blob: bbb0e0a2dfc3ef34c3dd4b0feaad7d1b9abfc2e8 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnere96fda32003-05-02 19:26:34 +000011// to promote better constant propagation, GCSE, LICM, PRE...
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000030#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000031#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000032#include "llvm/Support/CFG.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000035#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000036#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
Chris Lattnerec531232009-12-31 07:33:14 +000038#include "llvm/ADT/DenseMap.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000039#include <algorithm>
Dan Gohmanc9235d22008-03-21 23:51:57 +000040#include <map>
Chris Lattnerd7456022004-01-09 06:02:20 +000041using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000042
Chris Lattner0e5f4992006-12-19 21:40:18 +000043STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000047
Chris Lattner0e5f4992006-12-19 21:40:18 +000048namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000049 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000050 unsigned Rank;
51 Value *Op;
52 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53 };
54 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
56 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000057}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000058
Devang Patel50cacb22008-11-21 21:00:20 +000059#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000060/// PrintOps - Print out the expression identified in the Ops list.
61///
Chris Lattner9f7b7082009-12-31 18:40:32 +000062static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000063 Module *M = I->getParent()->getParent()->getParent();
Chris Lattner79c5d3f2009-08-23 04:52:46 +000064 errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000065 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000066 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner1befe642009-12-31 07:17:37 +000067 errs() << "[ ";
68 WriteAsOperand(errs(), Ops[i].Op, false, M);
69 errs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000070 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000071}
Devang Patel59500c82008-11-21 20:00:59 +000072#endif
Chris Lattnere5022fe2006-03-04 09:31:13 +000073
Dan Gohman844731a2008-05-13 00:00:25 +000074namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000075 class Reassociate : public FunctionPass {
Chris Lattner0c0edf82002-07-25 06:17:51 +000076 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattnerd3c7b732009-03-31 22:13:29 +000077 std::map<AssertingVH<>, unsigned> ValueRankMap;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000078 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000079 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000080 static char ID; // Pass identification, replacement for typeid
Dan Gohmanae73dc12008-09-04 17:05:41 +000081 Reassociate() : FunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000082
Chris Lattner7e708292002-06-25 16:13:24 +000083 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000084
85 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000086 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000087 }
88 private:
Chris Lattner7e708292002-06-25 16:13:24 +000089 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000090 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +000091 Value *ReassociateExpression(BinaryOperator *I);
Chris Lattner9f7b7082009-12-31 18:40:32 +000092 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +000093 unsigned Idx = 0);
Chris Lattner9f7b7082009-12-31 18:40:32 +000094 Value *OptimizeExpression(BinaryOperator *I,
95 SmallVectorImpl<ValueEntry> &Ops);
96 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
97 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000098 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +000099 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000100 void ReassociateBB(BasicBlock *BB);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000101
102 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +0000103 };
104}
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106char Reassociate::ID = 0;
107static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
108
Brian Gaeked0fde302003-11-11 22:41:34 +0000109// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000110FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000111
Chris Lattnere5022fe2006-03-04 09:31:13 +0000112void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000113 Instruction *Op = dyn_cast<Instruction>(V);
Chris Lattner69e98e22009-12-31 19:24:52 +0000114 if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
Reid Spencere4d87aa2006-12-23 06:05:41 +0000115 return;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000116
Reid Spencere4d87aa2006-12-23 06:05:41 +0000117 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattner69e98e22009-12-31 19:24:52 +0000118
119 ValueRankMap.erase(Op);
120 Op->eraseFromParent();
Chris Lattnere5022fe2006-03-04 09:31:13 +0000121 RemoveDeadBinaryOp(LHS);
122 RemoveDeadBinaryOp(RHS);
123}
124
Chris Lattner9c723192005-05-08 20:57:04 +0000125
126static bool isUnmovableInstruction(Instruction *I) {
127 if (I->getOpcode() == Instruction::PHI ||
128 I->getOpcode() == Instruction::Alloca ||
129 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000130 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000131 (I->getOpcode() == Instruction::Call &&
132 !isa<DbgInfoIntrinsic>(I)) ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000133 I->getOpcode() == Instruction::UDiv ||
134 I->getOpcode() == Instruction::SDiv ||
135 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000136 I->getOpcode() == Instruction::URem ||
137 I->getOpcode() == Instruction::SRem ||
138 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000139 return true;
140 return false;
141}
142
Chris Lattner7e708292002-06-25 16:13:24 +0000143void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000144 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000145
146 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000147 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000148 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000149
Chris Lattner7e708292002-06-25 16:13:24 +0000150 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000151 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000152 E = RPOT.end(); I != E; ++I) {
153 BasicBlock *BB = *I;
154 unsigned BBRank = RankMap[BB] = ++i << 16;
155
156 // Walk the basic block, adding precomputed ranks for any instructions that
157 // we cannot move. This ensures that the ranks for these instructions are
158 // all different in the block.
159 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
160 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000161 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000162 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000163}
164
165unsigned Reassociate::getRank(Value *V) {
Chris Lattnerfb5be092003-08-13 16:16:26 +0000166 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
167
Chris Lattner08b43922005-05-07 04:08:02 +0000168 Instruction *I = dyn_cast<Instruction>(V);
169 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
Chris Lattner4fd56002002-05-08 22:19:27 +0000170
Chris Lattner08b43922005-05-07 04:08:02 +0000171 unsigned &CachedRank = ValueRankMap[I];
172 if (CachedRank) return CachedRank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000173
Chris Lattner08b43922005-05-07 04:08:02 +0000174 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
175 // we can reassociate expressions for code motion! Since we do not recurse
176 // for PHI nodes, we cannot have infinite recursion here, because there
177 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000178 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
179 for (unsigned i = 0, e = I->getNumOperands();
180 i != e && Rank != MaxRank; ++i)
181 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000182
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000183 // If this is a not or neg instruction, do not count it for rank. This
184 // assures us that X and ~X will have the same rank.
Chris Lattner42a75512007-01-15 02:27:26 +0000185 if (!I->getType()->isInteger() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000186 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000187 ++Rank;
188
Chris Lattnerbdff5482009-08-23 04:37:46 +0000189 //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
190 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000191
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000192 return CachedRank = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000193}
194
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000195/// isReassociableOp - Return true if V is an instruction of the specified
196/// opcode and if it only has one use.
197static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000198 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000199 cast<Instruction>(V)->getOpcode() == Opcode)
200 return cast<BinaryOperator>(V);
201 return 0;
202}
Chris Lattner4fd56002002-05-08 22:19:27 +0000203
Chris Lattnerf33151a2005-05-08 21:28:52 +0000204/// LowerNegateToMultiply - Replace 0-X with X*-1.
205///
Dale Johannesenf4978e22009-03-19 17:22:53 +0000206static Instruction *LowerNegateToMultiply(Instruction *Neg,
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000207 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000208 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000209
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000210 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000211 ValueRankMap.erase(Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000212 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000213 Neg->replaceAllUsesWith(Res);
214 Neg->eraseFromParent();
215 return Res;
216}
217
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000218// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
219// Note that if D is also part of the expression tree that we recurse to
220// linearize it as well. Besides that case, this does not recurse into A,B, or
221// C.
222void Reassociate::LinearizeExpr(BinaryOperator *I) {
223 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
224 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000225 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000226 isReassociableOp(RHS, I->getOpcode()) &&
227 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000228
Chris Lattnerbdff5482009-08-23 04:37:46 +0000229 DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Chris Lattner4fd56002002-05-08 22:19:27 +0000230
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000231 // Move the RHS instruction to live immediately before I, avoiding breaking
232 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000233 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000234
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000235 // Move operands around to do the linearization.
236 I->setOperand(1, RHS->getOperand(0));
237 RHS->setOperand(0, LHS);
238 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000239
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000240 ++NumLinear;
241 MadeChange = true;
Chris Lattnerbdff5482009-08-23 04:37:46 +0000242 DEBUG(errs() << "Linearized: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000243
244 // If D is part of this expression tree, tail recurse.
245 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
246 LinearizeExpr(I);
247}
248
249
250/// LinearizeExprTree - Given an associative binary expression tree, traverse
251/// all of the uses putting it into canonical form. This forces a left-linear
252/// form of the the expression (((a+b)+c)+d), and collects information about the
253/// rank of the non-tree operands.
254///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000255/// NOTE: These intentionally destroys the expression tree operands (turning
256/// them into undef values) to reduce #uses of the values. This means that the
257/// caller MUST use something like RewriteExprTree to put the values back in.
258///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000259void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000260 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000261 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
262 unsigned Opcode = I->getOpcode();
263
264 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
265 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
266 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
267
Chris Lattnerf33151a2005-05-08 21:28:52 +0000268 // If this is a multiply expression tree and it contains internal negations,
269 // transform them into multiplies by -1 so they can be reassociated.
270 if (I->getOpcode() == Instruction::Mul) {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000271 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000272 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000273 LHSBO = isReassociableOp(LHS, Opcode);
274 }
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000275 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000276 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000277 RHSBO = isReassociableOp(RHS, Opcode);
278 }
279 }
280
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000281 if (!LHSBO) {
282 if (!RHSBO) {
283 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
284 // such, just remember these operands and their rank.
285 Ops.push_back(ValueEntry(getRank(LHS), LHS));
286 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000287
288 // Clear the leaves out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000289 I->setOperand(0, UndefValue::get(I->getType()));
290 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000291 return;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000292 }
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000293
294 // Turn X+(Y+Z) -> (Y+Z)+X
295 std::swap(LHSBO, RHSBO);
296 std::swap(LHS, RHS);
297 bool Success = !I->swapOperands();
298 assert(Success && "swapOperands failed");
299 Success = false;
300 MadeChange = true;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000301 } else if (RHSBO) {
302 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
303 // part of the expression tree.
304 LinearizeExpr(I);
305 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
306 RHS = I->getOperand(1);
307 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000308 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000309
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000310 // Okay, now we know that the LHS is a nested expression and that the RHS is
311 // not. Perform reassociation.
312 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000313
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000314 // Move LHS right before I to make sure that the tree expression dominates all
315 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000316 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000317
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000318 // Linearize the expression tree on the LHS.
319 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000320
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000321 // Remember the RHS operand and its rank.
322 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000323
324 // Clear the RHS leaf out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000325 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000326}
327
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000328// RewriteExprTree - Now that the operands for this expression tree are
329// linearized and optimized, emit them in-order. This function is written to be
330// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000331void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000332 SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +0000333 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000334 if (i+2 == Ops.size()) {
335 if (I->getOperand(0) != Ops[i].Op ||
336 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000337 Value *OldLHS = I->getOperand(0);
Chris Lattnerbdff5482009-08-23 04:37:46 +0000338 DEBUG(errs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000339 I->setOperand(0, Ops[i].Op);
340 I->setOperand(1, Ops[i+1].Op);
Chris Lattnerbdff5482009-08-23 04:37:46 +0000341 DEBUG(errs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000342 MadeChange = true;
343 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000344
345 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
346 // delete the extra, now dead, nodes.
347 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000348 }
349 return;
350 }
351 assert(i+2 < Ops.size() && "Ops index out of range!");
352
353 if (I->getOperand(1) != Ops[i].Op) {
Chris Lattnerbdff5482009-08-23 04:37:46 +0000354 DEBUG(errs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000355 I->setOperand(1, Ops[i].Op);
Chris Lattnerbdff5482009-08-23 04:37:46 +0000356 DEBUG(errs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000357 MadeChange = true;
358 ++NumChanged;
359 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000360
361 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
362 assert(LHS->getOpcode() == I->getOpcode() &&
363 "Improper expression tree!");
364
365 // Compactify the tree instructions together with each other to guarantee
366 // that the expression tree is dominated by all of Ops.
367 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000368 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000369}
370
371
Chris Lattner4fd56002002-05-08 22:19:27 +0000372
Chris Lattnera36e6c82002-05-16 04:37:07 +0000373// NegateValue - Insert instructions before the instruction pointed to by BI,
374// that computes the negative version of the value specified. The negative
375// version of the value is returned, and BI is left pointing at the instruction
376// that should be processed next by the reassociation pass.
377//
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000378static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000379 if (Constant *C = dyn_cast<Constant>(V))
380 return ConstantExpr::getNeg(C);
381
Chris Lattnera36e6c82002-05-16 04:37:07 +0000382 // We are trying to expose opportunity for reassociation. One of the things
383 // that we want to do to achieve this is to push a negation as deep into an
384 // expression chain as possible, to expose the add instructions. In practice,
385 // this means that we turn this:
386 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
387 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
388 // the constants. We assume that instcombine will clean up the mess later if
Misha Brukman5560c9d2003-08-18 14:43:39 +0000389 // we introduce tons of unnecessary negation instructions...
Chris Lattnera36e6c82002-05-16 04:37:07 +0000390 //
391 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000392 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000393 // Push the negates through the add.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000394 I->setOperand(0, NegateValue(I->getOperand(0), BI));
395 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000396
Chris Lattner2cd85da2005-09-02 06:38:04 +0000397 // We must move the add instruction here, because the neg instructions do
398 // not dominate the old add instruction in general. By moving it, we are
399 // assured that the neg instructions we just inserted dominate the
400 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000401 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000402 I->moveBefore(BI);
403 I->setName(I->getName()+".neg");
404 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000405 }
Chris Lattner35239932009-12-31 20:34:32 +0000406
407 // Okay, we need to materialize a negated version of V with an instruction.
408 // Scan the use lists of V to see if we have one already.
409 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
410 if (!BinaryOperator::isNeg(*UI)) continue;
411
412 // We found one! Now we have to make sure that the definition dominates
413 // this use. We do this by moving it to the entry block (if it is a
414 // non-instruction value) or right after the definition. These negates will
415 // be zapped by reassociate later, so we don't need much finesse here.
416 BinaryOperator *TheNeg = cast<BinaryOperator>(*UI);
417
418 BasicBlock::iterator InsertPt;
419 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
420 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
421 InsertPt = II->getNormalDest()->begin();
422 } else {
423 InsertPt = InstInput;
424 ++InsertPt;
425 }
426 while (isa<PHINode>(InsertPt)) ++InsertPt;
427 } else {
428 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
429 }
430 TheNeg->moveBefore(InsertPt);
431 return TheNeg;
432 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000433
434 // Insert a 'neg' instruction that subtracts the value from zero to get the
435 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000436 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000437}
438
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000439/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
440/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000441static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000442 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000443 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000444 return false;
445
446 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000447 // subtract or if this is only used by one.
448 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
449 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000450 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000451 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000452 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000453 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000454 if (Sub->hasOneUse() &&
455 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
456 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000457 return true;
458
459 return false;
460}
461
Chris Lattner08b43922005-05-07 04:08:02 +0000462/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
463/// only used by an add, transform this into (X+(0-Y)) to promote better
464/// reassociation.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000465static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000466 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner08b43922005-05-07 04:08:02 +0000467 // Convert a subtract into an add and a neg instruction... so that sub
468 // instructions can be commuted with other add instructions...
469 //
470 // Calculate the negative value of Operand 1 of the sub instruction...
471 // and set it as the RHS of the add instruction we just made...
472 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000473 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000474 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000475 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000476 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000477
478 // Everyone now refers to the add instruction.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000479 ValueRankMap.erase(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000480 Sub->replaceAllUsesWith(New);
481 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000482
Chris Lattnerbdff5482009-08-23 04:37:46 +0000483 DEBUG(errs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000484 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000485}
486
Chris Lattner0975ed52005-05-07 04:24:13 +0000487/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
488/// by one, change this into a multiply by a constant to assist with further
489/// reassociation.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000490static Instruction *ConvertShiftToMul(Instruction *Shl,
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000491 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000492 // If an operand of this shift is a reassociable multiply, or if the shift
493 // is used by a reassociable multiply or add, turn into a multiply.
494 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
495 (Shl->hasOneUse() &&
496 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
497 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000498 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000499 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Chris Lattner22a66c42006-03-14 06:55:18 +0000500
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000501 Instruction *Mul =
502 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000503 ValueRankMap.erase(Shl);
Chris Lattner6934a042007-02-11 01:23:03 +0000504 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000505 Shl->replaceAllUsesWith(Mul);
506 Shl->eraseFromParent();
507 return Mul;
508 }
509 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000510}
511
Chris Lattner109d34d2005-05-08 18:59:37 +0000512// Scan backwards and forwards among values with the same rank as element i to
513// see if X exists. If X does not exist, return i.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000514static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000515 Value *X) {
516 unsigned XRank = Ops[i].Rank;
517 unsigned e = Ops.size();
518 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
519 if (Ops[j].Op == X)
520 return j;
521 // Scan backwards
522 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
523 if (Ops[j].Op == X)
524 return j;
525 return i;
526}
527
Chris Lattnere5022fe2006-03-04 09:31:13 +0000528/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
529/// and returning the result. Insert the tree before I.
Chris Lattner8d93b252009-12-31 07:48:51 +0000530static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000531 if (Ops.size() == 1) return Ops.back();
532
533 Value *V1 = Ops.back();
534 Ops.pop_back();
535 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000536 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000537}
538
539/// RemoveFactorFromExpression - If V is an expression tree that is a
540/// multiplication sequence, and if this sequence contains a multiply by Factor,
541/// remove Factor from the tree and return the new tree.
542Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
543 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
544 if (!BO) return 0;
545
Chris Lattner9f7b7082009-12-31 18:40:32 +0000546 SmallVector<ValueEntry, 8> Factors;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000547 LinearizeExprTree(BO, Factors);
548
549 bool FoundFactor = false;
550 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
551 if (Factors[i].Op == Factor) {
552 FoundFactor = true;
553 Factors.erase(Factors.begin()+i);
554 break;
555 }
Chris Lattnere9efecb2006-03-14 16:04:29 +0000556 if (!FoundFactor) {
557 // Make sure to restore the operands to the expression tree.
558 RewriteExprTree(BO, Factors);
559 return 0;
560 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000561
Chris Lattner1e7558b2009-12-31 19:34:45 +0000562 // If this was just a single multiply, remove the multiply and return the only
563 // remaining operand.
564 if (Factors.size() == 1) {
565 ValueRankMap.erase(BO);
566 BO->eraseFromParent();
567 return Factors[0].Op;
568 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000569
Chris Lattnere9efecb2006-03-14 16:04:29 +0000570 RewriteExprTree(BO, Factors);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000571 return BO;
572}
573
Chris Lattnere9efecb2006-03-14 16:04:29 +0000574/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
575/// add its operands as factors, otherwise add V to the list of factors.
576static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner8d93b252009-12-31 07:48:51 +0000577 SmallVectorImpl<Value*> &Factors) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000578 BinaryOperator *BO;
579 if ((!V->hasOneUse() && !V->use_empty()) ||
580 !(BO = dyn_cast<BinaryOperator>(V)) ||
581 BO->getOpcode() != Instruction::Mul) {
582 Factors.push_back(V);
583 return;
584 }
585
586 // Otherwise, add the LHS and RHS to the list of factors.
587 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
588 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
589}
590
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000591/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
592/// instruction. This optimizes based on identities. If it can be reduced to
593/// a single Value, it is returned, otherwise the Ops list is mutated as
594/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000595static Value *OptimizeAndOrXor(unsigned Opcode,
596 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000597 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
598 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
599 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
600 // First, check for X and ~X in the operand list.
601 assert(i < Ops.size());
602 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
603 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
604 unsigned FoundX = FindInOperandList(Ops, i, X);
605 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000606 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000607 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000608
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000609 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000610 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000611 }
612 }
613
614 // Next, check for duplicate pairs of values, which we assume are next to
615 // each other, due to our sorting criteria.
616 assert(i < Ops.size());
617 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
618 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000619 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000620 Ops.erase(Ops.begin()+i);
621 --i; --e;
622 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000623 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000624 }
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000625
626 // Drop pairs of values for Xor.
627 assert(Opcode == Instruction::Xor);
628 if (e == 2)
629 return Constant::getNullValue(Ops[0].Op->getType());
630
631 // ... X^X -> ...
632 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
633 i -= 1; e -= 2;
634 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000635 }
636 }
637 return 0;
638}
Chris Lattnere9efecb2006-03-14 16:04:29 +0000639
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000640/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
641/// optimizes based on identities. If it can be reduced to a single Value, it
642/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000643Value *Reassociate::OptimizeAdd(Instruction *I,
644 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000645 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +0000646 // can simplify the expression. X+-X == 0. While we're at it, scan for any
647 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000648 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000649 Value *TheOp = Ops[i].Op;
650 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000651 // instances of the operand together. Due to our sorting criteria, we know
652 // that these need to be next to each other in the vector.
653 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
654 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +0000655 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000656 do {
657 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +0000658 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000659 } while (i != Ops.size() && Ops[i].Op == TheOp);
660
Chris Lattnerf8a447d2009-12-31 19:25:19 +0000661 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +0000662 ++NumFactor;
Chris Lattner69e98e22009-12-31 19:24:52 +0000663
664 // Insert a new multiply.
665 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
666 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
667
668 // Now that we have inserted a multiply, optimize it. This allows us to
669 // handle cases that require multiple factoring steps, such as this:
670 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
671 Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
672
673 // If every add operand was a duplicate, return the multiply.
674 if (Ops.empty())
675 return Mul;
676
677 // Otherwise, we had some input that didn't have the dupe, such as
678 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
679 // things being added by this operation.
680 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000681
682 --i;
683 e = Ops.size();
684 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +0000685 }
686
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000687 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +0000688 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000689 continue;
690
Chris Lattner69e98e22009-12-31 19:24:52 +0000691 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000692 unsigned FoundX = FindInOperandList(Ops, i, X);
693 if (FoundX == i)
694 continue;
695
696 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000697 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000698 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000699
700 Ops.erase(Ops.begin()+i);
701 if (i < FoundX)
702 --FoundX;
703 else
704 --i; // Need to back up an extra one.
705 Ops.erase(Ops.begin()+FoundX);
706 ++NumAnnihil;
707 --i; // Revisit element.
708 e -= 2; // Removed two elements.
709 }
Chris Lattner94285e62009-12-31 18:17:13 +0000710
711 // Scan the operand list, checking to see if there are any common factors
712 // between operands. Consider something like A*A+A*B*C+D. We would like to
713 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
714 // To efficiently find this, we count the number of times a factor occurs
715 // for any ADD operands that are MULs.
716 DenseMap<Value*, unsigned> FactorOccurrences;
717
718 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
719 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +0000720 unsigned MaxOcc = 0;
721 Value *MaxOccVal = 0;
722 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
723 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
724 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
725 continue;
726
Chris Lattner94285e62009-12-31 18:17:13 +0000727 // Compute all of the factors of this added value.
728 SmallVector<Value*, 8> Factors;
729 FindSingleUseMultiplyFactors(BOp, Factors);
730 assert(Factors.size() > 1 && "Bad linearize!");
731
732 // Add one to FactorOccurrences for each unique factor in this op.
733 if (Factors.size() == 2) {
734 unsigned Occ = ++FactorOccurrences[Factors[0]];
735 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
736 if (Factors[0] != Factors[1]) { // Don't double count A*A.
737 Occ = ++FactorOccurrences[Factors[1]];
738 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
739 }
740 } else {
741 SmallPtrSet<Value*, 4> Duplicates;
742 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
743 if (!Duplicates.insert(Factors[i])) continue;
744
745 unsigned Occ = ++FactorOccurrences[Factors[i]];
746 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
747 }
748 }
749 }
750
751 // If any factor occurred more than one time, we can pull it out.
752 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000753 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +0000754 ++NumFactor;
755
756 // Create a new instruction that uses the MaxOccVal twice. If we don't do
757 // this, we could otherwise run into situations where removing a factor
758 // from an expression will drop a use of maxocc, and this can cause
759 // RemoveFactorFromExpression on successive values to behave differently.
760 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
761 SmallVector<Value*, 4> NewMulOps;
762 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
763 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
764 NewMulOps.push_back(V);
765 Ops.erase(Ops.begin()+i);
766 --i; --e;
767 }
768 }
769
770 // No need for extra uses anymore.
771 delete DummyInst;
772
773 unsigned NumAddedValues = NewMulOps.size();
774 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Chris Lattner94285e62009-12-31 18:17:13 +0000775
Chris Lattner69e98e22009-12-31 19:24:52 +0000776 // Now that we have inserted the add tree, optimize it. This allows us to
777 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +0000778 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000779 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Chris Lattner69e98e22009-12-31 19:24:52 +0000780 V = ReassociateExpression(cast<BinaryOperator>(V));
781
782 // Create the multiply.
783 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
784
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000785 // Rerun associate on the multiply in case the inner expression turned into
786 // a multiply. We want to make sure that we keep things in canonical form.
787 V2 = ReassociateExpression(cast<BinaryOperator>(V2));
Chris Lattner94285e62009-12-31 18:17:13 +0000788
789 // If every add operand included the factor (e.g. "A*B + A*C"), then the
790 // entire result expression is just the multiply "A*(B+C)".
791 if (Ops.empty())
792 return V2;
793
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000794 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +0000795 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000796 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +0000797 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
798 }
799
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000800 return 0;
801}
Chris Lattnere5022fe2006-03-04 09:31:13 +0000802
803Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000804 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000805 // Now that we have the linearized expression tree, try to optimize it.
806 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000807 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000808 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000809
Chris Lattnere5022fe2006-03-04 09:31:13 +0000810 unsigned Opcode = I->getOpcode();
811
Chris Lattner46900102005-05-08 00:19:31 +0000812 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
813 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
814 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +0000815 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000816 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000817 }
818
819 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000820 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +0000821 switch (Opcode) {
822 default: break;
823 case Instruction::And:
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000824 if (CstVal->isZero()) // ... & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +0000825 return CstVal;
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000826 if (CstVal->isAllOnesValue()) // ... & -1 -> ...
Chris Lattner8d93b252009-12-31 07:48:51 +0000827 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +0000828 break;
829 case Instruction::Mul:
Reid Spencercae57542007-03-02 00:28:52 +0000830 if (CstVal->isZero()) { // ... * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000831 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000832 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000833 }
Chris Lattner8d93b252009-12-31 07:48:51 +0000834
835 if (cast<ConstantInt>(CstVal)->isOne())
836 Ops.pop_back(); // ... * 1 -> ...
Chris Lattner46900102005-05-08 00:19:31 +0000837 break;
838 case Instruction::Or:
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000839 if (CstVal->isAllOnesValue()) // ... | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +0000840 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000841 // FALLTHROUGH!
842 case Instruction::Add:
843 case Instruction::Xor:
Reid Spencercae57542007-03-02 00:28:52 +0000844 if (CstVal->isZero()) // ... [|^+] 0 -> ...
Chris Lattner46900102005-05-08 00:19:31 +0000845 Ops.pop_back();
846 break;
847 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000848 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000849
Chris Lattnerec531232009-12-31 07:33:14 +0000850 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +0000851 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000852 switch (Opcode) {
853 default: break;
854 case Instruction::And:
855 case Instruction::Or:
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000856 case Instruction::Xor: {
857 unsigned NumOps = Ops.size();
858 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
859 return Result;
860 IterateOptimization |= Ops.size() != NumOps;
Chris Lattner109d34d2005-05-08 18:59:37 +0000861 break;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000862 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000863
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000864 case Instruction::Add: {
865 unsigned NumOps = Ops.size();
Chris Lattner94285e62009-12-31 18:17:13 +0000866 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000867 return Result;
868 IterateOptimization |= Ops.size() != NumOps;
869 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000870
Chris Lattner109d34d2005-05-08 18:59:37 +0000871 break;
872 //case Instruction::Mul:
873 }
874
Jeff Cohen00b168892005-07-27 06:12:32 +0000875 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000876 return OptimizeExpression(I, Ops);
877 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000878}
879
Chris Lattnera36e6c82002-05-16 04:37:07 +0000880
Chris Lattner08b43922005-05-07 04:08:02 +0000881/// ReassociateBB - Inspect all of the instructions in this basic block,
882/// reassociating them as we go.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000883void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000884 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
885 Instruction *BI = BBI++;
Chris Lattner641f02f2005-05-10 03:39:25 +0000886 if (BI->getOpcode() == Instruction::Shl &&
887 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000888 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Chris Lattner641f02f2005-05-10 03:39:25 +0000889 MadeChange = true;
890 BI = NI;
891 }
892
Chris Lattner6f156852005-05-08 21:33:47 +0000893 // Reject cases where it is pointless to do this.
Reid Spencere4d87aa2006-12-23 06:05:41 +0000894 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
Reid Spencer9d6565a2007-02-15 02:26:10 +0000895 isa<VectorType>(BI->getType()))
Chris Lattner6f156852005-05-08 21:33:47 +0000896 continue; // Floating point ops are not associative.
897
Chris Lattner08b43922005-05-07 04:08:02 +0000898 // If this is a subtract instruction which is not already in negate form,
899 // see if we can convert it to X+-Y.
Chris Lattnerf33151a2005-05-08 21:28:52 +0000900 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000901 if (ShouldBreakUpSubtract(BI)) {
902 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattnerd5b8d922008-02-18 02:18:25 +0000903 MadeChange = true;
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000904 } else if (BinaryOperator::isNeg(BI)) {
Chris Lattnerf33151a2005-05-08 21:28:52 +0000905 // Otherwise, this is a negation. See if the operand is a multiply tree
906 // and if this is not an inner node of a multiply tree.
907 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
908 (!BI->hasOneUse() ||
909 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000910 BI = LowerNegateToMultiply(BI, ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000911 MadeChange = true;
912 }
Chris Lattner08b43922005-05-07 04:08:02 +0000913 }
Chris Lattnerf33151a2005-05-08 21:28:52 +0000914 }
Chris Lattnere4b73042002-10-31 17:12:59 +0000915
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000916 // If this instruction is a commutative binary operator, process it.
917 if (!BI->isAssociative()) continue;
918 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen00b168892005-07-27 06:12:32 +0000919
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000920 // If this is an interior node of a reassociable tree, ignore it until we
921 // get to the root of the tree, to avoid N^2 analysis.
922 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
923 continue;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000924
Chris Lattner7b4ad942005-09-02 07:07:58 +0000925 // If this is an add tree that is used by a sub instruction, ignore it
926 // until we process the subtract.
927 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
928 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
929 continue;
930
Chris Lattner895b3922006-03-14 07:11:11 +0000931 ReassociateExpression(I);
932 }
933}
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000934
Chris Lattner69e98e22009-12-31 19:24:52 +0000935Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner895b3922006-03-14 07:11:11 +0000936
Chris Lattner69e98e22009-12-31 19:24:52 +0000937 // First, walk the expression tree, linearizing the tree, collecting the
938 // operand information.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000939 SmallVector<ValueEntry, 8> Ops;
Chris Lattner895b3922006-03-14 07:11:11 +0000940 LinearizeExprTree(I, Ops);
941
Chris Lattner94285e62009-12-31 18:17:13 +0000942 DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +0000943
944 // Now that we have linearized the tree to a list and have gathered all of
945 // the operands and their ranks, sort the operands by their rank. Use a
946 // stable_sort so that values with equal ranks will have their relative
947 // positions maintained (and so the compiler is deterministic). Note that
948 // this sorts so that the highest ranking values end up at the beginning of
949 // the vector.
950 std::stable_sort(Ops.begin(), Ops.end());
951
952 // OptimizeExpression - Now that we have the expression tree in a convenient
953 // sorted form, optimize it globally if possible.
954 if (Value *V = OptimizeExpression(I, Ops)) {
955 // This expression tree simplified to something that isn't a tree,
956 // eliminate it.
Chris Lattner94285e62009-12-31 18:17:13 +0000957 DEBUG(errs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +0000958 I->replaceAllUsesWith(V);
959 RemoveDeadBinaryOp(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000960 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +0000961 return V;
Chris Lattner895b3922006-03-14 07:11:11 +0000962 }
963
964 // We want to sink immediates as deeply as possible except in the case where
965 // this is a multiply tree used only by an add, and the immediate is a -1.
966 // In this case we reassociate to put the negation on the outside so that we
967 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
968 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
969 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
970 isa<ConstantInt>(Ops.back().Op) &&
971 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +0000972 ValueEntry Tmp = Ops.pop_back_val();
973 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +0000974 }
975
Chris Lattner94285e62009-12-31 18:17:13 +0000976 DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +0000977
978 if (Ops.size() == 1) {
979 // This expression tree simplified to something that isn't a tree,
980 // eliminate it.
981 I->replaceAllUsesWith(Ops[0].Op);
982 RemoveDeadBinaryOp(I);
Chris Lattner69e98e22009-12-31 19:24:52 +0000983 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +0000984 }
Chris Lattner69e98e22009-12-31 19:24:52 +0000985
986 // Now that we ordered and optimized the expressions, splat them back into
987 // the expression tree, removing any unneeded nodes.
988 RewriteExprTree(I, Ops);
989 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +0000990}
991
992
Chris Lattner7e708292002-06-25 16:13:24 +0000993bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +0000994 // Recalculate the rank map for F
995 BuildRankMap(F);
996
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000997 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +0000998 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000999 ReassociateBB(FI);
Chris Lattner4fd56002002-05-08 22:19:27 +00001000
1001 // We are done with the rank map...
1002 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +00001003 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001004 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001005}
Brian Gaeked0fde302003-11-11 22:41:34 +00001006