blob: f648560e487442724959db81f4d065f1f26947f1 [file] [log] [blame]
Dan Gohman2d1be872009-04-16 03:18:22 +00001//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
Nate Begemaneaa13852004-10-18 21:08:22 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
Nate Begemaneaa13852004-10-18 21:08:22 +00008//===----------------------------------------------------------------------===//
9//
Dan Gohmancec8f9d2009-05-19 20:37:36 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
Nate Begemaneaa13852004-10-18 21:08:22 +000014// This pass performs a strength reduction on array references inside loops that
Dan Gohmancec8f9d2009-05-19 20:37:36 +000015// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
Nate Begemaneaa13852004-10-18 21:08:22 +000019//
Dan Gohman572645c2010-02-12 10:34:29 +000020// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24// %i = phi [ 0, %entry ], [ %i.next, %latch ]
25// ...
26// %i.next = add %i, 1
27// %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41// instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44// smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47// multiple base registers, or as the increment expression in an addrec),
48// we may not actually need both reg and (-1 * reg) in registers; the
49// negation can be implemented by using a sub instead of an add. The
50// lack of support for taking this into consideration when making
51// register pressure decisions is partly worked around by the "Special"
52// use kind.
53//
Nate Begemaneaa13852004-10-18 21:08:22 +000054//===----------------------------------------------------------------------===//
55
Chris Lattnerbe3e5212005-08-03 23:30:08 +000056#define DEBUG_TYPE "loop-reduce"
Nate Begemaneaa13852004-10-18 21:08:22 +000057#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
Dan Gohmane5b01be2007-05-04 14:59:09 +000060#include "llvm/IntrinsicInst.h"
Jeff Cohen2f3c9b72005-03-04 04:04:26 +000061#include "llvm/DerivedTypes.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000062#include "llvm/Analysis/IVUsers.h"
Dan Gohman572645c2010-02-12 10:34:29 +000063#include "llvm/Analysis/Dominators.h"
Devang Patel0f54dcb2007-03-06 21:14:09 +000064#include "llvm/Analysis/LoopPass.h"
Nate Begeman16997482005-07-30 00:15:07 +000065#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chris Lattnere0391be2005-08-12 22:06:11 +000066#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Nate Begemaneaa13852004-10-18 21:08:22 +000067#include "llvm/Transforms/Utils/Local.h"
Dan Gohman572645c2010-02-12 10:34:29 +000068#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
Nate Begeman16997482005-07-30 00:15:07 +000071#include "llvm/Support/Debug.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000072#include "llvm/Support/ValueHandle.h"
Daniel Dunbar460f6562009-07-26 09:48:23 +000073#include "llvm/Support/raw_ostream.h"
Evan Chengd277f2c2006-03-13 23:14:23 +000074#include "llvm/Target/TargetLowering.h"
Jeff Cohencfb1d422005-07-30 18:22:27 +000075#include <algorithm>
Nate Begemaneaa13852004-10-18 21:08:22 +000076using namespace llvm;
77
Dan Gohman572645c2010-02-12 10:34:29 +000078namespace {
Nate Begemaneaa13852004-10-18 21:08:22 +000079
Dan Gohman572645c2010-02-12 10:34:29 +000080/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83 /// UsedByIndices - This represents the set of LSRUse indices which reference
84 /// a particular register.
85 SmallBitVector UsedByIndices;
86
87 RegSortData() {}
88
89 void print(raw_ostream &OS) const;
90 void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96 OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100 print(errs()); errs() << '\n';
101}
Dan Gohmanc17e0cf2009-02-20 04:17:46 +0000102
Chris Lattner0e5f4992006-12-19 21:40:18 +0000103namespace {
Dale Johannesendc42f482007-03-20 00:47:50 +0000104
Dan Gohman572645c2010-02-12 10:34:29 +0000105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
Dale Johannesendc42f482007-03-20 00:47:50 +0000109
Dan Gohman90bb3552010-05-18 22:33:00 +0000110 RegUsesTy RegUsesMap;
Dan Gohman572645c2010-02-12 10:34:29 +0000111 SmallVector<const SCEV *, 16> RegSequence;
Evan Chengd1d6b5c2006-03-16 21:53:05 +0000112
Dan Gohman572645c2010-02-12 10:34:29 +0000113public:
114 void CountRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000115 void DropRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmana2086b32010-05-19 23:43:12 +0000116 void DropUse(size_t LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000117
Dan Gohman572645c2010-02-12 10:34:29 +0000118 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000119
Dan Gohman572645c2010-02-12 10:34:29 +0000120 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000121
Dan Gohman572645c2010-02-12 10:34:29 +0000122 void clear();
Dan Gohmana10756e2010-01-21 02:09:26 +0000123
Dan Gohman572645c2010-02-12 10:34:29 +0000124 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
125 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
126 iterator begin() { return RegSequence.begin(); }
127 iterator end() { return RegSequence.end(); }
128 const_iterator begin() const { return RegSequence.begin(); }
129 const_iterator end() const { return RegSequence.end(); }
130};
Dan Gohmana10756e2010-01-21 02:09:26 +0000131
Dan Gohmana10756e2010-01-21 02:09:26 +0000132}
133
Dan Gohman572645c2010-02-12 10:34:29 +0000134void
135RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
136 std::pair<RegUsesTy::iterator, bool> Pair =
Dan Gohman90bb3552010-05-18 22:33:00 +0000137 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
Dan Gohman572645c2010-02-12 10:34:29 +0000138 RegSortData &RSD = Pair.first->second;
139 if (Pair.second)
140 RegSequence.push_back(Reg);
141 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
142 RSD.UsedByIndices.set(LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000143}
144
Dan Gohmanb2df4332010-05-18 23:42:37 +0000145void
146RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
147 RegUsesTy::iterator It = RegUsesMap.find(Reg);
148 assert(It != RegUsesMap.end());
149 RegSortData &RSD = It->second;
150 assert(RSD.UsedByIndices.size() > LUIdx);
151 RSD.UsedByIndices.reset(LUIdx);
152}
153
Dan Gohmana2086b32010-05-19 23:43:12 +0000154void
155RegUseTracker::DropUse(size_t LUIdx) {
156 // Remove the use index from every register's use list.
157 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
158 I != E; ++I)
159 I->second.UsedByIndices.reset(LUIdx);
160}
161
Dan Gohman572645c2010-02-12 10:34:29 +0000162bool
163RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000164 if (!RegUsesMap.count(Reg)) return false;
Dan Gohman572645c2010-02-12 10:34:29 +0000165 const SmallBitVector &UsedByIndices =
Dan Gohman90bb3552010-05-18 22:33:00 +0000166 RegUsesMap.find(Reg)->second.UsedByIndices;
Dan Gohman572645c2010-02-12 10:34:29 +0000167 int i = UsedByIndices.find_first();
168 if (i == -1) return false;
169 if ((size_t)i != LUIdx) return true;
170 return UsedByIndices.find_next(i) != -1;
171}
Dan Gohmana10756e2010-01-21 02:09:26 +0000172
Dan Gohman572645c2010-02-12 10:34:29 +0000173const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000174 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
175 assert(I != RegUsesMap.end() && "Unknown register!");
Dan Gohman572645c2010-02-12 10:34:29 +0000176 return I->second.UsedByIndices;
177}
Dan Gohmana10756e2010-01-21 02:09:26 +0000178
Dan Gohman572645c2010-02-12 10:34:29 +0000179void RegUseTracker::clear() {
Dan Gohman90bb3552010-05-18 22:33:00 +0000180 RegUsesMap.clear();
Dan Gohman572645c2010-02-12 10:34:29 +0000181 RegSequence.clear();
182}
Dan Gohmana10756e2010-01-21 02:09:26 +0000183
Dan Gohman572645c2010-02-12 10:34:29 +0000184namespace {
185
186/// Formula - This class holds information that describes a formula for
187/// computing satisfying a use. It may include broken-out immediates and scaled
188/// registers.
189struct Formula {
190 /// AM - This is used to represent complex addressing, as well as other kinds
191 /// of interesting uses.
192 TargetLowering::AddrMode AM;
193
194 /// BaseRegs - The list of "base" registers for this use. When this is
195 /// non-empty, AM.HasBaseReg should be set to true.
196 SmallVector<const SCEV *, 2> BaseRegs;
197
198 /// ScaledReg - The 'scaled' register for this use. This should be non-null
199 /// when AM.Scale is not zero.
200 const SCEV *ScaledReg;
201
202 Formula() : ScaledReg(0) {}
203
204 void InitialMatch(const SCEV *S, Loop *L,
205 ScalarEvolution &SE, DominatorTree &DT);
206
207 unsigned getNumRegs() const;
208 const Type *getType() const;
209
Dan Gohman5ce6d052010-05-20 15:17:54 +0000210 void DeleteBaseReg(const SCEV *&S);
211
Dan Gohman572645c2010-02-12 10:34:29 +0000212 bool referencesReg(const SCEV *S) const;
213 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
214 const RegUseTracker &RegUses) const;
215
216 void print(raw_ostream &OS) const;
217 void dump() const;
218};
219
220}
221
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000222/// DoInitialMatch - Recursion helper for InitialMatch.
Dan Gohman572645c2010-02-12 10:34:29 +0000223static void DoInitialMatch(const SCEV *S, Loop *L,
224 SmallVectorImpl<const SCEV *> &Good,
225 SmallVectorImpl<const SCEV *> &Bad,
226 ScalarEvolution &SE, DominatorTree &DT) {
227 // Collect expressions which properly dominate the loop header.
228 if (S->properlyDominates(L->getHeader(), &DT)) {
229 Good.push_back(S);
230 return;
Dan Gohmana10756e2010-01-21 02:09:26 +0000231 }
Dan Gohman572645c2010-02-12 10:34:29 +0000232
233 // Look at add operands.
234 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
235 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
236 I != E; ++I)
237 DoInitialMatch(*I, L, Good, Bad, SE, DT);
238 return;
239 }
240
241 // Look at addrec operands.
242 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
243 if (!AR->getStart()->isZero()) {
244 DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
Dan Gohmandeff6212010-05-03 22:09:21 +0000245 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +0000246 AR->getStepRecurrence(SE),
247 AR->getLoop()),
248 L, Good, Bad, SE, DT);
249 return;
250 }
251
252 // Handle a multiplication by -1 (negation) if it didn't fold.
253 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
254 if (Mul->getOperand(0)->isAllOnesValue()) {
255 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
256 const SCEV *NewMul = SE.getMulExpr(Ops);
257
258 SmallVector<const SCEV *, 4> MyGood;
259 SmallVector<const SCEV *, 4> MyBad;
260 DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
261 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
262 SE.getEffectiveSCEVType(NewMul->getType())));
263 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
264 E = MyGood.end(); I != E; ++I)
265 Good.push_back(SE.getMulExpr(NegOne, *I));
266 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
267 E = MyBad.end(); I != E; ++I)
268 Bad.push_back(SE.getMulExpr(NegOne, *I));
269 return;
270 }
271
272 // Ok, we can't do anything interesting. Just stuff the whole thing into a
273 // register and hope for the best.
274 Bad.push_back(S);
275}
276
277/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
278/// attempting to keep all loop-invariant and loop-computable values in a
279/// single base register.
280void Formula::InitialMatch(const SCEV *S, Loop *L,
281 ScalarEvolution &SE, DominatorTree &DT) {
282 SmallVector<const SCEV *, 4> Good;
283 SmallVector<const SCEV *, 4> Bad;
284 DoInitialMatch(S, L, Good, Bad, SE, DT);
285 if (!Good.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000286 const SCEV *Sum = SE.getAddExpr(Good);
287 if (!Sum->isZero())
288 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000289 AM.HasBaseReg = true;
290 }
291 if (!Bad.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000292 const SCEV *Sum = SE.getAddExpr(Bad);
293 if (!Sum->isZero())
294 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000295 AM.HasBaseReg = true;
296 }
297}
298
299/// getNumRegs - Return the total number of register operands used by this
300/// formula. This does not include register uses implied by non-constant
301/// addrec strides.
302unsigned Formula::getNumRegs() const {
303 return !!ScaledReg + BaseRegs.size();
304}
305
306/// getType - Return the type of this formula, if it has one, or null
307/// otherwise. This type is meaningless except for the bit size.
308const Type *Formula::getType() const {
309 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
310 ScaledReg ? ScaledReg->getType() :
311 AM.BaseGV ? AM.BaseGV->getType() :
312 0;
313}
314
Dan Gohman5ce6d052010-05-20 15:17:54 +0000315/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
316void Formula::DeleteBaseReg(const SCEV *&S) {
317 if (&S != &BaseRegs.back())
318 std::swap(S, BaseRegs.back());
319 BaseRegs.pop_back();
320}
321
Dan Gohman572645c2010-02-12 10:34:29 +0000322/// referencesReg - Test if this formula references the given register.
323bool Formula::referencesReg(const SCEV *S) const {
324 return S == ScaledReg ||
325 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
326}
327
328/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
329/// which are used by uses other than the use with the given index.
330bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
331 const RegUseTracker &RegUses) const {
332 if (ScaledReg)
333 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
334 return true;
335 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
336 E = BaseRegs.end(); I != E; ++I)
337 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
338 return true;
339 return false;
340}
341
342void Formula::print(raw_ostream &OS) const {
343 bool First = true;
344 if (AM.BaseGV) {
345 if (!First) OS << " + "; else First = false;
346 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
347 }
348 if (AM.BaseOffs != 0) {
349 if (!First) OS << " + "; else First = false;
350 OS << AM.BaseOffs;
351 }
352 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
353 E = BaseRegs.end(); I != E; ++I) {
354 if (!First) OS << " + "; else First = false;
355 OS << "reg(" << **I << ')';
356 }
Dan Gohmanc4cfbaf2010-05-18 22:35:55 +0000357 if (AM.HasBaseReg && BaseRegs.empty()) {
358 if (!First) OS << " + "; else First = false;
359 OS << "**error: HasBaseReg**";
360 } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
361 if (!First) OS << " + "; else First = false;
362 OS << "**error: !HasBaseReg**";
363 }
Dan Gohman572645c2010-02-12 10:34:29 +0000364 if (AM.Scale != 0) {
365 if (!First) OS << " + "; else First = false;
366 OS << AM.Scale << "*reg(";
367 if (ScaledReg)
368 OS << *ScaledReg;
369 else
370 OS << "<unknown>";
371 OS << ')';
372 }
373}
374
375void Formula::dump() const {
376 print(errs()); errs() << '\n';
377}
378
Dan Gohmanaae01f12010-02-19 19:32:49 +0000379/// isAddRecSExtable - Return true if the given addrec can be sign-extended
380/// without changing its value.
381static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
382 const Type *WideTy =
383 IntegerType::get(SE.getContext(),
384 SE.getTypeSizeInBits(AR->getType()) + 1);
385 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
386}
387
388/// isAddSExtable - Return true if the given add can be sign-extended
389/// without changing its value.
390static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
391 const Type *WideTy =
392 IntegerType::get(SE.getContext(),
393 SE.getTypeSizeInBits(A->getType()) + 1);
394 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
395}
396
397/// isMulSExtable - Return true if the given add can be sign-extended
398/// without changing its value.
399static bool isMulSExtable(const SCEVMulExpr *A, ScalarEvolution &SE) {
400 const Type *WideTy =
401 IntegerType::get(SE.getContext(),
402 SE.getTypeSizeInBits(A->getType()) + 1);
403 return isa<SCEVMulExpr>(SE.getSignExtendExpr(A, WideTy));
404}
405
Dan Gohmanf09b7122010-02-19 19:35:48 +0000406/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
407/// and if the remainder is known to be zero, or null otherwise. If
408/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
409/// to Y, ignoring that the multiplication may overflow, which is useful when
410/// the result will be used in a context where the most significant bits are
411/// ignored.
412static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
413 ScalarEvolution &SE,
414 bool IgnoreSignificantBits = false) {
Dan Gohman572645c2010-02-12 10:34:29 +0000415 // Handle the trivial case, which works for any SCEV type.
416 if (LHS == RHS)
Dan Gohmandeff6212010-05-03 22:09:21 +0000417 return SE.getConstant(LHS->getType(), 1);
Dan Gohman572645c2010-02-12 10:34:29 +0000418
419 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
420 // folding.
421 if (RHS->isAllOnesValue())
422 return SE.getMulExpr(LHS, RHS);
423
424 // Check for a division of a constant by a constant.
425 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
426 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
427 if (!RC)
428 return 0;
429 if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
430 return 0;
431 return SE.getConstant(C->getValue()->getValue()
432 .sdiv(RC->getValue()->getValue()));
433 }
434
Dan Gohmanaae01f12010-02-19 19:32:49 +0000435 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000436 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000437 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000438 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
439 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000440 if (!Start) return 0;
Dan Gohmanf09b7122010-02-19 19:35:48 +0000441 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
442 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000443 if (!Step) return 0;
444 return SE.getAddRecExpr(Start, Step, AR->getLoop());
445 }
Dan Gohman572645c2010-02-12 10:34:29 +0000446 }
447
Dan Gohmanaae01f12010-02-19 19:32:49 +0000448 // Distribute the sdiv over add operands, if the add doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000449 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000450 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
451 SmallVector<const SCEV *, 8> Ops;
452 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
453 I != E; ++I) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000454 const SCEV *Op = getExactSDiv(*I, RHS, SE,
455 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000456 if (!Op) return 0;
457 Ops.push_back(Op);
458 }
459 return SE.getAddExpr(Ops);
Dan Gohman572645c2010-02-12 10:34:29 +0000460 }
Dan Gohman572645c2010-02-12 10:34:29 +0000461 }
462
463 // Check for a multiply operand that we can pull RHS out of.
464 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
Dan Gohmanaae01f12010-02-19 19:32:49 +0000465 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000466 SmallVector<const SCEV *, 4> Ops;
467 bool Found = false;
468 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
469 I != E; ++I) {
Dan Gohman47667442010-05-20 16:23:28 +0000470 const SCEV *S = *I;
Dan Gohman572645c2010-02-12 10:34:29 +0000471 if (!Found)
Dan Gohman47667442010-05-20 16:23:28 +0000472 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
Dan Gohmanf09b7122010-02-19 19:35:48 +0000473 IgnoreSignificantBits)) {
Dan Gohman47667442010-05-20 16:23:28 +0000474 S = Q;
Dan Gohman572645c2010-02-12 10:34:29 +0000475 Found = true;
Dan Gohman572645c2010-02-12 10:34:29 +0000476 }
Dan Gohman47667442010-05-20 16:23:28 +0000477 Ops.push_back(S);
Dan Gohman572645c2010-02-12 10:34:29 +0000478 }
479 return Found ? SE.getMulExpr(Ops) : 0;
480 }
481
482 // Otherwise we don't know.
483 return 0;
484}
485
486/// ExtractImmediate - If S involves the addition of a constant integer value,
487/// return that integer value, and mutate S to point to a new SCEV with that
488/// value excluded.
489static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
490 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
491 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000492 S = SE.getConstant(C->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000493 return C->getValue()->getSExtValue();
494 }
495 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
496 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
497 int64_t Result = ExtractImmediate(NewOps.front(), SE);
498 S = SE.getAddExpr(NewOps);
499 return Result;
500 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
501 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
502 int64_t Result = ExtractImmediate(NewOps.front(), SE);
503 S = SE.getAddRecExpr(NewOps, AR->getLoop());
504 return Result;
505 }
506 return 0;
507}
508
509/// ExtractSymbol - If S involves the addition of a GlobalValue address,
510/// return that symbol, and mutate S to point to a new SCEV with that
511/// value excluded.
512static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
513 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
514 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000515 S = SE.getConstant(GV->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000516 return GV;
517 }
518 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
519 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
520 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
521 S = SE.getAddExpr(NewOps);
522 return Result;
523 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
524 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
525 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
526 S = SE.getAddRecExpr(NewOps, AR->getLoop());
527 return Result;
528 }
529 return 0;
Nate Begemaneaa13852004-10-18 21:08:22 +0000530}
531
Dan Gohmanf284ce22009-02-18 00:08:39 +0000532/// isAddressUse - Returns true if the specified instruction is using the
Dale Johannesen203af582008-12-05 21:47:27 +0000533/// specified value as an address.
534static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
535 bool isAddress = isa<LoadInst>(Inst);
536 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
537 if (SI->getOperand(1) == OperandVal)
538 isAddress = true;
539 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
540 // Addressing modes can also be folded into prefetches and a variety
541 // of intrinsics.
542 switch (II->getIntrinsicID()) {
543 default: break;
544 case Intrinsic::prefetch:
545 case Intrinsic::x86_sse2_loadu_dq:
546 case Intrinsic::x86_sse2_loadu_pd:
547 case Intrinsic::x86_sse_loadu_ps:
548 case Intrinsic::x86_sse_storeu_ps:
549 case Intrinsic::x86_sse2_storeu_pd:
550 case Intrinsic::x86_sse2_storeu_dq:
551 case Intrinsic::x86_sse2_storel_dq:
552 if (II->getOperand(1) == OperandVal)
553 isAddress = true;
554 break;
555 }
556 }
557 return isAddress;
558}
Chris Lattner0ae33eb2005-10-03 01:04:44 +0000559
Dan Gohman21e77222009-03-09 21:01:17 +0000560/// getAccessType - Return the type of the memory being accessed.
561static const Type *getAccessType(const Instruction *Inst) {
Dan Gohmana537bf82009-05-18 16:45:28 +0000562 const Type *AccessTy = Inst->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000563 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
Dan Gohmana537bf82009-05-18 16:45:28 +0000564 AccessTy = SI->getOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000565 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
566 // Addressing modes can also be folded into prefetches and a variety
567 // of intrinsics.
568 switch (II->getIntrinsicID()) {
569 default: break;
570 case Intrinsic::x86_sse_storeu_ps:
571 case Intrinsic::x86_sse2_storeu_pd:
572 case Intrinsic::x86_sse2_storeu_dq:
573 case Intrinsic::x86_sse2_storel_dq:
Dan Gohmana537bf82009-05-18 16:45:28 +0000574 AccessTy = II->getOperand(1)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000575 break;
576 }
577 }
Dan Gohman572645c2010-02-12 10:34:29 +0000578
579 // All pointers have the same requirements, so canonicalize them to an
580 // arbitrary pointer type to minimize variation.
581 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
582 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
583 PTy->getAddressSpace());
584
Dan Gohmana537bf82009-05-18 16:45:28 +0000585 return AccessTy;
Dan Gohman21e77222009-03-09 21:01:17 +0000586}
587
Dan Gohman572645c2010-02-12 10:34:29 +0000588/// DeleteTriviallyDeadInstructions - If any of the instructions is the
589/// specified set are trivially dead, delete them and see if this makes any of
590/// their operands subsequently dead.
591static bool
592DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
593 bool Changed = false;
594
595 while (!DeadInsts.empty()) {
596 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
597
598 if (I == 0 || !isInstructionTriviallyDead(I))
599 continue;
600
601 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
602 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
603 *OI = 0;
604 if (U->use_empty())
605 DeadInsts.push_back(U);
606 }
607
608 I->eraseFromParent();
609 Changed = true;
610 }
611
612 return Changed;
613}
614
Dan Gohman7979b722010-01-22 00:46:49 +0000615namespace {
Jim Grosbach56a1f802009-11-17 17:53:56 +0000616
Dan Gohman572645c2010-02-12 10:34:29 +0000617/// Cost - This class is used to measure and compare candidate formulae.
618class Cost {
619 /// TODO: Some of these could be merged. Also, a lexical ordering
620 /// isn't always optimal.
621 unsigned NumRegs;
622 unsigned AddRecCost;
623 unsigned NumIVMuls;
624 unsigned NumBaseAdds;
625 unsigned ImmCost;
626 unsigned SetupCost;
Nate Begeman16997482005-07-30 00:15:07 +0000627
Dan Gohman572645c2010-02-12 10:34:29 +0000628public:
629 Cost()
630 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
631 SetupCost(0) {}
Jim Grosbach56a1f802009-11-17 17:53:56 +0000632
Dan Gohman572645c2010-02-12 10:34:29 +0000633 unsigned getNumRegs() const { return NumRegs; }
Dan Gohman7979b722010-01-22 00:46:49 +0000634
Dan Gohman572645c2010-02-12 10:34:29 +0000635 bool operator<(const Cost &Other) const;
Dan Gohman7979b722010-01-22 00:46:49 +0000636
Dan Gohman572645c2010-02-12 10:34:29 +0000637 void Loose();
Dan Gohman7979b722010-01-22 00:46:49 +0000638
Dan Gohman572645c2010-02-12 10:34:29 +0000639 void RateFormula(const Formula &F,
640 SmallPtrSet<const SCEV *, 16> &Regs,
641 const DenseSet<const SCEV *> &VisitedRegs,
642 const Loop *L,
643 const SmallVectorImpl<int64_t> &Offsets,
644 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman7979b722010-01-22 00:46:49 +0000645
Dan Gohman572645c2010-02-12 10:34:29 +0000646 void print(raw_ostream &OS) const;
647 void dump() const;
Dan Gohman7979b722010-01-22 00:46:49 +0000648
Dan Gohman572645c2010-02-12 10:34:29 +0000649private:
650 void RateRegister(const SCEV *Reg,
651 SmallPtrSet<const SCEV *, 16> &Regs,
652 const Loop *L,
653 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman9214b822010-02-13 02:06:02 +0000654 void RatePrimaryRegister(const SCEV *Reg,
655 SmallPtrSet<const SCEV *, 16> &Regs,
656 const Loop *L,
657 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000658};
659
660}
661
662/// RateRegister - Tally up interesting quantities from the given register.
663void Cost::RateRegister(const SCEV *Reg,
664 SmallPtrSet<const SCEV *, 16> &Regs,
665 const Loop *L,
666 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000667 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
668 if (AR->getLoop() == L)
669 AddRecCost += 1; /// TODO: This should be a function of the stride.
Dan Gohman572645c2010-02-12 10:34:29 +0000670
Dan Gohman9214b822010-02-13 02:06:02 +0000671 // If this is an addrec for a loop that's already been visited by LSR,
672 // don't second-guess its addrec phi nodes. LSR isn't currently smart
673 // enough to reason about more than one loop at a time. Consider these
674 // registers free and leave them alone.
675 else if (L->contains(AR->getLoop()) ||
676 (!AR->getLoop()->contains(L) &&
677 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
678 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
679 PHINode *PN = dyn_cast<PHINode>(I); ++I)
680 if (SE.isSCEVable(PN->getType()) &&
681 (SE.getEffectiveSCEVType(PN->getType()) ==
682 SE.getEffectiveSCEVType(AR->getType())) &&
683 SE.getSCEV(PN) == AR)
684 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000685
Dan Gohman9214b822010-02-13 02:06:02 +0000686 // If this isn't one of the addrecs that the loop already has, it
687 // would require a costly new phi and add. TODO: This isn't
688 // precisely modeled right now.
689 ++NumBaseAdds;
690 if (!Regs.count(AR->getStart()))
Dan Gohman572645c2010-02-12 10:34:29 +0000691 RateRegister(AR->getStart(), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000692 }
Dan Gohman572645c2010-02-12 10:34:29 +0000693
Dan Gohman9214b822010-02-13 02:06:02 +0000694 // Add the step value register, if it needs one.
695 // TODO: The non-affine case isn't precisely modeled here.
696 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
697 if (!Regs.count(AR->getStart()))
698 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000699 }
Dan Gohman9214b822010-02-13 02:06:02 +0000700 ++NumRegs;
701
702 // Rough heuristic; favor registers which don't require extra setup
703 // instructions in the preheader.
704 if (!isa<SCEVUnknown>(Reg) &&
705 !isa<SCEVConstant>(Reg) &&
706 !(isa<SCEVAddRecExpr>(Reg) &&
707 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
708 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
709 ++SetupCost;
710}
711
712/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
713/// before, rate it.
714void Cost::RatePrimaryRegister(const SCEV *Reg,
Dan Gohman7fca2292010-02-16 19:42:34 +0000715 SmallPtrSet<const SCEV *, 16> &Regs,
716 const Loop *L,
717 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000718 if (Regs.insert(Reg))
719 RateRegister(Reg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000720}
721
722void Cost::RateFormula(const Formula &F,
723 SmallPtrSet<const SCEV *, 16> &Regs,
724 const DenseSet<const SCEV *> &VisitedRegs,
725 const Loop *L,
726 const SmallVectorImpl<int64_t> &Offsets,
727 ScalarEvolution &SE, DominatorTree &DT) {
728 // Tally up the registers.
729 if (const SCEV *ScaledReg = F.ScaledReg) {
730 if (VisitedRegs.count(ScaledReg)) {
731 Loose();
732 return;
733 }
Dan Gohman9214b822010-02-13 02:06:02 +0000734 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000735 }
736 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
737 E = F.BaseRegs.end(); I != E; ++I) {
738 const SCEV *BaseReg = *I;
739 if (VisitedRegs.count(BaseReg)) {
740 Loose();
741 return;
742 }
Dan Gohman9214b822010-02-13 02:06:02 +0000743 RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000744
745 NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
746 BaseReg->hasComputableLoopEvolution(L);
747 }
748
749 if (F.BaseRegs.size() > 1)
750 NumBaseAdds += F.BaseRegs.size() - 1;
751
752 // Tally up the non-zero immediates.
753 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
754 E = Offsets.end(); I != E; ++I) {
755 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
756 if (F.AM.BaseGV)
757 ImmCost += 64; // Handle symbolic values conservatively.
758 // TODO: This should probably be the pointer size.
759 else if (Offset != 0)
760 ImmCost += APInt(64, Offset, true).getMinSignedBits();
761 }
762}
763
764/// Loose - Set this cost to a loosing value.
765void Cost::Loose() {
766 NumRegs = ~0u;
767 AddRecCost = ~0u;
768 NumIVMuls = ~0u;
769 NumBaseAdds = ~0u;
770 ImmCost = ~0u;
771 SetupCost = ~0u;
772}
773
774/// operator< - Choose the lower cost.
775bool Cost::operator<(const Cost &Other) const {
776 if (NumRegs != Other.NumRegs)
777 return NumRegs < Other.NumRegs;
778 if (AddRecCost != Other.AddRecCost)
779 return AddRecCost < Other.AddRecCost;
780 if (NumIVMuls != Other.NumIVMuls)
781 return NumIVMuls < Other.NumIVMuls;
782 if (NumBaseAdds != Other.NumBaseAdds)
783 return NumBaseAdds < Other.NumBaseAdds;
784 if (ImmCost != Other.ImmCost)
785 return ImmCost < Other.ImmCost;
786 if (SetupCost != Other.SetupCost)
787 return SetupCost < Other.SetupCost;
788 return false;
789}
790
791void Cost::print(raw_ostream &OS) const {
792 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
793 if (AddRecCost != 0)
794 OS << ", with addrec cost " << AddRecCost;
795 if (NumIVMuls != 0)
796 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
797 if (NumBaseAdds != 0)
798 OS << ", plus " << NumBaseAdds << " base add"
799 << (NumBaseAdds == 1 ? "" : "s");
800 if (ImmCost != 0)
801 OS << ", plus " << ImmCost << " imm cost";
802 if (SetupCost != 0)
803 OS << ", plus " << SetupCost << " setup cost";
804}
805
806void Cost::dump() const {
807 print(errs()); errs() << '\n';
808}
809
810namespace {
811
812/// LSRFixup - An operand value in an instruction which is to be replaced
813/// with some equivalent, possibly strength-reduced, replacement.
814struct LSRFixup {
815 /// UserInst - The instruction which will be updated.
816 Instruction *UserInst;
817
818 /// OperandValToReplace - The operand of the instruction which will
819 /// be replaced. The operand may be used more than once; every instance
820 /// will be replaced.
821 Value *OperandValToReplace;
822
Dan Gohman448db1c2010-04-07 22:27:08 +0000823 /// PostIncLoops - If this user is to use the post-incremented value of an
Dan Gohman572645c2010-02-12 10:34:29 +0000824 /// induction variable, this variable is non-null and holds the loop
825 /// associated with the induction variable.
Dan Gohman448db1c2010-04-07 22:27:08 +0000826 PostIncLoopSet PostIncLoops;
Dan Gohman572645c2010-02-12 10:34:29 +0000827
828 /// LUIdx - The index of the LSRUse describing the expression which
829 /// this fixup needs, minus an offset (below).
830 size_t LUIdx;
831
832 /// Offset - A constant offset to be added to the LSRUse expression.
833 /// This allows multiple fixups to share the same LSRUse with different
834 /// offsets, for example in an unrolled loop.
835 int64_t Offset;
836
Dan Gohman448db1c2010-04-07 22:27:08 +0000837 bool isUseFullyOutsideLoop(const Loop *L) const;
838
Dan Gohman572645c2010-02-12 10:34:29 +0000839 LSRFixup();
840
841 void print(raw_ostream &OS) const;
842 void dump() const;
843};
844
845}
846
847LSRFixup::LSRFixup()
Dan Gohman448db1c2010-04-07 22:27:08 +0000848 : UserInst(0), OperandValToReplace(0),
Dan Gohman572645c2010-02-12 10:34:29 +0000849 LUIdx(~size_t(0)), Offset(0) {}
850
Dan Gohman448db1c2010-04-07 22:27:08 +0000851/// isUseFullyOutsideLoop - Test whether this fixup always uses its
852/// value outside of the given loop.
853bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
854 // PHI nodes use their value in their incoming blocks.
855 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
856 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
857 if (PN->getIncomingValue(i) == OperandValToReplace &&
858 L->contains(PN->getIncomingBlock(i)))
859 return false;
860 return true;
861 }
862
863 return !L->contains(UserInst);
864}
865
Dan Gohman572645c2010-02-12 10:34:29 +0000866void LSRFixup::print(raw_ostream &OS) const {
867 OS << "UserInst=";
868 // Store is common and interesting enough to be worth special-casing.
869 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
870 OS << "store ";
871 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
872 } else if (UserInst->getType()->isVoidTy())
873 OS << UserInst->getOpcodeName();
874 else
875 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
876
877 OS << ", OperandValToReplace=";
878 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
879
Dan Gohman448db1c2010-04-07 22:27:08 +0000880 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
881 E = PostIncLoops.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +0000882 OS << ", PostIncLoop=";
Dan Gohman448db1c2010-04-07 22:27:08 +0000883 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
Dan Gohman572645c2010-02-12 10:34:29 +0000884 }
885
886 if (LUIdx != ~size_t(0))
887 OS << ", LUIdx=" << LUIdx;
888
889 if (Offset != 0)
890 OS << ", Offset=" << Offset;
891}
892
893void LSRFixup::dump() const {
894 print(errs()); errs() << '\n';
895}
896
897namespace {
898
899/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
900/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
901struct UniquifierDenseMapInfo {
902 static SmallVector<const SCEV *, 2> getEmptyKey() {
903 SmallVector<const SCEV *, 2> V;
904 V.push_back(reinterpret_cast<const SCEV *>(-1));
905 return V;
906 }
907
908 static SmallVector<const SCEV *, 2> getTombstoneKey() {
909 SmallVector<const SCEV *, 2> V;
910 V.push_back(reinterpret_cast<const SCEV *>(-2));
911 return V;
912 }
913
914 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
915 unsigned Result = 0;
916 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
917 E = V.end(); I != E; ++I)
918 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
919 return Result;
920 }
921
922 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
923 const SmallVector<const SCEV *, 2> &RHS) {
924 return LHS == RHS;
925 }
926};
927
928/// LSRUse - This class holds the state that LSR keeps for each use in
929/// IVUsers, as well as uses invented by LSR itself. It includes information
930/// about what kinds of things can be folded into the user, information about
931/// the user itself, and information about how the use may be satisfied.
932/// TODO: Represent multiple users of the same expression in common?
933class LSRUse {
934 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
935
936public:
937 /// KindType - An enum for a kind of use, indicating what types of
938 /// scaled and immediate operands it might support.
939 enum KindType {
940 Basic, ///< A normal use, with no folding.
941 Special, ///< A special case of basic, allowing -1 scales.
942 Address, ///< An address use; folding according to TargetLowering
943 ICmpZero ///< An equality icmp with both operands folded into one.
944 // TODO: Add a generic icmp too?
Dan Gohman7979b722010-01-22 00:46:49 +0000945 };
Dan Gohman572645c2010-02-12 10:34:29 +0000946
947 KindType Kind;
948 const Type *AccessTy;
949
950 SmallVector<int64_t, 8> Offsets;
951 int64_t MinOffset;
952 int64_t MaxOffset;
953
954 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
955 /// LSRUse are outside of the loop, in which case some special-case heuristics
956 /// may be used.
957 bool AllFixupsOutsideLoop;
958
959 /// Formulae - A list of ways to build a value that can satisfy this user.
960 /// After the list is populated, one of these is selected heuristically and
961 /// used to formulate a replacement for OperandValToReplace in UserInst.
962 SmallVector<Formula, 12> Formulae;
963
964 /// Regs - The set of register candidates used by all formulae in this LSRUse.
965 SmallPtrSet<const SCEV *, 4> Regs;
966
967 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
968 MinOffset(INT64_MAX),
969 MaxOffset(INT64_MIN),
970 AllFixupsOutsideLoop(true) {}
971
Dan Gohmana2086b32010-05-19 23:43:12 +0000972 bool HasFormulaWithSameRegs(const Formula &F) const;
Dan Gohman454d26d2010-02-22 04:11:59 +0000973 bool InsertFormula(const Formula &F);
Dan Gohmand69d6282010-05-18 22:39:15 +0000974 void DeleteFormula(Formula &F);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000975 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
Dan Gohman572645c2010-02-12 10:34:29 +0000976
977 void check() const;
978
979 void print(raw_ostream &OS) const;
980 void dump() const;
981};
982
Dan Gohmana2086b32010-05-19 23:43:12 +0000983/// HasFormula - Test whether this use as a formula which has the same
984/// registers as the given formula.
985bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
986 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
987 if (F.ScaledReg) Key.push_back(F.ScaledReg);
988 // Unstable sort by host order ok, because this is only used for uniquifying.
989 std::sort(Key.begin(), Key.end());
990 return Uniquifier.count(Key);
991}
992
Dan Gohman572645c2010-02-12 10:34:29 +0000993/// InsertFormula - If the given formula has not yet been inserted, add it to
994/// the list, and return true. Return false otherwise.
Dan Gohman454d26d2010-02-22 04:11:59 +0000995bool LSRUse::InsertFormula(const Formula &F) {
Dan Gohman572645c2010-02-12 10:34:29 +0000996 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
997 if (F.ScaledReg) Key.push_back(F.ScaledReg);
998 // Unstable sort by host order ok, because this is only used for uniquifying.
999 std::sort(Key.begin(), Key.end());
1000
1001 if (!Uniquifier.insert(Key).second)
1002 return false;
1003
1004 // Using a register to hold the value of 0 is not profitable.
1005 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1006 "Zero allocated in a scaled register!");
1007#ifndef NDEBUG
1008 for (SmallVectorImpl<const SCEV *>::const_iterator I =
1009 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1010 assert(!(*I)->isZero() && "Zero allocated in a base register!");
1011#endif
1012
1013 // Add the formula to the list.
1014 Formulae.push_back(F);
1015
1016 // Record registers now being used by this use.
1017 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1018 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1019
1020 return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001021}
1022
Dan Gohmand69d6282010-05-18 22:39:15 +00001023/// DeleteFormula - Remove the given formula from this use's list.
1024void LSRUse::DeleteFormula(Formula &F) {
Dan Gohman5ce6d052010-05-20 15:17:54 +00001025 if (&F != &Formulae.back())
1026 std::swap(F, Formulae.back());
Dan Gohmand69d6282010-05-18 22:39:15 +00001027 Formulae.pop_back();
Dan Gohmana2086b32010-05-19 23:43:12 +00001028 assert(!Formulae.empty() && "LSRUse has no formulae left!");
Dan Gohmand69d6282010-05-18 22:39:15 +00001029}
1030
Dan Gohmanb2df4332010-05-18 23:42:37 +00001031/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1032void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1033 // Now that we've filtered out some formulae, recompute the Regs set.
1034 SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1035 Regs.clear();
1036 for (size_t FIdx = 0, NumForms = Formulae.size(); FIdx != NumForms; ++FIdx) {
1037 Formula &F = Formulae[FIdx];
1038 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1039 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1040 }
1041
1042 // Update the RegTracker.
1043 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1044 E = OldRegs.end(); I != E; ++I)
1045 if (!Regs.count(*I))
1046 RegUses.DropRegister(*I, LUIdx);
1047}
1048
Dan Gohman572645c2010-02-12 10:34:29 +00001049void LSRUse::print(raw_ostream &OS) const {
1050 OS << "LSR Use: Kind=";
1051 switch (Kind) {
1052 case Basic: OS << "Basic"; break;
1053 case Special: OS << "Special"; break;
1054 case ICmpZero: OS << "ICmpZero"; break;
1055 case Address:
1056 OS << "Address of ";
Duncan Sands1df98592010-02-16 11:11:14 +00001057 if (AccessTy->isPointerTy())
Dan Gohman572645c2010-02-12 10:34:29 +00001058 OS << "pointer"; // the full pointer type could be really verbose
1059 else
1060 OS << *AccessTy;
Evan Chengcdf43b12007-10-25 09:11:16 +00001061 }
1062
Dan Gohman572645c2010-02-12 10:34:29 +00001063 OS << ", Offsets={";
1064 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1065 E = Offsets.end(); I != E; ++I) {
1066 OS << *I;
1067 if (next(I) != E)
1068 OS << ',';
Dan Gohman7979b722010-01-22 00:46:49 +00001069 }
Dan Gohman572645c2010-02-12 10:34:29 +00001070 OS << '}';
Dan Gohman7979b722010-01-22 00:46:49 +00001071
Dan Gohman572645c2010-02-12 10:34:29 +00001072 if (AllFixupsOutsideLoop)
1073 OS << ", all-fixups-outside-loop";
Dan Gohman7979b722010-01-22 00:46:49 +00001074}
1075
Dan Gohman572645c2010-02-12 10:34:29 +00001076void LSRUse::dump() const {
1077 print(errs()); errs() << '\n';
1078}
Dan Gohman7979b722010-01-22 00:46:49 +00001079
Dan Gohman572645c2010-02-12 10:34:29 +00001080/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1081/// be completely folded into the user instruction at isel time. This includes
1082/// address-mode folding and special icmp tricks.
1083static bool isLegalUse(const TargetLowering::AddrMode &AM,
1084 LSRUse::KindType Kind, const Type *AccessTy,
1085 const TargetLowering *TLI) {
1086 switch (Kind) {
1087 case LSRUse::Address:
1088 // If we have low-level target information, ask the target if it can
1089 // completely fold this address.
1090 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1091
1092 // Otherwise, just guess that reg+reg addressing is legal.
1093 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1094
1095 case LSRUse::ICmpZero:
1096 // There's not even a target hook for querying whether it would be legal to
1097 // fold a GV into an ICmp.
1098 if (AM.BaseGV)
1099 return false;
1100
1101 // ICmp only has two operands; don't allow more than two non-trivial parts.
1102 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1103 return false;
1104
1105 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1106 // putting the scaled register in the other operand of the icmp.
1107 if (AM.Scale != 0 && AM.Scale != -1)
1108 return false;
1109
1110 // If we have low-level target information, ask the target if it can fold an
1111 // integer immediate on an icmp.
1112 if (AM.BaseOffs != 0) {
1113 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1114 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001115 }
Dan Gohman572645c2010-02-12 10:34:29 +00001116
1117 return true;
1118
1119 case LSRUse::Basic:
1120 // Only handle single-register values.
1121 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1122
1123 case LSRUse::Special:
1124 // Only handle -1 scales, or no scale.
1125 return AM.Scale == 0 || AM.Scale == -1;
Dan Gohman7979b722010-01-22 00:46:49 +00001126 }
1127
Dan Gohman7979b722010-01-22 00:46:49 +00001128 return false;
1129}
1130
Dan Gohman572645c2010-02-12 10:34:29 +00001131static bool isLegalUse(TargetLowering::AddrMode AM,
1132 int64_t MinOffset, int64_t MaxOffset,
1133 LSRUse::KindType Kind, const Type *AccessTy,
1134 const TargetLowering *TLI) {
1135 // Check for overflow.
1136 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1137 (MinOffset > 0))
1138 return false;
1139 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1140 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1141 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1142 // Check for overflow.
1143 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1144 (MaxOffset > 0))
1145 return false;
1146 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1147 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001148 }
Dan Gohman572645c2010-02-12 10:34:29 +00001149 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001150}
1151
Dan Gohman572645c2010-02-12 10:34:29 +00001152static bool isAlwaysFoldable(int64_t BaseOffs,
1153 GlobalValue *BaseGV,
1154 bool HasBaseReg,
1155 LSRUse::KindType Kind, const Type *AccessTy,
Dan Gohman454d26d2010-02-22 04:11:59 +00001156 const TargetLowering *TLI) {
Dan Gohman572645c2010-02-12 10:34:29 +00001157 // Fast-path: zero is always foldable.
1158 if (BaseOffs == 0 && !BaseGV) return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001159
Dan Gohman572645c2010-02-12 10:34:29 +00001160 // Conservatively, create an address with an immediate and a
1161 // base and a scale.
1162 TargetLowering::AddrMode AM;
1163 AM.BaseOffs = BaseOffs;
1164 AM.BaseGV = BaseGV;
1165 AM.HasBaseReg = HasBaseReg;
1166 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001167
Dan Gohmana2086b32010-05-19 23:43:12 +00001168 // Canonicalize a scale of 1 to a base register if the formula doesn't
1169 // already have a base register.
1170 if (!AM.HasBaseReg && AM.Scale == 1) {
1171 AM.Scale = 0;
1172 AM.HasBaseReg = true;
1173 }
1174
Dan Gohman572645c2010-02-12 10:34:29 +00001175 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001176}
1177
Dan Gohman572645c2010-02-12 10:34:29 +00001178static bool isAlwaysFoldable(const SCEV *S,
1179 int64_t MinOffset, int64_t MaxOffset,
1180 bool HasBaseReg,
1181 LSRUse::KindType Kind, const Type *AccessTy,
1182 const TargetLowering *TLI,
1183 ScalarEvolution &SE) {
1184 // Fast-path: zero is always foldable.
1185 if (S->isZero()) return true;
1186
1187 // Conservatively, create an address with an immediate and a
1188 // base and a scale.
1189 int64_t BaseOffs = ExtractImmediate(S, SE);
1190 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1191
1192 // If there's anything else involved, it's not foldable.
1193 if (!S->isZero()) return false;
1194
1195 // Fast-path: zero is always foldable.
1196 if (BaseOffs == 0 && !BaseGV) return true;
1197
1198 // Conservatively, create an address with an immediate and a
1199 // base and a scale.
1200 TargetLowering::AddrMode AM;
1201 AM.BaseOffs = BaseOffs;
1202 AM.BaseGV = BaseGV;
1203 AM.HasBaseReg = HasBaseReg;
1204 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1205
1206 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001207}
1208
Dan Gohman572645c2010-02-12 10:34:29 +00001209/// FormulaSorter - This class implements an ordering for formulae which sorts
1210/// the by their standalone cost.
1211class FormulaSorter {
1212 /// These two sets are kept empty, so that we compute standalone costs.
1213 DenseSet<const SCEV *> VisitedRegs;
1214 SmallPtrSet<const SCEV *, 16> Regs;
1215 Loop *L;
1216 LSRUse *LU;
1217 ScalarEvolution &SE;
1218 DominatorTree &DT;
1219
1220public:
1221 FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1222 : L(l), LU(&lu), SE(se), DT(dt) {}
1223
1224 bool operator()(const Formula &A, const Formula &B) {
1225 Cost CostA;
1226 CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1227 Regs.clear();
1228 Cost CostB;
1229 CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1230 Regs.clear();
1231 return CostA < CostB;
1232 }
1233};
1234
1235/// LSRInstance - This class holds state for the main loop strength reduction
1236/// logic.
1237class LSRInstance {
1238 IVUsers &IU;
1239 ScalarEvolution &SE;
1240 DominatorTree &DT;
Dan Gohmane5f76872010-04-09 22:07:05 +00001241 LoopInfo &LI;
Dan Gohman572645c2010-02-12 10:34:29 +00001242 const TargetLowering *const TLI;
1243 Loop *const L;
1244 bool Changed;
1245
1246 /// IVIncInsertPos - This is the insert position that the current loop's
1247 /// induction variable increment should be placed. In simple loops, this is
1248 /// the latch block's terminator. But in more complicated cases, this is a
1249 /// position which will dominate all the in-loop post-increment users.
1250 Instruction *IVIncInsertPos;
1251
1252 /// Factors - Interesting factors between use strides.
1253 SmallSetVector<int64_t, 8> Factors;
1254
1255 /// Types - Interesting use types, to facilitate truncation reuse.
1256 SmallSetVector<const Type *, 4> Types;
1257
1258 /// Fixups - The list of operands which are to be replaced.
1259 SmallVector<LSRFixup, 16> Fixups;
1260
1261 /// Uses - The list of interesting uses.
1262 SmallVector<LSRUse, 16> Uses;
1263
1264 /// RegUses - Track which uses use which register candidates.
1265 RegUseTracker RegUses;
1266
1267 void OptimizeShadowIV();
1268 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1269 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1270 bool OptimizeLoopTermCond();
1271
1272 void CollectInterestingTypesAndFactors();
1273 void CollectFixupsAndInitialFormulae();
1274
1275 LSRFixup &getNewFixup() {
1276 Fixups.push_back(LSRFixup());
1277 return Fixups.back();
1278 }
1279
1280 // Support for sharing of LSRUses between LSRFixups.
1281 typedef DenseMap<const SCEV *, size_t> UseMapTy;
1282 UseMapTy UseMap;
1283
1284 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
Dan Gohmana2086b32010-05-19 23:43:12 +00001285 bool HasBaseReg,
Dan Gohman572645c2010-02-12 10:34:29 +00001286 LSRUse::KindType Kind, const Type *AccessTy);
1287
1288 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1289 LSRUse::KindType Kind,
1290 const Type *AccessTy);
1291
Dan Gohman5ce6d052010-05-20 15:17:54 +00001292 void DeleteUse(LSRUse &LU);
1293
Dan Gohmana2086b32010-05-19 23:43:12 +00001294 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1295
Dan Gohman572645c2010-02-12 10:34:29 +00001296public:
Dan Gohman454d26d2010-02-22 04:11:59 +00001297 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001298 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1299 void CountRegisters(const Formula &F, size_t LUIdx);
1300 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1301
1302 void CollectLoopInvariantFixupsAndFormulae();
1303
1304 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1305 unsigned Depth = 0);
1306 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1307 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1308 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1309 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1310 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1311 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1312 void GenerateCrossUseConstantOffsets();
1313 void GenerateAllReuseFormulae();
1314
1315 void FilterOutUndesirableDedicatedRegisters();
Dan Gohmand079c302010-05-18 22:51:59 +00001316
1317 size_t EstimateSearchSpaceComplexity() const;
Dan Gohman572645c2010-02-12 10:34:29 +00001318 void NarrowSearchSpaceUsingHeuristics();
1319
1320 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1321 Cost &SolutionCost,
1322 SmallVectorImpl<const Formula *> &Workspace,
1323 const Cost &CurCost,
1324 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1325 DenseSet<const SCEV *> &VisitedRegs) const;
1326 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1327
Dan Gohmane5f76872010-04-09 22:07:05 +00001328 BasicBlock::iterator
1329 HoistInsertPosition(BasicBlock::iterator IP,
1330 const SmallVectorImpl<Instruction *> &Inputs) const;
1331 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1332 const LSRFixup &LF,
1333 const LSRUse &LU) const;
Dan Gohmand96eae82010-04-09 02:00:38 +00001334
Dan Gohman572645c2010-02-12 10:34:29 +00001335 Value *Expand(const LSRFixup &LF,
1336 const Formula &F,
Dan Gohman454d26d2010-02-22 04:11:59 +00001337 BasicBlock::iterator IP,
Dan Gohman572645c2010-02-12 10:34:29 +00001338 SCEVExpander &Rewriter,
Dan Gohman454d26d2010-02-22 04:11:59 +00001339 SmallVectorImpl<WeakVH> &DeadInsts) const;
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001340 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1341 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001342 SCEVExpander &Rewriter,
1343 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001344 Pass *P) const;
Dan Gohman572645c2010-02-12 10:34:29 +00001345 void Rewrite(const LSRFixup &LF,
1346 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00001347 SCEVExpander &Rewriter,
1348 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00001349 Pass *P) const;
1350 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1351 Pass *P);
1352
1353 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1354
1355 bool getChanged() const { return Changed; }
1356
1357 void print_factors_and_types(raw_ostream &OS) const;
1358 void print_fixups(raw_ostream &OS) const;
1359 void print_uses(raw_ostream &OS) const;
1360 void print(raw_ostream &OS) const;
1361 void dump() const;
1362};
1363
1364}
1365
1366/// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001367/// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00001368void LSRInstance::OptimizeShadowIV() {
1369 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1370 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1371 return;
1372
1373 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1374 UI != E; /* empty */) {
1375 IVUsers::const_iterator CandidateUI = UI;
1376 ++UI;
1377 Instruction *ShadowUse = CandidateUI->getUser();
1378 const Type *DestTy = NULL;
1379
1380 /* If shadow use is a int->float cast then insert a second IV
1381 to eliminate this cast.
1382
1383 for (unsigned i = 0; i < n; ++i)
1384 foo((double)i);
1385
1386 is transformed into
1387
1388 double d = 0.0;
1389 for (unsigned i = 0; i < n; ++i, ++d)
1390 foo(d);
1391 */
1392 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1393 DestTy = UCast->getDestTy();
1394 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1395 DestTy = SCast->getDestTy();
1396 if (!DestTy) continue;
1397
1398 if (TLI) {
1399 // If target does not support DestTy natively then do not apply
1400 // this transformation.
1401 EVT DVT = TLI->getValueType(DestTy);
1402 if (!TLI->isTypeLegal(DVT)) continue;
1403 }
1404
1405 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1406 if (!PH) continue;
1407 if (PH->getNumIncomingValues() != 2) continue;
1408
1409 const Type *SrcTy = PH->getType();
1410 int Mantissa = DestTy->getFPMantissaWidth();
1411 if (Mantissa == -1) continue;
1412 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1413 continue;
1414
1415 unsigned Entry, Latch;
1416 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1417 Entry = 0;
1418 Latch = 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001419 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001420 Entry = 1;
1421 Latch = 0;
Dan Gohman7979b722010-01-22 00:46:49 +00001422 }
Dan Gohman7979b722010-01-22 00:46:49 +00001423
Dan Gohman572645c2010-02-12 10:34:29 +00001424 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1425 if (!Init) continue;
1426 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
Dan Gohman7979b722010-01-22 00:46:49 +00001427
Dan Gohman572645c2010-02-12 10:34:29 +00001428 BinaryOperator *Incr =
1429 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1430 if (!Incr) continue;
1431 if (Incr->getOpcode() != Instruction::Add
1432 && Incr->getOpcode() != Instruction::Sub)
Dan Gohman7979b722010-01-22 00:46:49 +00001433 continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001434
Dan Gohman572645c2010-02-12 10:34:29 +00001435 /* Initialize new IV, double d = 0.0 in above example. */
1436 ConstantInt *C = NULL;
1437 if (Incr->getOperand(0) == PH)
1438 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1439 else if (Incr->getOperand(1) == PH)
1440 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001441 else
Dan Gohman7979b722010-01-22 00:46:49 +00001442 continue;
1443
Dan Gohman572645c2010-02-12 10:34:29 +00001444 if (!C) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001445
Dan Gohman572645c2010-02-12 10:34:29 +00001446 // Ignore negative constants, as the code below doesn't handle them
1447 // correctly. TODO: Remove this restriction.
1448 if (!C->getValue().isStrictlyPositive()) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001449
Dan Gohman572645c2010-02-12 10:34:29 +00001450 /* Add new PHINode. */
1451 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
Dan Gohman7979b722010-01-22 00:46:49 +00001452
Dan Gohman572645c2010-02-12 10:34:29 +00001453 /* create new increment. '++d' in above example. */
1454 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1455 BinaryOperator *NewIncr =
1456 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1457 Instruction::FAdd : Instruction::FSub,
1458 NewPH, CFP, "IV.S.next.", Incr);
Dan Gohman7979b722010-01-22 00:46:49 +00001459
Dan Gohman572645c2010-02-12 10:34:29 +00001460 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1461 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
Dan Gohman7979b722010-01-22 00:46:49 +00001462
Dan Gohman572645c2010-02-12 10:34:29 +00001463 /* Remove cast operation */
1464 ShadowUse->replaceAllUsesWith(NewPH);
1465 ShadowUse->eraseFromParent();
1466 break;
Dan Gohman7979b722010-01-22 00:46:49 +00001467 }
1468}
1469
1470/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1471/// set the IV user and stride information and return true, otherwise return
1472/// false.
Dan Gohman572645c2010-02-12 10:34:29 +00001473bool LSRInstance::FindIVUserForCond(ICmpInst *Cond,
1474 IVStrideUse *&CondUse) {
1475 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1476 if (UI->getUser() == Cond) {
1477 // NOTE: we could handle setcc instructions with multiple uses here, but
1478 // InstCombine does it as well for simple uses, it's not clear that it
1479 // occurs enough in real life to handle.
1480 CondUse = UI;
1481 return true;
1482 }
Dan Gohman7979b722010-01-22 00:46:49 +00001483 return false;
Evan Chengcdf43b12007-10-25 09:11:16 +00001484}
1485
Dan Gohman7979b722010-01-22 00:46:49 +00001486/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1487/// a max computation.
1488///
1489/// This is a narrow solution to a specific, but acute, problem. For loops
1490/// like this:
1491///
1492/// i = 0;
1493/// do {
1494/// p[i] = 0.0;
1495/// } while (++i < n);
1496///
1497/// the trip count isn't just 'n', because 'n' might not be positive. And
1498/// unfortunately this can come up even for loops where the user didn't use
1499/// a C do-while loop. For example, seemingly well-behaved top-test loops
1500/// will commonly be lowered like this:
1501//
1502/// if (n > 0) {
1503/// i = 0;
1504/// do {
1505/// p[i] = 0.0;
1506/// } while (++i < n);
1507/// }
1508///
1509/// and then it's possible for subsequent optimization to obscure the if
1510/// test in such a way that indvars can't find it.
1511///
1512/// When indvars can't find the if test in loops like this, it creates a
1513/// max expression, which allows it to give the loop a canonical
1514/// induction variable:
1515///
1516/// i = 0;
1517/// max = n < 1 ? 1 : n;
1518/// do {
1519/// p[i] = 0.0;
1520/// } while (++i != max);
1521///
1522/// Canonical induction variables are necessary because the loop passes
1523/// are designed around them. The most obvious example of this is the
1524/// LoopInfo analysis, which doesn't remember trip count values. It
1525/// expects to be able to rediscover the trip count each time it is
Dan Gohman572645c2010-02-12 10:34:29 +00001526/// needed, and it does this using a simple analysis that only succeeds if
Dan Gohman7979b722010-01-22 00:46:49 +00001527/// the loop has a canonical induction variable.
1528///
1529/// However, when it comes time to generate code, the maximum operation
1530/// can be quite costly, especially if it's inside of an outer loop.
1531///
1532/// This function solves this problem by detecting this type of loop and
1533/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1534/// the instructions for the maximum computation.
1535///
Dan Gohman572645c2010-02-12 10:34:29 +00001536ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
Dan Gohman7979b722010-01-22 00:46:49 +00001537 // Check that the loop matches the pattern we're looking for.
1538 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1539 Cond->getPredicate() != CmpInst::ICMP_NE)
1540 return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001541
Dan Gohman7979b722010-01-22 00:46:49 +00001542 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1543 if (!Sel || !Sel->hasOneUse()) return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001544
Dan Gohman572645c2010-02-12 10:34:29 +00001545 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
Dan Gohman7979b722010-01-22 00:46:49 +00001546 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1547 return Cond;
Dan Gohmandeff6212010-05-03 22:09:21 +00001548 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
Dan Gohmana10756e2010-01-21 02:09:26 +00001549
Dan Gohman7979b722010-01-22 00:46:49 +00001550 // Add one to the backedge-taken count to get the trip count.
Dan Gohman572645c2010-02-12 10:34:29 +00001551 const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
Dan Gohman1d367982010-04-24 03:13:44 +00001552 if (IterationCount != SE.getSCEV(Sel)) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001553
Dan Gohman1d367982010-04-24 03:13:44 +00001554 // Check for a max calculation that matches the pattern. There's no check
1555 // for ICMP_ULE here because the comparison would be with zero, which
1556 // isn't interesting.
1557 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1558 const SCEVNAryExpr *Max = 0;
1559 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1560 Pred = ICmpInst::ICMP_SLE;
1561 Max = S;
1562 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1563 Pred = ICmpInst::ICMP_SLT;
1564 Max = S;
1565 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1566 Pred = ICmpInst::ICMP_ULT;
1567 Max = U;
1568 } else {
1569 // No match; bail.
Dan Gohman7979b722010-01-22 00:46:49 +00001570 return Cond;
Dan Gohman1d367982010-04-24 03:13:44 +00001571 }
Dan Gohman7979b722010-01-22 00:46:49 +00001572
1573 // To handle a max with more than two operands, this optimization would
1574 // require additional checking and setup.
1575 if (Max->getNumOperands() != 2)
1576 return Cond;
1577
1578 const SCEV *MaxLHS = Max->getOperand(0);
1579 const SCEV *MaxRHS = Max->getOperand(1);
Dan Gohman1d367982010-04-24 03:13:44 +00001580
1581 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1582 // for a comparison with 1. For <= and >=, a comparison with zero.
1583 if (!MaxLHS ||
1584 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1585 return Cond;
1586
Dan Gohman7979b722010-01-22 00:46:49 +00001587 // Check the relevant induction variable for conformance to
1588 // the pattern.
Dan Gohman572645c2010-02-12 10:34:29 +00001589 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001590 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1591 if (!AR || !AR->isAffine() ||
1592 AR->getStart() != One ||
Dan Gohman572645c2010-02-12 10:34:29 +00001593 AR->getStepRecurrence(SE) != One)
Dan Gohman7979b722010-01-22 00:46:49 +00001594 return Cond;
1595
1596 assert(AR->getLoop() == L &&
1597 "Loop condition operand is an addrec in a different loop!");
1598
1599 // Check the right operand of the select, and remember it, as it will
1600 // be used in the new comparison instruction.
1601 Value *NewRHS = 0;
Dan Gohman1d367982010-04-24 03:13:44 +00001602 if (ICmpInst::isTrueWhenEqual(Pred)) {
1603 // Look for n+1, and grab n.
1604 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1605 if (isa<ConstantInt>(BO->getOperand(1)) &&
1606 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1607 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1608 NewRHS = BO->getOperand(0);
1609 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1610 if (isa<ConstantInt>(BO->getOperand(1)) &&
1611 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1612 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1613 NewRHS = BO->getOperand(0);
1614 if (!NewRHS)
1615 return Cond;
1616 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001617 NewRHS = Sel->getOperand(1);
Dan Gohman572645c2010-02-12 10:34:29 +00001618 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001619 NewRHS = Sel->getOperand(2);
Dan Gohman1d367982010-04-24 03:13:44 +00001620 else
1621 llvm_unreachable("Max doesn't match expected pattern!");
Dan Gohman7979b722010-01-22 00:46:49 +00001622
1623 // Determine the new comparison opcode. It may be signed or unsigned,
1624 // and the original comparison may be either equality or inequality.
Dan Gohman7979b722010-01-22 00:46:49 +00001625 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1626 Pred = CmpInst::getInversePredicate(Pred);
1627
1628 // Ok, everything looks ok to change the condition into an SLT or SGE and
1629 // delete the max calculation.
1630 ICmpInst *NewCond =
1631 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1632
1633 // Delete the max calculation instructions.
1634 Cond->replaceAllUsesWith(NewCond);
1635 CondUse->setUser(NewCond);
1636 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1637 Cond->eraseFromParent();
1638 Sel->eraseFromParent();
1639 if (Cmp->use_empty())
1640 Cmp->eraseFromParent();
1641 return NewCond;
Dan Gohmanad7321f2008-09-15 21:22:06 +00001642}
1643
Jim Grosbach56a1f802009-11-17 17:53:56 +00001644/// OptimizeLoopTermCond - Change loop terminating condition to use the
Evan Cheng586f69a2009-11-12 07:35:05 +00001645/// postinc iv when possible.
Dan Gohman572645c2010-02-12 10:34:29 +00001646bool
1647LSRInstance::OptimizeLoopTermCond() {
1648 SmallPtrSet<Instruction *, 4> PostIncs;
1649
Evan Cheng586f69a2009-11-12 07:35:05 +00001650 BasicBlock *LatchBlock = L->getLoopLatch();
Evan Cheng076e0852009-11-17 18:10:11 +00001651 SmallVector<BasicBlock*, 8> ExitingBlocks;
1652 L->getExitingBlocks(ExitingBlocks);
Jim Grosbach56a1f802009-11-17 17:53:56 +00001653
Evan Cheng076e0852009-11-17 18:10:11 +00001654 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1655 BasicBlock *ExitingBlock = ExitingBlocks[i];
Evan Cheng586f69a2009-11-12 07:35:05 +00001656
Dan Gohman572645c2010-02-12 10:34:29 +00001657 // Get the terminating condition for the loop if possible. If we
Evan Cheng076e0852009-11-17 18:10:11 +00001658 // can, we want to change it to use a post-incremented version of its
1659 // induction variable, to allow coalescing the live ranges for the IV into
1660 // one register value.
Evan Cheng586f69a2009-11-12 07:35:05 +00001661
Evan Cheng076e0852009-11-17 18:10:11 +00001662 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1663 if (!TermBr)
1664 continue;
1665 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1666 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1667 continue;
Evan Cheng586f69a2009-11-12 07:35:05 +00001668
Evan Cheng076e0852009-11-17 18:10:11 +00001669 // Search IVUsesByStride to find Cond's IVUse if there is one.
1670 IVStrideUse *CondUse = 0;
Evan Cheng076e0852009-11-17 18:10:11 +00001671 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
Dan Gohman572645c2010-02-12 10:34:29 +00001672 if (!FindIVUserForCond(Cond, CondUse))
Evan Cheng076e0852009-11-17 18:10:11 +00001673 continue;
1674
Evan Cheng076e0852009-11-17 18:10:11 +00001675 // If the trip count is computed in terms of a max (due to ScalarEvolution
1676 // being unable to find a sufficient guard, for example), change the loop
1677 // comparison to use SLT or ULT instead of NE.
Dan Gohman572645c2010-02-12 10:34:29 +00001678 // One consequence of doing this now is that it disrupts the count-down
1679 // optimization. That's not always a bad thing though, because in such
1680 // cases it may still be worthwhile to avoid a max.
1681 Cond = OptimizeMax(Cond, CondUse);
Evan Cheng076e0852009-11-17 18:10:11 +00001682
Dan Gohman572645c2010-02-12 10:34:29 +00001683 // If this exiting block dominates the latch block, it may also use
1684 // the post-inc value if it won't be shared with other uses.
1685 // Check for dominance.
1686 if (!DT.dominates(ExitingBlock, LatchBlock))
Dan Gohman7979b722010-01-22 00:46:49 +00001687 continue;
Evan Cheng076e0852009-11-17 18:10:11 +00001688
Dan Gohman572645c2010-02-12 10:34:29 +00001689 // Conservatively avoid trying to use the post-inc value in non-latch
1690 // exits if there may be pre-inc users in intervening blocks.
Dan Gohman590bfe82010-02-14 03:21:49 +00001691 if (LatchBlock != ExitingBlock)
Dan Gohman572645c2010-02-12 10:34:29 +00001692 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1693 // Test if the use is reachable from the exiting block. This dominator
1694 // query is a conservative approximation of reachability.
1695 if (&*UI != CondUse &&
1696 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1697 // Conservatively assume there may be reuse if the quotient of their
1698 // strides could be a legal scale.
Dan Gohmanc0564542010-04-19 21:48:58 +00001699 const SCEV *A = IU.getStride(*CondUse, L);
1700 const SCEV *B = IU.getStride(*UI, L);
Dan Gohman448db1c2010-04-07 22:27:08 +00001701 if (!A || !B) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001702 if (SE.getTypeSizeInBits(A->getType()) !=
1703 SE.getTypeSizeInBits(B->getType())) {
1704 if (SE.getTypeSizeInBits(A->getType()) >
1705 SE.getTypeSizeInBits(B->getType()))
1706 B = SE.getSignExtendExpr(B, A->getType());
1707 else
1708 A = SE.getSignExtendExpr(A, B->getType());
1709 }
1710 if (const SCEVConstant *D =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001711 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001712 // Stride of one or negative one can have reuse with non-addresses.
1713 if (D->getValue()->isOne() ||
1714 D->getValue()->isAllOnesValue())
1715 goto decline_post_inc;
1716 // Avoid weird situations.
1717 if (D->getValue()->getValue().getMinSignedBits() >= 64 ||
1718 D->getValue()->getValue().isMinSignedValue())
1719 goto decline_post_inc;
Dan Gohman590bfe82010-02-14 03:21:49 +00001720 // Without TLI, assume that any stride might be valid, and so any
1721 // use might be shared.
1722 if (!TLI)
1723 goto decline_post_inc;
Dan Gohman572645c2010-02-12 10:34:29 +00001724 // Check for possible scaled-address reuse.
1725 const Type *AccessTy = getAccessType(UI->getUser());
1726 TargetLowering::AddrMode AM;
1727 AM.Scale = D->getValue()->getSExtValue();
Dan Gohman2763dfd2010-02-14 02:45:21 +00001728 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001729 goto decline_post_inc;
1730 AM.Scale = -AM.Scale;
Dan Gohman2763dfd2010-02-14 02:45:21 +00001731 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001732 goto decline_post_inc;
1733 }
1734 }
1735
David Greene63c94632009-12-23 22:58:38 +00001736 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
Dan Gohman572645c2010-02-12 10:34:29 +00001737 << *Cond << '\n');
Evan Cheng076e0852009-11-17 18:10:11 +00001738
1739 // It's possible for the setcc instruction to be anywhere in the loop, and
1740 // possible for it to have multiple users. If it is not immediately before
1741 // the exiting block branch, move it.
Dan Gohman572645c2010-02-12 10:34:29 +00001742 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1743 if (Cond->hasOneUse()) {
Evan Cheng076e0852009-11-17 18:10:11 +00001744 Cond->moveBefore(TermBr);
1745 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001746 // Clone the terminating condition and insert into the loopend.
1747 ICmpInst *OldCond = Cond;
Evan Cheng076e0852009-11-17 18:10:11 +00001748 Cond = cast<ICmpInst>(Cond->clone());
1749 Cond->setName(L->getHeader()->getName() + ".termcond");
1750 ExitingBlock->getInstList().insert(TermBr, Cond);
1751
1752 // Clone the IVUse, as the old use still exists!
Dan Gohmanc0564542010-04-19 21:48:58 +00001753 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
Dan Gohman572645c2010-02-12 10:34:29 +00001754 TermBr->replaceUsesOfWith(OldCond, Cond);
Evan Cheng076e0852009-11-17 18:10:11 +00001755 }
Evan Cheng586f69a2009-11-12 07:35:05 +00001756 }
1757
Evan Cheng076e0852009-11-17 18:10:11 +00001758 // If we get to here, we know that we can transform the setcc instruction to
1759 // use the post-incremented version of the IV, allowing us to coalesce the
1760 // live ranges for the IV correctly.
Dan Gohman448db1c2010-04-07 22:27:08 +00001761 CondUse->transformToPostInc(L);
Evan Cheng076e0852009-11-17 18:10:11 +00001762 Changed = true;
1763
Dan Gohman572645c2010-02-12 10:34:29 +00001764 PostIncs.insert(Cond);
1765 decline_post_inc:;
Dan Gohmana10756e2010-01-21 02:09:26 +00001766 }
Dan Gohman572645c2010-02-12 10:34:29 +00001767
1768 // Determine an insertion point for the loop induction variable increment. It
1769 // must dominate all the post-inc comparisons we just set up, and it must
1770 // dominate the loop latch edge.
1771 IVIncInsertPos = L->getLoopLatch()->getTerminator();
1772 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1773 E = PostIncs.end(); I != E; ++I) {
1774 BasicBlock *BB =
1775 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1776 (*I)->getParent());
1777 if (BB == (*I)->getParent())
1778 IVIncInsertPos = *I;
1779 else if (BB != IVIncInsertPos->getParent())
1780 IVIncInsertPos = BB->getTerminator();
1781 }
1782
1783 return Changed;
Dan Gohmana10756e2010-01-21 02:09:26 +00001784}
1785
Dan Gohman572645c2010-02-12 10:34:29 +00001786bool
1787LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
Dan Gohmana2086b32010-05-19 23:43:12 +00001788 bool HasBaseReg,
Dan Gohman572645c2010-02-12 10:34:29 +00001789 LSRUse::KindType Kind, const Type *AccessTy) {
1790 int64_t NewMinOffset = LU.MinOffset;
1791 int64_t NewMaxOffset = LU.MaxOffset;
1792 const Type *NewAccessTy = AccessTy;
Dan Gohman7979b722010-01-22 00:46:49 +00001793
Dan Gohman572645c2010-02-12 10:34:29 +00001794 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1795 // something conservative, however this can pessimize in the case that one of
1796 // the uses will have all its uses outside the loop, for example.
1797 if (LU.Kind != Kind)
Dan Gohman7979b722010-01-22 00:46:49 +00001798 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001799 // Conservatively assume HasBaseReg is true for now.
1800 if (NewOffset < LU.MinOffset) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001801 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00001802 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001803 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001804 NewMinOffset = NewOffset;
1805 } else if (NewOffset > LU.MaxOffset) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001806 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00001807 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001808 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001809 NewMaxOffset = NewOffset;
Dan Gohmana10756e2010-01-21 02:09:26 +00001810 }
Dan Gohman572645c2010-02-12 10:34:29 +00001811 // Check for a mismatched access type, and fall back conservatively as needed.
1812 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1813 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
Dan Gohmana10756e2010-01-21 02:09:26 +00001814
Dan Gohman572645c2010-02-12 10:34:29 +00001815 // Update the use.
1816 LU.MinOffset = NewMinOffset;
1817 LU.MaxOffset = NewMaxOffset;
1818 LU.AccessTy = NewAccessTy;
1819 if (NewOffset != LU.Offsets.back())
1820 LU.Offsets.push_back(NewOffset);
Dan Gohman8b0ade32010-01-21 22:42:49 +00001821 return true;
1822}
1823
Dan Gohman572645c2010-02-12 10:34:29 +00001824/// getUse - Return an LSRUse index and an offset value for a fixup which
1825/// needs the given expression, with the given kind and optional access type.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001826/// Either reuse an existing use or create a new one, as needed.
Dan Gohman572645c2010-02-12 10:34:29 +00001827std::pair<size_t, int64_t>
1828LSRInstance::getUse(const SCEV *&Expr,
1829 LSRUse::KindType Kind, const Type *AccessTy) {
1830 const SCEV *Copy = Expr;
1831 int64_t Offset = ExtractImmediate(Expr, SE);
Evan Cheng586f69a2009-11-12 07:35:05 +00001832
Dan Gohman572645c2010-02-12 10:34:29 +00001833 // Basic uses can't accept any offset, for example.
Dan Gohman454d26d2010-02-22 04:11:59 +00001834 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
Dan Gohman572645c2010-02-12 10:34:29 +00001835 Expr = Copy;
1836 Offset = 0;
1837 }
1838
1839 std::pair<UseMapTy::iterator, bool> P =
1840 UseMap.insert(std::make_pair(Expr, 0));
1841 if (!P.second) {
1842 // A use already existed with this base.
1843 size_t LUIdx = P.first->second;
1844 LSRUse &LU = Uses[LUIdx];
Dan Gohmana2086b32010-05-19 23:43:12 +00001845 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001846 // Reuse this use.
1847 return std::make_pair(LUIdx, Offset);
1848 }
1849
1850 // Create a new use.
1851 size_t LUIdx = Uses.size();
1852 P.first->second = LUIdx;
1853 Uses.push_back(LSRUse(Kind, AccessTy));
1854 LSRUse &LU = Uses[LUIdx];
1855
1856 // We don't need to track redundant offsets, but we don't need to go out
1857 // of our way here to avoid them.
1858 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1859 LU.Offsets.push_back(Offset);
1860
1861 LU.MinOffset = Offset;
1862 LU.MaxOffset = Offset;
1863 return std::make_pair(LUIdx, Offset);
1864}
1865
Dan Gohman5ce6d052010-05-20 15:17:54 +00001866/// DeleteUse - Delete the given use from the Uses list.
1867void LSRInstance::DeleteUse(LSRUse &LU) {
1868 if (&LU != &Uses.back())
1869 std::swap(LU, Uses.back());
1870 Uses.pop_back();
1871}
1872
Dan Gohmana2086b32010-05-19 23:43:12 +00001873/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1874/// a formula that has the same registers as the given formula.
1875LSRUse *
1876LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1877 const LSRUse &OrigLU) {
1878 // Search all uses for the formula. This could be more clever. Ignore
1879 // ICmpZero uses because they may contain formulae generated by
1880 // GenerateICmpZeroScales, in which case adding fixup offsets may
1881 // be invalid.
1882 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1883 LSRUse &LU = Uses[LUIdx];
1884 if (&LU != &OrigLU &&
1885 LU.Kind != LSRUse::ICmpZero &&
1886 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1887 LU.HasFormulaWithSameRegs(OrigF)) {
1888 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
1889 FIdx != NumForms; ++FIdx) {
1890 Formula &F = LU.Formulae[FIdx];
1891 if (F.BaseRegs == OrigF.BaseRegs &&
1892 F.ScaledReg == OrigF.ScaledReg &&
1893 F.AM.BaseGV == OrigF.AM.BaseGV &&
1894 F.AM.Scale == OrigF.AM.Scale &&
1895 LU.Kind) {
1896 if (F.AM.BaseOffs == 0)
1897 return &LU;
1898 break;
1899 }
1900 }
1901 }
1902 }
1903
1904 return 0;
1905}
1906
Dan Gohman572645c2010-02-12 10:34:29 +00001907void LSRInstance::CollectInterestingTypesAndFactors() {
1908 SmallSetVector<const SCEV *, 4> Strides;
1909
Dan Gohman1b7bf182010-02-19 00:05:23 +00001910 // Collect interesting types and strides.
Dan Gohman448db1c2010-04-07 22:27:08 +00001911 SmallVector<const SCEV *, 4> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00001912 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
Dan Gohmanc0564542010-04-19 21:48:58 +00001913 const SCEV *Expr = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001914
1915 // Collect interesting types.
Dan Gohman448db1c2010-04-07 22:27:08 +00001916 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
Dan Gohman572645c2010-02-12 10:34:29 +00001917
Dan Gohman448db1c2010-04-07 22:27:08 +00001918 // Add strides for mentioned loops.
1919 Worklist.push_back(Expr);
1920 do {
1921 const SCEV *S = Worklist.pop_back_val();
1922 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1923 Strides.insert(AR->getStepRecurrence(SE));
1924 Worklist.push_back(AR->getStart());
1925 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1926 Worklist.insert(Worklist.end(), Add->op_begin(), Add->op_end());
1927 }
1928 } while (!Worklist.empty());
Dan Gohman1b7bf182010-02-19 00:05:23 +00001929 }
1930
1931 // Compute interesting factors from the set of interesting strides.
1932 for (SmallSetVector<const SCEV *, 4>::const_iterator
1933 I = Strides.begin(), E = Strides.end(); I != E; ++I)
Dan Gohman572645c2010-02-12 10:34:29 +00001934 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
Dan Gohman1b7bf182010-02-19 00:05:23 +00001935 next(I); NewStrideIter != E; ++NewStrideIter) {
1936 const SCEV *OldStride = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00001937 const SCEV *NewStride = *NewStrideIter;
Dan Gohman572645c2010-02-12 10:34:29 +00001938
1939 if (SE.getTypeSizeInBits(OldStride->getType()) !=
1940 SE.getTypeSizeInBits(NewStride->getType())) {
1941 if (SE.getTypeSizeInBits(OldStride->getType()) >
1942 SE.getTypeSizeInBits(NewStride->getType()))
1943 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1944 else
1945 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1946 }
1947 if (const SCEVConstant *Factor =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001948 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1949 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001950 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1951 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1952 } else if (const SCEVConstant *Factor =
Dan Gohman454d26d2010-02-22 04:11:59 +00001953 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1954 NewStride,
Dan Gohmanf09b7122010-02-19 19:35:48 +00001955 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001956 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1957 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1958 }
1959 }
Dan Gohman572645c2010-02-12 10:34:29 +00001960
1961 // If all uses use the same type, don't bother looking for truncation-based
1962 // reuse.
1963 if (Types.size() == 1)
1964 Types.clear();
1965
1966 DEBUG(print_factors_and_types(dbgs()));
1967}
1968
1969void LSRInstance::CollectFixupsAndInitialFormulae() {
1970 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1971 // Record the uses.
1972 LSRFixup &LF = getNewFixup();
1973 LF.UserInst = UI->getUser();
1974 LF.OperandValToReplace = UI->getOperandValToReplace();
Dan Gohman448db1c2010-04-07 22:27:08 +00001975 LF.PostIncLoops = UI->getPostIncLoops();
Dan Gohman572645c2010-02-12 10:34:29 +00001976
1977 LSRUse::KindType Kind = LSRUse::Basic;
1978 const Type *AccessTy = 0;
1979 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
1980 Kind = LSRUse::Address;
1981 AccessTy = getAccessType(LF.UserInst);
1982 }
1983
Dan Gohmanc0564542010-04-19 21:48:58 +00001984 const SCEV *S = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001985
1986 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
1987 // (N - i == 0), and this allows (N - i) to be the expression that we work
1988 // with rather than just N or i, so we can consider the register
1989 // requirements for both N and i at the same time. Limiting this code to
1990 // equality icmps is not a problem because all interesting loops use
1991 // equality icmps, thanks to IndVarSimplify.
1992 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
1993 if (CI->isEquality()) {
1994 // Swap the operands if needed to put the OperandValToReplace on the
1995 // left, for consistency.
1996 Value *NV = CI->getOperand(1);
1997 if (NV == LF.OperandValToReplace) {
1998 CI->setOperand(1, CI->getOperand(0));
1999 CI->setOperand(0, NV);
2000 }
2001
2002 // x == y --> x - y == 0
2003 const SCEV *N = SE.getSCEV(NV);
2004 if (N->isLoopInvariant(L)) {
2005 Kind = LSRUse::ICmpZero;
2006 S = SE.getMinusSCEV(N, S);
2007 }
2008
2009 // -1 and the negations of all interesting strides (except the negation
2010 // of -1) are now also interesting.
2011 for (size_t i = 0, e = Factors.size(); i != e; ++i)
2012 if (Factors[i] != -1)
2013 Factors.insert(-(uint64_t)Factors[i]);
2014 Factors.insert(-1);
2015 }
2016
2017 // Set up the initial formula for this use.
2018 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2019 LF.LUIdx = P.first;
2020 LF.Offset = P.second;
2021 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002022 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00002023
2024 // If this is the first use of this LSRUse, give it a formula.
2025 if (LU.Formulae.empty()) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002026 InsertInitialFormula(S, LU, LF.LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00002027 CountRegisters(LU.Formulae.back(), LF.LUIdx);
2028 }
2029 }
2030
2031 DEBUG(print_fixups(dbgs()));
2032}
2033
2034void
Dan Gohman454d26d2010-02-22 04:11:59 +00002035LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Dan Gohman572645c2010-02-12 10:34:29 +00002036 Formula F;
2037 F.InitialMatch(S, L, SE, DT);
2038 bool Inserted = InsertFormula(LU, LUIdx, F);
2039 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2040}
2041
2042void
2043LSRInstance::InsertSupplementalFormula(const SCEV *S,
2044 LSRUse &LU, size_t LUIdx) {
2045 Formula F;
2046 F.BaseRegs.push_back(S);
2047 F.AM.HasBaseReg = true;
2048 bool Inserted = InsertFormula(LU, LUIdx, F);
2049 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2050}
2051
2052/// CountRegisters - Note which registers are used by the given formula,
2053/// updating RegUses.
2054void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2055 if (F.ScaledReg)
2056 RegUses.CountRegister(F.ScaledReg, LUIdx);
2057 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2058 E = F.BaseRegs.end(); I != E; ++I)
2059 RegUses.CountRegister(*I, LUIdx);
2060}
2061
2062/// InsertFormula - If the given formula has not yet been inserted, add it to
2063/// the list, and return true. Return false otherwise.
2064bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002065 if (!LU.InsertFormula(F))
Dan Gohman572645c2010-02-12 10:34:29 +00002066 return false;
2067
2068 CountRegisters(F, LUIdx);
2069 return true;
2070}
2071
2072/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2073/// loop-invariant values which we're tracking. These other uses will pin these
2074/// values in registers, making them less profitable for elimination.
2075/// TODO: This currently misses non-constant addrec step registers.
2076/// TODO: Should this give more weight to users inside the loop?
2077void
2078LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2079 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2080 SmallPtrSet<const SCEV *, 8> Inserted;
2081
2082 while (!Worklist.empty()) {
2083 const SCEV *S = Worklist.pop_back_val();
2084
2085 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2086 Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
2087 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2088 Worklist.push_back(C->getOperand());
2089 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2090 Worklist.push_back(D->getLHS());
2091 Worklist.push_back(D->getRHS());
2092 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2093 if (!Inserted.insert(U)) continue;
2094 const Value *V = U->getValue();
2095 if (const Instruction *Inst = dyn_cast<Instruction>(V))
2096 if (L->contains(Inst)) continue;
Gabor Greif60ad7812010-03-25 23:06:16 +00002097 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
Dan Gohman572645c2010-02-12 10:34:29 +00002098 UI != UE; ++UI) {
2099 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2100 // Ignore non-instructions.
2101 if (!UserInst)
Dan Gohman7979b722010-01-22 00:46:49 +00002102 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002103 // Ignore instructions in other functions (as can happen with
2104 // Constants).
2105 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
Dan Gohman7979b722010-01-22 00:46:49 +00002106 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002107 // Ignore instructions not dominated by the loop.
2108 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2109 UserInst->getParent() :
2110 cast<PHINode>(UserInst)->getIncomingBlock(
2111 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2112 if (!DT.dominates(L->getHeader(), UseBB))
2113 continue;
2114 // Ignore uses which are part of other SCEV expressions, to avoid
2115 // analyzing them multiple times.
Dan Gohman4a2a6832010-04-09 19:12:34 +00002116 if (SE.isSCEVable(UserInst->getType())) {
2117 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2118 // If the user is a no-op, look through to its uses.
2119 if (!isa<SCEVUnknown>(UserS))
2120 continue;
2121 if (UserS == U) {
2122 Worklist.push_back(
2123 SE.getUnknown(const_cast<Instruction *>(UserInst)));
2124 continue;
2125 }
2126 }
Dan Gohman572645c2010-02-12 10:34:29 +00002127 // Ignore icmp instructions which are already being analyzed.
2128 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2129 unsigned OtherIdx = !UI.getOperandNo();
2130 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2131 if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
2132 continue;
2133 }
2134
2135 LSRFixup &LF = getNewFixup();
2136 LF.UserInst = const_cast<Instruction *>(UserInst);
2137 LF.OperandValToReplace = UI.getUse();
2138 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2139 LF.LUIdx = P.first;
2140 LF.Offset = P.second;
2141 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002142 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00002143 InsertSupplementalFormula(U, LU, LF.LUIdx);
2144 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2145 break;
2146 }
2147 }
2148 }
2149}
2150
2151/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2152/// separate registers. If C is non-null, multiply each subexpression by C.
2153static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2154 SmallVectorImpl<const SCEV *> &Ops,
2155 ScalarEvolution &SE) {
2156 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2157 // Break out add operands.
2158 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2159 I != E; ++I)
2160 CollectSubexprs(*I, C, Ops, SE);
2161 return;
2162 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2163 // Split a non-zero base out of an addrec.
2164 if (!AR->getStart()->isZero()) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002165 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +00002166 AR->getStepRecurrence(SE),
2167 AR->getLoop()), C, Ops, SE);
Dan Gohman68d6da12010-02-12 19:35:25 +00002168 CollectSubexprs(AR->getStart(), C, Ops, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002169 return;
2170 }
2171 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2172 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2173 if (Mul->getNumOperands() == 2)
2174 if (const SCEVConstant *Op0 =
2175 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2176 CollectSubexprs(Mul->getOperand(1),
2177 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2178 Ops, SE);
2179 return;
2180 }
2181 }
2182
2183 // Otherwise use the value itself.
2184 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2185}
2186
2187/// GenerateReassociations - Split out subexpressions from adds and the bases of
2188/// addrecs.
2189void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2190 Formula Base,
2191 unsigned Depth) {
2192 // Arbitrarily cap recursion to protect compile time.
2193 if (Depth >= 3) return;
2194
2195 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2196 const SCEV *BaseReg = Base.BaseRegs[i];
2197
2198 SmallVector<const SCEV *, 8> AddOps;
2199 CollectSubexprs(BaseReg, 0, AddOps, SE);
2200 if (AddOps.size() == 1) continue;
2201
2202 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2203 JE = AddOps.end(); J != JE; ++J) {
2204 // Don't pull a constant into a register if the constant could be folded
2205 // into an immediate field.
2206 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2207 Base.getNumRegs() > 1,
2208 LU.Kind, LU.AccessTy, TLI, SE))
2209 continue;
2210
2211 // Collect all operands except *J.
2212 SmallVector<const SCEV *, 8> InnerAddOps;
2213 for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(),
2214 KE = AddOps.end(); K != KE; ++K)
2215 if (K != J)
2216 InnerAddOps.push_back(*K);
2217
2218 // Don't leave just a constant behind in a register if the constant could
2219 // be folded into an immediate field.
2220 if (InnerAddOps.size() == 1 &&
2221 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2222 Base.getNumRegs() > 1,
2223 LU.Kind, LU.AccessTy, TLI, SE))
2224 continue;
2225
Dan Gohmanfafb8902010-04-23 01:55:05 +00002226 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2227 if (InnerSum->isZero())
2228 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002229 Formula F = Base;
Dan Gohmanfafb8902010-04-23 01:55:05 +00002230 F.BaseRegs[i] = InnerSum;
Dan Gohman572645c2010-02-12 10:34:29 +00002231 F.BaseRegs.push_back(*J);
2232 if (InsertFormula(LU, LUIdx, F))
2233 // If that formula hadn't been seen before, recurse to find more like
2234 // it.
2235 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2236 }
2237 }
2238}
2239
2240/// GenerateCombinations - Generate a formula consisting of all of the
2241/// loop-dominating registers added into a single register.
2242void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Dan Gohman441a3892010-02-14 18:51:39 +00002243 Formula Base) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002244 // This method is only interesting on a plurality of registers.
Dan Gohman572645c2010-02-12 10:34:29 +00002245 if (Base.BaseRegs.size() <= 1) return;
2246
2247 Formula F = Base;
2248 F.BaseRegs.clear();
2249 SmallVector<const SCEV *, 4> Ops;
2250 for (SmallVectorImpl<const SCEV *>::const_iterator
2251 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2252 const SCEV *BaseReg = *I;
2253 if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2254 !BaseReg->hasComputableLoopEvolution(L))
2255 Ops.push_back(BaseReg);
2256 else
2257 F.BaseRegs.push_back(BaseReg);
2258 }
2259 if (Ops.size() > 1) {
Dan Gohmance947362010-02-14 18:50:49 +00002260 const SCEV *Sum = SE.getAddExpr(Ops);
2261 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2262 // opportunity to fold something. For now, just ignore such cases
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002263 // rather than proceed with zero in a register.
Dan Gohmance947362010-02-14 18:50:49 +00002264 if (!Sum->isZero()) {
2265 F.BaseRegs.push_back(Sum);
2266 (void)InsertFormula(LU, LUIdx, F);
2267 }
Dan Gohman572645c2010-02-12 10:34:29 +00002268 }
2269}
2270
2271/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2272void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2273 Formula Base) {
2274 // We can't add a symbolic offset if the address already contains one.
2275 if (Base.AM.BaseGV) return;
2276
2277 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2278 const SCEV *G = Base.BaseRegs[i];
2279 GlobalValue *GV = ExtractSymbol(G, SE);
2280 if (G->isZero() || !GV)
2281 continue;
2282 Formula F = Base;
2283 F.AM.BaseGV = GV;
2284 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2285 LU.Kind, LU.AccessTy, TLI))
2286 continue;
2287 F.BaseRegs[i] = G;
2288 (void)InsertFormula(LU, LUIdx, F);
2289 }
2290}
2291
2292/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2293void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2294 Formula Base) {
2295 // TODO: For now, just add the min and max offset, because it usually isn't
2296 // worthwhile looking at everything inbetween.
2297 SmallVector<int64_t, 4> Worklist;
2298 Worklist.push_back(LU.MinOffset);
2299 if (LU.MaxOffset != LU.MinOffset)
2300 Worklist.push_back(LU.MaxOffset);
2301
2302 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2303 const SCEV *G = Base.BaseRegs[i];
2304
2305 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2306 E = Worklist.end(); I != E; ++I) {
2307 Formula F = Base;
2308 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2309 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2310 LU.Kind, LU.AccessTy, TLI)) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002311 F.BaseRegs[i] = SE.getAddExpr(G, SE.getConstant(G->getType(), *I));
Dan Gohman572645c2010-02-12 10:34:29 +00002312
2313 (void)InsertFormula(LU, LUIdx, F);
2314 }
2315 }
2316
2317 int64_t Imm = ExtractImmediate(G, SE);
2318 if (G->isZero() || Imm == 0)
2319 continue;
2320 Formula F = Base;
2321 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2322 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2323 LU.Kind, LU.AccessTy, TLI))
2324 continue;
2325 F.BaseRegs[i] = G;
2326 (void)InsertFormula(LU, LUIdx, F);
2327 }
2328}
2329
2330/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2331/// the comparison. For example, x == y -> x*c == y*c.
2332void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2333 Formula Base) {
2334 if (LU.Kind != LSRUse::ICmpZero) return;
2335
2336 // Determine the integer type for the base formula.
2337 const Type *IntTy = Base.getType();
2338 if (!IntTy) return;
2339 if (SE.getTypeSizeInBits(IntTy) > 64) return;
2340
2341 // Don't do this if there is more than one offset.
2342 if (LU.MinOffset != LU.MaxOffset) return;
2343
2344 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2345
2346 // Check each interesting stride.
2347 for (SmallSetVector<int64_t, 8>::const_iterator
2348 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2349 int64_t Factor = *I;
2350 Formula F = Base;
2351
2352 // Check that the multiplication doesn't overflow.
Dan Gohman968cb932010-02-17 00:41:53 +00002353 if (F.AM.BaseOffs == INT64_MIN && Factor == -1)
2354 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002355 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002356 if (F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
Dan Gohman572645c2010-02-12 10:34:29 +00002357 continue;
2358
2359 // Check that multiplying with the use offset doesn't overflow.
2360 int64_t Offset = LU.MinOffset;
Dan Gohman968cb932010-02-17 00:41:53 +00002361 if (Offset == INT64_MIN && Factor == -1)
2362 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002363 Offset = (uint64_t)Offset * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002364 if (Offset / Factor != LU.MinOffset)
Dan Gohman572645c2010-02-12 10:34:29 +00002365 continue;
2366
2367 // Check that this scale is legal.
2368 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2369 continue;
2370
2371 // Compensate for the use having MinOffset built into it.
2372 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2373
Dan Gohmandeff6212010-05-03 22:09:21 +00002374 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002375
2376 // Check that multiplying with each base register doesn't overflow.
2377 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2378 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002379 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
Dan Gohman572645c2010-02-12 10:34:29 +00002380 goto next;
2381 }
2382
2383 // Check that multiplying with the scaled register doesn't overflow.
2384 if (F.ScaledReg) {
2385 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002386 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
Dan Gohman572645c2010-02-12 10:34:29 +00002387 continue;
2388 }
2389
2390 // If we make it here and it's legal, add it.
2391 (void)InsertFormula(LU, LUIdx, F);
2392 next:;
2393 }
2394}
2395
2396/// GenerateScales - Generate stride factor reuse formulae by making use of
2397/// scaled-offset address modes, for example.
2398void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx,
2399 Formula Base) {
2400 // Determine the integer type for the base formula.
2401 const Type *IntTy = Base.getType();
2402 if (!IntTy) return;
2403
2404 // If this Formula already has a scaled register, we can't add another one.
2405 if (Base.AM.Scale != 0) return;
2406
2407 // Check each interesting stride.
2408 for (SmallSetVector<int64_t, 8>::const_iterator
2409 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2410 int64_t Factor = *I;
2411
2412 Base.AM.Scale = Factor;
2413 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2414 // Check whether this scale is going to be legal.
2415 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2416 LU.Kind, LU.AccessTy, TLI)) {
2417 // As a special-case, handle special out-of-loop Basic users specially.
2418 // TODO: Reconsider this special case.
2419 if (LU.Kind == LSRUse::Basic &&
2420 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2421 LSRUse::Special, LU.AccessTy, TLI) &&
2422 LU.AllFixupsOutsideLoop)
2423 LU.Kind = LSRUse::Special;
2424 else
2425 continue;
2426 }
2427 // For an ICmpZero, negating a solitary base register won't lead to
2428 // new solutions.
2429 if (LU.Kind == LSRUse::ICmpZero &&
2430 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2431 continue;
2432 // For each addrec base reg, apply the scale, if possible.
2433 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2434 if (const SCEVAddRecExpr *AR =
2435 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002436 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002437 if (FactorS->isZero())
2438 continue;
2439 // Divide out the factor, ignoring high bits, since we'll be
2440 // scaling the value back up in the end.
Dan Gohmanf09b7122010-02-19 19:35:48 +00002441 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
Dan Gohman572645c2010-02-12 10:34:29 +00002442 // TODO: This could be optimized to avoid all the copying.
2443 Formula F = Base;
2444 F.ScaledReg = Quotient;
Dan Gohman5ce6d052010-05-20 15:17:54 +00002445 F.DeleteBaseReg(F.BaseRegs[i]);
Dan Gohman572645c2010-02-12 10:34:29 +00002446 (void)InsertFormula(LU, LUIdx, F);
2447 }
2448 }
2449 }
2450}
2451
2452/// GenerateTruncates - Generate reuse formulae from different IV types.
2453void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx,
2454 Formula Base) {
2455 // This requires TargetLowering to tell us which truncates are free.
2456 if (!TLI) return;
2457
2458 // Don't bother truncating symbolic values.
2459 if (Base.AM.BaseGV) return;
2460
2461 // Determine the integer type for the base formula.
2462 const Type *DstTy = Base.getType();
2463 if (!DstTy) return;
2464 DstTy = SE.getEffectiveSCEVType(DstTy);
2465
2466 for (SmallSetVector<const Type *, 4>::const_iterator
2467 I = Types.begin(), E = Types.end(); I != E; ++I) {
2468 const Type *SrcTy = *I;
2469 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2470 Formula F = Base;
2471
2472 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2473 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2474 JE = F.BaseRegs.end(); J != JE; ++J)
2475 *J = SE.getAnyExtendExpr(*J, SrcTy);
2476
2477 // TODO: This assumes we've done basic processing on all uses and
2478 // have an idea what the register usage is.
2479 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2480 continue;
2481
2482 (void)InsertFormula(LU, LUIdx, F);
2483 }
2484 }
2485}
2486
2487namespace {
2488
Dan Gohman6020d852010-02-14 18:51:20 +00002489/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
Dan Gohman572645c2010-02-12 10:34:29 +00002490/// defer modifications so that the search phase doesn't have to worry about
2491/// the data structures moving underneath it.
2492struct WorkItem {
2493 size_t LUIdx;
2494 int64_t Imm;
2495 const SCEV *OrigReg;
2496
2497 WorkItem(size_t LI, int64_t I, const SCEV *R)
2498 : LUIdx(LI), Imm(I), OrigReg(R) {}
2499
2500 void print(raw_ostream &OS) const;
2501 void dump() const;
2502};
2503
2504}
2505
2506void WorkItem::print(raw_ostream &OS) const {
2507 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2508 << " , add offset " << Imm;
2509}
2510
2511void WorkItem::dump() const {
2512 print(errs()); errs() << '\n';
2513}
2514
2515/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2516/// distance apart and try to form reuse opportunities between them.
2517void LSRInstance::GenerateCrossUseConstantOffsets() {
2518 // Group the registers by their value without any added constant offset.
2519 typedef std::map<int64_t, const SCEV *> ImmMapTy;
2520 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2521 RegMapTy Map;
2522 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2523 SmallVector<const SCEV *, 8> Sequence;
2524 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2525 I != E; ++I) {
2526 const SCEV *Reg = *I;
2527 int64_t Imm = ExtractImmediate(Reg, SE);
2528 std::pair<RegMapTy::iterator, bool> Pair =
2529 Map.insert(std::make_pair(Reg, ImmMapTy()));
2530 if (Pair.second)
2531 Sequence.push_back(Reg);
2532 Pair.first->second.insert(std::make_pair(Imm, *I));
2533 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2534 }
2535
2536 // Now examine each set of registers with the same base value. Build up
2537 // a list of work to do and do the work in a separate step so that we're
2538 // not adding formulae and register counts while we're searching.
2539 SmallVector<WorkItem, 32> WorkItems;
2540 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2541 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2542 E = Sequence.end(); I != E; ++I) {
2543 const SCEV *Reg = *I;
2544 const ImmMapTy &Imms = Map.find(Reg)->second;
2545
Dan Gohmancd045c02010-02-12 19:20:37 +00002546 // It's not worthwhile looking for reuse if there's only one offset.
2547 if (Imms.size() == 1)
2548 continue;
2549
Dan Gohman572645c2010-02-12 10:34:29 +00002550 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2551 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2552 J != JE; ++J)
2553 dbgs() << ' ' << J->first;
2554 dbgs() << '\n');
2555
2556 // Examine each offset.
2557 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2558 J != JE; ++J) {
2559 const SCEV *OrigReg = J->second;
2560
2561 int64_t JImm = J->first;
2562 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2563
2564 if (!isa<SCEVConstant>(OrigReg) &&
2565 UsedByIndicesMap[Reg].count() == 1) {
2566 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2567 continue;
2568 }
2569
2570 // Conservatively examine offsets between this orig reg a few selected
2571 // other orig regs.
2572 ImmMapTy::const_iterator OtherImms[] = {
2573 Imms.begin(), prior(Imms.end()),
2574 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2575 };
2576 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2577 ImmMapTy::const_iterator M = OtherImms[i];
Dan Gohmancd045c02010-02-12 19:20:37 +00002578 if (M == J || M == JE) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002579
2580 // Compute the difference between the two.
2581 int64_t Imm = (uint64_t)JImm - M->first;
2582 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2583 LUIdx = UsedByIndices.find_next(LUIdx))
2584 // Make a memo of this use, offset, and register tuple.
2585 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2586 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
Evan Cheng586f69a2009-11-12 07:35:05 +00002587 }
2588 }
2589 }
2590
Dan Gohman572645c2010-02-12 10:34:29 +00002591 Map.clear();
2592 Sequence.clear();
2593 UsedByIndicesMap.clear();
2594 UniqueItems.clear();
2595
2596 // Now iterate through the worklist and add new formulae.
2597 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2598 E = WorkItems.end(); I != E; ++I) {
2599 const WorkItem &WI = *I;
2600 size_t LUIdx = WI.LUIdx;
2601 LSRUse &LU = Uses[LUIdx];
2602 int64_t Imm = WI.Imm;
2603 const SCEV *OrigReg = WI.OrigReg;
2604
2605 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2606 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2607 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2608
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002609 // TODO: Use a more targeted data structure.
Dan Gohman572645c2010-02-12 10:34:29 +00002610 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2611 Formula F = LU.Formulae[L];
2612 // Use the immediate in the scaled register.
2613 if (F.ScaledReg == OrigReg) {
2614 int64_t Offs = (uint64_t)F.AM.BaseOffs +
2615 Imm * (uint64_t)F.AM.Scale;
2616 // Don't create 50 + reg(-50).
2617 if (F.referencesReg(SE.getSCEV(
2618 ConstantInt::get(IntTy, -(uint64_t)Offs))))
2619 continue;
2620 Formula NewF = F;
2621 NewF.AM.BaseOffs = Offs;
2622 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2623 LU.Kind, LU.AccessTy, TLI))
2624 continue;
2625 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2626
2627 // If the new scale is a constant in a register, and adding the constant
2628 // value to the immediate would produce a value closer to zero than the
2629 // immediate itself, then the formula isn't worthwhile.
2630 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2631 if (C->getValue()->getValue().isNegative() !=
2632 (NewF.AM.BaseOffs < 0) &&
2633 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
Dan Gohmane0567812010-04-08 23:03:40 +00002634 .ule(abs64(NewF.AM.BaseOffs)))
Dan Gohman572645c2010-02-12 10:34:29 +00002635 continue;
2636
2637 // OK, looks good.
2638 (void)InsertFormula(LU, LUIdx, NewF);
2639 } else {
2640 // Use the immediate in a base register.
2641 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2642 const SCEV *BaseReg = F.BaseRegs[N];
2643 if (BaseReg != OrigReg)
2644 continue;
2645 Formula NewF = F;
2646 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2647 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2648 LU.Kind, LU.AccessTy, TLI))
2649 continue;
2650 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2651
2652 // If the new formula has a constant in a register, and adding the
2653 // constant value to the immediate would produce a value closer to
2654 // zero than the immediate itself, then the formula isn't worthwhile.
2655 for (SmallVectorImpl<const SCEV *>::const_iterator
2656 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2657 J != JE; ++J)
2658 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
Dan Gohman360026f2010-05-18 23:48:08 +00002659 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2660 abs64(NewF.AM.BaseOffs)) &&
2661 (C->getValue()->getValue() +
2662 NewF.AM.BaseOffs).countTrailingZeros() >=
2663 CountTrailingZeros_64(NewF.AM.BaseOffs))
Dan Gohman572645c2010-02-12 10:34:29 +00002664 goto skip_formula;
2665
2666 // Ok, looks good.
2667 (void)InsertFormula(LU, LUIdx, NewF);
2668 break;
2669 skip_formula:;
2670 }
2671 }
2672 }
2673 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00002674}
2675
Dan Gohman572645c2010-02-12 10:34:29 +00002676/// GenerateAllReuseFormulae - Generate formulae for each use.
2677void
2678LSRInstance::GenerateAllReuseFormulae() {
Dan Gohmanc2385a02010-02-16 01:42:53 +00002679 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
Dan Gohman572645c2010-02-12 10:34:29 +00002680 // queries are more precise.
2681 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2682 LSRUse &LU = Uses[LUIdx];
2683 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2684 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2685 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2686 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2687 }
2688 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2689 LSRUse &LU = Uses[LUIdx];
2690 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2691 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2692 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2693 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2694 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2695 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2696 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2697 GenerateScales(LU, LUIdx, LU.Formulae[i]);
Dan Gohmanc2385a02010-02-16 01:42:53 +00002698 }
2699 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2700 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002701 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2702 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2703 }
2704
2705 GenerateCrossUseConstantOffsets();
2706}
2707
2708/// If their are multiple formulae with the same set of registers used
2709/// by other uses, pick the best one and delete the others.
2710void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2711#ifndef NDEBUG
2712 bool Changed = false;
2713#endif
2714
2715 // Collect the best formula for each unique set of shared registers. This
2716 // is reset for each use.
2717 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2718 BestFormulaeTy;
2719 BestFormulaeTy BestFormulae;
2720
2721 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2722 LSRUse &LU = Uses[LUIdx];
2723 FormulaSorter Sorter(L, LU, SE, DT);
Dan Gohman6458ff92010-05-18 22:37:37 +00002724 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << "\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002725
Dan Gohmanb2df4332010-05-18 23:42:37 +00002726 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002727 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2728 FIdx != NumForms; ++FIdx) {
2729 Formula &F = LU.Formulae[FIdx];
2730
2731 SmallVector<const SCEV *, 2> Key;
2732 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2733 JE = F.BaseRegs.end(); J != JE; ++J) {
2734 const SCEV *Reg = *J;
2735 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2736 Key.push_back(Reg);
2737 }
2738 if (F.ScaledReg &&
2739 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2740 Key.push_back(F.ScaledReg);
2741 // Unstable sort by host order ok, because this is only used for
2742 // uniquifying.
2743 std::sort(Key.begin(), Key.end());
2744
2745 std::pair<BestFormulaeTy::const_iterator, bool> P =
2746 BestFormulae.insert(std::make_pair(Key, FIdx));
2747 if (!P.second) {
2748 Formula &Best = LU.Formulae[P.first->second];
2749 if (Sorter.operator()(F, Best))
2750 std::swap(F, Best);
Dan Gohman6458ff92010-05-18 22:37:37 +00002751 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002752 dbgs() << "\n"
Dan Gohman6458ff92010-05-18 22:37:37 +00002753 " in favor of formula "; Best.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002754 dbgs() << '\n');
2755#ifndef NDEBUG
2756 Changed = true;
2757#endif
Dan Gohmand69d6282010-05-18 22:39:15 +00002758 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00002759 --FIdx;
2760 --NumForms;
Dan Gohmanb2df4332010-05-18 23:42:37 +00002761 Any = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002762 continue;
2763 }
Dan Gohman59dc6032010-05-07 23:36:59 +00002764 }
2765
Dan Gohman57aaa0b2010-05-18 23:55:57 +00002766 // Now that we've filtered out some formulae, recompute the Regs set.
Dan Gohmanb2df4332010-05-18 23:42:37 +00002767 if (Any)
2768 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman59dc6032010-05-07 23:36:59 +00002769
2770 // Reset this to prepare for the next use.
Dan Gohman572645c2010-02-12 10:34:29 +00002771 BestFormulae.clear();
2772 }
2773
2774 DEBUG(if (Changed) {
Dan Gohman9214b822010-02-13 02:06:02 +00002775 dbgs() << "\n"
2776 "After filtering out undesirable candidates:\n";
Dan Gohman572645c2010-02-12 10:34:29 +00002777 print_uses(dbgs());
2778 });
2779}
2780
Dan Gohmand079c302010-05-18 22:51:59 +00002781// This is a rough guess that seems to work fairly well.
2782static const size_t ComplexityLimit = UINT16_MAX;
2783
2784/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2785/// solutions the solver might have to consider. It almost never considers
2786/// this many solutions because it prune the search space, but the pruning
2787/// isn't always sufficient.
2788size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2789 uint32_t Power = 1;
2790 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2791 E = Uses.end(); I != E; ++I) {
2792 size_t FSize = I->Formulae.size();
2793 if (FSize >= ComplexityLimit) {
2794 Power = ComplexityLimit;
2795 break;
2796 }
2797 Power *= FSize;
2798 if (Power >= ComplexityLimit)
2799 break;
2800 }
2801 return Power;
2802}
2803
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002804/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
Dan Gohman572645c2010-02-12 10:34:29 +00002805/// formulae to choose from, use some rough heuristics to prune down the number
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002806/// of formulae. This keeps the main solver from taking an extraordinary amount
Dan Gohman572645c2010-02-12 10:34:29 +00002807/// of time in some worst-case scenarios.
2808void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
Dan Gohmana2086b32010-05-19 23:43:12 +00002809 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2810 DEBUG(dbgs() << "The search space is too complex.\n");
2811
2812 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2813 "which use a superset of registers used by other "
2814 "formulae.\n");
2815
2816 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2817 LSRUse &LU = Uses[LUIdx];
2818 bool Any = false;
2819 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2820 Formula &F = LU.Formulae[i];
2821 for (SmallVectorImpl<const SCEV *>::const_iterator
2822 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2823 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2824 Formula NewF = F;
2825 NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2826 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2827 (I - F.BaseRegs.begin()));
2828 if (LU.HasFormulaWithSameRegs(NewF)) {
2829 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
2830 LU.DeleteFormula(F);
2831 --i;
2832 --e;
2833 Any = true;
2834 break;
2835 }
2836 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2837 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2838 if (!F.AM.BaseGV) {
2839 Formula NewF = F;
2840 NewF.AM.BaseGV = GV;
2841 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2842 (I - F.BaseRegs.begin()));
2843 if (LU.HasFormulaWithSameRegs(NewF)) {
2844 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2845 dbgs() << '\n');
2846 LU.DeleteFormula(F);
2847 --i;
2848 --e;
2849 Any = true;
2850 break;
2851 }
2852 }
2853 }
2854 }
2855 }
2856 if (Any)
2857 LU.RecomputeRegs(LUIdx, RegUses);
2858 }
2859
2860 DEBUG(dbgs() << "After pre-selection:\n";
2861 print_uses(dbgs()));
2862 }
2863
2864 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2865 DEBUG(dbgs() << "The search space is too complex.\n");
2866
2867 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2868 "separated by a constant offset will use the same "
2869 "registers.\n");
2870
2871 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2872 LSRUse &LU = Uses[LUIdx];
2873 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2874 Formula &F = LU.Formulae[i];
2875 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2876 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2877 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2878 /*HasBaseReg=*/false,
2879 LU.Kind, LU.AccessTy)) {
2880 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
2881 dbgs() << '\n');
2882
2883 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
2884
2885 // Delete formulae from the new use which are no longer legal.
2886 bool Any = false;
2887 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
2888 Formula &F = LUThatHas->Formulae[i];
2889 if (!isLegalUse(F.AM,
2890 LUThatHas->MinOffset, LUThatHas->MaxOffset,
2891 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
2892 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2893 dbgs() << '\n');
2894 LUThatHas->DeleteFormula(F);
2895 --i;
2896 --e;
2897 Any = true;
2898 }
2899 }
2900 if (Any)
2901 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
2902
2903 // Update the relocs to reference the new use.
2904 for (size_t i = 0, e = Fixups.size(); i != e; ++i) {
2905 if (Fixups[i].LUIdx == LUIdx) {
2906 Fixups[i].LUIdx = LUThatHas - &Uses.front();
2907 Fixups[i].Offset += F.AM.BaseOffs;
2908 DEBUG(errs() << "New fixup has offset "
2909 << Fixups[i].Offset << "\n");
2910 }
2911 if (Fixups[i].LUIdx == NumUses-1)
2912 Fixups[i].LUIdx = LUIdx;
2913 }
2914
2915 // Delete the old use.
Dan Gohman5ce6d052010-05-20 15:17:54 +00002916 DeleteUse(LU);
Dan Gohmana2086b32010-05-19 23:43:12 +00002917 --LUIdx;
2918 --NumUses;
2919 break;
2920 }
2921 }
2922 }
2923 }
2924 }
2925
2926 DEBUG(dbgs() << "After pre-selection:\n";
2927 print_uses(dbgs()));
2928 }
2929
Dan Gohman572645c2010-02-12 10:34:29 +00002930 SmallPtrSet<const SCEV *, 4> Taken;
Dan Gohmand079c302010-05-18 22:51:59 +00002931 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
Dan Gohman572645c2010-02-12 10:34:29 +00002932 // Ok, we have too many of formulae on our hands to conveniently handle.
2933 // Use a rough heuristic to thin out the list.
Dan Gohman0da751b2010-05-18 22:41:32 +00002934 DEBUG(dbgs() << "The search space is too complex.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002935
2936 // Pick the register which is used by the most LSRUses, which is likely
2937 // to be a good reuse register candidate.
2938 const SCEV *Best = 0;
2939 unsigned BestNum = 0;
2940 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2941 I != E; ++I) {
2942 const SCEV *Reg = *I;
2943 if (Taken.count(Reg))
2944 continue;
2945 if (!Best)
2946 Best = Reg;
2947 else {
2948 unsigned Count = RegUses.getUsedByIndices(Reg).count();
2949 if (Count > BestNum) {
2950 Best = Reg;
2951 BestNum = Count;
2952 }
2953 }
2954 }
2955
2956 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002957 << " will yield profitable reuse.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002958 Taken.insert(Best);
2959
2960 // In any use with formulae which references this register, delete formulae
2961 // which don't reference it.
Dan Gohmanb2df4332010-05-18 23:42:37 +00002962 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2963 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002964 if (!LU.Regs.count(Best)) continue;
2965
Dan Gohmanb2df4332010-05-18 23:42:37 +00002966 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002967 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2968 Formula &F = LU.Formulae[i];
2969 if (!F.referencesReg(Best)) {
2970 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
Dan Gohmand69d6282010-05-18 22:39:15 +00002971 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00002972 --e;
2973 --i;
Dan Gohmanb2df4332010-05-18 23:42:37 +00002974 Any = true;
Dan Gohman59dc6032010-05-07 23:36:59 +00002975 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
Dan Gohman572645c2010-02-12 10:34:29 +00002976 continue;
2977 }
Dan Gohman572645c2010-02-12 10:34:29 +00002978 }
Dan Gohmanb2df4332010-05-18 23:42:37 +00002979
2980 if (Any)
2981 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman572645c2010-02-12 10:34:29 +00002982 }
2983
2984 DEBUG(dbgs() << "After pre-selection:\n";
2985 print_uses(dbgs()));
2986 }
2987}
2988
2989/// SolveRecurse - This is the recursive solver.
2990void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2991 Cost &SolutionCost,
2992 SmallVectorImpl<const Formula *> &Workspace,
2993 const Cost &CurCost,
2994 const SmallPtrSet<const SCEV *, 16> &CurRegs,
2995 DenseSet<const SCEV *> &VisitedRegs) const {
2996 // Some ideas:
2997 // - prune more:
2998 // - use more aggressive filtering
2999 // - sort the formula so that the most profitable solutions are found first
3000 // - sort the uses too
3001 // - search faster:
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003002 // - don't compute a cost, and then compare. compare while computing a cost
Dan Gohman572645c2010-02-12 10:34:29 +00003003 // and bail early.
3004 // - track register sets with SmallBitVector
3005
3006 const LSRUse &LU = Uses[Workspace.size()];
3007
3008 // If this use references any register that's already a part of the
3009 // in-progress solution, consider it a requirement that a formula must
3010 // reference that register in order to be considered. This prunes out
3011 // unprofitable searching.
3012 SmallSetVector<const SCEV *, 4> ReqRegs;
3013 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3014 E = CurRegs.end(); I != E; ++I)
Dan Gohman9214b822010-02-13 02:06:02 +00003015 if (LU.Regs.count(*I))
Dan Gohman572645c2010-02-12 10:34:29 +00003016 ReqRegs.insert(*I);
Dan Gohman572645c2010-02-12 10:34:29 +00003017
Dan Gohman9214b822010-02-13 02:06:02 +00003018 bool AnySatisfiedReqRegs = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003019 SmallPtrSet<const SCEV *, 16> NewRegs;
3020 Cost NewCost;
Dan Gohman9214b822010-02-13 02:06:02 +00003021retry:
Dan Gohman572645c2010-02-12 10:34:29 +00003022 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3023 E = LU.Formulae.end(); I != E; ++I) {
3024 const Formula &F = *I;
3025
3026 // Ignore formulae which do not use any of the required registers.
3027 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3028 JE = ReqRegs.end(); J != JE; ++J) {
3029 const SCEV *Reg = *J;
3030 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3031 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3032 F.BaseRegs.end())
3033 goto skip;
3034 }
Dan Gohman9214b822010-02-13 02:06:02 +00003035 AnySatisfiedReqRegs = true;
Dan Gohman572645c2010-02-12 10:34:29 +00003036
3037 // Evaluate the cost of the current formula. If it's already worse than
3038 // the current best, prune the search at that point.
3039 NewCost = CurCost;
3040 NewRegs = CurRegs;
3041 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3042 if (NewCost < SolutionCost) {
3043 Workspace.push_back(&F);
3044 if (Workspace.size() != Uses.size()) {
3045 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3046 NewRegs, VisitedRegs);
3047 if (F.getNumRegs() == 1 && Workspace.size() == 1)
3048 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3049 } else {
3050 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3051 dbgs() << ". Regs:";
3052 for (SmallPtrSet<const SCEV *, 16>::const_iterator
3053 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3054 dbgs() << ' ' << **I;
3055 dbgs() << '\n');
3056
3057 SolutionCost = NewCost;
3058 Solution = Workspace;
3059 }
3060 Workspace.pop_back();
3061 }
3062 skip:;
3063 }
Dan Gohman9214b822010-02-13 02:06:02 +00003064
3065 // If none of the formulae had all of the required registers, relax the
3066 // constraint so that we don't exclude all formulae.
3067 if (!AnySatisfiedReqRegs) {
Dan Gohman59dc6032010-05-07 23:36:59 +00003068 assert(!ReqRegs.empty() && "Solver failed even without required registers");
Dan Gohman9214b822010-02-13 02:06:02 +00003069 ReqRegs.clear();
3070 goto retry;
3071 }
Dan Gohman572645c2010-02-12 10:34:29 +00003072}
3073
3074void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3075 SmallVector<const Formula *, 8> Workspace;
3076 Cost SolutionCost;
3077 SolutionCost.Loose();
3078 Cost CurCost;
3079 SmallPtrSet<const SCEV *, 16> CurRegs;
3080 DenseSet<const SCEV *> VisitedRegs;
3081 Workspace.reserve(Uses.size());
3082
3083 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3084 CurRegs, VisitedRegs);
3085
3086 // Ok, we've now made all our decisions.
3087 DEBUG(dbgs() << "\n"
3088 "The chosen solution requires "; SolutionCost.print(dbgs());
3089 dbgs() << ":\n";
3090 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3091 dbgs() << " ";
3092 Uses[i].print(dbgs());
3093 dbgs() << "\n"
3094 " ";
3095 Solution[i]->print(dbgs());
3096 dbgs() << '\n';
3097 });
3098}
3099
3100/// getImmediateDominator - A handy utility for the specific DominatorTree
3101/// query that we need here.
3102///
3103static BasicBlock *getImmediateDominator(BasicBlock *BB, DominatorTree &DT) {
3104 DomTreeNode *Node = DT.getNode(BB);
3105 if (!Node) return 0;
3106 Node = Node->getIDom();
3107 if (!Node) return 0;
3108 return Node->getBlock();
3109}
3110
Dan Gohmane5f76872010-04-09 22:07:05 +00003111/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3112/// the dominator tree far as we can go while still being dominated by the
3113/// input positions. This helps canonicalize the insert position, which
3114/// encourages sharing.
3115BasicBlock::iterator
3116LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3117 const SmallVectorImpl<Instruction *> &Inputs)
3118 const {
3119 for (;;) {
3120 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3121 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3122
3123 BasicBlock *IDom;
3124 for (BasicBlock *Rung = IP->getParent(); ; Rung = IDom) {
3125 IDom = getImmediateDominator(Rung, DT);
3126 if (!IDom) return IP;
3127
3128 // Don't climb into a loop though.
3129 const Loop *IDomLoop = LI.getLoopFor(IDom);
3130 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3131 if (IDomDepth <= IPLoopDepth &&
3132 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3133 break;
3134 }
3135
3136 bool AllDominate = true;
3137 Instruction *BetterPos = 0;
3138 Instruction *Tentative = IDom->getTerminator();
3139 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3140 E = Inputs.end(); I != E; ++I) {
3141 Instruction *Inst = *I;
3142 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3143 AllDominate = false;
3144 break;
3145 }
3146 // Attempt to find an insert position in the middle of the block,
3147 // instead of at the end, so that it can be used for other expansions.
3148 if (IDom == Inst->getParent() &&
3149 (!BetterPos || DT.dominates(BetterPos, Inst)))
Douglas Gregor7d9663c2010-05-11 06:17:44 +00003150 BetterPos = llvm::next(BasicBlock::iterator(Inst));
Dan Gohmane5f76872010-04-09 22:07:05 +00003151 }
3152 if (!AllDominate)
3153 break;
3154 if (BetterPos)
3155 IP = BetterPos;
3156 else
3157 IP = Tentative;
3158 }
3159
3160 return IP;
3161}
3162
3163/// AdjustInsertPositionForExpand - Determine an input position which will be
Dan Gohmand96eae82010-04-09 02:00:38 +00003164/// dominated by the operands and which will dominate the result.
3165BasicBlock::iterator
Dan Gohmane5f76872010-04-09 22:07:05 +00003166LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3167 const LSRFixup &LF,
3168 const LSRUse &LU) const {
Dan Gohmand96eae82010-04-09 02:00:38 +00003169 // Collect some instructions which must be dominated by the
Dan Gohman448db1c2010-04-07 22:27:08 +00003170 // expanding replacement. These must be dominated by any operands that
Dan Gohman572645c2010-02-12 10:34:29 +00003171 // will be required in the expansion.
3172 SmallVector<Instruction *, 4> Inputs;
3173 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3174 Inputs.push_back(I);
3175 if (LU.Kind == LSRUse::ICmpZero)
3176 if (Instruction *I =
3177 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3178 Inputs.push_back(I);
Dan Gohman448db1c2010-04-07 22:27:08 +00003179 if (LF.PostIncLoops.count(L)) {
3180 if (LF.isUseFullyOutsideLoop(L))
Dan Gohman069d6f32010-03-02 01:59:21 +00003181 Inputs.push_back(L->getLoopLatch()->getTerminator());
3182 else
3183 Inputs.push_back(IVIncInsertPos);
3184 }
Dan Gohman701a4ae2010-04-08 05:57:57 +00003185 // The expansion must also be dominated by the increment positions of any
3186 // loops it for which it is using post-inc mode.
3187 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3188 E = LF.PostIncLoops.end(); I != E; ++I) {
3189 const Loop *PIL = *I;
3190 if (PIL == L) continue;
3191
Dan Gohmane5f76872010-04-09 22:07:05 +00003192 // Be dominated by the loop exit.
Dan Gohman701a4ae2010-04-08 05:57:57 +00003193 SmallVector<BasicBlock *, 4> ExitingBlocks;
3194 PIL->getExitingBlocks(ExitingBlocks);
3195 if (!ExitingBlocks.empty()) {
3196 BasicBlock *BB = ExitingBlocks[0];
3197 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3198 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3199 Inputs.push_back(BB->getTerminator());
3200 }
3201 }
Dan Gohman572645c2010-02-12 10:34:29 +00003202
3203 // Then, climb up the immediate dominator tree as far as we can go while
3204 // still being dominated by the input positions.
Dan Gohmane5f76872010-04-09 22:07:05 +00003205 IP = HoistInsertPosition(IP, Inputs);
Dan Gohmand96eae82010-04-09 02:00:38 +00003206
3207 // Don't insert instructions before PHI nodes.
Dan Gohman572645c2010-02-12 10:34:29 +00003208 while (isa<PHINode>(IP)) ++IP;
Dan Gohmand96eae82010-04-09 02:00:38 +00003209
3210 // Ignore debug intrinsics.
Dan Gohman449f31c2010-03-26 00:33:27 +00003211 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
Dan Gohman572645c2010-02-12 10:34:29 +00003212
Dan Gohmand96eae82010-04-09 02:00:38 +00003213 return IP;
3214}
3215
3216Value *LSRInstance::Expand(const LSRFixup &LF,
3217 const Formula &F,
3218 BasicBlock::iterator IP,
3219 SCEVExpander &Rewriter,
3220 SmallVectorImpl<WeakVH> &DeadInsts) const {
3221 const LSRUse &LU = Uses[LF.LUIdx];
3222
3223 // Determine an input position which will be dominated by the operands and
3224 // which will dominate the result.
Dan Gohmane5f76872010-04-09 22:07:05 +00003225 IP = AdjustInsertPositionForExpand(IP, LF, LU);
Dan Gohmand96eae82010-04-09 02:00:38 +00003226
Dan Gohman572645c2010-02-12 10:34:29 +00003227 // Inform the Rewriter if we have a post-increment use, so that it can
3228 // perform an advantageous expansion.
Dan Gohman448db1c2010-04-07 22:27:08 +00003229 Rewriter.setPostInc(LF.PostIncLoops);
Dan Gohman572645c2010-02-12 10:34:29 +00003230
3231 // This is the type that the user actually needs.
3232 const Type *OpTy = LF.OperandValToReplace->getType();
3233 // This will be the type that we'll initially expand to.
3234 const Type *Ty = F.getType();
3235 if (!Ty)
3236 // No type known; just expand directly to the ultimate type.
3237 Ty = OpTy;
3238 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3239 // Expand directly to the ultimate type if it's the right size.
3240 Ty = OpTy;
3241 // This is the type to do integer arithmetic in.
3242 const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3243
3244 // Build up a list of operands to add together to form the full base.
3245 SmallVector<const SCEV *, 8> Ops;
3246
3247 // Expand the BaseRegs portion.
3248 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3249 E = F.BaseRegs.end(); I != E; ++I) {
3250 const SCEV *Reg = *I;
3251 assert(!Reg->isZero() && "Zero allocated in a base register!");
3252
Dan Gohman448db1c2010-04-07 22:27:08 +00003253 // If we're expanding for a post-inc user, make the post-inc adjustment.
3254 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3255 Reg = TransformForPostIncUse(Denormalize, Reg,
3256 LF.UserInst, LF.OperandValToReplace,
3257 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003258
3259 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3260 }
3261
Dan Gohman087bd1e2010-03-03 05:29:13 +00003262 // Flush the operand list to suppress SCEVExpander hoisting.
3263 if (!Ops.empty()) {
3264 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3265 Ops.clear();
3266 Ops.push_back(SE.getUnknown(FullV));
3267 }
3268
Dan Gohman572645c2010-02-12 10:34:29 +00003269 // Expand the ScaledReg portion.
3270 Value *ICmpScaledV = 0;
3271 if (F.AM.Scale != 0) {
3272 const SCEV *ScaledS = F.ScaledReg;
3273
Dan Gohman448db1c2010-04-07 22:27:08 +00003274 // If we're expanding for a post-inc user, make the post-inc adjustment.
3275 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3276 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3277 LF.UserInst, LF.OperandValToReplace,
3278 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003279
3280 if (LU.Kind == LSRUse::ICmpZero) {
3281 // An interesting way of "folding" with an icmp is to use a negated
3282 // scale, which we'll implement by inserting it into the other operand
3283 // of the icmp.
3284 assert(F.AM.Scale == -1 &&
3285 "The only scale supported by ICmpZero uses is -1!");
3286 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3287 } else {
3288 // Otherwise just expand the scaled register and an explicit scale,
3289 // which is expected to be matched as part of the address.
3290 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3291 ScaledS = SE.getMulExpr(ScaledS,
Dan Gohmandeff6212010-05-03 22:09:21 +00003292 SE.getConstant(ScaledS->getType(), F.AM.Scale));
Dan Gohman572645c2010-02-12 10:34:29 +00003293 Ops.push_back(ScaledS);
Dan Gohman087bd1e2010-03-03 05:29:13 +00003294
3295 // Flush the operand list to suppress SCEVExpander hoisting.
3296 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3297 Ops.clear();
3298 Ops.push_back(SE.getUnknown(FullV));
Dan Gohman572645c2010-02-12 10:34:29 +00003299 }
3300 }
3301
Dan Gohman087bd1e2010-03-03 05:29:13 +00003302 // Expand the GV portion.
3303 if (F.AM.BaseGV) {
3304 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3305
3306 // Flush the operand list to suppress SCEVExpander hoisting.
3307 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3308 Ops.clear();
3309 Ops.push_back(SE.getUnknown(FullV));
3310 }
3311
3312 // Expand the immediate portion.
Dan Gohman572645c2010-02-12 10:34:29 +00003313 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3314 if (Offset != 0) {
3315 if (LU.Kind == LSRUse::ICmpZero) {
3316 // The other interesting way of "folding" with an ICmpZero is to use a
3317 // negated immediate.
3318 if (!ICmpScaledV)
3319 ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3320 else {
3321 Ops.push_back(SE.getUnknown(ICmpScaledV));
3322 ICmpScaledV = ConstantInt::get(IntTy, Offset);
3323 }
3324 } else {
3325 // Just add the immediate values. These again are expected to be matched
3326 // as part of the address.
Dan Gohman087bd1e2010-03-03 05:29:13 +00003327 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
Dan Gohman572645c2010-02-12 10:34:29 +00003328 }
3329 }
3330
3331 // Emit instructions summing all the operands.
3332 const SCEV *FullS = Ops.empty() ?
Dan Gohmandeff6212010-05-03 22:09:21 +00003333 SE.getConstant(IntTy, 0) :
Dan Gohman572645c2010-02-12 10:34:29 +00003334 SE.getAddExpr(Ops);
3335 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3336
3337 // We're done expanding now, so reset the rewriter.
Dan Gohman448db1c2010-04-07 22:27:08 +00003338 Rewriter.clearPostInc();
Dan Gohman572645c2010-02-12 10:34:29 +00003339
3340 // An ICmpZero Formula represents an ICmp which we're handling as a
3341 // comparison against zero. Now that we've expanded an expression for that
3342 // form, update the ICmp's other operand.
3343 if (LU.Kind == LSRUse::ICmpZero) {
3344 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3345 DeadInsts.push_back(CI->getOperand(1));
3346 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3347 "a scale at the same time!");
3348 if (F.AM.Scale == -1) {
3349 if (ICmpScaledV->getType() != OpTy) {
3350 Instruction *Cast =
3351 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3352 OpTy, false),
3353 ICmpScaledV, OpTy, "tmp", CI);
3354 ICmpScaledV = Cast;
3355 }
3356 CI->setOperand(1, ICmpScaledV);
3357 } else {
3358 assert(F.AM.Scale == 0 &&
3359 "ICmp does not support folding a global value and "
3360 "a scale at the same time!");
3361 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3362 -(uint64_t)Offset);
3363 if (C->getType() != OpTy)
3364 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3365 OpTy, false),
3366 C, OpTy);
3367
3368 CI->setOperand(1, C);
3369 }
3370 }
3371
3372 return FullV;
3373}
3374
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003375/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3376/// of their operands effectively happens in their predecessor blocks, so the
3377/// expression may need to be expanded in multiple places.
3378void LSRInstance::RewriteForPHI(PHINode *PN,
3379 const LSRFixup &LF,
3380 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003381 SCEVExpander &Rewriter,
3382 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003383 Pass *P) const {
3384 DenseMap<BasicBlock *, Value *> Inserted;
3385 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3386 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3387 BasicBlock *BB = PN->getIncomingBlock(i);
3388
3389 // If this is a critical edge, split the edge so that we do not insert
3390 // the code on all predecessor/successor paths. We do this unless this
3391 // is the canonical backedge for this loop, which complicates post-inc
3392 // users.
3393 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3394 !isa<IndirectBrInst>(BB->getTerminator()) &&
3395 (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3396 // Split the critical edge.
3397 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3398
3399 // If PN is outside of the loop and BB is in the loop, we want to
3400 // move the block to be immediately before the PHI block, not
3401 // immediately after BB.
3402 if (L->contains(BB) && !L->contains(PN))
3403 NewBB->moveBefore(PN->getParent());
3404
3405 // Splitting the edge can reduce the number of PHI entries we have.
3406 e = PN->getNumIncomingValues();
3407 BB = NewBB;
3408 i = PN->getBasicBlockIndex(BB);
3409 }
3410
3411 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3412 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3413 if (!Pair.second)
3414 PN->setIncomingValue(i, Pair.first->second);
3415 else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003416 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003417
3418 // If this is reuse-by-noop-cast, insert the noop cast.
3419 const Type *OpTy = LF.OperandValToReplace->getType();
3420 if (FullV->getType() != OpTy)
3421 FullV =
3422 CastInst::Create(CastInst::getCastOpcode(FullV, false,
3423 OpTy, false),
3424 FullV, LF.OperandValToReplace->getType(),
3425 "tmp", BB->getTerminator());
3426
3427 PN->setIncomingValue(i, FullV);
3428 Pair.first->second = FullV;
3429 }
3430 }
3431}
3432
Dan Gohman572645c2010-02-12 10:34:29 +00003433/// Rewrite - Emit instructions for the leading candidate expression for this
3434/// LSRUse (this is called "expanding"), and update the UserInst to reference
3435/// the newly expanded value.
3436void LSRInstance::Rewrite(const LSRFixup &LF,
3437 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00003438 SCEVExpander &Rewriter,
3439 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00003440 Pass *P) const {
Dan Gohman572645c2010-02-12 10:34:29 +00003441 // First, find an insertion point that dominates UserInst. For PHI nodes,
3442 // find the nearest block which dominates all the relevant uses.
3443 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
Dan Gohman454d26d2010-02-22 04:11:59 +00003444 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003445 } else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003446 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
Dan Gohman572645c2010-02-12 10:34:29 +00003447
3448 // If this is reuse-by-noop-cast, insert the noop cast.
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003449 const Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003450 if (FullV->getType() != OpTy) {
3451 Instruction *Cast =
3452 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3453 FullV, OpTy, "tmp", LF.UserInst);
3454 FullV = Cast;
3455 }
3456
3457 // Update the user. ICmpZero is handled specially here (for now) because
3458 // Expand may have updated one of the operands of the icmp already, and
3459 // its new value may happen to be equal to LF.OperandValToReplace, in
3460 // which case doing replaceUsesOfWith leads to replacing both operands
3461 // with the same value. TODO: Reorganize this.
3462 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3463 LF.UserInst->setOperand(0, FullV);
3464 else
3465 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3466 }
3467
3468 DeadInsts.push_back(LF.OperandValToReplace);
3469}
3470
3471void
3472LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3473 Pass *P) {
3474 // Keep track of instructions we may have made dead, so that
3475 // we can remove them after we are done working.
3476 SmallVector<WeakVH, 16> DeadInsts;
3477
3478 SCEVExpander Rewriter(SE);
3479 Rewriter.disableCanonicalMode();
3480 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3481
3482 // Expand the new value definitions and update the users.
3483 for (size_t i = 0, e = Fixups.size(); i != e; ++i) {
3484 size_t LUIdx = Fixups[i].LUIdx;
3485
Dan Gohman454d26d2010-02-22 04:11:59 +00003486 Rewrite(Fixups[i], *Solution[LUIdx], Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003487
3488 Changed = true;
3489 }
3490
3491 // Clean up after ourselves. This must be done before deleting any
3492 // instructions.
3493 Rewriter.clear();
3494
3495 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3496}
3497
3498LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3499 : IU(P->getAnalysis<IVUsers>()),
3500 SE(P->getAnalysis<ScalarEvolution>()),
3501 DT(P->getAnalysis<DominatorTree>()),
Dan Gohmane5f76872010-04-09 22:07:05 +00003502 LI(P->getAnalysis<LoopInfo>()),
Dan Gohman572645c2010-02-12 10:34:29 +00003503 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
Devang Patel0f54dcb2007-03-06 21:14:09 +00003504
Dan Gohman03e896b2009-11-05 21:11:53 +00003505 // If LoopSimplify form is not available, stay out of trouble.
Dan Gohman572645c2010-02-12 10:34:29 +00003506 if (!L->isLoopSimplifyForm()) return;
Dan Gohman03e896b2009-11-05 21:11:53 +00003507
Dan Gohman572645c2010-02-12 10:34:29 +00003508 // If there's no interesting work to be done, bail early.
3509 if (IU.empty()) return;
Dan Gohman80b0f8c2009-03-09 20:34:59 +00003510
Dan Gohman572645c2010-02-12 10:34:29 +00003511 DEBUG(dbgs() << "\nLSR on loop ";
3512 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3513 dbgs() << ":\n");
Dan Gohmanf7912df2009-03-09 20:46:50 +00003514
Dan Gohman572645c2010-02-12 10:34:29 +00003515 /// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003516 /// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00003517 OptimizeShadowIV();
Chris Lattner010de252005-08-08 05:28:22 +00003518
Dan Gohman572645c2010-02-12 10:34:29 +00003519 // Change loop terminating condition to use the postinc iv when possible.
3520 Changed |= OptimizeLoopTermCond();
Evan Cheng5792f512009-05-11 22:33:01 +00003521
Dan Gohman572645c2010-02-12 10:34:29 +00003522 CollectInterestingTypesAndFactors();
3523 CollectFixupsAndInitialFormulae();
3524 CollectLoopInvariantFixupsAndFormulae();
Chris Lattner010de252005-08-08 05:28:22 +00003525
Dan Gohman572645c2010-02-12 10:34:29 +00003526 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3527 print_uses(dbgs()));
Misha Brukmanfd939082005-04-21 23:48:37 +00003528
Dan Gohman572645c2010-02-12 10:34:29 +00003529 // Now use the reuse data to generate a bunch of interesting ways
3530 // to formulate the values needed for the uses.
3531 GenerateAllReuseFormulae();
Evan Chengd1d6b5c2006-03-16 21:53:05 +00003532
Dan Gohman572645c2010-02-12 10:34:29 +00003533 DEBUG(dbgs() << "\n"
3534 "After generating reuse formulae:\n";
3535 print_uses(dbgs()));
Nate Begemaneaa13852004-10-18 21:08:22 +00003536
Dan Gohman572645c2010-02-12 10:34:29 +00003537 FilterOutUndesirableDedicatedRegisters();
3538 NarrowSearchSpaceUsingHeuristics();
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003539
Dan Gohman572645c2010-02-12 10:34:29 +00003540 SmallVector<const Formula *, 8> Solution;
3541 Solve(Solution);
3542 assert(Solution.size() == Uses.size() && "Malformed solution!");
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003543
Dan Gohman572645c2010-02-12 10:34:29 +00003544 // Release memory that is no longer needed.
3545 Factors.clear();
3546 Types.clear();
3547 RegUses.clear();
3548
3549#ifndef NDEBUG
3550 // Formulae should be legal.
3551 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3552 E = Uses.end(); I != E; ++I) {
3553 const LSRUse &LU = *I;
3554 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3555 JE = LU.Formulae.end(); J != JE; ++J)
3556 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3557 LU.Kind, LU.AccessTy, TLI) &&
3558 "Illegal formula generated!");
3559 };
3560#endif
3561
3562 // Now that we've decided what we want, make it so.
3563 ImplementSolution(Solution, P);
3564}
3565
3566void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3567 if (Factors.empty() && Types.empty()) return;
3568
3569 OS << "LSR has identified the following interesting factors and types: ";
3570 bool First = true;
3571
3572 for (SmallSetVector<int64_t, 8>::const_iterator
3573 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3574 if (!First) OS << ", ";
3575 First = false;
3576 OS << '*' << *I;
Evan Cheng81ebdcf2009-11-10 21:14:05 +00003577 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00003578
Dan Gohman572645c2010-02-12 10:34:29 +00003579 for (SmallSetVector<const Type *, 4>::const_iterator
3580 I = Types.begin(), E = Types.end(); I != E; ++I) {
3581 if (!First) OS << ", ";
3582 First = false;
3583 OS << '(' << **I << ')';
3584 }
3585 OS << '\n';
3586}
3587
3588void LSRInstance::print_fixups(raw_ostream &OS) const {
3589 OS << "LSR is examining the following fixup sites:\n";
3590 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3591 E = Fixups.end(); I != E; ++I) {
3592 const LSRFixup &LF = *I;
3593 dbgs() << " ";
3594 LF.print(OS);
3595 OS << '\n';
3596 }
3597}
3598
3599void LSRInstance::print_uses(raw_ostream &OS) const {
3600 OS << "LSR is examining the following uses:\n";
3601 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3602 E = Uses.end(); I != E; ++I) {
3603 const LSRUse &LU = *I;
3604 dbgs() << " ";
3605 LU.print(OS);
3606 OS << '\n';
3607 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3608 JE = LU.Formulae.end(); J != JE; ++J) {
3609 OS << " ";
3610 J->print(OS);
3611 OS << '\n';
3612 }
3613 }
3614}
3615
3616void LSRInstance::print(raw_ostream &OS) const {
3617 print_factors_and_types(OS);
3618 print_fixups(OS);
3619 print_uses(OS);
3620}
3621
3622void LSRInstance::dump() const {
3623 print(errs()); errs() << '\n';
3624}
3625
3626namespace {
3627
3628class LoopStrengthReduce : public LoopPass {
3629 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3630 /// transformation profitability.
3631 const TargetLowering *const TLI;
3632
3633public:
3634 static char ID; // Pass ID, replacement for typeid
3635 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3636
3637private:
3638 bool runOnLoop(Loop *L, LPPassManager &LPM);
3639 void getAnalysisUsage(AnalysisUsage &AU) const;
3640};
3641
3642}
3643
3644char LoopStrengthReduce::ID = 0;
3645static RegisterPass<LoopStrengthReduce>
3646X("loop-reduce", "Loop Strength Reduction");
3647
3648Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3649 return new LoopStrengthReduce(TLI);
3650}
3651
3652LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3653 : LoopPass(&ID), TLI(tli) {}
3654
3655void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3656 // We split critical edges, so we change the CFG. However, we do update
3657 // many analyses if they are around.
3658 AU.addPreservedID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00003659 AU.addPreserved("domfrontier");
3660
Dan Gohmane5f76872010-04-09 22:07:05 +00003661 AU.addRequired<LoopInfo>();
3662 AU.addPreserved<LoopInfo>();
Dan Gohman572645c2010-02-12 10:34:29 +00003663 AU.addRequiredID(LoopSimplifyID);
3664 AU.addRequired<DominatorTree>();
3665 AU.addPreserved<DominatorTree>();
3666 AU.addRequired<ScalarEvolution>();
3667 AU.addPreserved<ScalarEvolution>();
3668 AU.addRequired<IVUsers>();
3669 AU.addPreserved<IVUsers>();
3670}
3671
3672bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3673 bool Changed = false;
3674
3675 // Run the main LSR transformation.
3676 Changed |= LSRInstance(TLI, L, this).getChanged();
3677
Dan Gohmanafc36a92009-05-02 18:29:22 +00003678 // At this point, it is worth checking to see if any recurrence PHIs are also
Dan Gohman35738ac2009-05-04 22:30:44 +00003679 // dead, so that we can remove them as well.
Dan Gohman9fff2182010-01-05 16:31:45 +00003680 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohmanafc36a92009-05-02 18:29:22 +00003681
Evan Cheng1ce75dc2008-07-07 19:51:32 +00003682 return Changed;
Nate Begemaneaa13852004-10-18 21:08:22 +00003683}