blob: d95c855ce7da957e6d4bedf981ed00f58879557c [file] [log] [blame]
Chandler Carruth713aa942012-09-14 09:22:59 +00001//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/Constants.h"
29#include "llvm/DIBuilder.h"
30#include "llvm/DebugInfo.h"
31#include "llvm/DerivedTypes.h"
32#include "llvm/Function.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000033#include "llvm/IRBuilder.h"
34#include "llvm/Instructions.h"
35#include "llvm/IntrinsicInst.h"
36#include "llvm/LLVMContext.h"
37#include "llvm/Module.h"
38#include "llvm/Operator.h"
39#include "llvm/Pass.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/STLExtras.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000044#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/Loads.h"
46#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1c8db502012-09-15 11:43:14 +000047#include "llvm/Support/CommandLine.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000048#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000053#include "llvm/Support/raw_ostream.h"
Micah Villmow3574eca2012-10-08 16:38:25 +000054#include "llvm/DataLayout.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000055#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58using namespace llvm;
59
60STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
61STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
62STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
63STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
64STATISTIC(NumDeleted, "Number of instructions deleted");
65STATISTIC(NumVectorized, "Number of vectorized aggregates");
66
Chandler Carruth1c8db502012-09-15 11:43:14 +000067/// Hidden option to force the pass to not use DomTree and mem2reg, instead
68/// forming SSA values through the SSAUpdater infrastructure.
69static cl::opt<bool>
70ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
71
Chandler Carruth713aa942012-09-14 09:22:59 +000072namespace {
73/// \brief Alloca partitioning representation.
74///
75/// This class represents a partitioning of an alloca into slices, and
76/// information about the nature of uses of each slice of the alloca. The goal
77/// is that this information is sufficient to decide if and how to split the
78/// alloca apart and replace slices with scalars. It is also intended that this
Chandler Carruth7f5bede2012-09-14 10:18:49 +000079/// structure can capture the relevant information needed both to decide about
Chandler Carruth713aa942012-09-14 09:22:59 +000080/// and to enact these transformations.
81class AllocaPartitioning {
82public:
83 /// \brief A common base class for representing a half-open byte range.
84 struct ByteRange {
85 /// \brief The beginning offset of the range.
86 uint64_t BeginOffset;
87
88 /// \brief The ending offset, not included in the range.
89 uint64_t EndOffset;
90
91 ByteRange() : BeginOffset(), EndOffset() {}
92 ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
93 : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
94
95 /// \brief Support for ordering ranges.
96 ///
97 /// This provides an ordering over ranges such that start offsets are
98 /// always increasing, and within equal start offsets, the end offsets are
Chandler Carruth7f5bede2012-09-14 10:18:49 +000099 /// decreasing. Thus the spanning range comes first in a cluster with the
Chandler Carruth713aa942012-09-14 09:22:59 +0000100 /// same start position.
101 bool operator<(const ByteRange &RHS) const {
102 if (BeginOffset < RHS.BeginOffset) return true;
103 if (BeginOffset > RHS.BeginOffset) return false;
104 if (EndOffset > RHS.EndOffset) return true;
105 return false;
106 }
107
108 /// \brief Support comparison with a single offset to allow binary searches.
Benjamin Kramer2d1c2a22012-09-17 16:42:36 +0000109 friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
110 return LHS.BeginOffset < RHSOffset;
111 }
112
113 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
114 const ByteRange &RHS) {
115 return LHSOffset < RHS.BeginOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000116 }
117
118 bool operator==(const ByteRange &RHS) const {
119 return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
120 }
121 bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
122 };
123
124 /// \brief A partition of an alloca.
125 ///
126 /// This structure represents a contiguous partition of the alloca. These are
127 /// formed by examining the uses of the alloca. During formation, they may
128 /// overlap but once an AllocaPartitioning is built, the Partitions within it
129 /// are all disjoint.
130 struct Partition : public ByteRange {
131 /// \brief Whether this partition is splittable into smaller partitions.
132 ///
133 /// We flag partitions as splittable when they are formed entirely due to
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000134 /// accesses by trivially splittable operations such as memset and memcpy.
Chandler Carruth713aa942012-09-14 09:22:59 +0000135 bool IsSplittable;
136
Chandler Carruthfca3f402012-10-05 01:29:09 +0000137 /// \brief Test whether a partition has been marked as dead.
138 bool isDead() const {
139 if (BeginOffset == UINT64_MAX) {
140 assert(EndOffset == UINT64_MAX);
141 return true;
142 }
143 return false;
144 }
145
146 /// \brief Kill a partition.
147 /// This is accomplished by setting both its beginning and end offset to
148 /// the maximum possible value.
149 void kill() {
150 assert(!isDead() && "He's Dead, Jim!");
151 BeginOffset = EndOffset = UINT64_MAX;
152 }
153
Chandler Carruth713aa942012-09-14 09:22:59 +0000154 Partition() : ByteRange(), IsSplittable() {}
155 Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
156 : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
157 };
158
159 /// \brief A particular use of a partition of the alloca.
160 ///
161 /// This structure is used to associate uses of a partition with it. They
162 /// mark the range of bytes which are referenced by a particular instruction,
163 /// and includes a handle to the user itself and the pointer value in use.
164 /// The bounds of these uses are determined by intersecting the bounds of the
165 /// memory use itself with a particular partition. As a consequence there is
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000166 /// intentionally overlap between various uses of the same partition.
Chandler Carruth713aa942012-09-14 09:22:59 +0000167 struct PartitionUse : public ByteRange {
Chandler Carruth77c12702012-10-01 01:49:22 +0000168 /// \brief The use in question. Provides access to both user and used value.
Chandler Carruthfdb15852012-10-02 18:57:13 +0000169 ///
170 /// Note that this may be null if the partition use is *dead*, that is, it
171 /// should be ignored.
172 Use *U;
Chandler Carruth713aa942012-09-14 09:22:59 +0000173
Chandler Carruth77c12702012-10-01 01:49:22 +0000174 PartitionUse() : ByteRange(), U() {}
175 PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
176 : ByteRange(BeginOffset, EndOffset), U(U) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000177 };
178
179 /// \brief Construct a partitioning of a particular alloca.
180 ///
181 /// Construction does most of the work for partitioning the alloca. This
182 /// performs the necessary walks of users and builds a partitioning from it.
Micah Villmow3574eca2012-10-08 16:38:25 +0000183 AllocaPartitioning(const DataLayout &TD, AllocaInst &AI);
Chandler Carruth713aa942012-09-14 09:22:59 +0000184
185 /// \brief Test whether a pointer to the allocation escapes our analysis.
186 ///
187 /// If this is true, the partitioning is never fully built and should be
188 /// ignored.
189 bool isEscaped() const { return PointerEscapingInstr; }
190
191 /// \brief Support for iterating over the partitions.
192 /// @{
193 typedef SmallVectorImpl<Partition>::iterator iterator;
194 iterator begin() { return Partitions.begin(); }
195 iterator end() { return Partitions.end(); }
196
197 typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
198 const_iterator begin() const { return Partitions.begin(); }
199 const_iterator end() const { return Partitions.end(); }
200 /// @}
201
202 /// \brief Support for iterating over and manipulating a particular
203 /// partition's uses.
204 ///
205 /// The iteration support provided for uses is more limited, but also
206 /// includes some manipulation routines to support rewriting the uses of
207 /// partitions during SROA.
208 /// @{
209 typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
210 use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
211 use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
212 use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
213 use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
Chandler Carruth713aa942012-09-14 09:22:59 +0000214
215 typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
216 const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
217 const_use_iterator use_begin(const_iterator I) const {
218 return Uses[I - begin()].begin();
219 }
220 const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
221 const_use_iterator use_end(const_iterator I) const {
222 return Uses[I - begin()].end();
223 }
Chandler Carrutha346f462012-10-02 17:49:47 +0000224
225 unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
226 unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
227 const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
228 return Uses[PIdx][UIdx];
229 }
230 const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
231 return Uses[I - begin()][UIdx];
232 }
233
234 void use_push_back(unsigned Idx, const PartitionUse &PU) {
235 Uses[Idx].push_back(PU);
236 }
237 void use_push_back(const_iterator I, const PartitionUse &PU) {
238 Uses[I - begin()].push_back(PU);
239 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000240 /// @}
241
242 /// \brief Allow iterating the dead users for this alloca.
243 ///
244 /// These are instructions which will never actually use the alloca as they
245 /// are outside the allocated range. They are safe to replace with undef and
246 /// delete.
247 /// @{
248 typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
249 dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
250 dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
251 /// @}
252
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000253 /// \brief Allow iterating the dead expressions referring to this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000254 ///
255 /// These are operands which have cannot actually be used to refer to the
256 /// alloca as they are outside its range and the user doesn't correct for
257 /// that. These mostly consist of PHI node inputs and the like which we just
258 /// need to replace with undef.
259 /// @{
260 typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
261 dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
262 dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
263 /// @}
264
265 /// \brief MemTransferInst auxiliary data.
266 /// This struct provides some auxiliary data about memory transfer
267 /// intrinsics such as memcpy and memmove. These intrinsics can use two
268 /// different ranges within the same alloca, and provide other challenges to
269 /// correctly represent. We stash extra data to help us untangle this
270 /// after the partitioning is complete.
271 struct MemTransferOffsets {
Chandler Carruthfca3f402012-10-05 01:29:09 +0000272 /// The destination begin and end offsets when the destination is within
273 /// this alloca. If the end offset is zero the destination is not within
274 /// this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000275 uint64_t DestBegin, DestEnd;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000276
277 /// The source begin and end offsets when the source is within this alloca.
278 /// If the end offset is zero, the source is not within this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000279 uint64_t SourceBegin, SourceEnd;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000280
281 /// Flag for whether an alloca is splittable.
Chandler Carruth713aa942012-09-14 09:22:59 +0000282 bool IsSplittable;
283 };
284 MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
285 return MemTransferInstData.lookup(&II);
286 }
287
288 /// \brief Map from a PHI or select operand back to a partition.
289 ///
290 /// When manipulating PHI nodes or selects, they can use more than one
291 /// partition of an alloca. We store a special mapping to allow finding the
292 /// partition referenced by each of these operands, if any.
Chandler Carruth77c12702012-10-01 01:49:22 +0000293 iterator findPartitionForPHIOrSelectOperand(Use *U) {
294 SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
295 = PHIOrSelectOpMap.find(U);
Chandler Carruth713aa942012-09-14 09:22:59 +0000296 if (MapIt == PHIOrSelectOpMap.end())
297 return end();
298
299 return begin() + MapIt->second.first;
300 }
301
302 /// \brief Map from a PHI or select operand back to the specific use of
303 /// a partition.
304 ///
305 /// Similar to mapping these operands back to the partitions, this maps
306 /// directly to the use structure of that partition.
Chandler Carruth77c12702012-10-01 01:49:22 +0000307 use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
308 SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
309 = PHIOrSelectOpMap.find(U);
Chandler Carruth713aa942012-09-14 09:22:59 +0000310 assert(MapIt != PHIOrSelectOpMap.end());
311 return Uses[MapIt->second.first].begin() + MapIt->second.second;
312 }
313
314 /// \brief Compute a common type among the uses of a particular partition.
315 ///
316 /// This routines walks all of the uses of a particular partition and tries
317 /// to find a common type between them. Untyped operations such as memset and
318 /// memcpy are ignored.
319 Type *getCommonType(iterator I) const;
320
Chandler Carruthba13d2e2012-09-14 10:18:51 +0000321#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chandler Carruth713aa942012-09-14 09:22:59 +0000322 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
323 void printUsers(raw_ostream &OS, const_iterator I,
324 StringRef Indent = " ") const;
325 void print(raw_ostream &OS) const;
NAKAMURA Takumiad9f5b82012-09-14 10:06:10 +0000326 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
327 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
Chandler Carruthba13d2e2012-09-14 10:18:51 +0000328#endif
Chandler Carruth713aa942012-09-14 09:22:59 +0000329
330private:
331 template <typename DerivedT, typename RetT = void> class BuilderBase;
332 class PartitionBuilder;
333 friend class AllocaPartitioning::PartitionBuilder;
334 class UseBuilder;
335 friend class AllocaPartitioning::UseBuilder;
336
Benjamin Kramerd0807692012-09-14 13:08:09 +0000337#ifndef NDEBUG
Chandler Carruth713aa942012-09-14 09:22:59 +0000338 /// \brief Handle to alloca instruction to simplify method interfaces.
339 AllocaInst &AI;
Benjamin Kramerd0807692012-09-14 13:08:09 +0000340#endif
Chandler Carruth713aa942012-09-14 09:22:59 +0000341
342 /// \brief The instruction responsible for this alloca having no partitioning.
343 ///
344 /// When an instruction (potentially) escapes the pointer to the alloca, we
345 /// store a pointer to that here and abort trying to partition the alloca.
346 /// This will be null if the alloca is partitioned successfully.
347 Instruction *PointerEscapingInstr;
348
349 /// \brief The partitions of the alloca.
350 ///
351 /// We store a vector of the partitions over the alloca here. This vector is
352 /// sorted by increasing begin offset, and then by decreasing end offset. See
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000353 /// the Partition inner class for more details. Initially (during
354 /// construction) there are overlaps, but we form a disjoint sequence of
355 /// partitions while finishing construction and a fully constructed object is
356 /// expected to always have this as a disjoint space.
Chandler Carruth713aa942012-09-14 09:22:59 +0000357 SmallVector<Partition, 8> Partitions;
358
359 /// \brief The uses of the partitions.
360 ///
361 /// This is essentially a mapping from each partition to a list of uses of
362 /// that partition. The mapping is done with a Uses vector that has the exact
363 /// same number of entries as the partition vector. Each entry is itself
364 /// a vector of the uses.
365 SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
366
367 /// \brief Instructions which will become dead if we rewrite the alloca.
368 ///
369 /// Note that these are not separated by partition. This is because we expect
370 /// a partitioned alloca to be completely rewritten or not rewritten at all.
371 /// If rewritten, all these instructions can simply be removed and replaced
372 /// with undef as they come from outside of the allocated space.
373 SmallVector<Instruction *, 8> DeadUsers;
374
375 /// \brief Operands which will become dead if we rewrite the alloca.
376 ///
377 /// These are operands that in their particular use can be replaced with
378 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
379 /// to PHI nodes and the like. They aren't entirely dead (there might be
380 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
381 /// want to swap this particular input for undef to simplify the use lists of
382 /// the alloca.
383 SmallVector<Use *, 8> DeadOperands;
384
385 /// \brief The underlying storage for auxiliary memcpy and memset info.
386 SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
387
388 /// \brief A side datastructure used when building up the partitions and uses.
389 ///
390 /// This mapping is only really used during the initial building of the
391 /// partitioning so that we can retain information about PHI and select nodes
392 /// processed.
393 SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
394
395 /// \brief Auxiliary information for particular PHI or select operands.
Chandler Carruth77c12702012-10-01 01:49:22 +0000396 SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
Chandler Carruth713aa942012-09-14 09:22:59 +0000397
398 /// \brief A utility routine called from the constructor.
399 ///
400 /// This does what it says on the tin. It is the key of the alloca partition
401 /// splitting and merging. After it is called we have the desired disjoint
402 /// collection of partitions.
403 void splitAndMergePartitions();
404};
405}
406
407template <typename DerivedT, typename RetT>
408class AllocaPartitioning::BuilderBase
409 : public InstVisitor<DerivedT, RetT> {
410public:
Micah Villmow3574eca2012-10-08 16:38:25 +0000411 BuilderBase(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth713aa942012-09-14 09:22:59 +0000412 : TD(TD),
413 AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
414 P(P) {
415 enqueueUsers(AI, 0);
416 }
417
418protected:
Micah Villmow3574eca2012-10-08 16:38:25 +0000419 const DataLayout &TD;
Chandler Carruth713aa942012-09-14 09:22:59 +0000420 const uint64_t AllocSize;
421 AllocaPartitioning &P;
422
Chandler Carruth77c12702012-10-01 01:49:22 +0000423 SmallPtrSet<Use *, 8> VisitedUses;
424
Chandler Carruth713aa942012-09-14 09:22:59 +0000425 struct OffsetUse {
426 Use *U;
Chandler Carruth02e92a02012-09-23 11:43:14 +0000427 int64_t Offset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000428 };
429 SmallVector<OffsetUse, 8> Queue;
430
431 // The active offset and use while visiting.
432 Use *U;
Chandler Carruth02e92a02012-09-23 11:43:14 +0000433 int64_t Offset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000434
Chandler Carruth02e92a02012-09-23 11:43:14 +0000435 void enqueueUsers(Instruction &I, int64_t UserOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000436 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
437 UI != UE; ++UI) {
Chandler Carruth77c12702012-10-01 01:49:22 +0000438 if (VisitedUses.insert(&UI.getUse())) {
439 OffsetUse OU = { &UI.getUse(), UserOffset };
440 Queue.push_back(OU);
441 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000442 }
443 }
444
Chandler Carruth02e92a02012-09-23 11:43:14 +0000445 bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000446 GEPOffset = Offset;
447 for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI);
448 GTI != GTE; ++GTI) {
449 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
450 if (!OpC)
451 return false;
452 if (OpC->isZero())
453 continue;
454
455 // Handle a struct index, which adds its field offset to the pointer.
456 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
457 unsigned ElementIdx = OpC->getZExtValue();
458 const StructLayout *SL = TD.getStructLayout(STy);
Chandler Carruth02e92a02012-09-23 11:43:14 +0000459 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
460 // Check that we can continue to model this GEP in a signed 64-bit offset.
461 if (ElementOffset > INT64_MAX ||
462 (GEPOffset >= 0 &&
463 ((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) {
464 DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
465 << "what can be represented in an int64_t!\n"
466 << " alloca: " << P.AI << "\n");
467 return false;
468 }
469 if (GEPOffset < 0)
470 GEPOffset = ElementOffset + (uint64_t)-GEPOffset;
471 else
472 GEPOffset += ElementOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000473 continue;
474 }
475
Chandler Carruth426c2bf2012-11-01 09:14:31 +0000476 APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits());
Chandler Carruth02e92a02012-09-23 11:43:14 +0000477 Index *= APInt(Index.getBitWidth(),
478 TD.getTypeAllocSize(GTI.getIndexedType()));
479 Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset,
480 /*isSigned*/true);
481 // Check if the result can be stored in our int64_t offset.
482 if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) {
483 DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
484 << "what can be represented in an int64_t!\n"
485 << " alloca: " << P.AI << "\n");
486 return false;
487 }
488
489 GEPOffset = Index.getSExtValue();
Chandler Carruth713aa942012-09-14 09:22:59 +0000490 }
491 return true;
492 }
493
494 Value *foldSelectInst(SelectInst &SI) {
495 // If the condition being selected on is a constant or the same value is
496 // being selected between, fold the select. Yes this does (rarely) happen
497 // early on.
498 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
499 return SI.getOperand(1+CI->isZero());
500 if (SI.getOperand(1) == SI.getOperand(2)) {
501 assert(*U == SI.getOperand(1));
502 return SI.getOperand(1);
503 }
504 return 0;
505 }
506};
507
508/// \brief Builder for the alloca partitioning.
509///
510/// This class builds an alloca partitioning by recursively visiting the uses
511/// of an alloca and splitting the partitions for each load and store at each
512/// offset.
513class AllocaPartitioning::PartitionBuilder
514 : public BuilderBase<PartitionBuilder, bool> {
515 friend class InstVisitor<PartitionBuilder, bool>;
516
517 SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
518
519public:
Micah Villmow3574eca2012-10-08 16:38:25 +0000520 PartitionBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth2a9bf252012-09-14 09:30:33 +0000521 : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000522
523 /// \brief Run the builder over the allocation.
524 bool operator()() {
525 // Note that we have to re-evaluate size on each trip through the loop as
526 // the queue grows at the tail.
527 for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
528 U = Queue[Idx].U;
529 Offset = Queue[Idx].Offset;
530 if (!visit(cast<Instruction>(U->getUser())))
531 return false;
532 }
533 return true;
534 }
535
536private:
537 bool markAsEscaping(Instruction &I) {
538 P.PointerEscapingInstr = &I;
539 return false;
540 }
541
Chandler Carruth02e92a02012-09-23 11:43:14 +0000542 void insertUse(Instruction &I, int64_t Offset, uint64_t Size,
Chandler Carruth63392ea2012-09-16 19:39:50 +0000543 bool IsSplittable = false) {
Chandler Carruthc3034632012-09-25 10:03:40 +0000544 // Completely skip uses which have a zero size or don't overlap the
545 // allocation.
546 if (Size == 0 ||
547 (Offset >= 0 && (uint64_t)Offset >= AllocSize) ||
Chandler Carruth02e92a02012-09-23 11:43:14 +0000548 (Offset < 0 && (uint64_t)-Offset >= Size)) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000549 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
550 << " which starts past the end of the " << AllocSize
551 << " byte alloca:\n"
552 << " alloca: " << P.AI << "\n"
553 << " use: " << I << "\n");
554 return;
555 }
556
Chandler Carruth02e92a02012-09-23 11:43:14 +0000557 // Clamp the start to the beginning of the allocation.
558 if (Offset < 0) {
559 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
560 << " to start at the beginning of the alloca:\n"
561 << " alloca: " << P.AI << "\n"
562 << " use: " << I << "\n");
563 Size -= (uint64_t)-Offset;
564 Offset = 0;
565 }
566
567 uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
568
569 // Clamp the end offset to the end of the allocation. Note that this is
570 // formulated to handle even the case where "BeginOffset + Size" overflows.
571 assert(AllocSize >= BeginOffset); // Established above.
572 if (Size > AllocSize - BeginOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000573 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
574 << " to remain within the " << AllocSize << " byte alloca:\n"
575 << " alloca: " << P.AI << "\n"
576 << " use: " << I << "\n");
577 EndOffset = AllocSize;
578 }
579
Chandler Carruth713aa942012-09-14 09:22:59 +0000580 Partition New(BeginOffset, EndOffset, IsSplittable);
581 P.Partitions.push_back(New);
582 }
583
Chandler Carrutha2b88162012-10-25 04:37:07 +0000584 bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset,
585 bool IsVolatile) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000586 uint64_t Size = TD.getTypeStoreSize(Ty);
587
588 // If this memory access can be shown to *statically* extend outside the
589 // bounds of of the allocation, it's behavior is undefined, so simply
590 // ignore it. Note that this is more strict than the generic clamping
591 // behavior of insertUse. We also try to handle cases which might run the
592 // risk of overflow.
593 // FIXME: We should instead consider the pointer to have escaped if this
594 // function is being instrumented for addressing bugs or race conditions.
Chandler Carruth02e92a02012-09-23 11:43:14 +0000595 if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
596 Size > (AllocSize - (uint64_t)Offset)) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000597 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
598 << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
599 << " which extends past the end of the " << AllocSize
600 << " byte alloca:\n"
601 << " alloca: " << P.AI << "\n"
602 << " use: " << I << "\n");
603 return true;
604 }
605
Chandler Carrutha2b88162012-10-25 04:37:07 +0000606 // We allow splitting of loads and stores where the type is an integer type
607 // and which cover the entire alloca. Such integer loads and stores
608 // often require decomposition into fine grained loads and stores.
609 bool IsSplittable = false;
610 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
611 IsSplittable = !IsVolatile && ITy->getBitWidth() == AllocSize*8;
612
613 insertUse(I, Offset, Size, IsSplittable);
Chandler Carruth713aa942012-09-14 09:22:59 +0000614 return true;
615 }
616
617 bool visitBitCastInst(BitCastInst &BC) {
618 enqueueUsers(BC, Offset);
619 return true;
620 }
621
622 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
Chandler Carruth02e92a02012-09-23 11:43:14 +0000623 int64_t GEPOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000624 if (!computeConstantGEPOffset(GEPI, GEPOffset))
625 return markAsEscaping(GEPI);
626
627 enqueueUsers(GEPI, GEPOffset);
628 return true;
629 }
630
631 bool visitLoadInst(LoadInst &LI) {
Chandler Carruthc370acd2012-09-18 12:57:43 +0000632 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
633 "All simple FCA loads should have been pre-split");
Chandler Carrutha2b88162012-10-25 04:37:07 +0000634 return handleLoadOrStore(LI.getType(), LI, Offset, LI.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +0000635 }
636
637 bool visitStoreInst(StoreInst &SI) {
Chandler Carruthc370acd2012-09-18 12:57:43 +0000638 Value *ValOp = SI.getValueOperand();
639 if (ValOp == *U)
Chandler Carruth713aa942012-09-14 09:22:59 +0000640 return markAsEscaping(SI);
641
Chandler Carruthc370acd2012-09-18 12:57:43 +0000642 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
643 "All simple FCA stores should have been pre-split");
Chandler Carrutha2b88162012-10-25 04:37:07 +0000644 return handleLoadOrStore(ValOp->getType(), SI, Offset, SI.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +0000645 }
646
647
648 bool visitMemSetInst(MemSetInst &II) {
Chandler Carruthb3dd9a12012-09-14 10:26:34 +0000649 assert(II.getRawDest() == *U && "Pointer use is not the destination?");
Chandler Carruth713aa942012-09-14 09:22:59 +0000650 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000651 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
652 insertUse(II, Offset, Size, Length);
Chandler Carruth713aa942012-09-14 09:22:59 +0000653 return true;
654 }
655
656 bool visitMemTransferInst(MemTransferInst &II) {
657 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
658 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
659 if (!Size)
660 // Zero-length mem transfer intrinsics can be ignored entirely.
661 return true;
662
663 MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
664
665 // Only intrinsics with a constant length can be split.
666 Offsets.IsSplittable = Length;
667
Chandler Carruthfca3f402012-10-05 01:29:09 +0000668 if (*U == II.getRawDest()) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000669 Offsets.DestBegin = Offset;
670 Offsets.DestEnd = Offset + Size;
671 }
Chandler Carruthfca3f402012-10-05 01:29:09 +0000672 if (*U == II.getRawSource()) {
673 Offsets.SourceBegin = Offset;
674 Offsets.SourceEnd = Offset + Size;
675 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000676
Chandler Carruthfca3f402012-10-05 01:29:09 +0000677 // If we have set up end offsets for both the source and the destination,
678 // we have found both sides of this transfer pointing at the same alloca.
679 bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd;
680 if (SeenBothEnds && II.getRawDest() != II.getRawSource()) {
681 unsigned PrevIdx = MemTransferPartitionMap[&II];
Chandler Carruth713aa942012-09-14 09:22:59 +0000682
Chandler Carruthfca3f402012-10-05 01:29:09 +0000683 // Check if the begin offsets match and this is a non-volatile transfer.
684 // In that case, we can completely elide the transfer.
685 if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
686 P.Partitions[PrevIdx].kill();
687 return true;
688 }
689
690 // Otherwise we have an offset transfer within the same alloca. We can't
691 // split those.
692 P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false;
693 } else if (SeenBothEnds) {
694 // Handle the case where this exact use provides both ends of the
695 // operation.
696 assert(II.getRawDest() == II.getRawSource());
697
698 // For non-volatile transfers this is a no-op.
699 if (!II.isVolatile())
700 return true;
701
702 // Otherwise just suppress splitting.
Chandler Carruth713aa942012-09-14 09:22:59 +0000703 Offsets.IsSplittable = false;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000704 }
705
706
707 // Insert the use now that we've fixed up the splittable nature.
708 insertUse(II, Offset, Size, Offsets.IsSplittable);
709
710 // Setup the mapping from intrinsic to partition of we've not seen both
711 // ends of this transfer.
712 if (!SeenBothEnds) {
713 unsigned NewIdx = P.Partitions.size() - 1;
714 bool Inserted
715 = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second;
716 assert(Inserted &&
717 "Already have intrinsic in map but haven't seen both ends");
NAKAMURA Takumi0559d312012-10-05 13:56:23 +0000718 (void)Inserted;
Chandler Carruth713aa942012-09-14 09:22:59 +0000719 }
720
721 return true;
722 }
723
724 // Disable SRoA for any intrinsics except for lifetime invariants.
Chandler Carruth50754f02012-09-14 10:26:36 +0000725 // FIXME: What about debug instrinsics? This matches old behavior, but
726 // doesn't make sense.
Chandler Carruth713aa942012-09-14 09:22:59 +0000727 bool visitIntrinsicInst(IntrinsicInst &II) {
728 if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
729 II.getIntrinsicID() == Intrinsic::lifetime_end) {
730 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
731 uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000732 insertUse(II, Offset, Size, true);
Chandler Carruth713aa942012-09-14 09:22:59 +0000733 return true;
734 }
735
736 return markAsEscaping(II);
737 }
738
739 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
740 // We consider any PHI or select that results in a direct load or store of
741 // the same offset to be a viable use for partitioning purposes. These uses
742 // are considered unsplittable and the size is the maximum loaded or stored
743 // size.
744 SmallPtrSet<Instruction *, 4> Visited;
745 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
746 Visited.insert(Root);
747 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
Chandler Carruthc3034632012-09-25 10:03:40 +0000748 // If there are no loads or stores, the access is dead. We mark that as
749 // a size zero access.
750 Size = 0;
Chandler Carruth713aa942012-09-14 09:22:59 +0000751 do {
752 Instruction *I, *UsedI;
753 llvm::tie(UsedI, I) = Uses.pop_back_val();
754
755 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
756 Size = std::max(Size, TD.getTypeStoreSize(LI->getType()));
757 continue;
758 }
759 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
760 Value *Op = SI->getOperand(0);
761 if (Op == UsedI)
762 return SI;
763 Size = std::max(Size, TD.getTypeStoreSize(Op->getType()));
764 continue;
765 }
766
767 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
768 if (!GEP->hasAllZeroIndices())
769 return GEP;
770 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
771 !isa<SelectInst>(I)) {
772 return I;
773 }
774
775 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
776 ++UI)
777 if (Visited.insert(cast<Instruction>(*UI)))
778 Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
779 } while (!Uses.empty());
780
781 return 0;
782 }
783
784 bool visitPHINode(PHINode &PN) {
785 // See if we already have computed info on this node.
786 std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
787 if (PHIInfo.first) {
788 PHIInfo.second = true;
Chandler Carruth63392ea2012-09-16 19:39:50 +0000789 insertUse(PN, Offset, PHIInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000790 return true;
791 }
792
793 // Check for an unsafe use of the PHI node.
794 if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
795 return markAsEscaping(*EscapingI);
796
Chandler Carruth63392ea2012-09-16 19:39:50 +0000797 insertUse(PN, Offset, PHIInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000798 return true;
799 }
800
801 bool visitSelectInst(SelectInst &SI) {
802 if (Value *Result = foldSelectInst(SI)) {
803 if (Result == *U)
804 // If the result of the constant fold will be the pointer, recurse
805 // through the select as if we had RAUW'ed it.
806 enqueueUsers(SI, Offset);
807
808 return true;
809 }
810
811 // See if we already have computed info on this node.
812 std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
813 if (SelectInfo.first) {
814 SelectInfo.second = true;
Chandler Carruth63392ea2012-09-16 19:39:50 +0000815 insertUse(SI, Offset, SelectInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000816 return true;
817 }
818
819 // Check for an unsafe use of the PHI node.
820 if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
821 return markAsEscaping(*EscapingI);
822
Chandler Carruth63392ea2012-09-16 19:39:50 +0000823 insertUse(SI, Offset, SelectInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000824 return true;
825 }
826
827 /// \brief Disable SROA entirely if there are unhandled users of the alloca.
828 bool visitInstruction(Instruction &I) { return markAsEscaping(I); }
829};
830
831
832/// \brief Use adder for the alloca partitioning.
833///
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000834/// This class adds the uses of an alloca to all of the partitions which they
835/// use. For splittable partitions, this can end up doing essentially a linear
Chandler Carruth713aa942012-09-14 09:22:59 +0000836/// walk of the partitions, but the number of steps remains bounded by the
837/// total result instruction size:
838/// - The number of partitions is a result of the number unsplittable
839/// instructions using the alloca.
840/// - The number of users of each partition is at worst the total number of
841/// splittable instructions using the alloca.
842/// Thus we will produce N * M instructions in the end, where N are the number
843/// of unsplittable uses and M are the number of splittable. This visitor does
844/// the exact same number of updates to the partitioning.
845///
846/// In the more common case, this visitor will leverage the fact that the
847/// partition space is pre-sorted, and do a logarithmic search for the
848/// partition needed, making the total visit a classical ((N + M) * log(N))
849/// complexity operation.
850class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> {
851 friend class InstVisitor<UseBuilder>;
852
853 /// \brief Set to de-duplicate dead instructions found in the use walk.
854 SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
855
856public:
Micah Villmow3574eca2012-10-08 16:38:25 +0000857 UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth2a9bf252012-09-14 09:30:33 +0000858 : BuilderBase<UseBuilder>(TD, AI, P) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000859
860 /// \brief Run the builder over the allocation.
861 void operator()() {
862 // Note that we have to re-evaluate size on each trip through the loop as
863 // the queue grows at the tail.
864 for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
865 U = Queue[Idx].U;
866 Offset = Queue[Idx].Offset;
867 this->visit(cast<Instruction>(U->getUser()));
868 }
869 }
870
871private:
872 void markAsDead(Instruction &I) {
873 if (VisitedDeadInsts.insert(&I))
874 P.DeadUsers.push_back(&I);
875 }
876
Chandler Carruth02e92a02012-09-23 11:43:14 +0000877 void insertUse(Instruction &User, int64_t Offset, uint64_t Size) {
Chandler Carruthc3034632012-09-25 10:03:40 +0000878 // If the use has a zero size or extends outside of the allocation, record
879 // it as a dead use for elimination later.
880 if (Size == 0 || (uint64_t)Offset >= AllocSize ||
Chandler Carruth02e92a02012-09-23 11:43:14 +0000881 (Offset < 0 && (uint64_t)-Offset >= Size))
Chandler Carruth713aa942012-09-14 09:22:59 +0000882 return markAsDead(User);
883
Chandler Carruth02e92a02012-09-23 11:43:14 +0000884 // Clamp the start to the beginning of the allocation.
885 if (Offset < 0) {
886 Size -= (uint64_t)-Offset;
887 Offset = 0;
888 }
889
890 uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
891
892 // Clamp the end offset to the end of the allocation. Note that this is
893 // formulated to handle even the case where "BeginOffset + Size" overflows.
894 assert(AllocSize >= BeginOffset); // Established above.
895 if (Size > AllocSize - BeginOffset)
Chandler Carruth713aa942012-09-14 09:22:59 +0000896 EndOffset = AllocSize;
897
898 // NB: This only works if we have zero overlapping partitions.
899 iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
900 if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
901 B = llvm::prior(B);
902 for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
903 ++I) {
Chandler Carruth77c12702012-10-01 01:49:22 +0000904 PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
905 std::min(I->EndOffset, EndOffset), U);
906 P.use_push_back(I, NewPU);
Chandler Carruth713aa942012-09-14 09:22:59 +0000907 if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
Chandler Carruth77c12702012-10-01 01:49:22 +0000908 P.PHIOrSelectOpMap[U]
Chandler Carruth713aa942012-09-14 09:22:59 +0000909 = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
910 }
911 }
912
Chandler Carruth02e92a02012-09-23 11:43:14 +0000913 void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000914 uint64_t Size = TD.getTypeStoreSize(Ty);
915
916 // If this memory access can be shown to *statically* extend outside the
917 // bounds of of the allocation, it's behavior is undefined, so simply
918 // ignore it. Note that this is more strict than the generic clamping
919 // behavior of insertUse.
Chandler Carruth02e92a02012-09-23 11:43:14 +0000920 if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
921 Size > (AllocSize - (uint64_t)Offset))
Chandler Carruth713aa942012-09-14 09:22:59 +0000922 return markAsDead(I);
923
Chandler Carruth63392ea2012-09-16 19:39:50 +0000924 insertUse(I, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000925 }
926
927 void visitBitCastInst(BitCastInst &BC) {
928 if (BC.use_empty())
929 return markAsDead(BC);
930
931 enqueueUsers(BC, Offset);
932 }
933
934 void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
935 if (GEPI.use_empty())
936 return markAsDead(GEPI);
937
Chandler Carruth02e92a02012-09-23 11:43:14 +0000938 int64_t GEPOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000939 if (!computeConstantGEPOffset(GEPI, GEPOffset))
940 llvm_unreachable("Unable to compute constant offset for use");
941
942 enqueueUsers(GEPI, GEPOffset);
943 }
944
945 void visitLoadInst(LoadInst &LI) {
Chandler Carruth63392ea2012-09-16 19:39:50 +0000946 handleLoadOrStore(LI.getType(), LI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000947 }
948
949 void visitStoreInst(StoreInst &SI) {
Chandler Carruth63392ea2012-09-16 19:39:50 +0000950 handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000951 }
952
953 void visitMemSetInst(MemSetInst &II) {
954 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000955 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
956 insertUse(II, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000957 }
958
959 void visitMemTransferInst(MemTransferInst &II) {
960 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000961 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000962 if (!Size)
963 return markAsDead(II);
964
965 MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
966 if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
967 Offsets.DestBegin == Offsets.SourceBegin)
968 return markAsDead(II); // Skip identity transfers without side-effects.
969
Chandler Carruth63392ea2012-09-16 19:39:50 +0000970 insertUse(II, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000971 }
972
973 void visitIntrinsicInst(IntrinsicInst &II) {
974 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
975 II.getIntrinsicID() == Intrinsic::lifetime_end);
976
977 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
Chandler Carruth63392ea2012-09-16 19:39:50 +0000978 insertUse(II, Offset,
979 std::min(AllocSize - Offset, Length->getLimitedValue()));
Chandler Carruth713aa942012-09-14 09:22:59 +0000980 }
981
Chandler Carruth63392ea2012-09-16 19:39:50 +0000982 void insertPHIOrSelect(Instruction &User, uint64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000983 uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
984
985 // For PHI and select operands outside the alloca, we can't nuke the entire
986 // phi or select -- the other side might still be relevant, so we special
987 // case them here and use a separate structure to track the operands
988 // themselves which should be replaced with undef.
989 if (Offset >= AllocSize) {
990 P.DeadOperands.push_back(U);
991 return;
992 }
993
Chandler Carruth63392ea2012-09-16 19:39:50 +0000994 insertUse(User, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000995 }
996 void visitPHINode(PHINode &PN) {
997 if (PN.use_empty())
998 return markAsDead(PN);
999
Chandler Carruth63392ea2012-09-16 19:39:50 +00001000 insertPHIOrSelect(PN, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +00001001 }
1002 void visitSelectInst(SelectInst &SI) {
1003 if (SI.use_empty())
1004 return markAsDead(SI);
1005
1006 if (Value *Result = foldSelectInst(SI)) {
1007 if (Result == *U)
1008 // If the result of the constant fold will be the pointer, recurse
1009 // through the select as if we had RAUW'ed it.
1010 enqueueUsers(SI, Offset);
Chandler Carruthd54a6b52012-09-21 23:36:40 +00001011 else
1012 // Otherwise the operand to the select is dead, and we can replace it
1013 // with undef.
1014 P.DeadOperands.push_back(U);
Chandler Carruth713aa942012-09-14 09:22:59 +00001015
1016 return;
1017 }
1018
Chandler Carruth63392ea2012-09-16 19:39:50 +00001019 insertPHIOrSelect(SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +00001020 }
1021
1022 /// \brief Unreachable, we've already visited the alloca once.
1023 void visitInstruction(Instruction &I) {
1024 llvm_unreachable("Unhandled instruction in use builder.");
1025 }
1026};
1027
1028void AllocaPartitioning::splitAndMergePartitions() {
1029 size_t NumDeadPartitions = 0;
1030
1031 // Track the range of splittable partitions that we pass when accumulating
1032 // overlapping unsplittable partitions.
1033 uint64_t SplitEndOffset = 0ull;
1034
1035 Partition New(0ull, 0ull, false);
1036
1037 for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
1038 ++j;
1039
1040 if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
1041 assert(New.BeginOffset == New.EndOffset);
1042 New = Partitions[i];
1043 } else {
1044 assert(New.IsSplittable);
1045 New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
1046 }
1047 assert(New.BeginOffset != New.EndOffset);
1048
1049 // Scan the overlapping partitions.
1050 while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
1051 // If the new partition we are forming is splittable, stop at the first
1052 // unsplittable partition.
1053 if (New.IsSplittable && !Partitions[j].IsSplittable)
1054 break;
1055
1056 // Grow the new partition to include any equally splittable range. 'j' is
1057 // always equally splittable when New is splittable, but when New is not
1058 // splittable, we may subsume some (or part of some) splitable partition
1059 // without growing the new one.
1060 if (New.IsSplittable == Partitions[j].IsSplittable) {
1061 New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
1062 } else {
1063 assert(!New.IsSplittable);
1064 assert(Partitions[j].IsSplittable);
1065 SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
1066 }
1067
Chandler Carruthfca3f402012-10-05 01:29:09 +00001068 Partitions[j].kill();
Chandler Carruth713aa942012-09-14 09:22:59 +00001069 ++NumDeadPartitions;
1070 ++j;
1071 }
1072
1073 // If the new partition is splittable, chop off the end as soon as the
1074 // unsplittable subsequent partition starts and ensure we eventually cover
1075 // the splittable area.
1076 if (j != e && New.IsSplittable) {
1077 SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
1078 New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1079 }
1080
1081 // Add the new partition if it differs from the original one and is
1082 // non-empty. We can end up with an empty partition here if it was
1083 // splittable but there is an unsplittable one that starts at the same
1084 // offset.
1085 if (New != Partitions[i]) {
1086 if (New.BeginOffset != New.EndOffset)
1087 Partitions.push_back(New);
1088 // Mark the old one for removal.
Chandler Carruthfca3f402012-10-05 01:29:09 +00001089 Partitions[i].kill();
Chandler Carruth713aa942012-09-14 09:22:59 +00001090 ++NumDeadPartitions;
1091 }
1092
1093 New.BeginOffset = New.EndOffset;
1094 if (!New.IsSplittable) {
1095 New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
1096 if (j != e && !Partitions[j].IsSplittable)
1097 New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1098 New.IsSplittable = true;
1099 // If there is a trailing splittable partition which won't be fused into
1100 // the next splittable partition go ahead and add it onto the partitions
1101 // list.
1102 if (New.BeginOffset < New.EndOffset &&
1103 (j == e || !Partitions[j].IsSplittable ||
1104 New.EndOffset < Partitions[j].BeginOffset)) {
1105 Partitions.push_back(New);
1106 New.BeginOffset = New.EndOffset = 0ull;
1107 }
1108 }
1109 }
1110
1111 // Re-sort the partitions now that they have been split and merged into
1112 // disjoint set of partitions. Also remove any of the dead partitions we've
1113 // replaced in the process.
1114 std::sort(Partitions.begin(), Partitions.end());
1115 if (NumDeadPartitions) {
Chandler Carruthfca3f402012-10-05 01:29:09 +00001116 assert(Partitions.back().isDead());
Chandler Carruth713aa942012-09-14 09:22:59 +00001117 assert((ptrdiff_t)NumDeadPartitions ==
1118 std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
1119 }
1120 Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
1121}
1122
Micah Villmow3574eca2012-10-08 16:38:25 +00001123AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
Benjamin Kramerd0807692012-09-14 13:08:09 +00001124 :
1125#ifndef NDEBUG
1126 AI(AI),
1127#endif
1128 PointerEscapingInstr(0) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001129 PartitionBuilder PB(TD, AI, *this);
1130 if (!PB())
1131 return;
1132
Chandler Carruthfca3f402012-10-05 01:29:09 +00001133 // Sort the uses. This arranges for the offsets to be in ascending order,
1134 // and the sizes to be in descending order.
1135 std::sort(Partitions.begin(), Partitions.end());
Chandler Carruth713aa942012-09-14 09:22:59 +00001136
Chandler Carruthfca3f402012-10-05 01:29:09 +00001137 // Remove any partitions from the back which are marked as dead.
1138 while (!Partitions.empty() && Partitions.back().isDead())
1139 Partitions.pop_back();
1140
1141 if (Partitions.size() > 1) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001142 // Intersect splittability for all partitions with equal offsets and sizes.
1143 // Then remove all but the first so that we have a sequence of non-equal but
1144 // potentially overlapping partitions.
1145 for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
1146 I = J) {
1147 ++J;
1148 while (J != E && *I == *J) {
1149 I->IsSplittable &= J->IsSplittable;
1150 ++J;
1151 }
1152 }
1153 Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
1154 Partitions.end());
1155
1156 // Split splittable and merge unsplittable partitions into a disjoint set
1157 // of partitions over the used space of the allocation.
1158 splitAndMergePartitions();
1159 }
1160
1161 // Now build up the user lists for each of these disjoint partitions by
1162 // re-walking the recursive users of the alloca.
1163 Uses.resize(Partitions.size());
1164 UseBuilder UB(TD, AI, *this);
1165 UB();
Chandler Carruth713aa942012-09-14 09:22:59 +00001166}
1167
1168Type *AllocaPartitioning::getCommonType(iterator I) const {
1169 Type *Ty = 0;
1170 for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00001171 if (!UI->U)
1172 continue; // Skip dead uses.
Chandler Carruth77c12702012-10-01 01:49:22 +00001173 if (isa<IntrinsicInst>(*UI->U->getUser()))
Chandler Carruth713aa942012-09-14 09:22:59 +00001174 continue;
1175 if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
Chandler Carruth7c8df7a2012-09-18 17:49:37 +00001176 continue;
Chandler Carruth713aa942012-09-14 09:22:59 +00001177
1178 Type *UserTy = 0;
Chandler Carruth77c12702012-10-01 01:49:22 +00001179 if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001180 UserTy = LI->getType();
Chandler Carruth77c12702012-10-01 01:49:22 +00001181 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001182 UserTy = SI->getValueOperand()->getType();
Chandler Carrutha2b88162012-10-25 04:37:07 +00001183 } else {
1184 return 0; // Bail if we have weird uses.
1185 }
1186
1187 if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
1188 // If the type is larger than the partition, skip it. We only encounter
1189 // this for split integer operations where we want to use the type of the
1190 // entity causing the split.
1191 if (ITy->getBitWidth() > (I->EndOffset - I->BeginOffset)*8)
1192 continue;
1193
1194 // If we have found an integer type use covering the alloca, use that
1195 // regardless of the other types, as integers are often used for a "bucket
1196 // of bits" type.
1197 return ITy;
Chandler Carruth713aa942012-09-14 09:22:59 +00001198 }
1199
1200 if (Ty && Ty != UserTy)
1201 return 0;
1202
1203 Ty = UserTy;
1204 }
1205 return Ty;
1206}
1207
Chandler Carruthba13d2e2012-09-14 10:18:51 +00001208#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1209
Chandler Carruth713aa942012-09-14 09:22:59 +00001210void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
1211 StringRef Indent) const {
1212 OS << Indent << "partition #" << (I - begin())
1213 << " [" << I->BeginOffset << "," << I->EndOffset << ")"
1214 << (I->IsSplittable ? " (splittable)" : "")
1215 << (Uses[I - begin()].empty() ? " (zero uses)" : "")
1216 << "\n";
1217}
1218
1219void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
1220 StringRef Indent) const {
1221 for (const_use_iterator UI = use_begin(I), UE = use_end(I);
1222 UI != UE; ++UI) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00001223 if (!UI->U)
1224 continue; // Skip dead uses.
Chandler Carruth713aa942012-09-14 09:22:59 +00001225 OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") "
Chandler Carruth77c12702012-10-01 01:49:22 +00001226 << "used by: " << *UI->U->getUser() << "\n";
1227 if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001228 const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
1229 bool IsDest;
1230 if (!MTO.IsSplittable)
1231 IsDest = UI->BeginOffset == MTO.DestBegin;
1232 else
1233 IsDest = MTO.DestBegin != 0u;
1234 OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": "
1235 << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
1236 << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
1237 }
1238 }
1239}
1240
1241void AllocaPartitioning::print(raw_ostream &OS) const {
1242 if (PointerEscapingInstr) {
1243 OS << "No partitioning for alloca: " << AI << "\n"
1244 << " A pointer to this alloca escaped by:\n"
1245 << " " << *PointerEscapingInstr << "\n";
1246 return;
1247 }
1248
1249 OS << "Partitioning of alloca: " << AI << "\n";
1250 unsigned Num = 0;
1251 for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
1252 print(OS, I);
1253 printUsers(OS, I);
1254 }
1255}
1256
1257void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
1258void AllocaPartitioning::dump() const { print(dbgs()); }
1259
Chandler Carruthba13d2e2012-09-14 10:18:51 +00001260#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1261
Chandler Carruth713aa942012-09-14 09:22:59 +00001262
1263namespace {
Chandler Carruth1c8db502012-09-15 11:43:14 +00001264/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
1265///
1266/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
1267/// the loads and stores of an alloca instruction, as well as updating its
1268/// debug information. This is used when a domtree is unavailable and thus
1269/// mem2reg in its full form can't be used to handle promotion of allocas to
1270/// scalar values.
1271class AllocaPromoter : public LoadAndStorePromoter {
1272 AllocaInst &AI;
1273 DIBuilder &DIB;
1274
1275 SmallVector<DbgDeclareInst *, 4> DDIs;
1276 SmallVector<DbgValueInst *, 4> DVIs;
1277
1278public:
1279 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1280 AllocaInst &AI, DIBuilder &DIB)
1281 : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
1282
1283 void run(const SmallVectorImpl<Instruction*> &Insts) {
1284 // Remember which alloca we're promoting (for isInstInList).
1285 if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
1286 for (Value::use_iterator UI = DebugNode->use_begin(),
1287 UE = DebugNode->use_end();
1288 UI != UE; ++UI)
1289 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1290 DDIs.push_back(DDI);
1291 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1292 DVIs.push_back(DVI);
1293 }
1294
1295 LoadAndStorePromoter::run(Insts);
1296 AI.eraseFromParent();
1297 while (!DDIs.empty())
1298 DDIs.pop_back_val()->eraseFromParent();
1299 while (!DVIs.empty())
1300 DVIs.pop_back_val()->eraseFromParent();
1301 }
1302
1303 virtual bool isInstInList(Instruction *I,
1304 const SmallVectorImpl<Instruction*> &Insts) const {
1305 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1306 return LI->getOperand(0) == &AI;
1307 return cast<StoreInst>(I)->getPointerOperand() == &AI;
1308 }
1309
1310 virtual void updateDebugInfo(Instruction *Inst) const {
1311 for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1312 E = DDIs.end(); I != E; ++I) {
1313 DbgDeclareInst *DDI = *I;
1314 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1315 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1316 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1317 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1318 }
1319 for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1320 E = DVIs.end(); I != E; ++I) {
1321 DbgValueInst *DVI = *I;
1322 Value *Arg = NULL;
1323 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1324 // If an argument is zero extended then use argument directly. The ZExt
1325 // may be zapped by an optimization pass in future.
1326 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1327 Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1328 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1329 Arg = dyn_cast<Argument>(SExt->getOperand(0));
1330 if (!Arg)
1331 Arg = SI->getOperand(0);
1332 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1333 Arg = LI->getOperand(0);
1334 } else {
1335 continue;
1336 }
1337 Instruction *DbgVal =
1338 DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1339 Inst);
1340 DbgVal->setDebugLoc(DVI->getDebugLoc());
1341 }
1342 }
1343};
1344} // end anon namespace
1345
1346
1347namespace {
Chandler Carruth713aa942012-09-14 09:22:59 +00001348/// \brief An optimization pass providing Scalar Replacement of Aggregates.
1349///
1350/// This pass takes allocations which can be completely analyzed (that is, they
1351/// don't escape) and tries to turn them into scalar SSA values. There are
1352/// a few steps to this process.
1353///
1354/// 1) It takes allocations of aggregates and analyzes the ways in which they
1355/// are used to try to split them into smaller allocations, ideally of
1356/// a single scalar data type. It will split up memcpy and memset accesses
1357/// as necessary and try to isolate invidual scalar accesses.
1358/// 2) It will transform accesses into forms which are suitable for SSA value
1359/// promotion. This can be replacing a memset with a scalar store of an
1360/// integer value, or it can involve speculating operations on a PHI or
1361/// select to be a PHI or select of the results.
1362/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
1363/// onto insert and extract operations on a vector value, and convert them to
1364/// this form. By doing so, it will enable promotion of vector aggregates to
1365/// SSA vector values.
1366class SROA : public FunctionPass {
Chandler Carruth1c8db502012-09-15 11:43:14 +00001367 const bool RequiresDomTree;
1368
Chandler Carruth713aa942012-09-14 09:22:59 +00001369 LLVMContext *C;
Micah Villmow3574eca2012-10-08 16:38:25 +00001370 const DataLayout *TD;
Chandler Carruth713aa942012-09-14 09:22:59 +00001371 DominatorTree *DT;
1372
1373 /// \brief Worklist of alloca instructions to simplify.
1374 ///
1375 /// Each alloca in the function is added to this. Each new alloca formed gets
1376 /// added to it as well to recursively simplify unless that alloca can be
1377 /// directly promoted. Finally, each time we rewrite a use of an alloca other
1378 /// the one being actively rewritten, we add it back onto the list if not
1379 /// already present to ensure it is re-visited.
1380 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
1381
1382 /// \brief A collection of instructions to delete.
1383 /// We try to batch deletions to simplify code and make things a bit more
1384 /// efficient.
1385 SmallVector<Instruction *, 8> DeadInsts;
1386
1387 /// \brief A set to prevent repeatedly marking an instruction split into many
1388 /// uses as dead. Only used to guard insertion into DeadInsts.
1389 SmallPtrSet<Instruction *, 4> DeadSplitInsts;
1390
Chandler Carruthb2d98c22012-10-04 12:33:50 +00001391 /// \brief Post-promotion worklist.
1392 ///
1393 /// Sometimes we discover an alloca which has a high probability of becoming
1394 /// viable for SROA after a round of promotion takes place. In those cases,
1395 /// the alloca is enqueued here for re-processing.
1396 ///
1397 /// Note that we have to be very careful to clear allocas out of this list in
1398 /// the event they are deleted.
1399 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
1400
Chandler Carruth713aa942012-09-14 09:22:59 +00001401 /// \brief A collection of alloca instructions we can directly promote.
1402 std::vector<AllocaInst *> PromotableAllocas;
1403
1404public:
Chandler Carruth1c8db502012-09-15 11:43:14 +00001405 SROA(bool RequiresDomTree = true)
1406 : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
1407 C(0), TD(0), DT(0) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001408 initializeSROAPass(*PassRegistry::getPassRegistry());
1409 }
1410 bool runOnFunction(Function &F);
1411 void getAnalysisUsage(AnalysisUsage &AU) const;
1412
1413 const char *getPassName() const { return "SROA"; }
1414 static char ID;
1415
1416private:
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00001417 friend class PHIOrSelectSpeculator;
Chandler Carruth713aa942012-09-14 09:22:59 +00001418 friend class AllocaPartitionRewriter;
1419 friend class AllocaPartitionVectorRewriter;
1420
1421 bool rewriteAllocaPartition(AllocaInst &AI,
1422 AllocaPartitioning &P,
1423 AllocaPartitioning::iterator PI);
1424 bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
1425 bool runOnAlloca(AllocaInst &AI);
Chandler Carruth8615cd22012-09-14 10:26:38 +00001426 void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
Chandler Carruth1c8db502012-09-15 11:43:14 +00001427 bool promoteAllocas(Function &F);
Chandler Carruth713aa942012-09-14 09:22:59 +00001428};
1429}
1430
1431char SROA::ID = 0;
1432
Chandler Carruth1c8db502012-09-15 11:43:14 +00001433FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1434 return new SROA(RequiresDomTree);
Chandler Carruth713aa942012-09-14 09:22:59 +00001435}
1436
1437INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1438 false, false)
1439INITIALIZE_PASS_DEPENDENCY(DominatorTree)
1440INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1441 false, false)
1442
Chandler Carruth0e9da582012-10-05 01:29:06 +00001443namespace {
1444/// \brief Visitor to speculate PHIs and Selects where possible.
1445class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
1446 // Befriend the base class so it can delegate to private visit methods.
1447 friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
1448
Micah Villmow3574eca2012-10-08 16:38:25 +00001449 const DataLayout &TD;
Chandler Carruth0e9da582012-10-05 01:29:06 +00001450 AllocaPartitioning &P;
1451 SROA &Pass;
1452
1453public:
Micah Villmow3574eca2012-10-08 16:38:25 +00001454 PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass)
Chandler Carruth0e9da582012-10-05 01:29:06 +00001455 : TD(TD), P(P), Pass(Pass) {}
1456
1457 /// \brief Visit the users of an alloca partition and rewrite them.
1458 void visitUsers(AllocaPartitioning::const_iterator PI) {
1459 // Note that we need to use an index here as the underlying vector of uses
1460 // may be grown during speculation. However, we never need to re-visit the
1461 // new uses, and so we can use the initial size bound.
1462 for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
1463 const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx);
1464 if (!PU.U)
1465 continue; // Skip dead use.
1466
1467 visit(cast<Instruction>(PU.U->getUser()));
1468 }
1469 }
1470
1471private:
1472 // By default, skip this instruction.
1473 void visitInstruction(Instruction &I) {}
1474
1475 /// PHI instructions that use an alloca and are subsequently loaded can be
1476 /// rewritten to load both input pointers in the pred blocks and then PHI the
1477 /// results, allowing the load of the alloca to be promoted.
1478 /// From this:
1479 /// %P2 = phi [i32* %Alloca, i32* %Other]
1480 /// %V = load i32* %P2
1481 /// to:
1482 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1483 /// ...
1484 /// %V2 = load i32* %Other
1485 /// ...
1486 /// %V = phi [i32 %V1, i32 %V2]
1487 ///
1488 /// We can do this to a select if its only uses are loads and if the operands
1489 /// to the select can be loaded unconditionally.
1490 ///
1491 /// FIXME: This should be hoisted into a generic utility, likely in
1492 /// Transforms/Util/Local.h
1493 bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
1494 // For now, we can only do this promotion if the load is in the same block
1495 // as the PHI, and if there are no stores between the phi and load.
1496 // TODO: Allow recursive phi users.
1497 // TODO: Allow stores.
1498 BasicBlock *BB = PN.getParent();
1499 unsigned MaxAlign = 0;
1500 for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
1501 UI != UE; ++UI) {
1502 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1503 if (LI == 0 || !LI->isSimple()) return false;
1504
1505 // For now we only allow loads in the same block as the PHI. This is
1506 // a common case that happens when instcombine merges two loads through
1507 // a PHI.
1508 if (LI->getParent() != BB) return false;
1509
1510 // Ensure that there are no instructions between the PHI and the load that
1511 // could store.
1512 for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1513 if (BBI->mayWriteToMemory())
1514 return false;
1515
1516 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1517 Loads.push_back(LI);
1518 }
1519
1520 // We can only transform this if it is safe to push the loads into the
1521 // predecessor blocks. The only thing to watch out for is that we can't put
1522 // a possibly trapping load in the predecessor if it is a critical edge.
1523 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
1524 ++Idx) {
1525 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1526 Value *InVal = PN.getIncomingValue(Idx);
1527
1528 // If the value is produced by the terminator of the predecessor (an
1529 // invoke) or it has side-effects, there is no valid place to put a load
1530 // in the predecessor.
1531 if (TI == InVal || TI->mayHaveSideEffects())
1532 return false;
1533
1534 // If the predecessor has a single successor, then the edge isn't
1535 // critical.
1536 if (TI->getNumSuccessors() == 1)
1537 continue;
1538
1539 // If this pointer is always safe to load, or if we can prove that there
1540 // is already a load in the block, then we can move the load to the pred
1541 // block.
1542 if (InVal->isDereferenceablePointer() ||
1543 isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
1544 continue;
1545
1546 return false;
1547 }
1548
1549 return true;
1550 }
1551
1552 void visitPHINode(PHINode &PN) {
1553 DEBUG(dbgs() << " original: " << PN << "\n");
1554
1555 SmallVector<LoadInst *, 4> Loads;
1556 if (!isSafePHIToSpeculate(PN, Loads))
1557 return;
1558
1559 assert(!Loads.empty());
1560
1561 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1562 IRBuilder<> PHIBuilder(&PN);
1563 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1564 PN.getName() + ".sroa.speculated");
1565
1566 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1567 // matter which one we get and if any differ, it doesn't matter.
1568 LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
1569 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1570 unsigned Align = SomeLoad->getAlignment();
1571
1572 // Rewrite all loads of the PN to use the new PHI.
1573 do {
1574 LoadInst *LI = Loads.pop_back_val();
1575 LI->replaceAllUsesWith(NewPN);
1576 Pass.DeadInsts.push_back(LI);
1577 } while (!Loads.empty());
1578
1579 // Inject loads into all of the pred blocks.
1580 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1581 BasicBlock *Pred = PN.getIncomingBlock(Idx);
1582 TerminatorInst *TI = Pred->getTerminator();
1583 Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
1584 Value *InVal = PN.getIncomingValue(Idx);
1585 IRBuilder<> PredBuilder(TI);
1586
1587 LoadInst *Load
1588 = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
1589 Pred->getName()));
1590 ++NumLoadsSpeculated;
1591 Load->setAlignment(Align);
1592 if (TBAATag)
1593 Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1594 NewPN->addIncoming(Load, Pred);
1595
1596 Instruction *Ptr = dyn_cast<Instruction>(InVal);
1597 if (!Ptr)
1598 // No uses to rewrite.
1599 continue;
1600
1601 // Try to lookup and rewrite any partition uses corresponding to this phi
1602 // input.
1603 AllocaPartitioning::iterator PI
1604 = P.findPartitionForPHIOrSelectOperand(InUse);
1605 if (PI == P.end())
1606 continue;
1607
1608 // Replace the Use in the PartitionUse for this operand with the Use
1609 // inside the load.
1610 AllocaPartitioning::use_iterator UI
1611 = P.findPartitionUseForPHIOrSelectOperand(InUse);
1612 assert(isa<PHINode>(*UI->U->getUser()));
1613 UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
1614 }
1615 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
1616 }
1617
1618 /// Select instructions that use an alloca and are subsequently loaded can be
1619 /// rewritten to load both input pointers and then select between the result,
1620 /// allowing the load of the alloca to be promoted.
1621 /// From this:
1622 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1623 /// %V = load i32* %P2
1624 /// to:
1625 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1626 /// %V2 = load i32* %Other
1627 /// %V = select i1 %cond, i32 %V1, i32 %V2
1628 ///
1629 /// We can do this to a select if its only uses are loads and if the operand
1630 /// to the select can be loaded unconditionally.
1631 bool isSafeSelectToSpeculate(SelectInst &SI,
1632 SmallVectorImpl<LoadInst *> &Loads) {
1633 Value *TValue = SI.getTrueValue();
1634 Value *FValue = SI.getFalseValue();
1635 bool TDerefable = TValue->isDereferenceablePointer();
1636 bool FDerefable = FValue->isDereferenceablePointer();
1637
1638 for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
1639 UI != UE; ++UI) {
1640 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1641 if (LI == 0 || !LI->isSimple()) return false;
1642
1643 // Both operands to the select need to be dereferencable, either
1644 // absolutely (e.g. allocas) or at this point because we can see other
1645 // accesses to it.
1646 if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
1647 LI->getAlignment(), &TD))
1648 return false;
1649 if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
1650 LI->getAlignment(), &TD))
1651 return false;
1652 Loads.push_back(LI);
1653 }
1654
1655 return true;
1656 }
1657
1658 void visitSelectInst(SelectInst &SI) {
1659 DEBUG(dbgs() << " original: " << SI << "\n");
1660 IRBuilder<> IRB(&SI);
1661
1662 // If the select isn't safe to speculate, just use simple logic to emit it.
1663 SmallVector<LoadInst *, 4> Loads;
1664 if (!isSafeSelectToSpeculate(SI, Loads))
1665 return;
1666
1667 Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
1668 AllocaPartitioning::iterator PIs[2];
1669 AllocaPartitioning::PartitionUse PUs[2];
1670 for (unsigned i = 0, e = 2; i != e; ++i) {
1671 PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
1672 if (PIs[i] != P.end()) {
1673 // If the pointer is within the partitioning, remove the select from
1674 // its uses. We'll add in the new loads below.
1675 AllocaPartitioning::use_iterator UI
1676 = P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
1677 PUs[i] = *UI;
1678 // Clear out the use here so that the offsets into the use list remain
1679 // stable but this use is ignored when rewriting.
1680 UI->U = 0;
1681 }
1682 }
1683
1684 Value *TV = SI.getTrueValue();
1685 Value *FV = SI.getFalseValue();
1686 // Replace the loads of the select with a select of two loads.
1687 while (!Loads.empty()) {
1688 LoadInst *LI = Loads.pop_back_val();
1689
1690 IRB.SetInsertPoint(LI);
1691 LoadInst *TL =
1692 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1693 LoadInst *FL =
1694 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1695 NumLoadsSpeculated += 2;
1696
1697 // Transfer alignment and TBAA info if present.
1698 TL->setAlignment(LI->getAlignment());
1699 FL->setAlignment(LI->getAlignment());
1700 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1701 TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1702 FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1703 }
1704
1705 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1706 LI->getName() + ".sroa.speculated");
1707
1708 LoadInst *Loads[2] = { TL, FL };
1709 for (unsigned i = 0, e = 2; i != e; ++i) {
1710 if (PIs[i] != P.end()) {
1711 Use *LoadUse = &Loads[i]->getOperandUse(0);
1712 assert(PUs[i].U->get() == LoadUse->get());
1713 PUs[i].U = LoadUse;
1714 P.use_push_back(PIs[i], PUs[i]);
1715 }
1716 }
1717
1718 DEBUG(dbgs() << " speculated to: " << *V << "\n");
1719 LI->replaceAllUsesWith(V);
1720 Pass.DeadInsts.push_back(LI);
1721 }
1722 }
1723};
1724}
1725
Chandler Carruth713aa942012-09-14 09:22:59 +00001726/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
1727///
1728/// If the provided GEP is all-constant, the total byte offset formed by the
1729/// GEP is computed and Offset is set to it. If the GEP has any non-constant
1730/// operands, the function returns false and the value of Offset is unmodified.
Micah Villmow3574eca2012-10-08 16:38:25 +00001731static bool accumulateGEPOffsets(const DataLayout &TD, GEPOperator &GEP,
Chandler Carruth713aa942012-09-14 09:22:59 +00001732 APInt &Offset) {
1733 APInt GEPOffset(Offset.getBitWidth(), 0);
1734 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1735 GTI != GTE; ++GTI) {
1736 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1737 if (!OpC)
1738 return false;
1739 if (OpC->isZero()) continue;
1740
1741 // Handle a struct index, which adds its field offset to the pointer.
1742 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1743 unsigned ElementIdx = OpC->getZExtValue();
1744 const StructLayout *SL = TD.getStructLayout(STy);
1745 GEPOffset += APInt(Offset.getBitWidth(),
1746 SL->getElementOffset(ElementIdx));
1747 continue;
1748 }
1749
1750 APInt TypeSize(Offset.getBitWidth(),
1751 TD.getTypeAllocSize(GTI.getIndexedType()));
1752 if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
1753 assert((VTy->getScalarSizeInBits() % 8) == 0 &&
1754 "vector element size is not a multiple of 8, cannot GEP over it");
1755 TypeSize = VTy->getScalarSizeInBits() / 8;
1756 }
1757
1758 GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
1759 }
1760 Offset = GEPOffset;
1761 return true;
1762}
1763
1764/// \brief Build a GEP out of a base pointer and indices.
1765///
1766/// This will return the BasePtr if that is valid, or build a new GEP
1767/// instruction using the IRBuilder if GEP-ing is needed.
1768static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
1769 SmallVectorImpl<Value *> &Indices,
1770 const Twine &Prefix) {
1771 if (Indices.empty())
1772 return BasePtr;
1773
1774 // A single zero index is a no-op, so check for this and avoid building a GEP
1775 // in that case.
1776 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1777 return BasePtr;
1778
1779 return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
1780}
1781
1782/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1783/// TargetTy without changing the offset of the pointer.
1784///
1785/// This routine assumes we've already established a properly offset GEP with
1786/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1787/// zero-indices down through type layers until we find one the same as
1788/// TargetTy. If we can't find one with the same type, we at least try to use
1789/// one with the same size. If none of that works, we just produce the GEP as
1790/// indicated by Indices to have the correct offset.
Micah Villmow3574eca2012-10-08 16:38:25 +00001791static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001792 Value *BasePtr, Type *Ty, Type *TargetTy,
1793 SmallVectorImpl<Value *> &Indices,
1794 const Twine &Prefix) {
1795 if (Ty == TargetTy)
1796 return buildGEP(IRB, BasePtr, Indices, Prefix);
1797
1798 // See if we can descend into a struct and locate a field with the correct
1799 // type.
1800 unsigned NumLayers = 0;
1801 Type *ElementTy = Ty;
1802 do {
1803 if (ElementTy->isPointerTy())
1804 break;
1805 if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1806 ElementTy = SeqTy->getElementType();
Chandler Carruth020d9d52012-10-17 07:22:16 +00001807 // Note that we use the default address space as this index is over an
1808 // array or a vector, not a pointer.
1809 Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(0), 0)));
Chandler Carruth713aa942012-09-14 09:22:59 +00001810 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
Chandler Carruth2fdb25b2012-10-09 01:58:35 +00001811 if (STy->element_begin() == STy->element_end())
1812 break; // Nothing left to descend into.
Chandler Carruth713aa942012-09-14 09:22:59 +00001813 ElementTy = *STy->element_begin();
1814 Indices.push_back(IRB.getInt32(0));
1815 } else {
1816 break;
1817 }
1818 ++NumLayers;
1819 } while (ElementTy != TargetTy);
1820 if (ElementTy != TargetTy)
1821 Indices.erase(Indices.end() - NumLayers, Indices.end());
1822
1823 return buildGEP(IRB, BasePtr, Indices, Prefix);
1824}
1825
1826/// \brief Recursively compute indices for a natural GEP.
1827///
1828/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1829/// element types adding appropriate indices for the GEP.
Micah Villmow3574eca2012-10-08 16:38:25 +00001830static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001831 Value *Ptr, Type *Ty, APInt &Offset,
1832 Type *TargetTy,
1833 SmallVectorImpl<Value *> &Indices,
1834 const Twine &Prefix) {
1835 if (Offset == 0)
1836 return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
1837
1838 // We can't recurse through pointer types.
1839 if (Ty->isPointerTy())
1840 return 0;
1841
Chandler Carruth8ed1ed82012-09-14 10:30:40 +00001842 // We try to analyze GEPs over vectors here, but note that these GEPs are
1843 // extremely poorly defined currently. The long-term goal is to remove GEPing
1844 // over a vector from the IR completely.
Chandler Carruth713aa942012-09-14 09:22:59 +00001845 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1846 unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
1847 if (ElementSizeInBits % 8)
Chandler Carruth8ed1ed82012-09-14 10:30:40 +00001848 return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
Chandler Carruth713aa942012-09-14 09:22:59 +00001849 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
Chandler Carruth02bf98a2012-10-17 09:23:48 +00001850 APInt NumSkippedElements = Offset.sdiv(ElementSize);
Chandler Carruth713aa942012-09-14 09:22:59 +00001851 if (NumSkippedElements.ugt(VecTy->getNumElements()))
1852 return 0;
1853 Offset -= NumSkippedElements * ElementSize;
1854 Indices.push_back(IRB.getInt(NumSkippedElements));
1855 return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
1856 Offset, TargetTy, Indices, Prefix);
1857 }
1858
1859 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1860 Type *ElementTy = ArrTy->getElementType();
1861 APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
Chandler Carruth02bf98a2012-10-17 09:23:48 +00001862 APInt NumSkippedElements = Offset.sdiv(ElementSize);
Chandler Carruth713aa942012-09-14 09:22:59 +00001863 if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1864 return 0;
1865
1866 Offset -= NumSkippedElements * ElementSize;
1867 Indices.push_back(IRB.getInt(NumSkippedElements));
1868 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1869 Indices, Prefix);
1870 }
1871
1872 StructType *STy = dyn_cast<StructType>(Ty);
1873 if (!STy)
1874 return 0;
1875
1876 const StructLayout *SL = TD.getStructLayout(STy);
1877 uint64_t StructOffset = Offset.getZExtValue();
Chandler Carruthad41dcf2012-09-14 10:30:42 +00001878 if (StructOffset >= SL->getSizeInBytes())
Chandler Carruth713aa942012-09-14 09:22:59 +00001879 return 0;
1880 unsigned Index = SL->getElementContainingOffset(StructOffset);
1881 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1882 Type *ElementTy = STy->getElementType(Index);
1883 if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
1884 return 0; // The offset points into alignment padding.
1885
1886 Indices.push_back(IRB.getInt32(Index));
1887 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1888 Indices, Prefix);
1889}
1890
1891/// \brief Get a natural GEP from a base pointer to a particular offset and
1892/// resulting in a particular type.
1893///
1894/// The goal is to produce a "natural" looking GEP that works with the existing
1895/// composite types to arrive at the appropriate offset and element type for
1896/// a pointer. TargetTy is the element type the returned GEP should point-to if
1897/// possible. We recurse by decreasing Offset, adding the appropriate index to
1898/// Indices, and setting Ty to the result subtype.
1899///
Chandler Carruth7f5bede2012-09-14 10:18:49 +00001900/// If no natural GEP can be constructed, this function returns null.
Micah Villmow3574eca2012-10-08 16:38:25 +00001901static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001902 Value *Ptr, APInt Offset, Type *TargetTy,
1903 SmallVectorImpl<Value *> &Indices,
1904 const Twine &Prefix) {
1905 PointerType *Ty = cast<PointerType>(Ptr->getType());
1906
1907 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1908 // an i8.
1909 if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1910 return 0;
1911
1912 Type *ElementTy = Ty->getElementType();
Chandler Carruth38f35fd2012-09-18 22:37:19 +00001913 if (!ElementTy->isSized())
1914 return 0; // We can't GEP through an unsized element.
Chandler Carruth713aa942012-09-14 09:22:59 +00001915 APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1916 if (ElementSize == 0)
1917 return 0; // Zero-length arrays can't help us build a natural GEP.
Chandler Carruth02bf98a2012-10-17 09:23:48 +00001918 APInt NumSkippedElements = Offset.sdiv(ElementSize);
Chandler Carruth713aa942012-09-14 09:22:59 +00001919
1920 Offset -= NumSkippedElements * ElementSize;
1921 Indices.push_back(IRB.getInt(NumSkippedElements));
1922 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1923 Indices, Prefix);
1924}
1925
1926/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1927/// resulting pointer has PointerTy.
1928///
1929/// This tries very hard to compute a "natural" GEP which arrives at the offset
1930/// and produces the pointer type desired. Where it cannot, it will try to use
1931/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1932/// fails, it will try to use an existing i8* and GEP to the byte offset and
1933/// bitcast to the type.
1934///
1935/// The strategy for finding the more natural GEPs is to peel off layers of the
1936/// pointer, walking back through bit casts and GEPs, searching for a base
1937/// pointer from which we can compute a natural GEP with the desired
1938/// properities. The algorithm tries to fold as many constant indices into
1939/// a single GEP as possible, thus making each GEP more independent of the
1940/// surrounding code.
Micah Villmow3574eca2012-10-08 16:38:25 +00001941static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001942 Value *Ptr, APInt Offset, Type *PointerTy,
1943 const Twine &Prefix) {
1944 // Even though we don't look through PHI nodes, we could be called on an
1945 // instruction in an unreachable block, which may be on a cycle.
1946 SmallPtrSet<Value *, 4> Visited;
1947 Visited.insert(Ptr);
1948 SmallVector<Value *, 4> Indices;
1949
1950 // We may end up computing an offset pointer that has the wrong type. If we
1951 // never are able to compute one directly that has the correct type, we'll
1952 // fall back to it, so keep it around here.
1953 Value *OffsetPtr = 0;
1954
1955 // Remember any i8 pointer we come across to re-use if we need to do a raw
1956 // byte offset.
1957 Value *Int8Ptr = 0;
1958 APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1959
1960 Type *TargetTy = PointerTy->getPointerElementType();
1961
1962 do {
1963 // First fold any existing GEPs into the offset.
1964 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1965 APInt GEPOffset(Offset.getBitWidth(), 0);
1966 if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
1967 break;
1968 Offset += GEPOffset;
1969 Ptr = GEP->getPointerOperand();
1970 if (!Visited.insert(Ptr))
1971 break;
1972 }
1973
1974 // See if we can perform a natural GEP here.
1975 Indices.clear();
1976 if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
1977 Indices, Prefix)) {
1978 if (P->getType() == PointerTy) {
1979 // Zap any offset pointer that we ended up computing in previous rounds.
1980 if (OffsetPtr && OffsetPtr->use_empty())
1981 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1982 I->eraseFromParent();
1983 return P;
1984 }
1985 if (!OffsetPtr) {
1986 OffsetPtr = P;
1987 }
1988 }
1989
1990 // Stash this pointer if we've found an i8*.
1991 if (Ptr->getType()->isIntegerTy(8)) {
1992 Int8Ptr = Ptr;
1993 Int8PtrOffset = Offset;
1994 }
1995
1996 // Peel off a layer of the pointer and update the offset appropriately.
1997 if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1998 Ptr = cast<Operator>(Ptr)->getOperand(0);
1999 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2000 if (GA->mayBeOverridden())
2001 break;
2002 Ptr = GA->getAliasee();
2003 } else {
2004 break;
2005 }
2006 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
2007 } while (Visited.insert(Ptr));
2008
2009 if (!OffsetPtr) {
2010 if (!Int8Ptr) {
2011 Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
2012 Prefix + ".raw_cast");
2013 Int8PtrOffset = Offset;
2014 }
2015
2016 OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
2017 IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
2018 Prefix + ".raw_idx");
2019 }
2020 Ptr = OffsetPtr;
2021
2022 // On the off chance we were targeting i8*, guard the bitcast here.
2023 if (Ptr->getType() != PointerTy)
2024 Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
2025
2026 return Ptr;
2027}
2028
Chandler Carruth11cb6ba2012-10-15 08:40:22 +00002029/// \brief Test whether we can convert a value from the old to the new type.
2030///
2031/// This predicate should be used to guard calls to convertValue in order to
2032/// ensure that we only try to convert viable values. The strategy is that we
2033/// will peel off single element struct and array wrappings to get to an
2034/// underlying value, and convert that value.
2035static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
2036 if (OldTy == NewTy)
2037 return true;
2038 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
2039 return false;
2040 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
2041 return false;
2042
2043 if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
2044 if (NewTy->isPointerTy() && OldTy->isPointerTy())
2045 return true;
2046 if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
2047 return true;
2048 return false;
2049 }
2050
2051 return true;
2052}
2053
2054/// \brief Generic routine to convert an SSA value to a value of a different
2055/// type.
2056///
2057/// This will try various different casting techniques, such as bitcasts,
2058/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
2059/// two types for viability with this routine.
2060static Value *convertValue(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
2061 Type *Ty) {
2062 assert(canConvertValue(DL, V->getType(), Ty) &&
2063 "Value not convertable to type");
2064 if (V->getType() == Ty)
2065 return V;
2066 if (V->getType()->isIntegerTy() && Ty->isPointerTy())
2067 return IRB.CreateIntToPtr(V, Ty);
2068 if (V->getType()->isPointerTy() && Ty->isIntegerTy())
2069 return IRB.CreatePtrToInt(V, Ty);
2070
2071 return IRB.CreateBitCast(V, Ty);
2072}
2073
Chandler Carruth713aa942012-09-14 09:22:59 +00002074/// \brief Test whether the given alloca partition can be promoted to a vector.
2075///
2076/// This is a quick test to check whether we can rewrite a particular alloca
2077/// partition (and its newly formed alloca) into a vector alloca with only
2078/// whole-vector loads and stores such that it could be promoted to a vector
2079/// SSA value. We only can ensure this for a limited set of operations, and we
2080/// don't want to do the rewrites unless we are confident that the result will
2081/// be promotable, so we have an early test here.
Micah Villmow3574eca2012-10-08 16:38:25 +00002082static bool isVectorPromotionViable(const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00002083 Type *AllocaTy,
2084 AllocaPartitioning &P,
2085 uint64_t PartitionBeginOffset,
2086 uint64_t PartitionEndOffset,
2087 AllocaPartitioning::const_use_iterator I,
2088 AllocaPartitioning::const_use_iterator E) {
2089 VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
2090 if (!Ty)
2091 return false;
2092
2093 uint64_t VecSize = TD.getTypeSizeInBits(Ty);
2094 uint64_t ElementSize = Ty->getScalarSizeInBits();
2095
2096 // While the definition of LLVM vectors is bitpacked, we don't support sizes
2097 // that aren't byte sized.
2098 if (ElementSize % 8)
2099 return false;
2100 assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
2101 VecSize /= 8;
2102 ElementSize /= 8;
2103
2104 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002105 if (!I->U)
2106 continue; // Skip dead use.
2107
Chandler Carruth713aa942012-09-14 09:22:59 +00002108 uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
2109 uint64_t BeginIndex = BeginOffset / ElementSize;
2110 if (BeginIndex * ElementSize != BeginOffset ||
2111 BeginIndex >= Ty->getNumElements())
2112 return false;
2113 uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
2114 uint64_t EndIndex = EndOffset / ElementSize;
2115 if (EndIndex * ElementSize != EndOffset ||
2116 EndIndex > Ty->getNumElements())
2117 return false;
2118
2119 // FIXME: We should build shuffle vector instructions to handle
2120 // non-element-sized accesses.
2121 if ((EndOffset - BeginOffset) != ElementSize &&
2122 (EndOffset - BeginOffset) != VecSize)
2123 return false;
2124
Chandler Carruth77c12702012-10-01 01:49:22 +00002125 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002126 if (MI->isVolatile())
2127 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002128 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002129 const AllocaPartitioning::MemTransferOffsets &MTO
2130 = P.getMemTransferOffsets(*MTI);
2131 if (!MTO.IsSplittable)
2132 return false;
2133 }
Chandler Carruth77c12702012-10-01 01:49:22 +00002134 } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002135 // Disable vector promotion when there are loads or stores of an FCA.
2136 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002137 } else if (!isa<LoadInst>(I->U->getUser()) &&
2138 !isa<StoreInst>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002139 return false;
2140 }
2141 }
2142 return true;
2143}
2144
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002145/// \brief Test whether the given alloca partition's integer operations can be
2146/// widened to promotable ones.
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002147///
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002148/// This is a quick test to check whether we can rewrite the integer loads and
2149/// stores to a particular alloca into wider loads and stores and be able to
2150/// promote the resulting alloca.
2151static bool isIntegerWideningViable(const DataLayout &TD,
2152 Type *AllocaTy,
2153 uint64_t AllocBeginOffset,
2154 AllocaPartitioning &P,
2155 AllocaPartitioning::const_use_iterator I,
2156 AllocaPartitioning::const_use_iterator E) {
2157 uint64_t SizeInBits = TD.getTypeSizeInBits(AllocaTy);
2158
2159 // Don't try to handle allocas with bit-padding.
2160 if (SizeInBits != TD.getTypeStoreSizeInBits(AllocaTy))
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002161 return false;
2162
Chandler Carrutha2b88162012-10-25 04:37:07 +00002163 // We need to ensure that an integer type with the appropriate bitwidth can
2164 // be converted to the alloca type, whatever that is. We don't want to force
2165 // the alloca itself to have an integer type if there is a more suitable one.
2166 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2167 if (!canConvertValue(TD, AllocaTy, IntTy) ||
2168 !canConvertValue(TD, IntTy, AllocaTy))
2169 return false;
2170
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002171 uint64_t Size = TD.getTypeStoreSize(AllocaTy);
2172
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002173 // Check the uses to ensure the uses are (likely) promoteable integer uses.
2174 // Also ensure that the alloca has a covering load or store. We don't want
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002175 // to widen the integer operotains only to fail to promote due to some other
2176 // unsplittable entry (which we may make splittable later).
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002177 bool WholeAllocaOp = false;
2178 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002179 if (!I->U)
2180 continue; // Skip dead use.
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002181
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002182 uint64_t RelBegin = I->BeginOffset - AllocBeginOffset;
2183 uint64_t RelEnd = I->EndOffset - AllocBeginOffset;
2184
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002185 // We can't reasonably handle cases where the load or store extends past
2186 // the end of the aloca's type and into its padding.
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002187 if (RelEnd > Size)
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002188 return false;
2189
Chandler Carruth77c12702012-10-01 01:49:22 +00002190 if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002191 if (LI->isVolatile())
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002192 return false;
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002193 if (RelBegin == 0 && RelEnd == Size)
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002194 WholeAllocaOp = true;
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002195 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2196 if (ITy->getBitWidth() < TD.getTypeStoreSize(ITy))
2197 return false;
2198 continue;
2199 }
2200 // Non-integer loads need to be convertible from the alloca type so that
2201 // they are promotable.
2202 if (RelBegin != 0 || RelEnd != Size ||
2203 !canConvertValue(TD, AllocaTy, LI->getType()))
2204 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002205 } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002206 Type *ValueTy = SI->getValueOperand()->getType();
2207 if (SI->isVolatile())
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002208 return false;
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002209 if (RelBegin == 0 && RelEnd == Size)
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002210 WholeAllocaOp = true;
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002211 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2212 if (ITy->getBitWidth() < TD.getTypeStoreSize(ITy))
2213 return false;
2214 continue;
2215 }
2216 // Non-integer stores need to be convertible to the alloca type so that
2217 // they are promotable.
2218 if (RelBegin != 0 || RelEnd != Size ||
2219 !canConvertValue(TD, ValueTy, AllocaTy))
2220 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002221 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002222 if (MI->isVolatile())
2223 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002224 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002225 const AllocaPartitioning::MemTransferOffsets &MTO
2226 = P.getMemTransferOffsets(*MTI);
2227 if (!MTO.IsSplittable)
2228 return false;
2229 }
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002230 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->U->getUser())) {
2231 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2232 II->getIntrinsicID() != Intrinsic::lifetime_end)
2233 return false;
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002234 } else {
2235 return false;
2236 }
2237 }
2238 return WholeAllocaOp;
2239}
2240
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002241static Value *extractInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
2242 IntegerType *Ty, uint64_t Offset,
2243 const Twine &Name) {
2244 IntegerType *IntTy = cast<IntegerType>(V->getType());
2245 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2246 "Element extends past full value");
2247 uint64_t ShAmt = 8*Offset;
2248 if (DL.isBigEndian())
2249 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2250 if (ShAmt)
2251 V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2252 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2253 "Cannot extract to a larger integer!");
2254 if (Ty != IntTy)
2255 V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2256 return V;
2257}
2258
2259static Value *insertInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *Old,
2260 Value *V, uint64_t Offset, const Twine &Name) {
2261 IntegerType *IntTy = cast<IntegerType>(Old->getType());
2262 IntegerType *Ty = cast<IntegerType>(V->getType());
2263 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2264 "Cannot insert a larger integer!");
2265 if (Ty != IntTy)
2266 V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2267 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2268 "Element store outside of alloca store");
2269 uint64_t ShAmt = 8*Offset;
2270 if (DL.isBigEndian())
2271 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2272 if (ShAmt)
2273 V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2274
2275 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2276 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2277 Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2278 V = IRB.CreateOr(Old, V, Name + ".insert");
2279 }
2280 return V;
2281}
2282
Chandler Carruth713aa942012-09-14 09:22:59 +00002283namespace {
2284/// \brief Visitor to rewrite instructions using a partition of an alloca to
2285/// use a new alloca.
2286///
2287/// Also implements the rewriting to vector-based accesses when the partition
2288/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2289/// lives here.
2290class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
2291 bool> {
2292 // Befriend the base class so it can delegate to private visit methods.
2293 friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
2294
Micah Villmow3574eca2012-10-08 16:38:25 +00002295 const DataLayout &TD;
Chandler Carruth713aa942012-09-14 09:22:59 +00002296 AllocaPartitioning &P;
2297 SROA &Pass;
2298 AllocaInst &OldAI, &NewAI;
2299 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
Chandler Carruth520eeae2012-10-13 02:41:05 +00002300 Type *NewAllocaTy;
Chandler Carruth713aa942012-09-14 09:22:59 +00002301
2302 // If we are rewriting an alloca partition which can be written as pure
2303 // vector operations, we stash extra information here. When VecTy is
2304 // non-null, we have some strict guarantees about the rewriten alloca:
2305 // - The new alloca is exactly the size of the vector type here.
2306 // - The accesses all either map to the entire vector or to a single
2307 // element.
2308 // - The set of accessing instructions is only one of those handled above
2309 // in isVectorPromotionViable. Generally these are the same access kinds
2310 // which are promotable via mem2reg.
2311 VectorType *VecTy;
2312 Type *ElementTy;
2313 uint64_t ElementSize;
2314
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002315 // This is a convenience and flag variable that will be null unless the new
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002316 // alloca's integer operations should be widened to this integer type due to
2317 // passing isIntegerWideningViable above. If it is non-null, the desired
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002318 // integer type will be stored here for easy access during rewriting.
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002319 IntegerType *IntTy;
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002320
Chandler Carruth713aa942012-09-14 09:22:59 +00002321 // The offset of the partition user currently being rewritten.
2322 uint64_t BeginOffset, EndOffset;
Chandler Carruth77c12702012-10-01 01:49:22 +00002323 Use *OldUse;
Chandler Carruth713aa942012-09-14 09:22:59 +00002324 Instruction *OldPtr;
2325
2326 // The name prefix to use when rewriting instructions for this alloca.
2327 std::string NamePrefix;
2328
2329public:
Micah Villmow3574eca2012-10-08 16:38:25 +00002330 AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
Chandler Carruth713aa942012-09-14 09:22:59 +00002331 AllocaPartitioning::iterator PI,
2332 SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
2333 uint64_t NewBeginOffset, uint64_t NewEndOffset)
2334 : TD(TD), P(P), Pass(Pass),
2335 OldAI(OldAI), NewAI(NewAI),
2336 NewAllocaBeginOffset(NewBeginOffset),
2337 NewAllocaEndOffset(NewEndOffset),
Chandler Carruth520eeae2012-10-13 02:41:05 +00002338 NewAllocaTy(NewAI.getAllocatedType()),
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002339 VecTy(), ElementTy(), ElementSize(), IntTy(),
Chandler Carruth713aa942012-09-14 09:22:59 +00002340 BeginOffset(), EndOffset() {
2341 }
2342
2343 /// \brief Visit the users of the alloca partition and rewrite them.
2344 bool visitUsers(AllocaPartitioning::const_use_iterator I,
2345 AllocaPartitioning::const_use_iterator E) {
2346 if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
2347 NewAllocaBeginOffset, NewAllocaEndOffset,
2348 I, E)) {
2349 ++NumVectorized;
2350 VecTy = cast<VectorType>(NewAI.getAllocatedType());
2351 ElementTy = VecTy->getElementType();
2352 assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
2353 "Only multiple-of-8 sized vector elements are viable");
2354 ElementSize = VecTy->getScalarSizeInBits() / 8;
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002355 } else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
2356 NewAllocaBeginOffset, P, I, E)) {
2357 IntTy = Type::getIntNTy(NewAI.getContext(),
2358 TD.getTypeSizeInBits(NewAI.getAllocatedType()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002359 }
2360 bool CanSROA = true;
2361 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002362 if (!I->U)
2363 continue; // Skip dead uses.
Chandler Carruth713aa942012-09-14 09:22:59 +00002364 BeginOffset = I->BeginOffset;
2365 EndOffset = I->EndOffset;
Chandler Carruth77c12702012-10-01 01:49:22 +00002366 OldUse = I->U;
2367 OldPtr = cast<Instruction>(I->U->get());
Chandler Carruth713aa942012-09-14 09:22:59 +00002368 NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
Chandler Carruth77c12702012-10-01 01:49:22 +00002369 CanSROA &= visit(cast<Instruction>(I->U->getUser()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002370 }
2371 if (VecTy) {
2372 assert(CanSROA);
2373 VecTy = 0;
2374 ElementTy = 0;
2375 ElementSize = 0;
2376 }
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002377 if (IntTy) {
2378 assert(CanSROA);
2379 IntTy = 0;
2380 }
Chandler Carruth713aa942012-09-14 09:22:59 +00002381 return CanSROA;
2382 }
2383
2384private:
2385 // Every instruction which can end up as a user must have a rewrite rule.
2386 bool visitInstruction(Instruction &I) {
2387 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
2388 llvm_unreachable("No rewrite rule for this instruction!");
2389 }
2390
2391 Twine getName(const Twine &Suffix) {
2392 return NamePrefix + Suffix;
2393 }
2394
2395 Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
2396 assert(BeginOffset >= NewAllocaBeginOffset);
Chandler Carruth426c2bf2012-11-01 09:14:31 +00002397 APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
Chandler Carruth713aa942012-09-14 09:22:59 +00002398 return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
2399 }
2400
Chandler Carruthf710fb12012-10-03 08:14:02 +00002401 /// \brief Compute suitable alignment to access an offset into the new alloca.
2402 unsigned getOffsetAlign(uint64_t Offset) {
Chandler Carruth673850a2012-10-01 12:16:54 +00002403 unsigned NewAIAlign = NewAI.getAlignment();
2404 if (!NewAIAlign)
2405 NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
2406 return MinAlign(NewAIAlign, Offset);
2407 }
Chandler Carruthf710fb12012-10-03 08:14:02 +00002408
2409 /// \brief Compute suitable alignment to access this partition of the new
2410 /// alloca.
2411 unsigned getPartitionAlign() {
2412 return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
Chandler Carruth673850a2012-10-01 12:16:54 +00002413 }
2414
Chandler Carruthf710fb12012-10-03 08:14:02 +00002415 /// \brief Compute suitable alignment to access a type at an offset of the
2416 /// new alloca.
2417 ///
2418 /// \returns zero if the type's ABI alignment is a suitable alignment,
2419 /// otherwise returns the maximal suitable alignment.
2420 unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
2421 unsigned Align = getOffsetAlign(Offset);
2422 return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
2423 }
2424
2425 /// \brief Compute suitable alignment to access a type at the beginning of
2426 /// this partition of the new alloca.
2427 ///
2428 /// See \c getOffsetTypeAlign for details; this routine delegates to it.
2429 unsigned getPartitionTypeAlign(Type *Ty) {
2430 return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
Chandler Carruth673850a2012-10-01 12:16:54 +00002431 }
2432
Chandler Carruth713aa942012-09-14 09:22:59 +00002433 ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) {
2434 assert(VecTy && "Can only call getIndex when rewriting a vector");
2435 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2436 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2437 uint32_t Index = RelOffset / ElementSize;
2438 assert(Index * ElementSize == RelOffset);
2439 return IRB.getInt32(Index);
2440 }
2441
2442 void deleteIfTriviallyDead(Value *V) {
2443 Instruction *I = cast<Instruction>(V);
2444 if (isInstructionTriviallyDead(I))
2445 Pass.DeadInsts.push_back(I);
2446 }
2447
Chandler Carruth713aa942012-09-14 09:22:59 +00002448 bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
2449 Value *Result;
2450 if (LI.getType() == VecTy->getElementType() ||
2451 BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002452 Result = IRB.CreateExtractElement(
2453 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2454 getIndex(IRB, BeginOffset), getName(".extract"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002455 } else {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002456 Result = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2457 getName(".load"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002458 }
2459 if (Result->getType() != LI.getType())
Chandler Carruth11cb6ba2012-10-15 08:40:22 +00002460 Result = convertValue(TD, IRB, Result, LI.getType());
Chandler Carruth713aa942012-09-14 09:22:59 +00002461 LI.replaceAllUsesWith(Result);
2462 Pass.DeadInsts.push_back(&LI);
2463
2464 DEBUG(dbgs() << " to: " << *Result << "\n");
2465 return true;
2466 }
2467
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002468 bool rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002469 assert(IntTy && "We cannot insert an integer to the alloca");
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002470 assert(!LI.isVolatile());
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002471 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2472 getName(".load"));
2473 V = convertValue(TD, IRB, V, IntTy);
2474 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2475 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2476 V = extractInteger(TD, IRB, V, cast<IntegerType>(LI.getType()), Offset,
2477 getName(".extract"));
2478 LI.replaceAllUsesWith(V);
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002479 Pass.DeadInsts.push_back(&LI);
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002480 DEBUG(dbgs() << " to: " << *V << "\n");
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002481 return true;
2482 }
2483
Chandler Carruth713aa942012-09-14 09:22:59 +00002484 bool visitLoadInst(LoadInst &LI) {
2485 DEBUG(dbgs() << " original: " << LI << "\n");
2486 Value *OldOp = LI.getOperand(0);
2487 assert(OldOp == OldPtr);
2488 IRBuilder<> IRB(&LI);
2489
Chandler Carrutha2b88162012-10-25 04:37:07 +00002490 uint64_t Size = EndOffset - BeginOffset;
2491 if (Size < TD.getTypeStoreSize(LI.getType())) {
2492 assert(!LI.isVolatile());
2493 assert(LI.getType()->isIntegerTy() &&
2494 "Only integer type loads and stores are split");
2495 assert(LI.getType()->getIntegerBitWidth() ==
2496 TD.getTypeStoreSizeInBits(LI.getType()) &&
2497 "Non-byte-multiple bit width");
2498 assert(LI.getType()->getIntegerBitWidth() ==
Chandler Carruth70dace32012-10-30 20:52:40 +00002499 TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
Chandler Carrutha2b88162012-10-25 04:37:07 +00002500 "Only alloca-wide loads can be split and recomposed");
2501 IntegerType *NarrowTy = Type::getIntNTy(LI.getContext(), Size * 8);
2502 bool IsConvertable = (BeginOffset - NewAllocaBeginOffset == 0) &&
2503 canConvertValue(TD, NewAllocaTy, NarrowTy);
2504 Value *V;
2505 // Move the insertion point just past the load so that we can refer to it.
2506 IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
2507 if (IsConvertable)
2508 V = convertValue(TD, IRB,
2509 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2510 getName(".load")),
2511 NarrowTy);
2512 else
2513 V = IRB.CreateAlignedLoad(
2514 getAdjustedAllocaPtr(IRB, NarrowTy->getPointerTo()),
2515 getPartitionTypeAlign(NarrowTy), getName(".load"));
2516 // Create a placeholder value with the same type as LI to use as the
2517 // basis for the new value. This allows us to replace the uses of LI with
2518 // the computed value, and then replace the placeholder with LI, leaving
2519 // LI only used for this computation.
2520 Value *Placeholder
Jakub Staszak5801ff92012-11-01 01:10:43 +00002521 = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
Chandler Carrutha2b88162012-10-25 04:37:07 +00002522 V = insertInteger(TD, IRB, Placeholder, V, BeginOffset,
2523 getName(".insert"));
2524 LI.replaceAllUsesWith(V);
2525 Placeholder->replaceAllUsesWith(&LI);
Jakub Staszak5801ff92012-11-01 01:10:43 +00002526 delete Placeholder;
Chandler Carrutha2b88162012-10-25 04:37:07 +00002527 if (Pass.DeadSplitInsts.insert(&LI))
2528 Pass.DeadInsts.push_back(&LI);
2529 DEBUG(dbgs() << " to: " << *V << "\n");
2530 return IsConvertable;
2531 }
2532
Chandler Carruth70dace32012-10-30 20:52:40 +00002533 if (VecTy)
2534 return rewriteVectorizedLoadInst(IRB, LI, OldOp);
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002535 if (IntTy && LI.getType()->isIntegerTy())
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002536 return rewriteIntegerLoad(IRB, LI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002537
Chandler Carruth520eeae2012-10-13 02:41:05 +00002538 if (BeginOffset == NewAllocaBeginOffset &&
Chandler Carruth11cb6ba2012-10-15 08:40:22 +00002539 canConvertValue(TD, NewAllocaTy, LI.getType())) {
Chandler Carruth520eeae2012-10-13 02:41:05 +00002540 Value *NewLI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2541 LI.isVolatile(), getName(".load"));
Chandler Carruth11cb6ba2012-10-15 08:40:22 +00002542 Value *NewV = convertValue(TD, IRB, NewLI, LI.getType());
Chandler Carruth520eeae2012-10-13 02:41:05 +00002543 LI.replaceAllUsesWith(NewV);
2544 Pass.DeadInsts.push_back(&LI);
2545
2546 DEBUG(dbgs() << " to: " << *NewLI << "\n");
2547 return !LI.isVolatile();
2548 }
2549
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002550 assert(!IntTy && "Invalid load found with int-op widening enabled");
2551
Chandler Carruth713aa942012-09-14 09:22:59 +00002552 Value *NewPtr = getAdjustedAllocaPtr(IRB,
2553 LI.getPointerOperand()->getType());
2554 LI.setOperand(0, NewPtr);
Chandler Carruthf710fb12012-10-03 08:14:02 +00002555 LI.setAlignment(getPartitionTypeAlign(LI.getType()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002556 DEBUG(dbgs() << " to: " << LI << "\n");
2557
2558 deleteIfTriviallyDead(OldOp);
2559 return NewPtr == &NewAI && !LI.isVolatile();
2560 }
2561
2562 bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI,
2563 Value *OldOp) {
2564 Value *V = SI.getValueOperand();
2565 if (V->getType() == ElementTy ||
2566 BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
2567 if (V->getType() != ElementTy)
Chandler Carruth11cb6ba2012-10-15 08:40:22 +00002568 V = convertValue(TD, IRB, V, ElementTy);
Chandler Carruth81b001a2012-09-26 10:27:46 +00002569 LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2570 getName(".load"));
2571 V = IRB.CreateInsertElement(LI, V, getIndex(IRB, BeginOffset),
Chandler Carruth713aa942012-09-14 09:22:59 +00002572 getName(".insert"));
2573 } else if (V->getType() != VecTy) {
Chandler Carruth11cb6ba2012-10-15 08:40:22 +00002574 V = convertValue(TD, IRB, V, VecTy);
Chandler Carruth713aa942012-09-14 09:22:59 +00002575 }
Chandler Carruth81b001a2012-09-26 10:27:46 +00002576 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruth713aa942012-09-14 09:22:59 +00002577 Pass.DeadInsts.push_back(&SI);
2578
2579 (void)Store;
2580 DEBUG(dbgs() << " to: " << *Store << "\n");
2581 return true;
2582 }
2583
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002584 bool rewriteIntegerStore(IRBuilder<> &IRB, StoreInst &SI) {
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002585 assert(IntTy && "We cannot extract an integer from the alloca");
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002586 assert(!SI.isVolatile());
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002587 Value *V = SI.getValueOperand();
2588 if (TD.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2589 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2590 getName(".oldload"));
2591 Old = convertValue(TD, IRB, Old, IntTy);
2592 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2593 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2594 V = insertInteger(TD, IRB, Old, SI.getValueOperand(), Offset,
2595 getName(".insert"));
2596 }
2597 V = convertValue(TD, IRB, V, NewAllocaTy);
2598 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002599 Pass.DeadInsts.push_back(&SI);
2600 (void)Store;
2601 DEBUG(dbgs() << " to: " << *Store << "\n");
2602 return true;
2603 }
2604
Chandler Carruth713aa942012-09-14 09:22:59 +00002605 bool visitStoreInst(StoreInst &SI) {
2606 DEBUG(dbgs() << " original: " << SI << "\n");
2607 Value *OldOp = SI.getOperand(1);
2608 assert(OldOp == OldPtr);
2609 IRBuilder<> IRB(&SI);
2610
2611 if (VecTy)
2612 return rewriteVectorizedStoreInst(IRB, SI, OldOp);
Chandler Carruth520eeae2012-10-13 02:41:05 +00002613 Type *ValueTy = SI.getValueOperand()->getType();
Chandler Carrutha2b88162012-10-25 04:37:07 +00002614
2615 uint64_t Size = EndOffset - BeginOffset;
2616 if (Size < TD.getTypeStoreSize(ValueTy)) {
2617 assert(!SI.isVolatile());
2618 assert(ValueTy->isIntegerTy() &&
2619 "Only integer type loads and stores are split");
2620 assert(ValueTy->getIntegerBitWidth() ==
2621 TD.getTypeStoreSizeInBits(ValueTy) &&
2622 "Non-byte-multiple bit width");
2623 assert(ValueTy->getIntegerBitWidth() ==
2624 TD.getTypeSizeInBits(OldAI.getAllocatedType()) &&
2625 "Only alloca-wide stores can be split and recomposed");
2626 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
2627 Value *V = extractInteger(TD, IRB, SI.getValueOperand(), NarrowTy,
2628 BeginOffset, getName(".extract"));
2629 StoreInst *NewSI;
2630 bool IsConvertable = (BeginOffset - NewAllocaBeginOffset == 0) &&
2631 canConvertValue(TD, NarrowTy, NewAllocaTy);
2632 if (IsConvertable)
2633 NewSI = IRB.CreateAlignedStore(convertValue(TD, IRB, V, NewAllocaTy),
2634 &NewAI, NewAI.getAlignment());
2635 else
2636 NewSI = IRB.CreateAlignedStore(
2637 V, getAdjustedAllocaPtr(IRB, NarrowTy->getPointerTo()),
2638 getPartitionTypeAlign(NarrowTy));
2639 (void)NewSI;
2640 if (Pass.DeadSplitInsts.insert(&SI))
2641 Pass.DeadInsts.push_back(&SI);
2642
2643 DEBUG(dbgs() << " to: " << *NewSI << "\n");
2644 return IsConvertable;
2645 }
2646
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002647 if (IntTy && ValueTy->isIntegerTy())
2648 return rewriteIntegerStore(IRB, SI);
Chandler Carruth520eeae2012-10-13 02:41:05 +00002649
Chandler Carruthb2d98c22012-10-04 12:33:50 +00002650 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2651 // alloca that should be re-examined after promoting this alloca.
Chandler Carruth520eeae2012-10-13 02:41:05 +00002652 if (ValueTy->isPointerTy())
Chandler Carruthb2d98c22012-10-04 12:33:50 +00002653 if (AllocaInst *AI = dyn_cast<AllocaInst>(SI.getValueOperand()
2654 ->stripInBoundsOffsets()))
2655 Pass.PostPromotionWorklist.insert(AI);
2656
Chandler Carruth520eeae2012-10-13 02:41:05 +00002657 if (BeginOffset == NewAllocaBeginOffset &&
Chandler Carruth11cb6ba2012-10-15 08:40:22 +00002658 canConvertValue(TD, ValueTy, NewAllocaTy)) {
2659 Value *NewV = convertValue(TD, IRB, SI.getValueOperand(), NewAllocaTy);
Chandler Carruth520eeae2012-10-13 02:41:05 +00002660 StoreInst *NewSI = IRB.CreateAlignedStore(NewV, &NewAI, NewAI.getAlignment(),
2661 SI.isVolatile());
Chandler Carruthc2fcf1a62012-10-13 05:09:27 +00002662 (void)NewSI;
Chandler Carruth520eeae2012-10-13 02:41:05 +00002663 Pass.DeadInsts.push_back(&SI);
2664
2665 DEBUG(dbgs() << " to: " << *NewSI << "\n");
2666 return !SI.isVolatile();
2667 }
2668
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002669 assert(!IntTy && "Invalid store found with int-op widening enabled");
2670
Chandler Carruth713aa942012-09-14 09:22:59 +00002671 Value *NewPtr = getAdjustedAllocaPtr(IRB,
2672 SI.getPointerOperand()->getType());
2673 SI.setOperand(1, NewPtr);
Chandler Carruthf710fb12012-10-03 08:14:02 +00002674 SI.setAlignment(getPartitionTypeAlign(SI.getValueOperand()->getType()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002675 DEBUG(dbgs() << " to: " << SI << "\n");
2676
2677 deleteIfTriviallyDead(OldOp);
2678 return NewPtr == &NewAI && !SI.isVolatile();
2679 }
2680
2681 bool visitMemSetInst(MemSetInst &II) {
2682 DEBUG(dbgs() << " original: " << II << "\n");
2683 IRBuilder<> IRB(&II);
2684 assert(II.getRawDest() == OldPtr);
2685
2686 // If the memset has a variable size, it cannot be split, just adjust the
2687 // pointer to the new alloca.
2688 if (!isa<Constant>(II.getLength())) {
2689 II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002690 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruthf710fb12012-10-03 08:14:02 +00002691 II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002692
Chandler Carruth713aa942012-09-14 09:22:59 +00002693 deleteIfTriviallyDead(OldPtr);
2694 return false;
2695 }
2696
2697 // Record this instruction for deletion.
2698 if (Pass.DeadSplitInsts.insert(&II))
2699 Pass.DeadInsts.push_back(&II);
2700
2701 Type *AllocaTy = NewAI.getAllocatedType();
2702 Type *ScalarTy = AllocaTy->getScalarType();
2703
2704 // If this doesn't map cleanly onto the alloca type, and that type isn't
2705 // a single value type, just emit a memset.
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002706 if (!VecTy && !IntTy &&
2707 (BeginOffset != NewAllocaBeginOffset ||
2708 EndOffset != NewAllocaEndOffset ||
2709 !AllocaTy->isSingleValueType() ||
2710 !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002711 Type *SizeTy = II.getLength()->getType();
2712 Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
Chandler Carruth713aa942012-09-14 09:22:59 +00002713 CallInst *New
2714 = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
2715 II.getRawDest()->getType()),
Chandler Carruthf710fb12012-10-03 08:14:02 +00002716 II.getValue(), Size, getPartitionAlign(),
Chandler Carruth713aa942012-09-14 09:22:59 +00002717 II.isVolatile());
2718 (void)New;
2719 DEBUG(dbgs() << " to: " << *New << "\n");
2720 return false;
2721 }
2722
2723 // If we can represent this as a simple value, we have to build the actual
2724 // value to store, which requires expanding the byte present in memset to
2725 // a sensible representation for the alloca type. This is essentially
2726 // splatting the byte to a sufficiently wide integer, bitcasting to the
2727 // desired scalar type, and splatting it across any desired vector type.
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002728 uint64_t Size = EndOffset - BeginOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +00002729 Value *V = II.getValue();
2730 IntegerType *VTy = cast<IntegerType>(V->getType());
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002731 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
2732 if (Size*8 > VTy->getBitWidth())
2733 V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
Chandler Carruth713aa942012-09-14 09:22:59 +00002734 ConstantExpr::getUDiv(
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002735 Constant::getAllOnesValue(SplatIntTy),
Chandler Carruth713aa942012-09-14 09:22:59 +00002736 ConstantExpr::getZExt(
2737 Constant::getAllOnesValue(V->getType()),
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002738 SplatIntTy)),
Chandler Carruth713aa942012-09-14 09:22:59 +00002739 getName(".isplat"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002740
2741 // If this is an element-wide memset of a vectorizable alloca, insert it.
2742 if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
2743 EndOffset < NewAllocaEndOffset)) {
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002744 if (V->getType() != ScalarTy)
2745 V = convertValue(TD, IRB, V, ScalarTy);
Chandler Carruth81b001a2012-09-26 10:27:46 +00002746 StoreInst *Store = IRB.CreateAlignedStore(
2747 IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
2748 NewAI.getAlignment(),
2749 getName(".load")),
2750 V, getIndex(IRB, BeginOffset),
Chandler Carruth713aa942012-09-14 09:22:59 +00002751 getName(".insert")),
Chandler Carruth81b001a2012-09-26 10:27:46 +00002752 &NewAI, NewAI.getAlignment());
Chandler Carruth713aa942012-09-14 09:22:59 +00002753 (void)Store;
2754 DEBUG(dbgs() << " to: " << *Store << "\n");
2755 return true;
2756 }
2757
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002758 // If this is a memset on an alloca where we can widen stores, insert the
2759 // set integer.
2760 if (IntTy && (BeginOffset > NewAllocaBeginOffset ||
2761 EndOffset < NewAllocaEndOffset)) {
2762 assert(!II.isVolatile());
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002763 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2764 getName(".oldload"));
2765 Old = convertValue(TD, IRB, Old, IntTy);
2766 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2767 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2768 V = insertInteger(TD, IRB, Old, V, Offset, getName(".insert"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002769 }
2770
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002771 if (V->getType() != AllocaTy)
2772 V = convertValue(TD, IRB, V, AllocaTy);
2773
Chandler Carruth81b001a2012-09-26 10:27:46 +00002774 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2775 II.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +00002776 (void)New;
2777 DEBUG(dbgs() << " to: " << *New << "\n");
2778 return !II.isVolatile();
2779 }
2780
2781 bool visitMemTransferInst(MemTransferInst &II) {
2782 // Rewriting of memory transfer instructions can be a bit tricky. We break
2783 // them into two categories: split intrinsics and unsplit intrinsics.
2784
2785 DEBUG(dbgs() << " original: " << II << "\n");
2786 IRBuilder<> IRB(&II);
2787
2788 assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2789 bool IsDest = II.getRawDest() == OldPtr;
2790
2791 const AllocaPartitioning::MemTransferOffsets &MTO
2792 = P.getMemTransferOffsets(II);
2793
Chandler Carruth673850a2012-10-01 12:16:54 +00002794 // Compute the relative offset within the transfer.
Chandler Carruth426c2bf2012-11-01 09:14:31 +00002795 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Chandler Carruth673850a2012-10-01 12:16:54 +00002796 APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
2797 : MTO.SourceBegin));
2798
2799 unsigned Align = II.getAlignment();
2800 if (Align > 1)
2801 Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
Chandler Carruthf710fb12012-10-03 08:14:02 +00002802 MinAlign(II.getAlignment(), getPartitionAlign()));
Chandler Carruth673850a2012-10-01 12:16:54 +00002803
Chandler Carruth713aa942012-09-14 09:22:59 +00002804 // For unsplit intrinsics, we simply modify the source and destination
2805 // pointers in place. This isn't just an optimization, it is a matter of
2806 // correctness. With unsplit intrinsics we may be dealing with transfers
2807 // within a single alloca before SROA ran, or with transfers that have
2808 // a variable length. We may also be dealing with memmove instead of
2809 // memcpy, and so simply updating the pointers is the necessary for us to
2810 // update both source and dest of a single call.
2811 if (!MTO.IsSplittable) {
2812 Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2813 if (IsDest)
2814 II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2815 else
2816 II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
2817
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002818 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruth673850a2012-10-01 12:16:54 +00002819 II.setAlignment(ConstantInt::get(CstTy, Align));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002820
Chandler Carruth713aa942012-09-14 09:22:59 +00002821 DEBUG(dbgs() << " to: " << II << "\n");
2822 deleteIfTriviallyDead(OldOp);
2823 return false;
2824 }
2825 // For split transfer intrinsics we have an incredibly useful assurance:
2826 // the source and destination do not reside within the same alloca, and at
2827 // least one of them does not escape. This means that we can replace
2828 // memmove with memcpy, and we don't need to worry about all manner of
2829 // downsides to splitting and transforming the operations.
2830
Chandler Carruth713aa942012-09-14 09:22:59 +00002831 // If this doesn't map cleanly onto the alloca type, and that type isn't
2832 // a single value type, just emit a memcpy.
2833 bool EmitMemCpy
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002834 = !VecTy && !IntTy && (BeginOffset != NewAllocaBeginOffset ||
2835 EndOffset != NewAllocaEndOffset ||
2836 !NewAI.getAllocatedType()->isSingleValueType());
Chandler Carruth713aa942012-09-14 09:22:59 +00002837
2838 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2839 // size hasn't been shrunk based on analysis of the viable range, this is
2840 // a no-op.
2841 if (EmitMemCpy && &OldAI == &NewAI) {
2842 uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
2843 uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
2844 // Ensure the start lines up.
2845 assert(BeginOffset == OrigBegin);
Benjamin Kramerd0807692012-09-14 13:08:09 +00002846 (void)OrigBegin;
Chandler Carruth713aa942012-09-14 09:22:59 +00002847
2848 // Rewrite the size as needed.
2849 if (EndOffset != OrigEnd)
2850 II.setLength(ConstantInt::get(II.getLength()->getType(),
2851 EndOffset - BeginOffset));
2852 return false;
2853 }
2854 // Record this instruction for deletion.
2855 if (Pass.DeadSplitInsts.insert(&II))
2856 Pass.DeadInsts.push_back(&II);
2857
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002858 bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
2859 EndOffset == NewAllocaEndOffset;
2860 bool IsVectorElement = VecTy && !IsWholeAlloca;
2861 uint64_t Size = EndOffset - BeginOffset;
2862 IntegerType *SubIntTy
2863 = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
Chandler Carruth713aa942012-09-14 09:22:59 +00002864
2865 Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2866 : II.getRawDest()->getType();
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002867 if (!EmitMemCpy) {
2868 if (IsVectorElement)
Micah Villmowb8bce922012-10-24 17:25:11 +00002869 OtherPtrTy = VecTy->getElementType()->getPointerTo();
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002870 else if (IntTy && !IsWholeAlloca)
Micah Villmowb8bce922012-10-24 17:25:11 +00002871 OtherPtrTy = SubIntTy->getPointerTo();
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002872 else
2873 OtherPtrTy = NewAI.getType();
2874 }
Chandler Carruth713aa942012-09-14 09:22:59 +00002875
2876 // Compute the other pointer, folding as much as possible to produce
2877 // a single, simple GEP in most cases.
2878 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2879 OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2880 getName("." + OtherPtr->getName()));
2881
2882 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2883 // alloca that should be re-examined after rewriting this instruction.
2884 if (AllocaInst *AI
2885 = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
Chandler Carruthb3dca3f2012-09-26 07:41:40 +00002886 Pass.Worklist.insert(AI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002887
2888 if (EmitMemCpy) {
2889 Value *OurPtr
2890 = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
2891 : II.getRawSource()->getType());
2892 Type *SizeTy = II.getLength()->getType();
2893 Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2894
2895 CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2896 IsDest ? OtherPtr : OurPtr,
Chandler Carruth81b001a2012-09-26 10:27:46 +00002897 Size, Align, II.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +00002898 (void)New;
2899 DEBUG(dbgs() << " to: " << *New << "\n");
2900 return false;
2901 }
2902
Chandler Carruth322e9ba2012-10-03 08:26:28 +00002903 // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2904 // is equivalent to 1, but that isn't true if we end up rewriting this as
2905 // a load or store.
2906 if (!Align)
2907 Align = 1;
2908
Chandler Carruth713aa942012-09-14 09:22:59 +00002909 Value *SrcPtr = OtherPtr;
2910 Value *DstPtr = &NewAI;
2911 if (!IsDest)
2912 std::swap(SrcPtr, DstPtr);
2913
2914 Value *Src;
2915 if (IsVectorElement && !IsDest) {
2916 // We have to extract rather than load.
Chandler Carruth81b001a2012-09-26 10:27:46 +00002917 Src = IRB.CreateExtractElement(
2918 IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
2919 getIndex(IRB, BeginOffset),
2920 getName(".copyextract"));
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002921 } else if (IntTy && !IsWholeAlloca && !IsDest) {
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002922 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2923 getName(".load"));
2924 Src = convertValue(TD, IRB, Src, IntTy);
2925 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2926 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2927 Src = extractInteger(TD, IRB, Src, SubIntTy, Offset, getName(".extract"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002928 } else {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002929 Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2930 getName(".copyload"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002931 }
2932
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002933 if (IntTy && !IsWholeAlloca && IsDest) {
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002934 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2935 getName(".oldload"));
2936 Old = convertValue(TD, IRB, Old, IntTy);
2937 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2938 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2939 Src = insertInteger(TD, IRB, Old, Src, Offset, getName(".insert"));
2940 Src = convertValue(TD, IRB, Src, NewAllocaTy);
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002941 }
2942
Chandler Carruth713aa942012-09-14 09:22:59 +00002943 if (IsVectorElement && IsDest) {
2944 // We have to insert into a loaded copy before storing.
Chandler Carruth81b001a2012-09-26 10:27:46 +00002945 Src = IRB.CreateInsertElement(
2946 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2947 Src, getIndex(IRB, BeginOffset),
2948 getName(".insert"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002949 }
2950
Chandler Carruth81b001a2012-09-26 10:27:46 +00002951 StoreInst *Store = cast<StoreInst>(
2952 IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2953 (void)Store;
Chandler Carruth713aa942012-09-14 09:22:59 +00002954 DEBUG(dbgs() << " to: " << *Store << "\n");
2955 return !II.isVolatile();
2956 }
2957
2958 bool visitIntrinsicInst(IntrinsicInst &II) {
2959 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2960 II.getIntrinsicID() == Intrinsic::lifetime_end);
2961 DEBUG(dbgs() << " original: " << II << "\n");
2962 IRBuilder<> IRB(&II);
2963 assert(II.getArgOperand(1) == OldPtr);
2964
2965 // Record this instruction for deletion.
2966 if (Pass.DeadSplitInsts.insert(&II))
2967 Pass.DeadInsts.push_back(&II);
2968
2969 ConstantInt *Size
2970 = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2971 EndOffset - BeginOffset);
2972 Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
2973 Value *New;
2974 if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2975 New = IRB.CreateLifetimeStart(Ptr, Size);
2976 else
2977 New = IRB.CreateLifetimeEnd(Ptr, Size);
2978
2979 DEBUG(dbgs() << " to: " << *New << "\n");
2980 return true;
2981 }
2982
Chandler Carruth713aa942012-09-14 09:22:59 +00002983 bool visitPHINode(PHINode &PN) {
2984 DEBUG(dbgs() << " original: " << PN << "\n");
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002985
Chandler Carruth713aa942012-09-14 09:22:59 +00002986 // We would like to compute a new pointer in only one place, but have it be
2987 // as local as possible to the PHI. To do that, we re-use the location of
2988 // the old pointer, which necessarily must be in the right position to
2989 // dominate the PHI.
2990 IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
2991
Chandler Carruth713aa942012-09-14 09:22:59 +00002992 Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002993 // Replace the operands which were using the old pointer.
Benjamin Kramer2a132422012-10-20 12:04:57 +00002994 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
Chandler Carruth713aa942012-09-14 09:22:59 +00002995
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002996 DEBUG(dbgs() << " to: " << PN << "\n");
2997 deleteIfTriviallyDead(OldPtr);
2998 return false;
Chandler Carruth713aa942012-09-14 09:22:59 +00002999 }
3000
3001 bool visitSelectInst(SelectInst &SI) {
3002 DEBUG(dbgs() << " original: " << SI << "\n");
3003 IRBuilder<> IRB(&SI);
3004
3005 // Find the operand we need to rewrite here.
3006 bool IsTrueVal = SI.getTrueValue() == OldPtr;
3007 if (IsTrueVal)
3008 assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
3009 else
3010 assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003011
Chandler Carruth713aa942012-09-14 09:22:59 +00003012 Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003013 SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
3014 DEBUG(dbgs() << " to: " << SI << "\n");
Chandler Carruth713aa942012-09-14 09:22:59 +00003015 deleteIfTriviallyDead(OldPtr);
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003016 return false;
Chandler Carruth713aa942012-09-14 09:22:59 +00003017 }
3018
3019};
3020}
3021
Chandler Carruthc370acd2012-09-18 12:57:43 +00003022namespace {
3023/// \brief Visitor to rewrite aggregate loads and stores as scalar.
3024///
3025/// This pass aggressively rewrites all aggregate loads and stores on
3026/// a particular pointer (or any pointer derived from it which we can identify)
3027/// with scalar loads and stores.
3028class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3029 // Befriend the base class so it can delegate to private visit methods.
3030 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
3031
Micah Villmow3574eca2012-10-08 16:38:25 +00003032 const DataLayout &TD;
Chandler Carruthc370acd2012-09-18 12:57:43 +00003033
3034 /// Queue of pointer uses to analyze and potentially rewrite.
3035 SmallVector<Use *, 8> Queue;
3036
3037 /// Set to prevent us from cycling with phi nodes and loops.
3038 SmallPtrSet<User *, 8> Visited;
3039
3040 /// The current pointer use being rewritten. This is used to dig up the used
3041 /// value (as opposed to the user).
3042 Use *U;
3043
3044public:
Micah Villmow3574eca2012-10-08 16:38:25 +00003045 AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {}
Chandler Carruthc370acd2012-09-18 12:57:43 +00003046
3047 /// Rewrite loads and stores through a pointer and all pointers derived from
3048 /// it.
3049 bool rewrite(Instruction &I) {
3050 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
3051 enqueueUsers(I);
3052 bool Changed = false;
3053 while (!Queue.empty()) {
3054 U = Queue.pop_back_val();
3055 Changed |= visit(cast<Instruction>(U->getUser()));
3056 }
3057 return Changed;
3058 }
3059
3060private:
3061 /// Enqueue all the users of the given instruction for further processing.
3062 /// This uses a set to de-duplicate users.
3063 void enqueueUsers(Instruction &I) {
3064 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
3065 ++UI)
3066 if (Visited.insert(*UI))
3067 Queue.push_back(&UI.getUse());
3068 }
3069
3070 // Conservative default is to not rewrite anything.
3071 bool visitInstruction(Instruction &I) { return false; }
3072
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003073 /// \brief Generic recursive split emission class.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003074 template <typename Derived>
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003075 class OpSplitter {
3076 protected:
3077 /// The builder used to form new instructions.
3078 IRBuilder<> IRB;
3079 /// The indices which to be used with insert- or extractvalue to select the
3080 /// appropriate value within the aggregate.
3081 SmallVector<unsigned, 4> Indices;
3082 /// The indices to a GEP instruction which will move Ptr to the correct slot
3083 /// within the aggregate.
3084 SmallVector<Value *, 4> GEPIndices;
3085 /// The base pointer of the original op, used as a base for GEPing the
3086 /// split operations.
3087 Value *Ptr;
Chandler Carruthc370acd2012-09-18 12:57:43 +00003088
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003089 /// Initialize the splitter with an insertion point, Ptr and start with a
3090 /// single zero GEP index.
3091 OpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003092 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003093
3094 public:
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003095 /// \brief Generic recursive split emission routine.
3096 ///
3097 /// This method recursively splits an aggregate op (load or store) into
3098 /// scalar or vector ops. It splits recursively until it hits a single value
3099 /// and emits that single value operation via the template argument.
3100 ///
3101 /// The logic of this routine relies on GEPs and insertvalue and
3102 /// extractvalue all operating with the same fundamental index list, merely
3103 /// formatted differently (GEPs need actual values).
3104 ///
3105 /// \param Ty The type being split recursively into smaller ops.
3106 /// \param Agg The aggregate value being built up or stored, depending on
3107 /// whether this is splitting a load or a store respectively.
3108 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3109 if (Ty->isSingleValueType())
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003110 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003111
3112 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3113 unsigned OldSize = Indices.size();
3114 (void)OldSize;
3115 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3116 ++Idx) {
3117 assert(Indices.size() == OldSize && "Did not return to the old size");
3118 Indices.push_back(Idx);
3119 GEPIndices.push_back(IRB.getInt32(Idx));
3120 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3121 GEPIndices.pop_back();
3122 Indices.pop_back();
3123 }
3124 return;
Chandler Carruthc370acd2012-09-18 12:57:43 +00003125 }
Chandler Carruthc370acd2012-09-18 12:57:43 +00003126
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003127 if (StructType *STy = dyn_cast<StructType>(Ty)) {
3128 unsigned OldSize = Indices.size();
3129 (void)OldSize;
3130 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3131 ++Idx) {
3132 assert(Indices.size() == OldSize && "Did not return to the old size");
3133 Indices.push_back(Idx);
3134 GEPIndices.push_back(IRB.getInt32(Idx));
3135 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3136 GEPIndices.pop_back();
3137 Indices.pop_back();
3138 }
3139 return;
Chandler Carruthc370acd2012-09-18 12:57:43 +00003140 }
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003141
3142 llvm_unreachable("Only arrays and structs are aggregate loadable types");
Chandler Carruthc370acd2012-09-18 12:57:43 +00003143 }
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003144 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00003145
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003146 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003147 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer3b682bd2012-09-18 17:11:47 +00003148 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
Chandler Carruthc370acd2012-09-18 12:57:43 +00003149
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003150 /// Emit a leaf load of a single value. This is called at the leaves of the
3151 /// recursive emission to actually load values.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003152 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003153 assert(Ty->isSingleValueType());
3154 // Load the single value and insert it using the indices.
3155 Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
3156 Name + ".gep"),
3157 Name + ".load");
3158 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3159 DEBUG(dbgs() << " to: " << *Load << "\n");
3160 }
3161 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00003162
3163 bool visitLoadInst(LoadInst &LI) {
3164 assert(LI.getPointerOperand() == *U);
3165 if (!LI.isSimple() || LI.getType()->isSingleValueType())
3166 return false;
3167
3168 // We have an aggregate being loaded, split it apart.
3169 DEBUG(dbgs() << " original: " << LI << "\n");
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003170 LoadOpSplitter Splitter(&LI, *U);
Chandler Carruthc370acd2012-09-18 12:57:43 +00003171 Value *V = UndefValue::get(LI.getType());
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003172 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
Chandler Carruthc370acd2012-09-18 12:57:43 +00003173 LI.replaceAllUsesWith(V);
3174 LI.eraseFromParent();
3175 return true;
3176 }
3177
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003178 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003179 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer3b682bd2012-09-18 17:11:47 +00003180 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003181
3182 /// Emit a leaf store of a single value. This is called at the leaves of the
3183 /// recursive emission to actually produce stores.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003184 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003185 assert(Ty->isSingleValueType());
3186 // Extract the single value and store it using the indices.
3187 Value *Store = IRB.CreateStore(
3188 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
3189 IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
3190 (void)Store;
3191 DEBUG(dbgs() << " to: " << *Store << "\n");
3192 }
3193 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00003194
3195 bool visitStoreInst(StoreInst &SI) {
3196 if (!SI.isSimple() || SI.getPointerOperand() != *U)
3197 return false;
3198 Value *V = SI.getValueOperand();
3199 if (V->getType()->isSingleValueType())
3200 return false;
3201
3202 // We have an aggregate being stored, split it apart.
3203 DEBUG(dbgs() << " original: " << SI << "\n");
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003204 StoreOpSplitter Splitter(&SI, *U);
3205 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
Chandler Carruthc370acd2012-09-18 12:57:43 +00003206 SI.eraseFromParent();
3207 return true;
3208 }
3209
3210 bool visitBitCastInst(BitCastInst &BC) {
3211 enqueueUsers(BC);
3212 return false;
3213 }
3214
3215 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3216 enqueueUsers(GEPI);
3217 return false;
3218 }
3219
3220 bool visitPHINode(PHINode &PN) {
3221 enqueueUsers(PN);
3222 return false;
3223 }
3224
3225 bool visitSelectInst(SelectInst &SI) {
3226 enqueueUsers(SI);
3227 return false;
3228 }
3229};
3230}
3231
Chandler Carruth07525a62012-10-13 10:49:33 +00003232/// \brief Strip aggregate type wrapping.
3233///
3234/// This removes no-op aggregate types wrapping an underlying type. It will
3235/// strip as many layers of types as it can without changing either the type
3236/// size or the allocated size.
3237static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3238 if (Ty->isSingleValueType())
3239 return Ty;
3240
3241 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3242 uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3243
3244 Type *InnerTy;
3245 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3246 InnerTy = ArrTy->getElementType();
3247 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3248 const StructLayout *SL = DL.getStructLayout(STy);
3249 unsigned Index = SL->getElementContainingOffset(0);
3250 InnerTy = STy->getElementType(Index);
3251 } else {
3252 return Ty;
3253 }
3254
3255 if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3256 TypeSize > DL.getTypeSizeInBits(InnerTy))
3257 return Ty;
3258
3259 return stripAggregateTypeWrapping(DL, InnerTy);
3260}
3261
Chandler Carruth713aa942012-09-14 09:22:59 +00003262/// \brief Try to find a partition of the aggregate type passed in for a given
3263/// offset and size.
3264///
3265/// This recurses through the aggregate type and tries to compute a subtype
3266/// based on the offset and size. When the offset and size span a sub-section
Chandler Carruth6b547a22012-09-14 11:08:31 +00003267/// of an array, it will even compute a new array type for that sub-section,
3268/// and the same for structs.
3269///
3270/// Note that this routine is very strict and tries to find a partition of the
3271/// type which produces the *exact* right offset and size. It is not forgiving
3272/// when the size or offset cause either end of type-based partition to be off.
3273/// Also, this is a best-effort routine. It is reasonable to give up and not
3274/// return a type if necessary.
Micah Villmow3574eca2012-10-08 16:38:25 +00003275static Type *getTypePartition(const DataLayout &TD, Type *Ty,
Chandler Carruth713aa942012-09-14 09:22:59 +00003276 uint64_t Offset, uint64_t Size) {
3277 if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
Chandler Carruth07525a62012-10-13 10:49:33 +00003278 return stripAggregateTypeWrapping(TD, Ty);
Chandler Carrutha2b88162012-10-25 04:37:07 +00003279 if (Offset > TD.getTypeAllocSize(Ty) ||
3280 (TD.getTypeAllocSize(Ty) - Offset) < Size)
3281 return 0;
Chandler Carruth713aa942012-09-14 09:22:59 +00003282
3283 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3284 // We can't partition pointers...
3285 if (SeqTy->isPointerTy())
3286 return 0;
3287
3288 Type *ElementTy = SeqTy->getElementType();
3289 uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3290 uint64_t NumSkippedElements = Offset / ElementSize;
3291 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
3292 if (NumSkippedElements >= ArrTy->getNumElements())
3293 return 0;
3294 if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
3295 if (NumSkippedElements >= VecTy->getNumElements())
3296 return 0;
3297 Offset -= NumSkippedElements * ElementSize;
3298
3299 // First check if we need to recurse.
3300 if (Offset > 0 || Size < ElementSize) {
3301 // Bail if the partition ends in a different array element.
3302 if ((Offset + Size) > ElementSize)
3303 return 0;
3304 // Recurse through the element type trying to peel off offset bytes.
3305 return getTypePartition(TD, ElementTy, Offset, Size);
3306 }
3307 assert(Offset == 0);
3308
3309 if (Size == ElementSize)
Chandler Carruth07525a62012-10-13 10:49:33 +00003310 return stripAggregateTypeWrapping(TD, ElementTy);
Chandler Carruth713aa942012-09-14 09:22:59 +00003311 assert(Size > ElementSize);
3312 uint64_t NumElements = Size / ElementSize;
3313 if (NumElements * ElementSize != Size)
3314 return 0;
3315 return ArrayType::get(ElementTy, NumElements);
3316 }
3317
3318 StructType *STy = dyn_cast<StructType>(Ty);
3319 if (!STy)
3320 return 0;
3321
3322 const StructLayout *SL = TD.getStructLayout(STy);
Chandler Carruth6b547a22012-09-14 11:08:31 +00003323 if (Offset >= SL->getSizeInBytes())
Chandler Carruth713aa942012-09-14 09:22:59 +00003324 return 0;
3325 uint64_t EndOffset = Offset + Size;
3326 if (EndOffset > SL->getSizeInBytes())
3327 return 0;
3328
3329 unsigned Index = SL->getElementContainingOffset(Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +00003330 Offset -= SL->getElementOffset(Index);
3331
3332 Type *ElementTy = STy->getElementType(Index);
3333 uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3334 if (Offset >= ElementSize)
3335 return 0; // The offset points into alignment padding.
3336
3337 // See if any partition must be contained by the element.
3338 if (Offset > 0 || Size < ElementSize) {
3339 if ((Offset + Size) > ElementSize)
3340 return 0;
Chandler Carruth713aa942012-09-14 09:22:59 +00003341 return getTypePartition(TD, ElementTy, Offset, Size);
3342 }
3343 assert(Offset == 0);
3344
3345 if (Size == ElementSize)
Chandler Carruth07525a62012-10-13 10:49:33 +00003346 return stripAggregateTypeWrapping(TD, ElementTy);
Chandler Carruth713aa942012-09-14 09:22:59 +00003347
3348 StructType::element_iterator EI = STy->element_begin() + Index,
3349 EE = STy->element_end();
3350 if (EndOffset < SL->getSizeInBytes()) {
3351 unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3352 if (Index == EndIndex)
3353 return 0; // Within a single element and its padding.
Chandler Carruth6b547a22012-09-14 11:08:31 +00003354
3355 // Don't try to form "natural" types if the elements don't line up with the
3356 // expected size.
3357 // FIXME: We could potentially recurse down through the last element in the
3358 // sub-struct to find a natural end point.
3359 if (SL->getElementOffset(EndIndex) != EndOffset)
3360 return 0;
3361
Chandler Carruth713aa942012-09-14 09:22:59 +00003362 assert(Index < EndIndex);
Chandler Carruth713aa942012-09-14 09:22:59 +00003363 EE = STy->element_begin() + EndIndex;
3364 }
3365
3366 // Try to build up a sub-structure.
Benjamin Kramer2a132422012-10-20 12:04:57 +00003367 StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
Chandler Carruth713aa942012-09-14 09:22:59 +00003368 STy->isPacked());
3369 const StructLayout *SubSL = TD.getStructLayout(SubTy);
Chandler Carruth6b547a22012-09-14 11:08:31 +00003370 if (Size != SubSL->getSizeInBytes())
3371 return 0; // The sub-struct doesn't have quite the size needed.
Chandler Carruth713aa942012-09-14 09:22:59 +00003372
Chandler Carruth6b547a22012-09-14 11:08:31 +00003373 return SubTy;
Chandler Carruth713aa942012-09-14 09:22:59 +00003374}
3375
3376/// \brief Rewrite an alloca partition's users.
3377///
3378/// This routine drives both of the rewriting goals of the SROA pass. It tries
3379/// to rewrite uses of an alloca partition to be conducive for SSA value
3380/// promotion. If the partition needs a new, more refined alloca, this will
3381/// build that new alloca, preserving as much type information as possible, and
3382/// rewrite the uses of the old alloca to point at the new one and have the
3383/// appropriate new offsets. It also evaluates how successful the rewrite was
3384/// at enabling promotion and if it was successful queues the alloca to be
3385/// promoted.
3386bool SROA::rewriteAllocaPartition(AllocaInst &AI,
3387 AllocaPartitioning &P,
3388 AllocaPartitioning::iterator PI) {
3389 uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
Chandler Carruthfdb15852012-10-02 18:57:13 +00003390 bool IsLive = false;
3391 for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
3392 UE = P.use_end(PI);
3393 UI != UE && !IsLive; ++UI)
3394 if (UI->U)
3395 IsLive = true;
3396 if (!IsLive)
Chandler Carruth713aa942012-09-14 09:22:59 +00003397 return false; // No live uses left of this partition.
3398
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003399 DEBUG(dbgs() << "Speculating PHIs and selects in partition "
3400 << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
3401
3402 PHIOrSelectSpeculator Speculator(*TD, P, *this);
3403 DEBUG(dbgs() << " speculating ");
3404 DEBUG(P.print(dbgs(), PI, ""));
Chandler Carrutha346f462012-10-02 17:49:47 +00003405 Speculator.visitUsers(PI);
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003406
Chandler Carruth713aa942012-09-14 09:22:59 +00003407 // Try to compute a friendly type for this partition of the alloca. This
3408 // won't always succeed, in which case we fall back to a legal integer type
3409 // or an i8 array of an appropriate size.
3410 Type *AllocaTy = 0;
3411 if (Type *PartitionTy = P.getCommonType(PI))
3412 if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
3413 AllocaTy = PartitionTy;
3414 if (!AllocaTy)
3415 if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
3416 PI->BeginOffset, AllocaSize))
3417 AllocaTy = PartitionTy;
3418 if ((!AllocaTy ||
3419 (AllocaTy->isArrayTy() &&
3420 AllocaTy->getArrayElementType()->isIntegerTy())) &&
3421 TD->isLegalInteger(AllocaSize * 8))
3422 AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
3423 if (!AllocaTy)
3424 AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
Chandler Carruthb3dd9a12012-09-14 10:26:34 +00003425 assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
Chandler Carruth713aa942012-09-14 09:22:59 +00003426
3427 // Check for the case where we're going to rewrite to a new alloca of the
3428 // exact same type as the original, and with the same access offsets. In that
3429 // case, re-use the existing alloca, but still run through the rewriter to
3430 // performe phi and select speculation.
3431 AllocaInst *NewAI;
3432 if (AllocaTy == AI.getAllocatedType()) {
3433 assert(PI->BeginOffset == 0 &&
3434 "Non-zero begin offset but same alloca type");
3435 assert(PI == P.begin() && "Begin offset is zero on later partition");
3436 NewAI = &AI;
3437 } else {
Chandler Carruthb67c9a52012-09-29 10:41:21 +00003438 unsigned Alignment = AI.getAlignment();
3439 if (!Alignment) {
3440 // The minimum alignment which users can rely on when the explicit
3441 // alignment is omitted or zero is that required by the ABI for this
3442 // type.
3443 Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
3444 }
3445 Alignment = MinAlign(Alignment, PI->BeginOffset);
3446 // If we will get at least this much alignment from the type alone, leave
3447 // the alloca's alignment unconstrained.
3448 if (Alignment <= TD->getABITypeAlignment(AllocaTy))
3449 Alignment = 0;
3450 NewAI = new AllocaInst(AllocaTy, 0, Alignment,
Chandler Carruth713aa942012-09-14 09:22:59 +00003451 AI.getName() + ".sroa." + Twine(PI - P.begin()),
3452 &AI);
3453 ++NumNewAllocas;
3454 }
3455
3456 DEBUG(dbgs() << "Rewriting alloca partition "
3457 << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
3458 << *NewAI << "\n");
3459
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003460 // Track the high watermark of the post-promotion worklist. We will reset it
3461 // to this point if the alloca is not in fact scheduled for promotion.
3462 unsigned PPWOldSize = PostPromotionWorklist.size();
3463
Chandler Carruth713aa942012-09-14 09:22:59 +00003464 AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
3465 PI->BeginOffset, PI->EndOffset);
3466 DEBUG(dbgs() << " rewriting ");
3467 DEBUG(P.print(dbgs(), PI, ""));
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003468 bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
3469 if (Promotable) {
Chandler Carruth713aa942012-09-14 09:22:59 +00003470 DEBUG(dbgs() << " and queuing for promotion\n");
3471 PromotableAllocas.push_back(NewAI);
3472 } else if (NewAI != &AI) {
3473 // If we can't promote the alloca, iterate on it to check for new
3474 // refinements exposed by splitting the current alloca. Don't iterate on an
3475 // alloca which didn't actually change and didn't get promoted.
3476 Worklist.insert(NewAI);
3477 }
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003478
3479 // Drop any post-promotion work items if promotion didn't happen.
3480 if (!Promotable)
3481 while (PostPromotionWorklist.size() > PPWOldSize)
3482 PostPromotionWorklist.pop_back();
3483
Chandler Carruth713aa942012-09-14 09:22:59 +00003484 return true;
3485}
3486
3487/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
3488bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
3489 bool Changed = false;
3490 for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
3491 ++PI)
3492 Changed |= rewriteAllocaPartition(AI, P, PI);
3493
3494 return Changed;
3495}
3496
3497/// \brief Analyze an alloca for SROA.
3498///
3499/// This analyzes the alloca to ensure we can reason about it, builds
3500/// a partitioning of the alloca, and then hands it off to be split and
3501/// rewritten as needed.
3502bool SROA::runOnAlloca(AllocaInst &AI) {
3503 DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3504 ++NumAllocasAnalyzed;
3505
3506 // Special case dead allocas, as they're trivial.
3507 if (AI.use_empty()) {
3508 AI.eraseFromParent();
3509 return true;
3510 }
3511
3512 // Skip alloca forms that this analysis can't handle.
3513 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3514 TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
3515 return false;
3516
Chandler Carruthc370acd2012-09-18 12:57:43 +00003517 bool Changed = false;
3518
3519 // First, split any FCA loads and stores touching this alloca to promote
3520 // better splitting and promotion opportunities.
3521 AggLoadStoreRewriter AggRewriter(*TD);
3522 Changed |= AggRewriter.rewrite(AI);
3523
Chandler Carruth713aa942012-09-14 09:22:59 +00003524 // Build the partition set using a recursive instruction-visiting builder.
3525 AllocaPartitioning P(*TD, AI);
3526 DEBUG(P.print(dbgs()));
3527 if (P.isEscaped())
Chandler Carruthc370acd2012-09-18 12:57:43 +00003528 return Changed;
Chandler Carruth713aa942012-09-14 09:22:59 +00003529
Chandler Carruth713aa942012-09-14 09:22:59 +00003530 // Delete all the dead users of this alloca before splitting and rewriting it.
Chandler Carruth713aa942012-09-14 09:22:59 +00003531 for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
3532 DE = P.dead_user_end();
3533 DI != DE; ++DI) {
3534 Changed = true;
3535 (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3536 DeadInsts.push_back(*DI);
3537 }
3538 for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
3539 DE = P.dead_op_end();
3540 DO != DE; ++DO) {
3541 Value *OldV = **DO;
3542 // Clobber the use with an undef value.
3543 **DO = UndefValue::get(OldV->getType());
3544 if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3545 if (isInstructionTriviallyDead(OldI)) {
3546 Changed = true;
3547 DeadInsts.push_back(OldI);
3548 }
3549 }
3550
Chandler Carruthfca3f402012-10-05 01:29:09 +00003551 // No partitions to split. Leave the dead alloca for a later pass to clean up.
3552 if (P.begin() == P.end())
3553 return Changed;
3554
Chandler Carruth713aa942012-09-14 09:22:59 +00003555 return splitAlloca(AI, P) || Changed;
3556}
3557
Chandler Carruth8615cd22012-09-14 10:26:38 +00003558/// \brief Delete the dead instructions accumulated in this run.
3559///
3560/// Recursively deletes the dead instructions we've accumulated. This is done
3561/// at the very end to maximize locality of the recursive delete and to
3562/// minimize the problems of invalidated instruction pointers as such pointers
3563/// are used heavily in the intermediate stages of the algorithm.
3564///
3565/// We also record the alloca instructions deleted here so that they aren't
3566/// subsequently handed to mem2reg to promote.
3567void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
Chandler Carruth713aa942012-09-14 09:22:59 +00003568 DeadSplitInsts.clear();
3569 while (!DeadInsts.empty()) {
3570 Instruction *I = DeadInsts.pop_back_val();
3571 DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3572
Chandler Carrutha2b88162012-10-25 04:37:07 +00003573 I->replaceAllUsesWith(UndefValue::get(I->getType()));
3574
Chandler Carruth713aa942012-09-14 09:22:59 +00003575 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3576 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3577 // Zero out the operand and see if it becomes trivially dead.
3578 *OI = 0;
3579 if (isInstructionTriviallyDead(U))
3580 DeadInsts.push_back(U);
3581 }
3582
3583 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3584 DeletedAllocas.insert(AI);
3585
3586 ++NumDeleted;
3587 I->eraseFromParent();
3588 }
3589}
3590
Chandler Carruth1c8db502012-09-15 11:43:14 +00003591/// \brief Promote the allocas, using the best available technique.
3592///
3593/// This attempts to promote whatever allocas have been identified as viable in
3594/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3595/// If there is a domtree available, we attempt to promote using the full power
3596/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3597/// based on the SSAUpdater utilities. This function returns whether any
3598/// promotion occured.
3599bool SROA::promoteAllocas(Function &F) {
3600 if (PromotableAllocas.empty())
3601 return false;
3602
3603 NumPromoted += PromotableAllocas.size();
3604
3605 if (DT && !ForceSSAUpdater) {
3606 DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3607 PromoteMemToReg(PromotableAllocas, *DT);
3608 PromotableAllocas.clear();
3609 return true;
3610 }
3611
3612 DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3613 SSAUpdater SSA;
3614 DIBuilder DIB(*F.getParent());
3615 SmallVector<Instruction*, 64> Insts;
3616
3617 for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3618 AllocaInst *AI = PromotableAllocas[Idx];
3619 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
3620 UI != UE;) {
3621 Instruction *I = cast<Instruction>(*UI++);
3622 // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3623 // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3624 // leading to them) here. Eventually it should use them to optimize the
3625 // scalar values produced.
3626 if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
3627 assert(onlyUsedByLifetimeMarkers(I) &&
3628 "Found a bitcast used outside of a lifetime marker.");
3629 while (!I->use_empty())
3630 cast<Instruction>(*I->use_begin())->eraseFromParent();
3631 I->eraseFromParent();
3632 continue;
3633 }
3634 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3635 assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3636 II->getIntrinsicID() == Intrinsic::lifetime_end);
3637 II->eraseFromParent();
3638 continue;
3639 }
3640
3641 Insts.push_back(I);
3642 }
3643 AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3644 Insts.clear();
3645 }
3646
3647 PromotableAllocas.clear();
3648 return true;
3649}
3650
Chandler Carruth713aa942012-09-14 09:22:59 +00003651namespace {
3652 /// \brief A predicate to test whether an alloca belongs to a set.
3653 class IsAllocaInSet {
3654 typedef SmallPtrSet<AllocaInst *, 4> SetType;
3655 const SetType &Set;
3656
3657 public:
Chandler Carruth75eac5f2012-10-03 00:03:00 +00003658 typedef AllocaInst *argument_type;
3659
Chandler Carruth713aa942012-09-14 09:22:59 +00003660 IsAllocaInSet(const SetType &Set) : Set(Set) {}
Chandler Carruth75eac5f2012-10-03 00:03:00 +00003661 bool operator()(AllocaInst *AI) const { return Set.count(AI); }
Chandler Carruth713aa942012-09-14 09:22:59 +00003662 };
3663}
3664
3665bool SROA::runOnFunction(Function &F) {
3666 DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3667 C = &F.getContext();
Micah Villmow3574eca2012-10-08 16:38:25 +00003668 TD = getAnalysisIfAvailable<DataLayout>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003669 if (!TD) {
3670 DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
3671 return false;
3672 }
Chandler Carruth1c8db502012-09-15 11:43:14 +00003673 DT = getAnalysisIfAvailable<DominatorTree>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003674
3675 BasicBlock &EntryBB = F.getEntryBlock();
3676 for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3677 I != E; ++I)
3678 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3679 Worklist.insert(AI);
3680
3681 bool Changed = false;
Chandler Carruth8615cd22012-09-14 10:26:38 +00003682 // A set of deleted alloca instruction pointers which should be removed from
3683 // the list of promotable allocas.
3684 SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3685
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003686 do {
3687 while (!Worklist.empty()) {
3688 Changed |= runOnAlloca(*Worklist.pop_back_val());
3689 deleteDeadInstructions(DeletedAllocas);
Chandler Carruth5c5b3cf2012-10-02 22:46:45 +00003690
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003691 // Remove the deleted allocas from various lists so that we don't try to
3692 // continue processing them.
3693 if (!DeletedAllocas.empty()) {
3694 Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3695 PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3696 PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3697 PromotableAllocas.end(),
3698 IsAllocaInSet(DeletedAllocas)),
3699 PromotableAllocas.end());
3700 DeletedAllocas.clear();
3701 }
Chandler Carruth713aa942012-09-14 09:22:59 +00003702 }
Chandler Carruth713aa942012-09-14 09:22:59 +00003703
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003704 Changed |= promoteAllocas(F);
3705
3706 Worklist = PostPromotionWorklist;
3707 PostPromotionWorklist.clear();
3708 } while (!Worklist.empty());
Chandler Carruth713aa942012-09-14 09:22:59 +00003709
3710 return Changed;
3711}
3712
3713void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth1c8db502012-09-15 11:43:14 +00003714 if (RequiresDomTree)
3715 AU.addRequired<DominatorTree>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003716 AU.setPreservesCFG();
3717}