of types.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002595 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
Douglas Gregor70d26122008-11-12 17:17:38 +00002596
2597 /// PointerTypes - The set of pointer types that will be used in the
2598 /// built-in candidates.
2599 TypeSet PointerTypes;
2600
Sebastian Redl674d1b72009-04-19 21:53:20 +00002601 /// MemberPointerTypes - The set of member pointer types that will be
2602 /// used in the built-in candidates.
2603 TypeSet MemberPointerTypes;
2604
Douglas Gregor70d26122008-11-12 17:17:38 +00002605 /// EnumerationTypes - The set of enumeration types that will be
2606 /// used in the built-in candidates.
2607 TypeSet EnumerationTypes;
2608
2609 /// Context - The AST context in which we will build the type sets.
2610 ASTContext &Context;
2611
Sebastian Redl674d1b72009-04-19 21:53:20 +00002612 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2613 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
Douglas Gregor70d26122008-11-12 17:17:38 +00002614
2615public:
2616 /// iterator - Iterates through the types that are part of the set.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002617 typedef TypeSet::iterator iterator;
Douglas Gregor70d26122008-11-12 17:17:38 +00002618
2619 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2620
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002621 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2622 bool AllowExplicitConversions);
Douglas Gregor70d26122008-11-12 17:17:38 +00002623
2624 /// pointer_begin - First pointer type found;
2625 iterator pointer_begin() { return PointerTypes.begin(); }
2626
Sebastian Redl674d1b72009-04-19 21:53:20 +00002627 /// pointer_end - Past the last pointer type found;
Douglas Gregor70d26122008-11-12 17:17:38 +00002628 iterator pointer_end() { return PointerTypes.end(); }
2629
Sebastian Redl674d1b72009-04-19 21:53:20 +00002630 /// member_pointer_begin - First member pointer type found;
2631 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2632
2633 /// member_pointer_end - Past the last member pointer type found;
2634 iterator member_pointer_end() { return MemberPointerTypes.end(); }
2635
Douglas Gregor70d26122008-11-12 17:17:38 +00002636 /// enumeration_begin - First enumeration type found;
2637 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2638
Sebastian Redl674d1b72009-04-19 21:53:20 +00002639 /// enumeration_end - Past the last enumeration type found;
Douglas Gregor70d26122008-11-12 17:17:38 +00002640 iterator enumeration_end() { return EnumerationTypes.end(); }
2641};
2642
Sebastian Redl674d1b72009-04-19 21:53:20 +00002643/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
Douglas Gregor70d26122008-11-12 17:17:38 +00002644/// the set of pointer types along with any more-qualified variants of
2645/// that type. For example, if @p Ty is "int const *", this routine
2646/// will add "int const *", "int const volatile *", "int const
2647/// restrict *", and "int const volatile restrict *" to the set of
2648/// pointer types. Returns true if the add of @p Ty itself succeeded,
2649/// false otherwise.
Sebastian Redl674d1b72009-04-19 21:53:20 +00002650bool
2651BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002652 // Insert this type.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002653 if (!PointerTypes.insert(Ty))
Douglas Gregor70d26122008-11-12 17:17:38 +00002654 return false;
2655
2656 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2657 QualType PointeeTy = PointerTy->getPointeeType();
2658 // FIXME: Optimize this so that we don't keep trying to add the same types.
2659
Mike Stumpe127ae32009-05-16 07:39:55 +00002660 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2661 // pointer conversions that don't cast away constness?
Douglas Gregor70d26122008-11-12 17:17:38 +00002662 if (!PointeeTy.isConstQualified())
Sebastian Redl674d1b72009-04-19 21:53:20 +00002663 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregor70d26122008-11-12 17:17:38 +00002664 (Context.getPointerType(PointeeTy.withConst()));
2665 if (!PointeeTy.isVolatileQualified())
Sebastian Redl674d1b72009-04-19 21:53:20 +00002666 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregor70d26122008-11-12 17:17:38 +00002667 (Context.getPointerType(PointeeTy.withVolatile()));
2668 if (!PointeeTy.isRestrictQualified())
Sebastian Redl674d1b72009-04-19 21:53:20 +00002669 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregor70d26122008-11-12 17:17:38 +00002670 (Context.getPointerType(PointeeTy.withRestrict()));
2671 }
2672
2673 return true;
2674}
2675
Sebastian Redl674d1b72009-04-19 21:53:20 +00002676/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2677/// to the set of pointer types along with any more-qualified variants of
2678/// that type. For example, if @p Ty is "int const *", this routine
2679/// will add "int const *", "int const volatile *", "int const
2680/// restrict *", and "int const volatile restrict *" to the set of
2681/// pointer types. Returns true if the add of @p Ty itself succeeded,
2682/// false otherwise.
2683bool
2684BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2685 QualType Ty) {
2686 // Insert this type.
2687 if (!MemberPointerTypes.insert(Ty))
2688 return false;
2689
2690 if (const MemberPointerType *PointerTy = Ty->getAsMemberPointerType()) {
2691 QualType PointeeTy = PointerTy->getPointeeType();
2692 const Type *ClassTy = PointerTy->getClass();
2693 // FIXME: Optimize this so that we don't keep trying to add the same types.
2694
2695 if (!PointeeTy.isConstQualified())
2696 AddMemberPointerWithMoreQualifiedTypeVariants
2697 (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2698 if (!PointeeTy.isVolatileQualified())
2699 AddMemberPointerWithMoreQualifiedTypeVariants
2700 (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2701 if (!PointeeTy.isRestrictQualified())
2702 AddMemberPointerWithMoreQualifiedTypeVariants
2703 (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2704 }
2705
2706 return true;
2707}
2708
Douglas Gregor70d26122008-11-12 17:17:38 +00002709/// AddTypesConvertedFrom - Add each of the types to which the type @p
2710/// Ty can be implicit converted to the given set of @p Types. We're
Sebastian Redl674d1b72009-04-19 21:53:20 +00002711/// primarily interested in pointer types and enumeration types. We also
2712/// take member pointer types, for the conditional operator.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002713/// AllowUserConversions is true if we should look at the conversion
2714/// functions of a class type, and AllowExplicitConversions if we
2715/// should also include the explicit conversion functions of a class
2716/// type.
2717void
2718BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2719 bool AllowUserConversions,
2720 bool AllowExplicitConversions) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002721 // Only deal with canonical types.
2722 Ty = Context.getCanonicalType(Ty);
2723
2724 // Look through reference types; they aren't part of the type of an
2725 // expression for the purposes of conversions.
2726 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2727 Ty = RefTy->getPointeeType();
2728
2729 // We don't care about qualifiers on the type.
2730 Ty = Ty.getUnqualifiedType();
2731
2732 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2733 QualType PointeeTy = PointerTy->getPointeeType();
2734
2735 // Insert our type, and its more-qualified variants, into the set
2736 // of types.
Sebastian Redl674d1b72009-04-19 21:53:20 +00002737 if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
Douglas Gregor70d26122008-11-12 17:17:38 +00002738 return;
2739
2740 // Add 'cv void*' to our set of types.
2741 if (!Ty->isVoidType()) {
2742 QualType QualVoid
2743 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
Sebastian Redl674d1b72009-04-19 21:53:20 +00002744 AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
Douglas Gregor70d26122008-11-12 17:17:38 +00002745 }
2746
2747 // If this is a pointer to a class type, add pointers to its bases
2748 // (with the same level of cv-qualification as the original
2749 // derived class, of course).
2750 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2751 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2752 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2753 Base != ClassDecl->bases_end(); ++Base) {
2754 QualType BaseTy = Context.getCanonicalType(Base->getType());
2755 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2756
2757 // Add the pointer type, recursively, so that we get all of
2758 // the indirect base classes, too.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002759 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregor70d26122008-11-12 17:17:38 +00002760 }
2761 }
Sebastian Redl674d1b72009-04-19 21:53:20 +00002762 } else if (Ty->isMemberPointerType()) {
2763 // Member pointers are far easier, since the pointee can't be converted.
2764 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2765 return;
Douglas Gregor70d26122008-11-12 17:17:38 +00002766 } else if (Ty->isEnumeralType()) {
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002767 EnumerationTypes.insert(Ty);
Douglas Gregor70d26122008-11-12 17:17:38 +00002768 } else if (AllowUserConversions) {
2769 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2770 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2771 // FIXME: Visit conversion functions in the base classes, too.
2772 OverloadedFunctionDecl *Conversions
2773 = ClassDecl->getConversionFunctions();
2774 for (OverloadedFunctionDecl::function_iterator Func
2775 = Conversions->function_begin();
2776 Func != Conversions->function_end(); ++Func) {
2777 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002778 if (AllowExplicitConversions || !Conv->isExplicit())
2779 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregor70d26122008-11-12 17:17:38 +00002780 }
2781 }
2782 }
2783}
2784
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002785/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2786/// operator overloads to the candidate set (C++ [over.built]), based
2787/// on the operator @p Op and the arguments given. For example, if the
2788/// operator is a binary '+', this routine might add "int
2789/// operator+(int, int)" to cover integer addition.
Douglas Gregor70d26122008-11-12 17:17:38 +00002790void
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002791Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2792 Expr **Args, unsigned NumArgs,
2793 OverloadCandidateSet& CandidateSet) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002794 // The set of "promoted arithmetic types", which are the arithmetic
2795 // types are that preserved by promotion (C++ [over.built]p2). Note
2796 // that the first few of these types are the promoted integral
2797 // types; these types need to be first.
2798 // FIXME: What about complex?
2799 const unsigned FirstIntegralType = 0;
2800 const unsigned LastIntegralType = 13;
2801 const unsigned FirstPromotedIntegralType = 7,
2802 LastPromotedIntegralType = 13;
2803 const unsigned FirstPromotedArithmeticType = 7,
2804 LastPromotedArithmeticType = 16;
2805 const unsigned NumArithmeticTypes = 16;
2806 QualType ArithmeticTypes[NumArithmeticTypes] = {
2807 Context.BoolTy, Context.CharTy, Context.WCharTy,
2808 Context.SignedCharTy, Context.ShortTy,
2809 Context.UnsignedCharTy, Context.UnsignedShortTy,
2810 Context.IntTy, Context.LongTy, Context.LongLongTy,
2811 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2812 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2813 };
2814
2815 // Find all of the types that the arguments can convert to, but only
2816 // if the operator we're looking at has built-in operator candidates
2817 // that make use of these types.
2818 BuiltinCandidateTypeSet CandidateTypes(Context);
2819 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2820 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002821 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregor70d26122008-11-12 17:17:38 +00002822 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002823 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
Sebastian Redlbd261962009-04-16 17:51:27 +00002824 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002825 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002826 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2827 true,
2828 (Op == OO_Exclaim ||
2829 Op == OO_AmpAmp ||
2830 Op == OO_PipePipe));
Douglas Gregor70d26122008-11-12 17:17:38 +00002831 }
2832
2833 bool isComparison = false;
2834 switch (Op) {
2835 case OO_None:
2836 case NUM_OVERLOADED_OPERATORS:
2837 assert(false && "Expected an overloaded operator");
2838 break;
2839
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002840 case OO_Star: // '*' is either unary or binary
2841 if (NumArgs == 1)
2842 goto UnaryStar;
2843 else
2844 goto BinaryStar;
2845 break;
2846
2847 case OO_Plus: // '+' is either unary or binary
2848 if (NumArgs == 1)
2849 goto UnaryPlus;
2850 else
2851 goto BinaryPlus;
2852 break;
2853
2854 case OO_Minus: // '-' is either unary or binary
2855 if (NumArgs == 1)
2856 goto UnaryMinus;
2857 else
2858 goto BinaryMinus;
2859 break;
2860
2861 case OO_Amp: // '&' is either unary or binary
2862 if (NumArgs == 1)
2863 goto UnaryAmp;
2864 else
2865 goto BinaryAmp;
2866
2867 case OO_PlusPlus:
2868 case OO_MinusMinus:
2869 // C++ [over.built]p3:
2870 //
2871 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2872 // is either volatile or empty, there exist candidate operator
2873 // functions of the form
2874 //
2875 // VQ T& operator++(VQ T&);
2876 // T operator++(VQ T&, int);
2877 //
2878 // C++ [over.built]p4:
2879 //
2880 // For every pair (T, VQ), where T is an arithmetic type other
2881 // than bool, and VQ is either volatile or empty, there exist
2882 // candidate operator functions of the form
2883 //
2884 // VQ T& operator--(VQ T&);
2885 // T operator--(VQ T&, int);
2886 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2887 Arith < NumArithmeticTypes; ++Arith) {
2888 QualType ArithTy = ArithmeticTypes[Arith];
2889 QualType ParamTypes[2]
Sebastian Redlce6fff02009-03-16 23:22:08 +00002890 = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002891
2892 // Non-volatile version.
2893 if (NumArgs == 1)
2894 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2895 else
2896 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2897
2898 // Volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00002899 ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002900 if (NumArgs == 1)
2901 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2902 else
2903 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2904 }
2905
2906 // C++ [over.built]p5:
2907 //
2908 // For every pair (T, VQ), where T is a cv-qualified or
2909 // cv-unqualified object type, and VQ is either volatile or
2910 // empty, there exist candidate operator functions of the form
2911 //
2912 // T*VQ& operator++(T*VQ&);
2913 // T*VQ& operator--(T*VQ&);
2914 // T* operator++(T*VQ&, int);
2915 // T* operator--(T*VQ&, int);
2916 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2917 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2918 // Skip pointer types that aren't pointers to object types.
Douglas Gregor26ea1222009-03-24 20:32:41 +00002919 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002920 continue;
2921
2922 QualType ParamTypes[2] = {
Sebastian Redlce6fff02009-03-16 23:22:08 +00002923 Context.getLValueReferenceType(*Ptr), Context.IntTy
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002924 };
2925
2926 // Without volatile
2927 if (NumArgs == 1)
2928 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2929 else
2930 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2931
2932 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2933 // With volatile
Sebastian Redlce6fff02009-03-16 23:22:08 +00002934 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002935 if (NumArgs == 1)
2936 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2937 else
2938 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2939 }
2940 }
2941 break;
2942
2943 UnaryStar:
2944 // C++ [over.built]p6:
2945 // For every cv-qualified or cv-unqualified object type T, there
2946 // exist candidate operator functions of the form
2947 //
2948 // T& operator*(T*);
2949 //
2950 // C++ [over.built]p7:
2951 // For every function type T, there exist candidate operator
2952 // functions of the form
2953 // T& operator*(T*);
2954 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2955 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2956 QualType ParamTy = *Ptr;
2957 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00002958 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002959 &ParamTy, Args, 1, CandidateSet);
2960 }
2961 break;
2962
2963 UnaryPlus:
2964 // C++ [over.built]p8:
2965 // For every type T, there exist candidate operator functions of
2966 // the form
2967 //
2968 // T* operator+(T*);
2969 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2970 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2971 QualType ParamTy = *Ptr;
2972 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2973 }
2974
2975 // Fall through
2976
2977 UnaryMinus:
2978 // C++ [over.built]p9:
2979 // For every promoted arithmetic type T, there exist candidate
2980 // operator functions of the form
2981 //
2982 // T operator+(T);
2983 // T operator-(T);
2984 for (unsigned Arith = FirstPromotedArithmeticType;
2985 Arith < LastPromotedArithmeticType; ++Arith) {
2986 QualType ArithTy = ArithmeticTypes[Arith];
2987 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2988 }
2989 break;
2990
2991 case OO_Tilde:
2992 // C++ [over.built]p10:
2993 // For every promoted integral type T, there exist candidate
2994 // operator functions of the form
2995 //
2996 // T operator~(T);
2997 for (unsigned Int = FirstPromotedIntegralType;
2998 Int < LastPromotedIntegralType; ++Int) {
2999 QualType IntTy = ArithmeticTypes[Int];
3000 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3001 }
3002 break;
3003
Douglas Gregor70d26122008-11-12 17:17:38 +00003004 case OO_New:
3005 case OO_Delete:
3006 case OO_Array_New:
3007 case OO_Array_Delete:
Douglas Gregor70d26122008-11-12 17:17:38 +00003008 case OO_Call:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003009 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregor70d26122008-11-12 17:17:38 +00003010 break;
3011
3012 case OO_Comma:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003013 UnaryAmp:
3014 case OO_Arrow:
Douglas Gregor70d26122008-11-12 17:17:38 +00003015 // C++ [over.match.oper]p3:
3016 // -- For the operator ',', the unary operator '&', or the
3017 // operator '->', the built-in candidates set is empty.
Douglas Gregor70d26122008-11-12 17:17:38 +00003018 break;
3019
3020 case OO_Less:
3021 case OO_Greater:
3022 case OO_LessEqual:
3023 case OO_GreaterEqual:
3024 case OO_EqualEqual:
3025 case OO_ExclaimEqual:
3026 // C++ [over.built]p15:
3027 //
3028 // For every pointer or enumeration type T, there exist
3029 // candidate operator functions of the form
3030 //
3031 // bool operator<(T, T);
3032 // bool operator>(T, T);
3033 // bool operator<=(T, T);
3034 // bool operator>=(T, T);
3035 // bool operator==(T, T);
3036 // bool operator!=(T, T);
3037 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3038 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3039 QualType ParamTypes[2] = { *Ptr, *Ptr };
3040 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3041 }
3042 for (BuiltinCandidateTypeSet::iterator Enum
3043 = CandidateTypes.enumeration_begin();
3044 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3045 QualType ParamTypes[2] = { *Enum, *Enum };
3046 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3047 }
3048
3049 // Fall through.
3050 isComparison = true;
3051
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003052 BinaryPlus:
3053 BinaryMinus:
Douglas Gregor70d26122008-11-12 17:17:38 +00003054 if (!isComparison) {
3055 // We didn't fall through, so we must have OO_Plus or OO_Minus.
3056
3057 // C++ [over.built]p13:
3058 //
3059 // For every cv-qualified or cv-unqualified object type T
3060 // there exist candidate operator functions of the form
3061 //
3062 // T* operator+(T*, ptrdiff_t);
3063 // T& operator[](T*, ptrdiff_t); [BELOW]
3064 // T* operator-(T*, ptrdiff_t);
3065 // T* operator+(ptrdiff_t, T*);
3066 // T& operator[](ptrdiff_t, T*); [BELOW]
3067 //
3068 // C++ [over.built]p14:
3069 //
3070 // For every T, where T is a pointer to object type, there
3071 // exist candidate operator functions of the form
3072 //
3073 // ptrdiff_t operator-(T, T);
3074 for (BuiltinCandidateTypeSet::iterator Ptr
3075 = CandidateTypes.pointer_begin();
3076 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3077 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3078
3079 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3080 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3081
3082 if (Op == OO_Plus) {
3083 // T* operator+(ptrdiff_t, T*);
3084 ParamTypes[0] = ParamTypes[1];
3085 ParamTypes[1] = *Ptr;
3086 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3087 } else {
3088 // ptrdiff_t operator-(T, T);
3089 ParamTypes[1] = *Ptr;
3090 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3091 Args, 2, CandidateSet);
3092 }
3093 }
3094 }
3095 // Fall through
3096
Douglas Gregor70d26122008-11-12 17:17:38 +00003097 case OO_Slash:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003098 BinaryStar:
Sebastian Redlbd261962009-04-16 17:51:27 +00003099 Conditional:
Douglas Gregor70d26122008-11-12 17:17:38 +00003100 // C++ [over.built]p12:
3101 //
3102 // For every pair of promoted arithmetic types L and R, there
3103 // exist candidate operator functions of the form
3104 //
3105 // LR operator*(L, R);
3106 // LR operator/(L, R);
3107 // LR operator+(L, R);
3108 // LR operator-(L, R);
3109 // bool operator<(L, R);
3110 // bool operator>(L, R);
3111 // bool operator<=(L, R);
3112 // bool operator>=(L, R);
3113 // bool operator==(L, R);
3114 // bool operator!=(L, R);
3115 //
3116 // where LR is the result of the usual arithmetic conversions
3117 // between types L and R.
Sebastian Redlbd261962009-04-16 17:51:27 +00003118 //
3119 // C++ [over.built]p24:
3120 //
3121 // For every pair of promoted arithmetic types L and R, there exist
3122 // candidate operator functions of the form
3123 //
3124 // LR operator?(bool, L, R);
3125 //
3126 // where LR is the result of the usual arithmetic conversions
3127 // between types L and R.
3128 // Our candidates ignore the first parameter.
Douglas Gregor70d26122008-11-12 17:17:38 +00003129 for (unsigned Left = FirstPromotedArithmeticType;
3130 Left < LastPromotedArithmeticType; ++Left) {
3131 for (unsigned Right = FirstPromotedArithmeticType;
3132 Right < LastPromotedArithmeticType; ++Right) {
3133 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3134 QualType Result
3135 = isComparison? Context.BoolTy
3136 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3137 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3138 }
3139 }
3140 break;
3141
3142 case OO_Percent:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003143 BinaryAmp:
Douglas Gregor70d26122008-11-12 17:17:38 +00003144 case OO_Caret:
3145 case OO_Pipe:
3146 case OO_LessLess:
3147 case OO_GreaterGreater:
3148 // C++ [over.built]p17:
3149 //
3150 // For every pair of promoted integral types L and R, there
3151 // exist candidate operator functions of the form
3152 //
3153 // LR operator%(L, R);
3154 // LR operator&(L, R);
3155 // LR operator^(L, R);
3156 // LR operator|(L, R);
3157 // L operator<<(L, R);
3158 // L operator>>(L, R);
3159 //
3160 // where LR is the result of the usual arithmetic conversions
3161 // between types L and R.
3162 for (unsigned Left = FirstPromotedIntegralType;
3163 Left < LastPromotedIntegralType; ++Left) {
3164 for (unsigned Right = FirstPromotedIntegralType;
3165 Right < LastPromotedIntegralType; ++Right) {
3166 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3167 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3168 ? LandR[0]
3169 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3170 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3171 }
3172 }
3173 break;
3174
3175 case OO_Equal:
3176 // C++ [over.built]p20:
3177 //
3178 // For every pair (T, VQ), where T is an enumeration or
3179 // (FIXME:) pointer to member type and VQ is either volatile or
3180 // empty, there exist candidate operator functions of the form
3181 //
3182 // VQ T& operator=(VQ T&, T);
3183 for (BuiltinCandidateTypeSet::iterator Enum
3184 = CandidateTypes.enumeration_begin();
3185 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3186 QualType ParamTypes[2];
3187
3188 // T& operator=(T&, T)
Sebastian Redlce6fff02009-03-16 23:22:08 +00003189 ParamTypes[0] = Context.getLValueReferenceType(*Enum);
Douglas Gregor70d26122008-11-12 17:17:38 +00003190 ParamTypes[1] = *Enum;
Douglas Gregorab141112009-01-13 00:52:54 +00003191 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003192 /*IsAssignmentOperator=*/false);
Douglas Gregor70d26122008-11-12 17:17:38 +00003193
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003194 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3195 // volatile T& operator=(volatile T&, T)
Sebastian Redlce6fff02009-03-16 23:22:08 +00003196 ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003197 ParamTypes[1] = *Enum;
Douglas Gregorab141112009-01-13 00:52:54 +00003198 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003199 /*IsAssignmentOperator=*/false);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003200 }
Douglas Gregor70d26122008-11-12 17:17:38 +00003201 }
3202 // Fall through.
3203
3204 case OO_PlusEqual:
3205 case OO_MinusEqual:
3206 // C++ [over.built]p19:
3207 //
3208 // For every pair (T, VQ), where T is any type and VQ is either
3209 // volatile or empty, there exist candidate operator functions
3210 // of the form
3211 //
3212 // T*VQ& operator=(T*VQ&, T*);
3213 //
3214 // C++ [over.built]p21:
3215 //
3216 // For every pair (T, VQ), where T is a cv-qualified or
3217 // cv-unqualified object type and VQ is either volatile or
3218 // empty, there exist candidate operator functions of the form
3219 //
3220 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3221 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3222 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3223 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3224 QualType ParamTypes[2];
3225 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3226
3227 // non-volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00003228 ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
Douglas Gregorab141112009-01-13 00:52:54 +00003229 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3230 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003231
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003232 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3233 // volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00003234 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregorab141112009-01-13 00:52:54 +00003235 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3236 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003237 }
Douglas Gregor70d26122008-11-12 17:17:38 +00003238 }
3239 // Fall through.
3240
3241 case OO_StarEqual:
3242 case OO_SlashEqual:
3243 // C++ [over.built]p18:
3244 //
3245 // For every triple (L, VQ, R), where L is an arithmetic type,
3246 // VQ is either volatile or empty, and R is a promoted
3247 // arithmetic type, there exist candidate operator functions of
3248 // the form
3249 //
3250 // VQ L& operator=(VQ L&, R);
3251 // VQ L& operator*=(VQ L&, R);
3252 // VQ L& operator/=(VQ L&, R);
3253 // VQ L& operator+=(VQ L&, R);
3254 // VQ L& operator-=(VQ L&, R);
3255 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3256 for (unsigned Right = FirstPromotedArithmeticType;
3257 Right < LastPromotedArithmeticType; ++Right) {
3258 QualType ParamTypes[2];
3259 ParamTypes[1] = ArithmeticTypes[Right];
3260
3261 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redlce6fff02009-03-16 23:22:08 +00003262 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregorab141112009-01-13 00:52:54 +00003263 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3264 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003265
3266 // Add this built-in operator as a candidate (VQ is 'volatile').
3267 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003268 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregorab141112009-01-13 00:52:54 +00003269 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3270 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003271 }
3272 }
3273 break;
3274
3275 case OO_PercentEqual:
3276 case OO_LessLessEqual:
3277 case OO_GreaterGreaterEqual:
3278 case OO_AmpEqual:
3279 case OO_CaretEqual:
3280 case OO_PipeEqual:
3281 // C++ [over.built]p22:
3282 //
3283 // For every triple (L, VQ, R), where L is an integral type, VQ
3284 // is either volatile or empty, and R is a promoted integral
3285 // type, there exist candidate operator functions of the form
3286 //
3287 // VQ L& operator%=(VQ L&, R);
3288 // VQ L& operator<<=(VQ L&, R);
3289 // VQ L& operator>>=(VQ L&, R);
3290 // VQ L& operator&=(VQ L&, R);
3291 // VQ L& operator^=(VQ L&, R);
3292 // VQ L& operator|=(VQ L&, R);
3293 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3294 for (unsigned Right = FirstPromotedIntegralType;
3295 Right < LastPromotedIntegralType; ++Right) {
3296 QualType ParamTypes[2];
3297 ParamTypes[1] = ArithmeticTypes[Right];
3298
3299 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redlce6fff02009-03-16 23:22:08 +00003300 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003301 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3302
3303 // Add this built-in operator as a candidate (VQ is 'volatile').
3304 ParamTypes[0] = ArithmeticTypes[Left];
3305 ParamTypes[0].addVolatile();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003306 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003307 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3308 }
3309 }
3310 break;
3311
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003312 case OO_Exclaim: {
3313 // C++ [over.operator]p23:
3314 //
3315 // There also exist candidate operator functions of the form
3316 //
3317 // bool operator!(bool);
3318 // bool operator&&(bool, bool); [BELOW]
3319 // bool operator||(bool, bool); [BELOW]
3320 QualType ParamTy = Context.BoolTy;
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003321 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3322 /*IsAssignmentOperator=*/false,
3323 /*NumContextualBoolArguments=*/1);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003324 break;
3325 }
3326
Douglas Gregor70d26122008-11-12 17:17:38 +00003327 case OO_AmpAmp:
3328 case OO_PipePipe: {
3329 // C++ [over.operator]p23:
3330 //
3331 // There also exist candidate operator functions of the form
3332 //
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003333 // bool operator!(bool); [ABOVE]
Douglas Gregor70d26122008-11-12 17:17:38 +00003334 // bool operator&&(bool, bool);
3335 // bool operator||(bool, bool);
3336 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003337 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3338 /*IsAssignmentOperator=*/false,
3339 /*NumContextualBoolArguments=*/2);
Douglas Gregor70d26122008-11-12 17:17:38 +00003340 break;
3341 }
3342
3343 case OO_Subscript:
3344 // C++ [over.built]p13:
3345 //
3346 // For every cv-qualified or cv-unqualified object type T there
3347 // exist candidate operator functions of the form
3348 //
3349 // T* operator+(T*, ptrdiff_t); [ABOVE]
3350 // T& operator[](T*, ptrdiff_t);
3351 // T* operator-(T*, ptrdiff_t); [ABOVE]
3352 // T* operator+(ptrdiff_t, T*); [ABOVE]
3353 // T& operator[](ptrdiff_t, T*);
3354 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3355 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3356 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3357 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003358 QualType ResultTy = Context.getLValueReferenceType(PointeeType);
Douglas Gregor70d26122008-11-12 17:17:38 +00003359
3360 // T& operator[](T*, ptrdiff_t)
3361 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3362
3363 // T& operator[](ptrdiff_t, T*);
3364 ParamTypes[0] = ParamTypes[1];
3365 ParamTypes[1] = *Ptr;
3366 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3367 }
3368 break;
3369
3370 case OO_ArrowStar:
3371 // FIXME: No support for pointer-to-members yet.
3372 break;
Sebastian Redlbd261962009-04-16 17:51:27 +00003373
3374 case OO_Conditional:
3375 // Note that we don't consider the first argument, since it has been
3376 // contextually converted to bool long ago. The candidates below are
3377 // therefore added as binary.
3378 //
3379 // C++ [over.built]p24:
3380 // For every type T, where T is a pointer or pointer-to-member type,
3381 // there exist candidate operator functions of the form
3382 //
3383 // T operator?(bool, T, T);
3384 //
Sebastian Redlbd261962009-04-16 17:51:27 +00003385 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3386 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3387 QualType ParamTypes[2] = { *Ptr, *Ptr };
3388 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3389 }
Sebastian Redl674d1b72009-04-19 21:53:20 +00003390 for (BuiltinCandidateTypeSet::iterator Ptr =
3391 CandidateTypes.member_pointer_begin(),
3392 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3393 QualType ParamTypes[2] = { *Ptr, *Ptr };
3394 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3395 }
Sebastian Redlbd261962009-04-16 17:51:27 +00003396 goto Conditional;
Douglas Gregor70d26122008-11-12 17:17:38 +00003397 }
3398}
3399
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003400/// \brief Add function candidates found via argument-dependent lookup
3401/// to the set of overloading candidates.
3402///
3403/// This routine performs argument-dependent name lookup based on the
3404/// given function name (which may also be an operator name) and adds
3405/// all of the overload candidates found by ADL to the overload
3406/// candidate set (C++ [basic.lookup.argdep]).
3407void
3408Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3409 Expr **Args, unsigned NumArgs,
3410 OverloadCandidateSet& CandidateSet) {
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003411 FunctionSet Functions;
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003412
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003413 // Record all of the function candidates that we've already
3414 // added to the overload set, so that we don't add those same
3415 // candidates a second time.
3416 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3417 CandEnd = CandidateSet.end();
3418 Cand != CandEnd; ++Cand)
Douglas Gregor993a0602009-06-27 21:05:07 +00003419 if (Cand->Function) {
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003420 Functions.insert(Cand->Function);
Douglas Gregor993a0602009-06-27 21:05:07 +00003421 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3422 Functions.insert(FunTmpl);
3423 }
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003424
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003425 ArgumentDependentLookup(Name, Args, NumArgs, Functions);
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003426
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003427 // Erase all of the candidates we already knew about.
3428 // FIXME: This is suboptimal. Is there a better way?
3429 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3430 CandEnd = CandidateSet.end();
3431 Cand != CandEnd; ++Cand)
Douglas Gregor993a0602009-06-27 21:05:07 +00003432 if (Cand->Function) {
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003433 Functions.erase(Cand->Function);
Douglas Gregor993a0602009-06-27 21:05:07 +00003434 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3435 Functions.erase(FunTmpl);
3436 }
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003437
3438 // For each of the ADL candidates we found, add it to the overload
3439 // set.
3440 for (FunctionSet::iterator Func = Functions.begin(),
3441 FuncEnd = Functions.end();
Douglas Gregor993a0602009-06-27 21:05:07 +00003442 Func != FuncEnd; ++Func) {
3443 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3444 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3445 else
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003446 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3447 /*FIXME: explicit args */false, 0, 0,
3448 Args, NumArgs, CandidateSet);
Douglas Gregor993a0602009-06-27 21:05:07 +00003449 }
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003450}
3451
Douglas Gregord2baafd2008-10-21 16:13:35 +00003452/// isBetterOverloadCandidate - Determines whether the first overload
3453/// candidate is a better candidate than the second (C++ 13.3.3p1).
3454bool
3455Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3456 const OverloadCandidate& Cand2)
3457{
3458 // Define viable functions to be better candidates than non-viable
3459 // functions.
3460 if (!Cand2.Viable)
3461 return Cand1.Viable;
3462 else if (!Cand1.Viable)
3463 return false;
3464
Douglas Gregor3257fb52008-12-22 05:46:06 +00003465 // C++ [over.match.best]p1:
3466 //
3467 // -- if F is a static member function, ICS1(F) is defined such
3468 // that ICS1(F) is neither better nor worse than ICS1(G) for
3469 // any function G, and, symmetrically, ICS1(G) is neither
3470 // better nor worse than ICS1(F).
3471 unsigned StartArg = 0;
3472 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3473 StartArg = 1;
Douglas Gregord2baafd2008-10-21 16:13:35 +00003474
Douglas Gregor8aef85a2009-07-07 23:38:56 +00003475 // C++ [over.match.best]p1:
3476 // A viable function F1 is defined to be a better function than another
3477 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
3478 // conversion sequence than ICSi(F2), and then...
Douglas Gregord2baafd2008-10-21 16:13:35 +00003479 unsigned NumArgs = Cand1.Conversions.size();
3480 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3481 bool HasBetterConversion = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00003482 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregord2baafd2008-10-21 16:13:35 +00003483 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3484 Cand2.Conversions[ArgIdx])) {
3485 case ImplicitConversionSequence::Better:
3486 // Cand1 has a better conversion sequence.
3487 HasBetterConversion = true;
3488 break;
3489
3490 case ImplicitConversionSequence::Worse:
3491 // Cand1 can't be better than Cand2.
3492 return false;
3493
3494 case ImplicitConversionSequence::Indistinguishable:
3495 // Do nothing.
3496 break;
3497 }
3498 }
3499
Douglas Gregor8aef85a2009-07-07 23:38:56 +00003500 // -- for some argument j, ICSj(F1) is a better conversion sequence than
3501 // ICSj(F2), or, if not that,
Douglas Gregord2baafd2008-10-21 16:13:35 +00003502 if (HasBetterConversion)
3503 return true;
3504
Douglas Gregor8aef85a2009-07-07 23:38:56 +00003505 // - F1 is a non-template function and F2 is a function template
3506 // specialization, or, if not that,
3507 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3508 Cand2.Function && Cand2.Function->getPrimaryTemplate())
3509 return true;
3510
3511 // -- F1 and F2 are function template specializations, and the function
3512 // template for F1 is more specialized than the template for F2
3513 // according to the partial ordering rules described in 14.5.5.2, or,
3514 // if not that,
3515
3516 // FIXME: Implement partial ordering of function templates.
Douglas Gregord2baafd2008-10-21 16:13:35 +00003517
Douglas Gregor60714f92008-11-07 22:36:19 +00003518 // -- the context is an initialization by user-defined conversion
3519 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3520 // from the return type of F1 to the destination type (i.e.,
3521 // the type of the entity being initialized) is a better
3522 // conversion sequence than the standard conversion sequence
3523 // from the return type of F2 to the destination type.
Douglas Gregor849ea9c2008-11-19 03:25:36 +00003524 if (Cand1.Function && Cand2.Function &&
3525 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregor60714f92008-11-07 22:36:19 +00003526 isa<CXXConversionDecl>(Cand2.Function)) {
3527 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3528 Cand2.FinalConversion)) {
3529 case ImplicitConversionSequence::Better:
3530 // Cand1 has a better conversion sequence.
3531 return true;
3532
3533 case ImplicitConversionSequence::Worse:
3534 // Cand1 can't be better than Cand2.
3535 return false;
3536
3537 case ImplicitConversionSequence::Indistinguishable:
3538 // Do nothing
3539 break;
3540 }
3541 }
3542
Douglas Gregord2baafd2008-10-21 16:13:35 +00003543 return false;
3544}
3545
Douglas Gregor98189262009-06-19 23:52:42 +00003546/// \brief Computes the best viable function (C++ 13.3.3)
3547/// within an overload candidate set.
3548///
3549/// \param CandidateSet the set of candidate functions.
3550///
3551/// \param Loc the location of the function name (or operator symbol) for
3552/// which overload resolution occurs.
3553///
3554/// \param Best f overload resolution was successful or found a deleted
3555/// function, Best points to the candidate function found.
3556///
3557/// \returns The result of overload resolution.
Douglas Gregord2baafd2008-10-21 16:13:35 +00003558Sema::OverloadingResult
3559Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
Douglas Gregor98189262009-06-19 23:52:42 +00003560 SourceLocation Loc,
Douglas Gregord2baafd2008-10-21 16:13:35 +00003561 OverloadCandidateSet::iterator& Best)
3562{
3563 // Find the best viable function.
3564 Best = CandidateSet.end();
3565 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3566 Cand != CandidateSet.end(); ++Cand) {
3567 if (Cand->Viable) {
3568 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3569 Best = Cand;
3570 }
3571 }
3572
3573 // If we didn't find any viable functions, abort.
3574 if (Best == CandidateSet.end())
3575 return OR_No_Viable_Function;
3576
3577 // Make sure that this function is better than every other viable
3578 // function. If not, we have an ambiguity.
3579 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3580 Cand != CandidateSet.end(); ++Cand) {
3581 if (Cand->Viable &&
3582 Cand != Best &&
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003583 !isBetterOverloadCandidate(*Best, *Cand)) {
3584 Best = CandidateSet.end();
Douglas Gregord2baafd2008-10-21 16:13:35 +00003585 return OR_Ambiguous;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003586 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00003587 }
3588
3589 // Best is the best viable function.
Douglas Gregoraa57e862009-02-18 21:56:37 +00003590 if (Best->Function &&
3591 (Best->Function->isDeleted() ||
Argiris Kirtzidisfe5f9732009-06-30 02:34:44 +00003592 Best->Function->getAttr<UnavailableAttr>()))
Douglas Gregoraa57e862009-02-18 21:56:37 +00003593 return OR_Deleted;
3594
Douglas Gregor98189262009-06-19 23:52:42 +00003595 // C++ [basic.def.odr]p2:
3596 // An overloaded function is used if it is selected by overload resolution
3597 // when referred to from a potentially-evaluated expression. [Note: this
3598 // covers calls to named functions (5.2.2), operator overloading
3599 // (clause 13), user-defined conversions (12.3.2), allocation function for
3600 // placement new (5.3.4), as well as non-default initialization (8.5).
3601 if (Best->Function)
3602 MarkDeclarationReferenced(Loc, Best->Function);
Douglas Gregord2baafd2008-10-21 16:13:35 +00003603 return OR_Success;
3604}
3605
3606/// PrintOverloadCandidates - When overload resolution fails, prints
3607/// diagnostic messages containing the candidates in the candidate
3608/// set. If OnlyViable is true, only viable candidates will be printed.
3609void
3610Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3611 bool OnlyViable)
3612{
3613 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3614 LastCand = CandidateSet.end();
3615 for (; Cand != LastCand; ++Cand) {
Douglas Gregor70d26122008-11-12 17:17:38 +00003616 if (Cand->Viable || !OnlyViable) {
3617 if (Cand->Function) {
Douglas Gregoraa57e862009-02-18 21:56:37 +00003618 if (Cand->Function->isDeleted() ||
Argiris Kirtzidisfe5f9732009-06-30 02:34:44 +00003619 Cand->Function->getAttr<UnavailableAttr>()) {
Douglas Gregoraa57e862009-02-18 21:56:37 +00003620 // Deleted or "unavailable" function.
3621 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3622 << Cand->Function->isDeleted();
3623 } else {
3624 // Normal function
3625 // FIXME: Give a better reason!
3626 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3627 }
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003628 } else if (Cand->IsSurrogate) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003629 // Desugar the type of the surrogate down to a function type,
3630 // retaining as many typedefs as possible while still showing
3631 // the function type (and, therefore, its parameter types).
3632 QualType FnType = Cand->Surrogate->getConversionType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003633 bool isLValueReference = false;
3634 bool isRValueReference = false;
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003635 bool isPointer = false;
Sebastian Redlce6fff02009-03-16 23:22:08 +00003636 if (const LValueReferenceType *FnTypeRef =
3637 FnType->getAsLValueReferenceType()) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003638 FnType = FnTypeRef->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003639 isLValueReference = true;
3640 } else if (const RValueReferenceType *FnTypeRef =
3641 FnType->getAsRValueReferenceType()) {
3642 FnType = FnTypeRef->getPointeeType();
3643 isRValueReference = true;
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003644 }
3645 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3646 FnType = FnTypePtr->getPointeeType();
3647 isPointer = true;
3648 }
3649 // Desugar down to a function type.
3650 FnType = QualType(FnType->getAsFunctionType(), 0);
3651 // Reconstruct the pointer/reference as appropriate.
3652 if (isPointer) FnType = Context.getPointerType(FnType);
Sebastian Redlce6fff02009-03-16 23:22:08 +00003653 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3654 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003655
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003656 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003657 << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00003658 } else {
3659 // FIXME: We need to get the identifier in here
Mike Stumpe127ae32009-05-16 07:39:55 +00003660 // FIXME: Do we want the error message to point at the operator?
3661 // (built-ins won't have a location)
Douglas Gregor70d26122008-11-12 17:17:38 +00003662 QualType FnType
3663 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3664 Cand->BuiltinTypes.ParamTypes,
3665 Cand->Conversions.size(),
3666 false, 0);
3667
Chris Lattner4bfd2232008-11-24 06:25:27 +00003668 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00003669 }
3670 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00003671 }
3672}
3673
Douglas Gregor45014fd2008-11-10 20:40:00 +00003674/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3675/// an overloaded function (C++ [over.over]), where @p From is an
3676/// expression with overloaded function type and @p ToType is the type
3677/// we're trying to resolve to. For example:
3678///
3679/// @code
3680/// int f(double);
3681/// int f(int);
3682///
3683/// int (*pfd)(double) = f; // selects f(double)
3684/// @endcode
3685///
3686/// This routine returns the resulting FunctionDecl if it could be
3687/// resolved, and NULL otherwise. When @p Complain is true, this
3688/// routine will emit diagnostics if there is an error.
3689FunctionDecl *
Sebastian Redl7434fc32009-02-04 21:23:32 +00003690Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor45014fd2008-11-10 20:40:00 +00003691 bool Complain) {
3692 QualType FunctionType = ToType;
Sebastian Redl7434fc32009-02-04 21:23:32 +00003693 bool IsMember = false;
Daniel Dunbarf6c06ce2009-02-26 19:13:44 +00003694 if (const PointerType *ToTypePtr = ToType->getAsPointerType())
Douglas Gregor45014fd2008-11-10 20:40:00 +00003695 FunctionType = ToTypePtr->getPointeeType();
Daniel Dunbarf6c06ce2009-02-26 19:13:44 +00003696 else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3697 FunctionType = ToTypeRef->getPointeeType();
Sebastian Redl7434fc32009-02-04 21:23:32 +00003698 else if (const MemberPointerType *MemTypePtr =
3699 ToType->getAsMemberPointerType()) {
3700 FunctionType = MemTypePtr->getPointeeType();
3701 IsMember = true;
3702 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00003703
3704 // We only look at pointers or references to functions.
Douglas Gregor62f78762009-07-08 20:55:45 +00003705 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3706 if (!FunctionType->isFunctionType())
Douglas Gregor45014fd2008-11-10 20:40:00 +00003707 return 0;
3708
3709 // Find the actual overloaded function declaration.
3710 OverloadedFunctionDecl *Ovl = 0;
3711
3712 // C++ [over.over]p1:
3713 // [...] [Note: any redundant set of parentheses surrounding the
3714 // overloaded function name is ignored (5.1). ]
3715 Expr *OvlExpr = From->IgnoreParens();
3716
3717 // C++ [over.over]p1:
3718 // [...] The overloaded function name can be preceded by the &
3719 // operator.
3720 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3721 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3722 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3723 }
3724
3725 // Try to dig out the overloaded function.
Douglas Gregor62f78762009-07-08 20:55:45 +00003726 FunctionTemplateDecl *FunctionTemplate = 0;
3727 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
Douglas Gregor45014fd2008-11-10 20:40:00 +00003728 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
Douglas Gregor62f78762009-07-08 20:55:45 +00003729 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3730 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00003731
Douglas Gregor62f78762009-07-08 20:55:45 +00003732 // If there's no overloaded function declaration or function template,
3733 // we're done.
3734 if (!Ovl && !FunctionTemplate)
Douglas Gregor45014fd2008-11-10 20:40:00 +00003735 return 0;
3736
Douglas Gregor62f78762009-07-08 20:55:45 +00003737 OverloadIterator Fun;
3738 if (Ovl)
3739 Fun = Ovl;
3740 else
3741 Fun = FunctionTemplate;
3742
Douglas Gregor45014fd2008-11-10 20:40:00 +00003743 // Look through all of the overloaded functions, searching for one
3744 // whose type matches exactly.
Douglas Gregor62f78762009-07-08 20:55:45 +00003745 // FIXME: We still need to cope with duplicates, partial ordering, etc.
3746 for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
Douglas Gregor45014fd2008-11-10 20:40:00 +00003747 // C++ [over.over]p3:
3748 // Non-member functions and static member functions match
Sebastian Redl3a75abf2009-02-05 12:33:33 +00003749 // targets of type "pointer-to-function" or "reference-to-function."
3750 // Nonstatic member functions match targets of
Sebastian Redl7434fc32009-02-04 21:23:32 +00003751 // type "pointer-to-member-function."
3752 // Note that according to DR 247, the containing class does not matter.
Douglas Gregor62f78762009-07-08 20:55:45 +00003753
3754 if (FunctionTemplateDecl *FunctionTemplate
3755 = dyn_cast<FunctionTemplateDecl>(*Fun)) {
3756 // C++ [temp.deduct.funcaddr]p1:
3757 // Template arguments can be deduced from the type specified when
3758 // taking the address of an overloaded function (13.4). The function
3759 // template’s function type and the specified type are used as the
3760 // types of P and A, and the deduction is done as described in
3761 // 14.8.2.4.
3762 FunctionDecl *Specialization = 0;
3763 TemplateDeductionInfo Info(Context);
3764 if (TemplateDeductionResult Result
3765 = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3766 /*FIXME:*/0, /*FIXME:*/0,
3767 FunctionType, Specialization, Info)) {
3768 // FIXME: make a note of the failed deduction for diagnostics.
3769 (void)Result;
3770 } else {
3771 assert(FunctionType
3772 == Context.getCanonicalType(Specialization->getType()));
3773 return Specialization;
3774 }
3775 }
3776
Sebastian Redl7434fc32009-02-04 21:23:32 +00003777 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3778 // Skip non-static functions when converting to pointer, and static
3779 // when converting to member pointer.
3780 if (Method->isStatic() == IsMember)
Douglas Gregor45014fd2008-11-10 20:40:00 +00003781 continue;
Douglas Gregor62f78762009-07-08 20:55:45 +00003782 } else if (IsMember) // FIXME: member templates
Sebastian Redl7434fc32009-02-04 21:23:32 +00003783 continue;
Douglas Gregor45014fd2008-11-10 20:40:00 +00003784
Douglas Gregorb60eb752009-06-25 22:08:12 +00003785 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
3786 if (FunctionType == Context.getCanonicalType(FunDecl->getType()))
3787 return FunDecl;
Douglas Gregor62f78762009-07-08 20:55:45 +00003788 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00003789 }
3790
3791 return 0;
3792}
3793
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003794/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003795/// (which eventually refers to the declaration Func) and the call
3796/// arguments Args/NumArgs, attempt to resolve the function call down
3797/// to a specific function. If overload resolution succeeds, returns
3798/// the function declaration produced by overload
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003799/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003800/// arguments and Fn, and returns NULL.
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003801FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003802 DeclarationName UnqualifiedName,
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003803 bool HasExplicitTemplateArgs,
3804 const TemplateArgument *ExplicitTemplateArgs,
3805 unsigned NumExplicitTemplateArgs,
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003806 SourceLocation LParenLoc,
3807 Expr **Args, unsigned NumArgs,
3808 SourceLocation *CommaLocs,
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003809 SourceLocation RParenLoc,
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003810 bool &ArgumentDependentLookup) {
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003811 OverloadCandidateSet CandidateSet;
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003812
3813 // Add the functions denoted by Callee to the set of candidate
3814 // functions. While we're doing so, track whether argument-dependent
3815 // lookup still applies, per:
3816 //
3817 // C++0x [basic.lookup.argdep]p3:
3818 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3819 // and let Y be the lookup set produced by argument dependent
3820 // lookup (defined as follows). If X contains
3821 //
3822 // -- a declaration of a class member, or
3823 //
3824 // -- a block-scope function declaration that is not a
3825 // using-declaration, or
3826 //
3827 // -- a declaration that is neither a function or a function
3828 // template
3829 //
3830 // then Y is empty.
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003831 if (OverloadedFunctionDecl *Ovl
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003832 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3833 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3834 FuncEnd = Ovl->function_end();
3835 Func != FuncEnd; ++Func) {
Douglas Gregorb60eb752009-06-25 22:08:12 +00003836 DeclContext *Ctx = 0;
3837 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003838 if (HasExplicitTemplateArgs)
3839 continue;
3840
Douglas Gregorb60eb752009-06-25 22:08:12 +00003841 AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
3842 Ctx = FunDecl->getDeclContext();
3843 } else {
3844 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003845 AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
3846 ExplicitTemplateArgs,
3847 NumExplicitTemplateArgs,
3848 Args, NumArgs, CandidateSet);
Douglas Gregorb60eb752009-06-25 22:08:12 +00003849 Ctx = FunTmpl->getDeclContext();
3850 }
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003851
Douglas Gregorb60eb752009-06-25 22:08:12 +00003852
3853 if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003854 ArgumentDependentLookup = false;
3855 }
3856 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003857 assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003858 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3859
3860 if (Func->getDeclContext()->isRecord() ||
3861 Func->getDeclContext()->isFunctionOrMethod())
3862 ArgumentDependentLookup = false;
Douglas Gregorb60eb752009-06-25 22:08:12 +00003863 } else if (FunctionTemplateDecl *FuncTemplate
3864 = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003865 AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
3866 ExplicitTemplateArgs,
3867 NumExplicitTemplateArgs,
3868 Args, NumArgs, CandidateSet);
Douglas Gregorb60eb752009-06-25 22:08:12 +00003869
3870 if (FuncTemplate->getDeclContext()->isRecord())
3871 ArgumentDependentLookup = false;
3872 }
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003873
3874 if (Callee)
3875 UnqualifiedName = Callee->getDeclName();
3876
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003877 // FIXME: Pass explicit template arguments through for ADL
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003878 if (ArgumentDependentLookup)
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003879 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003880 CandidateSet);
3881
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003882 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00003883 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003884 case OR_Success:
3885 return Best->Function;
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003886
3887 case OR_No_Viable_Function:
Chris Lattner4a526112009-02-17 07:29:20 +00003888 Diag(Fn->getSourceRange().getBegin(),
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003889 diag::err_ovl_no_viable_function_in_call)
Chris Lattner4a526112009-02-17 07:29:20 +00003890 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003891 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3892 break;
3893
3894 case OR_Ambiguous:
3895 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003896 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003897 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3898 break;
Douglas Gregoraa57e862009-02-18 21:56:37 +00003899
3900 case OR_Deleted:
3901 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3902 << Best->Function->isDeleted()
3903 << UnqualifiedName
3904 << Fn->getSourceRange();
3905 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3906 break;
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003907 }
3908
3909 // Overload resolution failed. Destroy all of the subexpressions and
3910 // return NULL.
3911 Fn->Destroy(Context);
3912 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3913 Args[Arg]->Destroy(Context);
3914 return 0;
3915}
3916
Douglas Gregorc78182d2009-03-13 23:49:33 +00003917/// \brief Create a unary operation that may resolve to an overloaded
3918/// operator.
3919///
3920/// \param OpLoc The location of the operator itself (e.g., '*').
3921///
3922/// \param OpcIn The UnaryOperator::Opcode that describes this
3923/// operator.
3924///
3925/// \param Functions The set of non-member functions that will be
3926/// considered by overload resolution. The caller needs to build this
3927/// set based on the context using, e.g.,
3928/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3929/// set should not contain any member functions; those will be added
3930/// by CreateOverloadedUnaryOp().
3931///
3932/// \param input The input argument.
3933Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3934 unsigned OpcIn,
3935 FunctionSet &Functions,
3936 ExprArg input) {
3937 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3938 Expr *Input = (Expr *)input.get();
3939
3940 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3941 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3942 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3943
3944 Expr *Args[2] = { Input, 0 };
3945 unsigned NumArgs = 1;
3946
3947 // For post-increment and post-decrement, add the implicit '0' as
3948 // the second argument, so that we know this is a post-increment or
3949 // post-decrement.
3950 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3951 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3952 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3953 SourceLocation());
3954 NumArgs = 2;
3955 }
3956
3957 if (Input->isTypeDependent()) {
3958 OverloadedFunctionDecl *Overloads
3959 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3960 for (FunctionSet::iterator Func = Functions.begin(),
3961 FuncEnd = Functions.end();
3962 Func != FuncEnd; ++Func)
3963 Overloads->addOverload(*Func);
3964
3965 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3966 OpLoc, false, false);
3967
3968 input.release();
3969 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3970 &Args[0], NumArgs,
3971 Context.DependentTy,
3972 OpLoc));
3973 }
3974
3975 // Build an empty overload set.
3976 OverloadCandidateSet CandidateSet;
3977
3978 // Add the candidates from the given function set.
3979 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
3980
3981 // Add operator candidates that are member functions.
3982 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
3983
3984 // Add builtin operator candidates.
3985 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
3986
3987 // Perform overload resolution.
3988 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00003989 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
Douglas Gregorc78182d2009-03-13 23:49:33 +00003990 case OR_Success: {
3991 // We found a built-in operator or an overloaded operator.
3992 FunctionDecl *FnDecl = Best->Function;
3993
3994 if (FnDecl) {
3995 // We matched an overloaded operator. Build a call to that
3996 // operator.
3997
3998 // Convert the arguments.
3999 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4000 if (PerformObjectArgumentInitialization(Input, Method))
4001 return ExprError();
4002 } else {
4003 // Convert the arguments.
4004 if (PerformCopyInitialization(Input,
4005 FnDecl->getParamDecl(0)->getType(),
4006 "passing"))
4007 return ExprError();
4008 }
4009
4010 // Determine the result type
4011 QualType ResultTy
4012 = FnDecl->getType()->getAsFunctionType()->getResultType();
4013 ResultTy = ResultTy.getNonReferenceType();
4014
4015 // Build the actual expression node.
4016 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4017 SourceLocation());
4018 UsualUnaryConversions(FnExpr);
4019
4020 input.release();
4021 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4022 &Input, 1, ResultTy,
4023 OpLoc));
4024 } else {
4025 // We matched a built-in operator. Convert the arguments, then
4026 // break out so that we will build the appropriate built-in
4027 // operator node.
4028 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4029 Best->Conversions[0], "passing"))
4030 return ExprError();
4031
4032 break;
4033 }
4034 }
4035
4036 case OR_No_Viable_Function:
4037 // No viable function; fall through to handling this as a
4038 // built-in operator, which will produce an error message for us.
4039 break;
4040
4041 case OR_Ambiguous:
4042 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4043 << UnaryOperator::getOpcodeStr(Opc)
4044 << Input->getSourceRange();
4045 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4046 return ExprError();
4047
4048 case OR_Deleted:
4049 Diag(OpLoc, diag::err_ovl_deleted_oper)
4050 << Best->Function->isDeleted()
4051 << UnaryOperator::getOpcodeStr(Opc)
4052 << Input->getSourceRange();
4053 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4054 return ExprError();
4055 }
4056
4057 // Either we found no viable overloaded operator or we matched a
4058 // built-in operator. In either case, fall through to trying to
4059 // build a built-in operation.
4060 input.release();
4061 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4062}
4063
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004064/// \brief Create a binary operation that may resolve to an overloaded
4065/// operator.
4066///
4067/// \param OpLoc The location of the operator itself (e.g., '+').
4068///
4069/// \param OpcIn The BinaryOperator::Opcode that describes this
4070/// operator.
4071///
4072/// \param Functions The set of non-member functions that will be
4073/// considered by overload resolution. The caller needs to build this
4074/// set based on the context using, e.g.,
4075/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4076/// set should not contain any member functions; those will be added
4077/// by CreateOverloadedBinOp().
4078///
4079/// \param LHS Left-hand argument.
4080/// \param RHS Right-hand argument.
4081Sema::OwningExprResult
4082Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4083 unsigned OpcIn,
4084 FunctionSet &Functions,
4085 Expr *LHS, Expr *RHS) {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004086 Expr *Args[2] = { LHS, RHS };
4087
4088 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4089 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4090 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4091
4092 // If either side is type-dependent, create an appropriate dependent
4093 // expression.
4094 if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
4095 // .* cannot be overloaded.
4096 if (Opc == BinaryOperator::PtrMemD)
4097 return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
4098 Context.DependentTy, OpLoc));
4099
4100 OverloadedFunctionDecl *Overloads
4101 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4102 for (FunctionSet::iterator Func = Functions.begin(),
4103 FuncEnd = Functions.end();
4104 Func != FuncEnd; ++Func)
4105 Overloads->addOverload(*Func);
4106
4107 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4108 OpLoc, false, false);
4109
4110 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4111 Args, 2,
4112 Context.DependentTy,
4113 OpLoc));
4114 }
4115
4116 // If this is the .* operator, which is not overloadable, just
4117 // create a built-in binary operator.
4118 if (Opc == BinaryOperator::PtrMemD)
4119 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4120
4121 // If this is one of the assignment operators, we only perform
4122 // overload resolution if the left-hand side is a class or
4123 // enumeration type (C++ [expr.ass]p3).
4124 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4125 !LHS->getType()->isOverloadableType())
4126 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4127
Douglas Gregorc78182d2009-03-13 23:49:33 +00004128 // Build an empty overload set.
4129 OverloadCandidateSet CandidateSet;
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004130
4131 // Add the candidates from the given function set.
4132 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4133
4134 // Add operator candidates that are member functions.
4135 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4136
4137 // Add builtin operator candidates.
4138 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4139
4140 // Perform overload resolution.
4141 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004142 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
Sebastian Redlbd261962009-04-16 17:51:27 +00004143 case OR_Success: {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004144 // We found a built-in operator or an overloaded operator.
4145 FunctionDecl *FnDecl = Best->Function;
4146
4147 if (FnDecl) {
4148 // We matched an overloaded operator. Build a call to that
4149 // operator.
4150
4151 // Convert the arguments.
4152 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4153 if (PerformObjectArgumentInitialization(LHS, Method) ||
4154 PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
4155 "passing"))
4156 return ExprError();
4157 } else {
4158 // Convert the arguments.
4159 if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
4160 "passing") ||
4161 PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
4162 "passing"))
4163 return ExprError();
4164 }
4165
4166 // Determine the result type
4167 QualType ResultTy
4168 = FnDecl->getType()->getAsFunctionType()->getResultType();
4169 ResultTy = ResultTy.getNonReferenceType();
4170
4171 // Build the actual expression node.
4172 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4173 SourceLocation());
4174 UsualUnaryConversions(FnExpr);
4175
4176 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4177 Args, 2, ResultTy,
4178 OpLoc));
4179 } else {
4180 // We matched a built-in operator. Convert the arguments, then
4181 // break out so that we will build the appropriate built-in
4182 // operator node.
4183 if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4184 Best->Conversions[0], "passing") ||
4185 PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4186 Best->Conversions[1], "passing"))
4187 return ExprError();
4188
4189 break;
4190 }
4191 }
4192
4193 case OR_No_Viable_Function:
Sebastian Redl35196b42009-05-21 11:50:50 +00004194 // For class as left operand for assignment or compound assigment operator
4195 // do not fall through to handling in built-in, but report that no overloaded
4196 // assignment operator found
4197 if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4198 Diag(OpLoc, diag::err_ovl_no_viable_oper)
4199 << BinaryOperator::getOpcodeStr(Opc)
4200 << LHS->getSourceRange() << RHS->getSourceRange();
4201 return ExprError();
4202 }
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004203 // No viable function; fall through to handling this as a
4204 // built-in operator, which will produce an error message for us.
4205 break;
4206
4207 case OR_Ambiguous:
4208 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4209 << BinaryOperator::getOpcodeStr(Opc)
4210 << LHS->getSourceRange() << RHS->getSourceRange();
4211 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4212 return ExprError();
4213
4214 case OR_Deleted:
4215 Diag(OpLoc, diag::err_ovl_deleted_oper)
4216 << Best->Function->isDeleted()
4217 << BinaryOperator::getOpcodeStr(Opc)
4218 << LHS->getSourceRange() << RHS->getSourceRange();
4219 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4220 return ExprError();
4221 }
4222
4223 // Either we found no viable overloaded operator or we matched a
4224 // built-in operator. In either case, try to build a built-in
4225 // operation.
4226 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4227}
4228
Douglas Gregor3257fb52008-12-22 05:46:06 +00004229/// BuildCallToMemberFunction - Build a call to a member
4230/// function. MemExpr is the expression that refers to the member
4231/// function (and includes the object parameter), Args/NumArgs are the
4232/// arguments to the function call (not including the object
4233/// parameter). The caller needs to validate that the member
4234/// expression refers to a member function or an overloaded member
4235/// function.
4236Sema::ExprResult
4237Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4238 SourceLocation LParenLoc, Expr **Args,
4239 unsigned NumArgs, SourceLocation *CommaLocs,
4240 SourceLocation RParenLoc) {
4241 // Dig out the member expression. This holds both the object
4242 // argument and the member function we're referring to.
4243 MemberExpr *MemExpr = 0;
4244 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4245 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4246 else
4247 MemExpr = dyn_cast<MemberExpr>(MemExprE);
4248 assert(MemExpr && "Building member call without member expression");
4249
4250 // Extract the object argument.
4251 Expr *ObjectArg = MemExpr->getBase();
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00004252
Douglas Gregor3257fb52008-12-22 05:46:06 +00004253 CXXMethodDecl *Method = 0;
4254 if (OverloadedFunctionDecl *Ovl
4255 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4256 // Add overload candidates
4257 OverloadCandidateSet CandidateSet;
4258 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4259 FuncEnd = Ovl->function_end();
4260 Func != FuncEnd; ++Func) {
4261 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4262 Method = cast<CXXMethodDecl>(*Func);
4263 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4264 /*SuppressUserConversions=*/false);
4265 }
4266
4267 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004268 switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
Douglas Gregor3257fb52008-12-22 05:46:06 +00004269 case OR_Success:
4270 Method = cast<CXXMethodDecl>(Best->Function);
4271 break;
4272
4273 case OR_No_Viable_Function:
4274 Diag(MemExpr->getSourceRange().getBegin(),
4275 diag::err_ovl_no_viable_member_function_in_call)
Chris Lattner4a526112009-02-17 07:29:20 +00004276 << Ovl->getDeclName() << MemExprE->getSourceRange();
Douglas Gregor3257fb52008-12-22 05:46:06 +00004277 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4278 // FIXME: Leaking incoming expressions!
4279 return true;
4280
4281 case OR_Ambiguous:
4282 Diag(MemExpr->getSourceRange().getBegin(),
4283 diag::err_ovl_ambiguous_member_call)
4284 << Ovl->getDeclName() << MemExprE->getSourceRange();
4285 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4286 // FIXME: Leaking incoming expressions!
4287 return true;
Douglas Gregoraa57e862009-02-18 21:56:37 +00004288
4289 case OR_Deleted:
4290 Diag(MemExpr->getSourceRange().getBegin(),
4291 diag::err_ovl_deleted_member_call)
4292 << Best->Function->isDeleted()
4293 << Ovl->getDeclName() << MemExprE->getSourceRange();
4294 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4295 // FIXME: Leaking incoming expressions!
4296 return true;
Douglas Gregor3257fb52008-12-22 05:46:06 +00004297 }
4298
4299 FixOverloadedFunctionReference(MemExpr, Method);
4300 } else {
4301 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4302 }
4303
4304 assert(Method && "Member call to something that isn't a method?");
Ted Kremenek0c97e042009-02-07 01:47:29 +00004305 ExprOwningPtr<CXXMemberCallExpr>
Ted Kremenek362abcd2009-02-09 20:51:47 +00004306 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4307 NumArgs,
Douglas Gregor3257fb52008-12-22 05:46:06 +00004308 Method->getResultType().getNonReferenceType(),
4309 RParenLoc));
4310
4311 // Convert the object argument (for a non-static member function call).
4312 if (!Method->isStatic() &&
4313 PerformObjectArgumentInitialization(ObjectArg, Method))
4314 return true;
4315 MemExpr->setBase(ObjectArg);
4316
4317 // Convert the rest of the arguments
Douglas Gregor4fa58902009-02-26 23:50:07 +00004318 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
Douglas Gregor3257fb52008-12-22 05:46:06 +00004319 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4320 RParenLoc))
4321 return true;
4322
Sebastian Redl8b769972009-01-19 00:08:26 +00004323 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor3257fb52008-12-22 05:46:06 +00004324}
4325
Douglas Gregor10f3c502008-11-19 21:05:33 +00004326/// BuildCallToObjectOfClassType - Build a call to an object of class
4327/// type (C++ [over.call.object]), which can end up invoking an
4328/// overloaded function call operator (@c operator()) or performing a
4329/// user-defined conversion on the object argument.
Douglas Gregor3257fb52008-12-22 05:46:06 +00004330Sema::ExprResult
Douglas Gregora133e262008-12-06 00:22:45 +00004331Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4332 SourceLocation LParenLoc,
Douglas Gregor10f3c502008-11-19 21:05:33 +00004333 Expr **Args, unsigned NumArgs,
4334 SourceLocation *CommaLocs,
4335 SourceLocation RParenLoc) {
4336 assert(Object->getType()->isRecordType() && "Requires object type argument");
4337 const RecordType *Record = Object->getType()->getAsRecordType();
4338
4339 // C++ [over.call.object]p1:
4340 // If the primary-expression E in the function call syntax
4341 // evaluates to a class object of type “cv T”, then the set of
4342 // candidate functions includes at least the function call
4343 // operators of T. The function call operators of T are obtained by
4344 // ordinary lookup of the name operator() in the context of
4345 // (E).operator().
4346 OverloadCandidateSet CandidateSet;
Douglas Gregor8acb7272008-12-11 16:49:14 +00004347 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004348 DeclContext::lookup_const_iterator Oper, OperEnd;
Argiris Kirtzidisab6e38a2009-06-30 02:36:12 +00004349 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004350 Oper != OperEnd; ++Oper)
4351 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4352 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004353
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004354 // C++ [over.call.object]p2:
4355 // In addition, for each conversion function declared in T of the
4356 // form
4357 //
4358 // operator conversion-type-id () cv-qualifier;
4359 //
4360 // where cv-qualifier is the same cv-qualification as, or a
4361 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregor261afa72008-11-20 13:33:37 +00004362 // denotes the type "pointer to function of (P1,...,Pn) returning
4363 // R", or the type "reference to pointer to function of
4364 // (P1,...,Pn) returning R", or the type "reference to function
4365 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004366 // is also considered as a candidate function. Similarly,
4367 // surrogate call functions are added to the set of candidate
4368 // functions for each conversion function declared in an
4369 // accessible base class provided the function is not hidden
4370 // within T by another intervening declaration.
4371 //
4372 // FIXME: Look in base classes for more conversion operators!
4373 OverloadedFunctionDecl *Conversions
4374 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00004375 for (OverloadedFunctionDecl::function_iterator
4376 Func = Conversions->function_begin(),
4377 FuncEnd = Conversions->function_end();
4378 Func != FuncEnd; ++Func) {
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004379 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4380
4381 // Strip the reference type (if any) and then the pointer type (if
4382 // any) to get down to what might be a function type.
4383 QualType ConvType = Conv->getConversionType().getNonReferenceType();
4384 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
4385 ConvType = ConvPtrType->getPointeeType();
4386
Douglas Gregor4fa58902009-02-26 23:50:07 +00004387 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004388 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4389 }
Douglas Gregor10f3c502008-11-19 21:05:33 +00004390
4391 // Perform overload resolution.
4392 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004393 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004394 case OR_Success:
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004395 // Overload resolution succeeded; we'll build the appropriate call
4396 // below.
Douglas Gregor10f3c502008-11-19 21:05:33 +00004397 break;
4398
4399 case OR_No_Viable_Function:
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00004400 Diag(Object->getSourceRange().getBegin(),
4401 diag::err_ovl_no_viable_object_call)
Chris Lattner4a526112009-02-17 07:29:20 +00004402 << Object->getType() << Object->getSourceRange();
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00004403 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004404 break;
4405
4406 case OR_Ambiguous:
4407 Diag(Object->getSourceRange().getBegin(),
4408 diag::err_ovl_ambiguous_object_call)
Chris Lattner4bfd2232008-11-24 06:25:27 +00004409 << Object->getType() << Object->getSourceRange();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004410 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4411 break;
Douglas Gregoraa57e862009-02-18 21:56:37 +00004412
4413 case OR_Deleted:
4414 Diag(Object->getSourceRange().getBegin(),
4415 diag::err_ovl_deleted_object_call)
4416 << Best->Function->isDeleted()
4417 << Object->getType() << Object->getSourceRange();
4418 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4419 break;
Douglas Gregor10f3c502008-11-19 21:05:33 +00004420 }
4421
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004422 if (Best == CandidateSet.end()) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004423 // We had an error; delete all of the subexpressions and return
4424 // the error.
Ted Kremenek0c97e042009-02-07 01:47:29 +00004425 Object->Destroy(Context);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004426 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Ted Kremenek0c97e042009-02-07 01:47:29 +00004427 Args[ArgIdx]->Destroy(Context);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004428 return true;
4429 }
4430
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004431 if (Best->Function == 0) {
4432 // Since there is no function declaration, this is one of the
4433 // surrogate candidates. Dig out the conversion function.
4434 CXXConversionDecl *Conv
4435 = cast<CXXConversionDecl>(
4436 Best->Conversions[0].UserDefined.ConversionFunction);
4437
4438 // We selected one of the surrogate functions that converts the
4439 // object parameter to a function pointer. Perform the conversion
4440 // on the object argument, then let ActOnCallExpr finish the job.
4441 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl8b769972009-01-19 00:08:26 +00004442 ImpCastExprToType(Object,
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004443 Conv->getConversionType().getNonReferenceType(),
Sebastian Redlce6fff02009-03-16 23:22:08 +00004444 Conv->getConversionType()->isLValueReferenceType());
Sebastian Redl8b769972009-01-19 00:08:26 +00004445 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4446 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4447 CommaLocs, RParenLoc).release();
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004448 }
4449
4450 // We found an overloaded operator(). Build a CXXOperatorCallExpr
4451 // that calls this method, using Object for the implicit object
4452 // parameter and passing along the remaining arguments.
4453 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor4fa58902009-02-26 23:50:07 +00004454 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004455
4456 unsigned NumArgsInProto = Proto->getNumArgs();
4457 unsigned NumArgsToCheck = NumArgs;
4458
4459 // Build the full argument list for the method call (the
4460 // implicit object parameter is placed at the beginning of the
4461 // list).
4462 Expr **MethodArgs;
4463 if (NumArgs < NumArgsInProto) {
4464 NumArgsToCheck = NumArgsInProto;
4465 MethodArgs = new Expr*[NumArgsInProto + 1];
4466 } else {
4467 MethodArgs = new Expr*[NumArgs + 1];
4468 }
4469 MethodArgs[0] = Object;
4470 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4471 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4472
Ted Kremenek0c97e042009-02-07 01:47:29 +00004473 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4474 SourceLocation());
Douglas Gregor10f3c502008-11-19 21:05:33 +00004475 UsualUnaryConversions(NewFn);
4476
4477 // Once we've built TheCall, all of the expressions are properly
4478 // owned.
4479 QualType ResultTy = Method->getResultType().getNonReferenceType();
Ted Kremenek0c97e042009-02-07 01:47:29 +00004480 ExprOwningPtr<CXXOperatorCallExpr>
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004481 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4482 MethodArgs, NumArgs + 1,
Ted Kremenek0c97e042009-02-07 01:47:29 +00004483 ResultTy, RParenLoc));
Douglas Gregor10f3c502008-11-19 21:05:33 +00004484 delete [] MethodArgs;
4485
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004486 // We may have default arguments. If so, we need to allocate more
4487 // slots in the call for them.
4488 if (NumArgs < NumArgsInProto)
Ted Kremenek0c97e042009-02-07 01:47:29 +00004489 TheCall->setNumArgs(Context, NumArgsInProto + 1);
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004490 else if (NumArgs > NumArgsInProto)
4491 NumArgsToCheck = NumArgsInProto;
4492
Chris Lattner81f00ed2009-04-12 08:11:20 +00004493 bool IsError = false;
4494
Douglas Gregor10f3c502008-11-19 21:05:33 +00004495 // Initialize the implicit object parameter.
Chris Lattner81f00ed2009-04-12 08:11:20 +00004496 IsError |= PerformObjectArgumentInitialization(Object, Method);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004497 TheCall->setArg(0, Object);
4498
Chris Lattner81f00ed2009-04-12 08:11:20 +00004499
Douglas Gregor10f3c502008-11-19 21:05:33 +00004500 // Check the argument types.
4501 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004502 Expr *Arg;
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004503 if (i < NumArgs) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004504 Arg = Args[i];
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004505
4506 // Pass the argument.
4507 QualType ProtoArgType = Proto->getArgType(i);
Chris Lattner81f00ed2009-04-12 08:11:20 +00004508 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004509 } else {
Ted Kremenek0c97e042009-02-07 01:47:29 +00004510 Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004511 }
Douglas Gregor10f3c502008-11-19 21:05:33 +00004512
4513 TheCall->setArg(i + 1, Arg);
4514 }
4515
4516 // If this is a variadic call, handle args passed through "...".
4517 if (Proto->isVariadic()) {
4518 // Promote the arguments (C99 6.5.2.2p7).
4519 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4520 Expr *Arg = Args[i];
Chris Lattner81f00ed2009-04-12 08:11:20 +00004521 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004522 TheCall->setArg(i + 1, Arg);
4523 }
4524 }
4525
Chris Lattner81f00ed2009-04-12 08:11:20 +00004526 if (IsError) return true;
4527
Sebastian Redl8b769972009-01-19 00:08:26 +00004528 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004529}
4530
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004531/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4532/// (if one exists), where @c Base is an expression of class type and
4533/// @c Member is the name of the member we're trying to find.
4534Action::ExprResult
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004535Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004536 SourceLocation MemberLoc,
4537 IdentifierInfo &Member) {
4538 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4539
4540 // C++ [over.ref]p1:
4541 //
4542 // [...] An expression x->m is interpreted as (x.operator->())->m
4543 // for a class object x of type T if T::operator->() exists and if
4544 // the operator is selected as the best match function by the
4545 // overload resolution mechanism (13.3).
4546 // FIXME: look in base classes.
4547 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4548 OverloadCandidateSet CandidateSet;
4549 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004550
4551 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00004552 for (llvm::tie(Oper, OperEnd)
Argiris Kirtzidisab6e38a2009-06-30 02:36:12 +00004553 = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004554 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004555 /*SuppressUserConversions=*/false);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004556
Ted Kremenek0c97e042009-02-07 01:47:29 +00004557 ExprOwningPtr<Expr> BasePtr(this, Base);
Douglas Gregor9c690e92008-11-21 03:04:22 +00004558
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004559 // Perform overload resolution.
4560 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004561 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004562 case OR_Success:
4563 // Overload resolution succeeded; we'll build the call below.
4564 break;
4565
4566 case OR_No_Viable_Function:
4567 if (CandidateSet.empty())
4568 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattner4bfd2232008-11-24 06:25:27 +00004569 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004570 else
4571 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Chris Lattner4a526112009-02-17 07:29:20 +00004572 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004573 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004574 return true;
4575
4576 case OR_Ambiguous:
4577 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattner4bfd2232008-11-24 06:25:27 +00004578 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004579 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004580 return true;
Douglas Gregoraa57e862009-02-18 21:56:37 +00004581
4582 case OR_Deleted:
4583 Diag(OpLoc, diag::err_ovl_deleted_oper)
4584 << Best->Function->isDeleted()
4585 << "operator->" << BasePtr->getSourceRange();
4586 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4587 return true;
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004588 }
4589
4590 // Convert the object parameter.
4591 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor9c690e92008-11-21 03:04:22 +00004592 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004593 return true;
Douglas Gregor9c690e92008-11-21 03:04:22 +00004594
4595 // No concerns about early exits now.
4596 BasePtr.take();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004597
4598 // Build the operator call.
Ted Kremenek0c97e042009-02-07 01:47:29 +00004599 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4600 SourceLocation());
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004601 UsualUnaryConversions(FnExpr);
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004602 Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004603 Method->getResultType().getNonReferenceType(),
4604 OpLoc);
Sebastian Redl8b769972009-01-19 00:08:26 +00004605 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
Chris Lattner5261d0c2009-03-28 19:18:32 +00004606 MemberLoc, Member, DeclPtrTy()).release();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004607}
4608
Douglas Gregor45014fd2008-11-10 20:40:00 +00004609/// FixOverloadedFunctionReference - E is an expression that refers to
4610/// a C++ overloaded function (possibly with some parentheses and
4611/// perhaps a '&' around it). We have resolved the overloaded function
4612/// to the function declaration Fn, so patch up the expression E to
4613/// refer (possibly indirectly) to Fn.
4614void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4615 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4616 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4617 E->setType(PE->getSubExpr()->getType());
4618 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4619 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4620 "Can only take the address of an overloaded function");
Douglas Gregor3f411962009-02-11 01:18:59 +00004621 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4622 if (Method->isStatic()) {
4623 // Do nothing: static member functions aren't any different
4624 // from non-member functions.
4625 }
4626 else if (QualifiedDeclRefExpr *DRE
4627 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4628 // We have taken the address of a pointer to member
4629 // function. Perform the computation here so that we get the
4630 // appropriate pointer to member type.
4631 DRE->setDecl(Fn);
4632 DRE->setType(Fn->getType());
4633 QualType ClassType
4634 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4635 E->setType(Context.getMemberPointerType(Fn->getType(),
4636 ClassType.getTypePtr()));
4637 return;
4638 }
4639 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00004640 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
Douglas Gregor2eedd992009-02-11 00:19:33 +00004641 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
Douglas Gregor45014fd2008-11-10 20:40:00 +00004642 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
Douglas Gregor62f78762009-07-08 20:55:45 +00004643 assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4644 isa<FunctionTemplateDecl>(DR->getDecl())) &&
4645 "Expected overloaded function or function template");
Douglas Gregor45014fd2008-11-10 20:40:00 +00004646 DR->setDecl(Fn);
4647 E->setType(Fn->getType());
Douglas Gregor3257fb52008-12-22 05:46:06 +00004648 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4649 MemExpr->setMemberDecl(Fn);
4650 E->setType(Fn->getType());
Douglas Gregor45014fd2008-11-10 20:40:00 +00004651 } else {
4652 assert(false && "Invalid reference to overloaded function");
4653 }
4654}
4655
Douglas Gregord2baafd2008-10-21 16:13:35 +00004656} // end namespace clang