blob: 0d51b832af85b5e70ad433ebbd86ea69b29c5b01 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000030#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000031#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000032#include "llvm/Support/CFG.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000035#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000036#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
Chris Lattnerec531232009-12-31 07:33:14 +000038#include "llvm/ADT/DenseMap.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000039#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000040using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000041
Chris Lattner0e5f4992006-12-19 21:40:18 +000042STATISTIC(NumLinear , "Number of insts linearized");
43STATISTIC(NumChanged, "Number of insts reassociated");
44STATISTIC(NumAnnihil, "Number of expr tree annihilated");
45STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000046
Chris Lattner0e5f4992006-12-19 21:40:18 +000047namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000048 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000049 unsigned Rank;
50 Value *Op;
51 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
52 };
53 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
54 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
55 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000056}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000057
Devang Patel50cacb22008-11-21 21:00:20 +000058#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000059/// PrintOps - Print out the expression identified in the Ops list.
60///
Chris Lattner9f7b7082009-12-31 18:40:32 +000061static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000062 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000063 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000064 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000065 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000066 dbgs() << "[ ";
67 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
68 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000069 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000070}
Devang Patel59500c82008-11-21 20:00:59 +000071#endif
Chris Lattnere5022fe2006-03-04 09:31:13 +000072
Dan Gohman844731a2008-05-13 00:00:25 +000073namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000074 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +000075 DenseMap<BasicBlock*, unsigned> RankMap;
76 DenseMap<AssertingVH<>, unsigned> ValueRankMap;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000077 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000078 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000079 static char ID; // Pass identification, replacement for typeid
Owen Anderson90c579d2010-08-06 18:33:48 +000080 Reassociate() : FunctionPass(ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000081
Chris Lattner7e708292002-06-25 16:13:24 +000082 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000083
84 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000085 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000086 }
87 private:
Chris Lattner7e708292002-06-25 16:13:24 +000088 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000089 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +000090 Value *ReassociateExpression(BinaryOperator *I);
Chris Lattner9f7b7082009-12-31 18:40:32 +000091 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +000092 unsigned Idx = 0);
Chris Lattner9f7b7082009-12-31 18:40:32 +000093 Value *OptimizeExpression(BinaryOperator *I,
94 SmallVectorImpl<ValueEntry> &Ops);
95 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
96 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000097 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +000098 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000099 void ReassociateBB(BasicBlock *BB);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000100
101 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +0000102 };
103}
104
Dan Gohman844731a2008-05-13 00:00:25 +0000105char Reassociate::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000106INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersonce665bd2010-10-07 22:25:06 +0000107 "Reassociate expressions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000108
Brian Gaeked0fde302003-11-11 22:41:34 +0000109// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000110FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000111
Chris Lattnere5022fe2006-03-04 09:31:13 +0000112void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000113 Instruction *Op = dyn_cast<Instruction>(V);
Chris Lattner69e98e22009-12-31 19:24:52 +0000114 if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
Reid Spencere4d87aa2006-12-23 06:05:41 +0000115 return;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000116
Reid Spencere4d87aa2006-12-23 06:05:41 +0000117 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattner69e98e22009-12-31 19:24:52 +0000118
119 ValueRankMap.erase(Op);
120 Op->eraseFromParent();
Chris Lattnere5022fe2006-03-04 09:31:13 +0000121 RemoveDeadBinaryOp(LHS);
122 RemoveDeadBinaryOp(RHS);
123}
124
Chris Lattner9c723192005-05-08 20:57:04 +0000125
126static bool isUnmovableInstruction(Instruction *I) {
127 if (I->getOpcode() == Instruction::PHI ||
128 I->getOpcode() == Instruction::Alloca ||
129 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000130 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000131 (I->getOpcode() == Instruction::Call &&
132 !isa<DbgInfoIntrinsic>(I)) ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000133 I->getOpcode() == Instruction::UDiv ||
134 I->getOpcode() == Instruction::SDiv ||
135 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000136 I->getOpcode() == Instruction::URem ||
137 I->getOpcode() == Instruction::SRem ||
138 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000139 return true;
140 return false;
141}
142
Chris Lattner7e708292002-06-25 16:13:24 +0000143void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000144 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000145
146 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000147 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000148 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000149
Chris Lattner7e708292002-06-25 16:13:24 +0000150 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000151 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000152 E = RPOT.end(); I != E; ++I) {
153 BasicBlock *BB = *I;
154 unsigned BBRank = RankMap[BB] = ++i << 16;
155
156 // Walk the basic block, adding precomputed ranks for any instructions that
157 // we cannot move. This ensures that the ranks for these instructions are
158 // all different in the block.
159 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
160 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000161 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000162 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000163}
164
165unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000166 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000167 if (I == 0) {
168 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
169 return 0; // Otherwise it's a global or constant, rank 0.
170 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000171
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000172 if (unsigned Rank = ValueRankMap[I])
173 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000174
Chris Lattner08b43922005-05-07 04:08:02 +0000175 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
176 // we can reassociate expressions for code motion! Since we do not recurse
177 // for PHI nodes, we cannot have infinite recursion here, because there
178 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000179 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
180 for (unsigned i = 0, e = I->getNumOperands();
181 i != e && Rank != MaxRank; ++i)
182 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000183
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000184 // If this is a not or neg instruction, do not count it for rank. This
185 // assures us that X and ~X will have the same rank.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000186 if (!I->getType()->isIntegerTy() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000187 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000188 ++Rank;
189
David Greenea1fa76c2010-01-05 01:27:24 +0000190 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000191 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000192
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000193 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000194}
195
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000196/// isReassociableOp - Return true if V is an instruction of the specified
197/// opcode and if it only has one use.
198static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000199 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000200 cast<Instruction>(V)->getOpcode() == Opcode)
201 return cast<BinaryOperator>(V);
202 return 0;
203}
Chris Lattner4fd56002002-05-08 22:19:27 +0000204
Chris Lattnerf33151a2005-05-08 21:28:52 +0000205/// LowerNegateToMultiply - Replace 0-X with X*-1.
206///
Dale Johannesenf4978e22009-03-19 17:22:53 +0000207static Instruction *LowerNegateToMultiply(Instruction *Neg,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000208 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000209 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000210
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000211 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000212 ValueRankMap.erase(Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000213 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000214 Neg->replaceAllUsesWith(Res);
215 Neg->eraseFromParent();
216 return Res;
217}
218
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000219// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
220// Note that if D is also part of the expression tree that we recurse to
221// linearize it as well. Besides that case, this does not recurse into A,B, or
222// C.
223void Reassociate::LinearizeExpr(BinaryOperator *I) {
224 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
225 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000226 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000227 isReassociableOp(RHS, I->getOpcode()) &&
228 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000229
David Greenea1fa76c2010-01-05 01:27:24 +0000230 DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Chris Lattner4fd56002002-05-08 22:19:27 +0000231
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000232 // Move the RHS instruction to live immediately before I, avoiding breaking
233 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000234 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000235
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000236 // Move operands around to do the linearization.
237 I->setOperand(1, RHS->getOperand(0));
238 RHS->setOperand(0, LHS);
239 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000240
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000241 ++NumLinear;
242 MadeChange = true;
David Greenea1fa76c2010-01-05 01:27:24 +0000243 DEBUG(dbgs() << "Linearized: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000244
245 // If D is part of this expression tree, tail recurse.
246 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
247 LinearizeExpr(I);
248}
249
250
251/// LinearizeExprTree - Given an associative binary expression tree, traverse
252/// all of the uses putting it into canonical form. This forces a left-linear
Dan Gohmanf451cb82010-02-10 16:03:48 +0000253/// form of the expression (((a+b)+c)+d), and collects information about the
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000254/// rank of the non-tree operands.
255///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000256/// NOTE: These intentionally destroys the expression tree operands (turning
257/// them into undef values) to reduce #uses of the values. This means that the
258/// caller MUST use something like RewriteExprTree to put the values back in.
259///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000260void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000261 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000262 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
263 unsigned Opcode = I->getOpcode();
264
265 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
266 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
267 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
268
Chris Lattnerf33151a2005-05-08 21:28:52 +0000269 // If this is a multiply expression tree and it contains internal negations,
270 // transform them into multiplies by -1 so they can be reassociated.
271 if (I->getOpcode() == Instruction::Mul) {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000272 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000273 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000274 LHSBO = isReassociableOp(LHS, Opcode);
275 }
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000276 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000277 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000278 RHSBO = isReassociableOp(RHS, Opcode);
279 }
280 }
281
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000282 if (!LHSBO) {
283 if (!RHSBO) {
284 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
285 // such, just remember these operands and their rank.
286 Ops.push_back(ValueEntry(getRank(LHS), LHS));
287 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000288
289 // Clear the leaves out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000290 I->setOperand(0, UndefValue::get(I->getType()));
291 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000292 return;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000293 }
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000294
295 // Turn X+(Y+Z) -> (Y+Z)+X
296 std::swap(LHSBO, RHSBO);
297 std::swap(LHS, RHS);
298 bool Success = !I->swapOperands();
299 assert(Success && "swapOperands failed");
300 Success = false;
301 MadeChange = true;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000302 } else if (RHSBO) {
Dan Gohmanf451cb82010-02-10 16:03:48 +0000303 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the RHS is not
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000304 // part of the expression tree.
305 LinearizeExpr(I);
306 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
307 RHS = I->getOperand(1);
308 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000309 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000310
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000311 // Okay, now we know that the LHS is a nested expression and that the RHS is
312 // not. Perform reassociation.
313 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000314
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000315 // Move LHS right before I to make sure that the tree expression dominates all
316 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000317 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000318
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000319 // Linearize the expression tree on the LHS.
320 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000321
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000322 // Remember the RHS operand and its rank.
323 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000324
325 // Clear the RHS leaf out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000326 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000327}
328
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000329// RewriteExprTree - Now that the operands for this expression tree are
330// linearized and optimized, emit them in-order. This function is written to be
331// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000332void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000333 SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +0000334 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000335 if (i+2 == Ops.size()) {
336 if (I->getOperand(0) != Ops[i].Op ||
337 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000338 Value *OldLHS = I->getOperand(0);
David Greenea1fa76c2010-01-05 01:27:24 +0000339 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000340 I->setOperand(0, Ops[i].Op);
341 I->setOperand(1, Ops[i+1].Op);
David Greenea1fa76c2010-01-05 01:27:24 +0000342 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000343 MadeChange = true;
344 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000345
346 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
347 // delete the extra, now dead, nodes.
348 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000349 }
350 return;
351 }
352 assert(i+2 < Ops.size() && "Ops index out of range!");
353
354 if (I->getOperand(1) != Ops[i].Op) {
David Greenea1fa76c2010-01-05 01:27:24 +0000355 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000356 I->setOperand(1, Ops[i].Op);
David Greenea1fa76c2010-01-05 01:27:24 +0000357 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000358 MadeChange = true;
359 ++NumChanged;
360 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000361
362 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
363 assert(LHS->getOpcode() == I->getOpcode() &&
364 "Improper expression tree!");
365
366 // Compactify the tree instructions together with each other to guarantee
367 // that the expression tree is dominated by all of Ops.
368 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000369 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000370}
371
372
Chris Lattner4fd56002002-05-08 22:19:27 +0000373
Chris Lattnera36e6c82002-05-16 04:37:07 +0000374// NegateValue - Insert instructions before the instruction pointed to by BI,
375// that computes the negative version of the value specified. The negative
376// version of the value is returned, and BI is left pointing at the instruction
377// that should be processed next by the reassociation pass.
378//
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000379static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000380 if (Constant *C = dyn_cast<Constant>(V))
381 return ConstantExpr::getNeg(C);
382
Chris Lattnera36e6c82002-05-16 04:37:07 +0000383 // We are trying to expose opportunity for reassociation. One of the things
384 // that we want to do to achieve this is to push a negation as deep into an
385 // expression chain as possible, to expose the add instructions. In practice,
386 // this means that we turn this:
387 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
388 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
389 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000390 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000391 //
392 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000393 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000394 // Push the negates through the add.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000395 I->setOperand(0, NegateValue(I->getOperand(0), BI));
396 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000397
Chris Lattner2cd85da2005-09-02 06:38:04 +0000398 // We must move the add instruction here, because the neg instructions do
399 // not dominate the old add instruction in general. By moving it, we are
400 // assured that the neg instructions we just inserted dominate the
401 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000402 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000403 I->moveBefore(BI);
404 I->setName(I->getName()+".neg");
405 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000406 }
Chris Lattner35239932009-12-31 20:34:32 +0000407
408 // Okay, we need to materialize a negated version of V with an instruction.
409 // Scan the use lists of V to see if we have one already.
410 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif110b75a2010-07-12 12:03:02 +0000411 User *U = *UI;
412 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattner35239932009-12-31 20:34:32 +0000413
414 // We found one! Now we have to make sure that the definition dominates
415 // this use. We do this by moving it to the entry block (if it is a
416 // non-instruction value) or right after the definition. These negates will
417 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif110b75a2010-07-12 12:03:02 +0000418 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000419
420 // Verify that the negate is in this function, V might be a constant expr.
421 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
422 continue;
Chris Lattner35239932009-12-31 20:34:32 +0000423
424 BasicBlock::iterator InsertPt;
425 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
426 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
427 InsertPt = II->getNormalDest()->begin();
428 } else {
429 InsertPt = InstInput;
430 ++InsertPt;
431 }
432 while (isa<PHINode>(InsertPt)) ++InsertPt;
433 } else {
434 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
435 }
436 TheNeg->moveBefore(InsertPt);
437 return TheNeg;
438 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000439
440 // Insert a 'neg' instruction that subtracts the value from zero to get the
441 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000442 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000443}
444
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000445/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
446/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000447static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000448 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000449 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000450 return false;
451
452 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000453 // subtract or if this is only used by one.
454 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
455 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000456 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000457 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000458 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000459 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000460 if (Sub->hasOneUse() &&
461 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
462 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000463 return true;
464
465 return false;
466}
467
Chris Lattner08b43922005-05-07 04:08:02 +0000468/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
469/// only used by an add, transform this into (X+(0-Y)) to promote better
470/// reassociation.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000471static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000472 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner90461932010-01-01 00:04:26 +0000473 // Convert a subtract into an add and a neg instruction. This allows sub
474 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000475 //
Chris Lattner90461932010-01-01 00:04:26 +0000476 // Calculate the negative value of Operand 1 of the sub instruction,
477 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000478 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000479 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000480 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000481 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000482 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000483
484 // Everyone now refers to the add instruction.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000485 ValueRankMap.erase(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000486 Sub->replaceAllUsesWith(New);
487 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000488
David Greenea1fa76c2010-01-05 01:27:24 +0000489 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000490 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000491}
492
Chris Lattner0975ed52005-05-07 04:24:13 +0000493/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
494/// by one, change this into a multiply by a constant to assist with further
495/// reassociation.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000496static Instruction *ConvertShiftToMul(Instruction *Shl,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000497 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000498 // If an operand of this shift is a reassociable multiply, or if the shift
499 // is used by a reassociable multiply or add, turn into a multiply.
500 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
501 (Shl->hasOneUse() &&
502 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
503 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000504 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000505 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Chris Lattner22a66c42006-03-14 06:55:18 +0000506
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000507 Instruction *Mul =
508 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000509 ValueRankMap.erase(Shl);
Chris Lattner6934a042007-02-11 01:23:03 +0000510 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000511 Shl->replaceAllUsesWith(Mul);
512 Shl->eraseFromParent();
513 return Mul;
514 }
515 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000516}
517
Chris Lattner109d34d2005-05-08 18:59:37 +0000518// Scan backwards and forwards among values with the same rank as element i to
Chris Lattner9506c932010-01-01 01:13:15 +0000519// see if X exists. If X does not exist, return i. This is useful when
520// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000521static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000522 Value *X) {
523 unsigned XRank = Ops[i].Rank;
524 unsigned e = Ops.size();
525 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
526 if (Ops[j].Op == X)
527 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000528 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000529 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
530 if (Ops[j].Op == X)
531 return j;
532 return i;
533}
534
Chris Lattnere5022fe2006-03-04 09:31:13 +0000535/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
536/// and returning the result. Insert the tree before I.
Chris Lattner8d93b252009-12-31 07:48:51 +0000537static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000538 if (Ops.size() == 1) return Ops.back();
539
540 Value *V1 = Ops.back();
541 Ops.pop_back();
542 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000543 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000544}
545
546/// RemoveFactorFromExpression - If V is an expression tree that is a
547/// multiplication sequence, and if this sequence contains a multiply by Factor,
548/// remove Factor from the tree and return the new tree.
549Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
550 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
551 if (!BO) return 0;
552
Chris Lattner9f7b7082009-12-31 18:40:32 +0000553 SmallVector<ValueEntry, 8> Factors;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000554 LinearizeExprTree(BO, Factors);
555
556 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000557 bool NeedsNegate = false;
558 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000559 if (Factors[i].Op == Factor) {
560 FoundFactor = true;
561 Factors.erase(Factors.begin()+i);
562 break;
563 }
Chris Lattner9506c932010-01-01 01:13:15 +0000564
565 // If this is a negative version of this factor, remove it.
566 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
567 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
568 if (FC1->getValue() == -FC2->getValue()) {
569 FoundFactor = NeedsNegate = true;
570 Factors.erase(Factors.begin()+i);
571 break;
572 }
573 }
574
Chris Lattnere9efecb2006-03-14 16:04:29 +0000575 if (!FoundFactor) {
576 // Make sure to restore the operands to the expression tree.
577 RewriteExprTree(BO, Factors);
578 return 0;
579 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000580
Chris Lattner9506c932010-01-01 01:13:15 +0000581 BasicBlock::iterator InsertPt = BO; ++InsertPt;
582
Chris Lattner1e7558b2009-12-31 19:34:45 +0000583 // If this was just a single multiply, remove the multiply and return the only
584 // remaining operand.
585 if (Factors.size() == 1) {
586 ValueRankMap.erase(BO);
587 BO->eraseFromParent();
Chris Lattner9506c932010-01-01 01:13:15 +0000588 V = Factors[0].Op;
589 } else {
590 RewriteExprTree(BO, Factors);
591 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +0000592 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000593
Chris Lattner9506c932010-01-01 01:13:15 +0000594 if (NeedsNegate)
595 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
596
597 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000598}
599
Chris Lattnere9efecb2006-03-14 16:04:29 +0000600/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
601/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000602///
603/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000604static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner893075f2010-03-05 07:18:54 +0000605 SmallVectorImpl<Value*> &Factors,
606 const SmallVectorImpl<ValueEntry> &Ops,
607 bool IsRoot) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000608 BinaryOperator *BO;
Chris Lattner893075f2010-03-05 07:18:54 +0000609 if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000610 !(BO = dyn_cast<BinaryOperator>(V)) ||
611 BO->getOpcode() != Instruction::Mul) {
612 Factors.push_back(V);
613 return;
614 }
615
Chris Lattner893075f2010-03-05 07:18:54 +0000616 // If this value has a single use because it is another input to the add
617 // tree we're reassociating and we dropped its use, it actually has two
618 // uses and we can't factor it.
619 if (!IsRoot) {
620 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
621 if (Ops[i].Op == V) {
622 Factors.push_back(V);
623 return;
624 }
625 }
626
627
Chris Lattnere9efecb2006-03-14 16:04:29 +0000628 // Otherwise, add the LHS and RHS to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000629 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
630 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000631}
632
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000633/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
634/// instruction. This optimizes based on identities. If it can be reduced to
635/// a single Value, it is returned, otherwise the Ops list is mutated as
636/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000637static Value *OptimizeAndOrXor(unsigned Opcode,
638 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000639 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
640 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
641 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
642 // First, check for X and ~X in the operand list.
643 assert(i < Ops.size());
644 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
645 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
646 unsigned FoundX = FindInOperandList(Ops, i, X);
647 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000648 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000649 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000650
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000651 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000652 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000653 }
654 }
655
656 // Next, check for duplicate pairs of values, which we assume are next to
657 // each other, due to our sorting criteria.
658 assert(i < Ops.size());
659 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
660 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000661 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000662 Ops.erase(Ops.begin()+i);
663 --i; --e;
664 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000665 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000666 }
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000667
668 // Drop pairs of values for Xor.
669 assert(Opcode == Instruction::Xor);
670 if (e == 2)
671 return Constant::getNullValue(Ops[0].Op->getType());
672
Chris Lattner90461932010-01-01 00:04:26 +0000673 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000674 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
675 i -= 1; e -= 2;
676 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000677 }
678 }
679 return 0;
680}
Chris Lattnere9efecb2006-03-14 16:04:29 +0000681
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000682/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
683/// optimizes based on identities. If it can be reduced to a single Value, it
684/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000685Value *Reassociate::OptimizeAdd(Instruction *I,
686 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000687 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +0000688 // can simplify the expression. X+-X == 0. While we're at it, scan for any
689 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +0000690 //
691 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
692 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000693 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000694 Value *TheOp = Ops[i].Op;
695 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000696 // instances of the operand together. Due to our sorting criteria, we know
697 // that these need to be next to each other in the vector.
698 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
699 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +0000700 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000701 do {
702 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +0000703 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000704 } while (i != Ops.size() && Ops[i].Op == TheOp);
705
Chris Lattnerf8a447d2009-12-31 19:25:19 +0000706 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +0000707 ++NumFactor;
Chris Lattner69e98e22009-12-31 19:24:52 +0000708
709 // Insert a new multiply.
710 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
711 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
712
713 // Now that we have inserted a multiply, optimize it. This allows us to
714 // handle cases that require multiple factoring steps, such as this:
715 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
716 Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
717
718 // If every add operand was a duplicate, return the multiply.
719 if (Ops.empty())
720 return Mul;
721
722 // Otherwise, we had some input that didn't have the dupe, such as
723 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
724 // things being added by this operation.
725 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000726
727 --i;
728 e = Ops.size();
729 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +0000730 }
731
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000732 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +0000733 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000734 continue;
735
Chris Lattner69e98e22009-12-31 19:24:52 +0000736 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000737 unsigned FoundX = FindInOperandList(Ops, i, X);
738 if (FoundX == i)
739 continue;
740
741 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000742 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000743 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000744
745 Ops.erase(Ops.begin()+i);
746 if (i < FoundX)
747 --FoundX;
748 else
749 --i; // Need to back up an extra one.
750 Ops.erase(Ops.begin()+FoundX);
751 ++NumAnnihil;
752 --i; // Revisit element.
753 e -= 2; // Removed two elements.
754 }
Chris Lattner94285e62009-12-31 18:17:13 +0000755
756 // Scan the operand list, checking to see if there are any common factors
757 // between operands. Consider something like A*A+A*B*C+D. We would like to
758 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
759 // To efficiently find this, we count the number of times a factor occurs
760 // for any ADD operands that are MULs.
761 DenseMap<Value*, unsigned> FactorOccurrences;
762
763 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
764 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +0000765 unsigned MaxOcc = 0;
766 Value *MaxOccVal = 0;
767 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
768 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
769 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
770 continue;
771
Chris Lattner94285e62009-12-31 18:17:13 +0000772 // Compute all of the factors of this added value.
773 SmallVector<Value*, 8> Factors;
Chris Lattner893075f2010-03-05 07:18:54 +0000774 FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
Chris Lattner94285e62009-12-31 18:17:13 +0000775 assert(Factors.size() > 1 && "Bad linearize!");
776
777 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +0000778 SmallPtrSet<Value*, 8> Duplicates;
779 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
780 Value *Factor = Factors[i];
781 if (!Duplicates.insert(Factor)) continue;
782
783 unsigned Occ = ++FactorOccurrences[Factor];
784 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
785
786 // If Factor is a negative constant, add the negated value as a factor
787 // because we can percolate the negate out. Watch for minint, which
788 // cannot be positivified.
789 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
790 if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
791 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
792 assert(!Duplicates.count(Factor) &&
793 "Shouldn't have two constant factors, missed a canonicalize");
794
795 unsigned Occ = ++FactorOccurrences[Factor];
796 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
797 }
Chris Lattner94285e62009-12-31 18:17:13 +0000798 }
799 }
800
801 // If any factor occurred more than one time, we can pull it out.
802 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000803 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +0000804 ++NumFactor;
805
806 // Create a new instruction that uses the MaxOccVal twice. If we don't do
807 // this, we could otherwise run into situations where removing a factor
808 // from an expression will drop a use of maxocc, and this can cause
809 // RemoveFactorFromExpression on successive values to behave differently.
810 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
811 SmallVector<Value*, 4> NewMulOps;
812 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattnerc2d1b692010-01-09 06:01:36 +0000813 // Only try to remove factors from expressions we're allowed to.
814 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
815 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
816 continue;
817
Chris Lattner94285e62009-12-31 18:17:13 +0000818 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
819 NewMulOps.push_back(V);
820 Ops.erase(Ops.begin()+i);
821 --i; --e;
822 }
823 }
824
825 // No need for extra uses anymore.
826 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +0000827
Chris Lattner94285e62009-12-31 18:17:13 +0000828 unsigned NumAddedValues = NewMulOps.size();
829 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +0000830
Chris Lattner69e98e22009-12-31 19:24:52 +0000831 // Now that we have inserted the add tree, optimize it. This allows us to
832 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +0000833 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000834 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +0000835 (void)NumAddedValues;
Chris Lattner69e98e22009-12-31 19:24:52 +0000836 V = ReassociateExpression(cast<BinaryOperator>(V));
837
838 // Create the multiply.
839 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
840
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000841 // Rerun associate on the multiply in case the inner expression turned into
842 // a multiply. We want to make sure that we keep things in canonical form.
843 V2 = ReassociateExpression(cast<BinaryOperator>(V2));
Chris Lattner94285e62009-12-31 18:17:13 +0000844
845 // If every add operand included the factor (e.g. "A*B + A*C"), then the
846 // entire result expression is just the multiply "A*(B+C)".
847 if (Ops.empty())
848 return V2;
849
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000850 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +0000851 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000852 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +0000853 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
854 }
855
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000856 return 0;
857}
Chris Lattnere5022fe2006-03-04 09:31:13 +0000858
859Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000860 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000861 // Now that we have the linearized expression tree, try to optimize it.
862 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000863 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000864 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000865
Chris Lattnere5022fe2006-03-04 09:31:13 +0000866 unsigned Opcode = I->getOpcode();
867
Chris Lattner46900102005-05-08 00:19:31 +0000868 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
869 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
870 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +0000871 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000872 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000873 }
874
875 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000876 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +0000877 switch (Opcode) {
878 default: break;
879 case Instruction::And:
Chris Lattner90461932010-01-01 00:04:26 +0000880 if (CstVal->isZero()) // X & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +0000881 return CstVal;
Chris Lattner90461932010-01-01 00:04:26 +0000882 if (CstVal->isAllOnesValue()) // X & -1 -> X
Chris Lattner8d93b252009-12-31 07:48:51 +0000883 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +0000884 break;
885 case Instruction::Mul:
Chris Lattner90461932010-01-01 00:04:26 +0000886 if (CstVal->isZero()) { // X * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000887 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000888 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000889 }
Chris Lattner8d93b252009-12-31 07:48:51 +0000890
891 if (cast<ConstantInt>(CstVal)->isOne())
Chris Lattner90461932010-01-01 00:04:26 +0000892 Ops.pop_back(); // X * 1 -> X
Chris Lattner46900102005-05-08 00:19:31 +0000893 break;
894 case Instruction::Or:
Chris Lattner90461932010-01-01 00:04:26 +0000895 if (CstVal->isAllOnesValue()) // X | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +0000896 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000897 // FALLTHROUGH!
898 case Instruction::Add:
899 case Instruction::Xor:
Chris Lattner90461932010-01-01 00:04:26 +0000900 if (CstVal->isZero()) // X [|^+] 0 -> X
Chris Lattner46900102005-05-08 00:19:31 +0000901 Ops.pop_back();
902 break;
903 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000904 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000905
Chris Lattnerec531232009-12-31 07:33:14 +0000906 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +0000907 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000908 switch (Opcode) {
909 default: break;
910 case Instruction::And:
911 case Instruction::Or:
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000912 case Instruction::Xor: {
913 unsigned NumOps = Ops.size();
914 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
915 return Result;
916 IterateOptimization |= Ops.size() != NumOps;
Chris Lattner109d34d2005-05-08 18:59:37 +0000917 break;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000918 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000919
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000920 case Instruction::Add: {
921 unsigned NumOps = Ops.size();
Chris Lattner94285e62009-12-31 18:17:13 +0000922 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000923 return Result;
924 IterateOptimization |= Ops.size() != NumOps;
925 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000926
Chris Lattner109d34d2005-05-08 18:59:37 +0000927 break;
928 //case Instruction::Mul:
929 }
930
Jeff Cohen00b168892005-07-27 06:12:32 +0000931 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000932 return OptimizeExpression(I, Ops);
933 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000934}
935
Chris Lattnera36e6c82002-05-16 04:37:07 +0000936
Chris Lattner08b43922005-05-07 04:08:02 +0000937/// ReassociateBB - Inspect all of the instructions in this basic block,
938/// reassociating them as we go.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000939void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000940 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
941 Instruction *BI = BBI++;
Chris Lattner641f02f2005-05-10 03:39:25 +0000942 if (BI->getOpcode() == Instruction::Shl &&
943 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000944 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Chris Lattner641f02f2005-05-10 03:39:25 +0000945 MadeChange = true;
946 BI = NI;
947 }
948
Chris Lattner6f156852005-05-08 21:33:47 +0000949 // Reject cases where it is pointless to do this.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000950 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
Duncan Sands1df98592010-02-16 11:11:14 +0000951 BI->getType()->isVectorTy())
Chris Lattner6f156852005-05-08 21:33:47 +0000952 continue; // Floating point ops are not associative.
953
Bob Wilsonfc375d22010-02-04 23:32:37 +0000954 // Do not reassociate boolean (i1) expressions. We want to preserve the
955 // original order of evaluation for short-circuited comparisons that
956 // SimplifyCFG has folded to AND/OR expressions. If the expression
957 // is not further optimized, it is likely to be transformed back to a
958 // short-circuited form for code gen, and the source order may have been
959 // optimized for the most likely conditions.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000960 if (BI->getType()->isIntegerTy(1))
Bob Wilsonfc375d22010-02-04 23:32:37 +0000961 continue;
962
Chris Lattner08b43922005-05-07 04:08:02 +0000963 // If this is a subtract instruction which is not already in negate form,
964 // see if we can convert it to X+-Y.
Chris Lattnerf33151a2005-05-08 21:28:52 +0000965 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000966 if (ShouldBreakUpSubtract(BI)) {
967 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattner5f94af02010-01-05 04:55:35 +0000968 // Reset the BBI iterator in case BreakUpSubtract changed the
969 // instruction it points to.
970 BBI = BI;
971 ++BBI;
Chris Lattnerd5b8d922008-02-18 02:18:25 +0000972 MadeChange = true;
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000973 } else if (BinaryOperator::isNeg(BI)) {
Chris Lattnerf33151a2005-05-08 21:28:52 +0000974 // Otherwise, this is a negation. See if the operand is a multiply tree
975 // and if this is not an inner node of a multiply tree.
976 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
977 (!BI->hasOneUse() ||
978 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000979 BI = LowerNegateToMultiply(BI, ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000980 MadeChange = true;
981 }
Chris Lattner08b43922005-05-07 04:08:02 +0000982 }
Chris Lattnerf33151a2005-05-08 21:28:52 +0000983 }
Chris Lattnere4b73042002-10-31 17:12:59 +0000984
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000985 // If this instruction is a commutative binary operator, process it.
986 if (!BI->isAssociative()) continue;
987 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen00b168892005-07-27 06:12:32 +0000988
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000989 // If this is an interior node of a reassociable tree, ignore it until we
990 // get to the root of the tree, to avoid N^2 analysis.
991 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
992 continue;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000993
Chris Lattner7b4ad942005-09-02 07:07:58 +0000994 // If this is an add tree that is used by a sub instruction, ignore it
995 // until we process the subtract.
996 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
997 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
998 continue;
999
Chris Lattner895b3922006-03-14 07:11:11 +00001000 ReassociateExpression(I);
1001 }
1002}
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001003
Chris Lattner69e98e22009-12-31 19:24:52 +00001004Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner895b3922006-03-14 07:11:11 +00001005
Chris Lattner69e98e22009-12-31 19:24:52 +00001006 // First, walk the expression tree, linearizing the tree, collecting the
1007 // operand information.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001008 SmallVector<ValueEntry, 8> Ops;
Chris Lattner895b3922006-03-14 07:11:11 +00001009 LinearizeExprTree(I, Ops);
1010
David Greenea1fa76c2010-01-05 01:27:24 +00001011 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001012
1013 // Now that we have linearized the tree to a list and have gathered all of
1014 // the operands and their ranks, sort the operands by their rank. Use a
1015 // stable_sort so that values with equal ranks will have their relative
1016 // positions maintained (and so the compiler is deterministic). Note that
1017 // this sorts so that the highest ranking values end up at the beginning of
1018 // the vector.
1019 std::stable_sort(Ops.begin(), Ops.end());
1020
1021 // OptimizeExpression - Now that we have the expression tree in a convenient
1022 // sorted form, optimize it globally if possible.
1023 if (Value *V = OptimizeExpression(I, Ops)) {
1024 // This expression tree simplified to something that isn't a tree,
1025 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +00001026 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001027 I->replaceAllUsesWith(V);
1028 RemoveDeadBinaryOp(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001029 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +00001030 return V;
Chris Lattner895b3922006-03-14 07:11:11 +00001031 }
1032
1033 // We want to sink immediates as deeply as possible except in the case where
1034 // this is a multiply tree used only by an add, and the immediate is a -1.
1035 // In this case we reassociate to put the negation on the outside so that we
1036 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1037 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1038 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1039 isa<ConstantInt>(Ops.back().Op) &&
1040 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001041 ValueEntry Tmp = Ops.pop_back_val();
1042 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001043 }
1044
David Greenea1fa76c2010-01-05 01:27:24 +00001045 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001046
1047 if (Ops.size() == 1) {
1048 // This expression tree simplified to something that isn't a tree,
1049 // eliminate it.
1050 I->replaceAllUsesWith(Ops[0].Op);
1051 RemoveDeadBinaryOp(I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001052 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +00001053 }
Chris Lattner69e98e22009-12-31 19:24:52 +00001054
1055 // Now that we ordered and optimized the expressions, splat them back into
1056 // the expression tree, removing any unneeded nodes.
1057 RewriteExprTree(I, Ops);
1058 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +00001059}
1060
1061
Chris Lattner7e708292002-06-25 16:13:24 +00001062bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +00001063 // Recalculate the rank map for F
1064 BuildRankMap(F);
1065
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001066 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +00001067 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001068 ReassociateBB(FI);
Chris Lattner4fd56002002-05-08 22:19:27 +00001069
Chris Lattnerf55e7f52010-01-01 00:01:34 +00001070 // We are done with the rank map.
Chris Lattner4fd56002002-05-08 22:19:27 +00001071 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +00001072 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001073 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001074}
Brian Gaeked0fde302003-11-11 22:41:34 +00001075