blob: d4a5ac2d86062f68ce83c6eec485a0addeac9a80 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattner44827152003-12-28 09:47:19 +000021#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000027#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000028#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000029#include "llvm/Target/TargetMachine.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Chris Lattnercf93cdd2004-01-30 22:13:44 +000031#include "llvm/Support/CFG.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattnercf93cdd2004-01-30 22:13:44 +000034//#define SMART_FP 1
35
Chris Lattner333b2fa2002-12-13 10:09:43 +000036/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000037/// instruction at as well as a basic block. This is the version for when you
38/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000039inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000040 MachineBasicBlock::iterator I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000041 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000042 unsigned DestReg) {
43 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000044 MBB->insert(I, MI);
Chris Lattner333b2fa2002-12-13 10:09:43 +000045 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
46}
47
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000048/// BMI - A special BuildMI variant that takes an iterator to insert the
49/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000050inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000051 MachineBasicBlock::iterator I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000052 int Opcode, unsigned NumOperands) {
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000053 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000054 MBB->insert(I, MI);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000055 return MachineInstrBuilder(MI);
56}
57
Chris Lattner333b2fa2002-12-13 10:09:43 +000058
Chris Lattner72614082002-10-25 22:55:53 +000059namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000060 struct ISel : public FunctionPass, InstVisitor<ISel> {
61 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000062 MachineFunction *F; // The function we are compiling into
63 MachineBasicBlock *BB; // The current MBB we are compiling
64 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000065
Chris Lattner72614082002-10-25 22:55:53 +000066 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
67
Chris Lattner333b2fa2002-12-13 10:09:43 +000068 // MBBMap - Mapping between LLVM BB -> Machine BB
69 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
70
Chris Lattnerf70e0c22003-12-28 21:23:38 +000071 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000072
73 /// runOnFunction - Top level implementation of instruction selection for
74 /// the entire function.
75 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000076 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000077 // First pass over the function, lower any unknown intrinsic functions
78 // with the IntrinsicLowering class.
79 LowerUnknownIntrinsicFunctionCalls(Fn);
80
Chris Lattner36b36032002-10-29 23:40:58 +000081 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000082
Chris Lattner065faeb2002-12-28 20:24:02 +000083 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000084 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
85 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
86
Chris Lattner14aa7fe2002-12-16 22:54:46 +000087 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000088
Chris Lattnerdbd73722003-05-06 21:32:22 +000089 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000090 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000091
Chris Lattner333b2fa2002-12-13 10:09:43 +000092 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000093 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000094
95 // Select the PHI nodes
96 SelectPHINodes();
97
Chris Lattner72614082002-10-25 22:55:53 +000098 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000099 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000100 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000101 // We always build a machine code representation for the function
102 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000103 }
104
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000105 virtual const char *getPassName() const {
106 return "X86 Simple Instruction Selection";
107 }
108
Chris Lattner72614082002-10-25 22:55:53 +0000109 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000110 /// block. This simply creates a new MachineBasicBlock to emit code into
111 /// and adds it to the current MachineFunction. Subsequent visit* for
112 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000113 ///
114 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000115 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000116 }
117
Chris Lattner44827152003-12-28 09:47:19 +0000118 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
119 /// function, lowering any calls to unknown intrinsic functions into the
120 /// equivalent LLVM code.
121 void LowerUnknownIntrinsicFunctionCalls(Function &F);
122
Chris Lattner065faeb2002-12-28 20:24:02 +0000123 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
124 /// from the stack into virtual registers.
125 ///
126 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000127
128 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
129 /// because we have to generate our sources into the source basic blocks,
130 /// not the current one.
131 ///
132 void SelectPHINodes();
133
Chris Lattner72614082002-10-25 22:55:53 +0000134 // Visitation methods for various instructions. These methods simply emit
135 // fixed X86 code for each instruction.
136 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000137
138 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000139 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000140 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000141
142 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000143 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000144 unsigned Reg;
145 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000146 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
147 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000148 };
149 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000150 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000151 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000152 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000153
154 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000155 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000156 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
157 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000158 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000159 unsigned DestReg, const Type *DestTy,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000160 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000161 void doMultiplyConst(MachineBasicBlock *MBB,
162 MachineBasicBlock::iterator &MBBI,
163 unsigned DestReg, const Type *DestTy,
164 unsigned Op0Reg, unsigned Op1Val);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000165 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000166
Chris Lattnerf01729e2002-11-02 20:54:46 +0000167 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
168 void visitRem(BinaryOperator &B) { visitDivRem(B); }
169 void visitDivRem(BinaryOperator &B);
170
Chris Lattnere2954c82002-11-02 20:04:26 +0000171 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000172 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
173 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
174 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000175
Chris Lattner6d40c192003-01-16 16:43:00 +0000176 // Comparison operators...
177 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000178 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
179 MachineBasicBlock *MBB,
180 MachineBasicBlock::iterator &MBBI);
181
Chris Lattner6fc3c522002-11-17 21:11:55 +0000182 // Memory Instructions
183 void visitLoadInst(LoadInst &I);
184 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000185 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000186 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000187 void visitMallocInst(MallocInst &I);
188 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000189
Chris Lattnere2954c82002-11-02 20:04:26 +0000190 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000191 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000192 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000193 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000194 void visitVANextInst(VANextInst &I);
195 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000196
197 void visitInstruction(Instruction &I) {
198 std::cerr << "Cannot instruction select: " << I;
199 abort();
200 }
201
Brian Gaeke95780cc2002-12-13 07:56:18 +0000202 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000203 ///
204 void promote32(unsigned targetReg, const ValueRecord &VR);
205
Chris Lattner3e130a22003-01-13 00:32:26 +0000206 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
207 /// constant expression GEP support.
208 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000209 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000210 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000211 User::op_iterator IdxEnd, unsigned TargetReg);
212
Chris Lattner548f61d2003-04-23 17:22:12 +0000213 /// emitCastOperation - Common code shared between visitCastInst and
214 /// constant expression cast support.
215 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
216 Value *Src, const Type *DestTy, unsigned TargetReg);
217
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000218 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
219 /// and constant expression support.
220 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
221 MachineBasicBlock::iterator &IP,
222 Value *Op0, Value *Op1,
223 unsigned OperatorClass, unsigned TargetReg);
224
Chris Lattnercadff442003-10-23 17:21:43 +0000225 void emitDivRemOperation(MachineBasicBlock *BB,
226 MachineBasicBlock::iterator &IP,
227 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
228 const Type *Ty, unsigned TargetReg);
229
Chris Lattner58c41fe2003-08-24 19:19:47 +0000230 /// emitSetCCOperation - Common code shared between visitSetCondInst and
231 /// constant expression support.
232 void emitSetCCOperation(MachineBasicBlock *BB,
233 MachineBasicBlock::iterator &IP,
234 Value *Op0, Value *Op1, unsigned Opcode,
235 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000236
237 /// emitShiftOperation - Common code shared between visitShiftInst and
238 /// constant expression support.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000239 void emitShiftOperation(MachineBasicBlock *MBB,
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000240 MachineBasicBlock::iterator &IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000241 Value *Op, Value *ShiftAmount, bool isLeftShift,
242 const Type *ResultTy, unsigned DestReg);
243
Chris Lattner58c41fe2003-08-24 19:19:47 +0000244
Chris Lattnerc5291f52002-10-27 21:16:59 +0000245 /// copyConstantToRegister - Output the instructions required to put the
246 /// specified constant into the specified register.
247 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000248 void copyConstantToRegister(MachineBasicBlock *MBB,
249 MachineBasicBlock::iterator &MBBI,
250 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000251
Chris Lattner3e130a22003-01-13 00:32:26 +0000252 /// makeAnotherReg - This method returns the next register number we haven't
253 /// yet used.
254 ///
255 /// Long values are handled somewhat specially. They are always allocated
256 /// as pairs of 32 bit integer values. The register number returned is the
257 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
258 /// of the long value.
259 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000260 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000261 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
262 "Current target doesn't have X86 reg info??");
263 const X86RegisterInfo *MRI =
264 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000265 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000266 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
267 // Create the lower part
268 F->getSSARegMap()->createVirtualRegister(RC);
269 // Create the upper part.
270 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000271 }
272
Chris Lattnerc0812d82002-12-13 06:56:29 +0000273 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000274 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000275 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000276 }
277
Chris Lattner72614082002-10-25 22:55:53 +0000278 /// getReg - This method turns an LLVM value into a register number. This
279 /// is guaranteed to produce the same register number for a particular value
280 /// every time it is queried.
281 ///
282 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000283 unsigned getReg(Value *V) {
284 // Just append to the end of the current bb.
285 MachineBasicBlock::iterator It = BB->end();
286 return getReg(V, BB, It);
287 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000288 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000289 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000290 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000291 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000292 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000293 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000294 }
Chris Lattner72614082002-10-25 22:55:53 +0000295
Chris Lattner6f8fd252002-10-27 21:23:43 +0000296 // If this operand is a constant, emit the code to copy the constant into
297 // the register here...
298 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000299 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000300 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000301 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000302 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
303 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000304 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000305 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000306 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000307
Chris Lattner72614082002-10-25 22:55:53 +0000308 return Reg;
309 }
Chris Lattner72614082002-10-25 22:55:53 +0000310 };
311}
312
Chris Lattner43189d12002-11-17 20:07:45 +0000313/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
314/// Representation.
315///
316enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000317 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000318};
319
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000320/// getClass - Turn a primitive type into a "class" number which is based on the
321/// size of the type, and whether or not it is floating point.
322///
Chris Lattner43189d12002-11-17 20:07:45 +0000323static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000324 switch (Ty->getPrimitiveID()) {
325 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000326 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000327 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000328 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000329 case Type::IntTyID:
330 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000331 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000332
Chris Lattner94af4142002-12-25 05:13:53 +0000333 case Type::FloatTyID:
334 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000335
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000336 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000337 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000338 default:
339 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000340 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000341 }
342}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000343
Chris Lattner6b993cc2002-12-15 08:02:15 +0000344// getClassB - Just like getClass, but treat boolean values as bytes.
345static inline TypeClass getClassB(const Type *Ty) {
346 if (Ty == Type::BoolTy) return cByte;
347 return getClass(Ty);
348}
349
Chris Lattner06925362002-11-17 21:56:38 +0000350
Chris Lattnerc5291f52002-10-27 21:16:59 +0000351/// copyConstantToRegister - Output the instructions required to put the
352/// specified constant into the specified register.
353///
Chris Lattner8a307e82002-12-16 19:32:50 +0000354void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
355 MachineBasicBlock::iterator &IP,
356 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000358 unsigned Class = 0;
359 switch (CE->getOpcode()) {
360 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000361 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000362 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000363 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000364 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000365 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000366 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000367
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000368 case Instruction::Xor: ++Class; // FALL THROUGH
369 case Instruction::Or: ++Class; // FALL THROUGH
370 case Instruction::And: ++Class; // FALL THROUGH
371 case Instruction::Sub: ++Class; // FALL THROUGH
372 case Instruction::Add:
373 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
374 Class, R);
375 return;
376
Chris Lattnercadff442003-10-23 17:21:43 +0000377 case Instruction::Mul: {
378 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
379 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
380 doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
381 return;
382 }
383 case Instruction::Div:
384 case Instruction::Rem: {
385 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
386 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
387 emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
388 CE->getOpcode() == Instruction::Div,
389 CE->getType(), R);
390 return;
391 }
392
Chris Lattner58c41fe2003-08-24 19:19:47 +0000393 case Instruction::SetNE:
394 case Instruction::SetEQ:
395 case Instruction::SetLT:
396 case Instruction::SetGT:
397 case Instruction::SetLE:
398 case Instruction::SetGE:
399 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
400 CE->getOpcode(), R);
401 return;
402
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000403 case Instruction::Shl:
404 case Instruction::Shr:
405 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000406 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
407 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000408
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000409 default:
410 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000411 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000412 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000413 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000414
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000415 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000416 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000417
418 if (Class == cLong) {
419 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000420 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000421 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
422 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
423 return;
424 }
425
Chris Lattner94af4142002-12-25 05:13:53 +0000426 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000427
428 static const unsigned IntegralOpcodeTab[] = {
429 X86::MOVir8, X86::MOVir16, X86::MOVir32
430 };
431
Chris Lattner6b993cc2002-12-15 08:02:15 +0000432 if (C->getType() == Type::BoolTy) {
433 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000434 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000435 ConstantInt *CI = cast<ConstantInt>(C);
436 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000437 }
Chris Lattner94af4142002-12-25 05:13:53 +0000438 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000439 if (CFP->isExactlyValue(+0.0))
Chris Lattner94af4142002-12-25 05:13:53 +0000440 BMI(MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000441 else if (CFP->isExactlyValue(+1.0))
Chris Lattner94af4142002-12-25 05:13:53 +0000442 BMI(MBB, IP, X86::FLD1, 0, R);
443 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000444 // Otherwise we need to spill the constant to memory...
445 MachineConstantPool *CP = F->getConstantPool();
446 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000447 const Type *Ty = CFP->getType();
448
449 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
450 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
451 addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000452 }
453
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000454 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000455 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000456 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000457 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000458 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000459 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000460 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000461 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000462 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000463 }
464}
465
Chris Lattner065faeb2002-12-28 20:24:02 +0000466/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
467/// the stack into virtual registers.
468///
469void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
470 // Emit instructions to load the arguments... On entry to a function on the
471 // X86, the stack frame looks like this:
472 //
473 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000474 // [ESP + 4] -- first argument (leftmost lexically)
475 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000476 // ...
477 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000478 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000479 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000480
481 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
482 unsigned Reg = getReg(*I);
483
Chris Lattner065faeb2002-12-28 20:24:02 +0000484 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000485 switch (getClassB(I->getType())) {
486 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000487 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000488 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
489 break;
490 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000491 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000492 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
493 break;
494 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000495 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000496 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
497 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000498 case cLong:
499 FI = MFI->CreateFixedObject(8, ArgOffset);
500 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
501 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
502 ArgOffset += 4; // longs require 4 additional bytes
503 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000504 case cFP:
505 unsigned Opcode;
506 if (I->getType() == Type::FloatTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000507 Opcode = X86::FLDr32;
508 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000509 } else {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000510 Opcode = X86::FLDr64;
511 FI = MFI->CreateFixedObject(8, ArgOffset);
512 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000513 }
514 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
515 break;
516 default:
517 assert(0 && "Unhandled argument type!");
518 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000519 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000520 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000521
522 // If the function takes variable number of arguments, add a frame offset for
523 // the start of the first vararg value... this is used to expand
524 // llvm.va_start.
525 if (Fn.getFunctionType()->isVarArg())
526 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000527}
528
529
Chris Lattner333b2fa2002-12-13 10:09:43 +0000530/// SelectPHINodes - Insert machine code to generate phis. This is tricky
531/// because we have to generate our sources into the source basic blocks, not
532/// the current one.
533///
534void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000535 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000536 const Function &LF = *F->getFunction(); // The LLVM function...
537 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
538 const BasicBlock *BB = I;
539 MachineBasicBlock *MBB = MBBMap[I];
540
541 // Loop over all of the PHI nodes in the LLVM basic block...
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000542 MachineInstr* instr = MBB->begin();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000543 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000544 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000545
Chris Lattner333b2fa2002-12-13 10:09:43 +0000546 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000547 unsigned PHIReg = getReg(*PN);
548 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000549 MBB->insert(instr, PhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000550
551 MachineInstr *LongPhiMI = 0;
552 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000553 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000554 MBB->insert(instr, LongPhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000555 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000556
Chris Lattnera6e73f12003-05-12 14:22:21 +0000557 // PHIValues - Map of blocks to incoming virtual registers. We use this
558 // so that we only initialize one incoming value for a particular block,
559 // even if the block has multiple entries in the PHI node.
560 //
561 std::map<MachineBasicBlock*, unsigned> PHIValues;
562
Chris Lattner333b2fa2002-12-13 10:09:43 +0000563 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
564 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000565 unsigned ValReg;
566 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
567 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000568
Chris Lattnera6e73f12003-05-12 14:22:21 +0000569 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
570 // We already inserted an initialization of the register for this
571 // predecessor. Recycle it.
572 ValReg = EntryIt->second;
573
574 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000575 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000576 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000577 Value *Val = PN->getIncomingValue(i);
578
579 // If this is a constant or GlobalValue, we may have to insert code
580 // into the basic block to compute it into a virtual register.
581 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
582 // Because we don't want to clobber any values which might be in
583 // physical registers with the computation of this constant (which
584 // might be arbitrarily complex if it is a constant expression),
585 // just insert the computation at the top of the basic block.
586 MachineBasicBlock::iterator PI = PredMBB->begin();
587
588 // Skip over any PHI nodes though!
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000589 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
Chris Lattnera81fc682003-10-19 00:26:11 +0000590 ++PI;
591
592 ValReg = getReg(Val, PredMBB, PI);
593 } else {
594 ValReg = getReg(Val);
595 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000596
597 // Remember that we inserted a value for this PHI for this predecessor
598 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
599 }
600
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000601 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000602 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000603 if (LongPhiMI) {
604 LongPhiMI->addRegOperand(ValReg+1);
605 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
606 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000607 }
608 }
609 }
610}
611
Chris Lattner6d40c192003-01-16 16:43:00 +0000612// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
613// the conditional branch instruction which is the only user of the cc
614// instruction. This is the case if the conditional branch is the only user of
615// the setcc, and if the setcc is in the same basic block as the conditional
616// branch. We also don't handle long arguments below, so we reject them here as
617// well.
618//
619static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
620 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000621 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000622 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
623 const Type *Ty = SCI->getOperand(0)->getType();
624 if (Ty != Type::LongTy && Ty != Type::ULongTy)
625 return SCI;
626 }
627 return 0;
628}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000629
Chris Lattner6d40c192003-01-16 16:43:00 +0000630// Return a fixed numbering for setcc instructions which does not depend on the
631// order of the opcodes.
632//
633static unsigned getSetCCNumber(unsigned Opcode) {
634 switch(Opcode) {
635 default: assert(0 && "Unknown setcc instruction!");
636 case Instruction::SetEQ: return 0;
637 case Instruction::SetNE: return 1;
638 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000639 case Instruction::SetGE: return 3;
640 case Instruction::SetGT: return 4;
641 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000642 }
643}
Chris Lattner06925362002-11-17 21:56:38 +0000644
Chris Lattner6d40c192003-01-16 16:43:00 +0000645// LLVM -> X86 signed X86 unsigned
646// ----- ---------- ------------
647// seteq -> sete sete
648// setne -> setne setne
649// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000650// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000651// setgt -> setg seta
652// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000653// ----
654// sets // Used by comparison with 0 optimization
655// setns
656static const unsigned SetCCOpcodeTab[2][8] = {
657 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
658 0, 0 },
659 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
660 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000661};
662
Chris Lattnerb2acc512003-10-19 21:09:10 +0000663// EmitComparison - This function emits a comparison of the two operands,
664// returning the extended setcc code to use.
665unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
666 MachineBasicBlock *MBB,
667 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000668 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000669 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000670 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000671 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000672
673 // Special case handling of: cmp R, i
674 if (Class == cByte || Class == cShort || Class == cInt)
675 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000676 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
677
Chris Lattner333864d2003-06-05 19:30:30 +0000678 // Mask off any upper bits of the constant, if there are any...
679 Op1v &= (1ULL << (8 << Class)) - 1;
680
Chris Lattnerb2acc512003-10-19 21:09:10 +0000681 // If this is a comparison against zero, emit more efficient code. We
682 // can't handle unsigned comparisons against zero unless they are == or
683 // !=. These should have been strength reduced already anyway.
684 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
685 static const unsigned TESTTab[] = {
686 X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
687 };
688 BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
689
690 if (OpNum == 2) return 6; // Map jl -> js
691 if (OpNum == 3) return 7; // Map jg -> jns
692 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000693 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000694
695 static const unsigned CMPTab[] = {
696 X86::CMPri8, X86::CMPri16, X86::CMPri32
697 };
698
699 BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
700 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000701 }
702
Chris Lattner9f08a922004-02-03 18:54:04 +0000703 // Special case handling of comparison against +/- 0.0
704 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
705 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
706 BMI(MBB, IP, X86::FTST, 1).addReg(Op0r);
707 BMI(MBB, IP, X86::FNSTSWr8, 0);
708 BMI(MBB, IP, X86::SAHF, 1);
709 return OpNum;
710 }
711
Chris Lattner58c41fe2003-08-24 19:19:47 +0000712 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000713 switch (Class) {
714 default: assert(0 && "Unknown type class!");
715 // Emit: cmp <var1>, <var2> (do the comparison). We can
716 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
717 // 32-bit.
718 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000719 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000720 break;
721 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000722 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000723 break;
724 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000725 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000726 break;
727 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000728 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
729 BMI(MBB, IP, X86::FNSTSWr8, 0);
730 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000731 break;
732
733 case cLong:
734 if (OpNum < 2) { // seteq, setne
735 unsigned LoTmp = makeAnotherReg(Type::IntTy);
736 unsigned HiTmp = makeAnotherReg(Type::IntTy);
737 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000738 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
739 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
740 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000741 break; // Allow the sete or setne to be generated from flags set by OR
742 } else {
743 // Emit a sequence of code which compares the high and low parts once
744 // each, then uses a conditional move to handle the overflow case. For
745 // example, a setlt for long would generate code like this:
746 //
747 // AL = lo(op1) < lo(op2) // Signedness depends on operands
748 // BL = hi(op1) < hi(op2) // Always unsigned comparison
749 // dest = hi(op1) == hi(op2) ? AL : BL;
750 //
751
Chris Lattner6d40c192003-01-16 16:43:00 +0000752 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000753 // classes! Until then, hardcode registers so that we can deal with their
754 // aliases (because we don't have conditional byte moves).
755 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000756 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
757 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
758 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000759 BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000760 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
761 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
762 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000763 // NOTE: visitSetCondInst knows that the value is dumped into the BL
764 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000765 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000766 }
767 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000768 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000769}
Chris Lattner3e130a22003-01-13 00:32:26 +0000770
Chris Lattner6d40c192003-01-16 16:43:00 +0000771
772/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
773/// register, then move it to wherever the result should be.
774///
775void ISel::visitSetCondInst(SetCondInst &I) {
776 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
777
Chris Lattner6d40c192003-01-16 16:43:00 +0000778 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000779 MachineBasicBlock::iterator MII = BB->end();
780 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
781 DestReg);
782}
Chris Lattner6d40c192003-01-16 16:43:00 +0000783
Chris Lattner58c41fe2003-08-24 19:19:47 +0000784/// emitSetCCOperation - Common code shared between visitSetCondInst and
785/// constant expression support.
786void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
787 MachineBasicBlock::iterator &IP,
788 Value *Op0, Value *Op1, unsigned Opcode,
789 unsigned TargetReg) {
790 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000791 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000792
Chris Lattnerb2acc512003-10-19 21:09:10 +0000793 const Type *CompTy = Op0->getType();
794 unsigned CompClass = getClassB(CompTy);
795 bool isSigned = CompTy->isSigned() && CompClass != cFP;
796
797 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000798 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000799 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000800 } else {
801 // Handle long comparisons by copying the value which is already in BL into
802 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000803 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000804 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000805}
Chris Lattner51b49a92002-11-02 19:45:49 +0000806
Chris Lattner58c41fe2003-08-24 19:19:47 +0000807
808
809
Brian Gaekec2505982002-11-30 11:57:28 +0000810/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
811/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000812void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
813 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000814
815 // Make sure we have the register number for this value...
816 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
817
Chris Lattner3e130a22003-01-13 00:32:26 +0000818 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000819 case cByte:
820 // Extend value into target register (8->32)
821 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000822 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000823 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000824 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000825 break;
826 case cShort:
827 // Extend value into target register (16->32)
828 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000829 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000830 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000831 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000832 break;
833 case cInt:
834 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000835 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000836 break;
837 default:
838 assert(0 && "Unpromotable operand class in promote32");
839 }
Brian Gaekec2505982002-11-30 11:57:28 +0000840}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000841
Chris Lattner72614082002-10-25 22:55:53 +0000842/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
843/// we have the following possibilities:
844///
845/// ret void: No return value, simply emit a 'ret' instruction
846/// ret sbyte, ubyte : Extend value into EAX and return
847/// ret short, ushort: Extend value into EAX and return
848/// ret int, uint : Move value into EAX and return
849/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000850/// ret long, ulong : Move value into EAX/EDX and return
851/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000852///
Chris Lattner3e130a22003-01-13 00:32:26 +0000853void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000854 if (I.getNumOperands() == 0) {
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000855#ifndef SMART_FP
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000856 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000857#endif
Chris Lattner94af4142002-12-25 05:13:53 +0000858 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
859 return;
860 }
861
862 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000863 unsigned RetReg = getReg(RetVal);
864 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000865 case cByte: // integral return values: extend or move into EAX and return
866 case cShort:
867 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000868 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000869 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000870 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000871 break;
872 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000873 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000874 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000875 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000876 break;
877 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000878 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
879 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000880 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000881 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
882 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000883 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000884 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000885 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000886 }
Chris Lattner43189d12002-11-17 20:07:45 +0000887 // Emit a 'ret' instruction
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000888#ifndef SMART_FP
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000889 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000890#endif
Chris Lattner94af4142002-12-25 05:13:53 +0000891 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000892}
893
Chris Lattner55f6fab2003-01-16 18:07:23 +0000894// getBlockAfter - Return the basic block which occurs lexically after the
895// specified one.
896static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
897 Function::iterator I = BB; ++I; // Get iterator to next block
898 return I != BB->getParent()->end() ? &*I : 0;
899}
900
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000901/// RequiresFPRegKill - The floating point stackifier pass cannot insert
902/// compensation code on critical edges. As such, it requires that we kill all
903/// FP registers on the exit from any blocks that either ARE critical edges, or
904/// branch to a block that has incoming critical edges.
905///
906/// Note that this kill instruction will eventually be eliminated when
907/// restrictions in the stackifier are relaxed.
908///
909static bool RequiresFPRegKill(const BasicBlock *BB) {
910#ifdef SMART_FP
911 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
912 const BasicBlock *Succ = *SI;
913 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
914 ++PI; // Block have at least one predecessory
915 if (PI != PE) { // If it has exactly one, this isn't crit edge
916 // If this block has more than one predecessor, check all of the
917 // predecessors to see if they have multiple successors. If so, then the
918 // block we are analyzing needs an FPRegKill.
919 for (PI = pred_begin(Succ); PI != PE; ++PI) {
920 const BasicBlock *Pred = *PI;
921 succ_const_iterator SI2 = succ_begin(Pred);
922 ++SI2; // There must be at least one successor of this block.
923 if (SI2 != succ_end(Pred))
924 return true; // Yes, we must insert the kill on this edge.
925 }
926 }
927 }
928 // If we got this far, there is no need to insert the kill instruction.
929 return false;
930#else
931 return true;
932#endif
933}
934
Chris Lattner51b49a92002-11-02 19:45:49 +0000935/// visitBranchInst - Handle conditional and unconditional branches here. Note
936/// that since code layout is frozen at this point, that if we are trying to
937/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000938/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000939///
Chris Lattner94af4142002-12-25 05:13:53 +0000940void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000941 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
942
943 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000944 if (RequiresFPRegKill(BI.getParent()))
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000945 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000946 if (BI.getSuccessor(0) != NextBB)
Chris Lattner55f6fab2003-01-16 18:07:23 +0000947 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000948 return;
949 }
950
951 // See if we can fold the setcc into the branch itself...
952 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
953 if (SCI == 0) {
954 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
955 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000956 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000957 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000958 if (RequiresFPRegKill(BI.getParent()))
959 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000960 if (BI.getSuccessor(1) == NextBB) {
961 if (BI.getSuccessor(0) != NextBB)
962 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
963 } else {
964 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
965
966 if (BI.getSuccessor(0) != NextBB)
967 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
968 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000969 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000970 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000971
972 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000973 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000974 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000975
976 const Type *CompTy = SCI->getOperand(0)->getType();
977 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +0000978
Chris Lattnerb2acc512003-10-19 21:09:10 +0000979
Chris Lattner6d40c192003-01-16 16:43:00 +0000980 // LLVM -> X86 signed X86 unsigned
981 // ----- ---------- ------------
982 // seteq -> je je
983 // setne -> jne jne
984 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000985 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000986 // setgt -> jg ja
987 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000988 // ----
989 // js // Used by comparison with 0 optimization
990 // jns
991
992 static const unsigned OpcodeTab[2][8] = {
993 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
994 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
995 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +0000996 };
997
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000998 if (RequiresFPRegKill(BI.getParent()))
999 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001000 if (BI.getSuccessor(0) != NextBB) {
1001 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
1002 if (BI.getSuccessor(1) != NextBB)
1003 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
1004 } else {
1005 // Change to the inverse condition...
1006 if (BI.getSuccessor(1) != NextBB) {
1007 OpNum ^= 1;
1008 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
1009 }
1010 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001011}
1012
Chris Lattner3e130a22003-01-13 00:32:26 +00001013
1014/// doCall - This emits an abstract call instruction, setting up the arguments
1015/// and the return value as appropriate. For the actual function call itself,
1016/// it inserts the specified CallMI instruction into the stream.
1017///
1018void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001019 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001020
Chris Lattner065faeb2002-12-28 20:24:02 +00001021 // Count how many bytes are to be pushed on the stack...
1022 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001023
Chris Lattner3e130a22003-01-13 00:32:26 +00001024 if (!Args.empty()) {
1025 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1026 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001027 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001028 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001029 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001030 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001031 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001032 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1033 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001034 default: assert(0 && "Unknown class!");
1035 }
1036
1037 // Adjust the stack pointer for the new arguments...
1038 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
1039
1040 // Arguments go on the stack in reverse order, as specified by the ABI.
1041 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001042 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001043 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001044 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001045 case cByte:
1046 case cShort: {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001047 // Promote arg to 32 bits wide into a temporary register...
1048 unsigned R = makeAnotherReg(Type::UIntTy);
1049 promote32(R, Args[i]);
1050 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1051 X86::ESP, ArgOffset).addReg(R);
1052 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001053 }
1054 case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001055 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1056 X86::ESP, ArgOffset).addReg(ArgReg);
1057 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001058 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001059 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1060 X86::ESP, ArgOffset).addReg(ArgReg);
1061 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1062 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1063 ArgOffset += 4; // 8 byte entry, not 4.
1064 break;
1065
Chris Lattner065faeb2002-12-28 20:24:02 +00001066 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001067 if (Args[i].Ty == Type::FloatTy) {
1068 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
1069 X86::ESP, ArgOffset).addReg(ArgReg);
1070 } else {
1071 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1072 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
1073 X86::ESP, ArgOffset).addReg(ArgReg);
1074 ArgOffset += 4; // 8 byte entry, not 4.
1075 }
1076 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001077
Chris Lattner3e130a22003-01-13 00:32:26 +00001078 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001079 }
1080 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001081 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001082 } else {
1083 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001084 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001085
Chris Lattner3e130a22003-01-13 00:32:26 +00001086 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001087
Chris Lattner065faeb2002-12-28 20:24:02 +00001088 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001089
1090 // If there is a return value, scavenge the result from the location the call
1091 // leaves it in...
1092 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001093 if (Ret.Ty != Type::VoidTy) {
1094 unsigned DestClass = getClassB(Ret.Ty);
1095 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001096 case cByte:
1097 case cShort:
1098 case cInt: {
1099 // Integral results are in %eax, or the appropriate portion
1100 // thereof.
1101 static const unsigned regRegMove[] = {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001102 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
Brian Gaeke20244b72002-12-12 15:33:40 +00001103 };
1104 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001105 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001106 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001107 }
Chris Lattner94af4142002-12-25 05:13:53 +00001108 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001109 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001110 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001111 case cLong: // Long values are left in EDX:EAX
1112 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
1113 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
1114 break;
1115 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001116 }
Chris Lattnera3243642002-12-04 23:45:28 +00001117 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001118}
Chris Lattner2df035b2002-11-02 19:27:56 +00001119
Chris Lattner3e130a22003-01-13 00:32:26 +00001120
1121/// visitCallInst - Push args on stack and do a procedure call instruction.
1122void ISel::visitCallInst(CallInst &CI) {
1123 MachineInstr *TheCall;
1124 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001125 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001126 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001127 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1128 return;
1129 }
1130
Chris Lattner3e130a22003-01-13 00:32:26 +00001131 // Emit a CALL instruction with PC-relative displacement.
1132 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1133 } else { // Emit an indirect call...
1134 unsigned Reg = getReg(CI.getCalledValue());
1135 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1136 }
1137
1138 std::vector<ValueRecord> Args;
1139 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001140 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001141
1142 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1143 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001144}
Chris Lattner3e130a22003-01-13 00:32:26 +00001145
Chris Lattneraeb54b82003-08-28 21:23:43 +00001146
Chris Lattner44827152003-12-28 09:47:19 +00001147/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1148/// function, lowering any calls to unknown intrinsic functions into the
1149/// equivalent LLVM code.
1150void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1151 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1152 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1153 if (CallInst *CI = dyn_cast<CallInst>(I++))
1154 if (Function *F = CI->getCalledFunction())
1155 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001156 case Intrinsic::not_intrinsic:
Chris Lattner44827152003-12-28 09:47:19 +00001157 case Intrinsic::va_start:
1158 case Intrinsic::va_copy:
1159 case Intrinsic::va_end:
Chris Lattner915e5e52004-02-12 17:53:22 +00001160 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001161 case Intrinsic::memset:
Chris Lattner44827152003-12-28 09:47:19 +00001162 // We directly implement these intrinsics
1163 break;
1164 default:
1165 // All other intrinsic calls we must lower.
1166 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001167 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001168 if (Before) { // Move iterator to instruction after call
1169 I = Before; ++I;
1170 } else {
1171 I = BB->begin();
1172 }
1173 }
1174
1175}
1176
Brian Gaeked0fde302003-11-11 22:41:34 +00001177void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001178 unsigned TmpReg1, TmpReg2;
1179 switch (ID) {
Brian Gaeked0fde302003-11-11 22:41:34 +00001180 case Intrinsic::va_start:
Chris Lattnereca195e2003-05-08 19:44:13 +00001181 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001182 TmpReg1 = getReg(CI);
Chris Lattnereca195e2003-05-08 19:44:13 +00001183 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001184 return;
1185
Brian Gaeked0fde302003-11-11 22:41:34 +00001186 case Intrinsic::va_copy:
Chris Lattner73815062003-10-18 05:56:40 +00001187 TmpReg1 = getReg(CI);
1188 TmpReg2 = getReg(CI.getOperand(1));
1189 BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001190 return;
Brian Gaeked0fde302003-11-11 22:41:34 +00001191 case Intrinsic::va_end: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001192
Chris Lattner915e5e52004-02-12 17:53:22 +00001193 case Intrinsic::memcpy: {
1194 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1195 unsigned Align = 1;
1196 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1197 Align = AlignC->getRawValue();
1198 if (Align == 0) Align = 1;
1199 }
1200
1201 // Turn the byte code into # iterations
Chris Lattner07122832004-02-13 23:36:47 +00001202 unsigned ByteReg;
Chris Lattner915e5e52004-02-12 17:53:22 +00001203 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001204 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001205 switch (Align & 3) {
1206 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001207 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1208 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1209 } else {
1210 CountReg = makeAnotherReg(Type::IntTy);
1211 BuildMI(BB, X86::SHRir32, 2, CountReg).addReg(ByteReg).addZImm(1);
1212 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001213 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001214 break;
1215 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001216 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1217 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1218 } else {
1219 CountReg = makeAnotherReg(Type::IntTy);
1220 BuildMI(BB, X86::SHRir32, 2, CountReg).addReg(ByteReg).addZImm(2);
1221 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001222 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001223 break;
1224 case 1: // BYTE aligned
1225 case 3: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001226 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001227 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001228 break;
1229 }
1230
1231 // No matter what the alignment is, we put the source in ESI, the
1232 // destination in EDI, and the count in ECX.
1233 TmpReg1 = getReg(CI.getOperand(1));
1234 TmpReg2 = getReg(CI.getOperand(2));
1235 BuildMI(BB, X86::MOVrr32, 1, X86::ECX).addReg(CountReg);
1236 BuildMI(BB, X86::MOVrr32, 1, X86::EDI).addReg(TmpReg1);
1237 BuildMI(BB, X86::MOVrr32, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001238 BuildMI(BB, Opcode, 0);
1239 return;
1240 }
1241 case Intrinsic::memset: {
1242 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1243 unsigned Align = 1;
1244 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1245 Align = AlignC->getRawValue();
1246 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001247 }
1248
Chris Lattner2a0f2242004-02-14 04:46:05 +00001249 // Turn the byte code into # iterations
1250 unsigned ByteReg;
1251 unsigned CountReg;
1252 unsigned Opcode;
1253 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1254 unsigned Val = ValC->getRawValue() & 255;
1255
1256 // If the value is a constant, then we can potentially use larger copies.
1257 switch (Align & 3) {
1258 case 2: // WORD aligned
1259 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1260 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1261 } else {
1262 CountReg = makeAnotherReg(Type::IntTy);
1263 BuildMI(BB, X86::SHRir32, 2, CountReg).addReg(ByteReg).addZImm(1);
1264 }
1265 BuildMI(BB, X86::MOVir16, 1, X86::AX).addZImm((Val << 8) | Val);
1266 Opcode = X86::REP_STOSW;
1267 break;
1268 case 0: // DWORD aligned
1269 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1270 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1271 } else {
1272 CountReg = makeAnotherReg(Type::IntTy);
1273 BuildMI(BB, X86::SHRir32, 2, CountReg).addReg(ByteReg).addZImm(2);
1274 }
1275 Val = (Val << 8) | Val;
1276 BuildMI(BB, X86::MOVir32, 1, X86::EAX).addZImm((Val << 16) | Val);
1277 Opcode = X86::REP_STOSD;
1278 break;
1279 case 1: // BYTE aligned
1280 case 3: // BYTE aligned
1281 CountReg = getReg(CI.getOperand(3));
1282 BuildMI(BB, X86::MOVir8, 1, X86::AL).addZImm(Val);
1283 Opcode = X86::REP_STOSB;
1284 break;
1285 }
1286 } else {
1287 // If it's not a constant value we are storing, just fall back. We could
1288 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1289 unsigned ValReg = getReg(CI.getOperand(2));
1290 BuildMI(BB, X86::MOVrr8, 1, X86::AL).addReg(ValReg);
1291 CountReg = getReg(CI.getOperand(3));
1292 Opcode = X86::REP_STOSB;
1293 }
1294
1295 // No matter what the alignment is, we put the source in ESI, the
1296 // destination in EDI, and the count in ECX.
1297 TmpReg1 = getReg(CI.getOperand(1));
1298 //TmpReg2 = getReg(CI.getOperand(2));
1299 BuildMI(BB, X86::MOVrr32, 1, X86::ECX).addReg(CountReg);
1300 BuildMI(BB, X86::MOVrr32, 1, X86::EDI).addReg(TmpReg1);
1301 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001302 return;
1303 }
1304
Chris Lattner44827152003-12-28 09:47:19 +00001305 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001306 }
1307}
1308
1309
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001310/// visitSimpleBinary - Implement simple binary operators for integral types...
1311/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1312/// Xor.
1313void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1314 unsigned DestReg = getReg(B);
1315 MachineBasicBlock::iterator MI = BB->end();
1316 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1317 OperatorClass, DestReg);
1318}
Chris Lattner3e130a22003-01-13 00:32:26 +00001319
Chris Lattnerb2acc512003-10-19 21:09:10 +00001320/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1321/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1322/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001323///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001324/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1325/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001326///
1327void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001328 MachineBasicBlock::iterator &IP,
1329 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001330 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001331 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001332
1333 // sub 0, X -> neg X
1334 if (OperatorClass == 1 && Class != cLong)
Chris Lattneraf703622004-02-02 18:56:30 +00001335 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001336 if (CI->isNullValue()) {
1337 unsigned op1Reg = getReg(Op1, MBB, IP);
1338 switch (Class) {
1339 default: assert(0 && "Unknown class for this function!");
1340 case cByte:
1341 BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
1342 return;
1343 case cShort:
1344 BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
1345 return;
1346 case cInt:
1347 BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
1348 return;
1349 }
1350 }
Chris Lattner9f8fd6d2004-02-02 19:31:38 +00001351 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1352 if (CFP->isExactlyValue(-0.0)) {
1353 // -0.0 - X === -X
1354 unsigned op1Reg = getReg(Op1, MBB, IP);
1355 BMI(MBB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
1356 return;
1357 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001358
Chris Lattner35333e12003-06-05 18:28:55 +00001359 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1360 static const unsigned OpcodeTab[][4] = {
1361 // Arithmetic operators
1362 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1363 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1364
1365 // Bitwise operators
1366 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1367 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1368 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001369 };
Chris Lattner35333e12003-06-05 18:28:55 +00001370
1371 bool isLong = false;
1372 if (Class == cLong) {
1373 isLong = true;
1374 Class = cInt; // Bottom 32 bits are handled just like ints
1375 }
1376
1377 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1378 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb2acc512003-10-19 21:09:10 +00001379 unsigned Op0r = getReg(Op0, MBB, IP);
1380 unsigned Op1r = getReg(Op1, MBB, IP);
1381 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Chris Lattner35333e12003-06-05 18:28:55 +00001382
1383 if (isLong) { // Handle the upper 32 bits of long values...
1384 static const unsigned TopTab[] = {
1385 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1386 };
Chris Lattnerb2acc512003-10-19 21:09:10 +00001387 BMI(MBB, IP, TopTab[OperatorClass], 2,
1388 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner35333e12003-06-05 18:28:55 +00001389 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001390 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001391 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001392
1393 // Special case: op Reg, <const>
1394 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1395 unsigned Op0r = getReg(Op0, MBB, IP);
1396
1397 // xor X, -1 -> not X
1398 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1399 static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
1400 BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
1401 return;
1402 }
1403
1404 // add X, -1 -> dec X
1405 if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
1406 static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
1407 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1408 return;
1409 }
1410
1411 // add X, 1 -> inc X
1412 if (OperatorClass == 0 && Op1C->equalsInt(1)) {
1413 static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
1414 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1415 return;
1416 }
1417
1418 static const unsigned OpcodeTab[][3] = {
1419 // Arithmetic operators
1420 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1421 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1422
1423 // Bitwise operators
1424 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1425 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1426 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1427 };
1428
1429 assert(Class < 3 && "General code handles 64-bit integer types!");
1430 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1431 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
1432
1433 // Mask off any upper bits of the constant, if there are any...
1434 Op1v &= (1ULL << (8 << Class)) - 1;
1435 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
Chris Lattnere2954c82002-11-02 20:04:26 +00001436}
1437
Chris Lattner3e130a22003-01-13 00:32:26 +00001438/// doMultiply - Emit appropriate instructions to multiply together the
1439/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1440/// result should be given as DestTy.
1441///
Chris Lattner8a307e82002-12-16 19:32:50 +00001442void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001443 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001444 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001445 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001446 switch (Class) {
1447 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001448 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001449 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001450 case cInt:
1451 case cShort:
Chris Lattnerc01d1232003-10-20 03:42:58 +00001452 BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00001453 .addReg(op0Reg).addReg(op1Reg);
1454 return;
1455 case cByte:
1456 // Must use the MUL instruction, which forces use of AL...
1457 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1458 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1459 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1460 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001461 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001462 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001463 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001464}
1465
Chris Lattnerb2acc512003-10-19 21:09:10 +00001466// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1467// returns zero when the input is not exactly a power of two.
1468static unsigned ExactLog2(unsigned Val) {
1469 if (Val == 0) return 0;
1470 unsigned Count = 0;
1471 while (Val != 1) {
1472 if (Val & 1) return 0;
1473 Val >>= 1;
1474 ++Count;
1475 }
1476 return Count+1;
1477}
1478
1479void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1480 MachineBasicBlock::iterator &IP,
1481 unsigned DestReg, const Type *DestTy,
1482 unsigned op0Reg, unsigned ConstRHS) {
1483 unsigned Class = getClass(DestTy);
1484
1485 // If the element size is exactly a power of 2, use a shift to get it.
1486 if (unsigned Shift = ExactLog2(ConstRHS)) {
1487 switch (Class) {
1488 default: assert(0 && "Unknown class for this function!");
1489 case cByte:
1490 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1491 return;
1492 case cShort:
1493 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1494 return;
1495 case cInt:
1496 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1497 return;
1498 }
1499 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00001500
1501 if (Class == cShort) {
1502 BMI(MBB, IP, X86::IMULri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1503 return;
1504 } else if (Class == cInt) {
1505 BMI(MBB, IP, X86::IMULri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1506 return;
1507 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001508
1509 // Most general case, emit a normal multiply...
1510 static const unsigned MOVirTab[] = {
1511 X86::MOVir8, X86::MOVir16, X86::MOVir32
1512 };
1513
1514 unsigned TmpReg = makeAnotherReg(DestTy);
1515 BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
1516
1517 // Emit a MUL to multiply the register holding the index by
1518 // elementSize, putting the result in OffsetReg.
1519 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
1520}
1521
Chris Lattnerca9671d2002-11-02 20:28:58 +00001522/// visitMul - Multiplies are not simple binary operators because they must deal
1523/// with the EAX register explicitly.
1524///
1525void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001526 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00001527 unsigned DestReg = getReg(I);
1528
1529 // Simple scalar multiply?
1530 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001531 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1532 unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
1533 MachineBasicBlock::iterator MBBI = BB->end();
1534 doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
1535 } else {
1536 unsigned Op1Reg = getReg(I.getOperand(1));
1537 MachineBasicBlock::iterator MBBI = BB->end();
1538 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1539 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001540 } else {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001541 unsigned Op1Reg = getReg(I.getOperand(1));
1542
Chris Lattner3e130a22003-01-13 00:32:26 +00001543 // Long value. We have to do things the hard way...
1544 // Multiply the two low parts... capturing carry into EDX
1545 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1546 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1547
1548 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1549 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1550 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1551
1552 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001553 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
Chris Lattnerc01d1232003-10-20 03:42:58 +00001554 BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001555
1556 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1557 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001558 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001559
1560 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001561 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattnerc01d1232003-10-20 03:42:58 +00001562 BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001563
1564 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001565 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001566 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001567}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001568
Chris Lattner06925362002-11-17 21:56:38 +00001569
Chris Lattnerf01729e2002-11-02 20:54:46 +00001570/// visitDivRem - Handle division and remainder instructions... these
1571/// instruction both require the same instructions to be generated, they just
1572/// select the result from a different register. Note that both of these
1573/// instructions work differently for signed and unsigned operands.
1574///
1575void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00001576 unsigned Op0Reg = getReg(I.getOperand(0));
1577 unsigned Op1Reg = getReg(I.getOperand(1));
1578 unsigned ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001579
Chris Lattnercadff442003-10-23 17:21:43 +00001580 MachineBasicBlock::iterator IP = BB->end();
1581 emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
1582 I.getType(), ResultReg);
1583}
1584
1585void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1586 MachineBasicBlock::iterator &IP,
1587 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
1588 const Type *Ty, unsigned ResultReg) {
1589 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00001590 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001591 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00001592 if (isDiv) {
Chris Lattner62b767b2003-11-18 17:47:05 +00001593 BMI(BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001594 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001595 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001596 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00001597 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001598 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1599 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001600 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1601 }
Chris Lattner94af4142002-12-25 05:13:53 +00001602 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001603 case cLong: {
1604 static const char *FnName[] =
1605 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1606
Chris Lattnercadff442003-10-23 17:21:43 +00001607 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00001608 MachineInstr *TheCall =
1609 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1610
1611 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001612 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1613 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001614 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1615 return;
1616 }
1617 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001618 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001619 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001620 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001621
1622 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1623 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001624 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00001625 static const unsigned ClrOpcode[]={ X86::MOVir8, X86::MOVir16, X86::MOVir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001626 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1627
1628 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001629 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1630 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001631 };
1632
Chris Lattnercadff442003-10-23 17:21:43 +00001633 bool isSigned = Ty->isSigned();
Chris Lattnerf01729e2002-11-02 20:54:46 +00001634 unsigned Reg = Regs[Class];
1635 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001636
1637 // Put the first operand into one of the A registers...
Chris Lattner62b767b2003-11-18 17:47:05 +00001638 BMI(BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001639
1640 if (isSigned) {
1641 // Emit a sign extension instruction...
Chris Lattnercadff442003-10-23 17:21:43 +00001642 unsigned ShiftResult = makeAnotherReg(Ty);
Chris Lattner62b767b2003-11-18 17:47:05 +00001643 BMI(BB, IP, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1644 BMI(BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001645 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00001646 // If unsigned, emit a zeroing instruction... (reg = 0)
1647 BMI(BB, IP, ClrOpcode[Class], 2, ExtReg).addZImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001648 }
1649
Chris Lattner06925362002-11-17 21:56:38 +00001650 // Emit the appropriate divide or remainder instruction...
Chris Lattner62b767b2003-11-18 17:47:05 +00001651 BMI(BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001652
Chris Lattnerf01729e2002-11-02 20:54:46 +00001653 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00001654 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00001655
Chris Lattnerf01729e2002-11-02 20:54:46 +00001656 // Put the result into the destination register...
Chris Lattner62b767b2003-11-18 17:47:05 +00001657 BMI(BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001658}
Chris Lattnere2954c82002-11-02 20:04:26 +00001659
Chris Lattner06925362002-11-17 21:56:38 +00001660
Brian Gaekea1719c92002-10-31 23:03:59 +00001661/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1662/// for constant immediate shift values, and for constant immediate
1663/// shift values equal to 1. Even the general case is sort of special,
1664/// because the shift amount has to be in CL, not just any old register.
1665///
Chris Lattner3e130a22003-01-13 00:32:26 +00001666void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001667 MachineBasicBlock::iterator IP = BB->end ();
1668 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
1669 I.getOpcode () == Instruction::Shl, I.getType (),
1670 getReg (I));
1671}
1672
1673/// emitShiftOperation - Common code shared between visitShiftInst and
1674/// constant expression support.
1675void ISel::emitShiftOperation(MachineBasicBlock *MBB,
1676 MachineBasicBlock::iterator &IP,
1677 Value *Op, Value *ShiftAmount, bool isLeftShift,
1678 const Type *ResultTy, unsigned DestReg) {
1679 unsigned SrcReg = getReg (Op, MBB, IP);
1680 bool isSigned = ResultTy->isSigned ();
1681 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001682
1683 static const unsigned ConstantOperand[][4] = {
1684 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1685 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1686 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1687 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1688 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001689
Chris Lattner3e130a22003-01-13 00:32:26 +00001690 static const unsigned NonConstantOperand[][4] = {
1691 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1692 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1693 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1694 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1695 };
Chris Lattner796df732002-11-02 00:44:25 +00001696
Chris Lattner3e130a22003-01-13 00:32:26 +00001697 // Longs, as usual, are handled specially...
1698 if (Class == cLong) {
1699 // If we have a constant shift, we can generate much more efficient code
1700 // than otherwise...
1701 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001702 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001703 unsigned Amount = CUI->getValue();
1704 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001705 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1706 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001707 BMI(MBB, IP, Opc[3], 3,
1708 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1709 BMI(MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001710 } else {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001711 BMI(MBB, IP, Opc[3], 3,
1712 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1713 BMI(MBB, IP, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001714 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001715 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001716 Amount -= 32;
1717 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001718 BMI(MBB, IP, X86::SHLir32, 2,
1719 DestReg + 1).addReg(SrcReg).addZImm(Amount);
1720 BMI(MBB, IP, X86::MOVir32, 1,
1721 DestReg).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001722 } else {
1723 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001724 BMI(MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1725 BMI(MBB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001726 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001727 }
1728 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001729 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1730
1731 if (!isLeftShift && isSigned) {
1732 // If this is a SHR of a Long, then we need to do funny sign extension
1733 // stuff. TmpReg gets the value to use as the high-part if we are
1734 // shifting more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001735 BMI(MBB, IP, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00001736 } else {
1737 // Other shifts use a fixed zero value if the shift is more than 32
1738 // bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001739 BMI(MBB, IP, X86::MOVir32, 1, TmpReg).addZImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00001740 }
1741
1742 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001743 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
1744 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001745
1746 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1747 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1748 if (isLeftShift) {
1749 // TmpReg2 = shld inHi, inLo
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001750 BMI(MBB, IP, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001751 // TmpReg3 = shl inLo, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001752 BMI(MBB, IP, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001753
1754 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001755 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001756
1757 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001758 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001759 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1760 // DestLo = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001761 BMI(MBB, IP, X86::CMOVNErr32, 2,
1762 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001763 } else {
1764 // TmpReg2 = shrd inLo, inHi
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001765 BMI(MBB, IP, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00001766 // TmpReg3 = s[ah]r inHi, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001767 BMI(MBB, IP, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00001768 .addReg(SrcReg+1);
1769
1770 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001771 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001772
1773 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001774 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001775 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1776
1777 // DestHi = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001778 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001779 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1780 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001781 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001782 return;
1783 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001784
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001785 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001786 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1787 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001788
Chris Lattner3e130a22003-01-13 00:32:26 +00001789 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001790 BMI(MBB, IP, Opc[Class], 2,
1791 DestReg).addReg(SrcReg).addZImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00001792 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001793 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
1794 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001795
Chris Lattner3e130a22003-01-13 00:32:26 +00001796 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001797 BMI(MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001798 }
1799}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001800
Chris Lattner3e130a22003-01-13 00:32:26 +00001801
Chris Lattner6fc3c522002-11-17 21:11:55 +00001802/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001803/// instruction. The load and store instructions are the only place where we
1804/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001805///
1806void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001807 unsigned SrcAddrReg = getReg(I.getOperand(0));
1808 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001809
Brian Gaekebfedb912003-07-17 21:30:06 +00001810 unsigned Class = getClassB(I.getType());
Chris Lattner6ac1d712003-10-20 04:48:06 +00001811
1812 if (Class == cLong) {
1813 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), SrcAddrReg);
1814 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
Chris Lattner94af4142002-12-25 05:13:53 +00001815 return;
1816 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001817
Chris Lattner6ac1d712003-10-20 04:48:06 +00001818 static const unsigned Opcodes[] = {
1819 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FLDr32
Chris Lattner3e130a22003-01-13 00:32:26 +00001820 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00001821 unsigned Opcode = Opcodes[Class];
1822 if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
1823 addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001824}
1825
Chris Lattner6fc3c522002-11-17 21:11:55 +00001826/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1827/// instruction.
1828///
1829void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001830 unsigned ValReg = getReg(I.getOperand(0));
1831 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattner6c09db22003-10-20 04:11:23 +00001832
1833 const Type *ValTy = I.getOperand(0)->getType();
1834 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00001835
1836 if (Class == cLong) {
Chris Lattner6c09db22003-10-20 04:11:23 +00001837 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1838 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg,4).addReg(ValReg+1);
Chris Lattner94af4142002-12-25 05:13:53 +00001839 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001840 }
1841
Chris Lattner6ac1d712003-10-20 04:48:06 +00001842 static const unsigned Opcodes[] = {
1843 X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FSTr32
1844 };
1845 unsigned Opcode = Opcodes[Class];
1846 if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
1847 addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +00001848}
1849
1850
Brian Gaekec11232a2002-11-26 10:43:30 +00001851/// visitCastInst - Here we have various kinds of copying with or without
1852/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001853void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001854 Value *Op = CI.getOperand(0);
1855 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1856 // of the case are GEP instructions, then the cast does not need to be
1857 // generated explicitly, it will be folded into the GEP.
1858 if (CI.getType() == Type::LongTy &&
1859 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1860 bool AllUsesAreGEPs = true;
1861 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1862 if (!isa<GetElementPtrInst>(*I)) {
1863 AllUsesAreGEPs = false;
1864 break;
1865 }
1866
1867 // No need to codegen this cast if all users are getelementptr instrs...
1868 if (AllUsesAreGEPs) return;
1869 }
1870
Chris Lattner548f61d2003-04-23 17:22:12 +00001871 unsigned DestReg = getReg(CI);
1872 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001873 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001874}
1875
1876/// emitCastOperation - Common code shared between visitCastInst and
1877/// constant expression cast support.
1878void ISel::emitCastOperation(MachineBasicBlock *BB,
1879 MachineBasicBlock::iterator &IP,
1880 Value *Src, const Type *DestTy,
1881 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001882 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001883 const Type *SrcTy = Src->getType();
1884 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001885 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001886
Chris Lattner3e130a22003-01-13 00:32:26 +00001887 // Implement casts to bool by using compare on the operand followed by set if
1888 // not zero on the result.
1889 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001890 switch (SrcClass) {
1891 case cByte:
1892 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1893 break;
1894 case cShort:
1895 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1896 break;
1897 case cInt:
1898 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1899 break;
1900 case cLong: {
1901 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1902 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1903 break;
1904 }
1905 case cFP:
1906 assert(0 && "FIXME: implement cast FP to bool");
1907 abort();
1908 }
1909
1910 // If the zero flag is not set, then the value is true, set the byte to
1911 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001912 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001913 return;
1914 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001915
1916 static const unsigned RegRegMove[] = {
1917 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1918 };
1919
1920 // Implement casts between values of the same type class (as determined by
1921 // getClass) by using a register-to-register move.
1922 if (SrcClass == DestClass) {
1923 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001924 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001925 } else if (SrcClass == cFP) {
1926 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001927 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
1928 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001929 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001930 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1931 "Unknown cFP member!");
1932 // Truncate from double to float by storing to memory as short, then
1933 // reading it back.
1934 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00001935 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001936 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1937 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001938 }
1939 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001940 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1941 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001942 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001943 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001944 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001945 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001946 return;
1947 }
1948
1949 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1950 // or zero extension, depending on whether the source type was signed.
1951 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1952 SrcClass < DestClass) {
1953 bool isLong = DestClass == cLong;
1954 if (isLong) DestClass = cInt;
1955
1956 static const unsigned Opc[][4] = {
1957 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1958 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1959 };
1960
1961 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001962 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1963 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001964
1965 if (isLong) { // Handle upper 32 bits as appropriate...
1966 if (isUnsigned) // Zero out top bits...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001967 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001968 else // Sign extend bottom half...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001969 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001970 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001971 return;
1972 }
1973
1974 // Special case long -> int ...
1975 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001976 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001977 return;
1978 }
1979
1980 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1981 // move out of AX or AL.
1982 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1983 && SrcClass > DestClass) {
1984 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001985 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1986 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001987 return;
1988 }
1989
1990 // Handle casts from integer to floating point now...
1991 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001992 // Promote the integer to a type supported by FLD. We do this because there
1993 // are no unsigned FLD instructions, so we must promote an unsigned value to
1994 // a larger signed value, then use FLD on the larger value.
1995 //
1996 const Type *PromoteType = 0;
1997 unsigned PromoteOpcode;
1998 switch (SrcTy->getPrimitiveID()) {
1999 case Type::BoolTyID:
2000 case Type::SByteTyID:
2001 // We don't have the facilities for directly loading byte sized data from
2002 // memory (even signed). Promote it to 16 bits.
2003 PromoteType = Type::ShortTy;
2004 PromoteOpcode = X86::MOVSXr16r8;
2005 break;
2006 case Type::UByteTyID:
2007 PromoteType = Type::ShortTy;
2008 PromoteOpcode = X86::MOVZXr16r8;
2009 break;
2010 case Type::UShortTyID:
2011 PromoteType = Type::IntTy;
2012 PromoteOpcode = X86::MOVZXr32r16;
2013 break;
2014 case Type::UIntTyID: {
2015 // Make a 64 bit temporary... and zero out the top of it...
2016 unsigned TmpReg = makeAnotherReg(Type::LongTy);
2017 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
2018 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
2019 SrcTy = Type::LongTy;
2020 SrcClass = cLong;
2021 SrcReg = TmpReg;
2022 break;
2023 }
2024 case Type::ULongTyID:
2025 assert("FIXME: not implemented: cast ulong X to fp type!");
2026 default: // No promotion needed...
2027 break;
2028 }
2029
2030 if (PromoteType) {
2031 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00002032 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
2033 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002034 SrcTy = PromoteType;
2035 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00002036 SrcReg = TmpReg;
2037 }
2038
2039 // Spill the integer to memory and reload it from there...
2040 int FrameIdx =
2041 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2042
2043 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00002044 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
2045 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002046 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00002047 } else {
2048 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002049 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002050 }
2051
2052 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002053 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002054 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002055 return;
2056 }
2057
2058 // Handle casts from floating point to integer now...
2059 if (SrcClass == cFP) {
2060 // Change the floating point control register to use "round towards zero"
2061 // mode when truncating to an integer value.
2062 //
2063 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00002064 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002065
2066 // Load the old value of the high byte of the control word...
2067 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00002068 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00002069
2070 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00002071 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00002072
2073 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00002074 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002075
2076 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00002077 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002078 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00002079
2080 // We don't have the facilities for directly storing byte sized data to
2081 // memory. Promote it to 16 bits. We also must promote unsigned values to
2082 // larger classes because we only have signed FP stores.
2083 unsigned StoreClass = DestClass;
2084 const Type *StoreTy = DestTy;
2085 if (StoreClass == cByte || DestTy->isUnsigned())
2086 switch (StoreClass) {
2087 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
2088 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
2089 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00002090 // The following treatment of cLong may not be perfectly right,
2091 // but it survives chains of casts of the form
2092 // double->ulong->double.
2093 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00002094 default: assert(0 && "Unknown store class!");
2095 }
2096
2097 // Spill the integer to memory and reload it from there...
2098 int FrameIdx =
2099 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
2100
2101 static const unsigned Op1[] =
2102 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002103 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002104
2105 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00002106 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
2107 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00002108 } else {
2109 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002110 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002111 }
2112
2113 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00002114 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002115 return;
2116 }
2117
Brian Gaeked474e9c2002-12-06 10:49:33 +00002118 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00002119 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00002120 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00002121}
Brian Gaekea1719c92002-10-31 23:03:59 +00002122
Chris Lattner73815062003-10-18 05:56:40 +00002123/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00002124///
Chris Lattner73815062003-10-18 05:56:40 +00002125void ISel::visitVANextInst(VANextInst &I) {
2126 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00002127 unsigned DestReg = getReg(I);
2128
Chris Lattnereca195e2003-05-08 19:44:13 +00002129 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00002130 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00002131 default:
2132 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00002133 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00002134 return;
2135 case Type::PointerTyID:
2136 case Type::UIntTyID:
2137 case Type::IntTyID:
2138 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00002139 break;
2140 case Type::ULongTyID:
2141 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00002142 case Type::DoubleTyID:
2143 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00002144 break;
2145 }
2146
2147 // Increment the VAList pointer...
Chris Lattner73815062003-10-18 05:56:40 +00002148 BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
2149}
Chris Lattnereca195e2003-05-08 19:44:13 +00002150
Chris Lattner73815062003-10-18 05:56:40 +00002151void ISel::visitVAArgInst(VAArgInst &I) {
2152 unsigned VAList = getReg(I.getOperand(0));
2153 unsigned DestReg = getReg(I);
2154
2155 switch (I.getType()->getPrimitiveID()) {
2156 default:
2157 std::cerr << I;
2158 assert(0 && "Error: bad type for va_next instruction!");
2159 return;
2160 case Type::PointerTyID:
2161 case Type::UIntTyID:
2162 case Type::IntTyID:
2163 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
2164 break;
2165 case Type::ULongTyID:
2166 case Type::LongTyID:
2167 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
2168 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
2169 break;
2170 case Type::DoubleTyID:
2171 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
2172 break;
2173 }
Chris Lattnereca195e2003-05-08 19:44:13 +00002174}
2175
2176
Chris Lattner3e130a22003-01-13 00:32:26 +00002177void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2178 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002179 MachineBasicBlock::iterator MI = BB->end();
2180 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00002181 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002182}
2183
Brian Gaeke71794c02002-12-13 11:22:48 +00002184void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002185 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00002186 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00002187 User::op_iterator IdxEnd, unsigned TargetReg) {
2188 const TargetData &TD = TM.getTargetData();
2189 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00002190 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002191
Brian Gaeke20244b72002-12-12 15:33:40 +00002192 // GEPs have zero or more indices; we must perform a struct access
2193 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00002194 for (GetElementPtrInst::op_iterator oi = IdxBegin,
2195 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002196 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00002197 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00002198 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002199 // It's a struct access. idx is the index into the structure,
2200 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00002201 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
2202 assert(CUI->getType() == Type::UByteTy
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002203 && "Funny-looking structure index in GEP");
Brian Gaeke20244b72002-12-12 15:33:40 +00002204 // Use the TargetData structure to pick out what the layout of
2205 // the structure is in memory. Since the structure index must
2206 // be constant, we can get its value and use it to find the
2207 // right byte offset from the StructLayout class's list of
2208 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00002209 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002210 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
2211 if (FieldOff) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002212 NextReg = makeAnotherReg(Type::UIntTy);
2213 // Emit an ADD to add FieldOff to the basePtr.
2214 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
Chris Lattner3e130a22003-01-13 00:32:26 +00002215 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002216 // The next type is the member of the structure selected by the
2217 // index.
Chris Lattnerd21cd802004-02-09 04:37:31 +00002218 Ty = StTy->getElementType(idxValue);
Chris Lattner065faeb2002-12-28 20:24:02 +00002219 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002220 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00002221
Brian Gaeke20244b72002-12-12 15:33:40 +00002222 // idx is the index into the array. Unlike with structure
2223 // indices, we may not know its actual value at code-generation
2224 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00002225 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2226
Chris Lattnerf5854472003-06-21 16:01:24 +00002227 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
2228 // operand on X86. Handle this case directly now...
2229 if (CastInst *CI = dyn_cast<CastInst>(idx))
2230 if (CI->getOperand(0)->getType() == Type::IntTy ||
2231 CI->getOperand(0)->getType() == Type::UIntTy)
2232 idx = CI->getOperand(0);
2233
Chris Lattner3e130a22003-01-13 00:32:26 +00002234 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002235 // must find the size of the pointed-to type (Not coincidentally, the next
2236 // type is the type of the elements in the array).
2237 Ty = SqTy->getElementType();
2238 unsigned elementSize = TD.getTypeSize(Ty);
2239
2240 // If idxReg is a constant, we don't need to perform the multiply!
2241 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002242 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002243 unsigned Offset = elementSize*CSI->getValue();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002244 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002245 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00002246 }
2247 } else if (elementSize == 1) {
2248 // If the element size is 1, we don't have to multiply, just add
2249 unsigned idxReg = getReg(idx, MBB, IP);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002250 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002251 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002252 } else {
2253 unsigned idxReg = getReg(idx, MBB, IP);
2254 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002255
2256 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2257
Chris Lattner8a307e82002-12-16 19:32:50 +00002258 // Emit an ADD to add OffsetReg to the basePtr.
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002259 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002260 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002261 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002262 }
2263 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002264 // one, so we don't need to worry about BaseReg itself, anymore.
2265 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002266 }
2267 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002268 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002269 // put the answer. A 32-bit move should do it, because we are in
2270 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002271 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002272}
2273
2274
Chris Lattner065faeb2002-12-28 20:24:02 +00002275/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2276/// frame manager, otherwise do it the hard way.
2277///
2278void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002279 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002280 const Type *Ty = I.getAllocatedType();
2281 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2282
2283 // If this is a fixed size alloca in the entry block for the function,
2284 // statically stack allocate the space.
2285 //
2286 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2287 if (I.getParent() == I.getParent()->getParent()->begin()) {
2288 TySize *= CUI->getValue(); // Get total allocated size...
2289 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2290
2291 // Create a new stack object using the frame manager...
2292 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2293 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2294 return;
2295 }
2296 }
2297
2298 // Create a register to hold the temporary result of multiplying the type size
2299 // constant by the variable amount.
2300 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2301 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00002302
2303 // TotalSizeReg = mul <numelements>, <TypeSize>
2304 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002305 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002306
2307 // AddedSize = add <TotalSizeReg>, 15
2308 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2309 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2310
2311 // AlignedSize = and <AddedSize>, ~15
2312 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2313 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2314
Brian Gaekee48ec012002-12-13 06:46:31 +00002315 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002316 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002317
Brian Gaekee48ec012002-12-13 06:46:31 +00002318 // Put a pointer to the space into the result register, by copying
2319 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002320 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2321
Misha Brukman48196b32003-05-03 02:18:17 +00002322 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002323 // object.
2324 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002325}
Chris Lattner3e130a22003-01-13 00:32:26 +00002326
2327/// visitMallocInst - Malloc instructions are code generated into direct calls
2328/// to the library malloc.
2329///
2330void ISel::visitMallocInst(MallocInst &I) {
2331 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2332 unsigned Arg;
2333
2334 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2335 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2336 } else {
2337 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002338 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00002339 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002340 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00002341 }
2342
2343 std::vector<ValueRecord> Args;
2344 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2345 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002346 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002347 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2348}
2349
2350
2351/// visitFreeInst - Free instructions are code gen'd to call the free libc
2352/// function.
2353///
2354void ISel::visitFreeInst(FreeInst &I) {
2355 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002356 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002357 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002358 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002359 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2360}
2361
Chris Lattnerd281de22003-07-26 23:49:58 +00002362/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002363/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002364/// generated code sucks but the implementation is nice and simple.
2365///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00002366FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
2367 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002368}