blob: b2793893b46189727ed73ed4e8a59cefabd35f87 [file] [log] [blame]
Chandler Carruth713aa942012-09-14 09:22:59 +00001//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/Constants.h"
29#include "llvm/DIBuilder.h"
30#include "llvm/DebugInfo.h"
31#include "llvm/DerivedTypes.h"
32#include "llvm/Function.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000033#include "llvm/IRBuilder.h"
34#include "llvm/Instructions.h"
35#include "llvm/IntrinsicInst.h"
36#include "llvm/LLVMContext.h"
37#include "llvm/Module.h"
38#include "llvm/Operator.h"
39#include "llvm/Pass.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/STLExtras.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000044#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/Loads.h"
46#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1c8db502012-09-15 11:43:14 +000047#include "llvm/Support/CommandLine.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000048#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000053#include "llvm/Support/raw_ostream.h"
Micah Villmow3574eca2012-10-08 16:38:25 +000054#include "llvm/DataLayout.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000055#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58using namespace llvm;
59
60STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
61STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
62STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
63STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
64STATISTIC(NumDeleted, "Number of instructions deleted");
65STATISTIC(NumVectorized, "Number of vectorized aggregates");
66
Chandler Carruth1c8db502012-09-15 11:43:14 +000067/// Hidden option to force the pass to not use DomTree and mem2reg, instead
68/// forming SSA values through the SSAUpdater infrastructure.
69static cl::opt<bool>
70ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
71
Chandler Carruth713aa942012-09-14 09:22:59 +000072namespace {
73/// \brief Alloca partitioning representation.
74///
75/// This class represents a partitioning of an alloca into slices, and
76/// information about the nature of uses of each slice of the alloca. The goal
77/// is that this information is sufficient to decide if and how to split the
78/// alloca apart and replace slices with scalars. It is also intended that this
Chandler Carruth7f5bede2012-09-14 10:18:49 +000079/// structure can capture the relevant information needed both to decide about
Chandler Carruth713aa942012-09-14 09:22:59 +000080/// and to enact these transformations.
81class AllocaPartitioning {
82public:
83 /// \brief A common base class for representing a half-open byte range.
84 struct ByteRange {
85 /// \brief The beginning offset of the range.
86 uint64_t BeginOffset;
87
88 /// \brief The ending offset, not included in the range.
89 uint64_t EndOffset;
90
91 ByteRange() : BeginOffset(), EndOffset() {}
92 ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
93 : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
94
95 /// \brief Support for ordering ranges.
96 ///
97 /// This provides an ordering over ranges such that start offsets are
98 /// always increasing, and within equal start offsets, the end offsets are
Chandler Carruth7f5bede2012-09-14 10:18:49 +000099 /// decreasing. Thus the spanning range comes first in a cluster with the
Chandler Carruth713aa942012-09-14 09:22:59 +0000100 /// same start position.
101 bool operator<(const ByteRange &RHS) const {
102 if (BeginOffset < RHS.BeginOffset) return true;
103 if (BeginOffset > RHS.BeginOffset) return false;
104 if (EndOffset > RHS.EndOffset) return true;
105 return false;
106 }
107
108 /// \brief Support comparison with a single offset to allow binary searches.
Benjamin Kramer2d1c2a22012-09-17 16:42:36 +0000109 friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
110 return LHS.BeginOffset < RHSOffset;
111 }
112
113 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
114 const ByteRange &RHS) {
115 return LHSOffset < RHS.BeginOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000116 }
117
118 bool operator==(const ByteRange &RHS) const {
119 return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
120 }
121 bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
122 };
123
124 /// \brief A partition of an alloca.
125 ///
126 /// This structure represents a contiguous partition of the alloca. These are
127 /// formed by examining the uses of the alloca. During formation, they may
128 /// overlap but once an AllocaPartitioning is built, the Partitions within it
129 /// are all disjoint.
130 struct Partition : public ByteRange {
131 /// \brief Whether this partition is splittable into smaller partitions.
132 ///
133 /// We flag partitions as splittable when they are formed entirely due to
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000134 /// accesses by trivially splittable operations such as memset and memcpy.
Chandler Carruth713aa942012-09-14 09:22:59 +0000135 ///
136 /// FIXME: At some point we should consider loads and stores of FCAs to be
137 /// splittable and eagerly split them into scalar values.
138 bool IsSplittable;
139
Chandler Carruthfca3f402012-10-05 01:29:09 +0000140 /// \brief Test whether a partition has been marked as dead.
141 bool isDead() const {
142 if (BeginOffset == UINT64_MAX) {
143 assert(EndOffset == UINT64_MAX);
144 return true;
145 }
146 return false;
147 }
148
149 /// \brief Kill a partition.
150 /// This is accomplished by setting both its beginning and end offset to
151 /// the maximum possible value.
152 void kill() {
153 assert(!isDead() && "He's Dead, Jim!");
154 BeginOffset = EndOffset = UINT64_MAX;
155 }
156
Chandler Carruth713aa942012-09-14 09:22:59 +0000157 Partition() : ByteRange(), IsSplittable() {}
158 Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
159 : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
160 };
161
162 /// \brief A particular use of a partition of the alloca.
163 ///
164 /// This structure is used to associate uses of a partition with it. They
165 /// mark the range of bytes which are referenced by a particular instruction,
166 /// and includes a handle to the user itself and the pointer value in use.
167 /// The bounds of these uses are determined by intersecting the bounds of the
168 /// memory use itself with a particular partition. As a consequence there is
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000169 /// intentionally overlap between various uses of the same partition.
Chandler Carruth713aa942012-09-14 09:22:59 +0000170 struct PartitionUse : public ByteRange {
Chandler Carruth77c12702012-10-01 01:49:22 +0000171 /// \brief The use in question. Provides access to both user and used value.
Chandler Carruthfdb15852012-10-02 18:57:13 +0000172 ///
173 /// Note that this may be null if the partition use is *dead*, that is, it
174 /// should be ignored.
175 Use *U;
Chandler Carruth713aa942012-09-14 09:22:59 +0000176
Chandler Carruth77c12702012-10-01 01:49:22 +0000177 PartitionUse() : ByteRange(), U() {}
178 PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
179 : ByteRange(BeginOffset, EndOffset), U(U) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000180 };
181
182 /// \brief Construct a partitioning of a particular alloca.
183 ///
184 /// Construction does most of the work for partitioning the alloca. This
185 /// performs the necessary walks of users and builds a partitioning from it.
Micah Villmow3574eca2012-10-08 16:38:25 +0000186 AllocaPartitioning(const DataLayout &TD, AllocaInst &AI);
Chandler Carruth713aa942012-09-14 09:22:59 +0000187
188 /// \brief Test whether a pointer to the allocation escapes our analysis.
189 ///
190 /// If this is true, the partitioning is never fully built and should be
191 /// ignored.
192 bool isEscaped() const { return PointerEscapingInstr; }
193
194 /// \brief Support for iterating over the partitions.
195 /// @{
196 typedef SmallVectorImpl<Partition>::iterator iterator;
197 iterator begin() { return Partitions.begin(); }
198 iterator end() { return Partitions.end(); }
199
200 typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
201 const_iterator begin() const { return Partitions.begin(); }
202 const_iterator end() const { return Partitions.end(); }
203 /// @}
204
205 /// \brief Support for iterating over and manipulating a particular
206 /// partition's uses.
207 ///
208 /// The iteration support provided for uses is more limited, but also
209 /// includes some manipulation routines to support rewriting the uses of
210 /// partitions during SROA.
211 /// @{
212 typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
213 use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
214 use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
215 use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
216 use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
Chandler Carruth713aa942012-09-14 09:22:59 +0000217
218 typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
219 const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
220 const_use_iterator use_begin(const_iterator I) const {
221 return Uses[I - begin()].begin();
222 }
223 const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
224 const_use_iterator use_end(const_iterator I) const {
225 return Uses[I - begin()].end();
226 }
Chandler Carrutha346f462012-10-02 17:49:47 +0000227
228 unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
229 unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
230 const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
231 return Uses[PIdx][UIdx];
232 }
233 const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
234 return Uses[I - begin()][UIdx];
235 }
236
237 void use_push_back(unsigned Idx, const PartitionUse &PU) {
238 Uses[Idx].push_back(PU);
239 }
240 void use_push_back(const_iterator I, const PartitionUse &PU) {
241 Uses[I - begin()].push_back(PU);
242 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000243 /// @}
244
245 /// \brief Allow iterating the dead users for this alloca.
246 ///
247 /// These are instructions which will never actually use the alloca as they
248 /// are outside the allocated range. They are safe to replace with undef and
249 /// delete.
250 /// @{
251 typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
252 dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
253 dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
254 /// @}
255
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000256 /// \brief Allow iterating the dead expressions referring to this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000257 ///
258 /// These are operands which have cannot actually be used to refer to the
259 /// alloca as they are outside its range and the user doesn't correct for
260 /// that. These mostly consist of PHI node inputs and the like which we just
261 /// need to replace with undef.
262 /// @{
263 typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
264 dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
265 dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
266 /// @}
267
268 /// \brief MemTransferInst auxiliary data.
269 /// This struct provides some auxiliary data about memory transfer
270 /// intrinsics such as memcpy and memmove. These intrinsics can use two
271 /// different ranges within the same alloca, and provide other challenges to
272 /// correctly represent. We stash extra data to help us untangle this
273 /// after the partitioning is complete.
274 struct MemTransferOffsets {
Chandler Carruthfca3f402012-10-05 01:29:09 +0000275 /// The destination begin and end offsets when the destination is within
276 /// this alloca. If the end offset is zero the destination is not within
277 /// this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000278 uint64_t DestBegin, DestEnd;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000279
280 /// The source begin and end offsets when the source is within this alloca.
281 /// If the end offset is zero, the source is not within this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000282 uint64_t SourceBegin, SourceEnd;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000283
284 /// Flag for whether an alloca is splittable.
Chandler Carruth713aa942012-09-14 09:22:59 +0000285 bool IsSplittable;
286 };
287 MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
288 return MemTransferInstData.lookup(&II);
289 }
290
291 /// \brief Map from a PHI or select operand back to a partition.
292 ///
293 /// When manipulating PHI nodes or selects, they can use more than one
294 /// partition of an alloca. We store a special mapping to allow finding the
295 /// partition referenced by each of these operands, if any.
Chandler Carruth77c12702012-10-01 01:49:22 +0000296 iterator findPartitionForPHIOrSelectOperand(Use *U) {
297 SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
298 = PHIOrSelectOpMap.find(U);
Chandler Carruth713aa942012-09-14 09:22:59 +0000299 if (MapIt == PHIOrSelectOpMap.end())
300 return end();
301
302 return begin() + MapIt->second.first;
303 }
304
305 /// \brief Map from a PHI or select operand back to the specific use of
306 /// a partition.
307 ///
308 /// Similar to mapping these operands back to the partitions, this maps
309 /// directly to the use structure of that partition.
Chandler Carruth77c12702012-10-01 01:49:22 +0000310 use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
311 SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
312 = PHIOrSelectOpMap.find(U);
Chandler Carruth713aa942012-09-14 09:22:59 +0000313 assert(MapIt != PHIOrSelectOpMap.end());
314 return Uses[MapIt->second.first].begin() + MapIt->second.second;
315 }
316
317 /// \brief Compute a common type among the uses of a particular partition.
318 ///
319 /// This routines walks all of the uses of a particular partition and tries
320 /// to find a common type between them. Untyped operations such as memset and
321 /// memcpy are ignored.
322 Type *getCommonType(iterator I) const;
323
Chandler Carruthba13d2e2012-09-14 10:18:51 +0000324#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chandler Carruth713aa942012-09-14 09:22:59 +0000325 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
326 void printUsers(raw_ostream &OS, const_iterator I,
327 StringRef Indent = " ") const;
328 void print(raw_ostream &OS) const;
NAKAMURA Takumiad9f5b82012-09-14 10:06:10 +0000329 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
330 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
Chandler Carruthba13d2e2012-09-14 10:18:51 +0000331#endif
Chandler Carruth713aa942012-09-14 09:22:59 +0000332
333private:
334 template <typename DerivedT, typename RetT = void> class BuilderBase;
335 class PartitionBuilder;
336 friend class AllocaPartitioning::PartitionBuilder;
337 class UseBuilder;
338 friend class AllocaPartitioning::UseBuilder;
339
Benjamin Kramerd0807692012-09-14 13:08:09 +0000340#ifndef NDEBUG
Chandler Carruth713aa942012-09-14 09:22:59 +0000341 /// \brief Handle to alloca instruction to simplify method interfaces.
342 AllocaInst &AI;
Benjamin Kramerd0807692012-09-14 13:08:09 +0000343#endif
Chandler Carruth713aa942012-09-14 09:22:59 +0000344
345 /// \brief The instruction responsible for this alloca having no partitioning.
346 ///
347 /// When an instruction (potentially) escapes the pointer to the alloca, we
348 /// store a pointer to that here and abort trying to partition the alloca.
349 /// This will be null if the alloca is partitioned successfully.
350 Instruction *PointerEscapingInstr;
351
352 /// \brief The partitions of the alloca.
353 ///
354 /// We store a vector of the partitions over the alloca here. This vector is
355 /// sorted by increasing begin offset, and then by decreasing end offset. See
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000356 /// the Partition inner class for more details. Initially (during
357 /// construction) there are overlaps, but we form a disjoint sequence of
358 /// partitions while finishing construction and a fully constructed object is
359 /// expected to always have this as a disjoint space.
Chandler Carruth713aa942012-09-14 09:22:59 +0000360 SmallVector<Partition, 8> Partitions;
361
362 /// \brief The uses of the partitions.
363 ///
364 /// This is essentially a mapping from each partition to a list of uses of
365 /// that partition. The mapping is done with a Uses vector that has the exact
366 /// same number of entries as the partition vector. Each entry is itself
367 /// a vector of the uses.
368 SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
369
370 /// \brief Instructions which will become dead if we rewrite the alloca.
371 ///
372 /// Note that these are not separated by partition. This is because we expect
373 /// a partitioned alloca to be completely rewritten or not rewritten at all.
374 /// If rewritten, all these instructions can simply be removed and replaced
375 /// with undef as they come from outside of the allocated space.
376 SmallVector<Instruction *, 8> DeadUsers;
377
378 /// \brief Operands which will become dead if we rewrite the alloca.
379 ///
380 /// These are operands that in their particular use can be replaced with
381 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
382 /// to PHI nodes and the like. They aren't entirely dead (there might be
383 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
384 /// want to swap this particular input for undef to simplify the use lists of
385 /// the alloca.
386 SmallVector<Use *, 8> DeadOperands;
387
388 /// \brief The underlying storage for auxiliary memcpy and memset info.
389 SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
390
391 /// \brief A side datastructure used when building up the partitions and uses.
392 ///
393 /// This mapping is only really used during the initial building of the
394 /// partitioning so that we can retain information about PHI and select nodes
395 /// processed.
396 SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
397
398 /// \brief Auxiliary information for particular PHI or select operands.
Chandler Carruth77c12702012-10-01 01:49:22 +0000399 SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
Chandler Carruth713aa942012-09-14 09:22:59 +0000400
401 /// \brief A utility routine called from the constructor.
402 ///
403 /// This does what it says on the tin. It is the key of the alloca partition
404 /// splitting and merging. After it is called we have the desired disjoint
405 /// collection of partitions.
406 void splitAndMergePartitions();
407};
408}
409
410template <typename DerivedT, typename RetT>
411class AllocaPartitioning::BuilderBase
412 : public InstVisitor<DerivedT, RetT> {
413public:
Micah Villmow3574eca2012-10-08 16:38:25 +0000414 BuilderBase(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth713aa942012-09-14 09:22:59 +0000415 : TD(TD),
416 AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
417 P(P) {
418 enqueueUsers(AI, 0);
419 }
420
421protected:
Micah Villmow3574eca2012-10-08 16:38:25 +0000422 const DataLayout &TD;
Chandler Carruth713aa942012-09-14 09:22:59 +0000423 const uint64_t AllocSize;
424 AllocaPartitioning &P;
425
Chandler Carruth77c12702012-10-01 01:49:22 +0000426 SmallPtrSet<Use *, 8> VisitedUses;
427
Chandler Carruth713aa942012-09-14 09:22:59 +0000428 struct OffsetUse {
429 Use *U;
Chandler Carruth02e92a02012-09-23 11:43:14 +0000430 int64_t Offset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000431 };
432 SmallVector<OffsetUse, 8> Queue;
433
434 // The active offset and use while visiting.
435 Use *U;
Chandler Carruth02e92a02012-09-23 11:43:14 +0000436 int64_t Offset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000437
Chandler Carruth02e92a02012-09-23 11:43:14 +0000438 void enqueueUsers(Instruction &I, int64_t UserOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000439 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
440 UI != UE; ++UI) {
Chandler Carruth77c12702012-10-01 01:49:22 +0000441 if (VisitedUses.insert(&UI.getUse())) {
442 OffsetUse OU = { &UI.getUse(), UserOffset };
443 Queue.push_back(OU);
444 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000445 }
446 }
447
Chandler Carruth02e92a02012-09-23 11:43:14 +0000448 bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000449 GEPOffset = Offset;
450 for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI);
451 GTI != GTE; ++GTI) {
452 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
453 if (!OpC)
454 return false;
455 if (OpC->isZero())
456 continue;
457
458 // Handle a struct index, which adds its field offset to the pointer.
459 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
460 unsigned ElementIdx = OpC->getZExtValue();
461 const StructLayout *SL = TD.getStructLayout(STy);
Chandler Carruth02e92a02012-09-23 11:43:14 +0000462 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
463 // Check that we can continue to model this GEP in a signed 64-bit offset.
464 if (ElementOffset > INT64_MAX ||
465 (GEPOffset >= 0 &&
466 ((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) {
467 DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
468 << "what can be represented in an int64_t!\n"
469 << " alloca: " << P.AI << "\n");
470 return false;
471 }
472 if (GEPOffset < 0)
473 GEPOffset = ElementOffset + (uint64_t)-GEPOffset;
474 else
475 GEPOffset += ElementOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000476 continue;
477 }
478
Chandler Carruth02e92a02012-09-23 11:43:14 +0000479 APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits());
480 Index *= APInt(Index.getBitWidth(),
481 TD.getTypeAllocSize(GTI.getIndexedType()));
482 Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset,
483 /*isSigned*/true);
484 // Check if the result can be stored in our int64_t offset.
485 if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) {
486 DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
487 << "what can be represented in an int64_t!\n"
488 << " alloca: " << P.AI << "\n");
489 return false;
490 }
491
492 GEPOffset = Index.getSExtValue();
Chandler Carruth713aa942012-09-14 09:22:59 +0000493 }
494 return true;
495 }
496
497 Value *foldSelectInst(SelectInst &SI) {
498 // If the condition being selected on is a constant or the same value is
499 // being selected between, fold the select. Yes this does (rarely) happen
500 // early on.
501 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
502 return SI.getOperand(1+CI->isZero());
503 if (SI.getOperand(1) == SI.getOperand(2)) {
504 assert(*U == SI.getOperand(1));
505 return SI.getOperand(1);
506 }
507 return 0;
508 }
509};
510
511/// \brief Builder for the alloca partitioning.
512///
513/// This class builds an alloca partitioning by recursively visiting the uses
514/// of an alloca and splitting the partitions for each load and store at each
515/// offset.
516class AllocaPartitioning::PartitionBuilder
517 : public BuilderBase<PartitionBuilder, bool> {
518 friend class InstVisitor<PartitionBuilder, bool>;
519
520 SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
521
522public:
Micah Villmow3574eca2012-10-08 16:38:25 +0000523 PartitionBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth2a9bf252012-09-14 09:30:33 +0000524 : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000525
526 /// \brief Run the builder over the allocation.
527 bool operator()() {
528 // Note that we have to re-evaluate size on each trip through the loop as
529 // the queue grows at the tail.
530 for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
531 U = Queue[Idx].U;
532 Offset = Queue[Idx].Offset;
533 if (!visit(cast<Instruction>(U->getUser())))
534 return false;
535 }
536 return true;
537 }
538
539private:
540 bool markAsEscaping(Instruction &I) {
541 P.PointerEscapingInstr = &I;
542 return false;
543 }
544
Chandler Carruth02e92a02012-09-23 11:43:14 +0000545 void insertUse(Instruction &I, int64_t Offset, uint64_t Size,
Chandler Carruth63392ea2012-09-16 19:39:50 +0000546 bool IsSplittable = false) {
Chandler Carruthc3034632012-09-25 10:03:40 +0000547 // Completely skip uses which have a zero size or don't overlap the
548 // allocation.
549 if (Size == 0 ||
550 (Offset >= 0 && (uint64_t)Offset >= AllocSize) ||
Chandler Carruth02e92a02012-09-23 11:43:14 +0000551 (Offset < 0 && (uint64_t)-Offset >= Size)) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000552 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
553 << " which starts past the end of the " << AllocSize
554 << " byte alloca:\n"
555 << " alloca: " << P.AI << "\n"
556 << " use: " << I << "\n");
557 return;
558 }
559
Chandler Carruth02e92a02012-09-23 11:43:14 +0000560 // Clamp the start to the beginning of the allocation.
561 if (Offset < 0) {
562 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
563 << " to start at the beginning of the alloca:\n"
564 << " alloca: " << P.AI << "\n"
565 << " use: " << I << "\n");
566 Size -= (uint64_t)-Offset;
567 Offset = 0;
568 }
569
570 uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
571
572 // Clamp the end offset to the end of the allocation. Note that this is
573 // formulated to handle even the case where "BeginOffset + Size" overflows.
574 assert(AllocSize >= BeginOffset); // Established above.
575 if (Size > AllocSize - BeginOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000576 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
577 << " to remain within the " << AllocSize << " byte alloca:\n"
578 << " alloca: " << P.AI << "\n"
579 << " use: " << I << "\n");
580 EndOffset = AllocSize;
581 }
582
Chandler Carruth713aa942012-09-14 09:22:59 +0000583 Partition New(BeginOffset, EndOffset, IsSplittable);
584 P.Partitions.push_back(New);
585 }
586
Chandler Carruth02e92a02012-09-23 11:43:14 +0000587 bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000588 uint64_t Size = TD.getTypeStoreSize(Ty);
589
590 // If this memory access can be shown to *statically* extend outside the
591 // bounds of of the allocation, it's behavior is undefined, so simply
592 // ignore it. Note that this is more strict than the generic clamping
593 // behavior of insertUse. We also try to handle cases which might run the
594 // risk of overflow.
595 // FIXME: We should instead consider the pointer to have escaped if this
596 // function is being instrumented for addressing bugs or race conditions.
Chandler Carruth02e92a02012-09-23 11:43:14 +0000597 if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
598 Size > (AllocSize - (uint64_t)Offset)) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000599 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
600 << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
601 << " which extends past the end of the " << AllocSize
602 << " byte alloca:\n"
603 << " alloca: " << P.AI << "\n"
604 << " use: " << I << "\n");
605 return true;
606 }
607
Chandler Carruth63392ea2012-09-16 19:39:50 +0000608 insertUse(I, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000609 return true;
610 }
611
612 bool visitBitCastInst(BitCastInst &BC) {
613 enqueueUsers(BC, Offset);
614 return true;
615 }
616
617 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
Chandler Carruth02e92a02012-09-23 11:43:14 +0000618 int64_t GEPOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000619 if (!computeConstantGEPOffset(GEPI, GEPOffset))
620 return markAsEscaping(GEPI);
621
622 enqueueUsers(GEPI, GEPOffset);
623 return true;
624 }
625
626 bool visitLoadInst(LoadInst &LI) {
Chandler Carruthc370acd2012-09-18 12:57:43 +0000627 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
628 "All simple FCA loads should have been pre-split");
Chandler Carruth63392ea2012-09-16 19:39:50 +0000629 return handleLoadOrStore(LI.getType(), LI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000630 }
631
632 bool visitStoreInst(StoreInst &SI) {
Chandler Carruthc370acd2012-09-18 12:57:43 +0000633 Value *ValOp = SI.getValueOperand();
634 if (ValOp == *U)
Chandler Carruth713aa942012-09-14 09:22:59 +0000635 return markAsEscaping(SI);
636
Chandler Carruthc370acd2012-09-18 12:57:43 +0000637 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
638 "All simple FCA stores should have been pre-split");
639 return handleLoadOrStore(ValOp->getType(), SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000640 }
641
642
643 bool visitMemSetInst(MemSetInst &II) {
Chandler Carruthb3dd9a12012-09-14 10:26:34 +0000644 assert(II.getRawDest() == *U && "Pointer use is not the destination?");
Chandler Carruth713aa942012-09-14 09:22:59 +0000645 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000646 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
647 insertUse(II, Offset, Size, Length);
Chandler Carruth713aa942012-09-14 09:22:59 +0000648 return true;
649 }
650
651 bool visitMemTransferInst(MemTransferInst &II) {
652 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
653 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
654 if (!Size)
655 // Zero-length mem transfer intrinsics can be ignored entirely.
656 return true;
657
658 MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
659
660 // Only intrinsics with a constant length can be split.
661 Offsets.IsSplittable = Length;
662
Chandler Carruthfca3f402012-10-05 01:29:09 +0000663 if (*U == II.getRawDest()) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000664 Offsets.DestBegin = Offset;
665 Offsets.DestEnd = Offset + Size;
666 }
Chandler Carruthfca3f402012-10-05 01:29:09 +0000667 if (*U == II.getRawSource()) {
668 Offsets.SourceBegin = Offset;
669 Offsets.SourceEnd = Offset + Size;
670 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000671
Chandler Carruthfca3f402012-10-05 01:29:09 +0000672 // If we have set up end offsets for both the source and the destination,
673 // we have found both sides of this transfer pointing at the same alloca.
674 bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd;
675 if (SeenBothEnds && II.getRawDest() != II.getRawSource()) {
676 unsigned PrevIdx = MemTransferPartitionMap[&II];
Chandler Carruth713aa942012-09-14 09:22:59 +0000677
Chandler Carruthfca3f402012-10-05 01:29:09 +0000678 // Check if the begin offsets match and this is a non-volatile transfer.
679 // In that case, we can completely elide the transfer.
680 if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
681 P.Partitions[PrevIdx].kill();
682 return true;
683 }
684
685 // Otherwise we have an offset transfer within the same alloca. We can't
686 // split those.
687 P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false;
688 } else if (SeenBothEnds) {
689 // Handle the case where this exact use provides both ends of the
690 // operation.
691 assert(II.getRawDest() == II.getRawSource());
692
693 // For non-volatile transfers this is a no-op.
694 if (!II.isVolatile())
695 return true;
696
697 // Otherwise just suppress splitting.
Chandler Carruth713aa942012-09-14 09:22:59 +0000698 Offsets.IsSplittable = false;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000699 }
700
701
702 // Insert the use now that we've fixed up the splittable nature.
703 insertUse(II, Offset, Size, Offsets.IsSplittable);
704
705 // Setup the mapping from intrinsic to partition of we've not seen both
706 // ends of this transfer.
707 if (!SeenBothEnds) {
708 unsigned NewIdx = P.Partitions.size() - 1;
709 bool Inserted
710 = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second;
711 assert(Inserted &&
712 "Already have intrinsic in map but haven't seen both ends");
NAKAMURA Takumi0559d312012-10-05 13:56:23 +0000713 (void)Inserted;
Chandler Carruth713aa942012-09-14 09:22:59 +0000714 }
715
716 return true;
717 }
718
719 // Disable SRoA for any intrinsics except for lifetime invariants.
Chandler Carruth50754f02012-09-14 10:26:36 +0000720 // FIXME: What about debug instrinsics? This matches old behavior, but
721 // doesn't make sense.
Chandler Carruth713aa942012-09-14 09:22:59 +0000722 bool visitIntrinsicInst(IntrinsicInst &II) {
723 if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
724 II.getIntrinsicID() == Intrinsic::lifetime_end) {
725 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
726 uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000727 insertUse(II, Offset, Size, true);
Chandler Carruth713aa942012-09-14 09:22:59 +0000728 return true;
729 }
730
731 return markAsEscaping(II);
732 }
733
734 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
735 // We consider any PHI or select that results in a direct load or store of
736 // the same offset to be a viable use for partitioning purposes. These uses
737 // are considered unsplittable and the size is the maximum loaded or stored
738 // size.
739 SmallPtrSet<Instruction *, 4> Visited;
740 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
741 Visited.insert(Root);
742 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
Chandler Carruthc3034632012-09-25 10:03:40 +0000743 // If there are no loads or stores, the access is dead. We mark that as
744 // a size zero access.
745 Size = 0;
Chandler Carruth713aa942012-09-14 09:22:59 +0000746 do {
747 Instruction *I, *UsedI;
748 llvm::tie(UsedI, I) = Uses.pop_back_val();
749
750 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
751 Size = std::max(Size, TD.getTypeStoreSize(LI->getType()));
752 continue;
753 }
754 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
755 Value *Op = SI->getOperand(0);
756 if (Op == UsedI)
757 return SI;
758 Size = std::max(Size, TD.getTypeStoreSize(Op->getType()));
759 continue;
760 }
761
762 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
763 if (!GEP->hasAllZeroIndices())
764 return GEP;
765 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
766 !isa<SelectInst>(I)) {
767 return I;
768 }
769
770 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
771 ++UI)
772 if (Visited.insert(cast<Instruction>(*UI)))
773 Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
774 } while (!Uses.empty());
775
776 return 0;
777 }
778
779 bool visitPHINode(PHINode &PN) {
780 // See if we already have computed info on this node.
781 std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
782 if (PHIInfo.first) {
783 PHIInfo.second = true;
Chandler Carruth63392ea2012-09-16 19:39:50 +0000784 insertUse(PN, Offset, PHIInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000785 return true;
786 }
787
788 // Check for an unsafe use of the PHI node.
789 if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
790 return markAsEscaping(*EscapingI);
791
Chandler Carruth63392ea2012-09-16 19:39:50 +0000792 insertUse(PN, Offset, PHIInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000793 return true;
794 }
795
796 bool visitSelectInst(SelectInst &SI) {
797 if (Value *Result = foldSelectInst(SI)) {
798 if (Result == *U)
799 // If the result of the constant fold will be the pointer, recurse
800 // through the select as if we had RAUW'ed it.
801 enqueueUsers(SI, Offset);
802
803 return true;
804 }
805
806 // See if we already have computed info on this node.
807 std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
808 if (SelectInfo.first) {
809 SelectInfo.second = true;
Chandler Carruth63392ea2012-09-16 19:39:50 +0000810 insertUse(SI, Offset, SelectInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000811 return true;
812 }
813
814 // Check for an unsafe use of the PHI node.
815 if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
816 return markAsEscaping(*EscapingI);
817
Chandler Carruth63392ea2012-09-16 19:39:50 +0000818 insertUse(SI, Offset, SelectInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000819 return true;
820 }
821
822 /// \brief Disable SROA entirely if there are unhandled users of the alloca.
823 bool visitInstruction(Instruction &I) { return markAsEscaping(I); }
824};
825
826
827/// \brief Use adder for the alloca partitioning.
828///
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000829/// This class adds the uses of an alloca to all of the partitions which they
830/// use. For splittable partitions, this can end up doing essentially a linear
Chandler Carruth713aa942012-09-14 09:22:59 +0000831/// walk of the partitions, but the number of steps remains bounded by the
832/// total result instruction size:
833/// - The number of partitions is a result of the number unsplittable
834/// instructions using the alloca.
835/// - The number of users of each partition is at worst the total number of
836/// splittable instructions using the alloca.
837/// Thus we will produce N * M instructions in the end, where N are the number
838/// of unsplittable uses and M are the number of splittable. This visitor does
839/// the exact same number of updates to the partitioning.
840///
841/// In the more common case, this visitor will leverage the fact that the
842/// partition space is pre-sorted, and do a logarithmic search for the
843/// partition needed, making the total visit a classical ((N + M) * log(N))
844/// complexity operation.
845class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> {
846 friend class InstVisitor<UseBuilder>;
847
848 /// \brief Set to de-duplicate dead instructions found in the use walk.
849 SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
850
851public:
Micah Villmow3574eca2012-10-08 16:38:25 +0000852 UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth2a9bf252012-09-14 09:30:33 +0000853 : BuilderBase<UseBuilder>(TD, AI, P) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000854
855 /// \brief Run the builder over the allocation.
856 void operator()() {
857 // Note that we have to re-evaluate size on each trip through the loop as
858 // the queue grows at the tail.
859 for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
860 U = Queue[Idx].U;
861 Offset = Queue[Idx].Offset;
862 this->visit(cast<Instruction>(U->getUser()));
863 }
864 }
865
866private:
867 void markAsDead(Instruction &I) {
868 if (VisitedDeadInsts.insert(&I))
869 P.DeadUsers.push_back(&I);
870 }
871
Chandler Carruth02e92a02012-09-23 11:43:14 +0000872 void insertUse(Instruction &User, int64_t Offset, uint64_t Size) {
Chandler Carruthc3034632012-09-25 10:03:40 +0000873 // If the use has a zero size or extends outside of the allocation, record
874 // it as a dead use for elimination later.
875 if (Size == 0 || (uint64_t)Offset >= AllocSize ||
Chandler Carruth02e92a02012-09-23 11:43:14 +0000876 (Offset < 0 && (uint64_t)-Offset >= Size))
Chandler Carruth713aa942012-09-14 09:22:59 +0000877 return markAsDead(User);
878
Chandler Carruth02e92a02012-09-23 11:43:14 +0000879 // Clamp the start to the beginning of the allocation.
880 if (Offset < 0) {
881 Size -= (uint64_t)-Offset;
882 Offset = 0;
883 }
884
885 uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
886
887 // Clamp the end offset to the end of the allocation. Note that this is
888 // formulated to handle even the case where "BeginOffset + Size" overflows.
889 assert(AllocSize >= BeginOffset); // Established above.
890 if (Size > AllocSize - BeginOffset)
Chandler Carruth713aa942012-09-14 09:22:59 +0000891 EndOffset = AllocSize;
892
893 // NB: This only works if we have zero overlapping partitions.
894 iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
895 if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
896 B = llvm::prior(B);
897 for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
898 ++I) {
Chandler Carruth77c12702012-10-01 01:49:22 +0000899 PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
900 std::min(I->EndOffset, EndOffset), U);
901 P.use_push_back(I, NewPU);
Chandler Carruth713aa942012-09-14 09:22:59 +0000902 if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
Chandler Carruth77c12702012-10-01 01:49:22 +0000903 P.PHIOrSelectOpMap[U]
Chandler Carruth713aa942012-09-14 09:22:59 +0000904 = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
905 }
906 }
907
Chandler Carruth02e92a02012-09-23 11:43:14 +0000908 void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000909 uint64_t Size = TD.getTypeStoreSize(Ty);
910
911 // If this memory access can be shown to *statically* extend outside the
912 // bounds of of the allocation, it's behavior is undefined, so simply
913 // ignore it. Note that this is more strict than the generic clamping
914 // behavior of insertUse.
Chandler Carruth02e92a02012-09-23 11:43:14 +0000915 if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
916 Size > (AllocSize - (uint64_t)Offset))
Chandler Carruth713aa942012-09-14 09:22:59 +0000917 return markAsDead(I);
918
Chandler Carruth63392ea2012-09-16 19:39:50 +0000919 insertUse(I, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000920 }
921
922 void visitBitCastInst(BitCastInst &BC) {
923 if (BC.use_empty())
924 return markAsDead(BC);
925
926 enqueueUsers(BC, Offset);
927 }
928
929 void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
930 if (GEPI.use_empty())
931 return markAsDead(GEPI);
932
Chandler Carruth02e92a02012-09-23 11:43:14 +0000933 int64_t GEPOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000934 if (!computeConstantGEPOffset(GEPI, GEPOffset))
935 llvm_unreachable("Unable to compute constant offset for use");
936
937 enqueueUsers(GEPI, GEPOffset);
938 }
939
940 void visitLoadInst(LoadInst &LI) {
Chandler Carruth63392ea2012-09-16 19:39:50 +0000941 handleLoadOrStore(LI.getType(), LI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000942 }
943
944 void visitStoreInst(StoreInst &SI) {
Chandler Carruth63392ea2012-09-16 19:39:50 +0000945 handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000946 }
947
948 void visitMemSetInst(MemSetInst &II) {
949 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000950 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
951 insertUse(II, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000952 }
953
954 void visitMemTransferInst(MemTransferInst &II) {
955 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000956 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000957 if (!Size)
958 return markAsDead(II);
959
960 MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
961 if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
962 Offsets.DestBegin == Offsets.SourceBegin)
963 return markAsDead(II); // Skip identity transfers without side-effects.
964
Chandler Carruth63392ea2012-09-16 19:39:50 +0000965 insertUse(II, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000966 }
967
968 void visitIntrinsicInst(IntrinsicInst &II) {
969 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
970 II.getIntrinsicID() == Intrinsic::lifetime_end);
971
972 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
Chandler Carruth63392ea2012-09-16 19:39:50 +0000973 insertUse(II, Offset,
974 std::min(AllocSize - Offset, Length->getLimitedValue()));
Chandler Carruth713aa942012-09-14 09:22:59 +0000975 }
976
Chandler Carruth63392ea2012-09-16 19:39:50 +0000977 void insertPHIOrSelect(Instruction &User, uint64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000978 uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
979
980 // For PHI and select operands outside the alloca, we can't nuke the entire
981 // phi or select -- the other side might still be relevant, so we special
982 // case them here and use a separate structure to track the operands
983 // themselves which should be replaced with undef.
984 if (Offset >= AllocSize) {
985 P.DeadOperands.push_back(U);
986 return;
987 }
988
Chandler Carruth63392ea2012-09-16 19:39:50 +0000989 insertUse(User, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000990 }
991 void visitPHINode(PHINode &PN) {
992 if (PN.use_empty())
993 return markAsDead(PN);
994
Chandler Carruth63392ea2012-09-16 19:39:50 +0000995 insertPHIOrSelect(PN, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000996 }
997 void visitSelectInst(SelectInst &SI) {
998 if (SI.use_empty())
999 return markAsDead(SI);
1000
1001 if (Value *Result = foldSelectInst(SI)) {
1002 if (Result == *U)
1003 // If the result of the constant fold will be the pointer, recurse
1004 // through the select as if we had RAUW'ed it.
1005 enqueueUsers(SI, Offset);
Chandler Carruthd54a6b52012-09-21 23:36:40 +00001006 else
1007 // Otherwise the operand to the select is dead, and we can replace it
1008 // with undef.
1009 P.DeadOperands.push_back(U);
Chandler Carruth713aa942012-09-14 09:22:59 +00001010
1011 return;
1012 }
1013
Chandler Carruth63392ea2012-09-16 19:39:50 +00001014 insertPHIOrSelect(SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +00001015 }
1016
1017 /// \brief Unreachable, we've already visited the alloca once.
1018 void visitInstruction(Instruction &I) {
1019 llvm_unreachable("Unhandled instruction in use builder.");
1020 }
1021};
1022
1023void AllocaPartitioning::splitAndMergePartitions() {
1024 size_t NumDeadPartitions = 0;
1025
1026 // Track the range of splittable partitions that we pass when accumulating
1027 // overlapping unsplittable partitions.
1028 uint64_t SplitEndOffset = 0ull;
1029
1030 Partition New(0ull, 0ull, false);
1031
1032 for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
1033 ++j;
1034
1035 if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
1036 assert(New.BeginOffset == New.EndOffset);
1037 New = Partitions[i];
1038 } else {
1039 assert(New.IsSplittable);
1040 New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
1041 }
1042 assert(New.BeginOffset != New.EndOffset);
1043
1044 // Scan the overlapping partitions.
1045 while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
1046 // If the new partition we are forming is splittable, stop at the first
1047 // unsplittable partition.
1048 if (New.IsSplittable && !Partitions[j].IsSplittable)
1049 break;
1050
1051 // Grow the new partition to include any equally splittable range. 'j' is
1052 // always equally splittable when New is splittable, but when New is not
1053 // splittable, we may subsume some (or part of some) splitable partition
1054 // without growing the new one.
1055 if (New.IsSplittable == Partitions[j].IsSplittable) {
1056 New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
1057 } else {
1058 assert(!New.IsSplittable);
1059 assert(Partitions[j].IsSplittable);
1060 SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
1061 }
1062
Chandler Carruthfca3f402012-10-05 01:29:09 +00001063 Partitions[j].kill();
Chandler Carruth713aa942012-09-14 09:22:59 +00001064 ++NumDeadPartitions;
1065 ++j;
1066 }
1067
1068 // If the new partition is splittable, chop off the end as soon as the
1069 // unsplittable subsequent partition starts and ensure we eventually cover
1070 // the splittable area.
1071 if (j != e && New.IsSplittable) {
1072 SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
1073 New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1074 }
1075
1076 // Add the new partition if it differs from the original one and is
1077 // non-empty. We can end up with an empty partition here if it was
1078 // splittable but there is an unsplittable one that starts at the same
1079 // offset.
1080 if (New != Partitions[i]) {
1081 if (New.BeginOffset != New.EndOffset)
1082 Partitions.push_back(New);
1083 // Mark the old one for removal.
Chandler Carruthfca3f402012-10-05 01:29:09 +00001084 Partitions[i].kill();
Chandler Carruth713aa942012-09-14 09:22:59 +00001085 ++NumDeadPartitions;
1086 }
1087
1088 New.BeginOffset = New.EndOffset;
1089 if (!New.IsSplittable) {
1090 New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
1091 if (j != e && !Partitions[j].IsSplittable)
1092 New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1093 New.IsSplittable = true;
1094 // If there is a trailing splittable partition which won't be fused into
1095 // the next splittable partition go ahead and add it onto the partitions
1096 // list.
1097 if (New.BeginOffset < New.EndOffset &&
1098 (j == e || !Partitions[j].IsSplittable ||
1099 New.EndOffset < Partitions[j].BeginOffset)) {
1100 Partitions.push_back(New);
1101 New.BeginOffset = New.EndOffset = 0ull;
1102 }
1103 }
1104 }
1105
1106 // Re-sort the partitions now that they have been split and merged into
1107 // disjoint set of partitions. Also remove any of the dead partitions we've
1108 // replaced in the process.
1109 std::sort(Partitions.begin(), Partitions.end());
1110 if (NumDeadPartitions) {
Chandler Carruthfca3f402012-10-05 01:29:09 +00001111 assert(Partitions.back().isDead());
Chandler Carruth713aa942012-09-14 09:22:59 +00001112 assert((ptrdiff_t)NumDeadPartitions ==
1113 std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
1114 }
1115 Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
1116}
1117
Micah Villmow3574eca2012-10-08 16:38:25 +00001118AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
Benjamin Kramerd0807692012-09-14 13:08:09 +00001119 :
1120#ifndef NDEBUG
1121 AI(AI),
1122#endif
1123 PointerEscapingInstr(0) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001124 PartitionBuilder PB(TD, AI, *this);
1125 if (!PB())
1126 return;
1127
Chandler Carruthfca3f402012-10-05 01:29:09 +00001128 // Sort the uses. This arranges for the offsets to be in ascending order,
1129 // and the sizes to be in descending order.
1130 std::sort(Partitions.begin(), Partitions.end());
Chandler Carruth713aa942012-09-14 09:22:59 +00001131
Chandler Carruthfca3f402012-10-05 01:29:09 +00001132 // Remove any partitions from the back which are marked as dead.
1133 while (!Partitions.empty() && Partitions.back().isDead())
1134 Partitions.pop_back();
1135
1136 if (Partitions.size() > 1) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001137 // Intersect splittability for all partitions with equal offsets and sizes.
1138 // Then remove all but the first so that we have a sequence of non-equal but
1139 // potentially overlapping partitions.
1140 for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
1141 I = J) {
1142 ++J;
1143 while (J != E && *I == *J) {
1144 I->IsSplittable &= J->IsSplittable;
1145 ++J;
1146 }
1147 }
1148 Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
1149 Partitions.end());
1150
1151 // Split splittable and merge unsplittable partitions into a disjoint set
1152 // of partitions over the used space of the allocation.
1153 splitAndMergePartitions();
1154 }
1155
1156 // Now build up the user lists for each of these disjoint partitions by
1157 // re-walking the recursive users of the alloca.
1158 Uses.resize(Partitions.size());
1159 UseBuilder UB(TD, AI, *this);
1160 UB();
Chandler Carruth713aa942012-09-14 09:22:59 +00001161}
1162
1163Type *AllocaPartitioning::getCommonType(iterator I) const {
1164 Type *Ty = 0;
1165 for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00001166 if (!UI->U)
1167 continue; // Skip dead uses.
Chandler Carruth77c12702012-10-01 01:49:22 +00001168 if (isa<IntrinsicInst>(*UI->U->getUser()))
Chandler Carruth713aa942012-09-14 09:22:59 +00001169 continue;
1170 if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
Chandler Carruth7c8df7a2012-09-18 17:49:37 +00001171 continue;
Chandler Carruth713aa942012-09-14 09:22:59 +00001172
1173 Type *UserTy = 0;
Chandler Carruth77c12702012-10-01 01:49:22 +00001174 if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001175 UserTy = LI->getType();
Chandler Carruth77c12702012-10-01 01:49:22 +00001176 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001177 UserTy = SI->getValueOperand()->getType();
Chandler Carruth713aa942012-09-14 09:22:59 +00001178 }
1179
1180 if (Ty && Ty != UserTy)
1181 return 0;
1182
1183 Ty = UserTy;
1184 }
1185 return Ty;
1186}
1187
Chandler Carruthba13d2e2012-09-14 10:18:51 +00001188#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1189
Chandler Carruth713aa942012-09-14 09:22:59 +00001190void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
1191 StringRef Indent) const {
1192 OS << Indent << "partition #" << (I - begin())
1193 << " [" << I->BeginOffset << "," << I->EndOffset << ")"
1194 << (I->IsSplittable ? " (splittable)" : "")
1195 << (Uses[I - begin()].empty() ? " (zero uses)" : "")
1196 << "\n";
1197}
1198
1199void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
1200 StringRef Indent) const {
1201 for (const_use_iterator UI = use_begin(I), UE = use_end(I);
1202 UI != UE; ++UI) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00001203 if (!UI->U)
1204 continue; // Skip dead uses.
Chandler Carruth713aa942012-09-14 09:22:59 +00001205 OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") "
Chandler Carruth77c12702012-10-01 01:49:22 +00001206 << "used by: " << *UI->U->getUser() << "\n";
1207 if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001208 const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
1209 bool IsDest;
1210 if (!MTO.IsSplittable)
1211 IsDest = UI->BeginOffset == MTO.DestBegin;
1212 else
1213 IsDest = MTO.DestBegin != 0u;
1214 OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": "
1215 << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
1216 << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
1217 }
1218 }
1219}
1220
1221void AllocaPartitioning::print(raw_ostream &OS) const {
1222 if (PointerEscapingInstr) {
1223 OS << "No partitioning for alloca: " << AI << "\n"
1224 << " A pointer to this alloca escaped by:\n"
1225 << " " << *PointerEscapingInstr << "\n";
1226 return;
1227 }
1228
1229 OS << "Partitioning of alloca: " << AI << "\n";
1230 unsigned Num = 0;
1231 for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
1232 print(OS, I);
1233 printUsers(OS, I);
1234 }
1235}
1236
1237void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
1238void AllocaPartitioning::dump() const { print(dbgs()); }
1239
Chandler Carruthba13d2e2012-09-14 10:18:51 +00001240#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1241
Chandler Carruth713aa942012-09-14 09:22:59 +00001242
1243namespace {
Chandler Carruth1c8db502012-09-15 11:43:14 +00001244/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
1245///
1246/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
1247/// the loads and stores of an alloca instruction, as well as updating its
1248/// debug information. This is used when a domtree is unavailable and thus
1249/// mem2reg in its full form can't be used to handle promotion of allocas to
1250/// scalar values.
1251class AllocaPromoter : public LoadAndStorePromoter {
1252 AllocaInst &AI;
1253 DIBuilder &DIB;
1254
1255 SmallVector<DbgDeclareInst *, 4> DDIs;
1256 SmallVector<DbgValueInst *, 4> DVIs;
1257
1258public:
1259 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1260 AllocaInst &AI, DIBuilder &DIB)
1261 : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
1262
1263 void run(const SmallVectorImpl<Instruction*> &Insts) {
1264 // Remember which alloca we're promoting (for isInstInList).
1265 if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
1266 for (Value::use_iterator UI = DebugNode->use_begin(),
1267 UE = DebugNode->use_end();
1268 UI != UE; ++UI)
1269 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1270 DDIs.push_back(DDI);
1271 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1272 DVIs.push_back(DVI);
1273 }
1274
1275 LoadAndStorePromoter::run(Insts);
1276 AI.eraseFromParent();
1277 while (!DDIs.empty())
1278 DDIs.pop_back_val()->eraseFromParent();
1279 while (!DVIs.empty())
1280 DVIs.pop_back_val()->eraseFromParent();
1281 }
1282
1283 virtual bool isInstInList(Instruction *I,
1284 const SmallVectorImpl<Instruction*> &Insts) const {
1285 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1286 return LI->getOperand(0) == &AI;
1287 return cast<StoreInst>(I)->getPointerOperand() == &AI;
1288 }
1289
1290 virtual void updateDebugInfo(Instruction *Inst) const {
1291 for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1292 E = DDIs.end(); I != E; ++I) {
1293 DbgDeclareInst *DDI = *I;
1294 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1295 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1296 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1297 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1298 }
1299 for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1300 E = DVIs.end(); I != E; ++I) {
1301 DbgValueInst *DVI = *I;
1302 Value *Arg = NULL;
1303 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1304 // If an argument is zero extended then use argument directly. The ZExt
1305 // may be zapped by an optimization pass in future.
1306 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1307 Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1308 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1309 Arg = dyn_cast<Argument>(SExt->getOperand(0));
1310 if (!Arg)
1311 Arg = SI->getOperand(0);
1312 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1313 Arg = LI->getOperand(0);
1314 } else {
1315 continue;
1316 }
1317 Instruction *DbgVal =
1318 DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1319 Inst);
1320 DbgVal->setDebugLoc(DVI->getDebugLoc());
1321 }
1322 }
1323};
1324} // end anon namespace
1325
1326
1327namespace {
Chandler Carruth713aa942012-09-14 09:22:59 +00001328/// \brief An optimization pass providing Scalar Replacement of Aggregates.
1329///
1330/// This pass takes allocations which can be completely analyzed (that is, they
1331/// don't escape) and tries to turn them into scalar SSA values. There are
1332/// a few steps to this process.
1333///
1334/// 1) It takes allocations of aggregates and analyzes the ways in which they
1335/// are used to try to split them into smaller allocations, ideally of
1336/// a single scalar data type. It will split up memcpy and memset accesses
1337/// as necessary and try to isolate invidual scalar accesses.
1338/// 2) It will transform accesses into forms which are suitable for SSA value
1339/// promotion. This can be replacing a memset with a scalar store of an
1340/// integer value, or it can involve speculating operations on a PHI or
1341/// select to be a PHI or select of the results.
1342/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
1343/// onto insert and extract operations on a vector value, and convert them to
1344/// this form. By doing so, it will enable promotion of vector aggregates to
1345/// SSA vector values.
1346class SROA : public FunctionPass {
Chandler Carruth1c8db502012-09-15 11:43:14 +00001347 const bool RequiresDomTree;
1348
Chandler Carruth713aa942012-09-14 09:22:59 +00001349 LLVMContext *C;
Micah Villmow3574eca2012-10-08 16:38:25 +00001350 const DataLayout *TD;
Chandler Carruth713aa942012-09-14 09:22:59 +00001351 DominatorTree *DT;
1352
1353 /// \brief Worklist of alloca instructions to simplify.
1354 ///
1355 /// Each alloca in the function is added to this. Each new alloca formed gets
1356 /// added to it as well to recursively simplify unless that alloca can be
1357 /// directly promoted. Finally, each time we rewrite a use of an alloca other
1358 /// the one being actively rewritten, we add it back onto the list if not
1359 /// already present to ensure it is re-visited.
1360 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
1361
1362 /// \brief A collection of instructions to delete.
1363 /// We try to batch deletions to simplify code and make things a bit more
1364 /// efficient.
1365 SmallVector<Instruction *, 8> DeadInsts;
1366
1367 /// \brief A set to prevent repeatedly marking an instruction split into many
1368 /// uses as dead. Only used to guard insertion into DeadInsts.
1369 SmallPtrSet<Instruction *, 4> DeadSplitInsts;
1370
Chandler Carruthb2d98c22012-10-04 12:33:50 +00001371 /// \brief Post-promotion worklist.
1372 ///
1373 /// Sometimes we discover an alloca which has a high probability of becoming
1374 /// viable for SROA after a round of promotion takes place. In those cases,
1375 /// the alloca is enqueued here for re-processing.
1376 ///
1377 /// Note that we have to be very careful to clear allocas out of this list in
1378 /// the event they are deleted.
1379 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
1380
Chandler Carruth713aa942012-09-14 09:22:59 +00001381 /// \brief A collection of alloca instructions we can directly promote.
1382 std::vector<AllocaInst *> PromotableAllocas;
1383
1384public:
Chandler Carruth1c8db502012-09-15 11:43:14 +00001385 SROA(bool RequiresDomTree = true)
1386 : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
1387 C(0), TD(0), DT(0) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001388 initializeSROAPass(*PassRegistry::getPassRegistry());
1389 }
1390 bool runOnFunction(Function &F);
1391 void getAnalysisUsage(AnalysisUsage &AU) const;
1392
1393 const char *getPassName() const { return "SROA"; }
1394 static char ID;
1395
1396private:
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00001397 friend class PHIOrSelectSpeculator;
Chandler Carruth713aa942012-09-14 09:22:59 +00001398 friend class AllocaPartitionRewriter;
1399 friend class AllocaPartitionVectorRewriter;
1400
1401 bool rewriteAllocaPartition(AllocaInst &AI,
1402 AllocaPartitioning &P,
1403 AllocaPartitioning::iterator PI);
1404 bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
1405 bool runOnAlloca(AllocaInst &AI);
Chandler Carruth8615cd22012-09-14 10:26:38 +00001406 void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
Chandler Carruth1c8db502012-09-15 11:43:14 +00001407 bool promoteAllocas(Function &F);
Chandler Carruth713aa942012-09-14 09:22:59 +00001408};
1409}
1410
1411char SROA::ID = 0;
1412
Chandler Carruth1c8db502012-09-15 11:43:14 +00001413FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1414 return new SROA(RequiresDomTree);
Chandler Carruth713aa942012-09-14 09:22:59 +00001415}
1416
1417INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1418 false, false)
1419INITIALIZE_PASS_DEPENDENCY(DominatorTree)
1420INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1421 false, false)
1422
Chandler Carruth0e9da582012-10-05 01:29:06 +00001423namespace {
1424/// \brief Visitor to speculate PHIs and Selects where possible.
1425class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
1426 // Befriend the base class so it can delegate to private visit methods.
1427 friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
1428
Micah Villmow3574eca2012-10-08 16:38:25 +00001429 const DataLayout &TD;
Chandler Carruth0e9da582012-10-05 01:29:06 +00001430 AllocaPartitioning &P;
1431 SROA &Pass;
1432
1433public:
Micah Villmow3574eca2012-10-08 16:38:25 +00001434 PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass)
Chandler Carruth0e9da582012-10-05 01:29:06 +00001435 : TD(TD), P(P), Pass(Pass) {}
1436
1437 /// \brief Visit the users of an alloca partition and rewrite them.
1438 void visitUsers(AllocaPartitioning::const_iterator PI) {
1439 // Note that we need to use an index here as the underlying vector of uses
1440 // may be grown during speculation. However, we never need to re-visit the
1441 // new uses, and so we can use the initial size bound.
1442 for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
1443 const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx);
1444 if (!PU.U)
1445 continue; // Skip dead use.
1446
1447 visit(cast<Instruction>(PU.U->getUser()));
1448 }
1449 }
1450
1451private:
1452 // By default, skip this instruction.
1453 void visitInstruction(Instruction &I) {}
1454
1455 /// PHI instructions that use an alloca and are subsequently loaded can be
1456 /// rewritten to load both input pointers in the pred blocks and then PHI the
1457 /// results, allowing the load of the alloca to be promoted.
1458 /// From this:
1459 /// %P2 = phi [i32* %Alloca, i32* %Other]
1460 /// %V = load i32* %P2
1461 /// to:
1462 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1463 /// ...
1464 /// %V2 = load i32* %Other
1465 /// ...
1466 /// %V = phi [i32 %V1, i32 %V2]
1467 ///
1468 /// We can do this to a select if its only uses are loads and if the operands
1469 /// to the select can be loaded unconditionally.
1470 ///
1471 /// FIXME: This should be hoisted into a generic utility, likely in
1472 /// Transforms/Util/Local.h
1473 bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
1474 // For now, we can only do this promotion if the load is in the same block
1475 // as the PHI, and if there are no stores between the phi and load.
1476 // TODO: Allow recursive phi users.
1477 // TODO: Allow stores.
1478 BasicBlock *BB = PN.getParent();
1479 unsigned MaxAlign = 0;
1480 for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
1481 UI != UE; ++UI) {
1482 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1483 if (LI == 0 || !LI->isSimple()) return false;
1484
1485 // For now we only allow loads in the same block as the PHI. This is
1486 // a common case that happens when instcombine merges two loads through
1487 // a PHI.
1488 if (LI->getParent() != BB) return false;
1489
1490 // Ensure that there are no instructions between the PHI and the load that
1491 // could store.
1492 for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1493 if (BBI->mayWriteToMemory())
1494 return false;
1495
1496 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1497 Loads.push_back(LI);
1498 }
1499
1500 // We can only transform this if it is safe to push the loads into the
1501 // predecessor blocks. The only thing to watch out for is that we can't put
1502 // a possibly trapping load in the predecessor if it is a critical edge.
1503 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
1504 ++Idx) {
1505 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1506 Value *InVal = PN.getIncomingValue(Idx);
1507
1508 // If the value is produced by the terminator of the predecessor (an
1509 // invoke) or it has side-effects, there is no valid place to put a load
1510 // in the predecessor.
1511 if (TI == InVal || TI->mayHaveSideEffects())
1512 return false;
1513
1514 // If the predecessor has a single successor, then the edge isn't
1515 // critical.
1516 if (TI->getNumSuccessors() == 1)
1517 continue;
1518
1519 // If this pointer is always safe to load, or if we can prove that there
1520 // is already a load in the block, then we can move the load to the pred
1521 // block.
1522 if (InVal->isDereferenceablePointer() ||
1523 isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
1524 continue;
1525
1526 return false;
1527 }
1528
1529 return true;
1530 }
1531
1532 void visitPHINode(PHINode &PN) {
1533 DEBUG(dbgs() << " original: " << PN << "\n");
1534
1535 SmallVector<LoadInst *, 4> Loads;
1536 if (!isSafePHIToSpeculate(PN, Loads))
1537 return;
1538
1539 assert(!Loads.empty());
1540
1541 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1542 IRBuilder<> PHIBuilder(&PN);
1543 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1544 PN.getName() + ".sroa.speculated");
1545
1546 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1547 // matter which one we get and if any differ, it doesn't matter.
1548 LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
1549 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1550 unsigned Align = SomeLoad->getAlignment();
1551
1552 // Rewrite all loads of the PN to use the new PHI.
1553 do {
1554 LoadInst *LI = Loads.pop_back_val();
1555 LI->replaceAllUsesWith(NewPN);
1556 Pass.DeadInsts.push_back(LI);
1557 } while (!Loads.empty());
1558
1559 // Inject loads into all of the pred blocks.
1560 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1561 BasicBlock *Pred = PN.getIncomingBlock(Idx);
1562 TerminatorInst *TI = Pred->getTerminator();
1563 Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
1564 Value *InVal = PN.getIncomingValue(Idx);
1565 IRBuilder<> PredBuilder(TI);
1566
1567 LoadInst *Load
1568 = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
1569 Pred->getName()));
1570 ++NumLoadsSpeculated;
1571 Load->setAlignment(Align);
1572 if (TBAATag)
1573 Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1574 NewPN->addIncoming(Load, Pred);
1575
1576 Instruction *Ptr = dyn_cast<Instruction>(InVal);
1577 if (!Ptr)
1578 // No uses to rewrite.
1579 continue;
1580
1581 // Try to lookup and rewrite any partition uses corresponding to this phi
1582 // input.
1583 AllocaPartitioning::iterator PI
1584 = P.findPartitionForPHIOrSelectOperand(InUse);
1585 if (PI == P.end())
1586 continue;
1587
1588 // Replace the Use in the PartitionUse for this operand with the Use
1589 // inside the load.
1590 AllocaPartitioning::use_iterator UI
1591 = P.findPartitionUseForPHIOrSelectOperand(InUse);
1592 assert(isa<PHINode>(*UI->U->getUser()));
1593 UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
1594 }
1595 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
1596 }
1597
1598 /// Select instructions that use an alloca and are subsequently loaded can be
1599 /// rewritten to load both input pointers and then select between the result,
1600 /// allowing the load of the alloca to be promoted.
1601 /// From this:
1602 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1603 /// %V = load i32* %P2
1604 /// to:
1605 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1606 /// %V2 = load i32* %Other
1607 /// %V = select i1 %cond, i32 %V1, i32 %V2
1608 ///
1609 /// We can do this to a select if its only uses are loads and if the operand
1610 /// to the select can be loaded unconditionally.
1611 bool isSafeSelectToSpeculate(SelectInst &SI,
1612 SmallVectorImpl<LoadInst *> &Loads) {
1613 Value *TValue = SI.getTrueValue();
1614 Value *FValue = SI.getFalseValue();
1615 bool TDerefable = TValue->isDereferenceablePointer();
1616 bool FDerefable = FValue->isDereferenceablePointer();
1617
1618 for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
1619 UI != UE; ++UI) {
1620 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1621 if (LI == 0 || !LI->isSimple()) return false;
1622
1623 // Both operands to the select need to be dereferencable, either
1624 // absolutely (e.g. allocas) or at this point because we can see other
1625 // accesses to it.
1626 if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
1627 LI->getAlignment(), &TD))
1628 return false;
1629 if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
1630 LI->getAlignment(), &TD))
1631 return false;
1632 Loads.push_back(LI);
1633 }
1634
1635 return true;
1636 }
1637
1638 void visitSelectInst(SelectInst &SI) {
1639 DEBUG(dbgs() << " original: " << SI << "\n");
1640 IRBuilder<> IRB(&SI);
1641
1642 // If the select isn't safe to speculate, just use simple logic to emit it.
1643 SmallVector<LoadInst *, 4> Loads;
1644 if (!isSafeSelectToSpeculate(SI, Loads))
1645 return;
1646
1647 Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
1648 AllocaPartitioning::iterator PIs[2];
1649 AllocaPartitioning::PartitionUse PUs[2];
1650 for (unsigned i = 0, e = 2; i != e; ++i) {
1651 PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
1652 if (PIs[i] != P.end()) {
1653 // If the pointer is within the partitioning, remove the select from
1654 // its uses. We'll add in the new loads below.
1655 AllocaPartitioning::use_iterator UI
1656 = P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
1657 PUs[i] = *UI;
1658 // Clear out the use here so that the offsets into the use list remain
1659 // stable but this use is ignored when rewriting.
1660 UI->U = 0;
1661 }
1662 }
1663
1664 Value *TV = SI.getTrueValue();
1665 Value *FV = SI.getFalseValue();
1666 // Replace the loads of the select with a select of two loads.
1667 while (!Loads.empty()) {
1668 LoadInst *LI = Loads.pop_back_val();
1669
1670 IRB.SetInsertPoint(LI);
1671 LoadInst *TL =
1672 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1673 LoadInst *FL =
1674 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1675 NumLoadsSpeculated += 2;
1676
1677 // Transfer alignment and TBAA info if present.
1678 TL->setAlignment(LI->getAlignment());
1679 FL->setAlignment(LI->getAlignment());
1680 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1681 TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1682 FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1683 }
1684
1685 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1686 LI->getName() + ".sroa.speculated");
1687
1688 LoadInst *Loads[2] = { TL, FL };
1689 for (unsigned i = 0, e = 2; i != e; ++i) {
1690 if (PIs[i] != P.end()) {
1691 Use *LoadUse = &Loads[i]->getOperandUse(0);
1692 assert(PUs[i].U->get() == LoadUse->get());
1693 PUs[i].U = LoadUse;
1694 P.use_push_back(PIs[i], PUs[i]);
1695 }
1696 }
1697
1698 DEBUG(dbgs() << " speculated to: " << *V << "\n");
1699 LI->replaceAllUsesWith(V);
1700 Pass.DeadInsts.push_back(LI);
1701 }
1702 }
1703};
1704}
1705
Chandler Carruth713aa942012-09-14 09:22:59 +00001706/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
1707///
1708/// If the provided GEP is all-constant, the total byte offset formed by the
1709/// GEP is computed and Offset is set to it. If the GEP has any non-constant
1710/// operands, the function returns false and the value of Offset is unmodified.
Micah Villmow3574eca2012-10-08 16:38:25 +00001711static bool accumulateGEPOffsets(const DataLayout &TD, GEPOperator &GEP,
Chandler Carruth713aa942012-09-14 09:22:59 +00001712 APInt &Offset) {
1713 APInt GEPOffset(Offset.getBitWidth(), 0);
1714 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1715 GTI != GTE; ++GTI) {
1716 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1717 if (!OpC)
1718 return false;
1719 if (OpC->isZero()) continue;
1720
1721 // Handle a struct index, which adds its field offset to the pointer.
1722 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1723 unsigned ElementIdx = OpC->getZExtValue();
1724 const StructLayout *SL = TD.getStructLayout(STy);
1725 GEPOffset += APInt(Offset.getBitWidth(),
1726 SL->getElementOffset(ElementIdx));
1727 continue;
1728 }
1729
1730 APInt TypeSize(Offset.getBitWidth(),
1731 TD.getTypeAllocSize(GTI.getIndexedType()));
1732 if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
1733 assert((VTy->getScalarSizeInBits() % 8) == 0 &&
1734 "vector element size is not a multiple of 8, cannot GEP over it");
1735 TypeSize = VTy->getScalarSizeInBits() / 8;
1736 }
1737
1738 GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
1739 }
1740 Offset = GEPOffset;
1741 return true;
1742}
1743
1744/// \brief Build a GEP out of a base pointer and indices.
1745///
1746/// This will return the BasePtr if that is valid, or build a new GEP
1747/// instruction using the IRBuilder if GEP-ing is needed.
1748static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
1749 SmallVectorImpl<Value *> &Indices,
1750 const Twine &Prefix) {
1751 if (Indices.empty())
1752 return BasePtr;
1753
1754 // A single zero index is a no-op, so check for this and avoid building a GEP
1755 // in that case.
1756 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1757 return BasePtr;
1758
1759 return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
1760}
1761
1762/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1763/// TargetTy without changing the offset of the pointer.
1764///
1765/// This routine assumes we've already established a properly offset GEP with
1766/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1767/// zero-indices down through type layers until we find one the same as
1768/// TargetTy. If we can't find one with the same type, we at least try to use
1769/// one with the same size. If none of that works, we just produce the GEP as
1770/// indicated by Indices to have the correct offset.
Micah Villmow3574eca2012-10-08 16:38:25 +00001771static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001772 Value *BasePtr, Type *Ty, Type *TargetTy,
1773 SmallVectorImpl<Value *> &Indices,
1774 const Twine &Prefix) {
1775 if (Ty == TargetTy)
1776 return buildGEP(IRB, BasePtr, Indices, Prefix);
1777
1778 // See if we can descend into a struct and locate a field with the correct
1779 // type.
1780 unsigned NumLayers = 0;
1781 Type *ElementTy = Ty;
1782 do {
1783 if (ElementTy->isPointerTy())
1784 break;
1785 if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1786 ElementTy = SeqTy->getElementType();
1787 Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(), 0)));
1788 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1789 ElementTy = *STy->element_begin();
1790 Indices.push_back(IRB.getInt32(0));
1791 } else {
1792 break;
1793 }
1794 ++NumLayers;
1795 } while (ElementTy != TargetTy);
1796 if (ElementTy != TargetTy)
1797 Indices.erase(Indices.end() - NumLayers, Indices.end());
1798
1799 return buildGEP(IRB, BasePtr, Indices, Prefix);
1800}
1801
1802/// \brief Recursively compute indices for a natural GEP.
1803///
1804/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1805/// element types adding appropriate indices for the GEP.
Micah Villmow3574eca2012-10-08 16:38:25 +00001806static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001807 Value *Ptr, Type *Ty, APInt &Offset,
1808 Type *TargetTy,
1809 SmallVectorImpl<Value *> &Indices,
1810 const Twine &Prefix) {
1811 if (Offset == 0)
1812 return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
1813
1814 // We can't recurse through pointer types.
1815 if (Ty->isPointerTy())
1816 return 0;
1817
Chandler Carruth8ed1ed82012-09-14 10:30:40 +00001818 // We try to analyze GEPs over vectors here, but note that these GEPs are
1819 // extremely poorly defined currently. The long-term goal is to remove GEPing
1820 // over a vector from the IR completely.
Chandler Carruth713aa942012-09-14 09:22:59 +00001821 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1822 unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
1823 if (ElementSizeInBits % 8)
Chandler Carruth8ed1ed82012-09-14 10:30:40 +00001824 return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
Chandler Carruth713aa942012-09-14 09:22:59 +00001825 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1826 APInt NumSkippedElements = Offset.udiv(ElementSize);
1827 if (NumSkippedElements.ugt(VecTy->getNumElements()))
1828 return 0;
1829 Offset -= NumSkippedElements * ElementSize;
1830 Indices.push_back(IRB.getInt(NumSkippedElements));
1831 return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
1832 Offset, TargetTy, Indices, Prefix);
1833 }
1834
1835 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1836 Type *ElementTy = ArrTy->getElementType();
1837 APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1838 APInt NumSkippedElements = Offset.udiv(ElementSize);
1839 if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1840 return 0;
1841
1842 Offset -= NumSkippedElements * ElementSize;
1843 Indices.push_back(IRB.getInt(NumSkippedElements));
1844 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1845 Indices, Prefix);
1846 }
1847
1848 StructType *STy = dyn_cast<StructType>(Ty);
1849 if (!STy)
1850 return 0;
1851
1852 const StructLayout *SL = TD.getStructLayout(STy);
1853 uint64_t StructOffset = Offset.getZExtValue();
Chandler Carruthad41dcf2012-09-14 10:30:42 +00001854 if (StructOffset >= SL->getSizeInBytes())
Chandler Carruth713aa942012-09-14 09:22:59 +00001855 return 0;
1856 unsigned Index = SL->getElementContainingOffset(StructOffset);
1857 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1858 Type *ElementTy = STy->getElementType(Index);
1859 if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
1860 return 0; // The offset points into alignment padding.
1861
1862 Indices.push_back(IRB.getInt32(Index));
1863 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1864 Indices, Prefix);
1865}
1866
1867/// \brief Get a natural GEP from a base pointer to a particular offset and
1868/// resulting in a particular type.
1869///
1870/// The goal is to produce a "natural" looking GEP that works with the existing
1871/// composite types to arrive at the appropriate offset and element type for
1872/// a pointer. TargetTy is the element type the returned GEP should point-to if
1873/// possible. We recurse by decreasing Offset, adding the appropriate index to
1874/// Indices, and setting Ty to the result subtype.
1875///
Chandler Carruth7f5bede2012-09-14 10:18:49 +00001876/// If no natural GEP can be constructed, this function returns null.
Micah Villmow3574eca2012-10-08 16:38:25 +00001877static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001878 Value *Ptr, APInt Offset, Type *TargetTy,
1879 SmallVectorImpl<Value *> &Indices,
1880 const Twine &Prefix) {
1881 PointerType *Ty = cast<PointerType>(Ptr->getType());
1882
1883 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1884 // an i8.
1885 if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1886 return 0;
1887
1888 Type *ElementTy = Ty->getElementType();
Chandler Carruth38f35fd2012-09-18 22:37:19 +00001889 if (!ElementTy->isSized())
1890 return 0; // We can't GEP through an unsized element.
Chandler Carruth713aa942012-09-14 09:22:59 +00001891 APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1892 if (ElementSize == 0)
1893 return 0; // Zero-length arrays can't help us build a natural GEP.
1894 APInt NumSkippedElements = Offset.udiv(ElementSize);
1895
1896 Offset -= NumSkippedElements * ElementSize;
1897 Indices.push_back(IRB.getInt(NumSkippedElements));
1898 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1899 Indices, Prefix);
1900}
1901
1902/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1903/// resulting pointer has PointerTy.
1904///
1905/// This tries very hard to compute a "natural" GEP which arrives at the offset
1906/// and produces the pointer type desired. Where it cannot, it will try to use
1907/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1908/// fails, it will try to use an existing i8* and GEP to the byte offset and
1909/// bitcast to the type.
1910///
1911/// The strategy for finding the more natural GEPs is to peel off layers of the
1912/// pointer, walking back through bit casts and GEPs, searching for a base
1913/// pointer from which we can compute a natural GEP with the desired
1914/// properities. The algorithm tries to fold as many constant indices into
1915/// a single GEP as possible, thus making each GEP more independent of the
1916/// surrounding code.
Micah Villmow3574eca2012-10-08 16:38:25 +00001917static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001918 Value *Ptr, APInt Offset, Type *PointerTy,
1919 const Twine &Prefix) {
1920 // Even though we don't look through PHI nodes, we could be called on an
1921 // instruction in an unreachable block, which may be on a cycle.
1922 SmallPtrSet<Value *, 4> Visited;
1923 Visited.insert(Ptr);
1924 SmallVector<Value *, 4> Indices;
1925
1926 // We may end up computing an offset pointer that has the wrong type. If we
1927 // never are able to compute one directly that has the correct type, we'll
1928 // fall back to it, so keep it around here.
1929 Value *OffsetPtr = 0;
1930
1931 // Remember any i8 pointer we come across to re-use if we need to do a raw
1932 // byte offset.
1933 Value *Int8Ptr = 0;
1934 APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1935
1936 Type *TargetTy = PointerTy->getPointerElementType();
1937
1938 do {
1939 // First fold any existing GEPs into the offset.
1940 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1941 APInt GEPOffset(Offset.getBitWidth(), 0);
1942 if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
1943 break;
1944 Offset += GEPOffset;
1945 Ptr = GEP->getPointerOperand();
1946 if (!Visited.insert(Ptr))
1947 break;
1948 }
1949
1950 // See if we can perform a natural GEP here.
1951 Indices.clear();
1952 if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
1953 Indices, Prefix)) {
1954 if (P->getType() == PointerTy) {
1955 // Zap any offset pointer that we ended up computing in previous rounds.
1956 if (OffsetPtr && OffsetPtr->use_empty())
1957 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1958 I->eraseFromParent();
1959 return P;
1960 }
1961 if (!OffsetPtr) {
1962 OffsetPtr = P;
1963 }
1964 }
1965
1966 // Stash this pointer if we've found an i8*.
1967 if (Ptr->getType()->isIntegerTy(8)) {
1968 Int8Ptr = Ptr;
1969 Int8PtrOffset = Offset;
1970 }
1971
1972 // Peel off a layer of the pointer and update the offset appropriately.
1973 if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1974 Ptr = cast<Operator>(Ptr)->getOperand(0);
1975 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1976 if (GA->mayBeOverridden())
1977 break;
1978 Ptr = GA->getAliasee();
1979 } else {
1980 break;
1981 }
1982 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1983 } while (Visited.insert(Ptr));
1984
1985 if (!OffsetPtr) {
1986 if (!Int8Ptr) {
1987 Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1988 Prefix + ".raw_cast");
1989 Int8PtrOffset = Offset;
1990 }
1991
1992 OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1993 IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1994 Prefix + ".raw_idx");
1995 }
1996 Ptr = OffsetPtr;
1997
1998 // On the off chance we were targeting i8*, guard the bitcast here.
1999 if (Ptr->getType() != PointerTy)
2000 Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
2001
2002 return Ptr;
2003}
2004
2005/// \brief Test whether the given alloca partition can be promoted to a vector.
2006///
2007/// This is a quick test to check whether we can rewrite a particular alloca
2008/// partition (and its newly formed alloca) into a vector alloca with only
2009/// whole-vector loads and stores such that it could be promoted to a vector
2010/// SSA value. We only can ensure this for a limited set of operations, and we
2011/// don't want to do the rewrites unless we are confident that the result will
2012/// be promotable, so we have an early test here.
Micah Villmow3574eca2012-10-08 16:38:25 +00002013static bool isVectorPromotionViable(const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00002014 Type *AllocaTy,
2015 AllocaPartitioning &P,
2016 uint64_t PartitionBeginOffset,
2017 uint64_t PartitionEndOffset,
2018 AllocaPartitioning::const_use_iterator I,
2019 AllocaPartitioning::const_use_iterator E) {
2020 VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
2021 if (!Ty)
2022 return false;
2023
2024 uint64_t VecSize = TD.getTypeSizeInBits(Ty);
2025 uint64_t ElementSize = Ty->getScalarSizeInBits();
2026
2027 // While the definition of LLVM vectors is bitpacked, we don't support sizes
2028 // that aren't byte sized.
2029 if (ElementSize % 8)
2030 return false;
2031 assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
2032 VecSize /= 8;
2033 ElementSize /= 8;
2034
2035 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002036 if (!I->U)
2037 continue; // Skip dead use.
2038
Chandler Carruth713aa942012-09-14 09:22:59 +00002039 uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
2040 uint64_t BeginIndex = BeginOffset / ElementSize;
2041 if (BeginIndex * ElementSize != BeginOffset ||
2042 BeginIndex >= Ty->getNumElements())
2043 return false;
2044 uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
2045 uint64_t EndIndex = EndOffset / ElementSize;
2046 if (EndIndex * ElementSize != EndOffset ||
2047 EndIndex > Ty->getNumElements())
2048 return false;
2049
2050 // FIXME: We should build shuffle vector instructions to handle
2051 // non-element-sized accesses.
2052 if ((EndOffset - BeginOffset) != ElementSize &&
2053 (EndOffset - BeginOffset) != VecSize)
2054 return false;
2055
Chandler Carruth77c12702012-10-01 01:49:22 +00002056 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002057 if (MI->isVolatile())
2058 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002059 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002060 const AllocaPartitioning::MemTransferOffsets &MTO
2061 = P.getMemTransferOffsets(*MTI);
2062 if (!MTO.IsSplittable)
2063 return false;
2064 }
Chandler Carruth77c12702012-10-01 01:49:22 +00002065 } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002066 // Disable vector promotion when there are loads or stores of an FCA.
2067 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002068 } else if (!isa<LoadInst>(I->U->getUser()) &&
2069 !isa<StoreInst>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002070 return false;
2071 }
2072 }
2073 return true;
2074}
2075
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002076/// \brief Test whether the given alloca partition can be promoted to an int.
2077///
2078/// This is a quick test to check whether we can rewrite a particular alloca
2079/// partition (and its newly formed alloca) into an integer alloca suitable for
2080/// promotion to an SSA value. We only can ensure this for a limited set of
2081/// operations, and we don't want to do the rewrites unless we are confident
2082/// that the result will be promotable, so we have an early test here.
Micah Villmow3574eca2012-10-08 16:38:25 +00002083static bool isIntegerPromotionViable(const DataLayout &TD,
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002084 Type *AllocaTy,
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002085 uint64_t AllocBeginOffset,
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002086 AllocaPartitioning &P,
2087 AllocaPartitioning::const_use_iterator I,
2088 AllocaPartitioning::const_use_iterator E) {
2089 IntegerType *Ty = dyn_cast<IntegerType>(AllocaTy);
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002090 if (!Ty || 8*TD.getTypeStoreSize(Ty) != Ty->getBitWidth())
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002091 return false;
2092
2093 // Check the uses to ensure the uses are (likely) promoteable integer uses.
2094 // Also ensure that the alloca has a covering load or store. We don't want
2095 // promote because of some other unsplittable entry (which we may make
2096 // splittable later) and lose the ability to promote each element access.
2097 bool WholeAllocaOp = false;
2098 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002099 if (!I->U)
2100 continue; // Skip dead use.
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002101
2102 // We can't reasonably handle cases where the load or store extends past
2103 // the end of the aloca's type and into its padding.
2104 if ((I->EndOffset - AllocBeginOffset) > TD.getTypeStoreSize(Ty))
2105 return false;
2106
Chandler Carruth77c12702012-10-01 01:49:22 +00002107 if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002108 if (LI->isVolatile() || !LI->getType()->isIntegerTy())
2109 return false;
2110 if (LI->getType() == Ty)
2111 WholeAllocaOp = true;
Chandler Carruth77c12702012-10-01 01:49:22 +00002112 } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002113 if (SI->isVolatile() || !SI->getValueOperand()->getType()->isIntegerTy())
2114 return false;
2115 if (SI->getValueOperand()->getType() == Ty)
2116 WholeAllocaOp = true;
Chandler Carruth77c12702012-10-01 01:49:22 +00002117 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002118 if (MI->isVolatile())
2119 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002120 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002121 const AllocaPartitioning::MemTransferOffsets &MTO
2122 = P.getMemTransferOffsets(*MTI);
2123 if (!MTO.IsSplittable)
2124 return false;
2125 }
2126 } else {
2127 return false;
2128 }
2129 }
2130 return WholeAllocaOp;
2131}
2132
Chandler Carruth713aa942012-09-14 09:22:59 +00002133namespace {
2134/// \brief Visitor to rewrite instructions using a partition of an alloca to
2135/// use a new alloca.
2136///
2137/// Also implements the rewriting to vector-based accesses when the partition
2138/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2139/// lives here.
2140class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
2141 bool> {
2142 // Befriend the base class so it can delegate to private visit methods.
2143 friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
2144
Micah Villmow3574eca2012-10-08 16:38:25 +00002145 const DataLayout &TD;
Chandler Carruth713aa942012-09-14 09:22:59 +00002146 AllocaPartitioning &P;
2147 SROA &Pass;
2148 AllocaInst &OldAI, &NewAI;
2149 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2150
2151 // If we are rewriting an alloca partition which can be written as pure
2152 // vector operations, we stash extra information here. When VecTy is
2153 // non-null, we have some strict guarantees about the rewriten alloca:
2154 // - The new alloca is exactly the size of the vector type here.
2155 // - The accesses all either map to the entire vector or to a single
2156 // element.
2157 // - The set of accessing instructions is only one of those handled above
2158 // in isVectorPromotionViable. Generally these are the same access kinds
2159 // which are promotable via mem2reg.
2160 VectorType *VecTy;
2161 Type *ElementTy;
2162 uint64_t ElementSize;
2163
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002164 // This is a convenience and flag variable that will be null unless the new
2165 // alloca has a promotion-targeted integer type due to passing
2166 // isIntegerPromotionViable above. If it is non-null does, the desired
2167 // integer type will be stored here for easy access during rewriting.
2168 IntegerType *IntPromotionTy;
2169
Chandler Carruth713aa942012-09-14 09:22:59 +00002170 // The offset of the partition user currently being rewritten.
2171 uint64_t BeginOffset, EndOffset;
Chandler Carruth77c12702012-10-01 01:49:22 +00002172 Use *OldUse;
Chandler Carruth713aa942012-09-14 09:22:59 +00002173 Instruction *OldPtr;
2174
2175 // The name prefix to use when rewriting instructions for this alloca.
2176 std::string NamePrefix;
2177
2178public:
Micah Villmow3574eca2012-10-08 16:38:25 +00002179 AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
Chandler Carruth713aa942012-09-14 09:22:59 +00002180 AllocaPartitioning::iterator PI,
2181 SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
2182 uint64_t NewBeginOffset, uint64_t NewEndOffset)
2183 : TD(TD), P(P), Pass(Pass),
2184 OldAI(OldAI), NewAI(NewAI),
2185 NewAllocaBeginOffset(NewBeginOffset),
2186 NewAllocaEndOffset(NewEndOffset),
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002187 VecTy(), ElementTy(), ElementSize(), IntPromotionTy(),
Chandler Carruth713aa942012-09-14 09:22:59 +00002188 BeginOffset(), EndOffset() {
2189 }
2190
2191 /// \brief Visit the users of the alloca partition and rewrite them.
2192 bool visitUsers(AllocaPartitioning::const_use_iterator I,
2193 AllocaPartitioning::const_use_iterator E) {
2194 if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
2195 NewAllocaBeginOffset, NewAllocaEndOffset,
2196 I, E)) {
2197 ++NumVectorized;
2198 VecTy = cast<VectorType>(NewAI.getAllocatedType());
2199 ElementTy = VecTy->getElementType();
2200 assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
2201 "Only multiple-of-8 sized vector elements are viable");
2202 ElementSize = VecTy->getScalarSizeInBits() / 8;
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002203 } else if (isIntegerPromotionViable(TD, NewAI.getAllocatedType(),
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002204 NewAllocaBeginOffset, P, I, E)) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002205 IntPromotionTy = cast<IntegerType>(NewAI.getAllocatedType());
Chandler Carruth713aa942012-09-14 09:22:59 +00002206 }
2207 bool CanSROA = true;
2208 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002209 if (!I->U)
2210 continue; // Skip dead uses.
Chandler Carruth713aa942012-09-14 09:22:59 +00002211 BeginOffset = I->BeginOffset;
2212 EndOffset = I->EndOffset;
Chandler Carruth77c12702012-10-01 01:49:22 +00002213 OldUse = I->U;
2214 OldPtr = cast<Instruction>(I->U->get());
Chandler Carruth713aa942012-09-14 09:22:59 +00002215 NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
Chandler Carruth77c12702012-10-01 01:49:22 +00002216 CanSROA &= visit(cast<Instruction>(I->U->getUser()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002217 }
2218 if (VecTy) {
2219 assert(CanSROA);
2220 VecTy = 0;
2221 ElementTy = 0;
2222 ElementSize = 0;
2223 }
2224 return CanSROA;
2225 }
2226
2227private:
2228 // Every instruction which can end up as a user must have a rewrite rule.
2229 bool visitInstruction(Instruction &I) {
2230 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
2231 llvm_unreachable("No rewrite rule for this instruction!");
2232 }
2233
2234 Twine getName(const Twine &Suffix) {
2235 return NamePrefix + Suffix;
2236 }
2237
2238 Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
2239 assert(BeginOffset >= NewAllocaBeginOffset);
2240 APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
2241 return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
2242 }
2243
Chandler Carruthf710fb12012-10-03 08:14:02 +00002244 /// \brief Compute suitable alignment to access an offset into the new alloca.
2245 unsigned getOffsetAlign(uint64_t Offset) {
Chandler Carruth673850a2012-10-01 12:16:54 +00002246 unsigned NewAIAlign = NewAI.getAlignment();
2247 if (!NewAIAlign)
2248 NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
2249 return MinAlign(NewAIAlign, Offset);
2250 }
Chandler Carruthf710fb12012-10-03 08:14:02 +00002251
2252 /// \brief Compute suitable alignment to access this partition of the new
2253 /// alloca.
2254 unsigned getPartitionAlign() {
2255 return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
Chandler Carruth673850a2012-10-01 12:16:54 +00002256 }
2257
Chandler Carruthf710fb12012-10-03 08:14:02 +00002258 /// \brief Compute suitable alignment to access a type at an offset of the
2259 /// new alloca.
2260 ///
2261 /// \returns zero if the type's ABI alignment is a suitable alignment,
2262 /// otherwise returns the maximal suitable alignment.
2263 unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
2264 unsigned Align = getOffsetAlign(Offset);
2265 return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
2266 }
2267
2268 /// \brief Compute suitable alignment to access a type at the beginning of
2269 /// this partition of the new alloca.
2270 ///
2271 /// See \c getOffsetTypeAlign for details; this routine delegates to it.
2272 unsigned getPartitionTypeAlign(Type *Ty) {
2273 return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
Chandler Carruth673850a2012-10-01 12:16:54 +00002274 }
2275
Chandler Carruth713aa942012-09-14 09:22:59 +00002276 ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) {
2277 assert(VecTy && "Can only call getIndex when rewriting a vector");
2278 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2279 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2280 uint32_t Index = RelOffset / ElementSize;
2281 assert(Index * ElementSize == RelOffset);
2282 return IRB.getInt32(Index);
2283 }
2284
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002285 Value *extractInteger(IRBuilder<> &IRB, IntegerType *TargetTy,
2286 uint64_t Offset) {
2287 assert(IntPromotionTy && "Alloca is not an integer we can extract from");
Chandler Carruth81b001a2012-09-26 10:27:46 +00002288 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2289 getName(".load"));
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002290 assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
2291 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002292 assert(TD.getTypeStoreSize(TargetTy) + RelOffset <=
2293 TD.getTypeStoreSize(IntPromotionTy) &&
2294 "Element load outside of alloca store");
2295 uint64_t ShAmt = 8*RelOffset;
2296 if (TD.isBigEndian())
2297 ShAmt = 8*(TD.getTypeStoreSize(IntPromotionTy) -
2298 TD.getTypeStoreSize(TargetTy) - RelOffset);
2299 if (ShAmt)
2300 V = IRB.CreateLShr(V, ShAmt, getName(".shift"));
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002301 if (TargetTy != IntPromotionTy) {
2302 assert(TargetTy->getBitWidth() < IntPromotionTy->getBitWidth() &&
2303 "Cannot extract to a larger integer!");
2304 V = IRB.CreateTrunc(V, TargetTy, getName(".trunc"));
2305 }
2306 return V;
2307 }
2308
2309 StoreInst *insertInteger(IRBuilder<> &IRB, Value *V, uint64_t Offset) {
2310 IntegerType *Ty = cast<IntegerType>(V->getType());
2311 if (Ty == IntPromotionTy)
Chandler Carruth81b001a2012-09-26 10:27:46 +00002312 return IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002313
2314 assert(Ty->getBitWidth() < IntPromotionTy->getBitWidth() &&
2315 "Cannot insert a larger integer!");
2316 V = IRB.CreateZExt(V, IntPromotionTy, getName(".ext"));
2317 assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
2318 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002319 assert(TD.getTypeStoreSize(Ty) + RelOffset <=
2320 TD.getTypeStoreSize(IntPromotionTy) &&
2321 "Element store outside of alloca store");
2322 uint64_t ShAmt = 8*RelOffset;
2323 if (TD.isBigEndian())
2324 ShAmt = 8*(TD.getTypeStoreSize(IntPromotionTy) - TD.getTypeStoreSize(Ty)
2325 - RelOffset);
2326 if (ShAmt)
2327 V = IRB.CreateShl(V, ShAmt, getName(".shift"));
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002328
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002329 APInt Mask = ~Ty->getMask().zext(IntPromotionTy->getBitWidth()).shl(ShAmt);
Chandler Carruth81b001a2012-09-26 10:27:46 +00002330 Value *Old = IRB.CreateAnd(IRB.CreateAlignedLoad(&NewAI,
2331 NewAI.getAlignment(),
2332 getName(".oldload")),
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002333 Mask, getName(".mask"));
Chandler Carruth81b001a2012-09-26 10:27:46 +00002334 return IRB.CreateAlignedStore(IRB.CreateOr(Old, V, getName(".insert")),
2335 &NewAI, NewAI.getAlignment());
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002336 }
2337
Chandler Carruth713aa942012-09-14 09:22:59 +00002338 void deleteIfTriviallyDead(Value *V) {
2339 Instruction *I = cast<Instruction>(V);
2340 if (isInstructionTriviallyDead(I))
2341 Pass.DeadInsts.push_back(I);
2342 }
2343
2344 Value *getValueCast(IRBuilder<> &IRB, Value *V, Type *Ty) {
2345 if (V->getType()->isIntegerTy() && Ty->isPointerTy())
2346 return IRB.CreateIntToPtr(V, Ty);
2347 if (V->getType()->isPointerTy() && Ty->isIntegerTy())
2348 return IRB.CreatePtrToInt(V, Ty);
2349
2350 return IRB.CreateBitCast(V, Ty);
2351 }
2352
2353 bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
2354 Value *Result;
2355 if (LI.getType() == VecTy->getElementType() ||
2356 BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002357 Result = IRB.CreateExtractElement(
2358 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2359 getIndex(IRB, BeginOffset), getName(".extract"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002360 } else {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002361 Result = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2362 getName(".load"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002363 }
2364 if (Result->getType() != LI.getType())
2365 Result = getValueCast(IRB, Result, LI.getType());
2366 LI.replaceAllUsesWith(Result);
2367 Pass.DeadInsts.push_back(&LI);
2368
2369 DEBUG(dbgs() << " to: " << *Result << "\n");
2370 return true;
2371 }
2372
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002373 bool rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
2374 assert(!LI.isVolatile());
2375 Value *Result = extractInteger(IRB, cast<IntegerType>(LI.getType()),
2376 BeginOffset);
2377 LI.replaceAllUsesWith(Result);
2378 Pass.DeadInsts.push_back(&LI);
2379 DEBUG(dbgs() << " to: " << *Result << "\n");
2380 return true;
2381 }
2382
Chandler Carruth713aa942012-09-14 09:22:59 +00002383 bool visitLoadInst(LoadInst &LI) {
2384 DEBUG(dbgs() << " original: " << LI << "\n");
2385 Value *OldOp = LI.getOperand(0);
2386 assert(OldOp == OldPtr);
2387 IRBuilder<> IRB(&LI);
2388
2389 if (VecTy)
2390 return rewriteVectorizedLoadInst(IRB, LI, OldOp);
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002391 if (IntPromotionTy)
2392 return rewriteIntegerLoad(IRB, LI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002393
2394 Value *NewPtr = getAdjustedAllocaPtr(IRB,
2395 LI.getPointerOperand()->getType());
2396 LI.setOperand(0, NewPtr);
Chandler Carruthf710fb12012-10-03 08:14:02 +00002397 LI.setAlignment(getPartitionTypeAlign(LI.getType()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002398 DEBUG(dbgs() << " to: " << LI << "\n");
2399
2400 deleteIfTriviallyDead(OldOp);
2401 return NewPtr == &NewAI && !LI.isVolatile();
2402 }
2403
2404 bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI,
2405 Value *OldOp) {
2406 Value *V = SI.getValueOperand();
2407 if (V->getType() == ElementTy ||
2408 BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
2409 if (V->getType() != ElementTy)
2410 V = getValueCast(IRB, V, ElementTy);
Chandler Carruth81b001a2012-09-26 10:27:46 +00002411 LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2412 getName(".load"));
2413 V = IRB.CreateInsertElement(LI, V, getIndex(IRB, BeginOffset),
Chandler Carruth713aa942012-09-14 09:22:59 +00002414 getName(".insert"));
2415 } else if (V->getType() != VecTy) {
2416 V = getValueCast(IRB, V, VecTy);
2417 }
Chandler Carruth81b001a2012-09-26 10:27:46 +00002418 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruth713aa942012-09-14 09:22:59 +00002419 Pass.DeadInsts.push_back(&SI);
2420
2421 (void)Store;
2422 DEBUG(dbgs() << " to: " << *Store << "\n");
2423 return true;
2424 }
2425
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002426 bool rewriteIntegerStore(IRBuilder<> &IRB, StoreInst &SI) {
2427 assert(!SI.isVolatile());
2428 StoreInst *Store = insertInteger(IRB, SI.getValueOperand(), BeginOffset);
2429 Pass.DeadInsts.push_back(&SI);
2430 (void)Store;
2431 DEBUG(dbgs() << " to: " << *Store << "\n");
2432 return true;
2433 }
2434
Chandler Carruth713aa942012-09-14 09:22:59 +00002435 bool visitStoreInst(StoreInst &SI) {
2436 DEBUG(dbgs() << " original: " << SI << "\n");
2437 Value *OldOp = SI.getOperand(1);
2438 assert(OldOp == OldPtr);
2439 IRBuilder<> IRB(&SI);
2440
2441 if (VecTy)
2442 return rewriteVectorizedStoreInst(IRB, SI, OldOp);
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002443 if (IntPromotionTy)
2444 return rewriteIntegerStore(IRB, SI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002445
Chandler Carruthb2d98c22012-10-04 12:33:50 +00002446 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2447 // alloca that should be re-examined after promoting this alloca.
2448 if (SI.getValueOperand()->getType()->isPointerTy())
2449 if (AllocaInst *AI = dyn_cast<AllocaInst>(SI.getValueOperand()
2450 ->stripInBoundsOffsets()))
2451 Pass.PostPromotionWorklist.insert(AI);
2452
Chandler Carruth713aa942012-09-14 09:22:59 +00002453 Value *NewPtr = getAdjustedAllocaPtr(IRB,
2454 SI.getPointerOperand()->getType());
2455 SI.setOperand(1, NewPtr);
Chandler Carruthf710fb12012-10-03 08:14:02 +00002456 SI.setAlignment(getPartitionTypeAlign(SI.getValueOperand()->getType()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002457 DEBUG(dbgs() << " to: " << SI << "\n");
2458
2459 deleteIfTriviallyDead(OldOp);
2460 return NewPtr == &NewAI && !SI.isVolatile();
2461 }
2462
2463 bool visitMemSetInst(MemSetInst &II) {
2464 DEBUG(dbgs() << " original: " << II << "\n");
2465 IRBuilder<> IRB(&II);
2466 assert(II.getRawDest() == OldPtr);
2467
2468 // If the memset has a variable size, it cannot be split, just adjust the
2469 // pointer to the new alloca.
2470 if (!isa<Constant>(II.getLength())) {
2471 II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002472 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruthf710fb12012-10-03 08:14:02 +00002473 II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002474
Chandler Carruth713aa942012-09-14 09:22:59 +00002475 deleteIfTriviallyDead(OldPtr);
2476 return false;
2477 }
2478
2479 // Record this instruction for deletion.
2480 if (Pass.DeadSplitInsts.insert(&II))
2481 Pass.DeadInsts.push_back(&II);
2482
2483 Type *AllocaTy = NewAI.getAllocatedType();
2484 Type *ScalarTy = AllocaTy->getScalarType();
2485
2486 // If this doesn't map cleanly onto the alloca type, and that type isn't
2487 // a single value type, just emit a memset.
2488 if (!VecTy && (BeginOffset != NewAllocaBeginOffset ||
2489 EndOffset != NewAllocaEndOffset ||
2490 !AllocaTy->isSingleValueType() ||
2491 !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
2492 Type *SizeTy = II.getLength()->getType();
2493 Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
Chandler Carruth713aa942012-09-14 09:22:59 +00002494 CallInst *New
2495 = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
2496 II.getRawDest()->getType()),
Chandler Carruthf710fb12012-10-03 08:14:02 +00002497 II.getValue(), Size, getPartitionAlign(),
Chandler Carruth713aa942012-09-14 09:22:59 +00002498 II.isVolatile());
2499 (void)New;
2500 DEBUG(dbgs() << " to: " << *New << "\n");
2501 return false;
2502 }
2503
2504 // If we can represent this as a simple value, we have to build the actual
2505 // value to store, which requires expanding the byte present in memset to
2506 // a sensible representation for the alloca type. This is essentially
2507 // splatting the byte to a sufficiently wide integer, bitcasting to the
2508 // desired scalar type, and splatting it across any desired vector type.
2509 Value *V = II.getValue();
2510 IntegerType *VTy = cast<IntegerType>(V->getType());
2511 Type *IntTy = Type::getIntNTy(VTy->getContext(),
2512 TD.getTypeSizeInBits(ScalarTy));
2513 if (TD.getTypeSizeInBits(ScalarTy) > VTy->getBitWidth())
2514 V = IRB.CreateMul(IRB.CreateZExt(V, IntTy, getName(".zext")),
2515 ConstantExpr::getUDiv(
2516 Constant::getAllOnesValue(IntTy),
2517 ConstantExpr::getZExt(
2518 Constant::getAllOnesValue(V->getType()),
2519 IntTy)),
2520 getName(".isplat"));
2521 if (V->getType() != ScalarTy) {
2522 if (ScalarTy->isPointerTy())
2523 V = IRB.CreateIntToPtr(V, ScalarTy);
2524 else if (ScalarTy->isPrimitiveType() || ScalarTy->isVectorTy())
2525 V = IRB.CreateBitCast(V, ScalarTy);
2526 else if (ScalarTy->isIntegerTy())
2527 llvm_unreachable("Computed different integer types with equal widths");
2528 else
2529 llvm_unreachable("Invalid scalar type");
2530 }
2531
2532 // If this is an element-wide memset of a vectorizable alloca, insert it.
2533 if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
2534 EndOffset < NewAllocaEndOffset)) {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002535 StoreInst *Store = IRB.CreateAlignedStore(
2536 IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
2537 NewAI.getAlignment(),
2538 getName(".load")),
2539 V, getIndex(IRB, BeginOffset),
Chandler Carruth713aa942012-09-14 09:22:59 +00002540 getName(".insert")),
Chandler Carruth81b001a2012-09-26 10:27:46 +00002541 &NewAI, NewAI.getAlignment());
Chandler Carruth713aa942012-09-14 09:22:59 +00002542 (void)Store;
2543 DEBUG(dbgs() << " to: " << *Store << "\n");
2544 return true;
2545 }
2546
2547 // Splat to a vector if needed.
2548 if (VectorType *VecTy = dyn_cast<VectorType>(AllocaTy)) {
2549 VectorType *SplatSourceTy = VectorType::get(V->getType(), 1);
2550 V = IRB.CreateShuffleVector(
2551 IRB.CreateInsertElement(UndefValue::get(SplatSourceTy), V,
2552 IRB.getInt32(0), getName(".vsplat.insert")),
2553 UndefValue::get(SplatSourceTy),
2554 ConstantVector::getSplat(VecTy->getNumElements(), IRB.getInt32(0)),
2555 getName(".vsplat.shuffle"));
2556 assert(V->getType() == VecTy);
2557 }
2558
Chandler Carruth81b001a2012-09-26 10:27:46 +00002559 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2560 II.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +00002561 (void)New;
2562 DEBUG(dbgs() << " to: " << *New << "\n");
2563 return !II.isVolatile();
2564 }
2565
2566 bool visitMemTransferInst(MemTransferInst &II) {
2567 // Rewriting of memory transfer instructions can be a bit tricky. We break
2568 // them into two categories: split intrinsics and unsplit intrinsics.
2569
2570 DEBUG(dbgs() << " original: " << II << "\n");
2571 IRBuilder<> IRB(&II);
2572
2573 assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2574 bool IsDest = II.getRawDest() == OldPtr;
2575
2576 const AllocaPartitioning::MemTransferOffsets &MTO
2577 = P.getMemTransferOffsets(II);
2578
Chandler Carruth673850a2012-10-01 12:16:54 +00002579 // Compute the relative offset within the transfer.
2580 unsigned IntPtrWidth = TD.getPointerSizeInBits();
2581 APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
2582 : MTO.SourceBegin));
2583
2584 unsigned Align = II.getAlignment();
2585 if (Align > 1)
2586 Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
Chandler Carruthf710fb12012-10-03 08:14:02 +00002587 MinAlign(II.getAlignment(), getPartitionAlign()));
Chandler Carruth673850a2012-10-01 12:16:54 +00002588
Chandler Carruth713aa942012-09-14 09:22:59 +00002589 // For unsplit intrinsics, we simply modify the source and destination
2590 // pointers in place. This isn't just an optimization, it is a matter of
2591 // correctness. With unsplit intrinsics we may be dealing with transfers
2592 // within a single alloca before SROA ran, or with transfers that have
2593 // a variable length. We may also be dealing with memmove instead of
2594 // memcpy, and so simply updating the pointers is the necessary for us to
2595 // update both source and dest of a single call.
2596 if (!MTO.IsSplittable) {
2597 Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2598 if (IsDest)
2599 II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2600 else
2601 II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
2602
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002603 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruth673850a2012-10-01 12:16:54 +00002604 II.setAlignment(ConstantInt::get(CstTy, Align));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002605
Chandler Carruth713aa942012-09-14 09:22:59 +00002606 DEBUG(dbgs() << " to: " << II << "\n");
2607 deleteIfTriviallyDead(OldOp);
2608 return false;
2609 }
2610 // For split transfer intrinsics we have an incredibly useful assurance:
2611 // the source and destination do not reside within the same alloca, and at
2612 // least one of them does not escape. This means that we can replace
2613 // memmove with memcpy, and we don't need to worry about all manner of
2614 // downsides to splitting and transforming the operations.
2615
Chandler Carruth713aa942012-09-14 09:22:59 +00002616 // If this doesn't map cleanly onto the alloca type, and that type isn't
2617 // a single value type, just emit a memcpy.
2618 bool EmitMemCpy
2619 = !VecTy && (BeginOffset != NewAllocaBeginOffset ||
2620 EndOffset != NewAllocaEndOffset ||
2621 !NewAI.getAllocatedType()->isSingleValueType());
2622
2623 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2624 // size hasn't been shrunk based on analysis of the viable range, this is
2625 // a no-op.
2626 if (EmitMemCpy && &OldAI == &NewAI) {
2627 uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
2628 uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
2629 // Ensure the start lines up.
2630 assert(BeginOffset == OrigBegin);
Benjamin Kramerd0807692012-09-14 13:08:09 +00002631 (void)OrigBegin;
Chandler Carruth713aa942012-09-14 09:22:59 +00002632
2633 // Rewrite the size as needed.
2634 if (EndOffset != OrigEnd)
2635 II.setLength(ConstantInt::get(II.getLength()->getType(),
2636 EndOffset - BeginOffset));
2637 return false;
2638 }
2639 // Record this instruction for deletion.
2640 if (Pass.DeadSplitInsts.insert(&II))
2641 Pass.DeadInsts.push_back(&II);
2642
2643 bool IsVectorElement = VecTy && (BeginOffset > NewAllocaBeginOffset ||
2644 EndOffset < NewAllocaEndOffset);
2645
2646 Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2647 : II.getRawDest()->getType();
2648 if (!EmitMemCpy)
2649 OtherPtrTy = IsVectorElement ? VecTy->getElementType()->getPointerTo()
2650 : NewAI.getType();
2651
2652 // Compute the other pointer, folding as much as possible to produce
2653 // a single, simple GEP in most cases.
2654 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2655 OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2656 getName("." + OtherPtr->getName()));
2657
2658 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2659 // alloca that should be re-examined after rewriting this instruction.
2660 if (AllocaInst *AI
2661 = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
Chandler Carruthb3dca3f2012-09-26 07:41:40 +00002662 Pass.Worklist.insert(AI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002663
2664 if (EmitMemCpy) {
2665 Value *OurPtr
2666 = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
2667 : II.getRawSource()->getType());
2668 Type *SizeTy = II.getLength()->getType();
2669 Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2670
2671 CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2672 IsDest ? OtherPtr : OurPtr,
Chandler Carruth81b001a2012-09-26 10:27:46 +00002673 Size, Align, II.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +00002674 (void)New;
2675 DEBUG(dbgs() << " to: " << *New << "\n");
2676 return false;
2677 }
2678
Chandler Carruth322e9ba2012-10-03 08:26:28 +00002679 // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2680 // is equivalent to 1, but that isn't true if we end up rewriting this as
2681 // a load or store.
2682 if (!Align)
2683 Align = 1;
2684
Chandler Carruth713aa942012-09-14 09:22:59 +00002685 Value *SrcPtr = OtherPtr;
2686 Value *DstPtr = &NewAI;
2687 if (!IsDest)
2688 std::swap(SrcPtr, DstPtr);
2689
2690 Value *Src;
2691 if (IsVectorElement && !IsDest) {
2692 // We have to extract rather than load.
Chandler Carruth81b001a2012-09-26 10:27:46 +00002693 Src = IRB.CreateExtractElement(
2694 IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
2695 getIndex(IRB, BeginOffset),
2696 getName(".copyextract"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002697 } else {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002698 Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2699 getName(".copyload"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002700 }
2701
2702 if (IsVectorElement && IsDest) {
2703 // We have to insert into a loaded copy before storing.
Chandler Carruth81b001a2012-09-26 10:27:46 +00002704 Src = IRB.CreateInsertElement(
2705 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2706 Src, getIndex(IRB, BeginOffset),
2707 getName(".insert"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002708 }
2709
Chandler Carruth81b001a2012-09-26 10:27:46 +00002710 StoreInst *Store = cast<StoreInst>(
2711 IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2712 (void)Store;
Chandler Carruth713aa942012-09-14 09:22:59 +00002713 DEBUG(dbgs() << " to: " << *Store << "\n");
2714 return !II.isVolatile();
2715 }
2716
2717 bool visitIntrinsicInst(IntrinsicInst &II) {
2718 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2719 II.getIntrinsicID() == Intrinsic::lifetime_end);
2720 DEBUG(dbgs() << " original: " << II << "\n");
2721 IRBuilder<> IRB(&II);
2722 assert(II.getArgOperand(1) == OldPtr);
2723
2724 // Record this instruction for deletion.
2725 if (Pass.DeadSplitInsts.insert(&II))
2726 Pass.DeadInsts.push_back(&II);
2727
2728 ConstantInt *Size
2729 = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2730 EndOffset - BeginOffset);
2731 Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
2732 Value *New;
2733 if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2734 New = IRB.CreateLifetimeStart(Ptr, Size);
2735 else
2736 New = IRB.CreateLifetimeEnd(Ptr, Size);
2737
2738 DEBUG(dbgs() << " to: " << *New << "\n");
2739 return true;
2740 }
2741
Chandler Carruth713aa942012-09-14 09:22:59 +00002742 bool visitPHINode(PHINode &PN) {
2743 DEBUG(dbgs() << " original: " << PN << "\n");
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002744
Chandler Carruth713aa942012-09-14 09:22:59 +00002745 // We would like to compute a new pointer in only one place, but have it be
2746 // as local as possible to the PHI. To do that, we re-use the location of
2747 // the old pointer, which necessarily must be in the right position to
2748 // dominate the PHI.
2749 IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
2750
Chandler Carruth713aa942012-09-14 09:22:59 +00002751 Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002752 // Replace the operands which were using the old pointer.
2753 User::op_iterator OI = PN.op_begin(), OE = PN.op_end();
2754 for (; OI != OE; ++OI)
2755 if (*OI == OldPtr)
2756 *OI = NewPtr;
Chandler Carruth713aa942012-09-14 09:22:59 +00002757
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002758 DEBUG(dbgs() << " to: " << PN << "\n");
2759 deleteIfTriviallyDead(OldPtr);
2760 return false;
Chandler Carruth713aa942012-09-14 09:22:59 +00002761 }
2762
2763 bool visitSelectInst(SelectInst &SI) {
2764 DEBUG(dbgs() << " original: " << SI << "\n");
2765 IRBuilder<> IRB(&SI);
2766
2767 // Find the operand we need to rewrite here.
2768 bool IsTrueVal = SI.getTrueValue() == OldPtr;
2769 if (IsTrueVal)
2770 assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
2771 else
2772 assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002773
Chandler Carruth713aa942012-09-14 09:22:59 +00002774 Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002775 SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
2776 DEBUG(dbgs() << " to: " << SI << "\n");
Chandler Carruth713aa942012-09-14 09:22:59 +00002777 deleteIfTriviallyDead(OldPtr);
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002778 return false;
Chandler Carruth713aa942012-09-14 09:22:59 +00002779 }
2780
2781};
2782}
2783
Chandler Carruthc370acd2012-09-18 12:57:43 +00002784namespace {
2785/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2786///
2787/// This pass aggressively rewrites all aggregate loads and stores on
2788/// a particular pointer (or any pointer derived from it which we can identify)
2789/// with scalar loads and stores.
2790class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2791 // Befriend the base class so it can delegate to private visit methods.
2792 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2793
Micah Villmow3574eca2012-10-08 16:38:25 +00002794 const DataLayout &TD;
Chandler Carruthc370acd2012-09-18 12:57:43 +00002795
2796 /// Queue of pointer uses to analyze and potentially rewrite.
2797 SmallVector<Use *, 8> Queue;
2798
2799 /// Set to prevent us from cycling with phi nodes and loops.
2800 SmallPtrSet<User *, 8> Visited;
2801
2802 /// The current pointer use being rewritten. This is used to dig up the used
2803 /// value (as opposed to the user).
2804 Use *U;
2805
2806public:
Micah Villmow3574eca2012-10-08 16:38:25 +00002807 AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {}
Chandler Carruthc370acd2012-09-18 12:57:43 +00002808
2809 /// Rewrite loads and stores through a pointer and all pointers derived from
2810 /// it.
2811 bool rewrite(Instruction &I) {
2812 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
2813 enqueueUsers(I);
2814 bool Changed = false;
2815 while (!Queue.empty()) {
2816 U = Queue.pop_back_val();
2817 Changed |= visit(cast<Instruction>(U->getUser()));
2818 }
2819 return Changed;
2820 }
2821
2822private:
2823 /// Enqueue all the users of the given instruction for further processing.
2824 /// This uses a set to de-duplicate users.
2825 void enqueueUsers(Instruction &I) {
2826 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
2827 ++UI)
2828 if (Visited.insert(*UI))
2829 Queue.push_back(&UI.getUse());
2830 }
2831
2832 // Conservative default is to not rewrite anything.
2833 bool visitInstruction(Instruction &I) { return false; }
2834
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002835 /// \brief Generic recursive split emission class.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002836 template <typename Derived>
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002837 class OpSplitter {
2838 protected:
2839 /// The builder used to form new instructions.
2840 IRBuilder<> IRB;
2841 /// The indices which to be used with insert- or extractvalue to select the
2842 /// appropriate value within the aggregate.
2843 SmallVector<unsigned, 4> Indices;
2844 /// The indices to a GEP instruction which will move Ptr to the correct slot
2845 /// within the aggregate.
2846 SmallVector<Value *, 4> GEPIndices;
2847 /// The base pointer of the original op, used as a base for GEPing the
2848 /// split operations.
2849 Value *Ptr;
Chandler Carruthc370acd2012-09-18 12:57:43 +00002850
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002851 /// Initialize the splitter with an insertion point, Ptr and start with a
2852 /// single zero GEP index.
2853 OpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002854 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002855
2856 public:
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002857 /// \brief Generic recursive split emission routine.
2858 ///
2859 /// This method recursively splits an aggregate op (load or store) into
2860 /// scalar or vector ops. It splits recursively until it hits a single value
2861 /// and emits that single value operation via the template argument.
2862 ///
2863 /// The logic of this routine relies on GEPs and insertvalue and
2864 /// extractvalue all operating with the same fundamental index list, merely
2865 /// formatted differently (GEPs need actual values).
2866 ///
2867 /// \param Ty The type being split recursively into smaller ops.
2868 /// \param Agg The aggregate value being built up or stored, depending on
2869 /// whether this is splitting a load or a store respectively.
2870 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2871 if (Ty->isSingleValueType())
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002872 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002873
2874 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2875 unsigned OldSize = Indices.size();
2876 (void)OldSize;
2877 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
2878 ++Idx) {
2879 assert(Indices.size() == OldSize && "Did not return to the old size");
2880 Indices.push_back(Idx);
2881 GEPIndices.push_back(IRB.getInt32(Idx));
2882 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
2883 GEPIndices.pop_back();
2884 Indices.pop_back();
2885 }
2886 return;
Chandler Carruthc370acd2012-09-18 12:57:43 +00002887 }
Chandler Carruthc370acd2012-09-18 12:57:43 +00002888
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002889 if (StructType *STy = dyn_cast<StructType>(Ty)) {
2890 unsigned OldSize = Indices.size();
2891 (void)OldSize;
2892 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
2893 ++Idx) {
2894 assert(Indices.size() == OldSize && "Did not return to the old size");
2895 Indices.push_back(Idx);
2896 GEPIndices.push_back(IRB.getInt32(Idx));
2897 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
2898 GEPIndices.pop_back();
2899 Indices.pop_back();
2900 }
2901 return;
Chandler Carruthc370acd2012-09-18 12:57:43 +00002902 }
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002903
2904 llvm_unreachable("Only arrays and structs are aggregate loadable types");
Chandler Carruthc370acd2012-09-18 12:57:43 +00002905 }
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002906 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00002907
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002908 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002909 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer3b682bd2012-09-18 17:11:47 +00002910 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
Chandler Carruthc370acd2012-09-18 12:57:43 +00002911
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002912 /// Emit a leaf load of a single value. This is called at the leaves of the
2913 /// recursive emission to actually load values.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002914 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002915 assert(Ty->isSingleValueType());
2916 // Load the single value and insert it using the indices.
2917 Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
2918 Name + ".gep"),
2919 Name + ".load");
2920 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
2921 DEBUG(dbgs() << " to: " << *Load << "\n");
2922 }
2923 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00002924
2925 bool visitLoadInst(LoadInst &LI) {
2926 assert(LI.getPointerOperand() == *U);
2927 if (!LI.isSimple() || LI.getType()->isSingleValueType())
2928 return false;
2929
2930 // We have an aggregate being loaded, split it apart.
2931 DEBUG(dbgs() << " original: " << LI << "\n");
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002932 LoadOpSplitter Splitter(&LI, *U);
Chandler Carruthc370acd2012-09-18 12:57:43 +00002933 Value *V = UndefValue::get(LI.getType());
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002934 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
Chandler Carruthc370acd2012-09-18 12:57:43 +00002935 LI.replaceAllUsesWith(V);
2936 LI.eraseFromParent();
2937 return true;
2938 }
2939
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002940 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002941 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer3b682bd2012-09-18 17:11:47 +00002942 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002943
2944 /// Emit a leaf store of a single value. This is called at the leaves of the
2945 /// recursive emission to actually produce stores.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002946 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002947 assert(Ty->isSingleValueType());
2948 // Extract the single value and store it using the indices.
2949 Value *Store = IRB.CreateStore(
2950 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
2951 IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
2952 (void)Store;
2953 DEBUG(dbgs() << " to: " << *Store << "\n");
2954 }
2955 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00002956
2957 bool visitStoreInst(StoreInst &SI) {
2958 if (!SI.isSimple() || SI.getPointerOperand() != *U)
2959 return false;
2960 Value *V = SI.getValueOperand();
2961 if (V->getType()->isSingleValueType())
2962 return false;
2963
2964 // We have an aggregate being stored, split it apart.
2965 DEBUG(dbgs() << " original: " << SI << "\n");
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002966 StoreOpSplitter Splitter(&SI, *U);
2967 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
Chandler Carruthc370acd2012-09-18 12:57:43 +00002968 SI.eraseFromParent();
2969 return true;
2970 }
2971
2972 bool visitBitCastInst(BitCastInst &BC) {
2973 enqueueUsers(BC);
2974 return false;
2975 }
2976
2977 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2978 enqueueUsers(GEPI);
2979 return false;
2980 }
2981
2982 bool visitPHINode(PHINode &PN) {
2983 enqueueUsers(PN);
2984 return false;
2985 }
2986
2987 bool visitSelectInst(SelectInst &SI) {
2988 enqueueUsers(SI);
2989 return false;
2990 }
2991};
2992}
2993
Chandler Carruth713aa942012-09-14 09:22:59 +00002994/// \brief Try to find a partition of the aggregate type passed in for a given
2995/// offset and size.
2996///
2997/// This recurses through the aggregate type and tries to compute a subtype
2998/// based on the offset and size. When the offset and size span a sub-section
Chandler Carruth6b547a22012-09-14 11:08:31 +00002999/// of an array, it will even compute a new array type for that sub-section,
3000/// and the same for structs.
3001///
3002/// Note that this routine is very strict and tries to find a partition of the
3003/// type which produces the *exact* right offset and size. It is not forgiving
3004/// when the size or offset cause either end of type-based partition to be off.
3005/// Also, this is a best-effort routine. It is reasonable to give up and not
3006/// return a type if necessary.
Micah Villmow3574eca2012-10-08 16:38:25 +00003007static Type *getTypePartition(const DataLayout &TD, Type *Ty,
Chandler Carruth713aa942012-09-14 09:22:59 +00003008 uint64_t Offset, uint64_t Size) {
3009 if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
3010 return Ty;
3011
3012 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3013 // We can't partition pointers...
3014 if (SeqTy->isPointerTy())
3015 return 0;
3016
3017 Type *ElementTy = SeqTy->getElementType();
3018 uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3019 uint64_t NumSkippedElements = Offset / ElementSize;
3020 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
3021 if (NumSkippedElements >= ArrTy->getNumElements())
3022 return 0;
3023 if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
3024 if (NumSkippedElements >= VecTy->getNumElements())
3025 return 0;
3026 Offset -= NumSkippedElements * ElementSize;
3027
3028 // First check if we need to recurse.
3029 if (Offset > 0 || Size < ElementSize) {
3030 // Bail if the partition ends in a different array element.
3031 if ((Offset + Size) > ElementSize)
3032 return 0;
3033 // Recurse through the element type trying to peel off offset bytes.
3034 return getTypePartition(TD, ElementTy, Offset, Size);
3035 }
3036 assert(Offset == 0);
3037
3038 if (Size == ElementSize)
3039 return ElementTy;
3040 assert(Size > ElementSize);
3041 uint64_t NumElements = Size / ElementSize;
3042 if (NumElements * ElementSize != Size)
3043 return 0;
3044 return ArrayType::get(ElementTy, NumElements);
3045 }
3046
3047 StructType *STy = dyn_cast<StructType>(Ty);
3048 if (!STy)
3049 return 0;
3050
3051 const StructLayout *SL = TD.getStructLayout(STy);
Chandler Carruth6b547a22012-09-14 11:08:31 +00003052 if (Offset >= SL->getSizeInBytes())
Chandler Carruth713aa942012-09-14 09:22:59 +00003053 return 0;
3054 uint64_t EndOffset = Offset + Size;
3055 if (EndOffset > SL->getSizeInBytes())
3056 return 0;
3057
3058 unsigned Index = SL->getElementContainingOffset(Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +00003059 Offset -= SL->getElementOffset(Index);
3060
3061 Type *ElementTy = STy->getElementType(Index);
3062 uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3063 if (Offset >= ElementSize)
3064 return 0; // The offset points into alignment padding.
3065
3066 // See if any partition must be contained by the element.
3067 if (Offset > 0 || Size < ElementSize) {
3068 if ((Offset + Size) > ElementSize)
3069 return 0;
Chandler Carruth713aa942012-09-14 09:22:59 +00003070 return getTypePartition(TD, ElementTy, Offset, Size);
3071 }
3072 assert(Offset == 0);
3073
3074 if (Size == ElementSize)
3075 return ElementTy;
3076
3077 StructType::element_iterator EI = STy->element_begin() + Index,
3078 EE = STy->element_end();
3079 if (EndOffset < SL->getSizeInBytes()) {
3080 unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3081 if (Index == EndIndex)
3082 return 0; // Within a single element and its padding.
Chandler Carruth6b547a22012-09-14 11:08:31 +00003083
3084 // Don't try to form "natural" types if the elements don't line up with the
3085 // expected size.
3086 // FIXME: We could potentially recurse down through the last element in the
3087 // sub-struct to find a natural end point.
3088 if (SL->getElementOffset(EndIndex) != EndOffset)
3089 return 0;
3090
Chandler Carruth713aa942012-09-14 09:22:59 +00003091 assert(Index < EndIndex);
Chandler Carruth713aa942012-09-14 09:22:59 +00003092 EE = STy->element_begin() + EndIndex;
3093 }
3094
3095 // Try to build up a sub-structure.
3096 SmallVector<Type *, 4> ElementTys;
3097 do {
3098 ElementTys.push_back(*EI++);
3099 } while (EI != EE);
3100 StructType *SubTy = StructType::get(STy->getContext(), ElementTys,
3101 STy->isPacked());
3102 const StructLayout *SubSL = TD.getStructLayout(SubTy);
Chandler Carruth6b547a22012-09-14 11:08:31 +00003103 if (Size != SubSL->getSizeInBytes())
3104 return 0; // The sub-struct doesn't have quite the size needed.
Chandler Carruth713aa942012-09-14 09:22:59 +00003105
Chandler Carruth6b547a22012-09-14 11:08:31 +00003106 return SubTy;
Chandler Carruth713aa942012-09-14 09:22:59 +00003107}
3108
3109/// \brief Rewrite an alloca partition's users.
3110///
3111/// This routine drives both of the rewriting goals of the SROA pass. It tries
3112/// to rewrite uses of an alloca partition to be conducive for SSA value
3113/// promotion. If the partition needs a new, more refined alloca, this will
3114/// build that new alloca, preserving as much type information as possible, and
3115/// rewrite the uses of the old alloca to point at the new one and have the
3116/// appropriate new offsets. It also evaluates how successful the rewrite was
3117/// at enabling promotion and if it was successful queues the alloca to be
3118/// promoted.
3119bool SROA::rewriteAllocaPartition(AllocaInst &AI,
3120 AllocaPartitioning &P,
3121 AllocaPartitioning::iterator PI) {
3122 uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
Chandler Carruthfdb15852012-10-02 18:57:13 +00003123 bool IsLive = false;
3124 for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
3125 UE = P.use_end(PI);
3126 UI != UE && !IsLive; ++UI)
3127 if (UI->U)
3128 IsLive = true;
3129 if (!IsLive)
Chandler Carruth713aa942012-09-14 09:22:59 +00003130 return false; // No live uses left of this partition.
3131
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003132 DEBUG(dbgs() << "Speculating PHIs and selects in partition "
3133 << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
3134
3135 PHIOrSelectSpeculator Speculator(*TD, P, *this);
3136 DEBUG(dbgs() << " speculating ");
3137 DEBUG(P.print(dbgs(), PI, ""));
Chandler Carrutha346f462012-10-02 17:49:47 +00003138 Speculator.visitUsers(PI);
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003139
Chandler Carruth713aa942012-09-14 09:22:59 +00003140 // Try to compute a friendly type for this partition of the alloca. This
3141 // won't always succeed, in which case we fall back to a legal integer type
3142 // or an i8 array of an appropriate size.
3143 Type *AllocaTy = 0;
3144 if (Type *PartitionTy = P.getCommonType(PI))
3145 if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
3146 AllocaTy = PartitionTy;
3147 if (!AllocaTy)
3148 if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
3149 PI->BeginOffset, AllocaSize))
3150 AllocaTy = PartitionTy;
3151 if ((!AllocaTy ||
3152 (AllocaTy->isArrayTy() &&
3153 AllocaTy->getArrayElementType()->isIntegerTy())) &&
3154 TD->isLegalInteger(AllocaSize * 8))
3155 AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
3156 if (!AllocaTy)
3157 AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
Chandler Carruthb3dd9a12012-09-14 10:26:34 +00003158 assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
Chandler Carruth713aa942012-09-14 09:22:59 +00003159
3160 // Check for the case where we're going to rewrite to a new alloca of the
3161 // exact same type as the original, and with the same access offsets. In that
3162 // case, re-use the existing alloca, but still run through the rewriter to
3163 // performe phi and select speculation.
3164 AllocaInst *NewAI;
3165 if (AllocaTy == AI.getAllocatedType()) {
3166 assert(PI->BeginOffset == 0 &&
3167 "Non-zero begin offset but same alloca type");
3168 assert(PI == P.begin() && "Begin offset is zero on later partition");
3169 NewAI = &AI;
3170 } else {
Chandler Carruthb67c9a52012-09-29 10:41:21 +00003171 unsigned Alignment = AI.getAlignment();
3172 if (!Alignment) {
3173 // The minimum alignment which users can rely on when the explicit
3174 // alignment is omitted or zero is that required by the ABI for this
3175 // type.
3176 Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
3177 }
3178 Alignment = MinAlign(Alignment, PI->BeginOffset);
3179 // If we will get at least this much alignment from the type alone, leave
3180 // the alloca's alignment unconstrained.
3181 if (Alignment <= TD->getABITypeAlignment(AllocaTy))
3182 Alignment = 0;
3183 NewAI = new AllocaInst(AllocaTy, 0, Alignment,
Chandler Carruth713aa942012-09-14 09:22:59 +00003184 AI.getName() + ".sroa." + Twine(PI - P.begin()),
3185 &AI);
3186 ++NumNewAllocas;
3187 }
3188
3189 DEBUG(dbgs() << "Rewriting alloca partition "
3190 << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
3191 << *NewAI << "\n");
3192
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003193 // Track the high watermark of the post-promotion worklist. We will reset it
3194 // to this point if the alloca is not in fact scheduled for promotion.
3195 unsigned PPWOldSize = PostPromotionWorklist.size();
3196
Chandler Carruth713aa942012-09-14 09:22:59 +00003197 AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
3198 PI->BeginOffset, PI->EndOffset);
3199 DEBUG(dbgs() << " rewriting ");
3200 DEBUG(P.print(dbgs(), PI, ""));
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003201 bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
3202 if (Promotable) {
Chandler Carruth713aa942012-09-14 09:22:59 +00003203 DEBUG(dbgs() << " and queuing for promotion\n");
3204 PromotableAllocas.push_back(NewAI);
3205 } else if (NewAI != &AI) {
3206 // If we can't promote the alloca, iterate on it to check for new
3207 // refinements exposed by splitting the current alloca. Don't iterate on an
3208 // alloca which didn't actually change and didn't get promoted.
3209 Worklist.insert(NewAI);
3210 }
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003211
3212 // Drop any post-promotion work items if promotion didn't happen.
3213 if (!Promotable)
3214 while (PostPromotionWorklist.size() > PPWOldSize)
3215 PostPromotionWorklist.pop_back();
3216
Chandler Carruth713aa942012-09-14 09:22:59 +00003217 return true;
3218}
3219
3220/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
3221bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
3222 bool Changed = false;
3223 for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
3224 ++PI)
3225 Changed |= rewriteAllocaPartition(AI, P, PI);
3226
3227 return Changed;
3228}
3229
3230/// \brief Analyze an alloca for SROA.
3231///
3232/// This analyzes the alloca to ensure we can reason about it, builds
3233/// a partitioning of the alloca, and then hands it off to be split and
3234/// rewritten as needed.
3235bool SROA::runOnAlloca(AllocaInst &AI) {
3236 DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3237 ++NumAllocasAnalyzed;
3238
3239 // Special case dead allocas, as they're trivial.
3240 if (AI.use_empty()) {
3241 AI.eraseFromParent();
3242 return true;
3243 }
3244
3245 // Skip alloca forms that this analysis can't handle.
3246 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3247 TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
3248 return false;
3249
Chandler Carruthc370acd2012-09-18 12:57:43 +00003250 bool Changed = false;
3251
3252 // First, split any FCA loads and stores touching this alloca to promote
3253 // better splitting and promotion opportunities.
3254 AggLoadStoreRewriter AggRewriter(*TD);
3255 Changed |= AggRewriter.rewrite(AI);
3256
Chandler Carruth713aa942012-09-14 09:22:59 +00003257 // Build the partition set using a recursive instruction-visiting builder.
3258 AllocaPartitioning P(*TD, AI);
3259 DEBUG(P.print(dbgs()));
3260 if (P.isEscaped())
Chandler Carruthc370acd2012-09-18 12:57:43 +00003261 return Changed;
Chandler Carruth713aa942012-09-14 09:22:59 +00003262
Chandler Carruth713aa942012-09-14 09:22:59 +00003263 // Delete all the dead users of this alloca before splitting and rewriting it.
Chandler Carruth713aa942012-09-14 09:22:59 +00003264 for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
3265 DE = P.dead_user_end();
3266 DI != DE; ++DI) {
3267 Changed = true;
3268 (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3269 DeadInsts.push_back(*DI);
3270 }
3271 for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
3272 DE = P.dead_op_end();
3273 DO != DE; ++DO) {
3274 Value *OldV = **DO;
3275 // Clobber the use with an undef value.
3276 **DO = UndefValue::get(OldV->getType());
3277 if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3278 if (isInstructionTriviallyDead(OldI)) {
3279 Changed = true;
3280 DeadInsts.push_back(OldI);
3281 }
3282 }
3283
Chandler Carruthfca3f402012-10-05 01:29:09 +00003284 // No partitions to split. Leave the dead alloca for a later pass to clean up.
3285 if (P.begin() == P.end())
3286 return Changed;
3287
Chandler Carruth713aa942012-09-14 09:22:59 +00003288 return splitAlloca(AI, P) || Changed;
3289}
3290
Chandler Carruth8615cd22012-09-14 10:26:38 +00003291/// \brief Delete the dead instructions accumulated in this run.
3292///
3293/// Recursively deletes the dead instructions we've accumulated. This is done
3294/// at the very end to maximize locality of the recursive delete and to
3295/// minimize the problems of invalidated instruction pointers as such pointers
3296/// are used heavily in the intermediate stages of the algorithm.
3297///
3298/// We also record the alloca instructions deleted here so that they aren't
3299/// subsequently handed to mem2reg to promote.
3300void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
Chandler Carruth713aa942012-09-14 09:22:59 +00003301 DeadSplitInsts.clear();
3302 while (!DeadInsts.empty()) {
3303 Instruction *I = DeadInsts.pop_back_val();
3304 DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3305
3306 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3307 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3308 // Zero out the operand and see if it becomes trivially dead.
3309 *OI = 0;
3310 if (isInstructionTriviallyDead(U))
3311 DeadInsts.push_back(U);
3312 }
3313
3314 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3315 DeletedAllocas.insert(AI);
3316
3317 ++NumDeleted;
3318 I->eraseFromParent();
3319 }
3320}
3321
Chandler Carruth1c8db502012-09-15 11:43:14 +00003322/// \brief Promote the allocas, using the best available technique.
3323///
3324/// This attempts to promote whatever allocas have been identified as viable in
3325/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3326/// If there is a domtree available, we attempt to promote using the full power
3327/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3328/// based on the SSAUpdater utilities. This function returns whether any
3329/// promotion occured.
3330bool SROA::promoteAllocas(Function &F) {
3331 if (PromotableAllocas.empty())
3332 return false;
3333
3334 NumPromoted += PromotableAllocas.size();
3335
3336 if (DT && !ForceSSAUpdater) {
3337 DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3338 PromoteMemToReg(PromotableAllocas, *DT);
3339 PromotableAllocas.clear();
3340 return true;
3341 }
3342
3343 DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3344 SSAUpdater SSA;
3345 DIBuilder DIB(*F.getParent());
3346 SmallVector<Instruction*, 64> Insts;
3347
3348 for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3349 AllocaInst *AI = PromotableAllocas[Idx];
3350 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
3351 UI != UE;) {
3352 Instruction *I = cast<Instruction>(*UI++);
3353 // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3354 // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3355 // leading to them) here. Eventually it should use them to optimize the
3356 // scalar values produced.
3357 if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
3358 assert(onlyUsedByLifetimeMarkers(I) &&
3359 "Found a bitcast used outside of a lifetime marker.");
3360 while (!I->use_empty())
3361 cast<Instruction>(*I->use_begin())->eraseFromParent();
3362 I->eraseFromParent();
3363 continue;
3364 }
3365 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3366 assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3367 II->getIntrinsicID() == Intrinsic::lifetime_end);
3368 II->eraseFromParent();
3369 continue;
3370 }
3371
3372 Insts.push_back(I);
3373 }
3374 AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3375 Insts.clear();
3376 }
3377
3378 PromotableAllocas.clear();
3379 return true;
3380}
3381
Chandler Carruth713aa942012-09-14 09:22:59 +00003382namespace {
3383 /// \brief A predicate to test whether an alloca belongs to a set.
3384 class IsAllocaInSet {
3385 typedef SmallPtrSet<AllocaInst *, 4> SetType;
3386 const SetType &Set;
3387
3388 public:
Chandler Carruth75eac5f2012-10-03 00:03:00 +00003389 typedef AllocaInst *argument_type;
3390
Chandler Carruth713aa942012-09-14 09:22:59 +00003391 IsAllocaInSet(const SetType &Set) : Set(Set) {}
Chandler Carruth75eac5f2012-10-03 00:03:00 +00003392 bool operator()(AllocaInst *AI) const { return Set.count(AI); }
Chandler Carruth713aa942012-09-14 09:22:59 +00003393 };
3394}
3395
3396bool SROA::runOnFunction(Function &F) {
3397 DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3398 C = &F.getContext();
Micah Villmow3574eca2012-10-08 16:38:25 +00003399 TD = getAnalysisIfAvailable<DataLayout>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003400 if (!TD) {
3401 DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
3402 return false;
3403 }
Chandler Carruth1c8db502012-09-15 11:43:14 +00003404 DT = getAnalysisIfAvailable<DominatorTree>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003405
3406 BasicBlock &EntryBB = F.getEntryBlock();
3407 for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3408 I != E; ++I)
3409 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3410 Worklist.insert(AI);
3411
3412 bool Changed = false;
Chandler Carruth8615cd22012-09-14 10:26:38 +00003413 // A set of deleted alloca instruction pointers which should be removed from
3414 // the list of promotable allocas.
3415 SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3416
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003417 do {
3418 while (!Worklist.empty()) {
3419 Changed |= runOnAlloca(*Worklist.pop_back_val());
3420 deleteDeadInstructions(DeletedAllocas);
Chandler Carruth5c5b3cf2012-10-02 22:46:45 +00003421
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003422 // Remove the deleted allocas from various lists so that we don't try to
3423 // continue processing them.
3424 if (!DeletedAllocas.empty()) {
3425 Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3426 PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3427 PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3428 PromotableAllocas.end(),
3429 IsAllocaInSet(DeletedAllocas)),
3430 PromotableAllocas.end());
3431 DeletedAllocas.clear();
3432 }
Chandler Carruth713aa942012-09-14 09:22:59 +00003433 }
Chandler Carruth713aa942012-09-14 09:22:59 +00003434
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003435 Changed |= promoteAllocas(F);
3436
3437 Worklist = PostPromotionWorklist;
3438 PostPromotionWorklist.clear();
3439 } while (!Worklist.empty());
Chandler Carruth713aa942012-09-14 09:22:59 +00003440
3441 return Changed;
3442}
3443
3444void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth1c8db502012-09-15 11:43:14 +00003445 if (RequiresDomTree)
3446 AU.addRequired<DominatorTree>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003447 AU.setPreservesCFG();
3448}