blob: 598536d8e3573a9bae96619fc93dd28e7698b9b2 [file] [log] [blame]
Arnold Schwaighofera70fe792007-10-12 21:53:12 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
Evan Cheng75184a92007-12-11 01:46:18 +000026#include "llvm/ADT/BitVector.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/ADT/VectorExtras.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Support/MathExtras.h"
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +000036#include "llvm/Support/Debug.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037#include "llvm/Target/TargetOptions.h"
Evan Cheng75184a92007-12-11 01:46:18 +000038#include "llvm/ADT/SmallSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000040#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000041using namespace llvm;
42
43X86TargetLowering::X86TargetLowering(TargetMachine &TM)
44 : TargetLowering(TM) {
45 Subtarget = &TM.getSubtarget<X86Subtarget>();
Dale Johannesene0e0fd02007-09-23 14:52:20 +000046 X86ScalarSSEf64 = Subtarget->hasSSE2();
47 X86ScalarSSEf32 = Subtarget->hasSSE1();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +000049
Dan Gohmanf17a25c2007-07-18 16:29:46 +000050
51 RegInfo = TM.getRegisterInfo();
52
53 // Set up the TargetLowering object.
54
55 // X86 is weird, it always uses i8 for shift amounts and setcc results.
56 setShiftAmountType(MVT::i8);
57 setSetCCResultType(MVT::i8);
58 setSetCCResultContents(ZeroOrOneSetCCResult);
59 setSchedulingPreference(SchedulingForRegPressure);
60 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
61 setStackPointerRegisterToSaveRestore(X86StackPtr);
62
63 if (Subtarget->isTargetDarwin()) {
64 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
65 setUseUnderscoreSetJmp(false);
66 setUseUnderscoreLongJmp(false);
67 } else if (Subtarget->isTargetMingw()) {
68 // MS runtime is weird: it exports _setjmp, but longjmp!
69 setUseUnderscoreSetJmp(true);
70 setUseUnderscoreLongJmp(false);
71 } else {
72 setUseUnderscoreSetJmp(true);
73 setUseUnderscoreLongJmp(true);
74 }
75
76 // Set up the register classes.
77 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
78 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
79 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
80 if (Subtarget->is64Bit())
81 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
82
83 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
84
85 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
86 // operation.
87 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
88 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
89 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
90
91 if (Subtarget->is64Bit()) {
92 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
93 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
94 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +000095 if (X86ScalarSSEf64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000096 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
97 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
98 else
99 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
100 }
101
102 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
103 // this operation.
104 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
105 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
106 // SSE has no i16 to fp conversion, only i32
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000107 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000109 // f32 and f64 cases are Legal, f80 case is not
110 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
111 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000112 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
113 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
114 }
115
Dale Johannesen958b08b2007-09-19 23:55:34 +0000116 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
117 // are Legal, f80 is custom lowered.
118 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
119 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120
121 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
122 // this operation.
123 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
124 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
125
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000126 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000128 // f32 and f64 cases are Legal, f80 case is not
129 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000130 } else {
131 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
132 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
133 }
134
135 // Handle FP_TO_UINT by promoting the destination to a larger signed
136 // conversion.
137 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
138 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
139 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
140
141 if (Subtarget->is64Bit()) {
142 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
143 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
144 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000145 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000146 // Expand FP_TO_UINT into a select.
147 // FIXME: We would like to use a Custom expander here eventually to do
148 // the optimal thing for SSE vs. the default expansion in the legalizer.
149 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
150 else
151 // With SSE3 we can use fisttpll to convert to a signed i64.
152 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
153 }
154
155 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000156 if (!X86ScalarSSEf64) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
158 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
159 }
160
Dan Gohman5a199552007-10-08 18:33:35 +0000161 // Scalar integer multiply, multiply-high, divide, and remainder are
162 // lowered to use operations that produce two results, to match the
163 // available instructions. This exposes the two-result form to trivial
164 // CSE, which is able to combine x/y and x%y into a single instruction,
165 // for example. The single-result multiply instructions are introduced
166 // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
167 // is not needed.
168 setOperationAction(ISD::MUL , MVT::i8 , Expand);
169 setOperationAction(ISD::MULHS , MVT::i8 , Expand);
170 setOperationAction(ISD::MULHU , MVT::i8 , Expand);
171 setOperationAction(ISD::SDIV , MVT::i8 , Expand);
172 setOperationAction(ISD::UDIV , MVT::i8 , Expand);
173 setOperationAction(ISD::SREM , MVT::i8 , Expand);
174 setOperationAction(ISD::UREM , MVT::i8 , Expand);
175 setOperationAction(ISD::MUL , MVT::i16 , Expand);
176 setOperationAction(ISD::MULHS , MVT::i16 , Expand);
177 setOperationAction(ISD::MULHU , MVT::i16 , Expand);
178 setOperationAction(ISD::SDIV , MVT::i16 , Expand);
179 setOperationAction(ISD::UDIV , MVT::i16 , Expand);
180 setOperationAction(ISD::SREM , MVT::i16 , Expand);
181 setOperationAction(ISD::UREM , MVT::i16 , Expand);
182 setOperationAction(ISD::MUL , MVT::i32 , Expand);
183 setOperationAction(ISD::MULHS , MVT::i32 , Expand);
184 setOperationAction(ISD::MULHU , MVT::i32 , Expand);
185 setOperationAction(ISD::SDIV , MVT::i32 , Expand);
186 setOperationAction(ISD::UDIV , MVT::i32 , Expand);
187 setOperationAction(ISD::SREM , MVT::i32 , Expand);
188 setOperationAction(ISD::UREM , MVT::i32 , Expand);
189 setOperationAction(ISD::MUL , MVT::i64 , Expand);
190 setOperationAction(ISD::MULHS , MVT::i64 , Expand);
191 setOperationAction(ISD::MULHU , MVT::i64 , Expand);
192 setOperationAction(ISD::SDIV , MVT::i64 , Expand);
193 setOperationAction(ISD::UDIV , MVT::i64 , Expand);
194 setOperationAction(ISD::SREM , MVT::i64 , Expand);
195 setOperationAction(ISD::UREM , MVT::i64 , Expand);
Dan Gohman242a5ba2007-09-25 18:23:27 +0000196
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000197 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
198 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
199 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
200 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
201 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
202 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
204 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
205 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
207 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
208 setOperationAction(ISD::FREM , MVT::f64 , Expand);
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +0000209 setOperationAction(ISD::FLT_ROUNDS , MVT::i32 , Custom);
210
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000211 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
Evan Cheng48679f42007-12-14 02:13:44 +0000212 setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
213 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
Evan Cheng48679f42007-12-14 02:13:44 +0000215 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
216 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
Evan Cheng48679f42007-12-14 02:13:44 +0000218 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
219 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000220 if (Subtarget->is64Bit()) {
221 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
Evan Cheng48679f42007-12-14 02:13:44 +0000222 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
223 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224 }
225
226 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
227 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
228
229 // These should be promoted to a larger select which is supported.
230 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
231 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
232 // X86 wants to expand cmov itself.
233 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
234 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
235 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
236 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000237 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
239 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
240 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
241 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
242 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000243 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000244 if (Subtarget->is64Bit()) {
245 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
246 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
247 }
248 // X86 ret instruction may pop stack.
249 setOperationAction(ISD::RET , MVT::Other, Custom);
250 if (!Subtarget->is64Bit())
251 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
252
253 // Darwin ABI issue.
254 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
255 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
256 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
257 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
258 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
259 if (Subtarget->is64Bit()) {
260 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
261 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
262 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
263 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
264 }
265 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
266 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
267 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
268 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
269 // X86 wants to expand memset / memcpy itself.
270 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
271 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
272
Dan Gohman21442852007-09-25 15:10:49 +0000273 // Use the default ISD::LOCATION expansion.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000275 // FIXME - use subtarget debug flags
276 if (!Subtarget->isTargetDarwin() &&
277 !Subtarget->isTargetELF() &&
278 !Subtarget->isTargetCygMing())
279 setOperationAction(ISD::LABEL, MVT::Other, Expand);
280
281 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
282 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
283 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
284 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
285 if (Subtarget->is64Bit()) {
286 // FIXME: Verify
287 setExceptionPointerRegister(X86::RAX);
288 setExceptionSelectorRegister(X86::RDX);
289 } else {
290 setExceptionPointerRegister(X86::EAX);
291 setExceptionSelectorRegister(X86::EDX);
292 }
Anton Korobeynikov23ca9c52007-09-03 00:36:06 +0000293 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000294
Duncan Sands7407a9f2007-09-11 14:10:23 +0000295 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000296
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000297 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
298 setOperationAction(ISD::VASTART , MVT::Other, Custom);
299 setOperationAction(ISD::VAARG , MVT::Other, Expand);
300 setOperationAction(ISD::VAEND , MVT::Other, Expand);
301 if (Subtarget->is64Bit())
302 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
303 else
304 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
305
306 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
307 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
308 if (Subtarget->is64Bit())
309 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
310 if (Subtarget->isTargetCygMing())
311 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
312 else
313 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
314
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000315 if (X86ScalarSSEf64) {
316 // f32 and f64 use SSE.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000317 // Set up the FP register classes.
318 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
319 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
320
321 // Use ANDPD to simulate FABS.
322 setOperationAction(ISD::FABS , MVT::f64, Custom);
323 setOperationAction(ISD::FABS , MVT::f32, Custom);
324
325 // Use XORP to simulate FNEG.
326 setOperationAction(ISD::FNEG , MVT::f64, Custom);
327 setOperationAction(ISD::FNEG , MVT::f32, Custom);
328
329 // Use ANDPD and ORPD to simulate FCOPYSIGN.
330 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
331 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
332
333 // We don't support sin/cos/fmod
334 setOperationAction(ISD::FSIN , MVT::f64, Expand);
335 setOperationAction(ISD::FCOS , MVT::f64, Expand);
336 setOperationAction(ISD::FREM , MVT::f64, Expand);
337 setOperationAction(ISD::FSIN , MVT::f32, Expand);
338 setOperationAction(ISD::FCOS , MVT::f32, Expand);
339 setOperationAction(ISD::FREM , MVT::f32, Expand);
340
341 // Expand FP immediates into loads from the stack, except for the special
342 // cases we handle.
343 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
344 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000345 addLegalFPImmediate(APFloat(+0.0)); // xorpd
346 addLegalFPImmediate(APFloat(+0.0f)); // xorps
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000347
348 // Conversions to long double (in X87) go through memory.
349 setConvertAction(MVT::f32, MVT::f80, Expand);
350 setConvertAction(MVT::f64, MVT::f80, Expand);
351
352 // Conversions from long double (in X87) go through memory.
353 setConvertAction(MVT::f80, MVT::f32, Expand);
354 setConvertAction(MVT::f80, MVT::f64, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000355 } else if (X86ScalarSSEf32) {
356 // Use SSE for f32, x87 for f64.
357 // Set up the FP register classes.
358 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
359 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
360
361 // Use ANDPS to simulate FABS.
362 setOperationAction(ISD::FABS , MVT::f32, Custom);
363
364 // Use XORP to simulate FNEG.
365 setOperationAction(ISD::FNEG , MVT::f32, Custom);
366
367 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
368
369 // Use ANDPS and ORPS to simulate FCOPYSIGN.
370 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
371 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
372
373 // We don't support sin/cos/fmod
374 setOperationAction(ISD::FSIN , MVT::f32, Expand);
375 setOperationAction(ISD::FCOS , MVT::f32, Expand);
376 setOperationAction(ISD::FREM , MVT::f32, Expand);
377
378 // Expand FP immediates into loads from the stack, except for the special
379 // cases we handle.
380 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
381 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
382 addLegalFPImmediate(APFloat(+0.0f)); // xorps
383 addLegalFPImmediate(APFloat(+0.0)); // FLD0
384 addLegalFPImmediate(APFloat(+1.0)); // FLD1
385 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
386 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
387
388 // SSE->x87 conversions go through memory.
389 setConvertAction(MVT::f32, MVT::f64, Expand);
390 setConvertAction(MVT::f32, MVT::f80, Expand);
391
392 // x87->SSE truncations need to go through memory.
393 setConvertAction(MVT::f80, MVT::f32, Expand);
394 setConvertAction(MVT::f64, MVT::f32, Expand);
395 // And x87->x87 truncations also.
396 setConvertAction(MVT::f80, MVT::f64, Expand);
397
398 if (!UnsafeFPMath) {
399 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
400 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
401 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000403 // f32 and f64 in x87.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 // Set up the FP register classes.
405 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
406 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
407
408 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
409 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
410 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
411 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000412
413 // Floating truncations need to go through memory.
414 setConvertAction(MVT::f80, MVT::f32, Expand);
415 setConvertAction(MVT::f64, MVT::f32, Expand);
416 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417
418 if (!UnsafeFPMath) {
419 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
420 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
421 }
422
423 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
424 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000425 addLegalFPImmediate(APFloat(+0.0)); // FLD0
426 addLegalFPImmediate(APFloat(+1.0)); // FLD1
427 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
428 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000429 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
430 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
431 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
432 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000433 }
434
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000435 // Long double always uses X87.
436 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000437 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
438 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
439 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
Dale Johannesen7f1076b2007-09-26 21:10:55 +0000440 if (!UnsafeFPMath) {
441 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
442 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
443 }
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000444
Dan Gohman2f7b1982007-10-11 23:21:31 +0000445 // Always use a library call for pow.
446 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
447 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
448 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
449
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000450 // First set operation action for all vector types to expand. Then we
451 // will selectively turn on ones that can be effectively codegen'd.
452 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
453 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
454 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
455 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
456 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
457 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
458 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
459 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
460 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
461 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
462 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
463 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
464 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
465 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
466 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
467 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
468 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
469 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
470 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
471 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
472 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
473 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
474 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
475 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
476 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
Dan Gohman5a199552007-10-08 18:33:35 +0000477 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
478 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
479 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
480 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000481 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
Dan Gohman1d2dc2c2007-10-12 14:09:42 +0000482 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
483 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
484 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
Dan Gohman5b9d6412007-12-12 22:21:26 +0000485 setOperationAction(ISD::SHL, (MVT::ValueType)VT, Expand);
486 setOperationAction(ISD::SRA, (MVT::ValueType)VT, Expand);
487 setOperationAction(ISD::SRL, (MVT::ValueType)VT, Expand);
488 setOperationAction(ISD::ROTL, (MVT::ValueType)VT, Expand);
489 setOperationAction(ISD::ROTR, (MVT::ValueType)VT, Expand);
490 setOperationAction(ISD::BSWAP, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000491 }
492
493 if (Subtarget->hasMMX()) {
494 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
495 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
496 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
497 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
498
499 // FIXME: add MMX packed arithmetics
500
501 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
502 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
503 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
504 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
505
506 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
507 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
508 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
Dale Johannesen6b65c332007-10-30 01:18:38 +0000509 setOperationAction(ISD::SUB, MVT::v1i64, Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000510
511 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
512 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
513
514 setOperationAction(ISD::AND, MVT::v8i8, Promote);
515 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
516 setOperationAction(ISD::AND, MVT::v4i16, Promote);
517 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
518 setOperationAction(ISD::AND, MVT::v2i32, Promote);
519 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
520 setOperationAction(ISD::AND, MVT::v1i64, Legal);
521
522 setOperationAction(ISD::OR, MVT::v8i8, Promote);
523 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
524 setOperationAction(ISD::OR, MVT::v4i16, Promote);
525 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
526 setOperationAction(ISD::OR, MVT::v2i32, Promote);
527 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
528 setOperationAction(ISD::OR, MVT::v1i64, Legal);
529
530 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
531 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
532 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
533 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
534 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
535 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
536 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
537
538 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
539 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
540 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
541 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
542 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
543 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
544 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
545
546 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
547 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
548 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
549 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
550
551 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
552 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
553 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
554 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
555
556 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
557 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
558 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
559 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
560 }
561
562 if (Subtarget->hasSSE1()) {
563 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
564
565 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
566 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
567 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
568 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
569 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
570 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000571 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
572 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
573 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
574 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
575 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
576 }
577
578 if (Subtarget->hasSSE2()) {
579 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
580 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
581 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
582 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
583 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
584
585 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
586 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
587 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
588 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
589 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
590 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
591 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
592 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
593 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
594 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
595 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
596 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
597 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
598 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
599 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000600
601 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
602 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
603 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
604 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
605 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
606 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
607
608 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
609 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
Nate Begemanc16406d2007-12-11 01:41:33 +0000610 // Do not attempt to custom lower non-power-of-2 vectors
611 if (!isPowerOf2_32(MVT::getVectorNumElements(VT)))
612 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000613 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
614 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
615 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
616 }
617 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
618 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
619 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
620 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
621 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
Dale Johannesen2ff963d2007-10-31 00:32:36 +0000622 if (Subtarget->is64Bit())
623 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000624
625 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
626 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
627 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
628 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
629 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
630 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
631 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
632 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
633 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
634 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
635 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
636 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
637 }
638
639 // Custom lower v2i64 and v2f64 selects.
640 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
641 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
642 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
643 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
644 }
645
646 // We want to custom lower some of our intrinsics.
647 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
648
649 // We have target-specific dag combine patterns for the following nodes:
650 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
651 setTargetDAGCombine(ISD::SELECT);
652
653 computeRegisterProperties();
654
655 // FIXME: These should be based on subtarget info. Plus, the values should
656 // be smaller when we are in optimizing for size mode.
657 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
658 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
659 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
660 allowUnalignedMemoryAccesses = true; // x86 supports it!
661}
662
663
Evan Cheng6fb06762007-11-09 01:32:10 +0000664/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
665/// jumptable.
666SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
667 SelectionDAG &DAG) const {
668 if (usesGlobalOffsetTable())
669 return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
670 if (!Subtarget->isPICStyleRIPRel())
671 return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
672 return Table;
673}
674
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000675//===----------------------------------------------------------------------===//
676// Return Value Calling Convention Implementation
677//===----------------------------------------------------------------------===//
678
679#include "X86GenCallingConv.inc"
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000680
681/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
682/// exists skip possible ISD:TokenFactor.
683static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
684 if (Chain.getOpcode()==X86ISD::TAILCALL) {
685 return Chain;
686 } else if (Chain.getOpcode()==ISD::TokenFactor) {
687 if (Chain.getNumOperands() &&
688 Chain.getOperand(0).getOpcode()==X86ISD::TAILCALL)
689 return Chain.getOperand(0);
690 }
691 return Chain;
692}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000693
694/// LowerRET - Lower an ISD::RET node.
695SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
696 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
697
698 SmallVector<CCValAssign, 16> RVLocs;
699 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
700 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
701 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
702 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000703
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704 // If this is the first return lowered for this function, add the regs to the
705 // liveout set for the function.
706 if (DAG.getMachineFunction().liveout_empty()) {
707 for (unsigned i = 0; i != RVLocs.size(); ++i)
708 if (RVLocs[i].isRegLoc())
709 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
710 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 SDOperand Chain = Op.getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000713 // Handle tail call return.
714 Chain = GetPossiblePreceedingTailCall(Chain);
715 if (Chain.getOpcode() == X86ISD::TAILCALL) {
716 SDOperand TailCall = Chain;
717 SDOperand TargetAddress = TailCall.getOperand(1);
718 SDOperand StackAdjustment = TailCall.getOperand(2);
719 assert ( ((TargetAddress.getOpcode() == ISD::Register &&
720 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
721 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
722 TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
723 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
724 "Expecting an global address, external symbol, or register");
725 assert( StackAdjustment.getOpcode() == ISD::Constant &&
726 "Expecting a const value");
727
728 SmallVector<SDOperand,8> Operands;
729 Operands.push_back(Chain.getOperand(0));
730 Operands.push_back(TargetAddress);
731 Operands.push_back(StackAdjustment);
732 // Copy registers used by the call. Last operand is a flag so it is not
733 // copied.
Arnold Schwaighofer10202b32007-10-16 09:05:00 +0000734 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000735 Operands.push_back(Chain.getOperand(i));
736 }
Arnold Schwaighofer10202b32007-10-16 09:05:00 +0000737 return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
738 Operands.size());
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000739 }
740
741 // Regular return.
742 SDOperand Flag;
743
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744 // Copy the result values into the output registers.
745 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
746 RVLocs[0].getLocReg() != X86::ST0) {
747 for (unsigned i = 0; i != RVLocs.size(); ++i) {
748 CCValAssign &VA = RVLocs[i];
749 assert(VA.isRegLoc() && "Can only return in registers!");
750 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
751 Flag);
752 Flag = Chain.getValue(1);
753 }
754 } else {
755 // We need to handle a destination of ST0 specially, because it isn't really
756 // a register.
757 SDOperand Value = Op.getOperand(1);
758
759 // If this is an FP return with ScalarSSE, we need to move the value from
760 // an XMM register onto the fp-stack.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000761 if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
762 (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000763 SDOperand MemLoc;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000764
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000765 // If this is a load into a scalarsse value, don't store the loaded value
766 // back to the stack, only to reload it: just replace the scalar-sse load.
767 if (ISD::isNON_EXTLoad(Value.Val) &&
768 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
769 Chain = Value.getOperand(0);
770 MemLoc = Value.getOperand(1);
771 } else {
772 // Spill the value to memory and reload it into top of stack.
773 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
774 MachineFunction &MF = DAG.getMachineFunction();
775 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
776 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
777 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
778 }
779 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
780 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
781 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
782 Chain = Value.getValue(1);
783 }
784
785 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
786 SDOperand Ops[] = { Chain, Value };
787 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
788 Flag = Chain.getValue(1);
789 }
790
791 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
792 if (Flag.Val)
793 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
794 else
795 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
796}
797
798
799/// LowerCallResult - Lower the result values of an ISD::CALL into the
800/// appropriate copies out of appropriate physical registers. This assumes that
801/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
802/// being lowered. The returns a SDNode with the same number of values as the
803/// ISD::CALL.
804SDNode *X86TargetLowering::
805LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
806 unsigned CallingConv, SelectionDAG &DAG) {
807
808 // Assign locations to each value returned by this call.
809 SmallVector<CCValAssign, 16> RVLocs;
810 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
811 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
812 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
813
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000814 SmallVector<SDOperand, 8> ResultVals;
815
816 // Copy all of the result registers out of their specified physreg.
817 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
818 for (unsigned i = 0; i != RVLocs.size(); ++i) {
819 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
820 RVLocs[i].getValVT(), InFlag).getValue(1);
821 InFlag = Chain.getValue(2);
822 ResultVals.push_back(Chain.getValue(0));
823 }
824 } else {
825 // Copies from the FP stack are special, as ST0 isn't a valid register
826 // before the fp stackifier runs.
827
828 // Copy ST0 into an RFP register with FP_GET_RESULT.
829 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
830 SDOperand GROps[] = { Chain, InFlag };
831 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
832 Chain = RetVal.getValue(1);
833 InFlag = RetVal.getValue(2);
834
835 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
836 // an XMM register.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000837 if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
838 (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
Chris Lattner40758732007-12-29 06:41:28 +0000839 SDOperand StoreLoc;
840 const Value *SrcVal = 0;
841 int SrcValOffset = 0;
842
843 // Determine where to store the value. If the call result is directly
844 // used by a store, see if we can store directly into the location. In
845 // this case, we'll end up producing a fst + movss[load] + movss[store] to
846 // the same location, and the two movss's will be nuked as dead. This
847 // optimizes common things like "*D = atof(..)" to not need an
848 // intermediate stack slot.
849 if (SDOperand(TheCall, 0).hasOneUse() &&
850 SDOperand(TheCall, 1).hasOneUse()) {
851 // Ok, we have one use of the value and one use of the chain. See if
852 // they are the same node: a store.
853 if (StoreSDNode *N = dyn_cast<StoreSDNode>(*TheCall->use_begin())) {
854 if (N->getChain().Val == TheCall && N->getValue().Val == TheCall &&
855 !N->isVolatile() && !N->isTruncatingStore() &&
856 N->getAddressingMode() == ISD::UNINDEXED) {
857 StoreLoc = N->getBasePtr();
858 SrcVal = N->getSrcValue();
859 SrcValOffset = N->getSrcValueOffset();
860 }
861 }
862 }
863
864 // If we weren't able to optimize the result, just create a temporary
865 // stack slot.
866 if (StoreLoc.Val == 0) {
867 MachineFunction &MF = DAG.getMachineFunction();
868 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
869 StoreLoc = DAG.getFrameIndex(SSFI, getPointerTy());
870 }
871
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000872 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
873 // shouldn't be necessary except that RFP cannot be live across
Chris Lattner40758732007-12-29 06:41:28 +0000874 // multiple blocks (which could happen if a select gets lowered into
875 // multiple blocks and scheduled in between them). When stackifier is
876 // fixed, they can be uncoupled.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000877 SDOperand Ops[] = {
Chris Lattner40758732007-12-29 06:41:28 +0000878 Chain, RetVal, StoreLoc, DAG.getValueType(RVLocs[0].getValVT()), InFlag
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000879 };
880 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
Chris Lattner40758732007-12-29 06:41:28 +0000881 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain,
882 StoreLoc, SrcVal, SrcValOffset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000883 Chain = RetVal.getValue(1);
884 }
885 ResultVals.push_back(RetVal);
886 }
887
888 // Merge everything together with a MERGE_VALUES node.
889 ResultVals.push_back(Chain);
890 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
891 &ResultVals[0], ResultVals.size()).Val;
892}
893
894
895//===----------------------------------------------------------------------===//
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000896// C & StdCall & Fast Calling Convention implementation
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000897//===----------------------------------------------------------------------===//
898// StdCall calling convention seems to be standard for many Windows' API
899// routines and around. It differs from C calling convention just a little:
900// callee should clean up the stack, not caller. Symbols should be also
901// decorated in some fancy way :) It doesn't support any vector arguments.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000902// For info on fast calling convention see Fast Calling Convention (tail call)
903// implementation LowerX86_32FastCCCallTo.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000904
905/// AddLiveIn - This helper function adds the specified physical register to the
906/// MachineFunction as a live in value. It also creates a corresponding virtual
907/// register for it.
908static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
909 const TargetRegisterClass *RC) {
910 assert(RC->contains(PReg) && "Not the correct regclass!");
911 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
912 MF.addLiveIn(PReg, VReg);
913 return VReg;
914}
915
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000916// align stack arguments according to platform alignment needed for tail calls
917unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG);
918
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000919SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
920 const CCValAssign &VA,
921 MachineFrameInfo *MFI,
922 SDOperand Root, unsigned i) {
923 // Create the nodes corresponding to a load from this parameter slot.
924 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
925 VA.getLocMemOffset());
926 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
927
928 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
929
930 if (Flags & ISD::ParamFlags::ByVal)
931 return FIN;
932 else
933 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
934}
935
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000936SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
937 bool isStdCall) {
938 unsigned NumArgs = Op.Val->getNumValues() - 1;
939 MachineFunction &MF = DAG.getMachineFunction();
940 MachineFrameInfo *MFI = MF.getFrameInfo();
941 SDOperand Root = Op.getOperand(0);
942 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000943 unsigned CC = MF.getFunction()->getCallingConv();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944 // Assign locations to all of the incoming arguments.
945 SmallVector<CCValAssign, 16> ArgLocs;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000946 CCState CCInfo(CC, isVarArg,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000947 getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000948 // Check for possible tail call calling convention.
949 if (CC == CallingConv::Fast && PerformTailCallOpt)
950 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_TailCall);
951 else
952 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
953
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 SmallVector<SDOperand, 8> ArgValues;
955 unsigned LastVal = ~0U;
956 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
957 CCValAssign &VA = ArgLocs[i];
958 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
959 // places.
960 assert(VA.getValNo() != LastVal &&
961 "Don't support value assigned to multiple locs yet");
962 LastVal = VA.getValNo();
963
964 if (VA.isRegLoc()) {
965 MVT::ValueType RegVT = VA.getLocVT();
966 TargetRegisterClass *RC;
967 if (RegVT == MVT::i32)
968 RC = X86::GR32RegisterClass;
969 else {
970 assert(MVT::isVector(RegVT));
971 RC = X86::VR128RegisterClass;
972 }
973
974 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
975 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
976
977 // If this is an 8 or 16-bit value, it is really passed promoted to 32
978 // bits. Insert an assert[sz]ext to capture this, then truncate to the
979 // right size.
980 if (VA.getLocInfo() == CCValAssign::SExt)
981 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
982 DAG.getValueType(VA.getValVT()));
983 else if (VA.getLocInfo() == CCValAssign::ZExt)
984 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
985 DAG.getValueType(VA.getValVT()));
986
987 if (VA.getLocInfo() != CCValAssign::Full)
988 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
989
990 ArgValues.push_back(ArgValue);
991 } else {
992 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000993 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000994 }
995 }
996
997 unsigned StackSize = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000998 // align stack specially for tail calls
999 if (CC==CallingConv::Fast)
1000 StackSize = GetAlignedArgumentStackSize(StackSize,DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001001
1002 ArgValues.push_back(Root);
1003
1004 // If the function takes variable number of arguments, make a frame index for
1005 // the start of the first vararg value... for expansion of llvm.va_start.
1006 if (isVarArg)
1007 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1008
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001009 // Tail call calling convention (CallingConv::Fast) does not support varargs.
1010 assert( !(isVarArg && CC == CallingConv::Fast) &&
1011 "CallingConv::Fast does not support varargs.");
1012
1013 if (isStdCall && !isVarArg &&
1014 (CC==CallingConv::Fast && PerformTailCallOpt || CC!=CallingConv::Fast)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001015 BytesToPopOnReturn = StackSize; // Callee pops everything..
1016 BytesCallerReserves = 0;
1017 } else {
1018 BytesToPopOnReturn = 0; // Callee pops nothing.
1019
1020 // If this is an sret function, the return should pop the hidden pointer.
1021 if (NumArgs &&
1022 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
1023 ISD::ParamFlags::StructReturn))
1024 BytesToPopOnReturn = 4;
1025
1026 BytesCallerReserves = StackSize;
1027 }
Anton Korobeynikove844e472007-08-15 17:12:32 +00001028
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001030
Anton Korobeynikove844e472007-08-15 17:12:32 +00001031 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1032 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033
1034 // Return the new list of results.
1035 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1036 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1037}
1038
1039SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
1040 unsigned CC) {
1041 SDOperand Chain = Op.getOperand(0);
1042 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001043 SDOperand Callee = Op.getOperand(4);
1044 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001045
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001046 // Analyze operands of the call, assigning locations to each operand.
1047 SmallVector<CCValAssign, 16> ArgLocs;
1048 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001049 if(CC==CallingConv::Fast && PerformTailCallOpt)
1050 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1051 else
1052 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053
1054 // Get a count of how many bytes are to be pushed on the stack.
1055 unsigned NumBytes = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001056 if (CC==CallingConv::Fast)
1057 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001058
1059 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1060
1061 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1062 SmallVector<SDOperand, 8> MemOpChains;
1063
1064 SDOperand StackPtr;
1065
1066 // Walk the register/memloc assignments, inserting copies/loads.
1067 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1068 CCValAssign &VA = ArgLocs[i];
1069 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1070
1071 // Promote the value if needed.
1072 switch (VA.getLocInfo()) {
1073 default: assert(0 && "Unknown loc info!");
1074 case CCValAssign::Full: break;
1075 case CCValAssign::SExt:
1076 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1077 break;
1078 case CCValAssign::ZExt:
1079 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1080 break;
1081 case CCValAssign::AExt:
1082 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1083 break;
1084 }
1085
1086 if (VA.isRegLoc()) {
1087 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1088 } else {
1089 assert(VA.isMemLoc());
1090 if (StackPtr.Val == 0)
1091 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001092
1093 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1094 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001095 }
1096 }
1097
1098 // If the first argument is an sret pointer, remember it.
1099 bool isSRet = NumOps &&
1100 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
1101 ISD::ParamFlags::StructReturn);
1102
1103 if (!MemOpChains.empty())
1104 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1105 &MemOpChains[0], MemOpChains.size());
1106
1107 // Build a sequence of copy-to-reg nodes chained together with token chain
1108 // and flag operands which copy the outgoing args into registers.
1109 SDOperand InFlag;
1110 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1111 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1112 InFlag);
1113 InFlag = Chain.getValue(1);
1114 }
1115
1116 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1117 // GOT pointer.
1118 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1119 Subtarget->isPICStyleGOT()) {
1120 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1121 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1122 InFlag);
1123 InFlag = Chain.getValue(1);
1124 }
1125
1126 // If the callee is a GlobalAddress node (quite common, every direct call is)
1127 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1128 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1129 // We should use extra load for direct calls to dllimported functions in
1130 // non-JIT mode.
1131 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1132 getTargetMachine(), true))
1133 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1134 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1135 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1136
1137 // Returns a chain & a flag for retval copy to use.
1138 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1139 SmallVector<SDOperand, 8> Ops;
1140 Ops.push_back(Chain);
1141 Ops.push_back(Callee);
1142
1143 // Add argument registers to the end of the list so that they are known live
1144 // into the call.
1145 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1146 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1147 RegsToPass[i].second.getValueType()));
1148
1149 // Add an implicit use GOT pointer in EBX.
1150 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1151 Subtarget->isPICStyleGOT())
1152 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1153
1154 if (InFlag.Val)
1155 Ops.push_back(InFlag);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001156
1157 Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001158 InFlag = Chain.getValue(1);
1159
1160 // Create the CALLSEQ_END node.
1161 unsigned NumBytesForCalleeToPush = 0;
1162
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001163 if (CC == CallingConv::X86_StdCall ||
1164 (CC == CallingConv::Fast && PerformTailCallOpt)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001165 if (isVarArg)
1166 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1167 else
1168 NumBytesForCalleeToPush = NumBytes;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001169 assert(!(isVarArg && CC==CallingConv::Fast) &&
1170 "CallingConv::Fast does not support varargs.");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001171 } else {
1172 // If this is is a call to a struct-return function, the callee
1173 // pops the hidden struct pointer, so we have to push it back.
1174 // This is common for Darwin/X86, Linux & Mingw32 targets.
1175 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1176 }
Bill Wendling22f8deb2007-11-13 00:44:25 +00001177
1178 Chain = DAG.getCALLSEQ_END(Chain,
1179 DAG.getConstant(NumBytes, getPointerTy()),
1180 DAG.getConstant(NumBytesForCalleeToPush,
1181 getPointerTy()),
1182 InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001183 InFlag = Chain.getValue(1);
1184
1185 // Handle result values, copying them out of physregs into vregs that we
1186 // return.
1187 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1188}
1189
1190
1191//===----------------------------------------------------------------------===//
1192// FastCall Calling Convention implementation
1193//===----------------------------------------------------------------------===//
1194//
1195// The X86 'fastcall' calling convention passes up to two integer arguments in
1196// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1197// and requires that the callee pop its arguments off the stack (allowing proper
1198// tail calls), and has the same return value conventions as C calling convs.
1199//
1200// This calling convention always arranges for the callee pop value to be 8n+4
1201// bytes, which is needed for tail recursion elimination and stack alignment
1202// reasons.
1203SDOperand
1204X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1205 MachineFunction &MF = DAG.getMachineFunction();
1206 MachineFrameInfo *MFI = MF.getFrameInfo();
1207 SDOperand Root = Op.getOperand(0);
1208 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1209
1210 // Assign locations to all of the incoming arguments.
1211 SmallVector<CCValAssign, 16> ArgLocs;
1212 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1213 getTargetMachine(), ArgLocs);
1214 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1215
1216 SmallVector<SDOperand, 8> ArgValues;
1217 unsigned LastVal = ~0U;
1218 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1219 CCValAssign &VA = ArgLocs[i];
1220 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1221 // places.
1222 assert(VA.getValNo() != LastVal &&
1223 "Don't support value assigned to multiple locs yet");
1224 LastVal = VA.getValNo();
1225
1226 if (VA.isRegLoc()) {
1227 MVT::ValueType RegVT = VA.getLocVT();
1228 TargetRegisterClass *RC;
1229 if (RegVT == MVT::i32)
1230 RC = X86::GR32RegisterClass;
1231 else {
1232 assert(MVT::isVector(RegVT));
1233 RC = X86::VR128RegisterClass;
1234 }
1235
1236 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1237 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1238
1239 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1240 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1241 // right size.
1242 if (VA.getLocInfo() == CCValAssign::SExt)
1243 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1244 DAG.getValueType(VA.getValVT()));
1245 else if (VA.getLocInfo() == CCValAssign::ZExt)
1246 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1247 DAG.getValueType(VA.getValVT()));
1248
1249 if (VA.getLocInfo() != CCValAssign::Full)
1250 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1251
1252 ArgValues.push_back(ArgValue);
1253 } else {
1254 assert(VA.isMemLoc());
Rafael Espindolab53ef122007-09-21 14:55:38 +00001255 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001256 }
1257 }
1258
1259 ArgValues.push_back(Root);
1260
1261 unsigned StackSize = CCInfo.getNextStackOffset();
1262
1263 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1264 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001265 // arguments and the arguments after the retaddr has been pushed are
1266 // aligned.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 if ((StackSize & 7) == 0)
1268 StackSize += 4;
1269 }
1270
1271 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1272 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001273 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1274 BytesCallerReserves = 0;
1275
Anton Korobeynikove844e472007-08-15 17:12:32 +00001276 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1277 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001278
1279 // Return the new list of results.
1280 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1281 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1282}
1283
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001284SDOperand
1285X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1286 const SDOperand &StackPtr,
1287 const CCValAssign &VA,
1288 SDOperand Chain,
1289 SDOperand Arg) {
1290 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1291 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1292 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1293 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1294 if (Flags & ISD::ParamFlags::ByVal) {
1295 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1296 ISD::ParamFlags::ByValAlignOffs);
1297
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001298 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1299 ISD::ParamFlags::ByValSizeOffs;
1300
1301 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1302 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
Chris Lattnerdfb947d2007-11-24 07:07:01 +00001303 SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32);
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001304
Rafael Espindola80825902007-10-19 10:41:11 +00001305 return DAG.getMemcpy(Chain, PtrOff, Arg, SizeNode, AlignNode,
1306 AlwaysInline);
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001307 } else {
1308 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1309 }
1310}
1311
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001312SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1313 unsigned CC) {
1314 SDOperand Chain = Op.getOperand(0);
1315 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1316 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1317 SDOperand Callee = Op.getOperand(4);
1318
1319 // Analyze operands of the call, assigning locations to each operand.
1320 SmallVector<CCValAssign, 16> ArgLocs;
1321 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1322 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1323
1324 // Get a count of how many bytes are to be pushed on the stack.
1325 unsigned NumBytes = CCInfo.getNextStackOffset();
1326
1327 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1328 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001329 // arguments and the arguments after the retaddr has been pushed are
1330 // aligned.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001331 if ((NumBytes & 7) == 0)
1332 NumBytes += 4;
1333 }
1334
1335 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1336
1337 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1338 SmallVector<SDOperand, 8> MemOpChains;
1339
1340 SDOperand StackPtr;
1341
1342 // Walk the register/memloc assignments, inserting copies/loads.
1343 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1344 CCValAssign &VA = ArgLocs[i];
1345 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1346
1347 // Promote the value if needed.
1348 switch (VA.getLocInfo()) {
1349 default: assert(0 && "Unknown loc info!");
1350 case CCValAssign::Full: break;
1351 case CCValAssign::SExt:
1352 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1353 break;
1354 case CCValAssign::ZExt:
1355 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1356 break;
1357 case CCValAssign::AExt:
1358 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1359 break;
1360 }
1361
1362 if (VA.isRegLoc()) {
1363 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1364 } else {
1365 assert(VA.isMemLoc());
1366 if (StackPtr.Val == 0)
1367 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001368
1369 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1370 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001371 }
1372 }
1373
1374 if (!MemOpChains.empty())
1375 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1376 &MemOpChains[0], MemOpChains.size());
1377
1378 // Build a sequence of copy-to-reg nodes chained together with token chain
1379 // and flag operands which copy the outgoing args into registers.
1380 SDOperand InFlag;
1381 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1382 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1383 InFlag);
1384 InFlag = Chain.getValue(1);
1385 }
1386
1387 // If the callee is a GlobalAddress node (quite common, every direct call is)
1388 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1389 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1390 // We should use extra load for direct calls to dllimported functions in
1391 // non-JIT mode.
1392 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1393 getTargetMachine(), true))
1394 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1395 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1396 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1397
1398 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1399 // GOT pointer.
1400 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1401 Subtarget->isPICStyleGOT()) {
1402 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1403 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1404 InFlag);
1405 InFlag = Chain.getValue(1);
1406 }
1407
1408 // Returns a chain & a flag for retval copy to use.
1409 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1410 SmallVector<SDOperand, 8> Ops;
1411 Ops.push_back(Chain);
1412 Ops.push_back(Callee);
1413
1414 // Add argument registers to the end of the list so that they are known live
1415 // into the call.
1416 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1417 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1418 RegsToPass[i].second.getValueType()));
1419
1420 // Add an implicit use GOT pointer in EBX.
1421 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1422 Subtarget->isPICStyleGOT())
1423 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1424
1425 if (InFlag.Val)
1426 Ops.push_back(InFlag);
1427
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001428 assert(isTailCall==false && "no tail call here");
1429 Chain = DAG.getNode(X86ISD::CALL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001430 NodeTys, &Ops[0], Ops.size());
1431 InFlag = Chain.getValue(1);
1432
1433 // Returns a flag for retval copy to use.
1434 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1435 Ops.clear();
1436 Ops.push_back(Chain);
1437 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1438 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1439 Ops.push_back(InFlag);
1440 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1441 InFlag = Chain.getValue(1);
1442
1443 // Handle result values, copying them out of physregs into vregs that we
1444 // return.
1445 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1446}
1447
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001448//===----------------------------------------------------------------------===//
1449// Fast Calling Convention (tail call) implementation
1450//===----------------------------------------------------------------------===//
1451
1452// Like std call, callee cleans arguments, convention except that ECX is
1453// reserved for storing the tail called function address. Only 2 registers are
1454// free for argument passing (inreg). Tail call optimization is performed
1455// provided:
1456// * tailcallopt is enabled
1457// * caller/callee are fastcc
1458// * elf/pic is disabled OR
1459// * elf/pic enabled + callee is in module + callee has
1460// visibility protected or hidden
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001461// To keep the stack aligned according to platform abi the function
1462// GetAlignedArgumentStackSize ensures that argument delta is always multiples
1463// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001464// If a tail called function callee has more arguments than the caller the
1465// caller needs to make sure that there is room to move the RETADDR to. This is
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001466// achieved by reserving an area the size of the argument delta right after the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001467// original REtADDR, but before the saved framepointer or the spilled registers
1468// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1469// stack layout:
1470// arg1
1471// arg2
1472// RETADDR
1473// [ new RETADDR
1474// move area ]
1475// (possible EBP)
1476// ESI
1477// EDI
1478// local1 ..
1479
1480/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1481/// for a 16 byte align requirement.
1482unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1483 SelectionDAG& DAG) {
1484 if (PerformTailCallOpt) {
1485 MachineFunction &MF = DAG.getMachineFunction();
1486 const TargetMachine &TM = MF.getTarget();
1487 const TargetFrameInfo &TFI = *TM.getFrameInfo();
1488 unsigned StackAlignment = TFI.getStackAlignment();
1489 uint64_t AlignMask = StackAlignment - 1;
1490 int64_t Offset = StackSize;
1491 unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1492 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1493 // Number smaller than 12 so just add the difference.
1494 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1495 } else {
1496 // Mask out lower bits, add stackalignment once plus the 12 bytes.
1497 Offset = ((~AlignMask) & Offset) + StackAlignment +
1498 (StackAlignment-SlotSize);
1499 }
1500 StackSize = Offset;
1501 }
1502 return StackSize;
1503}
1504
1505/// IsEligibleForTailCallElimination - Check to see whether the next instruction
Evan Chenge7a87392007-11-02 01:26:22 +00001506/// following the call is a return. A function is eligible if caller/callee
1507/// calling conventions match, currently only fastcc supports tail calls, and
1508/// the function CALL is immediatly followed by a RET.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001509bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1510 SDOperand Ret,
1511 SelectionDAG& DAG) const {
Evan Chenge7a87392007-11-02 01:26:22 +00001512 if (!PerformTailCallOpt)
1513 return false;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001514
1515 // Check whether CALL node immediatly preceeds the RET node and whether the
1516 // return uses the result of the node or is a void return.
Evan Chenge7a87392007-11-02 01:26:22 +00001517 unsigned NumOps = Ret.getNumOperands();
1518 if ((NumOps == 1 &&
1519 (Ret.getOperand(0) == SDOperand(Call.Val,1) ||
1520 Ret.getOperand(0) == SDOperand(Call.Val,0))) ||
Evan Cheng26c0e982007-11-02 17:45:40 +00001521 (NumOps > 1 &&
Evan Chenge7a87392007-11-02 01:26:22 +00001522 Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1523 Ret.getOperand(1) == SDOperand(Call.Val,0))) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001524 MachineFunction &MF = DAG.getMachineFunction();
1525 unsigned CallerCC = MF.getFunction()->getCallingConv();
1526 unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1527 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1528 SDOperand Callee = Call.getOperand(4);
1529 // On elf/pic %ebx needs to be livein.
Evan Chenge7a87392007-11-02 01:26:22 +00001530 if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1531 !Subtarget->isPICStyleGOT())
1532 return true;
1533
1534 // Can only do local tail calls with PIC.
1535 GlobalValue * GV = 0;
1536 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1537 if(G != 0 &&
1538 (GV = G->getGlobal()) &&
1539 (GV->hasHiddenVisibility() || GV->hasProtectedVisibility()))
1540 return true;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001541 }
1542 }
Evan Chenge7a87392007-11-02 01:26:22 +00001543
1544 return false;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001545}
1546
1547SDOperand X86TargetLowering::LowerX86_TailCallTo(SDOperand Op,
1548 SelectionDAG &DAG,
1549 unsigned CC) {
1550 SDOperand Chain = Op.getOperand(0);
1551 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1552 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1553 SDOperand Callee = Op.getOperand(4);
1554 bool is64Bit = Subtarget->is64Bit();
1555
1556 assert(isTailCall && PerformTailCallOpt && "Should only emit tail calls.");
1557
1558 // Analyze operands of the call, assigning locations to each operand.
1559 SmallVector<CCValAssign, 16> ArgLocs;
1560 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1561 if (is64Bit)
1562 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1563 else
1564 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1565
1566
1567 // Lower arguments at fp - stackoffset + fpdiff.
1568 MachineFunction &MF = DAG.getMachineFunction();
1569
1570 unsigned NumBytesToBePushed =
1571 GetAlignedArgumentStackSize(CCInfo.getNextStackOffset(), DAG);
1572
1573 unsigned NumBytesCallerPushed =
1574 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1575 int FPDiff = NumBytesCallerPushed - NumBytesToBePushed;
1576
1577 // Set the delta of movement of the returnaddr stackslot.
1578 // But only set if delta is greater than previous delta.
1579 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1580 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1581
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001582 Chain = DAG.
1583 getCALLSEQ_START(Chain, DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1584
1585 // Adjust the Return address stack slot.
1586 SDOperand RetAddrFrIdx, NewRetAddrFrIdx;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001587 if (FPDiff) {
1588 MVT::ValueType VT = is64Bit ? MVT::i64 : MVT::i32;
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001589 RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1590 // Load the "old" Return address.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001591 RetAddrFrIdx =
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001592 DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1593 // Calculate the new stack slot for the return address.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001594 int SlotSize = is64Bit ? 8 : 4;
1595 int NewReturnAddrFI =
1596 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001597 NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1598 Chain = SDOperand(RetAddrFrIdx.Val, 1);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001599 }
1600
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001601 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1602 SmallVector<SDOperand, 8> MemOpChains;
1603 SmallVector<SDOperand, 8> MemOpChains2;
1604 SDOperand FramePtr, StackPtr;
1605 SDOperand PtrOff;
1606 SDOperand FIN;
1607 int FI = 0;
1608
1609 // Walk the register/memloc assignments, inserting copies/loads. Lower
1610 // arguments first to the stack slot where they would normally - in case of a
1611 // normal function call - be.
1612 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1613 CCValAssign &VA = ArgLocs[i];
1614 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1615
1616 // Promote the value if needed.
1617 switch (VA.getLocInfo()) {
1618 default: assert(0 && "Unknown loc info!");
1619 case CCValAssign::Full: break;
1620 case CCValAssign::SExt:
1621 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1622 break;
1623 case CCValAssign::ZExt:
1624 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1625 break;
1626 case CCValAssign::AExt:
1627 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1628 break;
1629 }
1630
1631 if (VA.isRegLoc()) {
1632 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1633 } else {
1634 assert(VA.isMemLoc());
1635 if (StackPtr.Val == 0)
1636 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1637
1638 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1639 Arg));
1640 }
1641 }
1642
1643 if (!MemOpChains.empty())
1644 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1645 &MemOpChains[0], MemOpChains.size());
1646
1647 // Build a sequence of copy-to-reg nodes chained together with token chain
1648 // and flag operands which copy the outgoing args into registers.
1649 SDOperand InFlag;
1650 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1651 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1652 InFlag);
1653 InFlag = Chain.getValue(1);
1654 }
1655 InFlag = SDOperand();
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001656
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001657 // Copy from stack slots to stack slot of a tail called function. This needs
1658 // to be done because if we would lower the arguments directly to their real
1659 // stack slot we might end up overwriting each other.
1660 // TODO: To make this more efficient (sometimes saving a store/load) we could
1661 // analyse the arguments and emit this store/load/store sequence only for
1662 // arguments which would be overwritten otherwise.
1663 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1664 CCValAssign &VA = ArgLocs[i];
1665 if (!VA.isRegLoc()) {
1666 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1667 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1668
1669 // Get source stack slot.
1670 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1671 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1672 // Create frame index.
1673 int32_t Offset = VA.getLocMemOffset()+FPDiff;
1674 uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1675 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1676 FIN = DAG.getFrameIndex(FI, MVT::i32);
1677 if (Flags & ISD::ParamFlags::ByVal) {
1678 // Copy relative to framepointer.
1679 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1680 ISD::ParamFlags::ByValAlignOffs);
1681
1682 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1683 ISD::ParamFlags::ByValSizeOffs;
1684
1685 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1686 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
Arnold Schwaighofer97794942007-11-10 10:48:01 +00001687 SDOperand AlwaysInline = DAG.getConstant(1, MVT::i1);
1688
1689 MemOpChains2.push_back(DAG.getMemcpy(Chain, FIN, PtrOff, SizeNode,
1690 AlignNode,AlwaysInline));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001691 } else {
1692 SDOperand LoadedArg = DAG.getLoad(VA.getValVT(), Chain, PtrOff, NULL,0);
1693 // Store relative to framepointer.
1694 MemOpChains2.push_back(DAG.getStore(Chain, LoadedArg, FIN, NULL, 0));
1695 }
1696 }
1697 }
1698
1699 if (!MemOpChains2.empty())
1700 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1701 &MemOpChains2[0], MemOpChains.size());
1702
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001703 // Store the return address to the appropriate stack slot.
1704 if (FPDiff)
1705 Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1706
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001707 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1708 // GOT pointer.
1709 // Does not work with tail call since ebx is not restored correctly by
1710 // tailcaller. TODO: at least for x86 - verify for x86-64
1711
1712 // If the callee is a GlobalAddress node (quite common, every direct call is)
1713 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1714 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1715 // We should use extra load for direct calls to dllimported functions in
1716 // non-JIT mode.
1717 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1718 getTargetMachine(), true))
1719 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1720 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1721 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1722 else {
1723 assert(Callee.getOpcode() == ISD::LOAD &&
1724 "Function destination must be loaded into virtual register");
1725 unsigned Opc = is64Bit ? X86::R9 : X86::ECX;
1726
1727 Chain = DAG.getCopyToReg(Chain,
1728 DAG.getRegister(Opc, getPointerTy()) ,
1729 Callee,InFlag);
1730 Callee = DAG.getRegister(Opc, getPointerTy());
1731 // Add register as live out.
1732 DAG.getMachineFunction().addLiveOut(Opc);
1733 }
1734
1735 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1736 SmallVector<SDOperand, 8> Ops;
1737
1738 Ops.push_back(Chain);
1739 Ops.push_back(DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1740 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1741 if (InFlag.Val)
1742 Ops.push_back(InFlag);
1743 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1744 InFlag = Chain.getValue(1);
1745
1746 // Returns a chain & a flag for retval copy to use.
1747 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1748 Ops.clear();
1749 Ops.push_back(Chain);
1750 Ops.push_back(Callee);
1751 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1752 // Add argument registers to the end of the list so that they are known live
1753 // into the call.
1754 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1755 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1756 RegsToPass[i].second.getValueType()));
1757 if (InFlag.Val)
1758 Ops.push_back(InFlag);
1759 assert(InFlag.Val &&
1760 "Flag must be set. Depend on flag being set in LowerRET");
1761 Chain = DAG.getNode(X86ISD::TAILCALL,
1762 Op.Val->getVTList(), &Ops[0], Ops.size());
1763
1764 return SDOperand(Chain.Val, Op.ResNo);
1765}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001766
1767//===----------------------------------------------------------------------===//
1768// X86-64 C Calling Convention implementation
1769//===----------------------------------------------------------------------===//
1770
1771SDOperand
1772X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1773 MachineFunction &MF = DAG.getMachineFunction();
1774 MachineFrameInfo *MFI = MF.getFrameInfo();
1775 SDOperand Root = Op.getOperand(0);
1776 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001777 unsigned CC= MF.getFunction()->getCallingConv();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001778
1779 static const unsigned GPR64ArgRegs[] = {
1780 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1781 };
1782 static const unsigned XMMArgRegs[] = {
1783 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1784 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1785 };
1786
1787
1788 // Assign locations to all of the incoming arguments.
1789 SmallVector<CCValAssign, 16> ArgLocs;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001790 CCState CCInfo(CC, isVarArg,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001791 getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001792 if (CC == CallingConv::Fast && PerformTailCallOpt)
1793 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_TailCall);
1794 else
1795 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001796
1797 SmallVector<SDOperand, 8> ArgValues;
1798 unsigned LastVal = ~0U;
1799 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1800 CCValAssign &VA = ArgLocs[i];
1801 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1802 // places.
1803 assert(VA.getValNo() != LastVal &&
1804 "Don't support value assigned to multiple locs yet");
1805 LastVal = VA.getValNo();
1806
1807 if (VA.isRegLoc()) {
1808 MVT::ValueType RegVT = VA.getLocVT();
1809 TargetRegisterClass *RC;
1810 if (RegVT == MVT::i32)
1811 RC = X86::GR32RegisterClass;
1812 else if (RegVT == MVT::i64)
1813 RC = X86::GR64RegisterClass;
1814 else if (RegVT == MVT::f32)
1815 RC = X86::FR32RegisterClass;
1816 else if (RegVT == MVT::f64)
1817 RC = X86::FR64RegisterClass;
1818 else {
1819 assert(MVT::isVector(RegVT));
1820 if (MVT::getSizeInBits(RegVT) == 64) {
1821 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1822 RegVT = MVT::i64;
1823 } else
1824 RC = X86::VR128RegisterClass;
1825 }
1826
1827 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1828 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1829
1830 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1831 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1832 // right size.
1833 if (VA.getLocInfo() == CCValAssign::SExt)
1834 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1835 DAG.getValueType(VA.getValVT()));
1836 else if (VA.getLocInfo() == CCValAssign::ZExt)
1837 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1838 DAG.getValueType(VA.getValVT()));
1839
1840 if (VA.getLocInfo() != CCValAssign::Full)
1841 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1842
1843 // Handle MMX values passed in GPRs.
1844 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1845 MVT::getSizeInBits(RegVT) == 64)
1846 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1847
1848 ArgValues.push_back(ArgValue);
1849 } else {
1850 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001851 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001852 }
1853 }
1854
1855 unsigned StackSize = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001856 if (CC==CallingConv::Fast)
1857 StackSize =GetAlignedArgumentStackSize(StackSize, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001858
1859 // If the function takes variable number of arguments, make a frame index for
1860 // the start of the first vararg value... for expansion of llvm.va_start.
1861 if (isVarArg) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001862 assert(CC!=CallingConv::Fast
1863 && "Var arg not supported with calling convention fastcc");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001864 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1865 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1866
1867 // For X86-64, if there are vararg parameters that are passed via
1868 // registers, then we must store them to their spots on the stack so they
1869 // may be loaded by deferencing the result of va_next.
1870 VarArgsGPOffset = NumIntRegs * 8;
1871 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1872 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1873 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1874
1875 // Store the integer parameter registers.
1876 SmallVector<SDOperand, 8> MemOps;
1877 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1878 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1879 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1880 for (; NumIntRegs != 6; ++NumIntRegs) {
1881 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1882 X86::GR64RegisterClass);
1883 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1884 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1885 MemOps.push_back(Store);
1886 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1887 DAG.getConstant(8, getPointerTy()));
1888 }
1889
1890 // Now store the XMM (fp + vector) parameter registers.
1891 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1892 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1893 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1894 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1895 X86::VR128RegisterClass);
1896 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1897 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1898 MemOps.push_back(Store);
1899 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1900 DAG.getConstant(16, getPointerTy()));
1901 }
1902 if (!MemOps.empty())
1903 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1904 &MemOps[0], MemOps.size());
1905 }
1906
1907 ArgValues.push_back(Root);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001908 // Tail call convention (fastcc) needs callee pop.
Evan Cheng778fa0f2007-10-14 10:09:39 +00001909 if (CC == CallingConv::Fast && PerformTailCallOpt) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001910 BytesToPopOnReturn = StackSize; // Callee pops everything.
1911 BytesCallerReserves = 0;
1912 } else {
1913 BytesToPopOnReturn = 0; // Callee pops nothing.
1914 BytesCallerReserves = StackSize;
1915 }
Anton Korobeynikove844e472007-08-15 17:12:32 +00001916 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1917 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1918
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001919 // Return the new list of results.
1920 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1921 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1922}
1923
1924SDOperand
1925X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1926 unsigned CC) {
1927 SDOperand Chain = Op.getOperand(0);
1928 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001929 SDOperand Callee = Op.getOperand(4);
1930
1931 // Analyze operands of the call, assigning locations to each operand.
1932 SmallVector<CCValAssign, 16> ArgLocs;
1933 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
Evan Cheng778fa0f2007-10-14 10:09:39 +00001934 if (CC==CallingConv::Fast && PerformTailCallOpt)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001935 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1936 else
1937 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001938
1939 // Get a count of how many bytes are to be pushed on the stack.
1940 unsigned NumBytes = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001941 if (CC == CallingConv::Fast)
1942 NumBytes = GetAlignedArgumentStackSize(NumBytes,DAG);
1943
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001944 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1945
1946 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1947 SmallVector<SDOperand, 8> MemOpChains;
1948
1949 SDOperand StackPtr;
1950
1951 // Walk the register/memloc assignments, inserting copies/loads.
1952 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1953 CCValAssign &VA = ArgLocs[i];
1954 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1955
1956 // Promote the value if needed.
1957 switch (VA.getLocInfo()) {
1958 default: assert(0 && "Unknown loc info!");
1959 case CCValAssign::Full: break;
1960 case CCValAssign::SExt:
1961 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1962 break;
1963 case CCValAssign::ZExt:
1964 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1965 break;
1966 case CCValAssign::AExt:
1967 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1968 break;
1969 }
1970
1971 if (VA.isRegLoc()) {
1972 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1973 } else {
1974 assert(VA.isMemLoc());
1975 if (StackPtr.Val == 0)
1976 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00001977
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001978 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1979 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001980 }
1981 }
1982
1983 if (!MemOpChains.empty())
1984 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1985 &MemOpChains[0], MemOpChains.size());
1986
1987 // Build a sequence of copy-to-reg nodes chained together with token chain
1988 // and flag operands which copy the outgoing args into registers.
1989 SDOperand InFlag;
1990 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1991 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1992 InFlag);
1993 InFlag = Chain.getValue(1);
1994 }
1995
1996 if (isVarArg) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001997 assert ( CallingConv::Fast != CC &&
1998 "Var args not supported with calling convention fastcc");
1999
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002000 // From AMD64 ABI document:
2001 // For calls that may call functions that use varargs or stdargs
2002 // (prototype-less calls or calls to functions containing ellipsis (...) in
2003 // the declaration) %al is used as hidden argument to specify the number
2004 // of SSE registers used. The contents of %al do not need to match exactly
2005 // the number of registers, but must be an ubound on the number of SSE
2006 // registers used and is in the range 0 - 8 inclusive.
2007
2008 // Count the number of XMM registers allocated.
2009 static const unsigned XMMArgRegs[] = {
2010 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2011 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2012 };
2013 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2014
2015 Chain = DAG.getCopyToReg(Chain, X86::AL,
2016 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2017 InFlag = Chain.getValue(1);
2018 }
2019
2020 // If the callee is a GlobalAddress node (quite common, every direct call is)
2021 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
2022 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2023 // We should use extra load for direct calls to dllimported functions in
2024 // non-JIT mode.
2025 if (getTargetMachine().getCodeModel() != CodeModel::Large
2026 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
2027 getTargetMachine(), true))
2028 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
2029 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2030 if (getTargetMachine().getCodeModel() != CodeModel::Large)
2031 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
2032
2033 // Returns a chain & a flag for retval copy to use.
2034 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2035 SmallVector<SDOperand, 8> Ops;
2036 Ops.push_back(Chain);
2037 Ops.push_back(Callee);
2038
2039 // Add argument registers to the end of the list so that they are known live
2040 // into the call.
2041 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2042 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2043 RegsToPass[i].second.getValueType()));
2044
2045 if (InFlag.Val)
2046 Ops.push_back(InFlag);
2047
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002048 Chain = DAG.getNode(X86ISD::CALL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002049 NodeTys, &Ops[0], Ops.size());
2050 InFlag = Chain.getValue(1);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002051 int NumBytesForCalleeToPush = 0;
Evan Cheng778fa0f2007-10-14 10:09:39 +00002052 if (CC==CallingConv::Fast && PerformTailCallOpt) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002053 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002054 } else {
2055 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2056 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002057 // Returns a flag for retval copy to use.
2058 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2059 Ops.clear();
2060 Ops.push_back(Chain);
2061 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002062 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002063 Ops.push_back(InFlag);
2064 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
2065 InFlag = Chain.getValue(1);
2066
2067 // Handle result values, copying them out of physregs into vregs that we
2068 // return.
2069 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
2070}
2071
2072
2073//===----------------------------------------------------------------------===//
2074// Other Lowering Hooks
2075//===----------------------------------------------------------------------===//
2076
2077
2078SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00002079 MachineFunction &MF = DAG.getMachineFunction();
2080 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2081 int ReturnAddrIndex = FuncInfo->getRAIndex();
2082
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002083 if (ReturnAddrIndex == 0) {
2084 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002085 if (Subtarget->is64Bit())
2086 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2087 else
2088 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00002089
2090 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002091 }
2092
2093 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2094}
2095
2096
2097
2098/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2099/// specific condition code. It returns a false if it cannot do a direct
2100/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
2101/// needed.
2102static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2103 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2104 SelectionDAG &DAG) {
2105 X86CC = X86::COND_INVALID;
2106 if (!isFP) {
2107 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2108 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2109 // X > -1 -> X == 0, jump !sign.
2110 RHS = DAG.getConstant(0, RHS.getValueType());
2111 X86CC = X86::COND_NS;
2112 return true;
2113 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2114 // X < 0 -> X == 0, jump on sign.
2115 X86CC = X86::COND_S;
2116 return true;
Dan Gohman37b34262007-09-17 14:49:27 +00002117 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
2118 // X < 1 -> X <= 0
2119 RHS = DAG.getConstant(0, RHS.getValueType());
2120 X86CC = X86::COND_LE;
2121 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002122 }
2123 }
2124
2125 switch (SetCCOpcode) {
2126 default: break;
2127 case ISD::SETEQ: X86CC = X86::COND_E; break;
2128 case ISD::SETGT: X86CC = X86::COND_G; break;
2129 case ISD::SETGE: X86CC = X86::COND_GE; break;
2130 case ISD::SETLT: X86CC = X86::COND_L; break;
2131 case ISD::SETLE: X86CC = X86::COND_LE; break;
2132 case ISD::SETNE: X86CC = X86::COND_NE; break;
2133 case ISD::SETULT: X86CC = X86::COND_B; break;
2134 case ISD::SETUGT: X86CC = X86::COND_A; break;
2135 case ISD::SETULE: X86CC = X86::COND_BE; break;
2136 case ISD::SETUGE: X86CC = X86::COND_AE; break;
2137 }
2138 } else {
2139 // On a floating point condition, the flags are set as follows:
2140 // ZF PF CF op
2141 // 0 | 0 | 0 | X > Y
2142 // 0 | 0 | 1 | X < Y
2143 // 1 | 0 | 0 | X == Y
2144 // 1 | 1 | 1 | unordered
2145 bool Flip = false;
2146 switch (SetCCOpcode) {
2147 default: break;
2148 case ISD::SETUEQ:
2149 case ISD::SETEQ: X86CC = X86::COND_E; break;
2150 case ISD::SETOLT: Flip = true; // Fallthrough
2151 case ISD::SETOGT:
2152 case ISD::SETGT: X86CC = X86::COND_A; break;
2153 case ISD::SETOLE: Flip = true; // Fallthrough
2154 case ISD::SETOGE:
2155 case ISD::SETGE: X86CC = X86::COND_AE; break;
2156 case ISD::SETUGT: Flip = true; // Fallthrough
2157 case ISD::SETULT:
2158 case ISD::SETLT: X86CC = X86::COND_B; break;
2159 case ISD::SETUGE: Flip = true; // Fallthrough
2160 case ISD::SETULE:
2161 case ISD::SETLE: X86CC = X86::COND_BE; break;
2162 case ISD::SETONE:
2163 case ISD::SETNE: X86CC = X86::COND_NE; break;
2164 case ISD::SETUO: X86CC = X86::COND_P; break;
2165 case ISD::SETO: X86CC = X86::COND_NP; break;
2166 }
2167 if (Flip)
2168 std::swap(LHS, RHS);
2169 }
2170
2171 return X86CC != X86::COND_INVALID;
2172}
2173
2174/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2175/// code. Current x86 isa includes the following FP cmov instructions:
2176/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2177static bool hasFPCMov(unsigned X86CC) {
2178 switch (X86CC) {
2179 default:
2180 return false;
2181 case X86::COND_B:
2182 case X86::COND_BE:
2183 case X86::COND_E:
2184 case X86::COND_P:
2185 case X86::COND_A:
2186 case X86::COND_AE:
2187 case X86::COND_NE:
2188 case X86::COND_NP:
2189 return true;
2190 }
2191}
2192
2193/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
2194/// true if Op is undef or if its value falls within the specified range (L, H].
2195static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2196 if (Op.getOpcode() == ISD::UNDEF)
2197 return true;
2198
2199 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2200 return (Val >= Low && Val < Hi);
2201}
2202
2203/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
2204/// true if Op is undef or if its value equal to the specified value.
2205static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2206 if (Op.getOpcode() == ISD::UNDEF)
2207 return true;
2208 return cast<ConstantSDNode>(Op)->getValue() == Val;
2209}
2210
2211/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2212/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2213bool X86::isPSHUFDMask(SDNode *N) {
2214 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2215
Dan Gohman7dc19012007-08-02 21:17:01 +00002216 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002217 return false;
2218
2219 // Check if the value doesn't reference the second vector.
2220 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2221 SDOperand Arg = N->getOperand(i);
2222 if (Arg.getOpcode() == ISD::UNDEF) continue;
2223 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00002224 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002225 return false;
2226 }
2227
2228 return true;
2229}
2230
2231/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2232/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2233bool X86::isPSHUFHWMask(SDNode *N) {
2234 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2235
2236 if (N->getNumOperands() != 8)
2237 return false;
2238
2239 // Lower quadword copied in order.
2240 for (unsigned i = 0; i != 4; ++i) {
2241 SDOperand Arg = N->getOperand(i);
2242 if (Arg.getOpcode() == ISD::UNDEF) continue;
2243 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2244 if (cast<ConstantSDNode>(Arg)->getValue() != i)
2245 return false;
2246 }
2247
2248 // Upper quadword shuffled.
2249 for (unsigned i = 4; i != 8; ++i) {
2250 SDOperand Arg = N->getOperand(i);
2251 if (Arg.getOpcode() == ISD::UNDEF) continue;
2252 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2253 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2254 if (Val < 4 || Val > 7)
2255 return false;
2256 }
2257
2258 return true;
2259}
2260
2261/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2262/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2263bool X86::isPSHUFLWMask(SDNode *N) {
2264 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2265
2266 if (N->getNumOperands() != 8)
2267 return false;
2268
2269 // Upper quadword copied in order.
2270 for (unsigned i = 4; i != 8; ++i)
2271 if (!isUndefOrEqual(N->getOperand(i), i))
2272 return false;
2273
2274 // Lower quadword shuffled.
2275 for (unsigned i = 0; i != 4; ++i)
2276 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2277 return false;
2278
2279 return true;
2280}
2281
2282/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2283/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2284static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2285 if (NumElems != 2 && NumElems != 4) return false;
2286
2287 unsigned Half = NumElems / 2;
2288 for (unsigned i = 0; i < Half; ++i)
2289 if (!isUndefOrInRange(Elems[i], 0, NumElems))
2290 return false;
2291 for (unsigned i = Half; i < NumElems; ++i)
2292 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2293 return false;
2294
2295 return true;
2296}
2297
2298bool X86::isSHUFPMask(SDNode *N) {
2299 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2300 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2301}
2302
2303/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2304/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2305/// half elements to come from vector 1 (which would equal the dest.) and
2306/// the upper half to come from vector 2.
2307static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2308 if (NumOps != 2 && NumOps != 4) return false;
2309
2310 unsigned Half = NumOps / 2;
2311 for (unsigned i = 0; i < Half; ++i)
2312 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2313 return false;
2314 for (unsigned i = Half; i < NumOps; ++i)
2315 if (!isUndefOrInRange(Ops[i], 0, NumOps))
2316 return false;
2317 return true;
2318}
2319
2320static bool isCommutedSHUFP(SDNode *N) {
2321 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2322 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2323}
2324
2325/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2326/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2327bool X86::isMOVHLPSMask(SDNode *N) {
2328 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2329
2330 if (N->getNumOperands() != 4)
2331 return false;
2332
2333 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2334 return isUndefOrEqual(N->getOperand(0), 6) &&
2335 isUndefOrEqual(N->getOperand(1), 7) &&
2336 isUndefOrEqual(N->getOperand(2), 2) &&
2337 isUndefOrEqual(N->getOperand(3), 3);
2338}
2339
2340/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2341/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2342/// <2, 3, 2, 3>
2343bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2344 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2345
2346 if (N->getNumOperands() != 4)
2347 return false;
2348
2349 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2350 return isUndefOrEqual(N->getOperand(0), 2) &&
2351 isUndefOrEqual(N->getOperand(1), 3) &&
2352 isUndefOrEqual(N->getOperand(2), 2) &&
2353 isUndefOrEqual(N->getOperand(3), 3);
2354}
2355
2356/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2357/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2358bool X86::isMOVLPMask(SDNode *N) {
2359 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2360
2361 unsigned NumElems = N->getNumOperands();
2362 if (NumElems != 2 && NumElems != 4)
2363 return false;
2364
2365 for (unsigned i = 0; i < NumElems/2; ++i)
2366 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2367 return false;
2368
2369 for (unsigned i = NumElems/2; i < NumElems; ++i)
2370 if (!isUndefOrEqual(N->getOperand(i), i))
2371 return false;
2372
2373 return true;
2374}
2375
2376/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2377/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2378/// and MOVLHPS.
2379bool X86::isMOVHPMask(SDNode *N) {
2380 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2381
2382 unsigned NumElems = N->getNumOperands();
2383 if (NumElems != 2 && NumElems != 4)
2384 return false;
2385
2386 for (unsigned i = 0; i < NumElems/2; ++i)
2387 if (!isUndefOrEqual(N->getOperand(i), i))
2388 return false;
2389
2390 for (unsigned i = 0; i < NumElems/2; ++i) {
2391 SDOperand Arg = N->getOperand(i + NumElems/2);
2392 if (!isUndefOrEqual(Arg, i + NumElems))
2393 return false;
2394 }
2395
2396 return true;
2397}
2398
2399/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2400/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2401bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2402 bool V2IsSplat = false) {
2403 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2404 return false;
2405
2406 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2407 SDOperand BitI = Elts[i];
2408 SDOperand BitI1 = Elts[i+1];
2409 if (!isUndefOrEqual(BitI, j))
2410 return false;
2411 if (V2IsSplat) {
2412 if (isUndefOrEqual(BitI1, NumElts))
2413 return false;
2414 } else {
2415 if (!isUndefOrEqual(BitI1, j + NumElts))
2416 return false;
2417 }
2418 }
2419
2420 return true;
2421}
2422
2423bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2424 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2425 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2426}
2427
2428/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2429/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2430bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2431 bool V2IsSplat = false) {
2432 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2433 return false;
2434
2435 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2436 SDOperand BitI = Elts[i];
2437 SDOperand BitI1 = Elts[i+1];
2438 if (!isUndefOrEqual(BitI, j + NumElts/2))
2439 return false;
2440 if (V2IsSplat) {
2441 if (isUndefOrEqual(BitI1, NumElts))
2442 return false;
2443 } else {
2444 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2445 return false;
2446 }
2447 }
2448
2449 return true;
2450}
2451
2452bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2453 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2454 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2455}
2456
2457/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2458/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2459/// <0, 0, 1, 1>
2460bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2461 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2462
2463 unsigned NumElems = N->getNumOperands();
2464 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2465 return false;
2466
2467 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2468 SDOperand BitI = N->getOperand(i);
2469 SDOperand BitI1 = N->getOperand(i+1);
2470
2471 if (!isUndefOrEqual(BitI, j))
2472 return false;
2473 if (!isUndefOrEqual(BitI1, j))
2474 return false;
2475 }
2476
2477 return true;
2478}
2479
2480/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2481/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2482/// <2, 2, 3, 3>
2483bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2484 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2485
2486 unsigned NumElems = N->getNumOperands();
2487 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2488 return false;
2489
2490 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2491 SDOperand BitI = N->getOperand(i);
2492 SDOperand BitI1 = N->getOperand(i + 1);
2493
2494 if (!isUndefOrEqual(BitI, j))
2495 return false;
2496 if (!isUndefOrEqual(BitI1, j))
2497 return false;
2498 }
2499
2500 return true;
2501}
2502
2503/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2504/// specifies a shuffle of elements that is suitable for input to MOVSS,
2505/// MOVSD, and MOVD, i.e. setting the lowest element.
2506static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
Evan Cheng62cdc642007-12-06 22:14:22 +00002507 if (NumElts != 2 && NumElts != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002508 return false;
2509
2510 if (!isUndefOrEqual(Elts[0], NumElts))
2511 return false;
2512
2513 for (unsigned i = 1; i < NumElts; ++i) {
2514 if (!isUndefOrEqual(Elts[i], i))
2515 return false;
2516 }
2517
2518 return true;
2519}
2520
2521bool X86::isMOVLMask(SDNode *N) {
2522 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2523 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2524}
2525
2526/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2527/// of what x86 movss want. X86 movs requires the lowest element to be lowest
2528/// element of vector 2 and the other elements to come from vector 1 in order.
2529static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2530 bool V2IsSplat = false,
2531 bool V2IsUndef = false) {
2532 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2533 return false;
2534
2535 if (!isUndefOrEqual(Ops[0], 0))
2536 return false;
2537
2538 for (unsigned i = 1; i < NumOps; ++i) {
2539 SDOperand Arg = Ops[i];
2540 if (!(isUndefOrEqual(Arg, i+NumOps) ||
2541 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2542 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2543 return false;
2544 }
2545
2546 return true;
2547}
2548
2549static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2550 bool V2IsUndef = false) {
2551 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2552 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2553 V2IsSplat, V2IsUndef);
2554}
2555
2556/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2557/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2558bool X86::isMOVSHDUPMask(SDNode *N) {
2559 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2560
2561 if (N->getNumOperands() != 4)
2562 return false;
2563
2564 // Expect 1, 1, 3, 3
2565 for (unsigned i = 0; i < 2; ++i) {
2566 SDOperand Arg = N->getOperand(i);
2567 if (Arg.getOpcode() == ISD::UNDEF) continue;
2568 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2569 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2570 if (Val != 1) return false;
2571 }
2572
2573 bool HasHi = false;
2574 for (unsigned i = 2; i < 4; ++i) {
2575 SDOperand Arg = N->getOperand(i);
2576 if (Arg.getOpcode() == ISD::UNDEF) continue;
2577 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2578 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2579 if (Val != 3) return false;
2580 HasHi = true;
2581 }
2582
2583 // Don't use movshdup if it can be done with a shufps.
2584 return HasHi;
2585}
2586
2587/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2588/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2589bool X86::isMOVSLDUPMask(SDNode *N) {
2590 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2591
2592 if (N->getNumOperands() != 4)
2593 return false;
2594
2595 // Expect 0, 0, 2, 2
2596 for (unsigned i = 0; i < 2; ++i) {
2597 SDOperand Arg = N->getOperand(i);
2598 if (Arg.getOpcode() == ISD::UNDEF) continue;
2599 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2600 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2601 if (Val != 0) return false;
2602 }
2603
2604 bool HasHi = false;
2605 for (unsigned i = 2; i < 4; ++i) {
2606 SDOperand Arg = N->getOperand(i);
2607 if (Arg.getOpcode() == ISD::UNDEF) continue;
2608 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2609 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2610 if (Val != 2) return false;
2611 HasHi = true;
2612 }
2613
2614 // Don't use movshdup if it can be done with a shufps.
2615 return HasHi;
2616}
2617
2618/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2619/// specifies a identity operation on the LHS or RHS.
2620static bool isIdentityMask(SDNode *N, bool RHS = false) {
2621 unsigned NumElems = N->getNumOperands();
2622 for (unsigned i = 0; i < NumElems; ++i)
2623 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2624 return false;
2625 return true;
2626}
2627
2628/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2629/// a splat of a single element.
2630static bool isSplatMask(SDNode *N) {
2631 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2632
2633 // This is a splat operation if each element of the permute is the same, and
2634 // if the value doesn't reference the second vector.
2635 unsigned NumElems = N->getNumOperands();
2636 SDOperand ElementBase;
2637 unsigned i = 0;
2638 for (; i != NumElems; ++i) {
2639 SDOperand Elt = N->getOperand(i);
2640 if (isa<ConstantSDNode>(Elt)) {
2641 ElementBase = Elt;
2642 break;
2643 }
2644 }
2645
2646 if (!ElementBase.Val)
2647 return false;
2648
2649 for (; i != NumElems; ++i) {
2650 SDOperand Arg = N->getOperand(i);
2651 if (Arg.getOpcode() == ISD::UNDEF) continue;
2652 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2653 if (Arg != ElementBase) return false;
2654 }
2655
2656 // Make sure it is a splat of the first vector operand.
2657 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2658}
2659
2660/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2661/// a splat of a single element and it's a 2 or 4 element mask.
2662bool X86::isSplatMask(SDNode *N) {
2663 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2664
2665 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2666 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2667 return false;
2668 return ::isSplatMask(N);
2669}
2670
2671/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2672/// specifies a splat of zero element.
2673bool X86::isSplatLoMask(SDNode *N) {
2674 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2675
2676 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2677 if (!isUndefOrEqual(N->getOperand(i), 0))
2678 return false;
2679 return true;
2680}
2681
2682/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2683/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2684/// instructions.
2685unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2686 unsigned NumOperands = N->getNumOperands();
2687 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2688 unsigned Mask = 0;
2689 for (unsigned i = 0; i < NumOperands; ++i) {
2690 unsigned Val = 0;
2691 SDOperand Arg = N->getOperand(NumOperands-i-1);
2692 if (Arg.getOpcode() != ISD::UNDEF)
2693 Val = cast<ConstantSDNode>(Arg)->getValue();
2694 if (Val >= NumOperands) Val -= NumOperands;
2695 Mask |= Val;
2696 if (i != NumOperands - 1)
2697 Mask <<= Shift;
2698 }
2699
2700 return Mask;
2701}
2702
2703/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2704/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2705/// instructions.
2706unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2707 unsigned Mask = 0;
2708 // 8 nodes, but we only care about the last 4.
2709 for (unsigned i = 7; i >= 4; --i) {
2710 unsigned Val = 0;
2711 SDOperand Arg = N->getOperand(i);
2712 if (Arg.getOpcode() != ISD::UNDEF)
2713 Val = cast<ConstantSDNode>(Arg)->getValue();
2714 Mask |= (Val - 4);
2715 if (i != 4)
2716 Mask <<= 2;
2717 }
2718
2719 return Mask;
2720}
2721
2722/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2723/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2724/// instructions.
2725unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2726 unsigned Mask = 0;
2727 // 8 nodes, but we only care about the first 4.
2728 for (int i = 3; i >= 0; --i) {
2729 unsigned Val = 0;
2730 SDOperand Arg = N->getOperand(i);
2731 if (Arg.getOpcode() != ISD::UNDEF)
2732 Val = cast<ConstantSDNode>(Arg)->getValue();
2733 Mask |= Val;
2734 if (i != 0)
2735 Mask <<= 2;
2736 }
2737
2738 return Mask;
2739}
2740
2741/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2742/// specifies a 8 element shuffle that can be broken into a pair of
2743/// PSHUFHW and PSHUFLW.
2744static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2745 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2746
2747 if (N->getNumOperands() != 8)
2748 return false;
2749
2750 // Lower quadword shuffled.
2751 for (unsigned i = 0; i != 4; ++i) {
2752 SDOperand Arg = N->getOperand(i);
2753 if (Arg.getOpcode() == ISD::UNDEF) continue;
2754 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2755 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
Evan Cheng75184a92007-12-11 01:46:18 +00002756 if (Val >= 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002757 return false;
2758 }
2759
2760 // Upper quadword shuffled.
2761 for (unsigned i = 4; i != 8; ++i) {
2762 SDOperand Arg = N->getOperand(i);
2763 if (Arg.getOpcode() == ISD::UNDEF) continue;
2764 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2765 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2766 if (Val < 4 || Val > 7)
2767 return false;
2768 }
2769
2770 return true;
2771}
2772
Chris Lattnere6aa3862007-11-25 00:24:49 +00002773/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002774/// values in ther permute mask.
2775static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2776 SDOperand &V2, SDOperand &Mask,
2777 SelectionDAG &DAG) {
2778 MVT::ValueType VT = Op.getValueType();
2779 MVT::ValueType MaskVT = Mask.getValueType();
2780 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2781 unsigned NumElems = Mask.getNumOperands();
2782 SmallVector<SDOperand, 8> MaskVec;
2783
2784 for (unsigned i = 0; i != NumElems; ++i) {
2785 SDOperand Arg = Mask.getOperand(i);
2786 if (Arg.getOpcode() == ISD::UNDEF) {
2787 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2788 continue;
2789 }
2790 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2791 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2792 if (Val < NumElems)
2793 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2794 else
2795 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2796 }
2797
2798 std::swap(V1, V2);
Evan Chengfca29242007-12-07 08:07:39 +00002799 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002800 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2801}
2802
Evan Chenga6769df2007-12-07 21:30:01 +00002803/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2804/// the two vector operands have swapped position.
Evan Chengfca29242007-12-07 08:07:39 +00002805static
2806SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2807 MVT::ValueType MaskVT = Mask.getValueType();
2808 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2809 unsigned NumElems = Mask.getNumOperands();
2810 SmallVector<SDOperand, 8> MaskVec;
2811 for (unsigned i = 0; i != NumElems; ++i) {
2812 SDOperand Arg = Mask.getOperand(i);
2813 if (Arg.getOpcode() == ISD::UNDEF) {
2814 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2815 continue;
2816 }
2817 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2818 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2819 if (Val < NumElems)
2820 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2821 else
2822 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2823 }
2824 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2825}
2826
2827
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002828/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2829/// match movhlps. The lower half elements should come from upper half of
2830/// V1 (and in order), and the upper half elements should come from the upper
2831/// half of V2 (and in order).
2832static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2833 unsigned NumElems = Mask->getNumOperands();
2834 if (NumElems != 4)
2835 return false;
2836 for (unsigned i = 0, e = 2; i != e; ++i)
2837 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2838 return false;
2839 for (unsigned i = 2; i != 4; ++i)
2840 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2841 return false;
2842 return true;
2843}
2844
2845/// isScalarLoadToVector - Returns true if the node is a scalar load that
2846/// is promoted to a vector.
2847static inline bool isScalarLoadToVector(SDNode *N) {
2848 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2849 N = N->getOperand(0).Val;
2850 return ISD::isNON_EXTLoad(N);
2851 }
2852 return false;
2853}
2854
2855/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2856/// match movlp{s|d}. The lower half elements should come from lower half of
2857/// V1 (and in order), and the upper half elements should come from the upper
2858/// half of V2 (and in order). And since V1 will become the source of the
2859/// MOVLP, it must be either a vector load or a scalar load to vector.
2860static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2861 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2862 return false;
2863 // Is V2 is a vector load, don't do this transformation. We will try to use
2864 // load folding shufps op.
2865 if (ISD::isNON_EXTLoad(V2))
2866 return false;
2867
2868 unsigned NumElems = Mask->getNumOperands();
2869 if (NumElems != 2 && NumElems != 4)
2870 return false;
2871 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2872 if (!isUndefOrEqual(Mask->getOperand(i), i))
2873 return false;
2874 for (unsigned i = NumElems/2; i != NumElems; ++i)
2875 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2876 return false;
2877 return true;
2878}
2879
2880/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2881/// all the same.
2882static bool isSplatVector(SDNode *N) {
2883 if (N->getOpcode() != ISD::BUILD_VECTOR)
2884 return false;
2885
2886 SDOperand SplatValue = N->getOperand(0);
2887 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2888 if (N->getOperand(i) != SplatValue)
2889 return false;
2890 return true;
2891}
2892
2893/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2894/// to an undef.
2895static bool isUndefShuffle(SDNode *N) {
2896 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2897 return false;
2898
2899 SDOperand V1 = N->getOperand(0);
2900 SDOperand V2 = N->getOperand(1);
2901 SDOperand Mask = N->getOperand(2);
2902 unsigned NumElems = Mask.getNumOperands();
2903 for (unsigned i = 0; i != NumElems; ++i) {
2904 SDOperand Arg = Mask.getOperand(i);
2905 if (Arg.getOpcode() != ISD::UNDEF) {
2906 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2907 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2908 return false;
2909 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2910 return false;
2911 }
2912 }
2913 return true;
2914}
2915
2916/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2917/// constant +0.0.
2918static inline bool isZeroNode(SDOperand Elt) {
2919 return ((isa<ConstantSDNode>(Elt) &&
2920 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2921 (isa<ConstantFPSDNode>(Elt) &&
Dale Johannesendf8a8312007-08-31 04:03:46 +00002922 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002923}
2924
2925/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2926/// to an zero vector.
2927static bool isZeroShuffle(SDNode *N) {
2928 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2929 return false;
2930
2931 SDOperand V1 = N->getOperand(0);
2932 SDOperand V2 = N->getOperand(1);
2933 SDOperand Mask = N->getOperand(2);
2934 unsigned NumElems = Mask.getNumOperands();
2935 for (unsigned i = 0; i != NumElems; ++i) {
2936 SDOperand Arg = Mask.getOperand(i);
Chris Lattnere6aa3862007-11-25 00:24:49 +00002937 if (Arg.getOpcode() == ISD::UNDEF)
2938 continue;
2939
2940 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2941 if (Idx < NumElems) {
2942 unsigned Opc = V1.Val->getOpcode();
2943 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2944 continue;
2945 if (Opc != ISD::BUILD_VECTOR ||
2946 !isZeroNode(V1.Val->getOperand(Idx)))
2947 return false;
2948 } else if (Idx >= NumElems) {
2949 unsigned Opc = V2.Val->getOpcode();
2950 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2951 continue;
2952 if (Opc != ISD::BUILD_VECTOR ||
2953 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2954 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002955 }
2956 }
2957 return true;
2958}
2959
2960/// getZeroVector - Returns a vector of specified type with all zero elements.
2961///
2962static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2963 assert(MVT::isVector(VT) && "Expected a vector type");
Chris Lattnere6aa3862007-11-25 00:24:49 +00002964
2965 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2966 // type. This ensures they get CSE'd.
2967 SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2968 SDOperand Vec;
2969 if (MVT::getSizeInBits(VT) == 64) // MMX
2970 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2971 else // SSE
2972 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2973 return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002974}
2975
Chris Lattnere6aa3862007-11-25 00:24:49 +00002976/// getOnesVector - Returns a vector of specified type with all bits set.
2977///
2978static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) {
2979 assert(MVT::isVector(VT) && "Expected a vector type");
2980
2981 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2982 // type. This ensures they get CSE'd.
2983 SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
2984 SDOperand Vec;
2985 if (MVT::getSizeInBits(VT) == 64) // MMX
2986 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2987 else // SSE
2988 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2989 return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2990}
2991
2992
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002993/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2994/// that point to V2 points to its first element.
2995static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2996 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2997
2998 bool Changed = false;
2999 SmallVector<SDOperand, 8> MaskVec;
3000 unsigned NumElems = Mask.getNumOperands();
3001 for (unsigned i = 0; i != NumElems; ++i) {
3002 SDOperand Arg = Mask.getOperand(i);
3003 if (Arg.getOpcode() != ISD::UNDEF) {
3004 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3005 if (Val > NumElems) {
3006 Arg = DAG.getConstant(NumElems, Arg.getValueType());
3007 Changed = true;
3008 }
3009 }
3010 MaskVec.push_back(Arg);
3011 }
3012
3013 if (Changed)
3014 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
3015 &MaskVec[0], MaskVec.size());
3016 return Mask;
3017}
3018
3019/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3020/// operation of specified width.
3021static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
3022 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3023 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3024
3025 SmallVector<SDOperand, 8> MaskVec;
3026 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
3027 for (unsigned i = 1; i != NumElems; ++i)
3028 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3029 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3030}
3031
3032/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
3033/// of specified width.
3034static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
3035 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3036 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3037 SmallVector<SDOperand, 8> MaskVec;
3038 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3039 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3040 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
3041 }
3042 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3043}
3044
3045/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
3046/// of specified width.
3047static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
3048 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3049 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3050 unsigned Half = NumElems/2;
3051 SmallVector<SDOperand, 8> MaskVec;
3052 for (unsigned i = 0; i != Half; ++i) {
3053 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
3054 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
3055 }
3056 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3057}
3058
3059/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
3060///
3061static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
3062 SDOperand V1 = Op.getOperand(0);
3063 SDOperand Mask = Op.getOperand(2);
3064 MVT::ValueType VT = Op.getValueType();
3065 unsigned NumElems = Mask.getNumOperands();
3066 Mask = getUnpacklMask(NumElems, DAG);
3067 while (NumElems != 4) {
3068 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
3069 NumElems >>= 1;
3070 }
3071 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
3072
Chris Lattnere6aa3862007-11-25 00:24:49 +00003073 Mask = getZeroVector(MVT::v4i32, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003074 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
3075 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
3076 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3077}
3078
3079/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
Chris Lattnere6aa3862007-11-25 00:24:49 +00003080/// vector of zero or undef vector. This produces a shuffle where the low
3081/// element of V2 is swizzled into the zero/undef vector, landing at element
3082/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003083static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
3084 unsigned NumElems, unsigned Idx,
3085 bool isZero, SelectionDAG &DAG) {
3086 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
3087 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3088 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
Chris Lattnere6aa3862007-11-25 00:24:49 +00003089 SmallVector<SDOperand, 16> MaskVec;
3090 for (unsigned i = 0; i != NumElems; ++i)
3091 if (i == Idx) // If this is the insertion idx, put the low elt of V2 here.
3092 MaskVec.push_back(DAG.getConstant(NumElems, EVT));
3093 else
3094 MaskVec.push_back(DAG.getConstant(i, EVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003095 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3096 &MaskVec[0], MaskVec.size());
3097 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3098}
3099
3100/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3101///
3102static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
3103 unsigned NumNonZero, unsigned NumZero,
3104 SelectionDAG &DAG, TargetLowering &TLI) {
3105 if (NumNonZero > 8)
3106 return SDOperand();
3107
3108 SDOperand V(0, 0);
3109 bool First = true;
3110 for (unsigned i = 0; i < 16; ++i) {
3111 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3112 if (ThisIsNonZero && First) {
3113 if (NumZero)
3114 V = getZeroVector(MVT::v8i16, DAG);
3115 else
3116 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3117 First = false;
3118 }
3119
3120 if ((i & 1) != 0) {
3121 SDOperand ThisElt(0, 0), LastElt(0, 0);
3122 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3123 if (LastIsNonZero) {
3124 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3125 }
3126 if (ThisIsNonZero) {
3127 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3128 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3129 ThisElt, DAG.getConstant(8, MVT::i8));
3130 if (LastIsNonZero)
3131 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3132 } else
3133 ThisElt = LastElt;
3134
3135 if (ThisElt.Val)
3136 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3137 DAG.getConstant(i/2, TLI.getPointerTy()));
3138 }
3139 }
3140
3141 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3142}
3143
3144/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3145///
3146static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3147 unsigned NumNonZero, unsigned NumZero,
3148 SelectionDAG &DAG, TargetLowering &TLI) {
3149 if (NumNonZero > 4)
3150 return SDOperand();
3151
3152 SDOperand V(0, 0);
3153 bool First = true;
3154 for (unsigned i = 0; i < 8; ++i) {
3155 bool isNonZero = (NonZeros & (1 << i)) != 0;
3156 if (isNonZero) {
3157 if (First) {
3158 if (NumZero)
3159 V = getZeroVector(MVT::v8i16, DAG);
3160 else
3161 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3162 First = false;
3163 }
3164 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3165 DAG.getConstant(i, TLI.getPointerTy()));
3166 }
3167 }
3168
3169 return V;
3170}
3171
3172SDOperand
3173X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
Chris Lattnere6aa3862007-11-25 00:24:49 +00003174 // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3175 if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
3176 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3177 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3178 // eliminated on x86-32 hosts.
3179 if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3180 return Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003181
Chris Lattnere6aa3862007-11-25 00:24:49 +00003182 if (ISD::isBuildVectorAllOnes(Op.Val))
3183 return getOnesVector(Op.getValueType(), DAG);
3184 return getZeroVector(Op.getValueType(), DAG);
3185 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003186
3187 MVT::ValueType VT = Op.getValueType();
3188 MVT::ValueType EVT = MVT::getVectorElementType(VT);
3189 unsigned EVTBits = MVT::getSizeInBits(EVT);
3190
3191 unsigned NumElems = Op.getNumOperands();
3192 unsigned NumZero = 0;
3193 unsigned NumNonZero = 0;
3194 unsigned NonZeros = 0;
Evan Chengc1073492007-12-12 06:45:40 +00003195 bool HasNonImms = false;
Evan Cheng75184a92007-12-11 01:46:18 +00003196 SmallSet<SDOperand, 8> Values;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003197 for (unsigned i = 0; i < NumElems; ++i) {
3198 SDOperand Elt = Op.getOperand(i);
Evan Chengc1073492007-12-12 06:45:40 +00003199 if (Elt.getOpcode() == ISD::UNDEF)
3200 continue;
3201 Values.insert(Elt);
3202 if (Elt.getOpcode() != ISD::Constant &&
3203 Elt.getOpcode() != ISD::ConstantFP)
3204 HasNonImms = true;
3205 if (isZeroNode(Elt))
3206 NumZero++;
3207 else {
3208 NonZeros |= (1 << i);
3209 NumNonZero++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003210 }
3211 }
3212
3213 if (NumNonZero == 0) {
Chris Lattnere6aa3862007-11-25 00:24:49 +00003214 // All undef vector. Return an UNDEF. All zero vectors were handled above.
3215 return DAG.getNode(ISD::UNDEF, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003216 }
3217
3218 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3219 if (Values.size() == 1)
3220 return SDOperand();
3221
3222 // Special case for single non-zero element.
Evan Chengc1073492007-12-12 06:45:40 +00003223 if (NumNonZero == 1 && NumElems <= 4) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003224 unsigned Idx = CountTrailingZeros_32(NonZeros);
3225 SDOperand Item = Op.getOperand(Idx);
3226 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3227 if (Idx == 0)
3228 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3229 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3230 NumZero > 0, DAG);
Evan Chengc1073492007-12-12 06:45:40 +00003231 else if (!HasNonImms) // Otherwise, it's better to do a constpool load.
3232 return SDOperand();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003233
3234 if (EVTBits == 32) {
3235 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3236 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3237 DAG);
3238 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3239 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3240 SmallVector<SDOperand, 8> MaskVec;
3241 for (unsigned i = 0; i < NumElems; i++)
3242 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3243 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3244 &MaskVec[0], MaskVec.size());
3245 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3246 DAG.getNode(ISD::UNDEF, VT), Mask);
3247 }
3248 }
3249
Dan Gohman21463242007-07-24 22:55:08 +00003250 // A vector full of immediates; various special cases are already
3251 // handled, so this is best done with a single constant-pool load.
Evan Chengc1073492007-12-12 06:45:40 +00003252 if (!HasNonImms)
Dan Gohman21463242007-07-24 22:55:08 +00003253 return SDOperand();
3254
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003255 // Let legalizer expand 2-wide build_vectors.
3256 if (EVTBits == 64)
3257 return SDOperand();
3258
3259 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3260 if (EVTBits == 8 && NumElems == 16) {
3261 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3262 *this);
3263 if (V.Val) return V;
3264 }
3265
3266 if (EVTBits == 16 && NumElems == 8) {
3267 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3268 *this);
3269 if (V.Val) return V;
3270 }
3271
3272 // If element VT is == 32 bits, turn it into a number of shuffles.
3273 SmallVector<SDOperand, 8> V;
3274 V.resize(NumElems);
3275 if (NumElems == 4 && NumZero > 0) {
3276 for (unsigned i = 0; i < 4; ++i) {
3277 bool isZero = !(NonZeros & (1 << i));
3278 if (isZero)
3279 V[i] = getZeroVector(VT, DAG);
3280 else
3281 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3282 }
3283
3284 for (unsigned i = 0; i < 2; ++i) {
3285 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3286 default: break;
3287 case 0:
3288 V[i] = V[i*2]; // Must be a zero vector.
3289 break;
3290 case 1:
3291 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3292 getMOVLMask(NumElems, DAG));
3293 break;
3294 case 2:
3295 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3296 getMOVLMask(NumElems, DAG));
3297 break;
3298 case 3:
3299 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3300 getUnpacklMask(NumElems, DAG));
3301 break;
3302 }
3303 }
3304
3305 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3306 // clears the upper bits.
3307 // FIXME: we can do the same for v4f32 case when we know both parts of
3308 // the lower half come from scalar_to_vector (loadf32). We should do
3309 // that in post legalizer dag combiner with target specific hooks.
3310 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3311 return V[0];
3312 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3313 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3314 SmallVector<SDOperand, 8> MaskVec;
3315 bool Reverse = (NonZeros & 0x3) == 2;
3316 for (unsigned i = 0; i < 2; ++i)
3317 if (Reverse)
3318 MaskVec.push_back(DAG.getConstant(1-i, EVT));
3319 else
3320 MaskVec.push_back(DAG.getConstant(i, EVT));
3321 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3322 for (unsigned i = 0; i < 2; ++i)
3323 if (Reverse)
3324 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3325 else
3326 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3327 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3328 &MaskVec[0], MaskVec.size());
3329 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3330 }
3331
3332 if (Values.size() > 2) {
3333 // Expand into a number of unpckl*.
3334 // e.g. for v4f32
3335 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3336 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3337 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3338 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3339 for (unsigned i = 0; i < NumElems; ++i)
3340 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3341 NumElems >>= 1;
3342 while (NumElems != 0) {
3343 for (unsigned i = 0; i < NumElems; ++i)
3344 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3345 UnpckMask);
3346 NumElems >>= 1;
3347 }
3348 return V[0];
3349 }
3350
3351 return SDOperand();
3352}
3353
Evan Chengfca29242007-12-07 08:07:39 +00003354static
3355SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
3356 SDOperand PermMask, SelectionDAG &DAG,
3357 TargetLowering &TLI) {
Evan Cheng75184a92007-12-11 01:46:18 +00003358 SDOperand NewV;
Evan Chengfca29242007-12-07 08:07:39 +00003359 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8);
3360 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
Evan Cheng75184a92007-12-11 01:46:18 +00003361 MVT::ValueType PtrVT = TLI.getPointerTy();
3362 SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
3363 PermMask.Val->op_end());
3364
3365 // First record which half of which vector the low elements come from.
3366 SmallVector<unsigned, 4> LowQuad(4);
3367 for (unsigned i = 0; i < 4; ++i) {
3368 SDOperand Elt = MaskElts[i];
3369 if (Elt.getOpcode() == ISD::UNDEF)
3370 continue;
3371 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3372 int QuadIdx = EltIdx / 4;
3373 ++LowQuad[QuadIdx];
3374 }
3375 int BestLowQuad = -1;
3376 unsigned MaxQuad = 1;
3377 for (unsigned i = 0; i < 4; ++i) {
3378 if (LowQuad[i] > MaxQuad) {
3379 BestLowQuad = i;
3380 MaxQuad = LowQuad[i];
3381 }
Evan Chengfca29242007-12-07 08:07:39 +00003382 }
3383
Evan Cheng75184a92007-12-11 01:46:18 +00003384 // Record which half of which vector the high elements come from.
3385 SmallVector<unsigned, 4> HighQuad(4);
3386 for (unsigned i = 4; i < 8; ++i) {
3387 SDOperand Elt = MaskElts[i];
3388 if (Elt.getOpcode() == ISD::UNDEF)
3389 continue;
3390 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3391 int QuadIdx = EltIdx / 4;
3392 ++HighQuad[QuadIdx];
3393 }
3394 int BestHighQuad = -1;
3395 MaxQuad = 1;
3396 for (unsigned i = 0; i < 4; ++i) {
3397 if (HighQuad[i] > MaxQuad) {
3398 BestHighQuad = i;
3399 MaxQuad = HighQuad[i];
3400 }
3401 }
3402
3403 // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3404 if (BestLowQuad != -1 || BestHighQuad != -1) {
3405 // First sort the 4 chunks in order using shufpd.
3406 SmallVector<SDOperand, 8> MaskVec;
3407 if (BestLowQuad != -1)
3408 MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3409 else
3410 MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3411 if (BestHighQuad != -1)
3412 MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3413 else
3414 MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3415 SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3416 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3417 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3418 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3419 NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3420
3421 // Now sort high and low parts separately.
3422 BitVector InOrder(8);
3423 if (BestLowQuad != -1) {
3424 // Sort lower half in order using PSHUFLW.
3425 MaskVec.clear();
3426 bool AnyOutOrder = false;
3427 for (unsigned i = 0; i != 4; ++i) {
3428 SDOperand Elt = MaskElts[i];
3429 if (Elt.getOpcode() == ISD::UNDEF) {
3430 MaskVec.push_back(Elt);
3431 InOrder.set(i);
3432 } else {
3433 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3434 if (EltIdx != i)
3435 AnyOutOrder = true;
3436 MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3437 // If this element is in the right place after this shuffle, then
3438 // remember it.
3439 if ((int)(EltIdx / 4) == BestLowQuad)
3440 InOrder.set(i);
3441 }
3442 }
3443 if (AnyOutOrder) {
3444 for (unsigned i = 4; i != 8; ++i)
3445 MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3446 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3447 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3448 }
3449 }
3450
3451 if (BestHighQuad != -1) {
3452 // Sort high half in order using PSHUFHW if possible.
3453 MaskVec.clear();
3454 for (unsigned i = 0; i != 4; ++i)
3455 MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3456 bool AnyOutOrder = false;
3457 for (unsigned i = 4; i != 8; ++i) {
3458 SDOperand Elt = MaskElts[i];
3459 if (Elt.getOpcode() == ISD::UNDEF) {
3460 MaskVec.push_back(Elt);
3461 InOrder.set(i);
3462 } else {
3463 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3464 if (EltIdx != i)
3465 AnyOutOrder = true;
3466 MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3467 // If this element is in the right place after this shuffle, then
3468 // remember it.
3469 if ((int)(EltIdx / 4) == BestHighQuad)
3470 InOrder.set(i);
3471 }
3472 }
3473 if (AnyOutOrder) {
3474 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3475 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3476 }
3477 }
3478
3479 // The other elements are put in the right place using pextrw and pinsrw.
3480 for (unsigned i = 0; i != 8; ++i) {
3481 if (InOrder[i])
3482 continue;
3483 SDOperand Elt = MaskElts[i];
3484 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3485 if (EltIdx == i)
3486 continue;
3487 SDOperand ExtOp = (EltIdx < 8)
3488 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3489 DAG.getConstant(EltIdx, PtrVT))
3490 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3491 DAG.getConstant(EltIdx - 8, PtrVT));
3492 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3493 DAG.getConstant(i, PtrVT));
3494 }
3495 return NewV;
3496 }
3497
3498 // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3499 ///as few as possible.
Evan Chengfca29242007-12-07 08:07:39 +00003500 // First, let's find out how many elements are already in the right order.
3501 unsigned V1InOrder = 0;
3502 unsigned V1FromV1 = 0;
3503 unsigned V2InOrder = 0;
3504 unsigned V2FromV2 = 0;
Evan Cheng75184a92007-12-11 01:46:18 +00003505 SmallVector<SDOperand, 8> V1Elts;
3506 SmallVector<SDOperand, 8> V2Elts;
Evan Chengfca29242007-12-07 08:07:39 +00003507 for (unsigned i = 0; i < 8; ++i) {
Evan Cheng75184a92007-12-11 01:46:18 +00003508 SDOperand Elt = MaskElts[i];
Evan Chengfca29242007-12-07 08:07:39 +00003509 if (Elt.getOpcode() == ISD::UNDEF) {
Evan Cheng75184a92007-12-11 01:46:18 +00003510 V1Elts.push_back(Elt);
3511 V2Elts.push_back(Elt);
Evan Chengfca29242007-12-07 08:07:39 +00003512 ++V1InOrder;
3513 ++V2InOrder;
Evan Cheng75184a92007-12-11 01:46:18 +00003514 continue;
3515 }
3516 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3517 if (EltIdx == i) {
3518 V1Elts.push_back(Elt);
3519 V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3520 ++V1InOrder;
3521 } else if (EltIdx == i+8) {
3522 V1Elts.push_back(Elt);
3523 V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3524 ++V2InOrder;
3525 } else if (EltIdx < 8) {
3526 V1Elts.push_back(Elt);
3527 ++V1FromV1;
Evan Chengfca29242007-12-07 08:07:39 +00003528 } else {
Evan Cheng75184a92007-12-11 01:46:18 +00003529 V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3530 ++V2FromV2;
Evan Chengfca29242007-12-07 08:07:39 +00003531 }
3532 }
3533
3534 if (V2InOrder > V1InOrder) {
3535 PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3536 std::swap(V1, V2);
3537 std::swap(V1Elts, V2Elts);
3538 std::swap(V1FromV1, V2FromV2);
3539 }
3540
Evan Cheng75184a92007-12-11 01:46:18 +00003541 if ((V1FromV1 + V1InOrder) != 8) {
3542 // Some elements are from V2.
3543 if (V1FromV1) {
3544 // If there are elements that are from V1 but out of place,
3545 // then first sort them in place
3546 SmallVector<SDOperand, 8> MaskVec;
3547 for (unsigned i = 0; i < 8; ++i) {
3548 SDOperand Elt = V1Elts[i];
3549 if (Elt.getOpcode() == ISD::UNDEF) {
3550 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3551 continue;
3552 }
3553 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3554 if (EltIdx >= 8)
3555 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3556 else
3557 MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3558 }
3559 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3560 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
Evan Chengfca29242007-12-07 08:07:39 +00003561 }
Evan Cheng75184a92007-12-11 01:46:18 +00003562
3563 NewV = V1;
3564 for (unsigned i = 0; i < 8; ++i) {
3565 SDOperand Elt = V1Elts[i];
3566 if (Elt.getOpcode() == ISD::UNDEF)
3567 continue;
3568 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3569 if (EltIdx < 8)
3570 continue;
3571 SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3572 DAG.getConstant(EltIdx - 8, PtrVT));
3573 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3574 DAG.getConstant(i, PtrVT));
3575 }
3576 return NewV;
3577 } else {
3578 // All elements are from V1.
3579 NewV = V1;
3580 for (unsigned i = 0; i < 8; ++i) {
3581 SDOperand Elt = V1Elts[i];
3582 if (Elt.getOpcode() == ISD::UNDEF)
3583 continue;
3584 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3585 SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3586 DAG.getConstant(EltIdx, PtrVT));
3587 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3588 DAG.getConstant(i, PtrVT));
3589 }
3590 return NewV;
3591 }
3592}
3593
Evan Cheng15e8f5a2007-12-15 03:00:47 +00003594/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3595/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3596/// done when every pair / quad of shuffle mask elements point to elements in
3597/// the right sequence. e.g.
Evan Cheng75184a92007-12-11 01:46:18 +00003598/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3599static
Evan Cheng15e8f5a2007-12-15 03:00:47 +00003600SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
3601 MVT::ValueType VT,
Evan Cheng75184a92007-12-11 01:46:18 +00003602 SDOperand PermMask, SelectionDAG &DAG,
3603 TargetLowering &TLI) {
3604 unsigned NumElems = PermMask.getNumOperands();
Evan Cheng15e8f5a2007-12-15 03:00:47 +00003605 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3606 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3607 MVT::ValueType NewVT = MaskVT;
3608 switch (VT) {
3609 case MVT::v4f32: NewVT = MVT::v2f64; break;
3610 case MVT::v4i32: NewVT = MVT::v2i64; break;
3611 case MVT::v8i16: NewVT = MVT::v4i32; break;
3612 case MVT::v16i8: NewVT = MVT::v4i32; break;
3613 default: assert(false && "Unexpected!");
3614 }
3615
3616 if (NewWidth == 2)
3617 if (MVT::isInteger(VT))
3618 NewVT = MVT::v2i64;
3619 else
3620 NewVT = MVT::v2f64;
3621 unsigned Scale = NumElems / NewWidth;
3622 SmallVector<SDOperand, 8> MaskVec;
Evan Cheng75184a92007-12-11 01:46:18 +00003623 for (unsigned i = 0; i < NumElems; i += Scale) {
3624 unsigned StartIdx = ~0U;
3625 for (unsigned j = 0; j < Scale; ++j) {
3626 SDOperand Elt = PermMask.getOperand(i+j);
3627 if (Elt.getOpcode() == ISD::UNDEF)
3628 continue;
3629 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3630 if (StartIdx == ~0U)
3631 StartIdx = EltIdx - (EltIdx % Scale);
3632 if (EltIdx != StartIdx + j)
3633 return SDOperand();
3634 }
3635 if (StartIdx == ~0U)
3636 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
3637 else
3638 MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
Evan Chengfca29242007-12-07 08:07:39 +00003639 }
3640
Evan Cheng15e8f5a2007-12-15 03:00:47 +00003641 V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3642 V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3643 return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3644 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3645 &MaskVec[0], MaskVec.size()));
Evan Chengfca29242007-12-07 08:07:39 +00003646}
3647
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003648SDOperand
3649X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3650 SDOperand V1 = Op.getOperand(0);
3651 SDOperand V2 = Op.getOperand(1);
3652 SDOperand PermMask = Op.getOperand(2);
3653 MVT::ValueType VT = Op.getValueType();
3654 unsigned NumElems = PermMask.getNumOperands();
3655 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3656 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3657 bool V1IsSplat = false;
3658 bool V2IsSplat = false;
3659
3660 if (isUndefShuffle(Op.Val))
3661 return DAG.getNode(ISD::UNDEF, VT);
3662
3663 if (isZeroShuffle(Op.Val))
3664 return getZeroVector(VT, DAG);
3665
3666 if (isIdentityMask(PermMask.Val))
3667 return V1;
3668 else if (isIdentityMask(PermMask.Val, true))
3669 return V2;
3670
3671 if (isSplatMask(PermMask.Val)) {
3672 if (NumElems <= 4) return Op;
3673 // Promote it to a v4i32 splat.
3674 return PromoteSplat(Op, DAG);
3675 }
3676
Evan Cheng15e8f5a2007-12-15 03:00:47 +00003677 // If the shuffle can be profitably rewritten as a narrower shuffle, then
3678 // do it!
3679 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3680 SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3681 if (NewOp.Val)
3682 return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3683 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3684 // FIXME: Figure out a cleaner way to do this.
3685 // Try to make use of movq to zero out the top part.
3686 if (ISD::isBuildVectorAllZeros(V2.Val)) {
3687 SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3688 if (NewOp.Val) {
3689 SDOperand NewV1 = NewOp.getOperand(0);
3690 SDOperand NewV2 = NewOp.getOperand(1);
3691 SDOperand NewMask = NewOp.getOperand(2);
3692 if (isCommutedMOVL(NewMask.Val, true, false)) {
3693 NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3694 NewOp = DAG.getNode(ISD::VECTOR_SHUFFLE, NewOp.getValueType(),
3695 NewV1, NewV2, getMOVLMask(2, DAG));
3696 return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3697 }
3698 }
3699 } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3700 SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3701 if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3702 return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3703 }
3704 }
3705
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003706 if (X86::isMOVLMask(PermMask.Val))
3707 return (V1IsUndef) ? V2 : Op;
3708
3709 if (X86::isMOVSHDUPMask(PermMask.Val) ||
3710 X86::isMOVSLDUPMask(PermMask.Val) ||
3711 X86::isMOVHLPSMask(PermMask.Val) ||
3712 X86::isMOVHPMask(PermMask.Val) ||
3713 X86::isMOVLPMask(PermMask.Val))
3714 return Op;
3715
3716 if (ShouldXformToMOVHLPS(PermMask.Val) ||
3717 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3718 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3719
3720 bool Commuted = false;
Chris Lattnere6aa3862007-11-25 00:24:49 +00003721 // FIXME: This should also accept a bitcast of a splat? Be careful, not
3722 // 1,1,1,1 -> v8i16 though.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003723 V1IsSplat = isSplatVector(V1.Val);
3724 V2IsSplat = isSplatVector(V2.Val);
Chris Lattnere6aa3862007-11-25 00:24:49 +00003725
3726 // Canonicalize the splat or undef, if present, to be on the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003727 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3728 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3729 std::swap(V1IsSplat, V2IsSplat);
3730 std::swap(V1IsUndef, V2IsUndef);
3731 Commuted = true;
3732 }
3733
Evan Cheng15e8f5a2007-12-15 03:00:47 +00003734 // FIXME: Figure out a cleaner way to do this.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003735 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3736 if (V2IsUndef) return V1;
3737 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3738 if (V2IsSplat) {
3739 // V2 is a splat, so the mask may be malformed. That is, it may point
3740 // to any V2 element. The instruction selectior won't like this. Get
3741 // a corrected mask and commute to form a proper MOVS{S|D}.
3742 SDOperand NewMask = getMOVLMask(NumElems, DAG);
3743 if (NewMask.Val != PermMask.Val)
3744 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3745 }
3746 return Op;
3747 }
3748
3749 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3750 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3751 X86::isUNPCKLMask(PermMask.Val) ||
3752 X86::isUNPCKHMask(PermMask.Val))
3753 return Op;
3754
3755 if (V2IsSplat) {
3756 // Normalize mask so all entries that point to V2 points to its first
3757 // element then try to match unpck{h|l} again. If match, return a
3758 // new vector_shuffle with the corrected mask.
3759 SDOperand NewMask = NormalizeMask(PermMask, DAG);
3760 if (NewMask.Val != PermMask.Val) {
3761 if (X86::isUNPCKLMask(PermMask.Val, true)) {
3762 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3763 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3764 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3765 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3766 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3767 }
3768 }
3769 }
3770
3771 // Normalize the node to match x86 shuffle ops if needed
3772 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3773 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3774
3775 if (Commuted) {
3776 // Commute is back and try unpck* again.
3777 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3778 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3779 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3780 X86::isUNPCKLMask(PermMask.Val) ||
3781 X86::isUNPCKHMask(PermMask.Val))
3782 return Op;
3783 }
3784
3785 // If VT is integer, try PSHUF* first, then SHUFP*.
3786 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00003787 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3788 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3789 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3790 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003791 X86::isPSHUFHWMask(PermMask.Val) ||
3792 X86::isPSHUFLWMask(PermMask.Val)) {
3793 if (V2.getOpcode() != ISD::UNDEF)
3794 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3795 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3796 return Op;
3797 }
3798
3799 if (X86::isSHUFPMask(PermMask.Val) &&
3800 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
3801 return Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003802 } else {
3803 // Floating point cases in the other order.
3804 if (X86::isSHUFPMask(PermMask.Val))
3805 return Op;
3806 if (X86::isPSHUFDMask(PermMask.Val) ||
3807 X86::isPSHUFHWMask(PermMask.Val) ||
3808 X86::isPSHUFLWMask(PermMask.Val)) {
3809 if (V2.getOpcode() != ISD::UNDEF)
3810 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3811 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3812 return Op;
3813 }
3814 }
3815
Evan Cheng75184a92007-12-11 01:46:18 +00003816 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
3817 if (VT == MVT::v8i16) {
3818 SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
3819 if (NewOp.Val)
3820 return NewOp;
3821 }
3822
3823 // Handle all 4 wide cases with a number of shuffles.
3824 if (NumElems == 4 && MVT::getSizeInBits(VT) != 64) {
Evan Chengfca29242007-12-07 08:07:39 +00003825 // Don't do this for MMX.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003826 MVT::ValueType MaskVT = PermMask.getValueType();
3827 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3828 SmallVector<std::pair<int, int>, 8> Locs;
3829 Locs.reserve(NumElems);
Evan Cheng75184a92007-12-11 01:46:18 +00003830 SmallVector<SDOperand, 8> Mask1(NumElems,
3831 DAG.getNode(ISD::UNDEF, MaskEVT));
3832 SmallVector<SDOperand, 8> Mask2(NumElems,
3833 DAG.getNode(ISD::UNDEF, MaskEVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003834 unsigned NumHi = 0;
3835 unsigned NumLo = 0;
3836 // If no more than two elements come from either vector. This can be
3837 // implemented with two shuffles. First shuffle gather the elements.
3838 // The second shuffle, which takes the first shuffle as both of its
3839 // vector operands, put the elements into the right order.
3840 for (unsigned i = 0; i != NumElems; ++i) {
3841 SDOperand Elt = PermMask.getOperand(i);
3842 if (Elt.getOpcode() == ISD::UNDEF) {
3843 Locs[i] = std::make_pair(-1, -1);
3844 } else {
3845 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3846 if (Val < NumElems) {
3847 Locs[i] = std::make_pair(0, NumLo);
3848 Mask1[NumLo] = Elt;
3849 NumLo++;
3850 } else {
3851 Locs[i] = std::make_pair(1, NumHi);
3852 if (2+NumHi < NumElems)
3853 Mask1[2+NumHi] = Elt;
3854 NumHi++;
3855 }
3856 }
3857 }
3858 if (NumLo <= 2 && NumHi <= 2) {
3859 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3860 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3861 &Mask1[0], Mask1.size()));
3862 for (unsigned i = 0; i != NumElems; ++i) {
3863 if (Locs[i].first == -1)
3864 continue;
3865 else {
3866 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3867 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3868 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3869 }
3870 }
3871
3872 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3873 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3874 &Mask2[0], Mask2.size()));
3875 }
3876
3877 // Break it into (shuffle shuffle_hi, shuffle_lo).
3878 Locs.clear();
3879 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3880 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3881 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3882 unsigned MaskIdx = 0;
3883 unsigned LoIdx = 0;
3884 unsigned HiIdx = NumElems/2;
3885 for (unsigned i = 0; i != NumElems; ++i) {
3886 if (i == NumElems/2) {
3887 MaskPtr = &HiMask;
3888 MaskIdx = 1;
3889 LoIdx = 0;
3890 HiIdx = NumElems/2;
3891 }
3892 SDOperand Elt = PermMask.getOperand(i);
3893 if (Elt.getOpcode() == ISD::UNDEF) {
3894 Locs[i] = std::make_pair(-1, -1);
3895 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3896 Locs[i] = std::make_pair(MaskIdx, LoIdx);
3897 (*MaskPtr)[LoIdx] = Elt;
3898 LoIdx++;
3899 } else {
3900 Locs[i] = std::make_pair(MaskIdx, HiIdx);
3901 (*MaskPtr)[HiIdx] = Elt;
3902 HiIdx++;
3903 }
3904 }
3905
3906 SDOperand LoShuffle =
3907 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3908 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3909 &LoMask[0], LoMask.size()));
3910 SDOperand HiShuffle =
3911 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3912 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3913 &HiMask[0], HiMask.size()));
3914 SmallVector<SDOperand, 8> MaskOps;
3915 for (unsigned i = 0; i != NumElems; ++i) {
3916 if (Locs[i].first == -1) {
3917 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3918 } else {
3919 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3920 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3921 }
3922 }
3923 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3924 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3925 &MaskOps[0], MaskOps.size()));
3926 }
3927
3928 return SDOperand();
3929}
3930
3931SDOperand
3932X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3933 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3934 return SDOperand();
3935
3936 MVT::ValueType VT = Op.getValueType();
3937 // TODO: handle v16i8.
3938 if (MVT::getSizeInBits(VT) == 16) {
Evan Cheng75184a92007-12-11 01:46:18 +00003939 SDOperand Vec = Op.getOperand(0);
3940 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3941 if (Idx == 0)
3942 return DAG.getNode(ISD::TRUNCATE, MVT::i16,
3943 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3944 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
3945 Op.getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003946 // Transform it so it match pextrw which produces a 32-bit result.
3947 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3948 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3949 Op.getOperand(0), Op.getOperand(1));
3950 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
3951 DAG.getValueType(VT));
3952 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3953 } else if (MVT::getSizeInBits(VT) == 32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003954 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3955 if (Idx == 0)
3956 return Op;
3957 // SHUFPS the element to the lowest double word, then movss.
3958 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3959 SmallVector<SDOperand, 8> IdxVec;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00003960 IdxVec.
3961 push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3962 IdxVec.
3963 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3964 IdxVec.
3965 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3966 IdxVec.
3967 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003968 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3969 &IdxVec[0], IdxVec.size());
Evan Cheng75184a92007-12-11 01:46:18 +00003970 SDOperand Vec = Op.getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003971 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3972 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3973 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3974 DAG.getConstant(0, getPointerTy()));
3975 } else if (MVT::getSizeInBits(VT) == 64) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003976 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3977 if (Idx == 0)
3978 return Op;
3979
3980 // UNPCKHPD the element to the lowest double word, then movsd.
3981 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3982 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3983 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3984 SmallVector<SDOperand, 8> IdxVec;
3985 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00003986 IdxVec.
3987 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003988 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3989 &IdxVec[0], IdxVec.size());
Evan Cheng75184a92007-12-11 01:46:18 +00003990 SDOperand Vec = Op.getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003991 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3992 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3993 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3994 DAG.getConstant(0, getPointerTy()));
3995 }
3996
3997 return SDOperand();
3998}
3999
4000SDOperand
4001X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004002 MVT::ValueType VT = Op.getValueType();
Evan Chenge12a7eb2007-12-12 07:55:34 +00004003 MVT::ValueType EVT = MVT::getVectorElementType(VT);
4004 if (EVT == MVT::i8)
4005 return SDOperand();
4006
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004007 SDOperand N0 = Op.getOperand(0);
4008 SDOperand N1 = Op.getOperand(1);
4009 SDOperand N2 = Op.getOperand(2);
Evan Chenge12a7eb2007-12-12 07:55:34 +00004010
4011 if (MVT::getSizeInBits(EVT) == 16) {
4012 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4013 // as its second argument.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004014 if (N1.getValueType() != MVT::i32)
4015 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4016 if (N2.getValueType() != MVT::i32)
4017 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
4018 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004019 }
4020
Evan Chenge12a7eb2007-12-12 07:55:34 +00004021 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
4022 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
4023 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
4024 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
4025 SmallVector<SDOperand, 4> MaskVec;
4026 for (unsigned i = 0; i < 4; ++i)
4027 MaskVec.push_back(DAG.getConstant((i == Idx) ? i+4 : i, MaskEVT));
4028 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
4029 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4030 &MaskVec[0], MaskVec.size()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004031}
4032
4033SDOperand
4034X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
4035 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4036 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
4037}
4038
4039// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4040// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4041// one of the above mentioned nodes. It has to be wrapped because otherwise
4042// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4043// be used to form addressing mode. These wrapped nodes will be selected
4044// into MOV32ri.
4045SDOperand
4046X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
4047 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4048 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
4049 getPointerTy(),
4050 CP->getAlignment());
4051 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4052 // With PIC, the address is actually $g + Offset.
4053 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4054 !Subtarget->isPICStyleRIPRel()) {
4055 Result = DAG.getNode(ISD::ADD, getPointerTy(),
4056 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4057 Result);
4058 }
4059
4060 return Result;
4061}
4062
4063SDOperand
4064X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
4065 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4066 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
4067 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4068 // With PIC, the address is actually $g + Offset.
4069 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4070 !Subtarget->isPICStyleRIPRel()) {
4071 Result = DAG.getNode(ISD::ADD, getPointerTy(),
4072 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4073 Result);
4074 }
4075
4076 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4077 // load the value at address GV, not the value of GV itself. This means that
4078 // the GlobalAddress must be in the base or index register of the address, not
4079 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4080 // The same applies for external symbols during PIC codegen
4081 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
4082 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
4083
4084 return Result;
4085}
4086
4087// Lower ISD::GlobalTLSAddress using the "general dynamic" model
4088static SDOperand
4089LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4090 const MVT::ValueType PtrVT) {
4091 SDOperand InFlag;
4092 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4093 DAG.getNode(X86ISD::GlobalBaseReg,
4094 PtrVT), InFlag);
4095 InFlag = Chain.getValue(1);
4096
4097 // emit leal symbol@TLSGD(,%ebx,1), %eax
4098 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4099 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4100 GA->getValueType(0),
4101 GA->getOffset());
4102 SDOperand Ops[] = { Chain, TGA, InFlag };
4103 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4104 InFlag = Result.getValue(2);
4105 Chain = Result.getValue(1);
4106
4107 // call ___tls_get_addr. This function receives its argument in
4108 // the register EAX.
4109 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4110 InFlag = Chain.getValue(1);
4111
4112 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4113 SDOperand Ops1[] = { Chain,
4114 DAG.getTargetExternalSymbol("___tls_get_addr",
4115 PtrVT),
4116 DAG.getRegister(X86::EAX, PtrVT),
4117 DAG.getRegister(X86::EBX, PtrVT),
4118 InFlag };
4119 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4120 InFlag = Chain.getValue(1);
4121
4122 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4123}
4124
4125// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4126// "local exec" model.
4127static SDOperand
4128LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4129 const MVT::ValueType PtrVT) {
4130 // Get the Thread Pointer
4131 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4132 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4133 // exec)
4134 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4135 GA->getValueType(0),
4136 GA->getOffset());
4137 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4138
4139 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4140 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
4141
4142 // The address of the thread local variable is the add of the thread
4143 // pointer with the offset of the variable.
4144 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4145}
4146
4147SDOperand
4148X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
4149 // TODO: implement the "local dynamic" model
4150 // TODO: implement the "initial exec"model for pic executables
4151 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
4152 "TLS not implemented for non-ELF and 64-bit targets");
4153 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4154 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4155 // otherwise use the "Local Exec"TLS Model
4156 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4157 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
4158 else
4159 return LowerToTLSExecModel(GA, DAG, getPointerTy());
4160}
4161
4162SDOperand
4163X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
4164 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4165 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4166 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4167 // With PIC, the address is actually $g + Offset.
4168 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4169 !Subtarget->isPICStyleRIPRel()) {
4170 Result = DAG.getNode(ISD::ADD, getPointerTy(),
4171 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4172 Result);
4173 }
4174
4175 return Result;
4176}
4177
4178SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4179 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4180 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4181 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4182 // With PIC, the address is actually $g + Offset.
4183 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4184 !Subtarget->isPICStyleRIPRel()) {
4185 Result = DAG.getNode(ISD::ADD, getPointerTy(),
4186 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4187 Result);
4188 }
4189
4190 return Result;
4191}
4192
Chris Lattner62814a32007-10-17 06:02:13 +00004193/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4194/// take a 2 x i32 value to shift plus a shift amount.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004195SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
Chris Lattner62814a32007-10-17 06:02:13 +00004196 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
4197 "Not an i64 shift!");
4198 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4199 SDOperand ShOpLo = Op.getOperand(0);
4200 SDOperand ShOpHi = Op.getOperand(1);
4201 SDOperand ShAmt = Op.getOperand(2);
4202 SDOperand Tmp1 = isSRA ?
4203 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
4204 DAG.getConstant(0, MVT::i32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004205
Chris Lattner62814a32007-10-17 06:02:13 +00004206 SDOperand Tmp2, Tmp3;
4207 if (Op.getOpcode() == ISD::SHL_PARTS) {
4208 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
4209 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
4210 } else {
4211 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
4212 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
4213 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004214
Chris Lattner62814a32007-10-17 06:02:13 +00004215 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4216 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4217 DAG.getConstant(32, MVT::i8));
4218 SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
4219 AndNode, DAG.getConstant(0, MVT::i8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004220
Chris Lattner62814a32007-10-17 06:02:13 +00004221 SDOperand Hi, Lo;
4222 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4223 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
4224 SmallVector<SDOperand, 4> Ops;
4225 if (Op.getOpcode() == ISD::SHL_PARTS) {
4226 Ops.push_back(Tmp2);
4227 Ops.push_back(Tmp3);
4228 Ops.push_back(CC);
4229 Ops.push_back(Cond);
4230 Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004231
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004232 Ops.clear();
Chris Lattner62814a32007-10-17 06:02:13 +00004233 Ops.push_back(Tmp3);
4234 Ops.push_back(Tmp1);
4235 Ops.push_back(CC);
4236 Ops.push_back(Cond);
4237 Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4238 } else {
4239 Ops.push_back(Tmp2);
4240 Ops.push_back(Tmp3);
4241 Ops.push_back(CC);
4242 Ops.push_back(Cond);
4243 Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4244
4245 Ops.clear();
4246 Ops.push_back(Tmp3);
4247 Ops.push_back(Tmp1);
4248 Ops.push_back(CC);
4249 Ops.push_back(Cond);
4250 Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4251 }
4252
4253 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
4254 Ops.clear();
4255 Ops.push_back(Lo);
4256 Ops.push_back(Hi);
4257 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004258}
4259
4260SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
4261 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
4262 Op.getOperand(0).getValueType() >= MVT::i16 &&
4263 "Unknown SINT_TO_FP to lower!");
4264
4265 SDOperand Result;
4266 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
4267 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
4268 MachineFunction &MF = DAG.getMachineFunction();
4269 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4270 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4271 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4272 StackSlot, NULL, 0);
4273
Dale Johannesen2fc20782007-09-14 22:26:36 +00004274 // These are really Legal; caller falls through into that case.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00004275 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
4276 return Result;
4277 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00004278 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00004279 if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
4280 Subtarget->is64Bit())
4281 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00004282
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004283 // Build the FILD
4284 SDVTList Tys;
Dale Johannesene0e0fd02007-09-23 14:52:20 +00004285 bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
4286 (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
Dale Johannesen2fc20782007-09-14 22:26:36 +00004287 if (useSSE)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004288 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4289 else
4290 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4291 SmallVector<SDOperand, 8> Ops;
4292 Ops.push_back(Chain);
4293 Ops.push_back(StackSlot);
4294 Ops.push_back(DAG.getValueType(SrcVT));
Dale Johannesen2fc20782007-09-14 22:26:36 +00004295 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004296 Tys, &Ops[0], Ops.size());
4297
Dale Johannesen2fc20782007-09-14 22:26:36 +00004298 if (useSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004299 Chain = Result.getValue(1);
4300 SDOperand InFlag = Result.getValue(2);
4301
4302 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4303 // shouldn't be necessary except that RFP cannot be live across
4304 // multiple blocks. When stackifier is fixed, they can be uncoupled.
4305 MachineFunction &MF = DAG.getMachineFunction();
4306 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4307 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4308 Tys = DAG.getVTList(MVT::Other);
4309 SmallVector<SDOperand, 8> Ops;
4310 Ops.push_back(Chain);
4311 Ops.push_back(Result);
4312 Ops.push_back(StackSlot);
4313 Ops.push_back(DAG.getValueType(Op.getValueType()));
4314 Ops.push_back(InFlag);
4315 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4316 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
4317 }
4318
4319 return Result;
4320}
4321
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004322std::pair<SDOperand,SDOperand> X86TargetLowering::
4323FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004324 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4325 "Unknown FP_TO_SINT to lower!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004326
Dale Johannesen2fc20782007-09-14 22:26:36 +00004327 // These are really Legal.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00004328 if (Op.getValueType() == MVT::i32 &&
4329 X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004330 return std::make_pair(SDOperand(), SDOperand());
Dale Johannesene0e0fd02007-09-23 14:52:20 +00004331 if (Op.getValueType() == MVT::i32 &&
4332 X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004333 return std::make_pair(SDOperand(), SDOperand());
Dale Johannesen958b08b2007-09-19 23:55:34 +00004334 if (Subtarget->is64Bit() &&
4335 Op.getValueType() == MVT::i64 &&
4336 Op.getOperand(0).getValueType() != MVT::f80)
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004337 return std::make_pair(SDOperand(), SDOperand());
Dale Johannesen2fc20782007-09-14 22:26:36 +00004338
Evan Cheng05441e62007-10-15 20:11:21 +00004339 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4340 // stack slot.
4341 MachineFunction &MF = DAG.getMachineFunction();
4342 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4343 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4344 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004345 unsigned Opc;
4346 switch (Op.getValueType()) {
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004347 default: assert(0 && "Invalid FP_TO_SINT to lower!");
4348 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4349 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4350 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004351 }
4352
4353 SDOperand Chain = DAG.getEntryNode();
4354 SDOperand Value = Op.getOperand(0);
Dale Johannesene0e0fd02007-09-23 14:52:20 +00004355 if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
4356 (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004357 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4358 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
4359 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4360 SDOperand Ops[] = {
4361 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4362 };
4363 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4364 Chain = Value.getValue(1);
4365 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4366 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4367 }
4368
4369 // Build the FP_TO_INT*_IN_MEM
4370 SDOperand Ops[] = { Chain, Value, StackSlot };
4371 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4372
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004373 return std::make_pair(FIST, StackSlot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004374}
4375
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004376SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004377 std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
4378 SDOperand FIST = Vals.first, StackSlot = Vals.second;
4379 if (FIST.Val == 0) return SDOperand();
4380
4381 // Load the result.
4382 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4383}
4384
4385SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4386 std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
4387 SDOperand FIST = Vals.first, StackSlot = Vals.second;
4388 if (FIST.Val == 0) return 0;
4389
4390 // Return an i64 load from the stack slot.
4391 SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);
4392
4393 // Use a MERGE_VALUES node to drop the chain result value.
4394 return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
4395}
4396
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004397SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4398 MVT::ValueType VT = Op.getValueType();
4399 MVT::ValueType EltVT = VT;
4400 if (MVT::isVector(VT))
4401 EltVT = MVT::getVectorElementType(VT);
4402 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
4403 std::vector<Constant*> CV;
4404 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004405 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004406 CV.push_back(C);
4407 CV.push_back(C);
4408 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004409 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004410 CV.push_back(C);
4411 CV.push_back(C);
4412 CV.push_back(C);
4413 CV.push_back(C);
4414 }
Dan Gohman11821702007-07-27 17:16:43 +00004415 Constant *C = ConstantVector::get(CV);
4416 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4417 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4418 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004419 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4420}
4421
4422SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4423 MVT::ValueType VT = Op.getValueType();
4424 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00004425 unsigned EltNum = 1;
4426 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004427 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00004428 EltNum = MVT::getVectorNumElements(VT);
4429 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004430 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
4431 std::vector<Constant*> CV;
4432 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004433 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004434 CV.push_back(C);
4435 CV.push_back(C);
4436 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004437 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004438 CV.push_back(C);
4439 CV.push_back(C);
4440 CV.push_back(C);
4441 CV.push_back(C);
4442 }
Dan Gohman11821702007-07-27 17:16:43 +00004443 Constant *C = ConstantVector::get(CV);
4444 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4445 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4446 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00004447 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00004448 return DAG.getNode(ISD::BIT_CONVERT, VT,
4449 DAG.getNode(ISD::XOR, MVT::v2i64,
4450 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4451 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4452 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00004453 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4454 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004455}
4456
4457SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4458 SDOperand Op0 = Op.getOperand(0);
4459 SDOperand Op1 = Op.getOperand(1);
4460 MVT::ValueType VT = Op.getValueType();
4461 MVT::ValueType SrcVT = Op1.getValueType();
4462 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
4463
4464 // If second operand is smaller, extend it first.
4465 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4466 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4467 SrcVT = VT;
Dale Johannesenb9de9f02007-09-06 18:13:44 +00004468 SrcTy = MVT::getTypeForValueType(SrcVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004469 }
Dale Johannesenfb0fa912007-10-21 01:07:44 +00004470 // And if it is bigger, shrink it first.
4471 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4472 Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1);
4473 SrcVT = VT;
4474 SrcTy = MVT::getTypeForValueType(SrcVT);
4475 }
4476
4477 // At this point the operands and the result should have the same
4478 // type, and that won't be f80 since that is not custom lowered.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004479
4480 // First get the sign bit of second operand.
4481 std::vector<Constant*> CV;
4482 if (SrcVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004483 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4484 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004485 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004486 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4487 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4488 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4489 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004490 }
Dan Gohman11821702007-07-27 17:16:43 +00004491 Constant *C = ConstantVector::get(CV);
4492 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4493 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
4494 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004495 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4496
4497 // Shift sign bit right or left if the two operands have different types.
4498 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4499 // Op0 is MVT::f32, Op1 is MVT::f64.
4500 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4501 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4502 DAG.getConstant(32, MVT::i32));
4503 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4504 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4505 DAG.getConstant(0, getPointerTy()));
4506 }
4507
4508 // Clear first operand sign bit.
4509 CV.clear();
4510 if (VT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004511 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4512 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004513 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004514 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4515 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4516 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4517 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004518 }
Dan Gohman11821702007-07-27 17:16:43 +00004519 C = ConstantVector::get(CV);
4520 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4521 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4522 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004523 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4524
4525 // Or the value with the sign bit.
4526 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4527}
4528
Evan Cheng621216e2007-09-29 00:00:36 +00004529SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Evan Cheng950aac02007-09-25 01:57:46 +00004530 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
Evan Cheng6afec3d2007-09-26 00:45:55 +00004531 SDOperand Cond;
Evan Cheng950aac02007-09-25 01:57:46 +00004532 SDOperand Op0 = Op.getOperand(0);
4533 SDOperand Op1 = Op.getOperand(1);
4534 SDOperand CC = Op.getOperand(2);
4535 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4536 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4537 unsigned X86CC;
4538
Evan Cheng950aac02007-09-25 01:57:46 +00004539 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
Evan Cheng6afec3d2007-09-26 00:45:55 +00004540 Op0, Op1, DAG)) {
Evan Cheng621216e2007-09-29 00:00:36 +00004541 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4542 return DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004543 DAG.getConstant(X86CC, MVT::i8), Cond);
Evan Cheng6afec3d2007-09-26 00:45:55 +00004544 }
Evan Cheng950aac02007-09-25 01:57:46 +00004545
4546 assert(isFP && "Illegal integer SetCC!");
4547
Evan Cheng621216e2007-09-29 00:00:36 +00004548 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
Evan Cheng950aac02007-09-25 01:57:46 +00004549 switch (SetCCOpcode) {
4550 default: assert(false && "Illegal floating point SetCC!");
4551 case ISD::SETOEQ: { // !PF & ZF
Evan Cheng621216e2007-09-29 00:00:36 +00004552 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004553 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004554 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004555 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4556 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4557 }
4558 case ISD::SETUNE: { // PF | !ZF
Evan Cheng621216e2007-09-29 00:00:36 +00004559 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004560 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004561 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004562 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4563 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4564 }
4565 }
4566}
4567
4568
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004569SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4570 bool addTest = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004571 SDOperand Cond = Op.getOperand(0);
4572 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004573
4574 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00004575 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004576
Evan Cheng50d37ab2007-10-08 22:16:29 +00004577 // If condition flag is set by a X86ISD::CMP, then use it as the condition
4578 // setting operand in place of the X86ISD::SETCC.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004579 if (Cond.getOpcode() == X86ISD::SETCC) {
4580 CC = Cond.getOperand(0);
4581
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004582 SDOperand Cmp = Cond.getOperand(1);
4583 unsigned Opc = Cmp.getOpcode();
Evan Cheng50d37ab2007-10-08 22:16:29 +00004584 MVT::ValueType VT = Op.getValueType();
4585 bool IllegalFPCMov = false;
4586 if (VT == MVT::f32 && !X86ScalarSSEf32)
4587 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4588 else if (VT == MVT::f64 && !X86ScalarSSEf64)
4589 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Dale Johannesen3b955db2007-10-16 18:09:08 +00004590 else if (VT == MVT::f80)
4591 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Evan Cheng621216e2007-09-29 00:00:36 +00004592 if ((Opc == X86ISD::CMP ||
4593 Opc == X86ISD::COMI ||
4594 Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
Evan Cheng50d37ab2007-10-08 22:16:29 +00004595 Cond = Cmp;
Evan Cheng950aac02007-09-25 01:57:46 +00004596 addTest = false;
4597 }
4598 }
4599
4600 if (addTest) {
4601 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng50d37ab2007-10-08 22:16:29 +00004602 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00004603 }
4604
4605 const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4606 MVT::Flag);
4607 SmallVector<SDOperand, 4> Ops;
4608 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4609 // condition is true.
4610 Ops.push_back(Op.getOperand(2));
4611 Ops.push_back(Op.getOperand(1));
4612 Ops.push_back(CC);
4613 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004614 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
Evan Cheng950aac02007-09-25 01:57:46 +00004615}
4616
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004617SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4618 bool addTest = true;
4619 SDOperand Chain = Op.getOperand(0);
4620 SDOperand Cond = Op.getOperand(1);
4621 SDOperand Dest = Op.getOperand(2);
4622 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004623
4624 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00004625 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004626
Evan Cheng50d37ab2007-10-08 22:16:29 +00004627 // If condition flag is set by a X86ISD::CMP, then use it as the condition
4628 // setting operand in place of the X86ISD::SETCC.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004629 if (Cond.getOpcode() == X86ISD::SETCC) {
4630 CC = Cond.getOperand(0);
4631
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004632 SDOperand Cmp = Cond.getOperand(1);
4633 unsigned Opc = Cmp.getOpcode();
Evan Cheng621216e2007-09-29 00:00:36 +00004634 if (Opc == X86ISD::CMP ||
4635 Opc == X86ISD::COMI ||
4636 Opc == X86ISD::UCOMI) {
Evan Cheng50d37ab2007-10-08 22:16:29 +00004637 Cond = Cmp;
Evan Cheng950aac02007-09-25 01:57:46 +00004638 addTest = false;
4639 }
4640 }
4641
4642 if (addTest) {
4643 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00004644 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00004645 }
Evan Cheng621216e2007-09-29 00:00:36 +00004646 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
Evan Cheng950aac02007-09-25 01:57:46 +00004647 Chain, Op.getOperand(2), CC, Cond);
4648}
4649
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004650SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004651 unsigned CallingConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4652 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004653
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004654 if (Subtarget->is64Bit())
4655 if(CallingConv==CallingConv::Fast && isTailCall && PerformTailCallOpt)
4656 return LowerX86_TailCallTo(Op, DAG, CallingConv);
4657 else
4658 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004659 else
4660 switch (CallingConv) {
4661 default:
4662 assert(0 && "Unsupported calling convention");
4663 case CallingConv::Fast:
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004664 if (isTailCall && PerformTailCallOpt)
4665 return LowerX86_TailCallTo(Op, DAG, CallingConv);
4666 else
4667 return LowerCCCCallTo(Op,DAG, CallingConv);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004668 case CallingConv::C:
4669 case CallingConv::X86_StdCall:
4670 return LowerCCCCallTo(Op, DAG, CallingConv);
4671 case CallingConv::X86_FastCall:
4672 return LowerFastCCCallTo(Op, DAG, CallingConv);
4673 }
4674}
4675
4676
4677// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4678// Calls to _alloca is needed to probe the stack when allocating more than 4k
4679// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4680// that the guard pages used by the OS virtual memory manager are allocated in
4681// correct sequence.
4682SDOperand
4683X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4684 SelectionDAG &DAG) {
4685 assert(Subtarget->isTargetCygMing() &&
4686 "This should be used only on Cygwin/Mingw targets");
4687
4688 // Get the inputs.
4689 SDOperand Chain = Op.getOperand(0);
4690 SDOperand Size = Op.getOperand(1);
4691 // FIXME: Ensure alignment here
4692
4693 SDOperand Flag;
4694
4695 MVT::ValueType IntPtr = getPointerTy();
4696 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
4697
4698 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4699 Flag = Chain.getValue(1);
4700
4701 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4702 SDOperand Ops[] = { Chain,
4703 DAG.getTargetExternalSymbol("_alloca", IntPtr),
4704 DAG.getRegister(X86::EAX, IntPtr),
4705 Flag };
4706 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4707 Flag = Chain.getValue(1);
4708
4709 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4710
4711 std::vector<MVT::ValueType> Tys;
4712 Tys.push_back(SPTy);
4713 Tys.push_back(MVT::Other);
4714 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4715 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4716}
4717
4718SDOperand
4719X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4720 MachineFunction &MF = DAG.getMachineFunction();
4721 const Function* Fn = MF.getFunction();
4722 if (Fn->hasExternalLinkage() &&
4723 Subtarget->isTargetCygMing() &&
4724 Fn->getName() == "main")
4725 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
4726
4727 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4728 if (Subtarget->is64Bit())
4729 return LowerX86_64CCCArguments(Op, DAG);
4730 else
4731 switch(CC) {
4732 default:
4733 assert(0 && "Unsupported calling convention");
4734 case CallingConv::Fast:
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004735 return LowerCCCArguments(Op,DAG, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004736 // Falls through
4737 case CallingConv::C:
4738 return LowerCCCArguments(Op, DAG);
4739 case CallingConv::X86_StdCall:
4740 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
4741 return LowerCCCArguments(Op, DAG, true);
4742 case CallingConv::X86_FastCall:
4743 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
4744 return LowerFastCCArguments(Op, DAG);
4745 }
4746}
4747
4748SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4749 SDOperand InFlag(0, 0);
4750 SDOperand Chain = Op.getOperand(0);
4751 unsigned Align =
4752 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4753 if (Align == 0) Align = 1;
4754
4755 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00004756 // If not DWORD aligned or size is more than the threshold, call memset.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00004757 // The libc version is likely to be faster for these cases. It can use the
4758 // address value and run time information about the CPU.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004759 if ((Align & 3) != 0 ||
Rafael Espindola7afa9b12007-10-31 11:52:06 +00004760 (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004761 MVT::ValueType IntPtr = getPointerTy();
4762 const Type *IntPtrTy = getTargetData()->getIntPtrType();
4763 TargetLowering::ArgListTy Args;
4764 TargetLowering::ArgListEntry Entry;
4765 Entry.Node = Op.getOperand(1);
4766 Entry.Ty = IntPtrTy;
4767 Args.push_back(Entry);
4768 // Extend the unsigned i8 argument to be an int value for the call.
4769 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4770 Entry.Ty = IntPtrTy;
4771 Args.push_back(Entry);
4772 Entry.Node = Op.getOperand(3);
4773 Args.push_back(Entry);
4774 std::pair<SDOperand,SDOperand> CallResult =
4775 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4776 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4777 return CallResult.second;
4778 }
4779
4780 MVT::ValueType AVT;
4781 SDOperand Count;
4782 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4783 unsigned BytesLeft = 0;
4784 bool TwoRepStos = false;
4785 if (ValC) {
4786 unsigned ValReg;
4787 uint64_t Val = ValC->getValue() & 255;
4788
4789 // If the value is a constant, then we can potentially use larger sets.
4790 switch (Align & 3) {
4791 case 2: // WORD aligned
4792 AVT = MVT::i16;
4793 ValReg = X86::AX;
4794 Val = (Val << 8) | Val;
4795 break;
4796 case 0: // DWORD aligned
4797 AVT = MVT::i32;
4798 ValReg = X86::EAX;
4799 Val = (Val << 8) | Val;
4800 Val = (Val << 16) | Val;
4801 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
4802 AVT = MVT::i64;
4803 ValReg = X86::RAX;
4804 Val = (Val << 32) | Val;
4805 }
4806 break;
4807 default: // Byte aligned
4808 AVT = MVT::i8;
4809 ValReg = X86::AL;
4810 Count = Op.getOperand(3);
4811 break;
4812 }
4813
4814 if (AVT > MVT::i8) {
4815 if (I) {
4816 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4817 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4818 BytesLeft = I->getValue() % UBytes;
4819 } else {
4820 assert(AVT >= MVT::i32 &&
4821 "Do not use rep;stos if not at least DWORD aligned");
4822 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4823 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4824 TwoRepStos = true;
4825 }
4826 }
4827
4828 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4829 InFlag);
4830 InFlag = Chain.getValue(1);
4831 } else {
4832 AVT = MVT::i8;
4833 Count = Op.getOperand(3);
4834 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4835 InFlag = Chain.getValue(1);
4836 }
4837
4838 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4839 Count, InFlag);
4840 InFlag = Chain.getValue(1);
4841 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4842 Op.getOperand(1), InFlag);
4843 InFlag = Chain.getValue(1);
4844
4845 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4846 SmallVector<SDOperand, 8> Ops;
4847 Ops.push_back(Chain);
4848 Ops.push_back(DAG.getValueType(AVT));
4849 Ops.push_back(InFlag);
4850 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4851
4852 if (TwoRepStos) {
4853 InFlag = Chain.getValue(1);
4854 Count = Op.getOperand(3);
4855 MVT::ValueType CVT = Count.getValueType();
4856 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4857 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4858 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4859 Left, InFlag);
4860 InFlag = Chain.getValue(1);
4861 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4862 Ops.clear();
4863 Ops.push_back(Chain);
4864 Ops.push_back(DAG.getValueType(MVT::i8));
4865 Ops.push_back(InFlag);
4866 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4867 } else if (BytesLeft) {
4868 // Issue stores for the last 1 - 7 bytes.
4869 SDOperand Value;
4870 unsigned Val = ValC->getValue() & 255;
4871 unsigned Offset = I->getValue() - BytesLeft;
4872 SDOperand DstAddr = Op.getOperand(1);
4873 MVT::ValueType AddrVT = DstAddr.getValueType();
4874 if (BytesLeft >= 4) {
4875 Val = (Val << 8) | Val;
4876 Val = (Val << 16) | Val;
4877 Value = DAG.getConstant(Val, MVT::i32);
4878 Chain = DAG.getStore(Chain, Value,
4879 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4880 DAG.getConstant(Offset, AddrVT)),
4881 NULL, 0);
4882 BytesLeft -= 4;
4883 Offset += 4;
4884 }
4885 if (BytesLeft >= 2) {
4886 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4887 Chain = DAG.getStore(Chain, Value,
4888 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4889 DAG.getConstant(Offset, AddrVT)),
4890 NULL, 0);
4891 BytesLeft -= 2;
4892 Offset += 2;
4893 }
4894 if (BytesLeft == 1) {
4895 Value = DAG.getConstant(Val, MVT::i8);
4896 Chain = DAG.getStore(Chain, Value,
4897 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4898 DAG.getConstant(Offset, AddrVT)),
4899 NULL, 0);
4900 }
4901 }
4902
4903 return Chain;
4904}
4905
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004906SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4907 SDOperand Dest,
4908 SDOperand Source,
4909 unsigned Size,
4910 unsigned Align,
4911 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004912 MVT::ValueType AVT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004913 unsigned BytesLeft = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004914 switch (Align & 3) {
4915 case 2: // WORD aligned
4916 AVT = MVT::i16;
4917 break;
4918 case 0: // DWORD aligned
4919 AVT = MVT::i32;
4920 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
4921 AVT = MVT::i64;
4922 break;
4923 default: // Byte aligned
4924 AVT = MVT::i8;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004925 break;
4926 }
4927
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004928 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4929 SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4930 BytesLeft = Size % UBytes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004931
4932 SDOperand InFlag(0, 0);
4933 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4934 Count, InFlag);
4935 InFlag = Chain.getValue(1);
4936 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004937 Dest, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004938 InFlag = Chain.getValue(1);
4939 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004940 Source, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004941 InFlag = Chain.getValue(1);
4942
4943 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4944 SmallVector<SDOperand, 8> Ops;
4945 Ops.push_back(Chain);
4946 Ops.push_back(DAG.getValueType(AVT));
4947 Ops.push_back(InFlag);
4948 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4949
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004950 if (BytesLeft) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004951 // Issue loads and stores for the last 1 - 7 bytes.
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004952 unsigned Offset = Size - BytesLeft;
4953 SDOperand DstAddr = Dest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004954 MVT::ValueType DstVT = DstAddr.getValueType();
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004955 SDOperand SrcAddr = Source;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004956 MVT::ValueType SrcVT = SrcAddr.getValueType();
4957 SDOperand Value;
4958 if (BytesLeft >= 4) {
4959 Value = DAG.getLoad(MVT::i32, Chain,
4960 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4961 DAG.getConstant(Offset, SrcVT)),
4962 NULL, 0);
4963 Chain = Value.getValue(1);
4964 Chain = DAG.getStore(Chain, Value,
4965 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4966 DAG.getConstant(Offset, DstVT)),
4967 NULL, 0);
4968 BytesLeft -= 4;
4969 Offset += 4;
4970 }
4971 if (BytesLeft >= 2) {
4972 Value = DAG.getLoad(MVT::i16, Chain,
4973 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4974 DAG.getConstant(Offset, SrcVT)),
4975 NULL, 0);
4976 Chain = Value.getValue(1);
4977 Chain = DAG.getStore(Chain, Value,
4978 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4979 DAG.getConstant(Offset, DstVT)),
4980 NULL, 0);
4981 BytesLeft -= 2;
4982 Offset += 2;
4983 }
4984
4985 if (BytesLeft == 1) {
4986 Value = DAG.getLoad(MVT::i8, Chain,
4987 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4988 DAG.getConstant(Offset, SrcVT)),
4989 NULL, 0);
4990 Chain = Value.getValue(1);
4991 Chain = DAG.getStore(Chain, Value,
4992 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4993 DAG.getConstant(Offset, DstVT)),
4994 NULL, 0);
4995 }
4996 }
4997
4998 return Chain;
4999}
5000
Chris Lattnerdfb947d2007-11-24 07:07:01 +00005001/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
5002SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005003 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
Chris Lattnerdfb947d2007-11-24 07:07:01 +00005004 SDOperand TheChain = N->getOperand(0);
5005 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005006 if (Subtarget->is64Bit()) {
Chris Lattnerdfb947d2007-11-24 07:07:01 +00005007 SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
5008 SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
5009 MVT::i64, rax.getValue(2));
5010 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005011 DAG.getConstant(32, MVT::i8));
5012 SDOperand Ops[] = {
Chris Lattnerdfb947d2007-11-24 07:07:01 +00005013 DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005014 };
5015
5016 Tys = DAG.getVTList(MVT::i64, MVT::Other);
Chris Lattnerdfb947d2007-11-24 07:07:01 +00005017 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005018 }
5019
Chris Lattnerdfb947d2007-11-24 07:07:01 +00005020 SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
5021 SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
5022 MVT::i32, eax.getValue(2));
5023 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
5024 SDOperand Ops[] = { eax, edx };
5025 Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
5026
5027 // Use a MERGE_VALUES to return the value and chain.
5028 Ops[1] = edx.getValue(1);
5029 Tys = DAG.getVTList(MVT::i64, MVT::Other);
5030 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005031}
5032
5033SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
5034 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
5035
5036 if (!Subtarget->is64Bit()) {
5037 // vastart just stores the address of the VarArgsFrameIndex slot into the
5038 // memory location argument.
5039 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5040 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
5041 SV->getOffset());
5042 }
5043
5044 // __va_list_tag:
5045 // gp_offset (0 - 6 * 8)
5046 // fp_offset (48 - 48 + 8 * 16)
5047 // overflow_arg_area (point to parameters coming in memory).
5048 // reg_save_area
5049 SmallVector<SDOperand, 8> MemOps;
5050 SDOperand FIN = Op.getOperand(1);
5051 // Store gp_offset
5052 SDOperand Store = DAG.getStore(Op.getOperand(0),
5053 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5054 FIN, SV->getValue(), SV->getOffset());
5055 MemOps.push_back(Store);
5056
5057 // Store fp_offset
5058 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
5059 DAG.getConstant(4, getPointerTy()));
5060 Store = DAG.getStore(Op.getOperand(0),
5061 DAG.getConstant(VarArgsFPOffset, MVT::i32),
5062 FIN, SV->getValue(), SV->getOffset());
5063 MemOps.push_back(Store);
5064
5065 // Store ptr to overflow_arg_area
5066 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
5067 DAG.getConstant(4, getPointerTy()));
5068 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5069 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
5070 SV->getOffset());
5071 MemOps.push_back(Store);
5072
5073 // Store ptr to reg_save_area.
5074 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
5075 DAG.getConstant(8, getPointerTy()));
5076 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5077 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
5078 SV->getOffset());
5079 MemOps.push_back(Store);
5080 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5081}
5082
5083SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
5084 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5085 SDOperand Chain = Op.getOperand(0);
5086 SDOperand DstPtr = Op.getOperand(1);
5087 SDOperand SrcPtr = Op.getOperand(2);
5088 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
5089 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
5090
5091 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
5092 SrcSV->getValue(), SrcSV->getOffset());
5093 Chain = SrcPtr.getValue(1);
5094 for (unsigned i = 0; i < 3; ++i) {
5095 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
5096 SrcSV->getValue(), SrcSV->getOffset());
5097 Chain = Val.getValue(1);
5098 Chain = DAG.getStore(Chain, Val, DstPtr,
5099 DstSV->getValue(), DstSV->getOffset());
5100 if (i == 2)
5101 break;
5102 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
5103 DAG.getConstant(8, getPointerTy()));
5104 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
5105 DAG.getConstant(8, getPointerTy()));
5106 }
5107 return Chain;
5108}
5109
5110SDOperand
5111X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
5112 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
5113 switch (IntNo) {
5114 default: return SDOperand(); // Don't custom lower most intrinsics.
5115 // Comparison intrinsics.
5116 case Intrinsic::x86_sse_comieq_ss:
5117 case Intrinsic::x86_sse_comilt_ss:
5118 case Intrinsic::x86_sse_comile_ss:
5119 case Intrinsic::x86_sse_comigt_ss:
5120 case Intrinsic::x86_sse_comige_ss:
5121 case Intrinsic::x86_sse_comineq_ss:
5122 case Intrinsic::x86_sse_ucomieq_ss:
5123 case Intrinsic::x86_sse_ucomilt_ss:
5124 case Intrinsic::x86_sse_ucomile_ss:
5125 case Intrinsic::x86_sse_ucomigt_ss:
5126 case Intrinsic::x86_sse_ucomige_ss:
5127 case Intrinsic::x86_sse_ucomineq_ss:
5128 case Intrinsic::x86_sse2_comieq_sd:
5129 case Intrinsic::x86_sse2_comilt_sd:
5130 case Intrinsic::x86_sse2_comile_sd:
5131 case Intrinsic::x86_sse2_comigt_sd:
5132 case Intrinsic::x86_sse2_comige_sd:
5133 case Intrinsic::x86_sse2_comineq_sd:
5134 case Intrinsic::x86_sse2_ucomieq_sd:
5135 case Intrinsic::x86_sse2_ucomilt_sd:
5136 case Intrinsic::x86_sse2_ucomile_sd:
5137 case Intrinsic::x86_sse2_ucomigt_sd:
5138 case Intrinsic::x86_sse2_ucomige_sd:
5139 case Intrinsic::x86_sse2_ucomineq_sd: {
5140 unsigned Opc = 0;
5141 ISD::CondCode CC = ISD::SETCC_INVALID;
5142 switch (IntNo) {
5143 default: break;
5144 case Intrinsic::x86_sse_comieq_ss:
5145 case Intrinsic::x86_sse2_comieq_sd:
5146 Opc = X86ISD::COMI;
5147 CC = ISD::SETEQ;
5148 break;
5149 case Intrinsic::x86_sse_comilt_ss:
5150 case Intrinsic::x86_sse2_comilt_sd:
5151 Opc = X86ISD::COMI;
5152 CC = ISD::SETLT;
5153 break;
5154 case Intrinsic::x86_sse_comile_ss:
5155 case Intrinsic::x86_sse2_comile_sd:
5156 Opc = X86ISD::COMI;
5157 CC = ISD::SETLE;
5158 break;
5159 case Intrinsic::x86_sse_comigt_ss:
5160 case Intrinsic::x86_sse2_comigt_sd:
5161 Opc = X86ISD::COMI;
5162 CC = ISD::SETGT;
5163 break;
5164 case Intrinsic::x86_sse_comige_ss:
5165 case Intrinsic::x86_sse2_comige_sd:
5166 Opc = X86ISD::COMI;
5167 CC = ISD::SETGE;
5168 break;
5169 case Intrinsic::x86_sse_comineq_ss:
5170 case Intrinsic::x86_sse2_comineq_sd:
5171 Opc = X86ISD::COMI;
5172 CC = ISD::SETNE;
5173 break;
5174 case Intrinsic::x86_sse_ucomieq_ss:
5175 case Intrinsic::x86_sse2_ucomieq_sd:
5176 Opc = X86ISD::UCOMI;
5177 CC = ISD::SETEQ;
5178 break;
5179 case Intrinsic::x86_sse_ucomilt_ss:
5180 case Intrinsic::x86_sse2_ucomilt_sd:
5181 Opc = X86ISD::UCOMI;
5182 CC = ISD::SETLT;
5183 break;
5184 case Intrinsic::x86_sse_ucomile_ss:
5185 case Intrinsic::x86_sse2_ucomile_sd:
5186 Opc = X86ISD::UCOMI;
5187 CC = ISD::SETLE;
5188 break;
5189 case Intrinsic::x86_sse_ucomigt_ss:
5190 case Intrinsic::x86_sse2_ucomigt_sd:
5191 Opc = X86ISD::UCOMI;
5192 CC = ISD::SETGT;
5193 break;
5194 case Intrinsic::x86_sse_ucomige_ss:
5195 case Intrinsic::x86_sse2_ucomige_sd:
5196 Opc = X86ISD::UCOMI;
5197 CC = ISD::SETGE;
5198 break;
5199 case Intrinsic::x86_sse_ucomineq_ss:
5200 case Intrinsic::x86_sse2_ucomineq_sd:
5201 Opc = X86ISD::UCOMI;
5202 CC = ISD::SETNE;
5203 break;
5204 }
5205
5206 unsigned X86CC;
5207 SDOperand LHS = Op.getOperand(1);
5208 SDOperand RHS = Op.getOperand(2);
5209 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5210
Evan Cheng621216e2007-09-29 00:00:36 +00005211 SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5212 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5213 DAG.getConstant(X86CC, MVT::i8), Cond);
5214 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005215 }
5216 }
5217}
5218
5219SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
5220 // Depths > 0 not supported yet!
5221 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5222 return SDOperand();
5223
5224 // Just load the return address
5225 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5226 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5227}
5228
5229SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
5230 // Depths > 0 not supported yet!
5231 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5232 return SDOperand();
5233
5234 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5235 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5236 DAG.getConstant(4, getPointerTy()));
5237}
5238
5239SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
5240 SelectionDAG &DAG) {
5241 // Is not yet supported on x86-64
5242 if (Subtarget->is64Bit())
5243 return SDOperand();
5244
5245 return DAG.getConstant(8, getPointerTy());
5246}
5247
5248SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
5249{
5250 assert(!Subtarget->is64Bit() &&
5251 "Lowering of eh_return builtin is not supported yet on x86-64");
5252
5253 MachineFunction &MF = DAG.getMachineFunction();
5254 SDOperand Chain = Op.getOperand(0);
5255 SDOperand Offset = Op.getOperand(1);
5256 SDOperand Handler = Op.getOperand(2);
5257
5258 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5259 getPointerTy());
5260
5261 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5262 DAG.getConstant(-4UL, getPointerTy()));
5263 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5264 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5265 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5266 MF.addLiveOut(X86::ECX);
5267
5268 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5269 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5270}
5271
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005272SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
5273 SelectionDAG &DAG) {
5274 SDOperand Root = Op.getOperand(0);
5275 SDOperand Trmp = Op.getOperand(1); // trampoline
5276 SDOperand FPtr = Op.getOperand(2); // nested function
5277 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
5278
5279 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
5280
5281 if (Subtarget->is64Bit()) {
5282 return SDOperand(); // not yet supported
5283 } else {
5284 Function *Func = (Function *)
5285 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5286 unsigned CC = Func->getCallingConv();
Duncan Sands466eadd2007-08-29 19:01:20 +00005287 unsigned NestReg;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005288
5289 switch (CC) {
5290 default:
5291 assert(0 && "Unsupported calling convention");
5292 case CallingConv::C:
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005293 case CallingConv::X86_StdCall: {
5294 // Pass 'nest' parameter in ECX.
5295 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00005296 NestReg = X86::ECX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005297
5298 // Check that ECX wasn't needed by an 'inreg' parameter.
5299 const FunctionType *FTy = Func->getFunctionType();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00005300 const ParamAttrsList *Attrs = Func->getParamAttrs();
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005301
5302 if (Attrs && !Func->isVarArg()) {
5303 unsigned InRegCount = 0;
5304 unsigned Idx = 1;
5305
5306 for (FunctionType::param_iterator I = FTy->param_begin(),
5307 E = FTy->param_end(); I != E; ++I, ++Idx)
5308 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
5309 // FIXME: should only count parameters that are lowered to integers.
5310 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5311
5312 if (InRegCount > 2) {
5313 cerr << "Nest register in use - reduce number of inreg parameters!\n";
5314 abort();
5315 }
5316 }
5317 break;
5318 }
5319 case CallingConv::X86_FastCall:
5320 // Pass 'nest' parameter in EAX.
5321 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00005322 NestReg = X86::EAX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005323 break;
5324 }
5325
Duncan Sands466eadd2007-08-29 19:01:20 +00005326 const X86InstrInfo *TII =
5327 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5328
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005329 SDOperand OutChains[4];
5330 SDOperand Addr, Disp;
5331
5332 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5333 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5334
Duncan Sands466eadd2007-08-29 19:01:20 +00005335 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
Chris Lattnerd8559ce2007-12-16 20:26:54 +00005336 unsigned char N86Reg = ((X86RegisterInfo*)RegInfo)->getX86RegNum(NestReg);
Duncan Sands466eadd2007-08-29 19:01:20 +00005337 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005338 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
5339
5340 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5341 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
5342 TrmpSV->getOffset() + 1, false, 1);
5343
Duncan Sands466eadd2007-08-29 19:01:20 +00005344 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005345 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5346 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5347 TrmpSV->getValue() + 5, TrmpSV->getOffset());
5348
5349 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5350 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
5351 TrmpSV->getOffset() + 6, false, 1);
5352
Duncan Sands7407a9f2007-09-11 14:10:23 +00005353 SDOperand Ops[] =
5354 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5355 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005356 }
5357}
5358
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +00005359SDOperand X86TargetLowering::LowerFLT_ROUNDS(SDOperand Op, SelectionDAG &DAG) {
5360 /*
5361 The rounding mode is in bits 11:10 of FPSR, and has the following
5362 settings:
5363 00 Round to nearest
5364 01 Round to -inf
5365 10 Round to +inf
5366 11 Round to 0
5367
5368 FLT_ROUNDS, on the other hand, expects the following:
5369 -1 Undefined
5370 0 Round to 0
5371 1 Round to nearest
5372 2 Round to +inf
5373 3 Round to -inf
5374
5375 To perform the conversion, we do:
5376 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5377 */
5378
5379 MachineFunction &MF = DAG.getMachineFunction();
5380 const TargetMachine &TM = MF.getTarget();
5381 const TargetFrameInfo &TFI = *TM.getFrameInfo();
5382 unsigned StackAlignment = TFI.getStackAlignment();
5383 MVT::ValueType VT = Op.getValueType();
5384
5385 // Save FP Control Word to stack slot
5386 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5387 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5388
5389 SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5390 DAG.getEntryNode(), StackSlot);
5391
5392 // Load FP Control Word from stack slot
5393 SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5394
5395 // Transform as necessary
5396 SDOperand CWD1 =
5397 DAG.getNode(ISD::SRL, MVT::i16,
5398 DAG.getNode(ISD::AND, MVT::i16,
5399 CWD, DAG.getConstant(0x800, MVT::i16)),
5400 DAG.getConstant(11, MVT::i8));
5401 SDOperand CWD2 =
5402 DAG.getNode(ISD::SRL, MVT::i16,
5403 DAG.getNode(ISD::AND, MVT::i16,
5404 CWD, DAG.getConstant(0x400, MVT::i16)),
5405 DAG.getConstant(9, MVT::i8));
5406
5407 SDOperand RetVal =
5408 DAG.getNode(ISD::AND, MVT::i16,
5409 DAG.getNode(ISD::ADD, MVT::i16,
5410 DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5411 DAG.getConstant(1, MVT::i16)),
5412 DAG.getConstant(3, MVT::i16));
5413
5414
5415 return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
5416 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5417}
5418
Evan Cheng48679f42007-12-14 02:13:44 +00005419SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
5420 MVT::ValueType VT = Op.getValueType();
5421 MVT::ValueType OpVT = VT;
5422 unsigned NumBits = MVT::getSizeInBits(VT);
5423
5424 Op = Op.getOperand(0);
5425 if (VT == MVT::i8) {
Evan Cheng7cfbfe32007-12-14 08:30:15 +00005426 // Zero extend to i32 since there is not an i8 bsr.
Evan Cheng48679f42007-12-14 02:13:44 +00005427 OpVT = MVT::i32;
5428 Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5429 }
Evan Cheng48679f42007-12-14 02:13:44 +00005430
Evan Cheng7cfbfe32007-12-14 08:30:15 +00005431 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5432 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5433 Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5434
5435 // If src is zero (i.e. bsr sets ZF), returns NumBits.
5436 SmallVector<SDOperand, 4> Ops;
5437 Ops.push_back(Op);
5438 Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5439 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5440 Ops.push_back(Op.getValue(1));
5441 Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5442
5443 // Finally xor with NumBits-1.
5444 Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5445
Evan Cheng48679f42007-12-14 02:13:44 +00005446 if (VT == MVT::i8)
5447 Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5448 return Op;
5449}
5450
5451SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
5452 MVT::ValueType VT = Op.getValueType();
5453 MVT::ValueType OpVT = VT;
Evan Cheng7cfbfe32007-12-14 08:30:15 +00005454 unsigned NumBits = MVT::getSizeInBits(VT);
Evan Cheng48679f42007-12-14 02:13:44 +00005455
5456 Op = Op.getOperand(0);
5457 if (VT == MVT::i8) {
5458 OpVT = MVT::i32;
5459 Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5460 }
Evan Cheng7cfbfe32007-12-14 08:30:15 +00005461
5462 // Issue a bsf (scan bits forward) which also sets EFLAGS.
5463 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5464 Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5465
5466 // If src is zero (i.e. bsf sets ZF), returns NumBits.
5467 SmallVector<SDOperand, 4> Ops;
5468 Ops.push_back(Op);
5469 Ops.push_back(DAG.getConstant(NumBits, OpVT));
5470 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5471 Ops.push_back(Op.getValue(1));
5472 Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5473
Evan Cheng48679f42007-12-14 02:13:44 +00005474 if (VT == MVT::i8)
5475 Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5476 return Op;
5477}
5478
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005479/// LowerOperation - Provide custom lowering hooks for some operations.
5480///
5481SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5482 switch (Op.getOpcode()) {
5483 default: assert(0 && "Should not custom lower this!");
5484 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
5485 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5486 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5487 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5488 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
5489 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
5490 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
5491 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5492 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
5493 case ISD::SHL_PARTS:
5494 case ISD::SRA_PARTS:
5495 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
5496 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
5497 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
5498 case ISD::FABS: return LowerFABS(Op, DAG);
5499 case ISD::FNEG: return LowerFNEG(Op, DAG);
5500 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
Evan Cheng621216e2007-09-29 00:00:36 +00005501 case ISD::SETCC: return LowerSETCC(Op, DAG);
5502 case ISD::SELECT: return LowerSELECT(Op, DAG);
5503 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005504 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
5505 case ISD::CALL: return LowerCALL(Op, DAG);
5506 case ISD::RET: return LowerRET(Op, DAG);
5507 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
5508 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
5509 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005510 case ISD::VASTART: return LowerVASTART(Op, DAG);
5511 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
5512 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5513 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
5514 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
5515 case ISD::FRAME_TO_ARGS_OFFSET:
5516 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5517 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5518 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005519 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +00005520 case ISD::FLT_ROUNDS: return LowerFLT_ROUNDS(Op, DAG);
Evan Cheng48679f42007-12-14 02:13:44 +00005521 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
5522 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
Chris Lattnerdfb947d2007-11-24 07:07:01 +00005523
5524 // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5525 case ISD::READCYCLECOUNTER:
5526 return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005527 }
Chris Lattnerdfb947d2007-11-24 07:07:01 +00005528}
5529
5530/// ExpandOperation - Provide custom lowering hooks for expanding operations.
5531SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
5532 switch (N->getOpcode()) {
5533 default: assert(0 && "Should not custom lower this!");
5534 case ISD::FP_TO_SINT: return ExpandFP_TO_SINT(N, DAG);
5535 case ISD::READCYCLECOUNTER: return ExpandREADCYCLECOUNTER(N, DAG);
5536 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005537}
5538
5539const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5540 switch (Opcode) {
5541 default: return NULL;
Evan Cheng48679f42007-12-14 02:13:44 +00005542 case X86ISD::BSF: return "X86ISD::BSF";
5543 case X86ISD::BSR: return "X86ISD::BSR";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005544 case X86ISD::SHLD: return "X86ISD::SHLD";
5545 case X86ISD::SHRD: return "X86ISD::SHRD";
5546 case X86ISD::FAND: return "X86ISD::FAND";
5547 case X86ISD::FOR: return "X86ISD::FOR";
5548 case X86ISD::FXOR: return "X86ISD::FXOR";
5549 case X86ISD::FSRL: return "X86ISD::FSRL";
5550 case X86ISD::FILD: return "X86ISD::FILD";
5551 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
5552 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5553 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5554 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5555 case X86ISD::FLD: return "X86ISD::FLD";
5556 case X86ISD::FST: return "X86ISD::FST";
5557 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
5558 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
5559 case X86ISD::CALL: return "X86ISD::CALL";
5560 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
5561 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
5562 case X86ISD::CMP: return "X86ISD::CMP";
5563 case X86ISD::COMI: return "X86ISD::COMI";
5564 case X86ISD::UCOMI: return "X86ISD::UCOMI";
5565 case X86ISD::SETCC: return "X86ISD::SETCC";
5566 case X86ISD::CMOV: return "X86ISD::CMOV";
5567 case X86ISD::BRCOND: return "X86ISD::BRCOND";
5568 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
5569 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
5570 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005571 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
5572 case X86ISD::Wrapper: return "X86ISD::Wrapper";
5573 case X86ISD::S2VEC: return "X86ISD::S2VEC";
5574 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
5575 case X86ISD::PINSRW: return "X86ISD::PINSRW";
5576 case X86ISD::FMAX: return "X86ISD::FMAX";
5577 case X86ISD::FMIN: return "X86ISD::FMIN";
5578 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
5579 case X86ISD::FRCP: return "X86ISD::FRCP";
5580 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
5581 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
5582 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00005583 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +00005584 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005585 }
5586}
5587
5588// isLegalAddressingMode - Return true if the addressing mode represented
5589// by AM is legal for this target, for a load/store of the specified type.
5590bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5591 const Type *Ty) const {
5592 // X86 supports extremely general addressing modes.
5593
5594 // X86 allows a sign-extended 32-bit immediate field as a displacement.
5595 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5596 return false;
5597
5598 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00005599 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005600 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5601 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00005602
5603 // X86-64 only supports addr of globals in small code model.
5604 if (Subtarget->is64Bit()) {
5605 if (getTargetMachine().getCodeModel() != CodeModel::Small)
5606 return false;
5607 // If lower 4G is not available, then we must use rip-relative addressing.
5608 if (AM.BaseOffs || AM.Scale > 1)
5609 return false;
5610 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005611 }
5612
5613 switch (AM.Scale) {
5614 case 0:
5615 case 1:
5616 case 2:
5617 case 4:
5618 case 8:
5619 // These scales always work.
5620 break;
5621 case 3:
5622 case 5:
5623 case 9:
5624 // These scales are formed with basereg+scalereg. Only accept if there is
5625 // no basereg yet.
5626 if (AM.HasBaseReg)
5627 return false;
5628 break;
5629 default: // Other stuff never works.
5630 return false;
5631 }
5632
5633 return true;
5634}
5635
5636
Evan Cheng27a820a2007-10-26 01:56:11 +00005637bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5638 if (!Ty1->isInteger() || !Ty2->isInteger())
5639 return false;
Evan Cheng7f152602007-10-29 07:57:50 +00005640 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5641 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5642 if (NumBits1 <= NumBits2)
5643 return false;
5644 return Subtarget->is64Bit() || NumBits1 < 64;
Evan Cheng27a820a2007-10-26 01:56:11 +00005645}
5646
Evan Cheng9decb332007-10-29 19:58:20 +00005647bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5648 MVT::ValueType VT2) const {
5649 if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5650 return false;
5651 unsigned NumBits1 = MVT::getSizeInBits(VT1);
5652 unsigned NumBits2 = MVT::getSizeInBits(VT2);
5653 if (NumBits1 <= NumBits2)
5654 return false;
5655 return Subtarget->is64Bit() || NumBits1 < 64;
5656}
Evan Cheng27a820a2007-10-26 01:56:11 +00005657
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005658/// isShuffleMaskLegal - Targets can use this to indicate that they only
5659/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5660/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5661/// are assumed to be legal.
5662bool
5663X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5664 // Only do shuffles on 128-bit vector types for now.
5665 if (MVT::getSizeInBits(VT) == 64) return false;
5666 return (Mask.Val->getNumOperands() <= 4 ||
5667 isIdentityMask(Mask.Val) ||
5668 isIdentityMask(Mask.Val, true) ||
5669 isSplatMask(Mask.Val) ||
5670 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5671 X86::isUNPCKLMask(Mask.Val) ||
5672 X86::isUNPCKHMask(Mask.Val) ||
5673 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5674 X86::isUNPCKH_v_undef_Mask(Mask.Val));
5675}
5676
5677bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5678 MVT::ValueType EVT,
5679 SelectionDAG &DAG) const {
5680 unsigned NumElts = BVOps.size();
5681 // Only do shuffles on 128-bit vector types for now.
5682 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5683 if (NumElts == 2) return true;
5684 if (NumElts == 4) {
5685 return (isMOVLMask(&BVOps[0], 4) ||
5686 isCommutedMOVL(&BVOps[0], 4, true) ||
5687 isSHUFPMask(&BVOps[0], 4) ||
5688 isCommutedSHUFP(&BVOps[0], 4));
5689 }
5690 return false;
5691}
5692
5693//===----------------------------------------------------------------------===//
5694// X86 Scheduler Hooks
5695//===----------------------------------------------------------------------===//
5696
5697MachineBasicBlock *
5698X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5699 MachineBasicBlock *BB) {
5700 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5701 switch (MI->getOpcode()) {
5702 default: assert(false && "Unexpected instr type to insert");
5703 case X86::CMOV_FR32:
5704 case X86::CMOV_FR64:
5705 case X86::CMOV_V4F32:
5706 case X86::CMOV_V2F64:
Evan Cheng621216e2007-09-29 00:00:36 +00005707 case X86::CMOV_V2I64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005708 // To "insert" a SELECT_CC instruction, we actually have to insert the
5709 // diamond control-flow pattern. The incoming instruction knows the
5710 // destination vreg to set, the condition code register to branch on, the
5711 // true/false values to select between, and a branch opcode to use.
5712 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5713 ilist<MachineBasicBlock>::iterator It = BB;
5714 ++It;
5715
5716 // thisMBB:
5717 // ...
5718 // TrueVal = ...
5719 // cmpTY ccX, r1, r2
5720 // bCC copy1MBB
5721 // fallthrough --> copy0MBB
5722 MachineBasicBlock *thisMBB = BB;
5723 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5724 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5725 unsigned Opc =
5726 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5727 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5728 MachineFunction *F = BB->getParent();
5729 F->getBasicBlockList().insert(It, copy0MBB);
5730 F->getBasicBlockList().insert(It, sinkMBB);
5731 // Update machine-CFG edges by first adding all successors of the current
5732 // block to the new block which will contain the Phi node for the select.
5733 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5734 e = BB->succ_end(); i != e; ++i)
5735 sinkMBB->addSuccessor(*i);
5736 // Next, remove all successors of the current block, and add the true
5737 // and fallthrough blocks as its successors.
5738 while(!BB->succ_empty())
5739 BB->removeSuccessor(BB->succ_begin());
5740 BB->addSuccessor(copy0MBB);
5741 BB->addSuccessor(sinkMBB);
5742
5743 // copy0MBB:
5744 // %FalseValue = ...
5745 // # fallthrough to sinkMBB
5746 BB = copy0MBB;
5747
5748 // Update machine-CFG edges
5749 BB->addSuccessor(sinkMBB);
5750
5751 // sinkMBB:
5752 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5753 // ...
5754 BB = sinkMBB;
5755 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5756 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5757 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5758
5759 delete MI; // The pseudo instruction is gone now.
5760 return BB;
5761 }
5762
5763 case X86::FP32_TO_INT16_IN_MEM:
5764 case X86::FP32_TO_INT32_IN_MEM:
5765 case X86::FP32_TO_INT64_IN_MEM:
5766 case X86::FP64_TO_INT16_IN_MEM:
5767 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00005768 case X86::FP64_TO_INT64_IN_MEM:
5769 case X86::FP80_TO_INT16_IN_MEM:
5770 case X86::FP80_TO_INT32_IN_MEM:
5771 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005772 // Change the floating point control register to use "round towards zero"
5773 // mode when truncating to an integer value.
5774 MachineFunction *F = BB->getParent();
5775 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5776 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5777
5778 // Load the old value of the high byte of the control word...
5779 unsigned OldCW =
5780 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5781 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5782
5783 // Set the high part to be round to zero...
5784 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5785 .addImm(0xC7F);
5786
5787 // Reload the modified control word now...
5788 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5789
5790 // Restore the memory image of control word to original value
5791 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5792 .addReg(OldCW);
5793
5794 // Get the X86 opcode to use.
5795 unsigned Opc;
5796 switch (MI->getOpcode()) {
5797 default: assert(0 && "illegal opcode!");
5798 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5799 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5800 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5801 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5802 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5803 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00005804 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5805 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5806 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005807 }
5808
5809 X86AddressMode AM;
5810 MachineOperand &Op = MI->getOperand(0);
5811 if (Op.isRegister()) {
5812 AM.BaseType = X86AddressMode::RegBase;
5813 AM.Base.Reg = Op.getReg();
5814 } else {
5815 AM.BaseType = X86AddressMode::FrameIndexBase;
5816 AM.Base.FrameIndex = Op.getFrameIndex();
5817 }
5818 Op = MI->getOperand(1);
5819 if (Op.isImmediate())
5820 AM.Scale = Op.getImm();
5821 Op = MI->getOperand(2);
5822 if (Op.isImmediate())
5823 AM.IndexReg = Op.getImm();
5824 Op = MI->getOperand(3);
5825 if (Op.isGlobalAddress()) {
5826 AM.GV = Op.getGlobal();
5827 } else {
5828 AM.Disp = Op.getImm();
5829 }
5830 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5831 .addReg(MI->getOperand(4).getReg());
5832
5833 // Reload the original control word now.
5834 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5835
5836 delete MI; // The pseudo instruction is gone now.
5837 return BB;
5838 }
5839 }
5840}
5841
5842//===----------------------------------------------------------------------===//
5843// X86 Optimization Hooks
5844//===----------------------------------------------------------------------===//
5845
5846void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5847 uint64_t Mask,
5848 uint64_t &KnownZero,
5849 uint64_t &KnownOne,
5850 const SelectionDAG &DAG,
5851 unsigned Depth) const {
5852 unsigned Opc = Op.getOpcode();
5853 assert((Opc >= ISD::BUILTIN_OP_END ||
5854 Opc == ISD::INTRINSIC_WO_CHAIN ||
5855 Opc == ISD::INTRINSIC_W_CHAIN ||
5856 Opc == ISD::INTRINSIC_VOID) &&
5857 "Should use MaskedValueIsZero if you don't know whether Op"
5858 " is a target node!");
5859
5860 KnownZero = KnownOne = 0; // Don't know anything.
5861 switch (Opc) {
5862 default: break;
5863 case X86ISD::SETCC:
5864 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5865 break;
5866 }
5867}
5868
5869/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5870/// element of the result of the vector shuffle.
5871static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5872 MVT::ValueType VT = N->getValueType(0);
5873 SDOperand PermMask = N->getOperand(2);
5874 unsigned NumElems = PermMask.getNumOperands();
5875 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5876 i %= NumElems;
5877 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5878 return (i == 0)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00005879 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005880 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5881 SDOperand Idx = PermMask.getOperand(i);
5882 if (Idx.getOpcode() == ISD::UNDEF)
5883 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5884 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5885 }
5886 return SDOperand();
5887}
5888
5889/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5890/// node is a GlobalAddress + an offset.
5891static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5892 unsigned Opc = N->getOpcode();
5893 if (Opc == X86ISD::Wrapper) {
5894 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5895 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5896 return true;
5897 }
5898 } else if (Opc == ISD::ADD) {
5899 SDOperand N1 = N->getOperand(0);
5900 SDOperand N2 = N->getOperand(1);
5901 if (isGAPlusOffset(N1.Val, GA, Offset)) {
5902 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5903 if (V) {
5904 Offset += V->getSignExtended();
5905 return true;
5906 }
5907 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5908 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5909 if (V) {
5910 Offset += V->getSignExtended();
5911 return true;
5912 }
5913 }
5914 }
5915 return false;
5916}
5917
5918/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5919/// + Dist * Size.
5920static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5921 MachineFrameInfo *MFI) {
5922 if (N->getOperand(0).Val != Base->getOperand(0).Val)
5923 return false;
5924
5925 SDOperand Loc = N->getOperand(1);
5926 SDOperand BaseLoc = Base->getOperand(1);
5927 if (Loc.getOpcode() == ISD::FrameIndex) {
5928 if (BaseLoc.getOpcode() != ISD::FrameIndex)
5929 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00005930 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
5931 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005932 int FS = MFI->getObjectSize(FI);
5933 int BFS = MFI->getObjectSize(BFI);
5934 if (FS != BFS || FS != Size) return false;
5935 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5936 } else {
5937 GlobalValue *GV1 = NULL;
5938 GlobalValue *GV2 = NULL;
5939 int64_t Offset1 = 0;
5940 int64_t Offset2 = 0;
5941 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5942 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5943 if (isGA1 && isGA2 && GV1 == GV2)
5944 return Offset1 == (Offset2 + Dist*Size);
5945 }
5946
5947 return false;
5948}
5949
5950static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5951 const X86Subtarget *Subtarget) {
5952 GlobalValue *GV;
5953 int64_t Offset;
5954 if (isGAPlusOffset(Base, GV, Offset))
5955 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5956 else {
5957 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00005958 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005959 if (BFI < 0)
5960 // Fixed objects do not specify alignment, however the offsets are known.
5961 return ((Subtarget->getStackAlignment() % 16) == 0 &&
5962 (MFI->getObjectOffset(BFI) % 16) == 0);
5963 else
5964 return MFI->getObjectAlignment(BFI) >= 16;
5965 }
5966 return false;
5967}
5968
5969
5970/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5971/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5972/// if the load addresses are consecutive, non-overlapping, and in the right
5973/// order.
5974static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5975 const X86Subtarget *Subtarget) {
5976 MachineFunction &MF = DAG.getMachineFunction();
5977 MachineFrameInfo *MFI = MF.getFrameInfo();
5978 MVT::ValueType VT = N->getValueType(0);
5979 MVT::ValueType EVT = MVT::getVectorElementType(VT);
5980 SDOperand PermMask = N->getOperand(2);
5981 int NumElems = (int)PermMask.getNumOperands();
5982 SDNode *Base = NULL;
5983 for (int i = 0; i < NumElems; ++i) {
5984 SDOperand Idx = PermMask.getOperand(i);
5985 if (Idx.getOpcode() == ISD::UNDEF) {
5986 if (!Base) return SDOperand();
5987 } else {
5988 SDOperand Arg =
5989 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5990 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5991 return SDOperand();
5992 if (!Base)
5993 Base = Arg.Val;
5994 else if (!isConsecutiveLoad(Arg.Val, Base,
5995 i, MVT::getSizeInBits(EVT)/8,MFI))
5996 return SDOperand();
5997 }
5998 }
5999
6000 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00006001 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006002 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006003 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00006004 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006005 } else {
Dan Gohman11821702007-07-27 17:16:43 +00006006 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6007 LD->getSrcValueOffset(), LD->isVolatile(),
6008 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006009 }
6010}
6011
6012/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
6013static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
6014 const X86Subtarget *Subtarget) {
6015 SDOperand Cond = N->getOperand(0);
6016
6017 // If we have SSE[12] support, try to form min/max nodes.
6018 if (Subtarget->hasSSE2() &&
6019 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
6020 if (Cond.getOpcode() == ISD::SETCC) {
6021 // Get the LHS/RHS of the select.
6022 SDOperand LHS = N->getOperand(1);
6023 SDOperand RHS = N->getOperand(2);
6024 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
6025
6026 unsigned Opcode = 0;
6027 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
6028 switch (CC) {
6029 default: break;
6030 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
6031 case ISD::SETULE:
6032 case ISD::SETLE:
6033 if (!UnsafeFPMath) break;
6034 // FALL THROUGH.
6035 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
6036 case ISD::SETLT:
6037 Opcode = X86ISD::FMIN;
6038 break;
6039
6040 case ISD::SETOGT: // (X > Y) ? X : Y -> max
6041 case ISD::SETUGT:
6042 case ISD::SETGT:
6043 if (!UnsafeFPMath) break;
6044 // FALL THROUGH.
6045 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
6046 case ISD::SETGE:
6047 Opcode = X86ISD::FMAX;
6048 break;
6049 }
6050 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
6051 switch (CC) {
6052 default: break;
6053 case ISD::SETOGT: // (X > Y) ? Y : X -> min
6054 case ISD::SETUGT:
6055 case ISD::SETGT:
6056 if (!UnsafeFPMath) break;
6057 // FALL THROUGH.
6058 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
6059 case ISD::SETGE:
6060 Opcode = X86ISD::FMIN;
6061 break;
6062
6063 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
6064 case ISD::SETULE:
6065 case ISD::SETLE:
6066 if (!UnsafeFPMath) break;
6067 // FALL THROUGH.
6068 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
6069 case ISD::SETLT:
6070 Opcode = X86ISD::FMAX;
6071 break;
6072 }
6073 }
6074
6075 if (Opcode)
6076 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
6077 }
6078
6079 }
6080
6081 return SDOperand();
6082}
6083
6084
6085SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
6086 DAGCombinerInfo &DCI) const {
6087 SelectionDAG &DAG = DCI.DAG;
6088 switch (N->getOpcode()) {
6089 default: break;
6090 case ISD::VECTOR_SHUFFLE:
6091 return PerformShuffleCombine(N, DAG, Subtarget);
6092 case ISD::SELECT:
6093 return PerformSELECTCombine(N, DAG, Subtarget);
6094 }
6095
6096 return SDOperand();
6097}
6098
6099//===----------------------------------------------------------------------===//
6100// X86 Inline Assembly Support
6101//===----------------------------------------------------------------------===//
6102
6103/// getConstraintType - Given a constraint letter, return the type of
6104/// constraint it is for this target.
6105X86TargetLowering::ConstraintType
6106X86TargetLowering::getConstraintType(const std::string &Constraint) const {
6107 if (Constraint.size() == 1) {
6108 switch (Constraint[0]) {
6109 case 'A':
6110 case 'r':
6111 case 'R':
6112 case 'l':
6113 case 'q':
6114 case 'Q':
6115 case 'x':
6116 case 'Y':
6117 return C_RegisterClass;
6118 default:
6119 break;
6120 }
6121 }
6122 return TargetLowering::getConstraintType(Constraint);
6123}
6124
Chris Lattnera531abc2007-08-25 00:47:38 +00006125/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6126/// vector. If it is invalid, don't add anything to Ops.
6127void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
6128 char Constraint,
6129 std::vector<SDOperand>&Ops,
6130 SelectionDAG &DAG) {
6131 SDOperand Result(0, 0);
6132
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006133 switch (Constraint) {
6134 default: break;
6135 case 'I':
6136 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00006137 if (C->getValue() <= 31) {
6138 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6139 break;
6140 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006141 }
Chris Lattnera531abc2007-08-25 00:47:38 +00006142 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006143 case 'N':
6144 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00006145 if (C->getValue() <= 255) {
6146 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6147 break;
6148 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006149 }
Chris Lattnera531abc2007-08-25 00:47:38 +00006150 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006151 case 'i': {
6152 // Literal immediates are always ok.
Chris Lattnera531abc2007-08-25 00:47:38 +00006153 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
6154 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
6155 break;
6156 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006157
6158 // If we are in non-pic codegen mode, we allow the address of a global (with
6159 // an optional displacement) to be used with 'i'.
6160 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
6161 int64_t Offset = 0;
6162
6163 // Match either (GA) or (GA+C)
6164 if (GA) {
6165 Offset = GA->getOffset();
6166 } else if (Op.getOpcode() == ISD::ADD) {
6167 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6168 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6169 if (C && GA) {
6170 Offset = GA->getOffset()+C->getValue();
6171 } else {
6172 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6173 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6174 if (C && GA)
6175 Offset = GA->getOffset()+C->getValue();
6176 else
6177 C = 0, GA = 0;
6178 }
6179 }
6180
6181 if (GA) {
6182 // If addressing this global requires a load (e.g. in PIC mode), we can't
6183 // match.
6184 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
6185 false))
Chris Lattnera531abc2007-08-25 00:47:38 +00006186 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006187
6188 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
6189 Offset);
Chris Lattnera531abc2007-08-25 00:47:38 +00006190 Result = Op;
6191 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006192 }
6193
6194 // Otherwise, not valid for this mode.
Chris Lattnera531abc2007-08-25 00:47:38 +00006195 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006196 }
6197 }
Chris Lattnera531abc2007-08-25 00:47:38 +00006198
6199 if (Result.Val) {
6200 Ops.push_back(Result);
6201 return;
6202 }
6203 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006204}
6205
6206std::vector<unsigned> X86TargetLowering::
6207getRegClassForInlineAsmConstraint(const std::string &Constraint,
6208 MVT::ValueType VT) const {
6209 if (Constraint.size() == 1) {
6210 // FIXME: not handling fp-stack yet!
6211 switch (Constraint[0]) { // GCC X86 Constraint Letters
6212 default: break; // Unknown constraint letter
6213 case 'A': // EAX/EDX
6214 if (VT == MVT::i32 || VT == MVT::i64)
6215 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
6216 break;
6217 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
6218 case 'Q': // Q_REGS
6219 if (VT == MVT::i32)
6220 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
6221 else if (VT == MVT::i16)
6222 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
6223 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00006224 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Chris Lattner35032592007-11-04 06:51:12 +00006225 else if (VT == MVT::i64)
6226 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
6227 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006228 }
6229 }
6230
6231 return std::vector<unsigned>();
6232}
6233
6234std::pair<unsigned, const TargetRegisterClass*>
6235X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6236 MVT::ValueType VT) const {
6237 // First, see if this is a constraint that directly corresponds to an LLVM
6238 // register class.
6239 if (Constraint.size() == 1) {
6240 // GCC Constraint Letters
6241 switch (Constraint[0]) {
6242 default: break;
6243 case 'r': // GENERAL_REGS
6244 case 'R': // LEGACY_REGS
6245 case 'l': // INDEX_REGS
6246 if (VT == MVT::i64 && Subtarget->is64Bit())
6247 return std::make_pair(0U, X86::GR64RegisterClass);
6248 if (VT == MVT::i32)
6249 return std::make_pair(0U, X86::GR32RegisterClass);
6250 else if (VT == MVT::i16)
6251 return std::make_pair(0U, X86::GR16RegisterClass);
6252 else if (VT == MVT::i8)
6253 return std::make_pair(0U, X86::GR8RegisterClass);
6254 break;
6255 case 'y': // MMX_REGS if MMX allowed.
6256 if (!Subtarget->hasMMX()) break;
6257 return std::make_pair(0U, X86::VR64RegisterClass);
6258 break;
6259 case 'Y': // SSE_REGS if SSE2 allowed
6260 if (!Subtarget->hasSSE2()) break;
6261 // FALL THROUGH.
6262 case 'x': // SSE_REGS if SSE1 allowed
6263 if (!Subtarget->hasSSE1()) break;
6264
6265 switch (VT) {
6266 default: break;
6267 // Scalar SSE types.
6268 case MVT::f32:
6269 case MVT::i32:
6270 return std::make_pair(0U, X86::FR32RegisterClass);
6271 case MVT::f64:
6272 case MVT::i64:
6273 return std::make_pair(0U, X86::FR64RegisterClass);
6274 // Vector types.
6275 case MVT::v16i8:
6276 case MVT::v8i16:
6277 case MVT::v4i32:
6278 case MVT::v2i64:
6279 case MVT::v4f32:
6280 case MVT::v2f64:
6281 return std::make_pair(0U, X86::VR128RegisterClass);
6282 }
6283 break;
6284 }
6285 }
6286
6287 // Use the default implementation in TargetLowering to convert the register
6288 // constraint into a member of a register class.
6289 std::pair<unsigned, const TargetRegisterClass*> Res;
6290 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6291
6292 // Not found as a standard register?
6293 if (Res.second == 0) {
6294 // GCC calls "st(0)" just plain "st".
6295 if (StringsEqualNoCase("{st}", Constraint)) {
6296 Res.first = X86::ST0;
Chris Lattner3cfe51b2007-09-24 05:27:37 +00006297 Res.second = X86::RFP80RegisterClass;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006298 }
6299
6300 return Res;
6301 }
6302
6303 // Otherwise, check to see if this is a register class of the wrong value
6304 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
6305 // turn into {ax},{dx}.
6306 if (Res.second->hasType(VT))
6307 return Res; // Correct type already, nothing to do.
6308
6309 // All of the single-register GCC register classes map their values onto
6310 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
6311 // really want an 8-bit or 32-bit register, map to the appropriate register
6312 // class and return the appropriate register.
6313 if (Res.second != X86::GR16RegisterClass)
6314 return Res;
6315
6316 if (VT == MVT::i8) {
6317 unsigned DestReg = 0;
6318 switch (Res.first) {
6319 default: break;
6320 case X86::AX: DestReg = X86::AL; break;
6321 case X86::DX: DestReg = X86::DL; break;
6322 case X86::CX: DestReg = X86::CL; break;
6323 case X86::BX: DestReg = X86::BL; break;
6324 }
6325 if (DestReg) {
6326 Res.first = DestReg;
6327 Res.second = Res.second = X86::GR8RegisterClass;
6328 }
6329 } else if (VT == MVT::i32) {
6330 unsigned DestReg = 0;
6331 switch (Res.first) {
6332 default: break;
6333 case X86::AX: DestReg = X86::EAX; break;
6334 case X86::DX: DestReg = X86::EDX; break;
6335 case X86::CX: DestReg = X86::ECX; break;
6336 case X86::BX: DestReg = X86::EBX; break;
6337 case X86::SI: DestReg = X86::ESI; break;
6338 case X86::DI: DestReg = X86::EDI; break;
6339 case X86::BP: DestReg = X86::EBP; break;
6340 case X86::SP: DestReg = X86::ESP; break;
6341 }
6342 if (DestReg) {
6343 Res.first = DestReg;
6344 Res.second = Res.second = X86::GR32RegisterClass;
6345 }
6346 } else if (VT == MVT::i64) {
6347 unsigned DestReg = 0;
6348 switch (Res.first) {
6349 default: break;
6350 case X86::AX: DestReg = X86::RAX; break;
6351 case X86::DX: DestReg = X86::RDX; break;
6352 case X86::CX: DestReg = X86::RCX; break;
6353 case X86::BX: DestReg = X86::RBX; break;
6354 case X86::SI: DestReg = X86::RSI; break;
6355 case X86::DI: DestReg = X86::RDI; break;
6356 case X86::BP: DestReg = X86::RBP; break;
6357 case X86::SP: DestReg = X86::RSP; break;
6358 }
6359 if (DestReg) {
6360 Res.first = DestReg;
6361 Res.second = Res.second = X86::GR64RegisterClass;
6362 }
6363 }
6364
6365 return Res;
6366}