blob: 64ee5645fd2cc62c6f3aefdd7bbe38d2f66db71e [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
Dale Johannesen5981f6b2009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033#include "llvm/Support/Debug.h"
Chris Lattner3bbf2a72009-03-31 22:13:29 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattner8a6411c2009-08-23 04:37:46 +000035#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000036#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
Chris Lattnera0d64b92009-12-31 07:33:14 +000038#include "llvm/ADT/DenseMap.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000040#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000041using namespace llvm;
42
43STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
47
48namespace {
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000049 struct ValueEntry {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000050 unsigned Rank;
51 Value *Op;
52 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53 };
54 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
56 }
57}
58
Devang Patele93afd52008-11-21 21:00:20 +000059#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060/// PrintOps - Print out the expression identified in the Ops list.
61///
62static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
63 Module *M = I->getParent()->getParent()->getParent();
Chris Lattnerb0659d42009-08-23 04:52:46 +000064 errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner0f4ee1a2009-12-31 07:17:37 +000065 << *Ops[0].Op->getType() << '\t';
Chris Lattner51216ad2008-08-19 04:45:19 +000066 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner0f4ee1a2009-12-31 07:17:37 +000067 errs() << "[ ";
68 WriteAsOperand(errs(), Ops[i].Op, false, M);
69 errs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner51216ad2008-08-19 04:45:19 +000070 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071}
Devang Patel4354f5c2008-11-21 20:00:59 +000072#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073
Dan Gohman089efff2008-05-13 00:00:25 +000074namespace {
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000075 class Reassociate : public FunctionPass {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattner3bbf2a72009-03-31 22:13:29 +000077 std::map<AssertingVH<>, unsigned> ValueRankMap;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 bool MadeChange;
79 public:
80 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000081 Reassociate() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082
83 bool runOnFunction(Function &F);
84
85 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86 AU.setPreservesCFG();
87 }
88 private:
89 void BuildRankMap(Function &F);
90 unsigned getRank(Value *V);
91 void ReassociateExpression(BinaryOperator *I);
92 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
93 unsigned Idx = 0);
94 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
95 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
96 void LinearizeExpr(BinaryOperator *I);
97 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
98 void ReassociateBB(BasicBlock *BB);
99
100 void RemoveDeadBinaryOp(Value *V);
101 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000102}
103
Dan Gohman089efff2008-05-13 00:00:25 +0000104char Reassociate::ID = 0;
105static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
106
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107// Public interface to the Reassociate pass
108FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
109
110void Reassociate::RemoveDeadBinaryOp(Value *V) {
111 Instruction *Op = dyn_cast<Instruction>(V);
112 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
113 return;
114
115 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
116 RemoveDeadBinaryOp(LHS);
117 RemoveDeadBinaryOp(RHS);
118}
119
120
121static bool isUnmovableInstruction(Instruction *I) {
122 if (I->getOpcode() == Instruction::PHI ||
123 I->getOpcode() == Instruction::Alloca ||
124 I->getOpcode() == Instruction::Load ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000125 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen5981f6b2009-03-06 01:41:59 +0000126 (I->getOpcode() == Instruction::Call &&
127 !isa<DbgInfoIntrinsic>(I)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000128 I->getOpcode() == Instruction::UDiv ||
129 I->getOpcode() == Instruction::SDiv ||
130 I->getOpcode() == Instruction::FDiv ||
131 I->getOpcode() == Instruction::URem ||
132 I->getOpcode() == Instruction::SRem ||
133 I->getOpcode() == Instruction::FRem)
134 return true;
135 return false;
136}
137
138void Reassociate::BuildRankMap(Function &F) {
139 unsigned i = 2;
140
141 // Assign distinct ranks to function arguments
142 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000143 ValueRankMap[&*I] = ++i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144
145 ReversePostOrderTraversal<Function*> RPOT(&F);
146 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
147 E = RPOT.end(); I != E; ++I) {
148 BasicBlock *BB = *I;
149 unsigned BBRank = RankMap[BB] = ++i << 16;
150
151 // Walk the basic block, adding precomputed ranks for any instructions that
152 // we cannot move. This ensures that the ranks for these instructions are
153 // all different in the block.
154 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
155 if (isUnmovableInstruction(I))
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000156 ValueRankMap[&*I] = ++BBRank;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157 }
158}
159
160unsigned Reassociate::getRank(Value *V) {
161 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
162
163 Instruction *I = dyn_cast<Instruction>(V);
164 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
165
166 unsigned &CachedRank = ValueRankMap[I];
167 if (CachedRank) return CachedRank; // Rank already known?
168
169 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
170 // we can reassociate expressions for code motion! Since we do not recurse
171 // for PHI nodes, we cannot have infinite recursion here, because there
172 // cannot be loops in the value graph that do not go through PHI nodes.
173 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
174 for (unsigned i = 0, e = I->getNumOperands();
175 i != e && Rank != MaxRank; ++i)
176 Rank = std::max(Rank, getRank(I->getOperand(i)));
177
178 // If this is a not or neg instruction, do not count it for rank. This
179 // assures us that X and ~X will have the same rank.
180 if (!I->getType()->isInteger() ||
Owen Anderson76f49252009-07-13 22:18:28 +0000181 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000182 ++Rank;
183
Chris Lattner8a6411c2009-08-23 04:37:46 +0000184 //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
185 // << Rank << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000186
187 return CachedRank = Rank;
188}
189
190/// isReassociableOp - Return true if V is an instruction of the specified
191/// opcode and if it only has one use.
192static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
193 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
194 cast<Instruction>(V)->getOpcode() == Opcode)
195 return cast<BinaryOperator>(V);
196 return 0;
197}
198
199/// LowerNegateToMultiply - Replace 0-X with X*-1.
200///
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000201static Instruction *LowerNegateToMultiply(Instruction *Neg,
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000202 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersonaac28372009-07-31 20:28:14 +0000203 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000204
Gabor Greifa645dd32008-05-16 19:29:10 +0000205 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000206 ValueRankMap.erase(Neg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000207 Res->takeName(Neg);
208 Neg->replaceAllUsesWith(Res);
209 Neg->eraseFromParent();
210 return Res;
211}
212
213// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
214// Note that if D is also part of the expression tree that we recurse to
215// linearize it as well. Besides that case, this does not recurse into A,B, or
216// C.
217void Reassociate::LinearizeExpr(BinaryOperator *I) {
218 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
219 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
220 assert(isReassociableOp(LHS, I->getOpcode()) &&
221 isReassociableOp(RHS, I->getOpcode()) &&
222 "Not an expression that needs linearization?");
223
Chris Lattner8a6411c2009-08-23 04:37:46 +0000224 DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000225
226 // Move the RHS instruction to live immediately before I, avoiding breaking
227 // dominator properties.
228 RHS->moveBefore(I);
229
230 // Move operands around to do the linearization.
231 I->setOperand(1, RHS->getOperand(0));
232 RHS->setOperand(0, LHS);
233 I->setOperand(0, RHS);
234
235 ++NumLinear;
236 MadeChange = true;
Chris Lattner8a6411c2009-08-23 04:37:46 +0000237 DEBUG(errs() << "Linearized: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238
239 // If D is part of this expression tree, tail recurse.
240 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
241 LinearizeExpr(I);
242}
243
244
245/// LinearizeExprTree - Given an associative binary expression tree, traverse
246/// all of the uses putting it into canonical form. This forces a left-linear
247/// form of the the expression (((a+b)+c)+d), and collects information about the
248/// rank of the non-tree operands.
249///
250/// NOTE: These intentionally destroys the expression tree operands (turning
251/// them into undef values) to reduce #uses of the values. This means that the
252/// caller MUST use something like RewriteExprTree to put the values back in.
253///
254void Reassociate::LinearizeExprTree(BinaryOperator *I,
255 std::vector<ValueEntry> &Ops) {
256 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
257 unsigned Opcode = I->getOpcode();
258
259 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
260 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
261 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
262
263 // If this is a multiply expression tree and it contains internal negations,
264 // transform them into multiplies by -1 so they can be reassociated.
265 if (I->getOpcode() == Instruction::Mul) {
Owen Anderson76f49252009-07-13 22:18:28 +0000266 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000267 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000268 LHSBO = isReassociableOp(LHS, Opcode);
269 }
Owen Anderson76f49252009-07-13 22:18:28 +0000270 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000271 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000272 RHSBO = isReassociableOp(RHS, Opcode);
273 }
274 }
275
276 if (!LHSBO) {
277 if (!RHSBO) {
278 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
279 // such, just remember these operands and their rank.
280 Ops.push_back(ValueEntry(getRank(LHS), LHS));
281 Ops.push_back(ValueEntry(getRank(RHS), RHS));
282
283 // Clear the leaves out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000284 I->setOperand(0, UndefValue::get(I->getType()));
285 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286 return;
287 } else {
288 // Turn X+(Y+Z) -> (Y+Z)+X
289 std::swap(LHSBO, RHSBO);
290 std::swap(LHS, RHS);
291 bool Success = !I->swapOperands();
292 assert(Success && "swapOperands failed");
Devang Patel4354f5c2008-11-21 20:00:59 +0000293 Success = false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000294 MadeChange = true;
295 }
296 } else if (RHSBO) {
297 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
298 // part of the expression tree.
299 LinearizeExpr(I);
300 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
301 RHS = I->getOperand(1);
302 RHSBO = 0;
303 }
304
305 // Okay, now we know that the LHS is a nested expression and that the RHS is
306 // not. Perform reassociation.
307 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
308
309 // Move LHS right before I to make sure that the tree expression dominates all
310 // values.
311 LHSBO->moveBefore(I);
312
313 // Linearize the expression tree on the LHS.
314 LinearizeExprTree(LHSBO, Ops);
315
316 // Remember the RHS operand and its rank.
317 Ops.push_back(ValueEntry(getRank(RHS), RHS));
318
319 // Clear the RHS leaf out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000320 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321}
322
323// RewriteExprTree - Now that the operands for this expression tree are
324// linearized and optimized, emit them in-order. This function is written to be
325// tail recursive.
326void Reassociate::RewriteExprTree(BinaryOperator *I,
327 std::vector<ValueEntry> &Ops,
328 unsigned i) {
329 if (i+2 == Ops.size()) {
330 if (I->getOperand(0) != Ops[i].Op ||
331 I->getOperand(1) != Ops[i+1].Op) {
332 Value *OldLHS = I->getOperand(0);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000333 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000334 I->setOperand(0, Ops[i].Op);
335 I->setOperand(1, Ops[i+1].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000336 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337 MadeChange = true;
338 ++NumChanged;
339
340 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
341 // delete the extra, now dead, nodes.
342 RemoveDeadBinaryOp(OldLHS);
343 }
344 return;
345 }
346 assert(i+2 < Ops.size() && "Ops index out of range!");
347
348 if (I->getOperand(1) != Ops[i].Op) {
Chris Lattner8a6411c2009-08-23 04:37:46 +0000349 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000350 I->setOperand(1, Ops[i].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000351 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000352 MadeChange = true;
353 ++NumChanged;
354 }
355
356 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
357 assert(LHS->getOpcode() == I->getOpcode() &&
358 "Improper expression tree!");
359
360 // Compactify the tree instructions together with each other to guarantee
361 // that the expression tree is dominated by all of Ops.
362 LHS->moveBefore(I);
363 RewriteExprTree(LHS, Ops, i+1);
364}
365
366
367
368// NegateValue - Insert instructions before the instruction pointed to by BI,
369// that computes the negative version of the value specified. The negative
370// version of the value is returned, and BI is left pointing at the instruction
371// that should be processed next by the reassociation pass.
372//
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000373static Value *NegateValue(Value *V, Instruction *BI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000374 // We are trying to expose opportunity for reassociation. One of the things
375 // that we want to do to achieve this is to push a negation as deep into an
376 // expression chain as possible, to expose the add instructions. In practice,
377 // this means that we turn this:
378 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
379 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
380 // the constants. We assume that instcombine will clean up the mess later if
381 // we introduce tons of unnecessary negation instructions...
382 //
383 if (Instruction *I = dyn_cast<Instruction>(V))
384 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
385 // Push the negates through the add.
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000386 I->setOperand(0, NegateValue(I->getOperand(0), BI));
387 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000388
389 // We must move the add instruction here, because the neg instructions do
390 // not dominate the old add instruction in general. By moving it, we are
391 // assured that the neg instructions we just inserted dominate the
392 // instruction we are about to insert after them.
393 //
394 I->moveBefore(BI);
395 I->setName(I->getName()+".neg");
396 return I;
397 }
398
399 // Insert a 'neg' instruction that subtracts the value from zero to get the
400 // negation.
401 //
Dan Gohmancdff2122009-08-12 16:23:25 +0000402 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403}
404
Chris Lattner6cf17172008-02-17 20:44:51 +0000405/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
406/// X-Y into (X + -Y).
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000407static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner6cf17172008-02-17 20:44:51 +0000408 // If this is a negation, we can't split it up!
Owen Anderson76f49252009-07-13 22:18:28 +0000409 if (BinaryOperator::isNeg(Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000410 return false;
411
412 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner4846b312008-02-17 20:51:26 +0000413 // subtract or if this is only used by one.
414 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
415 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000416 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000417 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner720f2ba2008-02-17 20:54:40 +0000418 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000419 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000420 if (Sub->hasOneUse() &&
421 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
422 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner6cf17172008-02-17 20:44:51 +0000423 return true;
424
425 return false;
426}
427
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000428/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
429/// only used by an add, transform this into (X+(0-Y)) to promote better
430/// reassociation.
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000431static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000432 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000433 // Convert a subtract into an add and a neg instruction... so that sub
434 // instructions can be commuted with other add instructions...
435 //
436 // Calculate the negative value of Operand 1 of the sub instruction...
437 // and set it as the RHS of the add instruction we just made...
438 //
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000439 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440 Instruction *New =
Gabor Greifa645dd32008-05-16 19:29:10 +0000441 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442 New->takeName(Sub);
443
444 // Everyone now refers to the add instruction.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000445 ValueRankMap.erase(Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000446 Sub->replaceAllUsesWith(New);
447 Sub->eraseFromParent();
448
Chris Lattner8a6411c2009-08-23 04:37:46 +0000449 DEBUG(errs() << "Negated: " << *New << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000450 return New;
451}
452
453/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
454/// by one, change this into a multiply by a constant to assist with further
455/// reassociation.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000456static Instruction *ConvertShiftToMul(Instruction *Shl,
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000457 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000458 // If an operand of this shift is a reassociable multiply, or if the shift
459 // is used by a reassociable multiply or add, turn into a multiply.
460 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
461 (Shl->hasOneUse() &&
462 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
463 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneacb44d2009-07-24 23:12:02 +0000464 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Owen Andersonfa089ab2009-07-03 19:42:02 +0000465 MulCst =
Owen Anderson02b48c32009-07-29 18:55:55 +0000466 ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467
Gabor Greifa645dd32008-05-16 19:29:10 +0000468 Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000469 "", Shl);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000470 ValueRankMap.erase(Shl);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000471 Mul->takeName(Shl);
472 Shl->replaceAllUsesWith(Mul);
473 Shl->eraseFromParent();
474 return Mul;
475 }
476 return 0;
477}
478
479// Scan backwards and forwards among values with the same rank as element i to
480// see if X exists. If X does not exist, return i.
481static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
482 Value *X) {
483 unsigned XRank = Ops[i].Rank;
484 unsigned e = Ops.size();
485 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
486 if (Ops[j].Op == X)
487 return j;
488 // Scan backwards
489 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
490 if (Ops[j].Op == X)
491 return j;
492 return i;
493}
494
495/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
496/// and returning the result. Insert the tree before I.
Chris Lattner4f663d02009-12-31 07:48:51 +0000497static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000498 if (Ops.size() == 1) return Ops.back();
499
500 Value *V1 = Ops.back();
501 Ops.pop_back();
502 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greifa645dd32008-05-16 19:29:10 +0000503 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504}
505
506/// RemoveFactorFromExpression - If V is an expression tree that is a
507/// multiplication sequence, and if this sequence contains a multiply by Factor,
508/// remove Factor from the tree and return the new tree.
509Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
510 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
511 if (!BO) return 0;
512
513 std::vector<ValueEntry> Factors;
514 LinearizeExprTree(BO, Factors);
515
516 bool FoundFactor = false;
517 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
518 if (Factors[i].Op == Factor) {
519 FoundFactor = true;
520 Factors.erase(Factors.begin()+i);
521 break;
522 }
523 if (!FoundFactor) {
524 // Make sure to restore the operands to the expression tree.
525 RewriteExprTree(BO, Factors);
526 return 0;
527 }
528
529 if (Factors.size() == 1) return Factors[0].Op;
530
531 RewriteExprTree(BO, Factors);
532 return BO;
533}
534
535/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
536/// add its operands as factors, otherwise add V to the list of factors.
537static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner4f663d02009-12-31 07:48:51 +0000538 SmallVectorImpl<Value*> &Factors) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000539 BinaryOperator *BO;
540 if ((!V->hasOneUse() && !V->use_empty()) ||
541 !(BO = dyn_cast<BinaryOperator>(V)) ||
542 BO->getOpcode() != Instruction::Mul) {
543 Factors.push_back(V);
544 return;
545 }
546
547 // Otherwise, add the LHS and RHS to the list of factors.
548 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
549 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
550}
551
552
553
554Value *Reassociate::OptimizeExpression(BinaryOperator *I,
555 std::vector<ValueEntry> &Ops) {
556 // Now that we have the linearized expression tree, try to optimize it.
557 // Start by folding any constants that we found.
558 bool IterateOptimization = false;
559 if (Ops.size() == 1) return Ops[0].Op;
560
561 unsigned Opcode = I->getOpcode();
562
563 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
564 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
565 Ops.pop_back();
Owen Anderson02b48c32009-07-29 18:55:55 +0000566 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000567 return OptimizeExpression(I, Ops);
568 }
569
570 // Check for destructive annihilation due to a constant being used.
571 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
572 switch (Opcode) {
573 default: break;
574 case Instruction::And:
575 if (CstVal->isZero()) { // ... & 0 -> 0
576 ++NumAnnihil;
577 return CstVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000578 }
Chris Lattner4f663d02009-12-31 07:48:51 +0000579 if (CstVal->isAllOnesValue()) // ... & -1 -> ...
580 Ops.pop_back();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000581 break;
582 case Instruction::Mul:
583 if (CstVal->isZero()) { // ... * 0 -> 0
584 ++NumAnnihil;
585 return CstVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000586 }
Chris Lattner4f663d02009-12-31 07:48:51 +0000587
588 if (cast<ConstantInt>(CstVal)->isOne())
589 Ops.pop_back(); // ... * 1 -> ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000590 break;
591 case Instruction::Or:
592 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
593 ++NumAnnihil;
594 return CstVal;
595 }
596 // FALLTHROUGH!
597 case Instruction::Add:
598 case Instruction::Xor:
599 if (CstVal->isZero()) // ... [|^+] 0 -> ...
600 Ops.pop_back();
601 break;
602 }
603 if (Ops.size() == 1) return Ops[0].Op;
604
Chris Lattnera0d64b92009-12-31 07:33:14 +0000605 // Handle destructive annihilation due to identities between elements in the
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000606 // argument list here.
607 switch (Opcode) {
608 default: break;
609 case Instruction::And:
610 case Instruction::Or:
611 case Instruction::Xor:
612 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
613 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
614 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
615 // First, check for X and ~X in the operand list.
616 assert(i < Ops.size());
617 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
618 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
619 unsigned FoundX = FindInOperandList(Ops, i, X);
620 if (FoundX != i) {
621 if (Opcode == Instruction::And) { // ...&X&~X = 0
622 ++NumAnnihil;
Owen Andersonaac28372009-07-31 20:28:14 +0000623 return Constant::getNullValue(X->getType());
Chris Lattner4f663d02009-12-31 07:48:51 +0000624 }
625
626 if (Opcode == Instruction::Or) { // ...|X|~X = -1
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000627 ++NumAnnihil;
Owen Andersonaac28372009-07-31 20:28:14 +0000628 return Constant::getAllOnesValue(X->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000629 }
630 }
631 }
632
633 // Next, check for duplicate pairs of values, which we assume are next to
634 // each other, due to our sorting criteria.
635 assert(i < Ops.size());
636 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
637 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
638 // Drop duplicate values.
639 Ops.erase(Ops.begin()+i);
640 --i; --e;
641 IterateOptimization = true;
642 ++NumAnnihil;
643 } else {
644 assert(Opcode == Instruction::Xor);
645 if (e == 2) {
646 ++NumAnnihil;
Owen Andersonaac28372009-07-31 20:28:14 +0000647 return Constant::getNullValue(Ops[0].Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000648 }
649 // ... X^X -> ...
650 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
651 i -= 1; e -= 2;
652 IterateOptimization = true;
653 ++NumAnnihil;
654 }
655 }
656 }
657 break;
658
659 case Instruction::Add:
660 // Scan the operand lists looking for X and -X pairs. If we find any, we
661 // can simplify the expression. X+-X == 0.
662 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
663 assert(i < Ops.size());
664 // Check for X and -X in the operand list.
Chris Lattner4f663d02009-12-31 07:48:51 +0000665 if (!BinaryOperator::isNeg(Ops[i].Op))
666 continue;
667
668 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
669 unsigned FoundX = FindInOperandList(Ops, i, X);
670 if (FoundX == i)
671 continue;
672
673 // Remove X and -X from the operand list.
674 if (Ops.size() == 2) {
675 ++NumAnnihil;
676 return Constant::getNullValue(X->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000677 }
Chris Lattner4f663d02009-12-31 07:48:51 +0000678 Ops.erase(Ops.begin()+i);
679 if (i < FoundX)
680 --FoundX;
681 else
682 --i; // Need to back up an extra one.
683 Ops.erase(Ops.begin()+FoundX);
684 IterateOptimization = true;
685 ++NumAnnihil;
686 --i; // Revisit element.
687 e -= 2; // Removed two elements.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000688 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000689
690 // Scan the operand list, checking to see if there are any common factors
691 // between operands. Consider something like A*A+A*B*C+D. We would like to
692 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
693 // To efficiently find this, we count the number of times a factor occurs
694 // for any ADD operands that are MULs.
Chris Lattnera0d64b92009-12-31 07:33:14 +0000695 DenseMap<Value*, unsigned> FactorOccurrences;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000696 unsigned MaxOcc = 0;
697 Value *MaxOccVal = 0;
698 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner4f663d02009-12-31 07:48:51 +0000699 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
700 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
701 continue;
702
703 // Compute all of the factors of this added value.
704 SmallVector<Value*, 8> Factors;
705 FindSingleUseMultiplyFactors(BOp, Factors);
706 assert(Factors.size() > 1 && "Bad linearize!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707
Chris Lattner4f663d02009-12-31 07:48:51 +0000708 // Add one to FactorOccurrences for each unique factor in this op.
709 if (Factors.size() == 2) {
710 unsigned Occ = ++FactorOccurrences[Factors[0]];
711 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
712 if (Factors[0] != Factors[1]) { // Don't double count A*A.
713 Occ = ++FactorOccurrences[Factors[1]];
714 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
715 }
716 } else {
717 SmallPtrSet<Value*, 4> Duplicates;
718 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
719 if (!Duplicates.insert(Factors[i])) continue;
720
721 unsigned Occ = ++FactorOccurrences[Factors[i]];
722 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000723 }
724 }
725 }
726
727 // If any factor occurred more than one time, we can pull it out.
728 if (MaxOcc > 1) {
Chris Lattner8a6411c2009-08-23 04:37:46 +0000729 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000730
731 // Create a new instruction that uses the MaxOccVal twice. If we don't do
732 // this, we could otherwise run into situations where removing a factor
733 // from an expression will drop a use of maxocc, and this can cause
734 // RemoveFactorFromExpression on successive values to behave differently.
Gabor Greifa645dd32008-05-16 19:29:10 +0000735 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Chris Lattner4f663d02009-12-31 07:48:51 +0000736 SmallVector<Value*, 4> NewMulOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
738 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
739 NewMulOps.push_back(V);
740 Ops.erase(Ops.begin()+i);
741 --i; --e;
742 }
743 }
744
745 // No need for extra uses anymore.
746 delete DummyInst;
747
748 unsigned NumAddedValues = NewMulOps.size();
749 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Gabor Greifa645dd32008-05-16 19:29:10 +0000750 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000751
752 // Now that we have inserted V and its sole use, optimize it. This allows
753 // us to handle cases that require multiple factoring steps, such as this:
754 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
755 if (NumAddedValues > 1)
756 ReassociateExpression(cast<BinaryOperator>(V));
757
758 ++NumFactor;
759
Dan Gohman301f4052008-01-29 13:02:09 +0000760 if (Ops.empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000761 return V2;
762
763 // Add the new value to the list of things being added.
764 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
765
766 // Rewrite the tree so that there is now a use of V.
767 RewriteExprTree(I, Ops);
768 return OptimizeExpression(I, Ops);
769 }
770 break;
771 //case Instruction::Mul:
772 }
773
774 if (IterateOptimization)
775 return OptimizeExpression(I, Ops);
776 return 0;
777}
778
779
780/// ReassociateBB - Inspect all of the instructions in this basic block,
781/// reassociating them as we go.
782void Reassociate::ReassociateBB(BasicBlock *BB) {
783 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
784 Instruction *BI = BBI++;
785 if (BI->getOpcode() == Instruction::Shl &&
786 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000787 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000788 MadeChange = true;
789 BI = NI;
790 }
791
792 // Reject cases where it is pointless to do this.
793 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
794 isa<VectorType>(BI->getType()))
795 continue; // Floating point ops are not associative.
796
797 // If this is a subtract instruction which is not already in negate form,
798 // see if we can convert it to X+-Y.
799 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000800 if (ShouldBreakUpSubtract(BI)) {
801 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattnerb0cd25e2008-02-18 02:18:25 +0000802 MadeChange = true;
Owen Anderson76f49252009-07-13 22:18:28 +0000803 } else if (BinaryOperator::isNeg(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000804 // Otherwise, this is a negation. See if the operand is a multiply tree
805 // and if this is not an inner node of a multiply tree.
806 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
807 (!BI->hasOneUse() ||
808 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000809 BI = LowerNegateToMultiply(BI, ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000810 MadeChange = true;
811 }
812 }
813 }
814
815 // If this instruction is a commutative binary operator, process it.
816 if (!BI->isAssociative()) continue;
817 BinaryOperator *I = cast<BinaryOperator>(BI);
818
819 // If this is an interior node of a reassociable tree, ignore it until we
820 // get to the root of the tree, to avoid N^2 analysis.
821 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
822 continue;
823
824 // If this is an add tree that is used by a sub instruction, ignore it
825 // until we process the subtract.
826 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
827 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
828 continue;
829
830 ReassociateExpression(I);
831 }
832}
833
834void Reassociate::ReassociateExpression(BinaryOperator *I) {
835
836 // First, walk the expression tree, linearizing the tree, collecting
837 std::vector<ValueEntry> Ops;
838 LinearizeExprTree(I, Ops);
839
Chris Lattner8a6411c2009-08-23 04:37:46 +0000840 DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000841
842 // Now that we have linearized the tree to a list and have gathered all of
843 // the operands and their ranks, sort the operands by their rank. Use a
844 // stable_sort so that values with equal ranks will have their relative
845 // positions maintained (and so the compiler is deterministic). Note that
846 // this sorts so that the highest ranking values end up at the beginning of
847 // the vector.
848 std::stable_sort(Ops.begin(), Ops.end());
849
850 // OptimizeExpression - Now that we have the expression tree in a convenient
851 // sorted form, optimize it globally if possible.
852 if (Value *V = OptimizeExpression(I, Ops)) {
853 // This expression tree simplified to something that isn't a tree,
854 // eliminate it.
Chris Lattner8a6411c2009-08-23 04:37:46 +0000855 DEBUG(errs() << "Reassoc to scalar: " << *V << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000856 I->replaceAllUsesWith(V);
857 RemoveDeadBinaryOp(I);
858 return;
859 }
860
861 // We want to sink immediates as deeply as possible except in the case where
862 // this is a multiply tree used only by an add, and the immediate is a -1.
863 // In this case we reassociate to put the negation on the outside so that we
864 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
865 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
866 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
867 isa<ConstantInt>(Ops.back().Op) &&
868 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
869 Ops.insert(Ops.begin(), Ops.back());
870 Ops.pop_back();
871 }
872
Chris Lattner8a6411c2009-08-23 04:37:46 +0000873 DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000874
875 if (Ops.size() == 1) {
876 // This expression tree simplified to something that isn't a tree,
877 // eliminate it.
878 I->replaceAllUsesWith(Ops[0].Op);
879 RemoveDeadBinaryOp(I);
880 } else {
881 // Now that we ordered and optimized the expressions, splat them back into
882 // the expression tree, removing any unneeded nodes.
883 RewriteExprTree(I, Ops);
884 }
885}
886
887
888bool Reassociate::runOnFunction(Function &F) {
889 // Recalculate the rank map for F
890 BuildRankMap(F);
891
892 MadeChange = false;
893 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
894 ReassociateBB(FI);
895
896 // We are done with the rank map...
897 RankMap.clear();
898 ValueRankMap.clear();
899 return MadeChange;
900}
901