blob: d07be2c8b38efa6f4b36131a4ea380c907050889 [file] [log] [blame]
Chris Lattner80f43d32010-01-04 07:53:58 +00001//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
Eli Friedman74703252011-07-20 21:57:23 +000015#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner80f43d32010-01-04 07:53:58 +000016#include "llvm/Target/TargetData.h"
Chad Rosier3d925d22011-11-29 23:57:10 +000017#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner80f43d32010-01-04 07:53:58 +000018#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000022/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
23/// expression. If so, decompose it, returning some value X, such that Val is
24/// X*Scale+Offset.
25///
26static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Dan Gohman28d2e0a2010-05-28 04:33:04 +000027 uint64_t &Offset) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000028 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
29 Offset = CI->getZExtValue();
30 Scale = 0;
Dan Gohman28d2e0a2010-05-28 04:33:04 +000031 return ConstantInt::get(Val->getType(), 0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000032 }
33
34 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
Bob Wilsone2e86f62011-07-08 22:09:33 +000035 // Cannot look past anything that might overflow.
36 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
Stepan Dyatkovskiy3f71cf12012-05-05 07:09:40 +000037 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
Bob Wilsone2e86f62011-07-08 22:09:33 +000038 Scale = 1;
39 Offset = 0;
40 return Val;
41 }
42
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000043 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
44 if (I->getOpcode() == Instruction::Shl) {
45 // This is a value scaled by '1 << the shift amt'.
Dan Gohman28d2e0a2010-05-28 04:33:04 +000046 Scale = UINT64_C(1) << RHS->getZExtValue();
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000047 Offset = 0;
48 return I->getOperand(0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000049 }
50
51 if (I->getOpcode() == Instruction::Mul) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000052 // This value is scaled by 'RHS'.
53 Scale = RHS->getZExtValue();
54 Offset = 0;
55 return I->getOperand(0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000056 }
57
58 if (I->getOpcode() == Instruction::Add) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000059 // We have X+C. Check to see if we really have (X*C2)+C1,
60 // where C1 is divisible by C2.
61 unsigned SubScale;
62 Value *SubVal =
63 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
64 Offset += RHS->getZExtValue();
65 Scale = SubScale;
66 return SubVal;
67 }
68 }
69 }
70
71 // Otherwise, we can't look past this.
72 Scale = 1;
73 Offset = 0;
74 return Val;
75}
76
77/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
78/// try to eliminate the cast by moving the type information into the alloc.
79Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
80 AllocaInst &AI) {
81 // This requires TargetData to get the alloca alignment and size information.
82 if (!TD) return 0;
83
Chris Lattnerdb125cf2011-07-18 04:54:35 +000084 PointerType *PTy = cast<PointerType>(CI.getType());
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000085
86 BuilderTy AllocaBuilder(*Builder);
87 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
88
89 // Get the type really allocated and the type casted to.
Chris Lattnerdb125cf2011-07-18 04:54:35 +000090 Type *AllocElTy = AI.getAllocatedType();
91 Type *CastElTy = PTy->getElementType();
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000092 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
93
94 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
95 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
96 if (CastElTyAlign < AllocElTyAlign) return 0;
97
98 // If the allocation has multiple uses, only promote it if we are strictly
99 // increasing the alignment of the resultant allocation. If we keep it the
Devang Patel5aa3fa62011-03-08 22:12:11 +0000100 // same, we open the door to infinite loops of various kinds.
101 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000102
103 uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
104 uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
105 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
106
107 // See if we can satisfy the modulus by pulling a scale out of the array
108 // size argument.
109 unsigned ArraySizeScale;
Dan Gohman28d2e0a2010-05-28 04:33:04 +0000110 uint64_t ArrayOffset;
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000111 Value *NumElements = // See if the array size is a decomposable linear expr.
112 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
113
114 // If we can now satisfy the modulus, by using a non-1 scale, we really can
115 // do the xform.
116 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
117 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
118
119 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
120 Value *Amt = 0;
121 if (Scale == 1) {
122 Amt = NumElements;
123 } else {
Dan Gohman28d2e0a2010-05-28 04:33:04 +0000124 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000125 // Insert before the alloca, not before the cast.
Benjamin Kramera9390a42011-09-27 20:39:19 +0000126 Amt = AllocaBuilder.CreateMul(Amt, NumElements);
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000127 }
128
Dan Gohman28d2e0a2010-05-28 04:33:04 +0000129 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
130 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000131 Offset, true);
Benjamin Kramera9390a42011-09-27 20:39:19 +0000132 Amt = AllocaBuilder.CreateAdd(Amt, Off);
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000133 }
134
135 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
136 New->setAlignment(AI.getAlignment());
137 New->takeName(&AI);
138
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000139 // If the allocation has multiple real uses, insert a cast and change all
140 // things that used it to use the new cast. This will also hack on CI, but it
141 // will die soon.
Devang Patel5aa3fa62011-03-08 22:12:11 +0000142 if (!AI.hasOneUse()) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000143 // New is the allocation instruction, pointer typed. AI is the original
144 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
145 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
Eli Friedman3e22cb92011-05-18 00:32:01 +0000146 ReplaceInstUsesWith(AI, NewCast);
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000147 }
148 return ReplaceInstUsesWith(CI, New);
149}
150
Chris Lattner5f0290e2010-01-04 07:54:59 +0000151/// EvaluateInDifferentType - Given an expression that
Chris Lattner14bf8f02010-01-08 19:19:23 +0000152/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000153/// insert the code to evaluate the expression.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000154Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
Chris Lattner5f0290e2010-01-04 07:54:59 +0000155 bool isSigned) {
Chris Lattnerc8b3fce2010-01-08 19:28:47 +0000156 if (Constant *C = dyn_cast<Constant>(V)) {
157 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
158 // If we got a constantexpr back, try to simplify it with TD info.
159 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosier00737bd2011-12-01 21:29:16 +0000160 C = ConstantFoldConstantExpression(CE, TD, TLI);
Chris Lattnerc8b3fce2010-01-08 19:28:47 +0000161 return C;
162 }
Chris Lattner5f0290e2010-01-04 07:54:59 +0000163
164 // Otherwise, it must be an instruction.
165 Instruction *I = cast<Instruction>(V);
166 Instruction *Res = 0;
167 unsigned Opc = I->getOpcode();
168 switch (Opc) {
169 case Instruction::Add:
170 case Instruction::Sub:
171 case Instruction::Mul:
172 case Instruction::And:
173 case Instruction::Or:
174 case Instruction::Xor:
175 case Instruction::AShr:
176 case Instruction::LShr:
177 case Instruction::Shl:
178 case Instruction::UDiv:
179 case Instruction::URem: {
180 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
181 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
182 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
183 break;
184 }
185 case Instruction::Trunc:
186 case Instruction::ZExt:
187 case Instruction::SExt:
188 // If the source type of the cast is the type we're trying for then we can
189 // just return the source. There's no need to insert it because it is not
190 // new.
191 if (I->getOperand(0)->getType() == Ty)
192 return I->getOperand(0);
193
194 // Otherwise, must be the same type of cast, so just reinsert a new one.
Chris Lattner9ee947c2010-01-10 20:25:54 +0000195 // This also handles the case of zext(trunc(x)) -> zext(x).
196 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
197 Opc == Instruction::SExt);
Chris Lattner5f0290e2010-01-04 07:54:59 +0000198 break;
199 case Instruction::Select: {
200 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
201 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
202 Res = SelectInst::Create(I->getOperand(0), True, False);
203 break;
204 }
205 case Instruction::PHI: {
206 PHINode *OPN = cast<PHINode>(I);
Jay Foad3ecfc862011-03-30 11:28:46 +0000207 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
Chris Lattner5f0290e2010-01-04 07:54:59 +0000208 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
209 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
210 NPN->addIncoming(V, OPN->getIncomingBlock(i));
211 }
212 Res = NPN;
213 break;
214 }
215 default:
216 // TODO: Can handle more cases here.
217 llvm_unreachable("Unreachable!");
Chris Lattner5f0290e2010-01-04 07:54:59 +0000218 }
219
220 Res->takeName(I);
Eli Friedmana311c342011-05-27 00:19:40 +0000221 return InsertNewInstWith(Res, *I);
Chris Lattner5f0290e2010-01-04 07:54:59 +0000222}
Chris Lattner80f43d32010-01-04 07:53:58 +0000223
224
225/// This function is a wrapper around CastInst::isEliminableCastPair. It
226/// simply extracts arguments and returns what that function returns.
227static Instruction::CastOps
228isEliminableCastPair(
229 const CastInst *CI, ///< The first cast instruction
230 unsigned opcode, ///< The opcode of the second cast instruction
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000231 Type *DstTy, ///< The target type for the second cast instruction
Chris Lattner80f43d32010-01-04 07:53:58 +0000232 TargetData *TD ///< The target data for pointer size
233) {
234
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000235 Type *SrcTy = CI->getOperand(0)->getType(); // A from above
236 Type *MidTy = CI->getType(); // B from above
Chris Lattner80f43d32010-01-04 07:53:58 +0000237
238 // Get the opcodes of the two Cast instructions
239 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
240 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
241
242 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
243 DstTy,
244 TD ? TD->getIntPtrType(CI->getContext()) : 0);
245
246 // We don't want to form an inttoptr or ptrtoint that converts to an integer
247 // type that differs from the pointer size.
248 if ((Res == Instruction::IntToPtr &&
249 (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
250 (Res == Instruction::PtrToInt &&
251 (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
252 Res = 0;
253
254 return Instruction::CastOps(Res);
255}
256
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000257/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
258/// results in any code being generated and is interesting to optimize out. If
259/// the cast can be eliminated by some other simple transformation, we prefer
260/// to do the simplification first.
261bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000262 Type *Ty) {
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000263 // Noop casts and casts of constants should be eliminated trivially.
Chris Lattner80f43d32010-01-04 07:53:58 +0000264 if (V->getType() == Ty || isa<Constant>(V)) return false;
265
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000266 // If this is another cast that can be eliminated, we prefer to have it
267 // eliminated.
Chris Lattner80f43d32010-01-04 07:53:58 +0000268 if (const CastInst *CI = dyn_cast<CastInst>(V))
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000269 if (isEliminableCastPair(CI, opc, Ty, TD))
Chris Lattner80f43d32010-01-04 07:53:58 +0000270 return false;
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000271
272 // If this is a vector sext from a compare, then we don't want to break the
273 // idiom where each element of the extended vector is either zero or all ones.
Duncan Sands1df98592010-02-16 11:11:14 +0000274 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000275 return false;
276
Chris Lattner80f43d32010-01-04 07:53:58 +0000277 return true;
278}
279
280
281/// @brief Implement the transforms common to all CastInst visitors.
282Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
283 Value *Src = CI.getOperand(0);
284
285 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
286 // eliminate it now.
287 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
288 if (Instruction::CastOps opc =
289 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
290 // The first cast (CSrc) is eliminable so we need to fix up or replace
291 // the second cast (CI). CSrc will then have a good chance of being dead.
292 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
293 }
294 }
295
296 // If we are casting a select then fold the cast into the select
297 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
298 if (Instruction *NV = FoldOpIntoSelect(CI, SI))
299 return NV;
300
301 // If we are casting a PHI then fold the cast into the PHI
302 if (isa<PHINode>(Src)) {
303 // We don't do this if this would create a PHI node with an illegal type if
304 // it is currently legal.
Duncan Sands1df98592010-02-16 11:11:14 +0000305 if (!Src->getType()->isIntegerTy() ||
306 !CI.getType()->isIntegerTy() ||
Chris Lattner80f43d32010-01-04 07:53:58 +0000307 ShouldChangeType(CI.getType(), Src->getType()))
308 if (Instruction *NV = FoldOpIntoPhi(CI))
309 return NV;
310 }
311
312 return 0;
313}
314
Chris Lattner75215c92010-01-10 00:58:42 +0000315/// CanEvaluateTruncated - Return true if we can evaluate the specified
316/// expression tree as type Ty instead of its larger type, and arrive with the
317/// same value. This is used by code that tries to eliminate truncates.
318///
319/// Ty will always be a type smaller than V. We should return true if trunc(V)
320/// can be computed by computing V in the smaller type. If V is an instruction,
321/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
322/// makes sense if x and y can be efficiently truncated.
323///
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000324/// This function works on both vectors and scalars.
325///
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000326static bool CanEvaluateTruncated(Value *V, Type *Ty) {
Chris Lattner75215c92010-01-10 00:58:42 +0000327 // We can always evaluate constants in another type.
328 if (isa<Constant>(V))
329 return true;
Chris Lattner68c6e892010-01-05 23:00:30 +0000330
Chris Lattner75215c92010-01-10 00:58:42 +0000331 Instruction *I = dyn_cast<Instruction>(V);
332 if (!I) return false;
333
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000334 Type *OrigTy = V->getType();
Chris Lattner75215c92010-01-10 00:58:42 +0000335
Chris Lattnera958cbf2010-01-11 22:45:25 +0000336 // If this is an extension from the dest type, we can eliminate it, even if it
337 // has multiple uses.
Chris Lattner53af2d12010-01-11 22:49:40 +0000338 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
Chris Lattner75215c92010-01-10 00:58:42 +0000339 I->getOperand(0)->getType() == Ty)
340 return true;
341
342 // We can't extend or shrink something that has multiple uses: doing so would
343 // require duplicating the instruction in general, which isn't profitable.
344 if (!I->hasOneUse()) return false;
345
346 unsigned Opc = I->getOpcode();
347 switch (Opc) {
348 case Instruction::Add:
349 case Instruction::Sub:
350 case Instruction::Mul:
351 case Instruction::And:
352 case Instruction::Or:
353 case Instruction::Xor:
354 // These operators can all arbitrarily be extended or truncated.
355 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
356 CanEvaluateTruncated(I->getOperand(1), Ty);
357
358 case Instruction::UDiv:
359 case Instruction::URem: {
360 // UDiv and URem can be truncated if all the truncated bits are zero.
361 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
362 uint32_t BitWidth = Ty->getScalarSizeInBits();
363 if (BitWidth < OrigBitWidth) {
364 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
365 if (MaskedValueIsZero(I->getOperand(0), Mask) &&
366 MaskedValueIsZero(I->getOperand(1), Mask)) {
367 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
368 CanEvaluateTruncated(I->getOperand(1), Ty);
369 }
370 }
371 break;
372 }
373 case Instruction::Shl:
374 // If we are truncating the result of this SHL, and if it's a shift of a
375 // constant amount, we can always perform a SHL in a smaller type.
376 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
377 uint32_t BitWidth = Ty->getScalarSizeInBits();
378 if (CI->getLimitedValue(BitWidth) < BitWidth)
379 return CanEvaluateTruncated(I->getOperand(0), Ty);
380 }
381 break;
382 case Instruction::LShr:
383 // If this is a truncate of a logical shr, we can truncate it to a smaller
384 // lshr iff we know that the bits we would otherwise be shifting in are
385 // already zeros.
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
387 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
388 uint32_t BitWidth = Ty->getScalarSizeInBits();
389 if (MaskedValueIsZero(I->getOperand(0),
390 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
391 CI->getLimitedValue(BitWidth) < BitWidth) {
392 return CanEvaluateTruncated(I->getOperand(0), Ty);
393 }
394 }
395 break;
396 case Instruction::Trunc:
397 // trunc(trunc(x)) -> trunc(x)
398 return true;
Chris Lattnerf9d05ab2010-08-27 20:32:06 +0000399 case Instruction::ZExt:
400 case Instruction::SExt:
401 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
402 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
403 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000404 case Instruction::Select: {
405 SelectInst *SI = cast<SelectInst>(I);
406 return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
407 CanEvaluateTruncated(SI->getFalseValue(), Ty);
408 }
409 case Instruction::PHI: {
410 // We can change a phi if we can change all operands. Note that we never
411 // get into trouble with cyclic PHIs here because we only consider
412 // instructions with a single use.
413 PHINode *PN = cast<PHINode>(I);
414 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
415 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
416 return false;
417 return true;
418 }
419 default:
420 // TODO: Can handle more cases here.
421 break;
422 }
423
424 return false;
425}
426
427Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000428 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattner75215c92010-01-10 00:58:42 +0000429 return Result;
430
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000431 // See if we can simplify any instructions used by the input whose sole
432 // purpose is to compute bits we don't care about.
433 if (SimplifyDemandedInstructionBits(CI))
434 return &CI;
435
Chris Lattner75215c92010-01-10 00:58:42 +0000436 Value *Src = CI.getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000437 Type *DestTy = CI.getType(), *SrcTy = Src->getType();
Chris Lattner75215c92010-01-10 00:58:42 +0000438
439 // Attempt to truncate the entire input expression tree to the destination
440 // type. Only do this if the dest type is a simple type, don't convert the
Chris Lattner80f43d32010-01-04 07:53:58 +0000441 // expression tree to something weird like i93 unless the source is also
442 // strange.
Duncan Sands1df98592010-02-16 11:11:14 +0000443 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner75215c92010-01-10 00:58:42 +0000444 CanEvaluateTruncated(Src, DestTy)) {
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000445
Chris Lattner80f43d32010-01-04 07:53:58 +0000446 // If this cast is a truncate, evaluting in a different type always
Chris Lattner68c6e892010-01-05 23:00:30 +0000447 // eliminates the cast, so it is always a win.
Chris Lattner075f6922010-01-07 23:41:00 +0000448 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
Dan Gohman5b71dce2010-05-25 21:50:35 +0000449 " to avoid cast: " << CI << '\n');
Chris Lattner075f6922010-01-07 23:41:00 +0000450 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
451 assert(Res->getType() == DestTy);
452 return ReplaceInstUsesWith(CI, Res);
453 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000454
Chris Lattner7a34d6c2010-01-05 22:21:18 +0000455 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
456 if (DestTy->getScalarSizeInBits() == 1) {
Chris Lattner80f43d32010-01-04 07:53:58 +0000457 Constant *One = ConstantInt::get(Src->getType(), 1);
Benjamin Kramera9390a42011-09-27 20:39:19 +0000458 Src = Builder->CreateAnd(Src, One);
Chris Lattner80f43d32010-01-04 07:53:58 +0000459 Value *Zero = Constant::getNullValue(Src->getType());
460 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
461 }
Chris Lattner784f3332010-08-27 18:31:05 +0000462
463 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
464 Value *A = 0; ConstantInt *Cst = 0;
Chris Lattner62fe4062011-01-15 06:32:33 +0000465 if (Src->hasOneUse() &&
466 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
Chris Lattner784f3332010-08-27 18:31:05 +0000467 // We have three types to worry about here, the type of A, the source of
468 // the truncate (MidSize), and the destination of the truncate. We know that
469 // ASize < MidSize and MidSize > ResultSize, but don't know the relation
470 // between ASize and ResultSize.
471 unsigned ASize = A->getType()->getPrimitiveSizeInBits();
472
473 // If the shift amount is larger than the size of A, then the result is
474 // known to be zero because all the input bits got shifted out.
475 if (Cst->getZExtValue() >= ASize)
476 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
477
478 // Since we're doing an lshr and a zero extend, and know that the shift
479 // amount is smaller than ASize, it is always safe to do the shift in A's
480 // type, then zero extend or truncate to the result.
481 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
482 Shift->takeName(Src);
483 return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
484 }
Chris Lattner62fe4062011-01-15 06:32:33 +0000485
486 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
487 // type isn't non-native.
488 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
489 ShouldChangeType(Src->getType(), CI.getType()) &&
490 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
491 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
492 return BinaryOperator::CreateAnd(NewTrunc,
493 ConstantExpr::getTrunc(Cst, CI.getType()));
494 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000495
Chris Lattner80f43d32010-01-04 07:53:58 +0000496 return 0;
497}
498
499/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
500/// in order to eliminate the icmp.
501Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
502 bool DoXform) {
503 // If we are just checking for a icmp eq of a single bit and zext'ing it
504 // to an integer, then shift the bit to the appropriate place and then
505 // cast to integer to avoid the comparison.
506 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
507 const APInt &Op1CV = Op1C->getValue();
508
509 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
510 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
511 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
512 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
513 if (!DoXform) return ICI;
514
515 Value *In = ICI->getOperand(0);
516 Value *Sh = ConstantInt::get(In->getType(),
517 In->getType()->getScalarSizeInBits()-1);
518 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
519 if (In->getType() != CI.getType())
Benjamin Kramera9390a42011-09-27 20:39:19 +0000520 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
Chris Lattner80f43d32010-01-04 07:53:58 +0000521
522 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
523 Constant *One = ConstantInt::get(In->getType(), 1);
524 In = Builder->CreateXor(In, One, In->getName()+".not");
525 }
526
527 return ReplaceInstUsesWith(CI, In);
528 }
Chad Rosiercaebb1e2011-11-30 01:59:59 +0000529
Chris Lattner80f43d32010-01-04 07:53:58 +0000530 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
531 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
532 // zext (X == 1) to i32 --> X iff X has only the low bit set.
533 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
534 // zext (X != 0) to i32 --> X iff X has only the low bit set.
535 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
536 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
537 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
538 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
539 // This only works for EQ and NE
540 ICI->isEquality()) {
541 // If Op1C some other power of two, convert:
542 uint32_t BitWidth = Op1C->getType()->getBitWidth();
543 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000544 ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
Chris Lattner80f43d32010-01-04 07:53:58 +0000545
546 APInt KnownZeroMask(~KnownZero);
547 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
548 if (!DoXform) return ICI;
549
550 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
551 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
552 // (X&4) == 2 --> false
553 // (X&4) != 2 --> true
554 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
555 isNE);
556 Res = ConstantExpr::getZExt(Res, CI.getType());
557 return ReplaceInstUsesWith(CI, Res);
558 }
559
560 uint32_t ShiftAmt = KnownZeroMask.logBase2();
561 Value *In = ICI->getOperand(0);
562 if (ShiftAmt) {
563 // Perform a logical shr by shiftamt.
564 // Insert the shift to put the result in the low bit.
565 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
566 In->getName()+".lobit");
567 }
568
569 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
570 Constant *One = ConstantInt::get(In->getType(), 1);
Benjamin Kramera9390a42011-09-27 20:39:19 +0000571 In = Builder->CreateXor(In, One);
Chris Lattner80f43d32010-01-04 07:53:58 +0000572 }
573
574 if (CI.getType() == In->getType())
575 return ReplaceInstUsesWith(CI, In);
Chris Lattner29cc0b32010-08-27 22:24:38 +0000576 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Chris Lattner80f43d32010-01-04 07:53:58 +0000577 }
578 }
579 }
580
581 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
582 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
583 // may lead to additional simplifications.
584 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000585 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
Chris Lattner80f43d32010-01-04 07:53:58 +0000586 uint32_t BitWidth = ITy->getBitWidth();
587 Value *LHS = ICI->getOperand(0);
588 Value *RHS = ICI->getOperand(1);
589
590 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
591 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000592 ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
593 ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
Chris Lattner80f43d32010-01-04 07:53:58 +0000594
595 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
596 APInt KnownBits = KnownZeroLHS | KnownOneLHS;
597 APInt UnknownBit = ~KnownBits;
598 if (UnknownBit.countPopulation() == 1) {
599 if (!DoXform) return ICI;
600
601 Value *Result = Builder->CreateXor(LHS, RHS);
602
603 // Mask off any bits that are set and won't be shifted away.
604 if (KnownOneLHS.uge(UnknownBit))
605 Result = Builder->CreateAnd(Result,
606 ConstantInt::get(ITy, UnknownBit));
607
608 // Shift the bit we're testing down to the lsb.
609 Result = Builder->CreateLShr(
610 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
611
612 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
613 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
614 Result->takeName(ICI);
615 return ReplaceInstUsesWith(CI, Result);
616 }
617 }
618 }
619 }
620
621 return 0;
622}
623
Chris Lattner75215c92010-01-10 00:58:42 +0000624/// CanEvaluateZExtd - Determine if the specified value can be computed in the
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000625/// specified wider type and produce the same low bits. If not, return false.
626///
Chris Lattner789162a2010-01-11 03:32:00 +0000627/// If this function returns true, it can also return a non-zero number of bits
628/// (in BitsToClear) which indicates that the value it computes is correct for
629/// the zero extend, but that the additional BitsToClear bits need to be zero'd
630/// out. For example, to promote something like:
631///
632/// %B = trunc i64 %A to i32
633/// %C = lshr i32 %B, 8
634/// %E = zext i32 %C to i64
635///
636/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
637/// set to 8 to indicate that the promoted value needs to have bits 24-31
638/// cleared in addition to bits 32-63. Since an 'and' will be generated to
639/// clear the top bits anyway, doing this has no extra cost.
640///
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000641/// This function works on both vectors and scalars.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000642static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
Chris Lattner789162a2010-01-11 03:32:00 +0000643 BitsToClear = 0;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000644 if (isa<Constant>(V))
645 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000646
647 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattner9e390dd2010-01-10 02:50:04 +0000648 if (!I) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000649
650 // If the input is a truncate from the destination type, we can trivially
Chris Lattnera958cbf2010-01-11 22:45:25 +0000651 // eliminate it, even if it has multiple uses.
652 // FIXME: This is currently disabled until codegen can handle this without
653 // pessimizing code, PR5997.
654 if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
Chris Lattner9e390dd2010-01-10 02:50:04 +0000655 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000656
657 // We can't extend or shrink something that has multiple uses: doing so would
658 // require duplicating the instruction in general, which isn't profitable.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000659 if (!I->hasOneUse()) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000660
Chris Lattner789162a2010-01-11 03:32:00 +0000661 unsigned Opc = I->getOpcode(), Tmp;
Chris Lattner75215c92010-01-10 00:58:42 +0000662 switch (Opc) {
Chris Lattner9ee947c2010-01-10 20:25:54 +0000663 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
664 case Instruction::SExt: // zext(sext(x)) -> sext(x).
665 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
666 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000667 case Instruction::And:
Chris Lattner75215c92010-01-10 00:58:42 +0000668 case Instruction::Or:
669 case Instruction::Xor:
Chris Lattner75215c92010-01-10 00:58:42 +0000670 case Instruction::Add:
671 case Instruction::Sub:
672 case Instruction::Mul:
Chris Lattnerd26c9e12010-01-10 02:22:12 +0000673 case Instruction::Shl:
Chris Lattner789162a2010-01-11 03:32:00 +0000674 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
675 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
676 return false;
677 // These can all be promoted if neither operand has 'bits to clear'.
678 if (BitsToClear == 0 && Tmp == 0)
679 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000680
Chris Lattner7acc4b12010-01-11 04:05:13 +0000681 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
682 // other side, BitsToClear is ok.
683 if (Tmp == 0 &&
684 (Opc == Instruction::And || Opc == Instruction::Or ||
685 Opc == Instruction::Xor)) {
686 // We use MaskedValueIsZero here for generality, but the case we care
687 // about the most is constant RHS.
688 unsigned VSize = V->getType()->getScalarSizeInBits();
689 if (MaskedValueIsZero(I->getOperand(1),
690 APInt::getHighBitsSet(VSize, BitsToClear)))
691 return true;
692 }
693
694 // Otherwise, we don't know how to analyze this BitsToClear case yet.
Chris Lattner789162a2010-01-11 03:32:00 +0000695 return false;
Chris Lattnerd26c9e12010-01-10 02:22:12 +0000696
Chris Lattner789162a2010-01-11 03:32:00 +0000697 case Instruction::LShr:
698 // We can promote lshr(x, cst) if we can promote x. This requires the
699 // ultimate 'and' to clear out the high zero bits we're clearing out though.
700 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
701 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
702 return false;
703 BitsToClear += Amt->getZExtValue();
704 if (BitsToClear > V->getType()->getScalarSizeInBits())
705 BitsToClear = V->getType()->getScalarSizeInBits();
706 return true;
707 }
708 // Cannot promote variable LSHR.
709 return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000710 case Instruction::Select:
Chris Lattner789162a2010-01-11 03:32:00 +0000711 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
712 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
Chris Lattner7acc4b12010-01-11 04:05:13 +0000713 // TODO: If important, we could handle the case when the BitsToClear are
714 // known zero in the disagreeing side.
Chris Lattner789162a2010-01-11 03:32:00 +0000715 Tmp != BitsToClear)
716 return false;
717 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000718
719 case Instruction::PHI: {
720 // We can change a phi if we can change all operands. Note that we never
721 // get into trouble with cyclic PHIs here because we only consider
722 // instructions with a single use.
723 PHINode *PN = cast<PHINode>(I);
Chris Lattner789162a2010-01-11 03:32:00 +0000724 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
725 return false;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000726 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
Chris Lattner789162a2010-01-11 03:32:00 +0000727 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
Chris Lattner7acc4b12010-01-11 04:05:13 +0000728 // TODO: If important, we could handle the case when the BitsToClear
729 // are known zero in the disagreeing input.
Chris Lattner789162a2010-01-11 03:32:00 +0000730 Tmp != BitsToClear)
731 return false;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000732 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000733 }
734 default:
735 // TODO: Can handle more cases here.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000736 return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000737 }
738}
739
Chris Lattner80f43d32010-01-04 07:53:58 +0000740Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Chris Lattner5324d802010-01-10 02:39:31 +0000741 // If this zero extend is only used by a truncate, let the truncate by
742 // eliminated before we try to optimize this zext.
743 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
744 return 0;
745
Chris Lattner80f43d32010-01-04 07:53:58 +0000746 // If one of the common conversion will work, do it.
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000747 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattner80f43d32010-01-04 07:53:58 +0000748 return Result;
749
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000750 // See if we can simplify any instructions used by the input whose sole
751 // purpose is to compute bits we don't care about.
752 if (SimplifyDemandedInstructionBits(CI))
753 return &CI;
Chris Lattner75215c92010-01-10 00:58:42 +0000754
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000755 Value *Src = CI.getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000756 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
Chris Lattner75215c92010-01-10 00:58:42 +0000757
758 // Attempt to extend the entire input expression tree to the destination
759 // type. Only do this if the dest type is a simple type, don't convert the
760 // expression tree to something weird like i93 unless the source is also
761 // strange.
Chris Lattner789162a2010-01-11 03:32:00 +0000762 unsigned BitsToClear;
Duncan Sands1df98592010-02-16 11:11:14 +0000763 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner789162a2010-01-11 03:32:00 +0000764 CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
765 assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
766 "Unreasonable BitsToClear");
767
Chris Lattner5324d802010-01-10 02:39:31 +0000768 // Okay, we can transform this! Insert the new expression now.
769 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
770 " to avoid zero extend: " << CI);
771 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
772 assert(Res->getType() == DestTy);
773
Chris Lattner789162a2010-01-11 03:32:00 +0000774 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
775 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
776
Chris Lattner5324d802010-01-10 02:39:31 +0000777 // If the high bits are already filled with zeros, just replace this
778 // cast with the result.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000779 if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
Chris Lattner789162a2010-01-11 03:32:00 +0000780 DestBitSize-SrcBitsKept)))
Chris Lattner5324d802010-01-10 02:39:31 +0000781 return ReplaceInstUsesWith(CI, Res);
782
783 // We need to emit an AND to clear the high bits.
Chris Lattner9ee947c2010-01-10 20:25:54 +0000784 Constant *C = ConstantInt::get(Res->getType(),
Chris Lattner789162a2010-01-11 03:32:00 +0000785 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
Chris Lattner5324d802010-01-10 02:39:31 +0000786 return BinaryOperator::CreateAnd(Res, C);
Chris Lattner75215c92010-01-10 00:58:42 +0000787 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000788
789 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
790 // types and if the sizes are just right we can convert this into a logical
791 // 'and' which will be much cheaper than the pair of casts.
792 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
Chris Lattnerf4fb9112010-01-10 07:08:30 +0000793 // TODO: Subsume this into EvaluateInDifferentType.
794
Chris Lattner80f43d32010-01-04 07:53:58 +0000795 // Get the sizes of the types involved. We know that the intermediate type
796 // will be smaller than A or C, but don't know the relation between A and C.
797 Value *A = CSrc->getOperand(0);
798 unsigned SrcSize = A->getType()->getScalarSizeInBits();
799 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
800 unsigned DstSize = CI.getType()->getScalarSizeInBits();
801 // If we're actually extending zero bits, then if
802 // SrcSize < DstSize: zext(a & mask)
803 // SrcSize == DstSize: a & mask
804 // SrcSize > DstSize: trunc(a) & mask
805 if (SrcSize < DstSize) {
806 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
807 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
808 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
809 return new ZExtInst(And, CI.getType());
810 }
811
812 if (SrcSize == DstSize) {
813 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
814 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
815 AndValue));
816 }
817 if (SrcSize > DstSize) {
Benjamin Kramera9390a42011-09-27 20:39:19 +0000818 Value *Trunc = Builder->CreateTrunc(A, CI.getType());
Chris Lattner80f43d32010-01-04 07:53:58 +0000819 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
820 return BinaryOperator::CreateAnd(Trunc,
821 ConstantInt::get(Trunc->getType(),
Chris Lattnerf4fb9112010-01-10 07:08:30 +0000822 AndValue));
Chris Lattner80f43d32010-01-04 07:53:58 +0000823 }
824 }
825
826 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
827 return transformZExtICmp(ICI, CI);
828
829 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
830 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
831 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
832 // of the (zext icmp) will be transformed.
833 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
834 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
835 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
836 (transformZExtICmp(LHS, CI, false) ||
837 transformZExtICmp(RHS, CI, false))) {
838 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
839 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
840 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
841 }
842 }
843
844 // zext(trunc(t) & C) -> (t & zext(C)).
845 if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
846 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
847 if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
848 Value *TI0 = TI->getOperand(0);
849 if (TI0->getType() == CI.getType())
850 return
851 BinaryOperator::CreateAnd(TI0,
852 ConstantExpr::getZExt(C, CI.getType()));
853 }
854
855 // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
856 if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
857 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
858 if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
859 if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
860 And->getOperand(1) == C)
861 if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
862 Value *TI0 = TI->getOperand(0);
863 if (TI0->getType() == CI.getType()) {
864 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
Benjamin Kramera9390a42011-09-27 20:39:19 +0000865 Value *NewAnd = Builder->CreateAnd(TI0, ZC);
Chris Lattner80f43d32010-01-04 07:53:58 +0000866 return BinaryOperator::CreateXor(NewAnd, ZC);
867 }
868 }
869
Chris Lattner718bf3f2010-01-05 21:04:47 +0000870 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
871 Value *X;
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000872 if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
Chris Lattner49bdfef2010-01-05 21:11:17 +0000873 match(SrcI, m_Not(m_Value(X))) &&
Chris Lattner718bf3f2010-01-05 21:04:47 +0000874 (!X->hasOneUse() || !isa<CmpInst>(X))) {
875 Value *New = Builder->CreateZExt(X, CI.getType());
876 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
877 }
878
Chris Lattner80f43d32010-01-04 07:53:58 +0000879 return 0;
880}
881
Benjamin Kramer0a30c422011-04-01 20:09:03 +0000882/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
883/// in order to eliminate the icmp.
884Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
885 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
886 ICmpInst::Predicate Pred = ICI->getPredicate();
887
888 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Benjamin Kramer406a6502011-04-01 22:29:18 +0000889 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
890 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
Benjamin Kramer0a30c422011-04-01 20:09:03 +0000891 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
892 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
893
894 Value *Sh = ConstantInt::get(Op0->getType(),
895 Op0->getType()->getScalarSizeInBits()-1);
896 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
897 if (In->getType() != CI.getType())
Benjamin Kramera9390a42011-09-27 20:39:19 +0000898 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
Benjamin Kramer0a30c422011-04-01 20:09:03 +0000899
900 if (Pred == ICmpInst::ICMP_SGT)
901 In = Builder->CreateNot(In, In->getName()+".not");
902 return ReplaceInstUsesWith(CI, In);
903 }
Benjamin Kramer0baa94a2011-04-01 20:09:10 +0000904
905 // If we know that only one bit of the LHS of the icmp can be set and we
906 // have an equality comparison with zero or a power of 2, we can transform
907 // the icmp and sext into bitwise/integer operations.
Benjamin Kramer5337fab2011-04-01 22:22:11 +0000908 if (ICI->hasOneUse() &&
909 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
Benjamin Kramer0baa94a2011-04-01 20:09:10 +0000910 unsigned BitWidth = Op1C->getType()->getBitWidth();
911 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000912 ComputeMaskedBits(Op0, KnownZero, KnownOne);
Benjamin Kramer0baa94a2011-04-01 20:09:10 +0000913
Benjamin Kramerce1498b2011-04-01 20:15:16 +0000914 APInt KnownZeroMask(~KnownZero);
915 if (KnownZeroMask.isPowerOf2()) {
Benjamin Kramer0baa94a2011-04-01 20:09:10 +0000916 Value *In = ICI->getOperand(0);
917
Benjamin Kramerf5b75932011-04-02 18:50:58 +0000918 // If the icmp tests for a known zero bit we can constant fold it.
919 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
920 Value *V = Pred == ICmpInst::ICMP_NE ?
921 ConstantInt::getAllOnesValue(CI.getType()) :
922 ConstantInt::getNullValue(CI.getType());
923 return ReplaceInstUsesWith(CI, V);
924 }
Benjamin Kramer5337fab2011-04-01 22:22:11 +0000925
Benjamin Kramer0baa94a2011-04-01 20:09:10 +0000926 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
927 // sext ((x & 2^n) == 0) -> (x >> n) - 1
928 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
929 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
930 // Perform a right shift to place the desired bit in the LSB.
931 if (ShiftAmt)
932 In = Builder->CreateLShr(In,
933 ConstantInt::get(In->getType(), ShiftAmt));
934
935 // At this point "In" is either 1 or 0. Subtract 1 to turn
936 // {1, 0} -> {0, -1}.
937 In = Builder->CreateAdd(In,
938 ConstantInt::getAllOnesValue(In->getType()),
939 "sext");
940 } else {
941 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
Benjamin Kramer5337fab2011-04-01 22:22:11 +0000942 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
Benjamin Kramer0baa94a2011-04-01 20:09:10 +0000943 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
944 // Perform a left shift to place the desired bit in the MSB.
945 if (ShiftAmt)
946 In = Builder->CreateShl(In,
947 ConstantInt::get(In->getType(), ShiftAmt));
948
949 // Distribute the bit over the whole bit width.
950 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
951 BitWidth - 1), "sext");
952 }
953
954 if (CI.getType() == In->getType())
955 return ReplaceInstUsesWith(CI, In);
956 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
957 }
958 }
Benjamin Kramer0a30c422011-04-01 20:09:03 +0000959 }
960
961 // vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000962 if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
Benjamin Kramer0a30c422011-04-01 20:09:03 +0000963 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
964 Op0->getType() == CI.getType()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000965 Type *EltTy = VTy->getElementType();
Benjamin Kramer0a30c422011-04-01 20:09:03 +0000966
967 // splat the shift constant to a constant vector.
968 Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
969 Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
970 return ReplaceInstUsesWith(CI, In);
971 }
972 }
973
974 return 0;
975}
976
Chris Lattner75215c92010-01-10 00:58:42 +0000977/// CanEvaluateSExtd - Return true if we can take the specified value
978/// and return it as type Ty without inserting any new casts and without
979/// changing the value of the common low bits. This is used by code that tries
980/// to promote integer operations to a wider types will allow us to eliminate
981/// the extension.
982///
Chris Lattneraa9c8942010-01-10 07:57:20 +0000983/// This function works on both vectors and scalars.
Chris Lattner75215c92010-01-10 00:58:42 +0000984///
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000985static bool CanEvaluateSExtd(Value *V, Type *Ty) {
Chris Lattner75215c92010-01-10 00:58:42 +0000986 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
987 "Can't sign extend type to a smaller type");
Chris Lattneraa9c8942010-01-10 07:57:20 +0000988 // If this is a constant, it can be trivially promoted.
989 if (isa<Constant>(V))
990 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000991
992 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattneraa9c8942010-01-10 07:57:20 +0000993 if (!I) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000994
Chris Lattnera958cbf2010-01-11 22:45:25 +0000995 // If this is a truncate from the dest type, we can trivially eliminate it,
996 // even if it has multiple uses.
997 // FIXME: This is currently disabled until codegen can handle this without
998 // pessimizing code, PR5997.
999 if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
Chris Lattneraa9c8942010-01-10 07:57:20 +00001000 return true;
Chris Lattner75215c92010-01-10 00:58:42 +00001001
1002 // We can't extend or shrink something that has multiple uses: doing so would
1003 // require duplicating the instruction in general, which isn't profitable.
Chris Lattneraa9c8942010-01-10 07:57:20 +00001004 if (!I->hasOneUse()) return false;
Chris Lattner75215c92010-01-10 00:58:42 +00001005
Chris Lattneraa9c8942010-01-10 07:57:20 +00001006 switch (I->getOpcode()) {
Chris Lattner11ea8122010-01-10 20:30:41 +00001007 case Instruction::SExt: // sext(sext(x)) -> sext(x)
1008 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1009 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1010 return true;
Chris Lattner75215c92010-01-10 00:58:42 +00001011 case Instruction::And:
1012 case Instruction::Or:
1013 case Instruction::Xor:
Chris Lattner75215c92010-01-10 00:58:42 +00001014 case Instruction::Add:
1015 case Instruction::Sub:
Chris Lattner75215c92010-01-10 00:58:42 +00001016 case Instruction::Mul:
Chris Lattneraa9c8942010-01-10 07:57:20 +00001017 // These operators can all arbitrarily be extended if their inputs can.
Chris Lattner8cf4f6f2010-01-11 02:43:35 +00001018 return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1019 CanEvaluateSExtd(I->getOperand(1), Ty);
Chris Lattner75215c92010-01-10 00:58:42 +00001020
1021 //case Instruction::Shl: TODO
1022 //case Instruction::LShr: TODO
Chris Lattner75215c92010-01-10 00:58:42 +00001023
Chris Lattneraa9c8942010-01-10 07:57:20 +00001024 case Instruction::Select:
Chris Lattner8cf4f6f2010-01-11 02:43:35 +00001025 return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1026 CanEvaluateSExtd(I->getOperand(2), Ty);
Chris Lattner9ee947c2010-01-10 20:25:54 +00001027
Chris Lattner75215c92010-01-10 00:58:42 +00001028 case Instruction::PHI: {
1029 // We can change a phi if we can change all operands. Note that we never
1030 // get into trouble with cyclic PHIs here because we only consider
1031 // instructions with a single use.
1032 PHINode *PN = cast<PHINode>(I);
Chris Lattner9ee947c2010-01-10 20:25:54 +00001033 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Chris Lattner8cf4f6f2010-01-11 02:43:35 +00001034 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
Chris Lattneraa9c8942010-01-10 07:57:20 +00001035 return true;
Chris Lattner75215c92010-01-10 00:58:42 +00001036 }
1037 default:
1038 // TODO: Can handle more cases here.
1039 break;
1040 }
1041
Chris Lattneraa9c8942010-01-10 07:57:20 +00001042 return false;
Chris Lattner75215c92010-01-10 00:58:42 +00001043}
1044
Chris Lattner80f43d32010-01-04 07:53:58 +00001045Instruction *InstCombiner::visitSExt(SExtInst &CI) {
Chris Lattner5324d802010-01-10 02:39:31 +00001046 // If this sign extend is only used by a truncate, let the truncate by
1047 // eliminated before we try to optimize this zext.
1048 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
1049 return 0;
1050
Chris Lattnerd84dfa42010-01-10 01:00:46 +00001051 if (Instruction *I = commonCastTransforms(CI))
Chris Lattner80f43d32010-01-04 07:53:58 +00001052 return I;
1053
Chris Lattnerd84dfa42010-01-10 01:00:46 +00001054 // See if we can simplify any instructions used by the input whose sole
1055 // purpose is to compute bits we don't care about.
1056 if (SimplifyDemandedInstructionBits(CI))
1057 return &CI;
1058
Chris Lattner80f43d32010-01-04 07:53:58 +00001059 Value *Src = CI.getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001060 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
Chris Lattner75215c92010-01-10 00:58:42 +00001061
Chris Lattner75215c92010-01-10 00:58:42 +00001062 // Attempt to extend the entire input expression tree to the destination
1063 // type. Only do this if the dest type is a simple type, don't convert the
1064 // expression tree to something weird like i93 unless the source is also
1065 // strange.
Duncan Sands1df98592010-02-16 11:11:14 +00001066 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner8cf4f6f2010-01-11 02:43:35 +00001067 CanEvaluateSExtd(Src, DestTy)) {
Chris Lattnerdde5ee52010-01-10 07:40:50 +00001068 // Okay, we can transform this! Insert the new expression now.
1069 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1070 " to avoid sign extend: " << CI);
1071 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1072 assert(Res->getType() == DestTy);
1073
Chris Lattner75215c92010-01-10 00:58:42 +00001074 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1075 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
Chris Lattnerdde5ee52010-01-10 07:40:50 +00001076
1077 // If the high bits are already filled with sign bit, just replace this
1078 // cast with the result.
Chris Lattneraa9c8942010-01-10 07:57:20 +00001079 if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
Chris Lattnerdde5ee52010-01-10 07:40:50 +00001080 return ReplaceInstUsesWith(CI, Res);
Chris Lattner75215c92010-01-10 00:58:42 +00001081
Chris Lattnerdde5ee52010-01-10 07:40:50 +00001082 // We need to emit a shl + ashr to do the sign extend.
1083 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1084 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1085 ShAmt);
Chris Lattner75215c92010-01-10 00:58:42 +00001086 }
Chris Lattner80f43d32010-01-04 07:53:58 +00001087
Chris Lattnercd5adbb2010-01-18 22:19:16 +00001088 // If this input is a trunc from our destination, then turn sext(trunc(x))
1089 // into shifts.
1090 if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1091 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1092 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1093 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1094
1095 // We need to emit a shl + ashr to do the sign extend.
1096 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1097 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1098 return BinaryOperator::CreateAShr(Res, ShAmt);
1099 }
Nate Begeman9a3dc552010-12-17 23:12:19 +00001100
Benjamin Kramer0a30c422011-04-01 20:09:03 +00001101 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1102 return transformSExtICmp(ICI, CI);
Bill Wendling2d0537c2010-12-17 23:27:41 +00001103
Chris Lattner80f43d32010-01-04 07:53:58 +00001104 // If the input is a shl/ashr pair of a same constant, then this is a sign
1105 // extension from a smaller value. If we could trust arbitrary bitwidth
1106 // integers, we could turn this into a truncate to the smaller bit and then
1107 // use a sext for the whole extension. Since we don't, look deeper and check
1108 // for a truncate. If the source and dest are the same type, eliminate the
1109 // trunc and extend and just do shifts. For example, turn:
1110 // %a = trunc i32 %i to i8
1111 // %b = shl i8 %a, 6
1112 // %c = ashr i8 %b, 6
1113 // %d = sext i8 %c to i32
1114 // into:
1115 // %a = shl i32 %i, 30
1116 // %d = ashr i32 %a, 30
1117 Value *A = 0;
Chris Lattner4f379782010-01-10 01:04:31 +00001118 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
Chris Lattner80f43d32010-01-04 07:53:58 +00001119 ConstantInt *BA = 0, *CA = 0;
Chris Lattner4f379782010-01-10 01:04:31 +00001120 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
Chris Lattner80f43d32010-01-04 07:53:58 +00001121 m_ConstantInt(CA))) &&
Chris Lattner4f379782010-01-10 01:04:31 +00001122 BA == CA && A->getType() == CI.getType()) {
1123 unsigned MidSize = Src->getType()->getScalarSizeInBits();
1124 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1125 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1126 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1127 A = Builder->CreateShl(A, ShAmtV, CI.getName());
1128 return BinaryOperator::CreateAShr(A, ShAmtV);
Chris Lattner80f43d32010-01-04 07:53:58 +00001129 }
1130
1131 return 0;
1132}
1133
1134
1135/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1136/// in the specified FP type without changing its value.
1137static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1138 bool losesInfo;
1139 APFloat F = CFP->getValueAPF();
1140 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1141 if (!losesInfo)
1142 return ConstantFP::get(CFP->getContext(), F);
1143 return 0;
1144}
1145
1146/// LookThroughFPExtensions - If this is an fp extension instruction, look
1147/// through it until we get the source value.
1148static Value *LookThroughFPExtensions(Value *V) {
1149 if (Instruction *I = dyn_cast<Instruction>(V))
1150 if (I->getOpcode() == Instruction::FPExt)
1151 return LookThroughFPExtensions(I->getOperand(0));
1152
1153 // If this value is a constant, return the constant in the smallest FP type
1154 // that can accurately represent it. This allows us to turn
1155 // (float)((double)X+2.0) into x+2.0f.
1156 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1157 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1158 return V; // No constant folding of this.
Dan Gohmance163392011-12-17 00:04:22 +00001159 // See if the value can be truncated to half and then reextended.
1160 if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
1161 return V;
Chris Lattner80f43d32010-01-04 07:53:58 +00001162 // See if the value can be truncated to float and then reextended.
1163 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1164 return V;
Benjamin Kramerf0127052010-01-05 13:12:22 +00001165 if (CFP->getType()->isDoubleTy())
Chris Lattner80f43d32010-01-04 07:53:58 +00001166 return V; // Won't shrink.
1167 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1168 return V;
1169 // Don't try to shrink to various long double types.
1170 }
1171
1172 return V;
1173}
1174
1175Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1176 if (Instruction *I = commonCastTransforms(CI))
1177 return I;
1178
1179 // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1180 // smaller than the destination type, we can eliminate the truncate by doing
1181 // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
1182 // as many builtins (sqrt, etc).
1183 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1184 if (OpI && OpI->hasOneUse()) {
1185 switch (OpI->getOpcode()) {
1186 default: break;
1187 case Instruction::FAdd:
1188 case Instruction::FSub:
1189 case Instruction::FMul:
1190 case Instruction::FDiv:
1191 case Instruction::FRem:
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001192 Type *SrcTy = OpI->getType();
Chris Lattner80f43d32010-01-04 07:53:58 +00001193 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1194 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1195 if (LHSTrunc->getType() != SrcTy &&
1196 RHSTrunc->getType() != SrcTy) {
1197 unsigned DstSize = CI.getType()->getScalarSizeInBits();
1198 // If the source types were both smaller than the destination type of
1199 // the cast, do this xform.
1200 if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1201 RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1202 LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1203 RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1204 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1205 }
1206 }
1207 break;
1208 }
1209 }
Owen Andersond9029012010-07-19 08:09:34 +00001210
1211 // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
Owen Andersond9029012010-07-19 08:09:34 +00001212 CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
Chad Rosier00737bd2011-12-01 21:29:16 +00001213 if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
1214 Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) &&
Evan Cheng93a635c2011-07-13 19:08:16 +00001215 Call->getNumArgOperands() == 1 &&
1216 Call->hasOneUse()) {
Owen Andersond9029012010-07-19 08:09:34 +00001217 CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1218 if (Arg && Arg->getOpcode() == Instruction::FPExt &&
Owen Anderson5f23a932010-07-19 19:23:32 +00001219 CI.getType()->isFloatTy() &&
1220 Call->getType()->isDoubleTy() &&
1221 Arg->getType()->isDoubleTy() &&
1222 Arg->getOperand(0)->getType()->isFloatTy()) {
1223 Function *Callee = Call->getCalledFunction();
1224 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner979ed442010-09-07 20:01:38 +00001225 Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
Owen Anderson5f23a932010-07-19 19:23:32 +00001226 Callee->getAttributes(),
Owen Andersond9029012010-07-19 08:09:34 +00001227 Builder->getFloatTy(),
1228 Builder->getFloatTy(),
1229 NULL);
1230 CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1231 "sqrtfcall");
Owen Anderson5f23a932010-07-19 19:23:32 +00001232 ret->setAttributes(Callee->getAttributes());
Chris Lattner979ed442010-09-07 20:01:38 +00001233
1234
1235 // Remove the old Call. With -fmath-errno, it won't get marked readnone.
Eli Friedman3e22cb92011-05-18 00:32:01 +00001236 ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
Chris Lattner979ed442010-09-07 20:01:38 +00001237 EraseInstFromFunction(*Call);
Owen Andersond9029012010-07-19 08:09:34 +00001238 return ret;
1239 }
1240 }
1241
Chris Lattner80f43d32010-01-04 07:53:58 +00001242 return 0;
1243}
1244
1245Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1246 return commonCastTransforms(CI);
1247}
1248
1249Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1250 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1251 if (OpI == 0)
1252 return commonCastTransforms(FI);
1253
1254 // fptoui(uitofp(X)) --> X
1255 // fptoui(sitofp(X)) --> X
1256 // This is safe if the intermediate type has enough bits in its mantissa to
1257 // accurately represent all values of X. For example, do not do this with
1258 // i64->float->i64. This is also safe for sitofp case, because any negative
1259 // 'X' value would cause an undefined result for the fptoui.
1260 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1261 OpI->getOperand(0)->getType() == FI.getType() &&
1262 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1263 OpI->getType()->getFPMantissaWidth())
1264 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1265
1266 return commonCastTransforms(FI);
1267}
1268
1269Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1270 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1271 if (OpI == 0)
1272 return commonCastTransforms(FI);
1273
1274 // fptosi(sitofp(X)) --> X
1275 // fptosi(uitofp(X)) --> X
1276 // This is safe if the intermediate type has enough bits in its mantissa to
1277 // accurately represent all values of X. For example, do not do this with
1278 // i64->float->i64. This is also safe for sitofp case, because any negative
1279 // 'X' value would cause an undefined result for the fptoui.
1280 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1281 OpI->getOperand(0)->getType() == FI.getType() &&
1282 (int)FI.getType()->getScalarSizeInBits() <=
1283 OpI->getType()->getFPMantissaWidth())
1284 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1285
1286 return commonCastTransforms(FI);
1287}
1288
1289Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1290 return commonCastTransforms(CI);
1291}
1292
1293Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1294 return commonCastTransforms(CI);
1295}
1296
Chris Lattner80f43d32010-01-04 07:53:58 +00001297Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
Dan Gohman3b5487e2010-02-02 01:44:02 +00001298 // If the source integer type is not the intptr_t type for this target, do a
1299 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1300 // cast to be exposed to other transforms.
1301 if (TD) {
1302 if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1303 TD->getPointerSizeInBits()) {
1304 Value *P = Builder->CreateTrunc(CI.getOperand(0),
Benjamin Kramera9390a42011-09-27 20:39:19 +00001305 TD->getIntPtrType(CI.getContext()));
Dan Gohman3b5487e2010-02-02 01:44:02 +00001306 return new IntToPtrInst(P, CI.getType());
1307 }
1308 if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1309 TD->getPointerSizeInBits()) {
1310 Value *P = Builder->CreateZExt(CI.getOperand(0),
Benjamin Kramera9390a42011-09-27 20:39:19 +00001311 TD->getIntPtrType(CI.getContext()));
Dan Gohman3b5487e2010-02-02 01:44:02 +00001312 return new IntToPtrInst(P, CI.getType());
1313 }
Chris Lattner80f43d32010-01-04 07:53:58 +00001314 }
1315
1316 if (Instruction *I = commonCastTransforms(CI))
1317 return I;
1318
1319 return 0;
1320}
1321
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001322/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1323Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1324 Value *Src = CI.getOperand(0);
1325
1326 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1327 // If casting the result of a getelementptr instruction with no offset, turn
1328 // this into a cast of the original pointer!
1329 if (GEP->hasAllZeroIndices()) {
1330 // Changing the cast operand is usually not a good idea but it is safe
1331 // here because the pointer operand is being replaced with another
1332 // pointer operand so the opcode doesn't need to change.
1333 Worklist.Add(GEP);
1334 CI.setOperand(0, GEP->getOperand(0));
1335 return &CI;
1336 }
1337
1338 // If the GEP has a single use, and the base pointer is a bitcast, and the
1339 // GEP computes a constant offset, see if we can convert these three
1340 // instructions into fewer. This typically happens with unions and other
1341 // non-type-safe code.
1342 if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1343 GEP->hasAllConstantIndices()) {
1344 // We are guaranteed to get a constant from EmitGEPOffset.
1345 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1346 int64_t Offset = OffsetV->getSExtValue();
1347
1348 // Get the base pointer input of the bitcast, and the type it points to.
1349 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001350 Type *GEPIdxTy =
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001351 cast<PointerType>(OrigBase->getType())->getElementType();
1352 SmallVector<Value*, 8> NewIndices;
1353 if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1354 // If we were able to index down into an element, create the GEP
1355 // and bitcast the result. This eliminates one bitcast, potentially
1356 // two.
1357 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
Jay Foad0a2a60a2011-07-22 08:16:57 +00001358 Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
1359 Builder->CreateGEP(OrigBase, NewIndices);
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001360 NGEP->takeName(GEP);
1361
1362 if (isa<BitCastInst>(CI))
1363 return new BitCastInst(NGEP, CI.getType());
1364 assert(isa<PtrToIntInst>(CI));
1365 return new PtrToIntInst(NGEP, CI.getType());
1366 }
1367 }
1368 }
1369
1370 return commonCastTransforms(CI);
1371}
1372
1373Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
Dan Gohman3b5487e2010-02-02 01:44:02 +00001374 // If the destination integer type is not the intptr_t type for this target,
1375 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1376 // to be exposed to other transforms.
1377 if (TD) {
1378 if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1379 Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
Benjamin Kramera9390a42011-09-27 20:39:19 +00001380 TD->getIntPtrType(CI.getContext()));
Dan Gohman3b5487e2010-02-02 01:44:02 +00001381 return new TruncInst(P, CI.getType());
1382 }
1383 if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1384 Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
Benjamin Kramera9390a42011-09-27 20:39:19 +00001385 TD->getIntPtrType(CI.getContext()));
Dan Gohman3b5487e2010-02-02 01:44:02 +00001386 return new ZExtInst(P, CI.getType());
1387 }
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001388 }
1389
1390 return commonPointerCastTransforms(CI);
1391}
1392
Chris Lattner67451912010-05-08 21:50:26 +00001393/// OptimizeVectorResize - This input value (which is known to have vector type)
1394/// is being zero extended or truncated to the specified vector type. Try to
1395/// replace it with a shuffle (and vector/vector bitcast) if possible.
1396///
1397/// The source and destination vector types may have different element types.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001398static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
Chris Lattner67451912010-05-08 21:50:26 +00001399 InstCombiner &IC) {
1400 // We can only do this optimization if the output is a multiple of the input
1401 // element size, or the input is a multiple of the output element size.
1402 // Convert the input type to have the same element type as the output.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001403 VectorType *SrcTy = cast<VectorType>(InVal->getType());
Chris Lattner67451912010-05-08 21:50:26 +00001404
1405 if (SrcTy->getElementType() != DestTy->getElementType()) {
1406 // The input types don't need to be identical, but for now they must be the
1407 // same size. There is no specific reason we couldn't handle things like
1408 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1409 // there yet.
1410 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1411 DestTy->getElementType()->getPrimitiveSizeInBits())
1412 return 0;
1413
1414 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1415 InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1416 }
1417
1418 // Now that the element types match, get the shuffle mask and RHS of the
1419 // shuffle to use, which depends on whether we're increasing or decreasing the
1420 // size of the input.
Chris Lattner7302d802012-02-06 21:56:39 +00001421 SmallVector<uint32_t, 16> ShuffleMask;
Chris Lattner67451912010-05-08 21:50:26 +00001422 Value *V2;
Chris Lattner67451912010-05-08 21:50:26 +00001423
1424 if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1425 // If we're shrinking the number of elements, just shuffle in the low
1426 // elements from the input and use undef as the second shuffle input.
1427 V2 = UndefValue::get(SrcTy);
1428 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
Chris Lattner7302d802012-02-06 21:56:39 +00001429 ShuffleMask.push_back(i);
Chris Lattner67451912010-05-08 21:50:26 +00001430
1431 } else {
1432 // If we're increasing the number of elements, shuffle in all of the
1433 // elements from InVal and fill the rest of the result elements with zeros
1434 // from a constant zero.
1435 V2 = Constant::getNullValue(SrcTy);
1436 unsigned SrcElts = SrcTy->getNumElements();
1437 for (unsigned i = 0, e = SrcElts; i != e; ++i)
Chris Lattner7302d802012-02-06 21:56:39 +00001438 ShuffleMask.push_back(i);
Chris Lattner67451912010-05-08 21:50:26 +00001439
1440 // The excess elements reference the first element of the zero input.
Chris Lattner7302d802012-02-06 21:56:39 +00001441 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1442 ShuffleMask.push_back(SrcElts);
Chris Lattner67451912010-05-08 21:50:26 +00001443 }
1444
Chris Lattner7302d802012-02-06 21:56:39 +00001445 return new ShuffleVectorInst(InVal, V2,
1446 ConstantDataVector::get(V2->getContext(),
1447 ShuffleMask));
Chris Lattner67451912010-05-08 21:50:26 +00001448}
1449
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001450static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
Chris Lattner3dd08732010-08-28 01:20:38 +00001451 return Value % Ty->getPrimitiveSizeInBits() == 0;
1452}
1453
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001454static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
Chris Lattner3dd08732010-08-28 01:20:38 +00001455 return Value / Ty->getPrimitiveSizeInBits();
1456}
1457
1458/// CollectInsertionElements - V is a value which is inserted into a vector of
1459/// VecEltTy. Look through the value to see if we can decompose it into
1460/// insertions into the vector. See the example in the comment for
1461/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1462/// The type of V is always a non-zero multiple of VecEltTy's size.
1463///
1464/// This returns false if the pattern can't be matched or true if it can,
1465/// filling in Elements with the elements found here.
1466static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
1467 SmallVectorImpl<Value*> &Elements,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001468 Type *VecEltTy) {
Chris Lattner157d4ea2010-08-28 03:36:51 +00001469 // Undef values never contribute useful bits to the result.
1470 if (isa<UndefValue>(V)) return true;
1471
Chris Lattner3dd08732010-08-28 01:20:38 +00001472 // If we got down to a value of the right type, we win, try inserting into the
1473 // right element.
1474 if (V->getType() == VecEltTy) {
Chris Lattner79007792010-08-28 01:50:57 +00001475 // Inserting null doesn't actually insert any elements.
1476 if (Constant *C = dyn_cast<Constant>(V))
1477 if (C->isNullValue())
1478 return true;
1479
Chris Lattner3dd08732010-08-28 01:20:38 +00001480 // Fail if multiple elements are inserted into this slot.
1481 if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
1482 return false;
1483
1484 Elements[ElementIndex] = V;
1485 return true;
1486 }
1487
Chris Lattner79007792010-08-28 01:50:57 +00001488 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner3dd08732010-08-28 01:20:38 +00001489 // Figure out the # elements this provides, and bitcast it or slice it up
1490 // as required.
Chris Lattner79007792010-08-28 01:50:57 +00001491 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1492 VecEltTy);
1493 // If the constant is the size of a vector element, we just need to bitcast
1494 // it to the right type so it gets properly inserted.
1495 if (NumElts == 1)
1496 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1497 ElementIndex, Elements, VecEltTy);
1498
1499 // Okay, this is a constant that covers multiple elements. Slice it up into
1500 // pieces and insert each element-sized piece into the vector.
1501 if (!isa<IntegerType>(C->getType()))
1502 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1503 C->getType()->getPrimitiveSizeInBits()));
1504 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001505 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
Chris Lattner79007792010-08-28 01:50:57 +00001506
1507 for (unsigned i = 0; i != NumElts; ++i) {
1508 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1509 i*ElementSize));
1510 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1511 if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
1512 return false;
1513 }
1514 return true;
1515 }
Chris Lattner3dd08732010-08-28 01:20:38 +00001516
1517 if (!V->hasOneUse()) return false;
1518
1519 Instruction *I = dyn_cast<Instruction>(V);
1520 if (I == 0) return false;
1521 switch (I->getOpcode()) {
1522 default: return false; // Unhandled case.
1523 case Instruction::BitCast:
1524 return CollectInsertionElements(I->getOperand(0), ElementIndex,
1525 Elements, VecEltTy);
1526 case Instruction::ZExt:
1527 if (!isMultipleOfTypeSize(
1528 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1529 VecEltTy))
1530 return false;
1531 return CollectInsertionElements(I->getOperand(0), ElementIndex,
1532 Elements, VecEltTy);
1533 case Instruction::Or:
1534 return CollectInsertionElements(I->getOperand(0), ElementIndex,
1535 Elements, VecEltTy) &&
1536 CollectInsertionElements(I->getOperand(1), ElementIndex,
1537 Elements, VecEltTy);
1538 case Instruction::Shl: {
1539 // Must be shifting by a constant that is a multiple of the element size.
1540 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1541 if (CI == 0) return false;
1542 if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
1543 unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
1544
1545 return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
1546 Elements, VecEltTy);
1547 }
1548
1549 }
1550}
1551
1552
1553/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1554/// may be doing shifts and ors to assemble the elements of the vector manually.
1555/// Try to rip the code out and replace it with insertelements. This is to
1556/// optimize code like this:
1557///
1558/// %tmp37 = bitcast float %inc to i32
1559/// %tmp38 = zext i32 %tmp37 to i64
1560/// %tmp31 = bitcast float %inc5 to i32
1561/// %tmp32 = zext i32 %tmp31 to i64
1562/// %tmp33 = shl i64 %tmp32, 32
1563/// %ins35 = or i64 %tmp33, %tmp38
1564/// %tmp43 = bitcast i64 %ins35 to <2 x float>
1565///
1566/// Into two insertelements that do "buildvector{%inc, %inc5}".
1567static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1568 InstCombiner &IC) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001569 VectorType *DestVecTy = cast<VectorType>(CI.getType());
Chris Lattner3dd08732010-08-28 01:20:38 +00001570 Value *IntInput = CI.getOperand(0);
1571
1572 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1573 if (!CollectInsertionElements(IntInput, 0, Elements,
1574 DestVecTy->getElementType()))
1575 return 0;
1576
1577 // If we succeeded, we know that all of the element are specified by Elements
1578 // or are zero if Elements has a null entry. Recast this as a set of
1579 // insertions.
1580 Value *Result = Constant::getNullValue(CI.getType());
1581 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1582 if (Elements[i] == 0) continue; // Unset element.
1583
1584 Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1585 IC.Builder->getInt32(i));
1586 }
1587
1588 return Result;
1589}
1590
1591
Chris Lattnere5a14262010-08-26 21:55:42 +00001592/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1593/// bitcast. The various long double bitcasts can't get in here.
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001594static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
Chris Lattnere5a14262010-08-26 21:55:42 +00001595 Value *Src = CI.getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001596 Type *DestTy = CI.getType();
Chris Lattnere5a14262010-08-26 21:55:42 +00001597
1598 // If this is a bitcast from int to float, check to see if the int is an
1599 // extraction from a vector.
1600 Value *VecInput = 0;
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001601 // bitcast(trunc(bitcast(somevector)))
Chris Lattnere5a14262010-08-26 21:55:42 +00001602 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1603 isa<VectorType>(VecInput->getType())) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001604 VectorType *VecTy = cast<VectorType>(VecInput->getType());
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001605 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1606
1607 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1608 // If the element type of the vector doesn't match the result type,
1609 // bitcast it to be a vector type we can extract from.
1610 if (VecTy->getElementType() != DestTy) {
1611 VecTy = VectorType::get(DestTy,
1612 VecTy->getPrimitiveSizeInBits() / DestWidth);
1613 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1614 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001615
Chris Lattnere5a14262010-08-26 21:55:42 +00001616 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001617 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001618 }
1619
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001620 // bitcast(trunc(lshr(bitcast(somevector), cst))
1621 ConstantInt *ShAmt = 0;
1622 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1623 m_ConstantInt(ShAmt)))) &&
1624 isa<VectorType>(VecInput->getType())) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001625 VectorType *VecTy = cast<VectorType>(VecInput->getType());
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001626 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1627 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1628 ShAmt->getZExtValue() % DestWidth == 0) {
1629 // If the element type of the vector doesn't match the result type,
1630 // bitcast it to be a vector type we can extract from.
1631 if (VecTy->getElementType() != DestTy) {
1632 VecTy = VectorType::get(DestTy,
1633 VecTy->getPrimitiveSizeInBits() / DestWidth);
1634 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1635 }
1636
1637 unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1638 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1639 }
1640 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001641 return 0;
1642}
Chris Lattner67451912010-05-08 21:50:26 +00001643
Chris Lattner80f43d32010-01-04 07:53:58 +00001644Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1645 // If the operands are integer typed then apply the integer transforms,
1646 // otherwise just apply the common ones.
1647 Value *Src = CI.getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001648 Type *SrcTy = Src->getType();
1649 Type *DestTy = CI.getType();
Chris Lattner80f43d32010-01-04 07:53:58 +00001650
Chris Lattner80f43d32010-01-04 07:53:58 +00001651 // Get rid of casts from one type to the same type. These are useless and can
1652 // be replaced by the operand.
1653 if (DestTy == Src->getType())
1654 return ReplaceInstUsesWith(CI, Src);
1655
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001656 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1657 PointerType *SrcPTy = cast<PointerType>(SrcTy);
1658 Type *DstElTy = DstPTy->getElementType();
1659 Type *SrcElTy = SrcPTy->getElementType();
Chris Lattner80f43d32010-01-04 07:53:58 +00001660
1661 // If the address spaces don't match, don't eliminate the bitcast, which is
1662 // required for changing types.
1663 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1664 return 0;
1665
1666 // If we are casting a alloca to a pointer to a type of the same
1667 // size, rewrite the allocation instruction to allocate the "right" type.
1668 // There is no need to modify malloc calls because it is their bitcast that
1669 // needs to be cleaned up.
1670 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1671 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1672 return V;
1673
1674 // If the source and destination are pointers, and this cast is equivalent
1675 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
1676 // This can enhance SROA and other transforms that want type-safe pointers.
1677 Constant *ZeroUInt =
1678 Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1679 unsigned NumZeros = 0;
1680 while (SrcElTy != DstElTy &&
Duncan Sands1df98592010-02-16 11:11:14 +00001681 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
Chris Lattner80f43d32010-01-04 07:53:58 +00001682 SrcElTy->getNumContainedTypes() /* not "{}" */) {
1683 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1684 ++NumZeros;
1685 }
1686
1687 // If we found a path from the src to dest, create the getelementptr now.
1688 if (SrcElTy == DstElTy) {
1689 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Jay Foada9203102011-07-25 09:48:08 +00001690 return GetElementPtrInst::CreateInBounds(Src, Idxs);
Chris Lattner80f43d32010-01-04 07:53:58 +00001691 }
1692 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001693
1694 // Try to optimize int -> float bitcasts.
1695 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1696 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1697 return I;
Chris Lattner80f43d32010-01-04 07:53:58 +00001698
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001699 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
Duncan Sands1df98592010-02-16 11:11:14 +00001700 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001701 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1702 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
Chris Lattner80f43d32010-01-04 07:53:58 +00001703 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
Chris Lattner80f43d32010-01-04 07:53:58 +00001704 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1705 }
Chris Lattner67451912010-05-08 21:50:26 +00001706
Chris Lattner3dd08732010-08-28 01:20:38 +00001707 if (isa<IntegerType>(SrcTy)) {
1708 // If this is a cast from an integer to vector, check to see if the input
1709 // is a trunc or zext of a bitcast from vector. If so, we can replace all
1710 // the casts with a shuffle and (potentially) a bitcast.
1711 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1712 CastInst *SrcCast = cast<CastInst>(Src);
1713 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1714 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1715 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
Chris Lattner67451912010-05-08 21:50:26 +00001716 cast<VectorType>(DestTy), *this))
Chris Lattner3dd08732010-08-28 01:20:38 +00001717 return I;
1718 }
1719
1720 // If the input is an 'or' instruction, we may be doing shifts and ors to
1721 // assemble the elements of the vector manually. Try to rip the code out
1722 // and replace it with insertelements.
1723 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1724 return ReplaceInstUsesWith(CI, V);
Chris Lattner67451912010-05-08 21:50:26 +00001725 }
Chris Lattner80f43d32010-01-04 07:53:58 +00001726 }
1727
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001728 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
Duncan Sands1df98592010-02-16 11:11:14 +00001729 if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001730 Value *Elem =
1731 Builder->CreateExtractElement(Src,
1732 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1733 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
Chris Lattner80f43d32010-01-04 07:53:58 +00001734 }
1735 }
1736
1737 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001738 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
Dan Gohmana5ced592010-04-07 23:22:42 +00001739 // a bitcast to a vector with the same # elts.
Duncan Sands1df98592010-02-16 11:11:14 +00001740 if (SVI->hasOneUse() && DestTy->isVectorTy() &&
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001741 cast<VectorType>(DestTy)->getNumElements() ==
1742 SVI->getType()->getNumElements() &&
1743 SVI->getType()->getNumElements() ==
1744 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1745 BitCastInst *Tmp;
1746 // If either of the operands is a cast from CI.getType(), then
1747 // evaluating the shuffle in the casted destination's type will allow
1748 // us to eliminate at least one cast.
1749 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1750 Tmp->getOperand(0)->getType() == DestTy) ||
1751 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1752 Tmp->getOperand(0)->getType() == DestTy)) {
1753 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1754 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1755 // Return a new shuffle vector. Use the same element ID's, as we
1756 // know the vector types match #elts.
1757 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
Chris Lattner80f43d32010-01-04 07:53:58 +00001758 }
1759 }
1760 }
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001761
Duncan Sands1df98592010-02-16 11:11:14 +00001762 if (SrcTy->isPointerTy())
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001763 return commonPointerCastTransforms(CI);
1764 return commonCastTransforms(CI);
Chris Lattner80f43d32010-01-04 07:53:58 +00001765}