blob: 4f489718f6f0890b69b9700fd9b2b38bbd7d3106 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
183 Instruction *visitAnd(BinaryOperator &I);
184 Instruction *visitOr (BinaryOperator &I);
185 Instruction *visitXor(BinaryOperator &I);
186 Instruction *visitShl(BinaryOperator &I);
187 Instruction *visitAShr(BinaryOperator &I);
188 Instruction *visitLShr(BinaryOperator &I);
189 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000190 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
191 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000192 Instruction *visitFCmpInst(FCmpInst &I);
193 Instruction *visitICmpInst(ICmpInst &I);
194 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
195 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
196 Instruction *LHS,
197 ConstantInt *RHS);
198 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
199 ConstantInt *DivRHS);
200
201 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
202 ICmpInst::Predicate Cond, Instruction &I);
203 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
204 BinaryOperator &I);
205 Instruction *commonCastTransforms(CastInst &CI);
206 Instruction *commonIntCastTransforms(CastInst &CI);
207 Instruction *commonPointerCastTransforms(CastInst &CI);
208 Instruction *visitTrunc(TruncInst &CI);
209 Instruction *visitZExt(ZExtInst &CI);
210 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000211 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000212 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000213 Instruction *visitFPToUI(FPToUIInst &FI);
214 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215 Instruction *visitUIToFP(CastInst &CI);
216 Instruction *visitSIToFP(CastInst &CI);
217 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000218 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 Instruction *visitBitCast(BitCastInst &CI);
220 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
221 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000222 Instruction *visitSelectInst(SelectInst &SI);
223 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224 Instruction *visitCallInst(CallInst &CI);
225 Instruction *visitInvokeInst(InvokeInst &II);
226 Instruction *visitPHINode(PHINode &PN);
227 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
228 Instruction *visitAllocationInst(AllocationInst &AI);
229 Instruction *visitFreeInst(FreeInst &FI);
230 Instruction *visitLoadInst(LoadInst &LI);
231 Instruction *visitStoreInst(StoreInst &SI);
232 Instruction *visitBranchInst(BranchInst &BI);
233 Instruction *visitSwitchInst(SwitchInst &SI);
234 Instruction *visitInsertElementInst(InsertElementInst &IE);
235 Instruction *visitExtractElementInst(ExtractElementInst &EI);
236 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000237 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238
239 // visitInstruction - Specify what to return for unhandled instructions...
240 Instruction *visitInstruction(Instruction &I) { return 0; }
241
242 private:
243 Instruction *visitCallSite(CallSite CS);
244 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000245 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000246 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
247 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000248 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000249
250 public:
251 // InsertNewInstBefore - insert an instruction New before instruction Old
252 // in the program. Add the new instruction to the worklist.
253 //
254 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
255 assert(New && New->getParent() == 0 &&
256 "New instruction already inserted into a basic block!");
257 BasicBlock *BB = Old.getParent();
258 BB->getInstList().insert(&Old, New); // Insert inst
259 AddToWorkList(New);
260 return New;
261 }
262
263 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
264 /// This also adds the cast to the worklist. Finally, this returns the
265 /// cast.
266 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
267 Instruction &Pos) {
268 if (V->getType() == Ty) return V;
269
270 if (Constant *CV = dyn_cast<Constant>(V))
271 return ConstantExpr::getCast(opc, CV, Ty);
272
Gabor Greifa645dd32008-05-16 19:29:10 +0000273 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 AddToWorkList(C);
275 return C;
276 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000277
278 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
279 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
280 }
281
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000282
283 // ReplaceInstUsesWith - This method is to be used when an instruction is
284 // found to be dead, replacable with another preexisting expression. Here
285 // we add all uses of I to the worklist, replace all uses of I with the new
286 // value, then return I, so that the inst combiner will know that I was
287 // modified.
288 //
289 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
290 AddUsersToWorkList(I); // Add all modified instrs to worklist
291 if (&I != V) {
292 I.replaceAllUsesWith(V);
293 return &I;
294 } else {
295 // If we are replacing the instruction with itself, this must be in a
296 // segment of unreachable code, so just clobber the instruction.
297 I.replaceAllUsesWith(UndefValue::get(I.getType()));
298 return &I;
299 }
300 }
301
302 // UpdateValueUsesWith - This method is to be used when an value is
303 // found to be replacable with another preexisting expression or was
304 // updated. Here we add all uses of I to the worklist, replace all uses of
305 // I with the new value (unless the instruction was just updated), then
306 // return true, so that the inst combiner will know that I was modified.
307 //
308 bool UpdateValueUsesWith(Value *Old, Value *New) {
309 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
310 if (Old != New)
311 Old->replaceAllUsesWith(New);
312 if (Instruction *I = dyn_cast<Instruction>(Old))
313 AddToWorkList(I);
314 if (Instruction *I = dyn_cast<Instruction>(New))
315 AddToWorkList(I);
316 return true;
317 }
318
319 // EraseInstFromFunction - When dealing with an instruction that has side
320 // effects or produces a void value, we can't rely on DCE to delete the
321 // instruction. Instead, visit methods should return the value returned by
322 // this function.
323 Instruction *EraseInstFromFunction(Instruction &I) {
324 assert(I.use_empty() && "Cannot erase instruction that is used!");
325 AddUsesToWorkList(I);
326 RemoveFromWorkList(&I);
327 I.eraseFromParent();
328 return 0; // Don't do anything with FI
329 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000330
331 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
332 APInt &KnownOne, unsigned Depth = 0) const {
333 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
334 }
335
336 bool MaskedValueIsZero(Value *V, const APInt &Mask,
337 unsigned Depth = 0) const {
338 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
339 }
340 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
341 return llvm::ComputeNumSignBits(Op, TD, Depth);
342 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343
344 private:
345 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
346 /// InsertBefore instruction. This is specialized a bit to avoid inserting
347 /// casts that are known to not do anything...
348 ///
349 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
350 Value *V, const Type *DestTy,
351 Instruction *InsertBefore);
352
353 /// SimplifyCommutative - This performs a few simplifications for
354 /// commutative operators.
355 bool SimplifyCommutative(BinaryOperator &I);
356
357 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
358 /// most-complex to least-complex order.
359 bool SimplifyCompare(CmpInst &I);
360
361 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
362 /// on the demanded bits.
363 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
364 APInt& KnownZero, APInt& KnownOne,
365 unsigned Depth = 0);
366
367 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
368 uint64_t &UndefElts, unsigned Depth = 0);
369
370 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
371 // PHI node as operand #0, see if we can fold the instruction into the PHI
372 // (which is only possible if all operands to the PHI are constants).
373 Instruction *FoldOpIntoPhi(Instruction &I);
374
375 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
376 // operator and they all are only used by the PHI, PHI together their
377 // inputs, and do the operation once, to the result of the PHI.
378 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
379 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
380
381
382 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
383 ConstantInt *AndRHS, BinaryOperator &TheAnd);
384
385 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
386 bool isSub, Instruction &I);
387 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
388 bool isSigned, bool Inside, Instruction &IB);
389 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
390 Instruction *MatchBSwap(BinaryOperator &I);
391 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000392 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000393 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000394
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000395
396 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000397
Dan Gohman2d648bb2008-04-10 18:43:06 +0000398 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
399 unsigned CastOpc,
400 int &NumCastsRemoved);
401 unsigned GetOrEnforceKnownAlignment(Value *V,
402 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000403
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405}
406
Dan Gohman089efff2008-05-13 00:00:25 +0000407char InstCombiner::ID = 0;
408static RegisterPass<InstCombiner>
409X("instcombine", "Combine redundant instructions");
410
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000411// getComplexity: Assign a complexity or rank value to LLVM Values...
412// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
413static unsigned getComplexity(Value *V) {
414 if (isa<Instruction>(V)) {
415 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
416 return 3;
417 return 4;
418 }
419 if (isa<Argument>(V)) return 3;
420 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
421}
422
423// isOnlyUse - Return true if this instruction will be deleted if we stop using
424// it.
425static bool isOnlyUse(Value *V) {
426 return V->hasOneUse() || isa<Constant>(V);
427}
428
429// getPromotedType - Return the specified type promoted as it would be to pass
430// though a va_arg area...
431static const Type *getPromotedType(const Type *Ty) {
432 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
433 if (ITy->getBitWidth() < 32)
434 return Type::Int32Ty;
435 }
436 return Ty;
437}
438
439/// getBitCastOperand - If the specified operand is a CastInst or a constant
440/// expression bitcast, return the operand value, otherwise return null.
441static Value *getBitCastOperand(Value *V) {
442 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
443 return I->getOperand(0);
444 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
445 if (CE->getOpcode() == Instruction::BitCast)
446 return CE->getOperand(0);
447 return 0;
448}
449
450/// This function is a wrapper around CastInst::isEliminableCastPair. It
451/// simply extracts arguments and returns what that function returns.
452static Instruction::CastOps
453isEliminableCastPair(
454 const CastInst *CI, ///< The first cast instruction
455 unsigned opcode, ///< The opcode of the second cast instruction
456 const Type *DstTy, ///< The target type for the second cast instruction
457 TargetData *TD ///< The target data for pointer size
458) {
459
460 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
461 const Type *MidTy = CI->getType(); // B from above
462
463 // Get the opcodes of the two Cast instructions
464 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
465 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
466
467 return Instruction::CastOps(
468 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
469 DstTy, TD->getIntPtrType()));
470}
471
472/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
473/// in any code being generated. It does not require codegen if V is simple
474/// enough or if the cast can be folded into other casts.
475static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
476 const Type *Ty, TargetData *TD) {
477 if (V->getType() == Ty || isa<Constant>(V)) return false;
478
479 // If this is another cast that can be eliminated, it isn't codegen either.
480 if (const CastInst *CI = dyn_cast<CastInst>(V))
481 if (isEliminableCastPair(CI, opcode, Ty, TD))
482 return false;
483 return true;
484}
485
486/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
487/// InsertBefore instruction. This is specialized a bit to avoid inserting
488/// casts that are known to not do anything...
489///
490Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
491 Value *V, const Type *DestTy,
492 Instruction *InsertBefore) {
493 if (V->getType() == DestTy) return V;
494 if (Constant *C = dyn_cast<Constant>(V))
495 return ConstantExpr::getCast(opcode, C, DestTy);
496
497 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
498}
499
500// SimplifyCommutative - This performs a few simplifications for commutative
501// operators:
502//
503// 1. Order operands such that they are listed from right (least complex) to
504// left (most complex). This puts constants before unary operators before
505// binary operators.
506//
507// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
508// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
509//
510bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
511 bool Changed = false;
512 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
513 Changed = !I.swapOperands();
514
515 if (!I.isAssociative()) return Changed;
516 Instruction::BinaryOps Opcode = I.getOpcode();
517 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
518 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
519 if (isa<Constant>(I.getOperand(1))) {
520 Constant *Folded = ConstantExpr::get(I.getOpcode(),
521 cast<Constant>(I.getOperand(1)),
522 cast<Constant>(Op->getOperand(1)));
523 I.setOperand(0, Op->getOperand(0));
524 I.setOperand(1, Folded);
525 return true;
526 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
527 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
528 isOnlyUse(Op) && isOnlyUse(Op1)) {
529 Constant *C1 = cast<Constant>(Op->getOperand(1));
530 Constant *C2 = cast<Constant>(Op1->getOperand(1));
531
532 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
533 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000534 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000535 Op1->getOperand(0),
536 Op1->getName(), &I);
537 AddToWorkList(New);
538 I.setOperand(0, New);
539 I.setOperand(1, Folded);
540 return true;
541 }
542 }
543 return Changed;
544}
545
546/// SimplifyCompare - For a CmpInst this function just orders the operands
547/// so that theyare listed from right (least complex) to left (most complex).
548/// This puts constants before unary operators before binary operators.
549bool InstCombiner::SimplifyCompare(CmpInst &I) {
550 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
551 return false;
552 I.swapOperands();
553 // Compare instructions are not associative so there's nothing else we can do.
554 return true;
555}
556
557// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
558// if the LHS is a constant zero (which is the 'negate' form).
559//
560static inline Value *dyn_castNegVal(Value *V) {
561 if (BinaryOperator::isNeg(V))
562 return BinaryOperator::getNegArgument(V);
563
564 // Constants can be considered to be negated values if they can be folded.
565 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
566 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000567
568 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
569 if (C->getType()->getElementType()->isInteger())
570 return ConstantExpr::getNeg(C);
571
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000572 return 0;
573}
574
575static inline Value *dyn_castNotVal(Value *V) {
576 if (BinaryOperator::isNot(V))
577 return BinaryOperator::getNotArgument(V);
578
579 // Constants can be considered to be not'ed values...
580 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
581 return ConstantInt::get(~C->getValue());
582 return 0;
583}
584
585// dyn_castFoldableMul - If this value is a multiply that can be folded into
586// other computations (because it has a constant operand), return the
587// non-constant operand of the multiply, and set CST to point to the multiplier.
588// Otherwise, return null.
589//
590static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
591 if (V->hasOneUse() && V->getType()->isInteger())
592 if (Instruction *I = dyn_cast<Instruction>(V)) {
593 if (I->getOpcode() == Instruction::Mul)
594 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
595 return I->getOperand(0);
596 if (I->getOpcode() == Instruction::Shl)
597 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
598 // The multiplier is really 1 << CST.
599 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
600 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
601 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
602 return I->getOperand(0);
603 }
604 }
605 return 0;
606}
607
608/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
609/// expression, return it.
610static User *dyn_castGetElementPtr(Value *V) {
611 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
612 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
613 if (CE->getOpcode() == Instruction::GetElementPtr)
614 return cast<User>(V);
615 return false;
616}
617
Dan Gohman2d648bb2008-04-10 18:43:06 +0000618/// getOpcode - If this is an Instruction or a ConstantExpr, return the
619/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000620static unsigned getOpcode(const Value *V) {
621 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000622 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000623 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000624 return CE->getOpcode();
625 // Use UserOp1 to mean there's no opcode.
626 return Instruction::UserOp1;
627}
628
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000629/// AddOne - Add one to a ConstantInt
630static ConstantInt *AddOne(ConstantInt *C) {
631 APInt Val(C->getValue());
632 return ConstantInt::get(++Val);
633}
634/// SubOne - Subtract one from a ConstantInt
635static ConstantInt *SubOne(ConstantInt *C) {
636 APInt Val(C->getValue());
637 return ConstantInt::get(--Val);
638}
639/// Add - Add two ConstantInts together
640static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
641 return ConstantInt::get(C1->getValue() + C2->getValue());
642}
643/// And - Bitwise AND two ConstantInts together
644static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
645 return ConstantInt::get(C1->getValue() & C2->getValue());
646}
647/// Subtract - Subtract one ConstantInt from another
648static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
649 return ConstantInt::get(C1->getValue() - C2->getValue());
650}
651/// Multiply - Multiply two ConstantInts together
652static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
653 return ConstantInt::get(C1->getValue() * C2->getValue());
654}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000655/// MultiplyOverflows - True if the multiply can not be expressed in an int
656/// this size.
657static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
658 uint32_t W = C1->getBitWidth();
659 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
660 if (sign) {
661 LHSExt.sext(W * 2);
662 RHSExt.sext(W * 2);
663 } else {
664 LHSExt.zext(W * 2);
665 RHSExt.zext(W * 2);
666 }
667
668 APInt MulExt = LHSExt * RHSExt;
669
670 if (sign) {
671 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
672 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
673 return MulExt.slt(Min) || MulExt.sgt(Max);
674 } else
675 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
676}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000677
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000678
679/// ShrinkDemandedConstant - Check to see if the specified operand of the
680/// specified instruction is a constant integer. If so, check to see if there
681/// are any bits set in the constant that are not demanded. If so, shrink the
682/// constant and return true.
683static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
684 APInt Demanded) {
685 assert(I && "No instruction?");
686 assert(OpNo < I->getNumOperands() && "Operand index too large");
687
688 // If the operand is not a constant integer, nothing to do.
689 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
690 if (!OpC) return false;
691
692 // If there are no bits set that aren't demanded, nothing to do.
693 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
694 if ((~Demanded & OpC->getValue()) == 0)
695 return false;
696
697 // This instruction is producing bits that are not demanded. Shrink the RHS.
698 Demanded &= OpC->getValue();
699 I->setOperand(OpNo, ConstantInt::get(Demanded));
700 return true;
701}
702
703// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
704// set of known zero and one bits, compute the maximum and minimum values that
705// could have the specified known zero and known one bits, returning them in
706// min/max.
707static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
708 const APInt& KnownZero,
709 const APInt& KnownOne,
710 APInt& Min, APInt& Max) {
711 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
712 assert(KnownZero.getBitWidth() == BitWidth &&
713 KnownOne.getBitWidth() == BitWidth &&
714 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
715 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
716 APInt UnknownBits = ~(KnownZero|KnownOne);
717
718 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
719 // bit if it is unknown.
720 Min = KnownOne;
721 Max = KnownOne|UnknownBits;
722
723 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
724 Min.set(BitWidth-1);
725 Max.clear(BitWidth-1);
726 }
727}
728
729// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
730// a set of known zero and one bits, compute the maximum and minimum values that
731// could have the specified known zero and known one bits, returning them in
732// min/max.
733static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000734 const APInt &KnownZero,
735 const APInt &KnownOne,
736 APInt &Min, APInt &Max) {
737 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000738 assert(KnownZero.getBitWidth() == BitWidth &&
739 KnownOne.getBitWidth() == BitWidth &&
740 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
741 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
742 APInt UnknownBits = ~(KnownZero|KnownOne);
743
744 // The minimum value is when the unknown bits are all zeros.
745 Min = KnownOne;
746 // The maximum value is when the unknown bits are all ones.
747 Max = KnownOne|UnknownBits;
748}
749
750/// SimplifyDemandedBits - This function attempts to replace V with a simpler
751/// value based on the demanded bits. When this function is called, it is known
752/// that only the bits set in DemandedMask of the result of V are ever used
753/// downstream. Consequently, depending on the mask and V, it may be possible
754/// to replace V with a constant or one of its operands. In such cases, this
755/// function does the replacement and returns true. In all other cases, it
756/// returns false after analyzing the expression and setting KnownOne and known
757/// to be one in the expression. KnownZero contains all the bits that are known
758/// to be zero in the expression. These are provided to potentially allow the
759/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
760/// the expression. KnownOne and KnownZero always follow the invariant that
761/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
762/// the bits in KnownOne and KnownZero may only be accurate for those bits set
763/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
764/// and KnownOne must all be the same.
765bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
766 APInt& KnownZero, APInt& KnownOne,
767 unsigned Depth) {
768 assert(V != 0 && "Null pointer of Value???");
769 assert(Depth <= 6 && "Limit Search Depth");
770 uint32_t BitWidth = DemandedMask.getBitWidth();
771 const IntegerType *VTy = cast<IntegerType>(V->getType());
772 assert(VTy->getBitWidth() == BitWidth &&
773 KnownZero.getBitWidth() == BitWidth &&
774 KnownOne.getBitWidth() == BitWidth &&
775 "Value *V, DemandedMask, KnownZero and KnownOne \
776 must have same BitWidth");
777 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
778 // We know all of the bits for a constant!
779 KnownOne = CI->getValue() & DemandedMask;
780 KnownZero = ~KnownOne & DemandedMask;
781 return false;
782 }
783
784 KnownZero.clear();
785 KnownOne.clear();
786 if (!V->hasOneUse()) { // Other users may use these bits.
787 if (Depth != 0) { // Not at the root.
788 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
789 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
790 return false;
791 }
792 // If this is the root being simplified, allow it to have multiple uses,
793 // just set the DemandedMask to all bits.
794 DemandedMask = APInt::getAllOnesValue(BitWidth);
795 } else if (DemandedMask == 0) { // Not demanding any bits from V.
796 if (V != UndefValue::get(VTy))
797 return UpdateValueUsesWith(V, UndefValue::get(VTy));
798 return false;
799 } else if (Depth == 6) { // Limit search depth.
800 return false;
801 }
802
803 Instruction *I = dyn_cast<Instruction>(V);
804 if (!I) return false; // Only analyze instructions.
805
806 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
807 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
808 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000809 default:
810 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
811 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000812 case Instruction::And:
813 // If either the LHS or the RHS are Zero, the result is zero.
814 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
815 RHSKnownZero, RHSKnownOne, Depth+1))
816 return true;
817 assert((RHSKnownZero & RHSKnownOne) == 0 &&
818 "Bits known to be one AND zero?");
819
820 // If something is known zero on the RHS, the bits aren't demanded on the
821 // LHS.
822 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
823 LHSKnownZero, LHSKnownOne, Depth+1))
824 return true;
825 assert((LHSKnownZero & LHSKnownOne) == 0 &&
826 "Bits known to be one AND zero?");
827
828 // If all of the demanded bits are known 1 on one side, return the other.
829 // These bits cannot contribute to the result of the 'and'.
830 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
831 (DemandedMask & ~LHSKnownZero))
832 return UpdateValueUsesWith(I, I->getOperand(0));
833 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
834 (DemandedMask & ~RHSKnownZero))
835 return UpdateValueUsesWith(I, I->getOperand(1));
836
837 // If all of the demanded bits in the inputs are known zeros, return zero.
838 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
839 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
840
841 // If the RHS is a constant, see if we can simplify it.
842 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
843 return UpdateValueUsesWith(I, I);
844
845 // Output known-1 bits are only known if set in both the LHS & RHS.
846 RHSKnownOne &= LHSKnownOne;
847 // Output known-0 are known to be clear if zero in either the LHS | RHS.
848 RHSKnownZero |= LHSKnownZero;
849 break;
850 case Instruction::Or:
851 // If either the LHS or the RHS are One, the result is One.
852 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
853 RHSKnownZero, RHSKnownOne, Depth+1))
854 return true;
855 assert((RHSKnownZero & RHSKnownOne) == 0 &&
856 "Bits known to be one AND zero?");
857 // If something is known one on the RHS, the bits aren't demanded on the
858 // LHS.
859 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
860 LHSKnownZero, LHSKnownOne, Depth+1))
861 return true;
862 assert((LHSKnownZero & LHSKnownOne) == 0 &&
863 "Bits known to be one AND zero?");
864
865 // If all of the demanded bits are known zero on one side, return the other.
866 // These bits cannot contribute to the result of the 'or'.
867 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
868 (DemandedMask & ~LHSKnownOne))
869 return UpdateValueUsesWith(I, I->getOperand(0));
870 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
871 (DemandedMask & ~RHSKnownOne))
872 return UpdateValueUsesWith(I, I->getOperand(1));
873
874 // If all of the potentially set bits on one side are known to be set on
875 // the other side, just use the 'other' side.
876 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
877 (DemandedMask & (~RHSKnownZero)))
878 return UpdateValueUsesWith(I, I->getOperand(0));
879 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
880 (DemandedMask & (~LHSKnownZero)))
881 return UpdateValueUsesWith(I, I->getOperand(1));
882
883 // If the RHS is a constant, see if we can simplify it.
884 if (ShrinkDemandedConstant(I, 1, DemandedMask))
885 return UpdateValueUsesWith(I, I);
886
887 // Output known-0 bits are only known if clear in both the LHS & RHS.
888 RHSKnownZero &= LHSKnownZero;
889 // Output known-1 are known to be set if set in either the LHS | RHS.
890 RHSKnownOne |= LHSKnownOne;
891 break;
892 case Instruction::Xor: {
893 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
894 RHSKnownZero, RHSKnownOne, Depth+1))
895 return true;
896 assert((RHSKnownZero & RHSKnownOne) == 0 &&
897 "Bits known to be one AND zero?");
898 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
899 LHSKnownZero, LHSKnownOne, Depth+1))
900 return true;
901 assert((LHSKnownZero & LHSKnownOne) == 0 &&
902 "Bits known to be one AND zero?");
903
904 // If all of the demanded bits are known zero on one side, return the other.
905 // These bits cannot contribute to the result of the 'xor'.
906 if ((DemandedMask & RHSKnownZero) == DemandedMask)
907 return UpdateValueUsesWith(I, I->getOperand(0));
908 if ((DemandedMask & LHSKnownZero) == DemandedMask)
909 return UpdateValueUsesWith(I, I->getOperand(1));
910
911 // Output known-0 bits are known if clear or set in both the LHS & RHS.
912 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
913 (RHSKnownOne & LHSKnownOne);
914 // Output known-1 are known to be set if set in only one of the LHS, RHS.
915 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
916 (RHSKnownOne & LHSKnownZero);
917
918 // If all of the demanded bits are known to be zero on one side or the
919 // other, turn this into an *inclusive* or.
920 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
921 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
922 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000923 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000924 I->getName());
925 InsertNewInstBefore(Or, *I);
926 return UpdateValueUsesWith(I, Or);
927 }
928
929 // If all of the demanded bits on one side are known, and all of the set
930 // bits on that side are also known to be set on the other side, turn this
931 // into an AND, as we know the bits will be cleared.
932 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
933 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
934 // all known
935 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
936 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
937 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000938 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000939 InsertNewInstBefore(And, *I);
940 return UpdateValueUsesWith(I, And);
941 }
942 }
943
944 // If the RHS is a constant, see if we can simplify it.
945 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
946 if (ShrinkDemandedConstant(I, 1, DemandedMask))
947 return UpdateValueUsesWith(I, I);
948
949 RHSKnownZero = KnownZeroOut;
950 RHSKnownOne = KnownOneOut;
951 break;
952 }
953 case Instruction::Select:
954 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
955 RHSKnownZero, RHSKnownOne, Depth+1))
956 return true;
957 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
958 LHSKnownZero, LHSKnownOne, Depth+1))
959 return true;
960 assert((RHSKnownZero & RHSKnownOne) == 0 &&
961 "Bits known to be one AND zero?");
962 assert((LHSKnownZero & LHSKnownOne) == 0 &&
963 "Bits known to be one AND zero?");
964
965 // If the operands are constants, see if we can simplify them.
966 if (ShrinkDemandedConstant(I, 1, DemandedMask))
967 return UpdateValueUsesWith(I, I);
968 if (ShrinkDemandedConstant(I, 2, DemandedMask))
969 return UpdateValueUsesWith(I, I);
970
971 // Only known if known in both the LHS and RHS.
972 RHSKnownOne &= LHSKnownOne;
973 RHSKnownZero &= LHSKnownZero;
974 break;
975 case Instruction::Trunc: {
976 uint32_t truncBf =
977 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
978 DemandedMask.zext(truncBf);
979 RHSKnownZero.zext(truncBf);
980 RHSKnownOne.zext(truncBf);
981 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
982 RHSKnownZero, RHSKnownOne, Depth+1))
983 return true;
984 DemandedMask.trunc(BitWidth);
985 RHSKnownZero.trunc(BitWidth);
986 RHSKnownOne.trunc(BitWidth);
987 assert((RHSKnownZero & RHSKnownOne) == 0 &&
988 "Bits known to be one AND zero?");
989 break;
990 }
991 case Instruction::BitCast:
992 if (!I->getOperand(0)->getType()->isInteger())
993 return false;
994
995 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
996 RHSKnownZero, RHSKnownOne, Depth+1))
997 return true;
998 assert((RHSKnownZero & RHSKnownOne) == 0 &&
999 "Bits known to be one AND zero?");
1000 break;
1001 case Instruction::ZExt: {
1002 // Compute the bits in the result that are not present in the input.
1003 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1004 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1005
1006 DemandedMask.trunc(SrcBitWidth);
1007 RHSKnownZero.trunc(SrcBitWidth);
1008 RHSKnownOne.trunc(SrcBitWidth);
1009 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1010 RHSKnownZero, RHSKnownOne, Depth+1))
1011 return true;
1012 DemandedMask.zext(BitWidth);
1013 RHSKnownZero.zext(BitWidth);
1014 RHSKnownOne.zext(BitWidth);
1015 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1016 "Bits known to be one AND zero?");
1017 // The top bits are known to be zero.
1018 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1019 break;
1020 }
1021 case Instruction::SExt: {
1022 // Compute the bits in the result that are not present in the input.
1023 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1024 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1025
1026 APInt InputDemandedBits = DemandedMask &
1027 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1028
1029 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1030 // If any of the sign extended bits are demanded, we know that the sign
1031 // bit is demanded.
1032 if ((NewBits & DemandedMask) != 0)
1033 InputDemandedBits.set(SrcBitWidth-1);
1034
1035 InputDemandedBits.trunc(SrcBitWidth);
1036 RHSKnownZero.trunc(SrcBitWidth);
1037 RHSKnownOne.trunc(SrcBitWidth);
1038 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1039 RHSKnownZero, RHSKnownOne, Depth+1))
1040 return true;
1041 InputDemandedBits.zext(BitWidth);
1042 RHSKnownZero.zext(BitWidth);
1043 RHSKnownOne.zext(BitWidth);
1044 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1045 "Bits known to be one AND zero?");
1046
1047 // If the sign bit of the input is known set or clear, then we know the
1048 // top bits of the result.
1049
1050 // If the input sign bit is known zero, or if the NewBits are not demanded
1051 // convert this into a zero extension.
1052 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1053 {
1054 // Convert to ZExt cast
1055 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1056 return UpdateValueUsesWith(I, NewCast);
1057 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1058 RHSKnownOne |= NewBits;
1059 }
1060 break;
1061 }
1062 case Instruction::Add: {
1063 // Figure out what the input bits are. If the top bits of the and result
1064 // are not demanded, then the add doesn't demand them from its input
1065 // either.
1066 uint32_t NLZ = DemandedMask.countLeadingZeros();
1067
1068 // If there is a constant on the RHS, there are a variety of xformations
1069 // we can do.
1070 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1071 // If null, this should be simplified elsewhere. Some of the xforms here
1072 // won't work if the RHS is zero.
1073 if (RHS->isZero())
1074 break;
1075
1076 // If the top bit of the output is demanded, demand everything from the
1077 // input. Otherwise, we demand all the input bits except NLZ top bits.
1078 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1079
1080 // Find information about known zero/one bits in the input.
1081 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1082 LHSKnownZero, LHSKnownOne, Depth+1))
1083 return true;
1084
1085 // If the RHS of the add has bits set that can't affect the input, reduce
1086 // the constant.
1087 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1088 return UpdateValueUsesWith(I, I);
1089
1090 // Avoid excess work.
1091 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1092 break;
1093
1094 // Turn it into OR if input bits are zero.
1095 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1096 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001097 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001098 I->getName());
1099 InsertNewInstBefore(Or, *I);
1100 return UpdateValueUsesWith(I, Or);
1101 }
1102
1103 // We can say something about the output known-zero and known-one bits,
1104 // depending on potential carries from the input constant and the
1105 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1106 // bits set and the RHS constant is 0x01001, then we know we have a known
1107 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1108
1109 // To compute this, we first compute the potential carry bits. These are
1110 // the bits which may be modified. I'm not aware of a better way to do
1111 // this scan.
1112 const APInt& RHSVal = RHS->getValue();
1113 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1114
1115 // Now that we know which bits have carries, compute the known-1/0 sets.
1116
1117 // Bits are known one if they are known zero in one operand and one in the
1118 // other, and there is no input carry.
1119 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1120 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1121
1122 // Bits are known zero if they are known zero in both operands and there
1123 // is no input carry.
1124 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1125 } else {
1126 // If the high-bits of this ADD are not demanded, then it does not demand
1127 // the high bits of its LHS or RHS.
1128 if (DemandedMask[BitWidth-1] == 0) {
1129 // Right fill the mask of bits for this ADD to demand the most
1130 // significant bit and all those below it.
1131 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1132 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1133 LHSKnownZero, LHSKnownOne, Depth+1))
1134 return true;
1135 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1136 LHSKnownZero, LHSKnownOne, Depth+1))
1137 return true;
1138 }
1139 }
1140 break;
1141 }
1142 case Instruction::Sub:
1143 // If the high-bits of this SUB are not demanded, then it does not demand
1144 // the high bits of its LHS or RHS.
1145 if (DemandedMask[BitWidth-1] == 0) {
1146 // Right fill the mask of bits for this SUB to demand the most
1147 // significant bit and all those below it.
1148 uint32_t NLZ = DemandedMask.countLeadingZeros();
1149 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1150 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1151 LHSKnownZero, LHSKnownOne, Depth+1))
1152 return true;
1153 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1154 LHSKnownZero, LHSKnownOne, Depth+1))
1155 return true;
1156 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001157 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1158 // the known zeros and ones.
1159 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001160 break;
1161 case Instruction::Shl:
1162 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1163 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1164 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1165 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1166 RHSKnownZero, RHSKnownOne, Depth+1))
1167 return true;
1168 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1169 "Bits known to be one AND zero?");
1170 RHSKnownZero <<= ShiftAmt;
1171 RHSKnownOne <<= ShiftAmt;
1172 // low bits known zero.
1173 if (ShiftAmt)
1174 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1175 }
1176 break;
1177 case Instruction::LShr:
1178 // For a logical shift right
1179 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1180 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1181
1182 // Unsigned shift right.
1183 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1184 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1185 RHSKnownZero, RHSKnownOne, Depth+1))
1186 return true;
1187 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1188 "Bits known to be one AND zero?");
1189 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1190 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1191 if (ShiftAmt) {
1192 // Compute the new bits that are at the top now.
1193 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1194 RHSKnownZero |= HighBits; // high bits known zero.
1195 }
1196 }
1197 break;
1198 case Instruction::AShr:
1199 // If this is an arithmetic shift right and only the low-bit is set, we can
1200 // always convert this into a logical shr, even if the shift amount is
1201 // variable. The low bit of the shift cannot be an input sign bit unless
1202 // the shift amount is >= the size of the datatype, which is undefined.
1203 if (DemandedMask == 1) {
1204 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001205 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001206 I->getOperand(0), I->getOperand(1), I->getName());
1207 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1208 return UpdateValueUsesWith(I, NewVal);
1209 }
1210
1211 // If the sign bit is the only bit demanded by this ashr, then there is no
1212 // need to do it, the shift doesn't change the high bit.
1213 if (DemandedMask.isSignBit())
1214 return UpdateValueUsesWith(I, I->getOperand(0));
1215
1216 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1217 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1218
1219 // Signed shift right.
1220 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1221 // If any of the "high bits" are demanded, we should set the sign bit as
1222 // demanded.
1223 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1224 DemandedMaskIn.set(BitWidth-1);
1225 if (SimplifyDemandedBits(I->getOperand(0),
1226 DemandedMaskIn,
1227 RHSKnownZero, RHSKnownOne, Depth+1))
1228 return true;
1229 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1230 "Bits known to be one AND zero?");
1231 // Compute the new bits that are at the top now.
1232 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1233 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1234 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1235
1236 // Handle the sign bits.
1237 APInt SignBit(APInt::getSignBit(BitWidth));
1238 // Adjust to where it is now in the mask.
1239 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1240
1241 // If the input sign bit is known to be zero, or if none of the top bits
1242 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001243 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244 (HighBits & ~DemandedMask) == HighBits) {
1245 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001246 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001247 I->getOperand(0), SA, I->getName());
1248 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1249 return UpdateValueUsesWith(I, NewVal);
1250 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1251 RHSKnownOne |= HighBits;
1252 }
1253 }
1254 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001255 case Instruction::SRem:
1256 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1257 APInt RA = Rem->getValue();
1258 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001259 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1260 return UpdateValueUsesWith(I, I->getOperand(0));
1261
Dan Gohman5a154a12008-05-06 00:51:48 +00001262 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001263 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1264 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1265 LHSKnownZero, LHSKnownOne, Depth+1))
1266 return true;
1267
1268 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1269 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001270
1271 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001272
1273 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1274 }
1275 }
1276 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001277 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001278 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1279 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001280 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1281 KnownZero2, KnownOne2, Depth+1))
1282 return true;
1283
Dan Gohmanbec16052008-04-28 17:02:21 +00001284 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001285 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001286 KnownZero2, KnownOne2, Depth+1))
1287 return true;
1288
1289 Leaders = std::max(Leaders,
1290 KnownZero2.countLeadingOnes());
1291 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001292 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001293 }
Chris Lattner989ba312008-06-18 04:33:20 +00001294 case Instruction::Call:
1295 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1296 switch (II->getIntrinsicID()) {
1297 default: break;
1298 case Intrinsic::bswap: {
1299 // If the only bits demanded come from one byte of the bswap result,
1300 // just shift the input byte into position to eliminate the bswap.
1301 unsigned NLZ = DemandedMask.countLeadingZeros();
1302 unsigned NTZ = DemandedMask.countTrailingZeros();
1303
1304 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1305 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1306 // have 14 leading zeros, round to 8.
1307 NLZ &= ~7;
1308 NTZ &= ~7;
1309 // If we need exactly one byte, we can do this transformation.
1310 if (BitWidth-NLZ-NTZ == 8) {
1311 unsigned ResultBit = NTZ;
1312 unsigned InputBit = BitWidth-NTZ-8;
1313
1314 // Replace this with either a left or right shift to get the byte into
1315 // the right place.
1316 Instruction *NewVal;
1317 if (InputBit > ResultBit)
1318 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1319 ConstantInt::get(I->getType(), InputBit-ResultBit));
1320 else
1321 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1322 ConstantInt::get(I->getType(), ResultBit-InputBit));
1323 NewVal->takeName(I);
1324 InsertNewInstBefore(NewVal, *I);
1325 return UpdateValueUsesWith(I, NewVal);
1326 }
1327
1328 // TODO: Could compute known zero/one bits based on the input.
1329 break;
1330 }
1331 }
1332 }
Chris Lattner4946e222008-06-18 18:11:55 +00001333 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001334 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001335 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001336
1337 // If the client is only demanding bits that we know, return the known
1338 // constant.
1339 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1340 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1341 return false;
1342}
1343
1344
1345/// SimplifyDemandedVectorElts - The specified value producecs a vector with
1346/// 64 or fewer elements. DemandedElts contains the set of elements that are
1347/// actually used by the caller. This method analyzes which elements of the
1348/// operand are undef and returns that information in UndefElts.
1349///
1350/// If the information about demanded elements can be used to simplify the
1351/// operation, the operation is simplified, then the resultant value is
1352/// returned. This returns null if no change was made.
1353Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1354 uint64_t &UndefElts,
1355 unsigned Depth) {
1356 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1357 assert(VWidth <= 64 && "Vector too wide to analyze!");
1358 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001359 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001360
1361 if (isa<UndefValue>(V)) {
1362 // If the entire vector is undefined, just return this info.
1363 UndefElts = EltMask;
1364 return 0;
1365 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1366 UndefElts = EltMask;
1367 return UndefValue::get(V->getType());
1368 }
1369
1370 UndefElts = 0;
1371 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1372 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1373 Constant *Undef = UndefValue::get(EltTy);
1374
1375 std::vector<Constant*> Elts;
1376 for (unsigned i = 0; i != VWidth; ++i)
1377 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1378 Elts.push_back(Undef);
1379 UndefElts |= (1ULL << i);
1380 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1381 Elts.push_back(Undef);
1382 UndefElts |= (1ULL << i);
1383 } else { // Otherwise, defined.
1384 Elts.push_back(CP->getOperand(i));
1385 }
1386
1387 // If we changed the constant, return it.
1388 Constant *NewCP = ConstantVector::get(Elts);
1389 return NewCP != CP ? NewCP : 0;
1390 } else if (isa<ConstantAggregateZero>(V)) {
1391 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1392 // set to undef.
1393 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1394 Constant *Zero = Constant::getNullValue(EltTy);
1395 Constant *Undef = UndefValue::get(EltTy);
1396 std::vector<Constant*> Elts;
1397 for (unsigned i = 0; i != VWidth; ++i)
1398 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1399 UndefElts = DemandedElts ^ EltMask;
1400 return ConstantVector::get(Elts);
1401 }
1402
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001403 // Limit search depth.
1404 if (Depth == 10)
1405 return false;
1406
1407 // If multiple users are using the root value, procede with
1408 // simplification conservatively assuming that all elements
1409 // are needed.
1410 if (!V->hasOneUse()) {
1411 // Quit if we find multiple users of a non-root value though.
1412 // They'll be handled when it's their turn to be visited by
1413 // the main instcombine process.
1414 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001415 // TODO: Just compute the UndefElts information recursively.
1416 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001417
1418 // Conservatively assume that all elements are needed.
1419 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001420 }
1421
1422 Instruction *I = dyn_cast<Instruction>(V);
1423 if (!I) return false; // Only analyze instructions.
1424
1425 bool MadeChange = false;
1426 uint64_t UndefElts2;
1427 Value *TmpV;
1428 switch (I->getOpcode()) {
1429 default: break;
1430
1431 case Instruction::InsertElement: {
1432 // If this is a variable index, we don't know which element it overwrites.
1433 // demand exactly the same input as we produce.
1434 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1435 if (Idx == 0) {
1436 // Note that we can't propagate undef elt info, because we don't know
1437 // which elt is getting updated.
1438 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1439 UndefElts2, Depth+1);
1440 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1441 break;
1442 }
1443
1444 // If this is inserting an element that isn't demanded, remove this
1445 // insertelement.
1446 unsigned IdxNo = Idx->getZExtValue();
1447 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1448 return AddSoonDeadInstToWorklist(*I, 0);
1449
1450 // Otherwise, the element inserted overwrites whatever was there, so the
1451 // input demanded set is simpler than the output set.
1452 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1453 DemandedElts & ~(1ULL << IdxNo),
1454 UndefElts, Depth+1);
1455 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1456
1457 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001458 UndefElts &= ~(1ULL << IdxNo);
1459 break;
1460 }
1461 case Instruction::ShuffleVector: {
1462 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1463 uint64_t LeftDemanded = 0, RightDemanded = 0;
1464 for (unsigned i = 0; i < VWidth; i++) {
1465 if (DemandedElts & (1ULL << i)) {
1466 unsigned MaskVal = Shuffle->getMaskValue(i);
1467 if (MaskVal != -1u) {
1468 assert(MaskVal < VWidth * 2 &&
1469 "shufflevector mask index out of range!");
1470 if (MaskVal < VWidth)
1471 LeftDemanded |= 1ULL << MaskVal;
1472 else
1473 RightDemanded |= 1ULL << (MaskVal - VWidth);
1474 }
1475 }
1476 }
1477
1478 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1479 UndefElts2, Depth+1);
1480 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1481
1482 uint64_t UndefElts3;
1483 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1484 UndefElts3, Depth+1);
1485 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1486
1487 bool NewUndefElts = false;
1488 for (unsigned i = 0; i < VWidth; i++) {
1489 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001490 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001491 uint64_t NewBit = 1ULL << i;
1492 UndefElts |= NewBit;
1493 } else if (MaskVal < VWidth) {
1494 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1495 NewUndefElts |= NewBit;
1496 UndefElts |= NewBit;
1497 } else {
1498 uint64_t NewBit = ((UndefElts3 >> (MaskVal - VWidth)) & 1) << i;
1499 NewUndefElts |= NewBit;
1500 UndefElts |= NewBit;
1501 }
1502 }
1503
1504 if (NewUndefElts) {
1505 // Add additional discovered undefs.
1506 std::vector<Constant*> Elts;
1507 for (unsigned i = 0; i < VWidth; ++i) {
1508 if (UndefElts & (1ULL << i))
1509 Elts.push_back(UndefValue::get(Type::Int32Ty));
1510 else
1511 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1512 Shuffle->getMaskValue(i)));
1513 }
1514 I->setOperand(2, ConstantVector::get(Elts));
1515 MadeChange = true;
1516 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001517 break;
1518 }
1519 case Instruction::BitCast: {
1520 // Vector->vector casts only.
1521 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1522 if (!VTy) break;
1523 unsigned InVWidth = VTy->getNumElements();
1524 uint64_t InputDemandedElts = 0;
1525 unsigned Ratio;
1526
1527 if (VWidth == InVWidth) {
1528 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1529 // elements as are demanded of us.
1530 Ratio = 1;
1531 InputDemandedElts = DemandedElts;
1532 } else if (VWidth > InVWidth) {
1533 // Untested so far.
1534 break;
1535
1536 // If there are more elements in the result than there are in the source,
1537 // then an input element is live if any of the corresponding output
1538 // elements are live.
1539 Ratio = VWidth/InVWidth;
1540 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1541 if (DemandedElts & (1ULL << OutIdx))
1542 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1543 }
1544 } else {
1545 // Untested so far.
1546 break;
1547
1548 // If there are more elements in the source than there are in the result,
1549 // then an input element is live if the corresponding output element is
1550 // live.
1551 Ratio = InVWidth/VWidth;
1552 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1553 if (DemandedElts & (1ULL << InIdx/Ratio))
1554 InputDemandedElts |= 1ULL << InIdx;
1555 }
1556
1557 // div/rem demand all inputs, because they don't want divide by zero.
1558 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1559 UndefElts2, Depth+1);
1560 if (TmpV) {
1561 I->setOperand(0, TmpV);
1562 MadeChange = true;
1563 }
1564
1565 UndefElts = UndefElts2;
1566 if (VWidth > InVWidth) {
1567 assert(0 && "Unimp");
1568 // If there are more elements in the result than there are in the source,
1569 // then an output element is undef if the corresponding input element is
1570 // undef.
1571 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1572 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1573 UndefElts |= 1ULL << OutIdx;
1574 } else if (VWidth < InVWidth) {
1575 assert(0 && "Unimp");
1576 // If there are more elements in the source than there are in the result,
1577 // then a result element is undef if all of the corresponding input
1578 // elements are undef.
1579 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1580 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1581 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1582 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1583 }
1584 break;
1585 }
1586 case Instruction::And:
1587 case Instruction::Or:
1588 case Instruction::Xor:
1589 case Instruction::Add:
1590 case Instruction::Sub:
1591 case Instruction::Mul:
1592 // div/rem demand all inputs, because they don't want divide by zero.
1593 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1594 UndefElts, Depth+1);
1595 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1596 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1597 UndefElts2, Depth+1);
1598 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1599
1600 // Output elements are undefined if both are undefined. Consider things
1601 // like undef&0. The result is known zero, not undef.
1602 UndefElts &= UndefElts2;
1603 break;
1604
1605 case Instruction::Call: {
1606 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1607 if (!II) break;
1608 switch (II->getIntrinsicID()) {
1609 default: break;
1610
1611 // Binary vector operations that work column-wise. A dest element is a
1612 // function of the corresponding input elements from the two inputs.
1613 case Intrinsic::x86_sse_sub_ss:
1614 case Intrinsic::x86_sse_mul_ss:
1615 case Intrinsic::x86_sse_min_ss:
1616 case Intrinsic::x86_sse_max_ss:
1617 case Intrinsic::x86_sse2_sub_sd:
1618 case Intrinsic::x86_sse2_mul_sd:
1619 case Intrinsic::x86_sse2_min_sd:
1620 case Intrinsic::x86_sse2_max_sd:
1621 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1622 UndefElts, Depth+1);
1623 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1624 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1625 UndefElts2, Depth+1);
1626 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1627
1628 // If only the low elt is demanded and this is a scalarizable intrinsic,
1629 // scalarize it now.
1630 if (DemandedElts == 1) {
1631 switch (II->getIntrinsicID()) {
1632 default: break;
1633 case Intrinsic::x86_sse_sub_ss:
1634 case Intrinsic::x86_sse_mul_ss:
1635 case Intrinsic::x86_sse2_sub_sd:
1636 case Intrinsic::x86_sse2_mul_sd:
1637 // TODO: Lower MIN/MAX/ABS/etc
1638 Value *LHS = II->getOperand(1);
1639 Value *RHS = II->getOperand(2);
1640 // Extract the element as scalars.
1641 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1642 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1643
1644 switch (II->getIntrinsicID()) {
1645 default: assert(0 && "Case stmts out of sync!");
1646 case Intrinsic::x86_sse_sub_ss:
1647 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001648 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001649 II->getName()), *II);
1650 break;
1651 case Intrinsic::x86_sse_mul_ss:
1652 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001653 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001654 II->getName()), *II);
1655 break;
1656 }
1657
1658 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001659 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1660 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001661 InsertNewInstBefore(New, *II);
1662 AddSoonDeadInstToWorklist(*II, 0);
1663 return New;
1664 }
1665 }
1666
1667 // Output elements are undefined if both are undefined. Consider things
1668 // like undef&0. The result is known zero, not undef.
1669 UndefElts &= UndefElts2;
1670 break;
1671 }
1672 break;
1673 }
1674 }
1675 return MadeChange ? I : 0;
1676}
1677
Dan Gohman5d56fd42008-05-19 22:14:15 +00001678
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001679/// AssociativeOpt - Perform an optimization on an associative operator. This
1680/// function is designed to check a chain of associative operators for a
1681/// potential to apply a certain optimization. Since the optimization may be
1682/// applicable if the expression was reassociated, this checks the chain, then
1683/// reassociates the expression as necessary to expose the optimization
1684/// opportunity. This makes use of a special Functor, which must define
1685/// 'shouldApply' and 'apply' methods.
1686///
1687template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001688static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001689 unsigned Opcode = Root.getOpcode();
1690 Value *LHS = Root.getOperand(0);
1691
1692 // Quick check, see if the immediate LHS matches...
1693 if (F.shouldApply(LHS))
1694 return F.apply(Root);
1695
1696 // Otherwise, if the LHS is not of the same opcode as the root, return.
1697 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1698 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1699 // Should we apply this transform to the RHS?
1700 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1701
1702 // If not to the RHS, check to see if we should apply to the LHS...
1703 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1704 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1705 ShouldApply = true;
1706 }
1707
1708 // If the functor wants to apply the optimization to the RHS of LHSI,
1709 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1710 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001711 // Now all of the instructions are in the current basic block, go ahead
1712 // and perform the reassociation.
1713 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1714
1715 // First move the selected RHS to the LHS of the root...
1716 Root.setOperand(0, LHSI->getOperand(1));
1717
1718 // Make what used to be the LHS of the root be the user of the root...
1719 Value *ExtraOperand = TmpLHSI->getOperand(1);
1720 if (&Root == TmpLHSI) {
1721 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1722 return 0;
1723 }
1724 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1725 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001726 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001727 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001728 ARI = Root;
1729
1730 // Now propagate the ExtraOperand down the chain of instructions until we
1731 // get to LHSI.
1732 while (TmpLHSI != LHSI) {
1733 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1734 // Move the instruction to immediately before the chain we are
1735 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001736 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001737 ARI = NextLHSI;
1738
1739 Value *NextOp = NextLHSI->getOperand(1);
1740 NextLHSI->setOperand(1, ExtraOperand);
1741 TmpLHSI = NextLHSI;
1742 ExtraOperand = NextOp;
1743 }
1744
1745 // Now that the instructions are reassociated, have the functor perform
1746 // the transformation...
1747 return F.apply(Root);
1748 }
1749
1750 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1751 }
1752 return 0;
1753}
1754
Dan Gohman089efff2008-05-13 00:00:25 +00001755namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001756
Nick Lewycky27f6c132008-05-23 04:34:58 +00001757// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001758struct AddRHS {
1759 Value *RHS;
1760 AddRHS(Value *rhs) : RHS(rhs) {}
1761 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1762 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001763 return BinaryOperator::CreateShl(Add.getOperand(0),
1764 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001765 }
1766};
1767
1768// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1769// iff C1&C2 == 0
1770struct AddMaskingAnd {
1771 Constant *C2;
1772 AddMaskingAnd(Constant *c) : C2(c) {}
1773 bool shouldApply(Value *LHS) const {
1774 ConstantInt *C1;
1775 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1776 ConstantExpr::getAnd(C1, C2)->isNullValue();
1777 }
1778 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001779 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001780 }
1781};
1782
Dan Gohman089efff2008-05-13 00:00:25 +00001783}
1784
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001785static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1786 InstCombiner *IC) {
1787 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
1788 if (Constant *SOC = dyn_cast<Constant>(SO))
1789 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
1790
Gabor Greifa645dd32008-05-16 19:29:10 +00001791 return IC->InsertNewInstBefore(CastInst::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001792 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
1793 }
1794
1795 // Figure out if the constant is the left or the right argument.
1796 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1797 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1798
1799 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1800 if (ConstIsRHS)
1801 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1802 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1803 }
1804
1805 Value *Op0 = SO, *Op1 = ConstOperand;
1806 if (!ConstIsRHS)
1807 std::swap(Op0, Op1);
1808 Instruction *New;
1809 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001810 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001811 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001812 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001813 SO->getName()+".cmp");
1814 else {
1815 assert(0 && "Unknown binary instruction type!");
1816 abort();
1817 }
1818 return IC->InsertNewInstBefore(New, I);
1819}
1820
1821// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1822// constant as the other operand, try to fold the binary operator into the
1823// select arguments. This also works for Cast instructions, which obviously do
1824// not have a second operand.
1825static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1826 InstCombiner *IC) {
1827 // Don't modify shared select instructions
1828 if (!SI->hasOneUse()) return 0;
1829 Value *TV = SI->getOperand(1);
1830 Value *FV = SI->getOperand(2);
1831
1832 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1833 // Bool selects with constant operands can be folded to logical ops.
1834 if (SI->getType() == Type::Int1Ty) return 0;
1835
1836 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1837 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1838
Gabor Greifd6da1d02008-04-06 20:25:17 +00001839 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1840 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001841 }
1842 return 0;
1843}
1844
1845
1846/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1847/// node as operand #0, see if we can fold the instruction into the PHI (which
1848/// is only possible if all operands to the PHI are constants).
1849Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1850 PHINode *PN = cast<PHINode>(I.getOperand(0));
1851 unsigned NumPHIValues = PN->getNumIncomingValues();
1852 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1853
1854 // Check to see if all of the operands of the PHI are constants. If there is
1855 // one non-constant value, remember the BB it is. If there is more than one
1856 // or if *it* is a PHI, bail out.
1857 BasicBlock *NonConstBB = 0;
1858 for (unsigned i = 0; i != NumPHIValues; ++i)
1859 if (!isa<Constant>(PN->getIncomingValue(i))) {
1860 if (NonConstBB) return 0; // More than one non-const value.
1861 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1862 NonConstBB = PN->getIncomingBlock(i);
1863
1864 // If the incoming non-constant value is in I's block, we have an infinite
1865 // loop.
1866 if (NonConstBB == I.getParent())
1867 return 0;
1868 }
1869
1870 // If there is exactly one non-constant value, we can insert a copy of the
1871 // operation in that block. However, if this is a critical edge, we would be
1872 // inserting the computation one some other paths (e.g. inside a loop). Only
1873 // do this if the pred block is unconditionally branching into the phi block.
1874 if (NonConstBB) {
1875 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1876 if (!BI || !BI->isUnconditional()) return 0;
1877 }
1878
1879 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001880 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001881 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1882 InsertNewInstBefore(NewPN, *PN);
1883 NewPN->takeName(PN);
1884
1885 // Next, add all of the operands to the PHI.
1886 if (I.getNumOperands() == 2) {
1887 Constant *C = cast<Constant>(I.getOperand(1));
1888 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001889 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001890 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1891 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1892 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1893 else
1894 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1895 } else {
1896 assert(PN->getIncomingBlock(i) == NonConstBB);
1897 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001898 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001899 PN->getIncomingValue(i), C, "phitmp",
1900 NonConstBB->getTerminator());
1901 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001902 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001903 CI->getPredicate(),
1904 PN->getIncomingValue(i), C, "phitmp",
1905 NonConstBB->getTerminator());
1906 else
1907 assert(0 && "Unknown binop!");
1908
1909 AddToWorkList(cast<Instruction>(InV));
1910 }
1911 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1912 }
1913 } else {
1914 CastInst *CI = cast<CastInst>(&I);
1915 const Type *RetTy = CI->getType();
1916 for (unsigned i = 0; i != NumPHIValues; ++i) {
1917 Value *InV;
1918 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1919 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1920 } else {
1921 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001922 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001923 I.getType(), "phitmp",
1924 NonConstBB->getTerminator());
1925 AddToWorkList(cast<Instruction>(InV));
1926 }
1927 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1928 }
1929 }
1930 return ReplaceInstUsesWith(I, NewPN);
1931}
1932
Chris Lattner55476162008-01-29 06:52:45 +00001933
Chris Lattner3554f972008-05-20 05:46:13 +00001934/// WillNotOverflowSignedAdd - Return true if we can prove that:
1935/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1936/// This basically requires proving that the add in the original type would not
1937/// overflow to change the sign bit or have a carry out.
1938bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1939 // There are different heuristics we can use for this. Here are some simple
1940 // ones.
1941
1942 // Add has the property that adding any two 2's complement numbers can only
1943 // have one carry bit which can change a sign. As such, if LHS and RHS each
1944 // have at least two sign bits, we know that the addition of the two values will
1945 // sign extend fine.
1946 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1947 return true;
1948
1949
1950 // If one of the operands only has one non-zero bit, and if the other operand
1951 // has a known-zero bit in a more significant place than it (not including the
1952 // sign bit) the ripple may go up to and fill the zero, but won't change the
1953 // sign. For example, (X & ~4) + 1.
1954
1955 // TODO: Implement.
1956
1957 return false;
1958}
1959
Chris Lattner55476162008-01-29 06:52:45 +00001960
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001961Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1962 bool Changed = SimplifyCommutative(I);
1963 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1964
1965 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1966 // X + undef -> undef
1967 if (isa<UndefValue>(RHS))
1968 return ReplaceInstUsesWith(I, RHS);
1969
1970 // X + 0 --> X
1971 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1972 if (RHSC->isNullValue())
1973 return ReplaceInstUsesWith(I, LHS);
1974 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00001975 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
1976 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001977 return ReplaceInstUsesWith(I, LHS);
1978 }
1979
1980 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
1981 // X + (signbit) --> X ^ signbit
1982 const APInt& Val = CI->getValue();
1983 uint32_t BitWidth = Val.getBitWidth();
1984 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00001985 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001986
1987 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1988 // (X & 254)+1 -> (X&254)|1
1989 if (!isa<VectorType>(I.getType())) {
1990 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1991 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
1992 KnownZero, KnownOne))
1993 return &I;
1994 }
1995 }
1996
1997 if (isa<PHINode>(LHS))
1998 if (Instruction *NV = FoldOpIntoPhi(I))
1999 return NV;
2000
2001 ConstantInt *XorRHS = 0;
2002 Value *XorLHS = 0;
2003 if (isa<ConstantInt>(RHSC) &&
2004 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2005 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2006 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2007
2008 uint32_t Size = TySizeBits / 2;
2009 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2010 APInt CFF80Val(-C0080Val);
2011 do {
2012 if (TySizeBits > Size) {
2013 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2014 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2015 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2016 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2017 // This is a sign extend if the top bits are known zero.
2018 if (!MaskedValueIsZero(XorLHS,
2019 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2020 Size = 0; // Not a sign ext, but can't be any others either.
2021 break;
2022 }
2023 }
2024 Size >>= 1;
2025 C0080Val = APIntOps::lshr(C0080Val, Size);
2026 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2027 } while (Size >= 1);
2028
2029 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002030 // with funny bit widths then this switch statement should be removed. It
2031 // is just here to get the size of the "middle" type back up to something
2032 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002033 const Type *MiddleType = 0;
2034 switch (Size) {
2035 default: break;
2036 case 32: MiddleType = Type::Int32Ty; break;
2037 case 16: MiddleType = Type::Int16Ty; break;
2038 case 8: MiddleType = Type::Int8Ty; break;
2039 }
2040 if (MiddleType) {
2041 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2042 InsertNewInstBefore(NewTrunc, I);
2043 return new SExtInst(NewTrunc, I.getType(), I.getName());
2044 }
2045 }
2046 }
2047
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002048 if (I.getType() == Type::Int1Ty)
2049 return BinaryOperator::CreateXor(LHS, RHS);
2050
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002051 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002052 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002053 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2054
2055 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2056 if (RHSI->getOpcode() == Instruction::Sub)
2057 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2058 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2059 }
2060 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2061 if (LHSI->getOpcode() == Instruction::Sub)
2062 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2063 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2064 }
2065 }
2066
2067 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002068 // -A + -B --> -(A + B)
2069 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002070 if (LHS->getType()->isIntOrIntVector()) {
2071 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002072 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002073 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002074 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002075 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002076 }
2077
Gabor Greifa645dd32008-05-16 19:29:10 +00002078 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002079 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002080
2081 // A + -B --> A - B
2082 if (!isa<Constant>(RHS))
2083 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002084 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002085
2086
2087 ConstantInt *C2;
2088 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2089 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002090 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002091
2092 // X*C1 + X*C2 --> X * (C1+C2)
2093 ConstantInt *C1;
2094 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002095 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002096 }
2097
2098 // X + X*C --> X * (C+1)
2099 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002100 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002101
2102 // X + ~X --> -1 since ~X = -X-1
2103 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2104 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2105
2106
2107 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2108 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2109 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2110 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002111
2112 // A+B --> A|B iff A and B have no bits set in common.
2113 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2114 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2115 APInt LHSKnownOne(IT->getBitWidth(), 0);
2116 APInt LHSKnownZero(IT->getBitWidth(), 0);
2117 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2118 if (LHSKnownZero != 0) {
2119 APInt RHSKnownOne(IT->getBitWidth(), 0);
2120 APInt RHSKnownZero(IT->getBitWidth(), 0);
2121 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2122
2123 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002124 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002125 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002126 }
2127 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002128
Nick Lewycky83598a72008-02-03 07:42:09 +00002129 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002130 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002131 Value *W, *X, *Y, *Z;
2132 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2133 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2134 if (W != Y) {
2135 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002136 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002137 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002138 std::swap(W, X);
2139 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002140 std::swap(Y, Z);
2141 std::swap(W, X);
2142 }
2143 }
2144
2145 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002146 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002147 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002148 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002149 }
2150 }
2151 }
2152
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002153 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2154 Value *X = 0;
2155 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002156 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002157
2158 // (X & FF00) + xx00 -> (X+xx00) & FF00
2159 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2160 Constant *Anded = And(CRHS, C2);
2161 if (Anded == CRHS) {
2162 // See if all bits from the first bit set in the Add RHS up are included
2163 // in the mask. First, get the rightmost bit.
2164 const APInt& AddRHSV = CRHS->getValue();
2165
2166 // Form a mask of all bits from the lowest bit added through the top.
2167 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2168
2169 // See if the and mask includes all of these bits.
2170 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2171
2172 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2173 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002174 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002175 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002176 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002177 }
2178 }
2179 }
2180
2181 // Try to fold constant add into select arguments.
2182 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2183 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2184 return R;
2185 }
2186
2187 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002188 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002189 {
2190 CastInst *CI = dyn_cast<CastInst>(LHS);
2191 Value *Other = RHS;
2192 if (!CI) {
2193 CI = dyn_cast<CastInst>(RHS);
2194 Other = LHS;
2195 }
2196 if (CI && CI->getType()->isSized() &&
2197 (CI->getType()->getPrimitiveSizeInBits() ==
2198 TD->getIntPtrType()->getPrimitiveSizeInBits())
2199 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002200 unsigned AS =
2201 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002202 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2203 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002204 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002205 return new PtrToIntInst(I2, CI->getType());
2206 }
2207 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002208
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002209 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002210 {
2211 SelectInst *SI = dyn_cast<SelectInst>(LHS);
2212 Value *Other = RHS;
2213 if (!SI) {
2214 SI = dyn_cast<SelectInst>(RHS);
2215 Other = LHS;
2216 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002217 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002218 Value *TV = SI->getTrueValue();
2219 Value *FV = SI->getFalseValue();
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002220 Value *A, *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002221
2222 // Can we fold the add into the argument of the select?
2223 // We check both true and false select arguments for a matching subtract.
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002224 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Value(A))) &&
2225 A == Other) // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002226 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002227 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Value(A))) &&
2228 A == Other) // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002229 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002230 }
2231 }
Chris Lattner55476162008-01-29 06:52:45 +00002232
2233 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2234 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2235 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2236 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002237
Chris Lattner3554f972008-05-20 05:46:13 +00002238 // Check for (add (sext x), y), see if we can merge this into an
2239 // integer add followed by a sext.
2240 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2241 // (add (sext x), cst) --> (sext (add x, cst'))
2242 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2243 Constant *CI =
2244 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2245 if (LHSConv->hasOneUse() &&
2246 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2247 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2248 // Insert the new, smaller add.
2249 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2250 CI, "addconv");
2251 InsertNewInstBefore(NewAdd, I);
2252 return new SExtInst(NewAdd, I.getType());
2253 }
2254 }
2255
2256 // (add (sext x), (sext y)) --> (sext (add int x, y))
2257 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2258 // Only do this if x/y have the same type, if at last one of them has a
2259 // single use (so we don't increase the number of sexts), and if the
2260 // integer add will not overflow.
2261 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2262 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2263 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2264 RHSConv->getOperand(0))) {
2265 // Insert the new integer add.
2266 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2267 RHSConv->getOperand(0),
2268 "addconv");
2269 InsertNewInstBefore(NewAdd, I);
2270 return new SExtInst(NewAdd, I.getType());
2271 }
2272 }
2273 }
2274
2275 // Check for (add double (sitofp x), y), see if we can merge this into an
2276 // integer add followed by a promotion.
2277 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2278 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2279 // ... if the constant fits in the integer value. This is useful for things
2280 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2281 // requires a constant pool load, and generally allows the add to be better
2282 // instcombined.
2283 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2284 Constant *CI =
2285 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2286 if (LHSConv->hasOneUse() &&
2287 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2288 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2289 // Insert the new integer add.
2290 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2291 CI, "addconv");
2292 InsertNewInstBefore(NewAdd, I);
2293 return new SIToFPInst(NewAdd, I.getType());
2294 }
2295 }
2296
2297 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2298 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2299 // Only do this if x/y have the same type, if at last one of them has a
2300 // single use (so we don't increase the number of int->fp conversions),
2301 // and if the integer add will not overflow.
2302 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2303 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2304 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2305 RHSConv->getOperand(0))) {
2306 // Insert the new integer add.
2307 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2308 RHSConv->getOperand(0),
2309 "addconv");
2310 InsertNewInstBefore(NewAdd, I);
2311 return new SIToFPInst(NewAdd, I.getType());
2312 }
2313 }
2314 }
2315
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002316 return Changed ? &I : 0;
2317}
2318
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002319Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2320 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2321
Chris Lattner27fbef42008-07-17 06:07:20 +00002322 if (Op0 == Op1 && // sub X, X -> 0
2323 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002324 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2325
2326 // If this is a 'B = x-(-A)', change to B = x+A...
2327 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002328 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002329
2330 if (isa<UndefValue>(Op0))
2331 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2332 if (isa<UndefValue>(Op1))
2333 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2334
2335 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2336 // Replace (-1 - A) with (~A)...
2337 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002338 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002339
2340 // C - ~X == X + (1+C)
2341 Value *X = 0;
2342 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002343 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002344
2345 // -(X >>u 31) -> (X >>s 31)
2346 // -(X >>s 31) -> (X >>u 31)
2347 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002348 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002349 if (SI->getOpcode() == Instruction::LShr) {
2350 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2351 // Check to see if we are shifting out everything but the sign bit.
2352 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2353 SI->getType()->getPrimitiveSizeInBits()-1) {
2354 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002355 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002356 SI->getOperand(0), CU, SI->getName());
2357 }
2358 }
2359 }
2360 else if (SI->getOpcode() == Instruction::AShr) {
2361 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2362 // Check to see if we are shifting out everything but the sign bit.
2363 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2364 SI->getType()->getPrimitiveSizeInBits()-1) {
2365 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002366 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002367 SI->getOperand(0), CU, SI->getName());
2368 }
2369 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002370 }
2371 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002372 }
2373
2374 // Try to fold constant sub into select arguments.
2375 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2376 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2377 return R;
2378
2379 if (isa<PHINode>(Op0))
2380 if (Instruction *NV = FoldOpIntoPhi(I))
2381 return NV;
2382 }
2383
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002384 if (I.getType() == Type::Int1Ty)
2385 return BinaryOperator::CreateXor(Op0, Op1);
2386
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002387 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2388 if (Op1I->getOpcode() == Instruction::Add &&
2389 !Op0->getType()->isFPOrFPVector()) {
2390 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002391 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002392 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002393 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2395 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2396 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002397 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002398 Op1I->getOperand(0));
2399 }
2400 }
2401
2402 if (Op1I->hasOneUse()) {
2403 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2404 // is not used by anyone else...
2405 //
2406 if (Op1I->getOpcode() == Instruction::Sub &&
2407 !Op1I->getType()->isFPOrFPVector()) {
2408 // Swap the two operands of the subexpr...
2409 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2410 Op1I->setOperand(0, IIOp1);
2411 Op1I->setOperand(1, IIOp0);
2412
2413 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002414 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002415 }
2416
2417 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2418 //
2419 if (Op1I->getOpcode() == Instruction::And &&
2420 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2421 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2422
2423 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002424 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2425 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002426 }
2427
2428 // 0 - (X sdiv C) -> (X sdiv -C)
2429 if (Op1I->getOpcode() == Instruction::SDiv)
2430 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2431 if (CSI->isZero())
2432 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002433 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002434 ConstantExpr::getNeg(DivRHS));
2435
2436 // X - X*C --> X * (1-C)
2437 ConstantInt *C2 = 0;
2438 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2439 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002440 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002441 }
Dan Gohmanda338742007-09-17 17:31:57 +00002442
2443 // X - ((X / Y) * Y) --> X % Y
2444 if (Op1I->getOpcode() == Instruction::Mul)
2445 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2446 if (Op0 == I->getOperand(0) &&
2447 Op1I->getOperand(1) == I->getOperand(1)) {
2448 if (I->getOpcode() == Instruction::SDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002449 return BinaryOperator::CreateSRem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002450 if (I->getOpcode() == Instruction::UDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002451 return BinaryOperator::CreateURem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002452 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002453 }
2454 }
2455
2456 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002457 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002458 if (Op0I->getOpcode() == Instruction::Add) {
2459 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2460 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2461 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2462 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2463 } else if (Op0I->getOpcode() == Instruction::Sub) {
2464 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002465 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002466 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002467 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002468
2469 ConstantInt *C1;
2470 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2471 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002472 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002473
2474 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2475 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002476 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002477 }
2478 return 0;
2479}
2480
2481/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2482/// comparison only checks the sign bit. If it only checks the sign bit, set
2483/// TrueIfSigned if the result of the comparison is true when the input value is
2484/// signed.
2485static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2486 bool &TrueIfSigned) {
2487 switch (pred) {
2488 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2489 TrueIfSigned = true;
2490 return RHS->isZero();
2491 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2492 TrueIfSigned = true;
2493 return RHS->isAllOnesValue();
2494 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2495 TrueIfSigned = false;
2496 return RHS->isAllOnesValue();
2497 case ICmpInst::ICMP_UGT:
2498 // True if LHS u> RHS and RHS == high-bit-mask - 1
2499 TrueIfSigned = true;
2500 return RHS->getValue() ==
2501 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2502 case ICmpInst::ICMP_UGE:
2503 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2504 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002505 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002506 default:
2507 return false;
2508 }
2509}
2510
2511Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2512 bool Changed = SimplifyCommutative(I);
2513 Value *Op0 = I.getOperand(0);
2514
2515 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2516 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2517
2518 // Simplify mul instructions with a constant RHS...
2519 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2520 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2521
2522 // ((X << C1)*C2) == (X * (C2 << C1))
2523 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2524 if (SI->getOpcode() == Instruction::Shl)
2525 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002526 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002527 ConstantExpr::getShl(CI, ShOp));
2528
2529 if (CI->isZero())
2530 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2531 if (CI->equalsInt(1)) // X * 1 == X
2532 return ReplaceInstUsesWith(I, Op0);
2533 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002534 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002535
2536 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2537 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002538 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002539 ConstantInt::get(Op0->getType(), Val.logBase2()));
2540 }
2541 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2542 if (Op1F->isNullValue())
2543 return ReplaceInstUsesWith(I, Op1);
2544
2545 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2546 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002547 if (Op1F->isExactlyValue(1.0))
2548 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2549 } else if (isa<VectorType>(Op1->getType())) {
2550 if (isa<ConstantAggregateZero>(Op1))
2551 return ReplaceInstUsesWith(I, Op1);
2552
2553 // As above, vector X*splat(1.0) -> X in all defined cases.
2554 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1))
2555 if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
2556 if (F->isExactlyValue(1.0))
2557 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002558 }
2559
2560 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2561 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002562 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002563 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002564 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002565 Op1, "tmp");
2566 InsertNewInstBefore(Add, I);
2567 Value *C1C2 = ConstantExpr::getMul(Op1,
2568 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002569 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002570
2571 }
2572
2573 // Try to fold constant mul into select arguments.
2574 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2575 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2576 return R;
2577
2578 if (isa<PHINode>(Op0))
2579 if (Instruction *NV = FoldOpIntoPhi(I))
2580 return NV;
2581 }
2582
2583 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2584 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002585 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002586
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002587 if (I.getType() == Type::Int1Ty)
2588 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2589
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002590 // If one of the operands of the multiply is a cast from a boolean value, then
2591 // we know the bool is either zero or one, so this is a 'masking' multiply.
2592 // See if we can simplify things based on how the boolean was originally
2593 // formed.
2594 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002595 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002596 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2597 BoolCast = CI;
2598 if (!BoolCast)
2599 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2600 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2601 BoolCast = CI;
2602 if (BoolCast) {
2603 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2604 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2605 const Type *SCOpTy = SCIOp0->getType();
2606 bool TIS = false;
2607
2608 // If the icmp is true iff the sign bit of X is set, then convert this
2609 // multiply into a shift/and combination.
2610 if (isa<ConstantInt>(SCIOp1) &&
2611 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2612 TIS) {
2613 // Shift the X value right to turn it into "all signbits".
2614 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2615 SCOpTy->getPrimitiveSizeInBits()-1);
2616 Value *V =
2617 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002618 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002619 BoolCast->getOperand(0)->getName()+
2620 ".mask"), I);
2621
2622 // If the multiply type is not the same as the source type, sign extend
2623 // or truncate to the multiply type.
2624 if (I.getType() != V->getType()) {
2625 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2626 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2627 Instruction::CastOps opcode =
2628 (SrcBits == DstBits ? Instruction::BitCast :
2629 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2630 V = InsertCastBefore(opcode, V, I.getType(), I);
2631 }
2632
2633 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002634 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002635 }
2636 }
2637 }
2638
2639 return Changed ? &I : 0;
2640}
2641
Chris Lattner76972db2008-07-14 00:15:52 +00002642/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2643/// instruction.
2644bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2645 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2646
2647 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2648 int NonNullOperand = -1;
2649 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2650 if (ST->isNullValue())
2651 NonNullOperand = 2;
2652 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2653 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2654 if (ST->isNullValue())
2655 NonNullOperand = 1;
2656
2657 if (NonNullOperand == -1)
2658 return false;
2659
2660 Value *SelectCond = SI->getOperand(0);
2661
2662 // Change the div/rem to use 'Y' instead of the select.
2663 I.setOperand(1, SI->getOperand(NonNullOperand));
2664
2665 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2666 // problem. However, the select, or the condition of the select may have
2667 // multiple uses. Based on our knowledge that the operand must be non-zero,
2668 // propagate the known value for the select into other uses of it, and
2669 // propagate a known value of the condition into its other users.
2670
2671 // If the select and condition only have a single use, don't bother with this,
2672 // early exit.
2673 if (SI->use_empty() && SelectCond->hasOneUse())
2674 return true;
2675
2676 // Scan the current block backward, looking for other uses of SI.
2677 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2678
2679 while (BBI != BBFront) {
2680 --BBI;
2681 // If we found a call to a function, we can't assume it will return, so
2682 // information from below it cannot be propagated above it.
2683 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2684 break;
2685
2686 // Replace uses of the select or its condition with the known values.
2687 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2688 I != E; ++I) {
2689 if (*I == SI) {
2690 *I = SI->getOperand(NonNullOperand);
2691 AddToWorkList(BBI);
2692 } else if (*I == SelectCond) {
2693 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2694 ConstantInt::getFalse();
2695 AddToWorkList(BBI);
2696 }
2697 }
2698
2699 // If we past the instruction, quit looking for it.
2700 if (&*BBI == SI)
2701 SI = 0;
2702 if (&*BBI == SelectCond)
2703 SelectCond = 0;
2704
2705 // If we ran out of things to eliminate, break out of the loop.
2706 if (SelectCond == 0 && SI == 0)
2707 break;
2708
2709 }
2710 return true;
2711}
2712
2713
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002714/// This function implements the transforms on div instructions that work
2715/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2716/// used by the visitors to those instructions.
2717/// @brief Transforms common to all three div instructions
2718Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2719 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2720
Chris Lattner653ef3c2008-02-19 06:12:18 +00002721 // undef / X -> 0 for integer.
2722 // undef / X -> undef for FP (the undef could be a snan).
2723 if (isa<UndefValue>(Op0)) {
2724 if (Op0->getType()->isFPOrFPVector())
2725 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002726 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002727 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002728
2729 // X / undef -> undef
2730 if (isa<UndefValue>(Op1))
2731 return ReplaceInstUsesWith(I, Op1);
2732
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002733 return 0;
2734}
2735
2736/// This function implements the transforms common to both integer division
2737/// instructions (udiv and sdiv). It is called by the visitors to those integer
2738/// division instructions.
2739/// @brief Common integer divide transforms
2740Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2741 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2742
Chris Lattnercefb36c2008-05-16 02:59:42 +00002743 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002744 if (Op0 == Op1) {
2745 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2746 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2747 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2748 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2749 }
2750
2751 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2752 return ReplaceInstUsesWith(I, CI);
2753 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002754
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002755 if (Instruction *Common = commonDivTransforms(I))
2756 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002757
2758 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2759 // This does not apply for fdiv.
2760 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2761 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002762
2763 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2764 // div X, 1 == X
2765 if (RHS->equalsInt(1))
2766 return ReplaceInstUsesWith(I, Op0);
2767
2768 // (X / C1) / C2 -> X / (C1*C2)
2769 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2770 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2771 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002772 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2773 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2774 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002775 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002776 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002777 }
2778
2779 if (!RHS->isZero()) { // avoid X udiv 0
2780 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2781 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2782 return R;
2783 if (isa<PHINode>(Op0))
2784 if (Instruction *NV = FoldOpIntoPhi(I))
2785 return NV;
2786 }
2787 }
2788
2789 // 0 / X == 0, we don't need to preserve faults!
2790 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2791 if (LHS->equalsInt(0))
2792 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2793
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002794 // It can't be division by zero, hence it must be division by one.
2795 if (I.getType() == Type::Int1Ty)
2796 return ReplaceInstUsesWith(I, Op0);
2797
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002798 return 0;
2799}
2800
2801Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2802 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2803
2804 // Handle the integer div common cases
2805 if (Instruction *Common = commonIDivTransforms(I))
2806 return Common;
2807
2808 // X udiv C^2 -> X >> C
2809 // Check to see if this is an unsigned division with an exact power of 2,
2810 // if so, convert to a right shift.
2811 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
2812 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002813 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002814 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
2815 }
2816
2817 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2818 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2819 if (RHSI->getOpcode() == Instruction::Shl &&
2820 isa<ConstantInt>(RHSI->getOperand(0))) {
2821 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2822 if (C1.isPowerOf2()) {
2823 Value *N = RHSI->getOperand(1);
2824 const Type *NTy = N->getType();
2825 if (uint32_t C2 = C1.logBase2()) {
2826 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002827 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002828 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002829 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002830 }
2831 }
2832 }
2833
2834 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2835 // where C1&C2 are powers of two.
2836 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2837 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2838 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2839 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2840 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2841 // Compute the shift amounts
2842 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2843 // Construct the "on true" case of the select
2844 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002845 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002846 Op0, TC, SI->getName()+".t");
2847 TSI = InsertNewInstBefore(TSI, I);
2848
2849 // Construct the "on false" case of the select
2850 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002851 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002852 Op0, FC, SI->getName()+".f");
2853 FSI = InsertNewInstBefore(FSI, I);
2854
2855 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002856 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002857 }
2858 }
2859 return 0;
2860}
2861
2862Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2863 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2864
2865 // Handle the integer div common cases
2866 if (Instruction *Common = commonIDivTransforms(I))
2867 return Common;
2868
2869 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2870 // sdiv X, -1 == -X
2871 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002872 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002873
2874 // -X/C -> X/-C
2875 if (Value *LHSNeg = dyn_castNegVal(Op0))
Gabor Greifa645dd32008-05-16 19:29:10 +00002876 return BinaryOperator::CreateSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002877 }
2878
2879 // If the sign bits of both operands are zero (i.e. we can prove they are
2880 // unsigned inputs), turn this into a udiv.
2881 if (I.getType()->isInteger()) {
2882 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2883 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002884 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002885 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002886 }
2887 }
2888
2889 return 0;
2890}
2891
2892Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2893 return commonDivTransforms(I);
2894}
2895
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002896/// This function implements the transforms on rem instructions that work
2897/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2898/// is used by the visitors to those instructions.
2899/// @brief Transforms common to all three rem instructions
2900Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2901 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2902
Chris Lattner653ef3c2008-02-19 06:12:18 +00002903 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002904 if (Constant *LHS = dyn_cast<Constant>(Op0))
2905 if (LHS->isNullValue())
2906 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2907
Chris Lattner653ef3c2008-02-19 06:12:18 +00002908 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2909 if (I.getType()->isFPOrFPVector())
2910 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002911 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002912 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002913 if (isa<UndefValue>(Op1))
2914 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2915
2916 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002917 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2918 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002919
2920 return 0;
2921}
2922
2923/// This function implements the transforms common to both integer remainder
2924/// instructions (urem and srem). It is called by the visitors to those integer
2925/// remainder instructions.
2926/// @brief Common integer remainder transforms
2927Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2928 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2929
2930 if (Instruction *common = commonRemTransforms(I))
2931 return common;
2932
2933 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2934 // X % 0 == undef, we don't need to preserve faults!
2935 if (RHS->equalsInt(0))
2936 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2937
2938 if (RHS->equalsInt(1)) // X % 1 == 0
2939 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2940
2941 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2942 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2943 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2944 return R;
2945 } else if (isa<PHINode>(Op0I)) {
2946 if (Instruction *NV = FoldOpIntoPhi(I))
2947 return NV;
2948 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00002949
2950 // See if we can fold away this rem instruction.
2951 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
2952 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2953 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2954 KnownZero, KnownOne))
2955 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002956 }
2957 }
2958
2959 return 0;
2960}
2961
2962Instruction *InstCombiner::visitURem(BinaryOperator &I) {
2963 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2964
2965 if (Instruction *common = commonIRemTransforms(I))
2966 return common;
2967
2968 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2969 // X urem C^2 -> X and C
2970 // Check to see if this is an unsigned remainder with an exact power of 2,
2971 // if so, convert to a bitwise and.
2972 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
2973 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00002974 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002975 }
2976
2977 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
2978 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
2979 if (RHSI->getOpcode() == Instruction::Shl &&
2980 isa<ConstantInt>(RHSI->getOperand(0))) {
2981 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
2982 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00002983 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002984 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002985 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002986 }
2987 }
2988 }
2989
2990 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
2991 // where C1&C2 are powers of two.
2992 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2993 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2994 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2995 // STO == 0 and SFO == 0 handled above.
2996 if ((STO->getValue().isPowerOf2()) &&
2997 (SFO->getValue().isPowerOf2())) {
2998 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002999 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003000 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003001 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003002 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003003 }
3004 }
3005 }
3006
3007 return 0;
3008}
3009
3010Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3011 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3012
Dan Gohmandb3dd962007-11-05 23:16:33 +00003013 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003014 if (Instruction *common = commonIRemTransforms(I))
3015 return common;
3016
3017 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003018 if (!isa<Constant>(RHSNeg) ||
3019 (isa<ConstantInt>(RHSNeg) &&
3020 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003021 // X % -Y -> X % Y
3022 AddUsesToWorkList(I);
3023 I.setOperand(1, RHSNeg);
3024 return &I;
3025 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003026
Dan Gohmandb3dd962007-11-05 23:16:33 +00003027 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003028 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003029 if (I.getType()->isInteger()) {
3030 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3031 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3032 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003033 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003034 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003035 }
3036
3037 return 0;
3038}
3039
3040Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3041 return commonRemTransforms(I);
3042}
3043
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003044// isOneBitSet - Return true if there is exactly one bit set in the specified
3045// constant.
3046static bool isOneBitSet(const ConstantInt *CI) {
3047 return CI->getValue().isPowerOf2();
3048}
3049
3050// isHighOnes - Return true if the constant is of the form 1+0+.
3051// This is the same as lowones(~X).
3052static bool isHighOnes(const ConstantInt *CI) {
3053 return (~CI->getValue() + 1).isPowerOf2();
3054}
3055
3056/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3057/// are carefully arranged to allow folding of expressions such as:
3058///
3059/// (A < B) | (A > B) --> (A != B)
3060///
3061/// Note that this is only valid if the first and second predicates have the
3062/// same sign. Is illegal to do: (A u< B) | (A s> B)
3063///
3064/// Three bits are used to represent the condition, as follows:
3065/// 0 A > B
3066/// 1 A == B
3067/// 2 A < B
3068///
3069/// <=> Value Definition
3070/// 000 0 Always false
3071/// 001 1 A > B
3072/// 010 2 A == B
3073/// 011 3 A >= B
3074/// 100 4 A < B
3075/// 101 5 A != B
3076/// 110 6 A <= B
3077/// 111 7 Always true
3078///
3079static unsigned getICmpCode(const ICmpInst *ICI) {
3080 switch (ICI->getPredicate()) {
3081 // False -> 0
3082 case ICmpInst::ICMP_UGT: return 1; // 001
3083 case ICmpInst::ICMP_SGT: return 1; // 001
3084 case ICmpInst::ICMP_EQ: return 2; // 010
3085 case ICmpInst::ICMP_UGE: return 3; // 011
3086 case ICmpInst::ICMP_SGE: return 3; // 011
3087 case ICmpInst::ICMP_ULT: return 4; // 100
3088 case ICmpInst::ICMP_SLT: return 4; // 100
3089 case ICmpInst::ICMP_NE: return 5; // 101
3090 case ICmpInst::ICMP_ULE: return 6; // 110
3091 case ICmpInst::ICMP_SLE: return 6; // 110
3092 // True -> 7
3093 default:
3094 assert(0 && "Invalid ICmp predicate!");
3095 return 0;
3096 }
3097}
3098
3099/// getICmpValue - This is the complement of getICmpCode, which turns an
3100/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003101/// new ICmp instruction. The sign is passed in to determine which kind
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003102/// of predicate to use in new icmp instructions.
3103static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3104 switch (code) {
3105 default: assert(0 && "Illegal ICmp code!");
3106 case 0: return ConstantInt::getFalse();
3107 case 1:
3108 if (sign)
3109 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3110 else
3111 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3112 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3113 case 3:
3114 if (sign)
3115 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3116 else
3117 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3118 case 4:
3119 if (sign)
3120 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3121 else
3122 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3123 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3124 case 6:
3125 if (sign)
3126 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3127 else
3128 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3129 case 7: return ConstantInt::getTrue();
3130 }
3131}
3132
3133static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3134 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3135 (ICmpInst::isSignedPredicate(p1) &&
3136 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
3137 (ICmpInst::isSignedPredicate(p2) &&
3138 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
3139}
3140
3141namespace {
3142// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3143struct FoldICmpLogical {
3144 InstCombiner &IC;
3145 Value *LHS, *RHS;
3146 ICmpInst::Predicate pred;
3147 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3148 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3149 pred(ICI->getPredicate()) {}
3150 bool shouldApply(Value *V) const {
3151 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3152 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003153 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3154 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003155 return false;
3156 }
3157 Instruction *apply(Instruction &Log) const {
3158 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3159 if (ICI->getOperand(0) != LHS) {
3160 assert(ICI->getOperand(1) == LHS);
3161 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3162 }
3163
3164 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3165 unsigned LHSCode = getICmpCode(ICI);
3166 unsigned RHSCode = getICmpCode(RHSICI);
3167 unsigned Code;
3168 switch (Log.getOpcode()) {
3169 case Instruction::And: Code = LHSCode & RHSCode; break;
3170 case Instruction::Or: Code = LHSCode | RHSCode; break;
3171 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3172 default: assert(0 && "Illegal logical opcode!"); return 0;
3173 }
3174
3175 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3176 ICmpInst::isSignedPredicate(ICI->getPredicate());
3177
3178 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3179 if (Instruction *I = dyn_cast<Instruction>(RV))
3180 return I;
3181 // Otherwise, it's a constant boolean value...
3182 return IC.ReplaceInstUsesWith(Log, RV);
3183 }
3184};
3185} // end anonymous namespace
3186
3187// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3188// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3189// guaranteed to be a binary operator.
3190Instruction *InstCombiner::OptAndOp(Instruction *Op,
3191 ConstantInt *OpRHS,
3192 ConstantInt *AndRHS,
3193 BinaryOperator &TheAnd) {
3194 Value *X = Op->getOperand(0);
3195 Constant *Together = 0;
3196 if (!Op->isShift())
3197 Together = And(AndRHS, OpRHS);
3198
3199 switch (Op->getOpcode()) {
3200 case Instruction::Xor:
3201 if (Op->hasOneUse()) {
3202 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003203 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003204 InsertNewInstBefore(And, TheAnd);
3205 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003206 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003207 }
3208 break;
3209 case Instruction::Or:
3210 if (Together == AndRHS) // (X | C) & C --> C
3211 return ReplaceInstUsesWith(TheAnd, AndRHS);
3212
3213 if (Op->hasOneUse() && Together != OpRHS) {
3214 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003215 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003216 InsertNewInstBefore(Or, TheAnd);
3217 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003218 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003219 }
3220 break;
3221 case Instruction::Add:
3222 if (Op->hasOneUse()) {
3223 // Adding a one to a single bit bit-field should be turned into an XOR
3224 // of the bit. First thing to check is to see if this AND is with a
3225 // single bit constant.
3226 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3227
3228 // If there is only one bit set...
3229 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3230 // Ok, at this point, we know that we are masking the result of the
3231 // ADD down to exactly one bit. If the constant we are adding has
3232 // no bits set below this bit, then we can eliminate the ADD.
3233 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3234
3235 // Check to see if any bits below the one bit set in AndRHSV are set.
3236 if ((AddRHS & (AndRHSV-1)) == 0) {
3237 // If not, the only thing that can effect the output of the AND is
3238 // the bit specified by AndRHSV. If that bit is set, the effect of
3239 // the XOR is to toggle the bit. If it is clear, then the ADD has
3240 // no effect.
3241 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3242 TheAnd.setOperand(0, X);
3243 return &TheAnd;
3244 } else {
3245 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003246 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003247 InsertNewInstBefore(NewAnd, TheAnd);
3248 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003249 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003250 }
3251 }
3252 }
3253 }
3254 break;
3255
3256 case Instruction::Shl: {
3257 // We know that the AND will not produce any of the bits shifted in, so if
3258 // the anded constant includes them, clear them now!
3259 //
3260 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3261 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3262 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3263 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3264
3265 if (CI->getValue() == ShlMask) {
3266 // Masking out bits that the shift already masks
3267 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3268 } else if (CI != AndRHS) { // Reducing bits set in and.
3269 TheAnd.setOperand(1, CI);
3270 return &TheAnd;
3271 }
3272 break;
3273 }
3274 case Instruction::LShr:
3275 {
3276 // We know that the AND will not produce any of the bits shifted in, so if
3277 // the anded constant includes them, clear them now! This only applies to
3278 // unsigned shifts, because a signed shr may bring in set bits!
3279 //
3280 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3281 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3282 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3283 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3284
3285 if (CI->getValue() == ShrMask) {
3286 // Masking out bits that the shift already masks.
3287 return ReplaceInstUsesWith(TheAnd, Op);
3288 } else if (CI != AndRHS) {
3289 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3290 return &TheAnd;
3291 }
3292 break;
3293 }
3294 case Instruction::AShr:
3295 // Signed shr.
3296 // See if this is shifting in some sign extension, then masking it out
3297 // with an and.
3298 if (Op->hasOneUse()) {
3299 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3300 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3301 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3302 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3303 if (C == AndRHS) { // Masking out bits shifted in.
3304 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3305 // Make the argument unsigned.
3306 Value *ShVal = Op->getOperand(0);
3307 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003308 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003309 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003310 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003311 }
3312 }
3313 break;
3314 }
3315 return 0;
3316}
3317
3318
3319/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3320/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3321/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3322/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3323/// insert new instructions.
3324Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3325 bool isSigned, bool Inside,
3326 Instruction &IB) {
3327 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3328 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3329 "Lo is not <= Hi in range emission code!");
3330
3331 if (Inside) {
3332 if (Lo == Hi) // Trivially false.
3333 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3334
3335 // V >= Min && V < Hi --> V < Hi
3336 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3337 ICmpInst::Predicate pred = (isSigned ?
3338 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3339 return new ICmpInst(pred, V, Hi);
3340 }
3341
3342 // Emit V-Lo <u Hi-Lo
3343 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003344 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003345 InsertNewInstBefore(Add, IB);
3346 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3347 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3348 }
3349
3350 if (Lo == Hi) // Trivially true.
3351 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3352
3353 // V < Min || V >= Hi -> V > Hi-1
3354 Hi = SubOne(cast<ConstantInt>(Hi));
3355 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3356 ICmpInst::Predicate pred = (isSigned ?
3357 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3358 return new ICmpInst(pred, V, Hi);
3359 }
3360
3361 // Emit V-Lo >u Hi-1-Lo
3362 // Note that Hi has already had one subtracted from it, above.
3363 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003364 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003365 InsertNewInstBefore(Add, IB);
3366 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3367 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3368}
3369
3370// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3371// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3372// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3373// not, since all 1s are not contiguous.
3374static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3375 const APInt& V = Val->getValue();
3376 uint32_t BitWidth = Val->getType()->getBitWidth();
3377 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3378
3379 // look for the first zero bit after the run of ones
3380 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3381 // look for the first non-zero bit
3382 ME = V.getActiveBits();
3383 return true;
3384}
3385
3386/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3387/// where isSub determines whether the operator is a sub. If we can fold one of
3388/// the following xforms:
3389///
3390/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3391/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3392/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3393///
3394/// return (A +/- B).
3395///
3396Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3397 ConstantInt *Mask, bool isSub,
3398 Instruction &I) {
3399 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3400 if (!LHSI || LHSI->getNumOperands() != 2 ||
3401 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3402
3403 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3404
3405 switch (LHSI->getOpcode()) {
3406 default: return 0;
3407 case Instruction::And:
3408 if (And(N, Mask) == Mask) {
3409 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3410 if ((Mask->getValue().countLeadingZeros() +
3411 Mask->getValue().countPopulation()) ==
3412 Mask->getValue().getBitWidth())
3413 break;
3414
3415 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3416 // part, we don't need any explicit masks to take them out of A. If that
3417 // is all N is, ignore it.
3418 uint32_t MB = 0, ME = 0;
3419 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3420 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3421 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3422 if (MaskedValueIsZero(RHS, Mask))
3423 break;
3424 }
3425 }
3426 return 0;
3427 case Instruction::Or:
3428 case Instruction::Xor:
3429 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3430 if ((Mask->getValue().countLeadingZeros() +
3431 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3432 && And(N, Mask)->isZero())
3433 break;
3434 return 0;
3435 }
3436
3437 Instruction *New;
3438 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003439 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003440 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003441 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003442 return InsertNewInstBefore(New, I);
3443}
3444
3445Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3446 bool Changed = SimplifyCommutative(I);
3447 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3448
3449 if (isa<UndefValue>(Op1)) // X & undef -> 0
3450 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3451
3452 // and X, X = X
3453 if (Op0 == Op1)
3454 return ReplaceInstUsesWith(I, Op1);
3455
3456 // See if we can simplify any instructions used by the instruction whose sole
3457 // purpose is to compute bits we don't care about.
3458 if (!isa<VectorType>(I.getType())) {
3459 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3460 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3461 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3462 KnownZero, KnownOne))
3463 return &I;
3464 } else {
3465 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3466 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3467 return ReplaceInstUsesWith(I, I.getOperand(0));
3468 } else if (isa<ConstantAggregateZero>(Op1)) {
3469 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3470 }
3471 }
3472
3473 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3474 const APInt& AndRHSMask = AndRHS->getValue();
3475 APInt NotAndRHS(~AndRHSMask);
3476
3477 // Optimize a variety of ((val OP C1) & C2) combinations...
3478 if (isa<BinaryOperator>(Op0)) {
3479 Instruction *Op0I = cast<Instruction>(Op0);
3480 Value *Op0LHS = Op0I->getOperand(0);
3481 Value *Op0RHS = Op0I->getOperand(1);
3482 switch (Op0I->getOpcode()) {
3483 case Instruction::Xor:
3484 case Instruction::Or:
3485 // If the mask is only needed on one incoming arm, push it up.
3486 if (Op0I->hasOneUse()) {
3487 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3488 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003489 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003490 Op0RHS->getName()+".masked");
3491 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003492 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003493 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3494 }
3495 if (!isa<Constant>(Op0RHS) &&
3496 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3497 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003498 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003499 Op0LHS->getName()+".masked");
3500 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003501 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003502 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3503 }
3504 }
3505
3506 break;
3507 case Instruction::Add:
3508 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3509 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3510 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3511 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003512 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003513 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003514 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003515 break;
3516
3517 case Instruction::Sub:
3518 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3519 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3520 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3521 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003522 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003523
Nick Lewyckya349ba42008-07-10 05:51:40 +00003524 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3525 // has 1's for all bits that the subtraction with A might affect.
3526 if (Op0I->hasOneUse()) {
3527 uint32_t BitWidth = AndRHSMask.getBitWidth();
3528 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3529 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3530
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003531 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003532 if (!(A && A->isZero()) && // avoid infinite recursion.
3533 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003534 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3535 InsertNewInstBefore(NewNeg, I);
3536 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3537 }
3538 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003539 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003540
3541 case Instruction::Shl:
3542 case Instruction::LShr:
3543 // (1 << x) & 1 --> zext(x == 0)
3544 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003545 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003546 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3547 Constant::getNullValue(I.getType()));
3548 InsertNewInstBefore(NewICmp, I);
3549 return new ZExtInst(NewICmp, I.getType());
3550 }
3551 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003552 }
3553
3554 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3555 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3556 return Res;
3557 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3558 // If this is an integer truncation or change from signed-to-unsigned, and
3559 // if the source is an and/or with immediate, transform it. This
3560 // frequently occurs for bitfield accesses.
3561 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3562 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3563 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003564 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003565 if (CastOp->getOpcode() == Instruction::And) {
3566 // Change: and (cast (and X, C1) to T), C2
3567 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3568 // This will fold the two constants together, which may allow
3569 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003570 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003571 CastOp->getOperand(0), I.getType(),
3572 CastOp->getName()+".shrunk");
3573 NewCast = InsertNewInstBefore(NewCast, I);
3574 // trunc_or_bitcast(C1)&C2
3575 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3576 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003577 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003578 } else if (CastOp->getOpcode() == Instruction::Or) {
3579 // Change: and (cast (or X, C1) to T), C2
3580 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3581 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3582 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3583 return ReplaceInstUsesWith(I, AndRHS);
3584 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003585 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003586 }
3587 }
3588
3589 // Try to fold constant and into select arguments.
3590 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3591 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3592 return R;
3593 if (isa<PHINode>(Op0))
3594 if (Instruction *NV = FoldOpIntoPhi(I))
3595 return NV;
3596 }
3597
3598 Value *Op0NotVal = dyn_castNotVal(Op0);
3599 Value *Op1NotVal = dyn_castNotVal(Op1);
3600
3601 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3602 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3603
3604 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3605 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003606 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003607 I.getName()+".demorgan");
3608 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003609 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003610 }
3611
3612 {
3613 Value *A = 0, *B = 0, *C = 0, *D = 0;
3614 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3615 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3616 return ReplaceInstUsesWith(I, Op1);
3617
3618 // (A|B) & ~(A&B) -> A^B
3619 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3620 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003621 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003622 }
3623 }
3624
3625 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3626 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3627 return ReplaceInstUsesWith(I, Op0);
3628
3629 // ~(A&B) & (A|B) -> A^B
3630 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3631 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003632 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003633 }
3634 }
3635
3636 if (Op0->hasOneUse() &&
3637 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3638 if (A == Op1) { // (A^B)&A -> A&(A^B)
3639 I.swapOperands(); // Simplify below
3640 std::swap(Op0, Op1);
3641 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3642 cast<BinaryOperator>(Op0)->swapOperands();
3643 I.swapOperands(); // Simplify below
3644 std::swap(Op0, Op1);
3645 }
3646 }
3647 if (Op1->hasOneUse() &&
3648 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3649 if (B == Op0) { // B&(A^B) -> B&(B^A)
3650 cast<BinaryOperator>(Op1)->swapOperands();
3651 std::swap(A, B);
3652 }
3653 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003654 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003655 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003656 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003657 }
3658 }
3659 }
3660
Nick Lewycky771d6052008-08-06 04:54:03 +00003661 { // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3662 // where C is a power of 2
3663 Value *A, *B;
3664 ConstantInt *C1, *C2;
Evan Cheng94fd9742008-08-20 23:36:48 +00003665 ICmpInst::Predicate LHSCC = ICmpInst::BAD_ICMP_PREDICATE;
3666 ICmpInst::Predicate RHSCC = ICmpInst::BAD_ICMP_PREDICATE;
Nick Lewycky771d6052008-08-06 04:54:03 +00003667 if (match(&I, m_And(m_ICmp(LHSCC, m_Value(A), m_ConstantInt(C1)),
3668 m_ICmp(RHSCC, m_Value(B), m_ConstantInt(C2)))))
3669 if (C1 == C2 && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3670 C1->getValue().isPowerOf2()) {
3671 Instruction *NewOr = BinaryOperator::CreateOr(A, B);
3672 InsertNewInstBefore(NewOr, I);
3673 return new ICmpInst(LHSCC, NewOr, C1);
3674 }
3675 }
3676
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003677 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3678 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3679 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3680 return R;
3681
3682 Value *LHSVal, *RHSVal;
3683 ConstantInt *LHSCst, *RHSCst;
3684 ICmpInst::Predicate LHSCC, RHSCC;
3685 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3686 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3687 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3688 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3689 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3690 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3691 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
Chris Lattner205ad1d2007-11-22 23:47:13 +00003692 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3693
3694 // Don't try to fold ICMP_SLT + ICMP_ULT.
3695 (ICmpInst::isEquality(LHSCC) || ICmpInst::isEquality(RHSCC) ||
3696 ICmpInst::isSignedPredicate(LHSCC) ==
3697 ICmpInst::isSignedPredicate(RHSCC))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003698 // Ensure that the larger constant is on the RHS.
Chris Lattnerda628ca2008-01-13 20:59:02 +00003699 ICmpInst::Predicate GT;
3700 if (ICmpInst::isSignedPredicate(LHSCC) ||
3701 (ICmpInst::isEquality(LHSCC) &&
3702 ICmpInst::isSignedPredicate(RHSCC)))
3703 GT = ICmpInst::ICMP_SGT;
3704 else
3705 GT = ICmpInst::ICMP_UGT;
3706
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003707 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3708 ICmpInst *LHS = cast<ICmpInst>(Op0);
3709 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
3710 std::swap(LHS, RHS);
3711 std::swap(LHSCst, RHSCst);
3712 std::swap(LHSCC, RHSCC);
3713 }
3714
3715 // At this point, we know we have have two icmp instructions
3716 // comparing a value against two constants and and'ing the result
3717 // together. Because of the above check, we know that we only have
3718 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3719 // (from the FoldICmpLogical check above), that the two constants
3720 // are not equal and that the larger constant is on the RHS
3721 assert(LHSCst != RHSCst && "Compares not folded above?");
3722
3723 switch (LHSCC) {
3724 default: assert(0 && "Unknown integer condition code!");
3725 case ICmpInst::ICMP_EQ:
3726 switch (RHSCC) {
3727 default: assert(0 && "Unknown integer condition code!");
3728 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3729 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3730 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3731 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3732 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3733 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3734 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3735 return ReplaceInstUsesWith(I, LHS);
3736 }
3737 case ICmpInst::ICMP_NE:
3738 switch (RHSCC) {
3739 default: assert(0 && "Unknown integer condition code!");
3740 case ICmpInst::ICMP_ULT:
3741 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3742 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3743 break; // (X != 13 & X u< 15) -> no change
3744 case ICmpInst::ICMP_SLT:
3745 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3746 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3747 break; // (X != 13 & X s< 15) -> no change
3748 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3749 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3750 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3751 return ReplaceInstUsesWith(I, RHS);
3752 case ICmpInst::ICMP_NE:
3753 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3754 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00003755 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003756 LHSVal->getName()+".off");
3757 InsertNewInstBefore(Add, I);
3758 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3759 ConstantInt::get(Add->getType(), 1));
3760 }
3761 break; // (X != 13 & X != 15) -> no change
3762 }
3763 break;
3764 case ICmpInst::ICMP_ULT:
3765 switch (RHSCC) {
3766 default: assert(0 && "Unknown integer condition code!");
3767 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3768 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3769 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3770 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3771 break;
3772 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3773 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3774 return ReplaceInstUsesWith(I, LHS);
3775 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3776 break;
3777 }
3778 break;
3779 case ICmpInst::ICMP_SLT:
3780 switch (RHSCC) {
3781 default: assert(0 && "Unknown integer condition code!");
3782 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3783 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3784 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3785 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3786 break;
3787 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3788 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3789 return ReplaceInstUsesWith(I, LHS);
3790 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3791 break;
3792 }
3793 break;
3794 case ICmpInst::ICMP_UGT:
3795 switch (RHSCC) {
3796 default: assert(0 && "Unknown integer condition code!");
Eli Friedman22b85622008-06-21 23:36:13 +00003797 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003798 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3799 return ReplaceInstUsesWith(I, RHS);
3800 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3801 break;
3802 case ICmpInst::ICMP_NE:
3803 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3804 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3805 break; // (X u> 13 & X != 15) -> no change
3806 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
3807 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
3808 true, I);
3809 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3810 break;
3811 }
3812 break;
3813 case ICmpInst::ICMP_SGT:
3814 switch (RHSCC) {
3815 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerab0fc252007-11-16 06:04:17 +00003816 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003817 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3818 return ReplaceInstUsesWith(I, RHS);
3819 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3820 break;
3821 case ICmpInst::ICMP_NE:
3822 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3823 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3824 break; // (X s> 13 & X != 15) -> no change
3825 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
3826 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
3827 true, I);
3828 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3829 break;
3830 }
3831 break;
3832 }
3833 }
3834 }
3835
3836 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3837 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3838 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3839 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3840 const Type *SrcTy = Op0C->getOperand(0)->getType();
3841 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3842 // Only do this if the casts both really cause code to be generated.
3843 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
3844 I.getType(), TD) &&
3845 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
3846 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003847 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003848 Op1C->getOperand(0),
3849 I.getName());
3850 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003851 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003852 }
3853 }
3854
3855 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
3856 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3857 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3858 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3859 SI0->getOperand(1) == SI1->getOperand(1) &&
3860 (SI0->hasOneUse() || SI1->hasOneUse())) {
3861 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00003862 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003863 SI1->getOperand(0),
3864 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003865 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003866 SI1->getOperand(1));
3867 }
3868 }
3869
Chris Lattner91882432007-10-24 05:38:08 +00003870 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
3871 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
3872 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
3873 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
3874 RHS->getPredicate() == FCmpInst::FCMP_ORD)
3875 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
3876 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
3877 // If either of the constants are nans, then the whole thing returns
3878 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00003879 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00003880 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3881 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
3882 RHS->getOperand(0));
3883 }
3884 }
3885 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003886
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003887 return Changed ? &I : 0;
3888}
3889
3890/// CollectBSwapParts - Look to see if the specified value defines a single byte
3891/// in the result. If it does, and if the specified byte hasn't been filled in
3892/// yet, fill it in and return false.
3893static bool CollectBSwapParts(Value *V, SmallVector<Value*, 8> &ByteValues) {
3894 Instruction *I = dyn_cast<Instruction>(V);
3895 if (I == 0) return true;
3896
3897 // If this is an or instruction, it is an inner node of the bswap.
3898 if (I->getOpcode() == Instruction::Or)
3899 return CollectBSwapParts(I->getOperand(0), ByteValues) ||
3900 CollectBSwapParts(I->getOperand(1), ByteValues);
3901
3902 uint32_t BitWidth = I->getType()->getPrimitiveSizeInBits();
3903 // If this is a shift by a constant int, and it is "24", then its operand
3904 // defines a byte. We only handle unsigned types here.
3905 if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
3906 // Not shifting the entire input by N-1 bytes?
3907 if (cast<ConstantInt>(I->getOperand(1))->getLimitedValue(BitWidth) !=
3908 8*(ByteValues.size()-1))
3909 return true;
3910
3911 unsigned DestNo;
3912 if (I->getOpcode() == Instruction::Shl) {
3913 // X << 24 defines the top byte with the lowest of the input bytes.
3914 DestNo = ByteValues.size()-1;
3915 } else {
3916 // X >>u 24 defines the low byte with the highest of the input bytes.
3917 DestNo = 0;
3918 }
3919
3920 // If the destination byte value is already defined, the values are or'd
3921 // together, which isn't a bswap (unless it's an or of the same bits).
3922 if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
3923 return true;
3924 ByteValues[DestNo] = I->getOperand(0);
3925 return false;
3926 }
3927
3928 // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we
3929 // don't have this.
3930 Value *Shift = 0, *ShiftLHS = 0;
3931 ConstantInt *AndAmt = 0, *ShiftAmt = 0;
3932 if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
3933 !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
3934 return true;
3935 Instruction *SI = cast<Instruction>(Shift);
3936
3937 // Make sure that the shift amount is by a multiple of 8 and isn't too big.
3938 if (ShiftAmt->getLimitedValue(BitWidth) & 7 ||
3939 ShiftAmt->getLimitedValue(BitWidth) > 8*ByteValues.size())
3940 return true;
3941
3942 // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
3943 unsigned DestByte;
3944 if (AndAmt->getValue().getActiveBits() > 64)
3945 return true;
3946 uint64_t AndAmtVal = AndAmt->getZExtValue();
3947 for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
3948 if (AndAmtVal == uint64_t(0xFF) << 8*DestByte)
3949 break;
3950 // Unknown mask for bswap.
3951 if (DestByte == ByteValues.size()) return true;
3952
3953 unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
3954 unsigned SrcByte;
3955 if (SI->getOpcode() == Instruction::Shl)
3956 SrcByte = DestByte - ShiftBytes;
3957 else
3958 SrcByte = DestByte + ShiftBytes;
3959
3960 // If the SrcByte isn't a bswapped value from the DestByte, reject it.
3961 if (SrcByte != ByteValues.size()-DestByte-1)
3962 return true;
3963
3964 // If the destination byte value is already defined, the values are or'd
3965 // together, which isn't a bswap (unless it's an or of the same bits).
3966 if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
3967 return true;
3968 ByteValues[DestByte] = SI->getOperand(0);
3969 return false;
3970}
3971
3972/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
3973/// If so, insert the new bswap intrinsic and return it.
3974Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
3975 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
3976 if (!ITy || ITy->getBitWidth() % 16)
3977 return 0; // Can only bswap pairs of bytes. Can't do vectors.
3978
3979 /// ByteValues - For each byte of the result, we keep track of which value
3980 /// defines each byte.
3981 SmallVector<Value*, 8> ByteValues;
3982 ByteValues.resize(ITy->getBitWidth()/8);
3983
3984 // Try to find all the pieces corresponding to the bswap.
3985 if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
3986 CollectBSwapParts(I.getOperand(1), ByteValues))
3987 return 0;
3988
3989 // Check to see if all of the bytes come from the same value.
3990 Value *V = ByteValues[0];
3991 if (V == 0) return 0; // Didn't find a byte? Must be zero.
3992
3993 // Check to make sure that all of the bytes come from the same value.
3994 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
3995 if (ByteValues[i] != V)
3996 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00003997 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003998 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00003999 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004000 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004001}
4002
4003
4004Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4005 bool Changed = SimplifyCommutative(I);
4006 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4007
4008 if (isa<UndefValue>(Op1)) // X | undef -> -1
4009 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4010
4011 // or X, X = X
4012 if (Op0 == Op1)
4013 return ReplaceInstUsesWith(I, Op0);
4014
4015 // See if we can simplify any instructions used by the instruction whose sole
4016 // purpose is to compute bits we don't care about.
4017 if (!isa<VectorType>(I.getType())) {
4018 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4019 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4020 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4021 KnownZero, KnownOne))
4022 return &I;
4023 } else if (isa<ConstantAggregateZero>(Op1)) {
4024 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4025 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4026 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4027 return ReplaceInstUsesWith(I, I.getOperand(1));
4028 }
4029
4030
4031
4032 // or X, -1 == -1
4033 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4034 ConstantInt *C1 = 0; Value *X = 0;
4035 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4036 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004037 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004038 InsertNewInstBefore(Or, I);
4039 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004040 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004041 ConstantInt::get(RHS->getValue() | C1->getValue()));
4042 }
4043
4044 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4045 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004046 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004047 InsertNewInstBefore(Or, I);
4048 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004049 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004050 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4051 }
4052
4053 // Try to fold constant and into select arguments.
4054 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4055 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4056 return R;
4057 if (isa<PHINode>(Op0))
4058 if (Instruction *NV = FoldOpIntoPhi(I))
4059 return NV;
4060 }
4061
4062 Value *A = 0, *B = 0;
4063 ConstantInt *C1 = 0, *C2 = 0;
4064
4065 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4066 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4067 return ReplaceInstUsesWith(I, Op1);
4068 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4069 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4070 return ReplaceInstUsesWith(I, Op0);
4071
4072 // (A | B) | C and A | (B | C) -> bswap if possible.
4073 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4074 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4075 match(Op1, m_Or(m_Value(), m_Value())) ||
4076 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4077 match(Op1, m_Shift(m_Value(), m_Value())))) {
4078 if (Instruction *BSwap = MatchBSwap(I))
4079 return BSwap;
4080 }
4081
4082 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4083 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4084 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004085 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004086 InsertNewInstBefore(NOr, I);
4087 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004088 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004089 }
4090
4091 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4092 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4093 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004094 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004095 InsertNewInstBefore(NOr, I);
4096 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004097 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004098 }
4099
4100 // (A & C)|(B & D)
4101 Value *C = 0, *D = 0;
4102 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4103 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4104 Value *V1 = 0, *V2 = 0, *V3 = 0;
4105 C1 = dyn_cast<ConstantInt>(C);
4106 C2 = dyn_cast<ConstantInt>(D);
4107 if (C1 && C2) { // (A & C1)|(B & C2)
4108 // If we have: ((V + N) & C1) | (V & C2)
4109 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4110 // replace with V+N.
4111 if (C1->getValue() == ~C2->getValue()) {
4112 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4113 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4114 // Add commutes, try both ways.
4115 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4116 return ReplaceInstUsesWith(I, A);
4117 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4118 return ReplaceInstUsesWith(I, A);
4119 }
4120 // Or commutes, try both ways.
4121 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4122 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4123 // Add commutes, try both ways.
4124 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4125 return ReplaceInstUsesWith(I, B);
4126 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4127 return ReplaceInstUsesWith(I, B);
4128 }
4129 }
4130 V1 = 0; V2 = 0; V3 = 0;
4131 }
4132
4133 // Check to see if we have any common things being and'ed. If so, find the
4134 // terms for V1 & (V2|V3).
4135 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4136 if (A == B) // (A & C)|(A & D) == A & (C|D)
4137 V1 = A, V2 = C, V3 = D;
4138 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4139 V1 = A, V2 = B, V3 = C;
4140 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4141 V1 = C, V2 = A, V3 = D;
4142 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4143 V1 = C, V2 = A, V3 = B;
4144
4145 if (V1) {
4146 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004147 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4148 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004149 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004150 }
4151 }
4152
4153 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4154 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4155 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4156 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4157 SI0->getOperand(1) == SI1->getOperand(1) &&
4158 (SI0->hasOneUse() || SI1->hasOneUse())) {
4159 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004160 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004161 SI1->getOperand(0),
4162 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004163 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004164 SI1->getOperand(1));
4165 }
4166 }
4167
4168 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4169 if (A == Op1) // ~A | A == -1
4170 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4171 } else {
4172 A = 0;
4173 }
4174 // Note, A is still live here!
4175 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4176 if (Op0 == B)
4177 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4178
4179 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4180 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004181 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004182 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004183 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004184 }
4185 }
4186
4187 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4188 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4189 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4190 return R;
4191
4192 Value *LHSVal, *RHSVal;
4193 ConstantInt *LHSCst, *RHSCst;
4194 ICmpInst::Predicate LHSCC, RHSCC;
4195 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4196 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4197 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4198 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4199 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4200 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4201 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4202 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
4203 // We can't fold (ugt x, C) | (sgt x, C2).
4204 PredicatesFoldable(LHSCC, RHSCC)) {
4205 // Ensure that the larger constant is on the RHS.
4206 ICmpInst *LHS = cast<ICmpInst>(Op0);
4207 bool NeedsSwap;
Nick Lewycky5515c7a2008-09-30 06:08:34 +00004208 if (ICmpInst::isEquality(LHSCC) ? ICmpInst::isSignedPredicate(RHSCC)
4209 : ICmpInst::isSignedPredicate(LHSCC))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004210 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4211 else
4212 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4213
4214 if (NeedsSwap) {
4215 std::swap(LHS, RHS);
4216 std::swap(LHSCst, RHSCst);
4217 std::swap(LHSCC, RHSCC);
4218 }
4219
4220 // At this point, we know we have have two icmp instructions
4221 // comparing a value against two constants and or'ing the result
4222 // together. Because of the above check, we know that we only have
4223 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4224 // FoldICmpLogical check above), that the two constants are not
4225 // equal.
4226 assert(LHSCst != RHSCst && "Compares not folded above?");
4227
4228 switch (LHSCC) {
4229 default: assert(0 && "Unknown integer condition code!");
4230 case ICmpInst::ICMP_EQ:
4231 switch (RHSCC) {
4232 default: assert(0 && "Unknown integer condition code!");
4233 case ICmpInst::ICMP_EQ:
4234 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4235 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00004236 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004237 LHSVal->getName()+".off");
4238 InsertNewInstBefore(Add, I);
4239 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4240 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4241 }
4242 break; // (X == 13 | X == 15) -> no change
4243 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4244 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4245 break;
4246 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4247 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4248 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4249 return ReplaceInstUsesWith(I, RHS);
4250 }
4251 break;
4252 case ICmpInst::ICMP_NE:
4253 switch (RHSCC) {
4254 default: assert(0 && "Unknown integer condition code!");
4255 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4256 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4257 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4258 return ReplaceInstUsesWith(I, LHS);
4259 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4260 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4261 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4262 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4263 }
4264 break;
4265 case ICmpInst::ICMP_ULT:
4266 switch (RHSCC) {
4267 default: assert(0 && "Unknown integer condition code!");
4268 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4269 break;
4270 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
Chris Lattner26376862007-11-01 02:18:41 +00004271 // If RHSCst is [us]MAXINT, it is always false. Not handling
4272 // this can cause overflow.
4273 if (RHSCst->isMaxValue(false))
4274 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004275 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4276 false, I);
4277 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4278 break;
4279 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4280 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4281 return ReplaceInstUsesWith(I, RHS);
4282 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4283 break;
4284 }
4285 break;
4286 case ICmpInst::ICMP_SLT:
4287 switch (RHSCC) {
4288 default: assert(0 && "Unknown integer condition code!");
4289 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4290 break;
4291 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
Chris Lattner26376862007-11-01 02:18:41 +00004292 // If RHSCst is [us]MAXINT, it is always false. Not handling
4293 // this can cause overflow.
4294 if (RHSCst->isMaxValue(true))
4295 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004296 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4297 false, I);
4298 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4299 break;
4300 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4301 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4302 return ReplaceInstUsesWith(I, RHS);
4303 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4304 break;
4305 }
4306 break;
4307 case ICmpInst::ICMP_UGT:
4308 switch (RHSCC) {
4309 default: assert(0 && "Unknown integer condition code!");
4310 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4311 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4312 return ReplaceInstUsesWith(I, LHS);
4313 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4314 break;
4315 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4316 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4317 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4318 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4319 break;
4320 }
4321 break;
4322 case ICmpInst::ICMP_SGT:
4323 switch (RHSCC) {
4324 default: assert(0 && "Unknown integer condition code!");
4325 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4326 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4327 return ReplaceInstUsesWith(I, LHS);
4328 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4329 break;
4330 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4331 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4332 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4333 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4334 break;
4335 }
4336 break;
4337 }
4338 }
4339 }
4340
4341 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004342 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004343 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4344 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004345 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4346 !isa<ICmpInst>(Op1C->getOperand(0))) {
4347 const Type *SrcTy = Op0C->getOperand(0)->getType();
4348 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4349 // Only do this if the casts both really cause code to be
4350 // generated.
4351 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4352 I.getType(), TD) &&
4353 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4354 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004355 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004356 Op1C->getOperand(0),
4357 I.getName());
4358 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004359 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004360 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004361 }
4362 }
Chris Lattner91882432007-10-24 05:38:08 +00004363 }
4364
4365
4366 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4367 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4368 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4369 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004370 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
4371 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType())
Chris Lattner91882432007-10-24 05:38:08 +00004372 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4373 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4374 // If either of the constants are nans, then the whole thing returns
4375 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004376 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004377 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4378
4379 // Otherwise, no need to compare the two constants, compare the
4380 // rest.
4381 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4382 RHS->getOperand(0));
4383 }
4384 }
4385 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004386
4387 return Changed ? &I : 0;
4388}
4389
Dan Gohman089efff2008-05-13 00:00:25 +00004390namespace {
4391
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004392// XorSelf - Implements: X ^ X --> 0
4393struct XorSelf {
4394 Value *RHS;
4395 XorSelf(Value *rhs) : RHS(rhs) {}
4396 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4397 Instruction *apply(BinaryOperator &Xor) const {
4398 return &Xor;
4399 }
4400};
4401
Dan Gohman089efff2008-05-13 00:00:25 +00004402}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004403
4404Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4405 bool Changed = SimplifyCommutative(I);
4406 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4407
Evan Chenge5cd8032008-03-25 20:07:13 +00004408 if (isa<UndefValue>(Op1)) {
4409 if (isa<UndefValue>(Op0))
4410 // Handle undef ^ undef -> 0 special case. This is a common
4411 // idiom (misuse).
4412 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004413 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004414 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004415
4416 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4417 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004418 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004419 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4420 }
4421
4422 // See if we can simplify any instructions used by the instruction whose sole
4423 // purpose is to compute bits we don't care about.
4424 if (!isa<VectorType>(I.getType())) {
4425 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4426 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4427 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4428 KnownZero, KnownOne))
4429 return &I;
4430 } else if (isa<ConstantAggregateZero>(Op1)) {
4431 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4432 }
4433
4434 // Is this a ~ operation?
4435 if (Value *NotOp = dyn_castNotVal(&I)) {
4436 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4437 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4438 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4439 if (Op0I->getOpcode() == Instruction::And ||
4440 Op0I->getOpcode() == Instruction::Or) {
4441 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4442 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4443 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004444 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004445 Op0I->getOperand(1)->getName()+".not");
4446 InsertNewInstBefore(NotY, I);
4447 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004448 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004449 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004450 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004451 }
4452 }
4453 }
4454 }
4455
4456
4457 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004458 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4459 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4460 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004461 return new ICmpInst(ICI->getInversePredicate(),
4462 ICI->getOperand(0), ICI->getOperand(1));
4463
Nick Lewycky1405e922007-08-06 20:04:16 +00004464 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4465 return new FCmpInst(FCI->getInversePredicate(),
4466 FCI->getOperand(0), FCI->getOperand(1));
4467 }
4468
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004469 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4470 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4471 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4472 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4473 Instruction::CastOps Opcode = Op0C->getOpcode();
4474 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4475 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4476 Op0C->getDestTy())) {
4477 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4478 CI->getOpcode(), CI->getInversePredicate(),
4479 CI->getOperand(0), CI->getOperand(1)), I);
4480 NewCI->takeName(CI);
4481 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4482 }
4483 }
4484 }
4485 }
4486 }
4487
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004488 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4489 // ~(c-X) == X-c-1 == X+(-c-1)
4490 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4491 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4492 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4493 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4494 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004495 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004496 }
4497
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004498 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004499 if (Op0I->getOpcode() == Instruction::Add) {
4500 // ~(X-c) --> (-c-1)-X
4501 if (RHS->isAllOnesValue()) {
4502 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004503 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004504 ConstantExpr::getSub(NegOp0CI,
4505 ConstantInt::get(I.getType(), 1)),
4506 Op0I->getOperand(0));
4507 } else if (RHS->getValue().isSignBit()) {
4508 // (X + C) ^ signbit -> (X + C + signbit)
4509 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004510 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004511
4512 }
4513 } else if (Op0I->getOpcode() == Instruction::Or) {
4514 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4515 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4516 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4517 // Anything in both C1 and C2 is known to be zero, remove it from
4518 // NewRHS.
4519 Constant *CommonBits = And(Op0CI, RHS);
4520 NewRHS = ConstantExpr::getAnd(NewRHS,
4521 ConstantExpr::getNot(CommonBits));
4522 AddToWorkList(Op0I);
4523 I.setOperand(0, Op0I->getOperand(0));
4524 I.setOperand(1, NewRHS);
4525 return &I;
4526 }
4527 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004528 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004529 }
4530
4531 // Try to fold constant and into select arguments.
4532 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4533 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4534 return R;
4535 if (isa<PHINode>(Op0))
4536 if (Instruction *NV = FoldOpIntoPhi(I))
4537 return NV;
4538 }
4539
4540 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4541 if (X == Op1)
4542 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4543
4544 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4545 if (X == Op0)
4546 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4547
4548
4549 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4550 if (Op1I) {
4551 Value *A, *B;
4552 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4553 if (A == Op0) { // B^(B|A) == (A|B)^B
4554 Op1I->swapOperands();
4555 I.swapOperands();
4556 std::swap(Op0, Op1);
4557 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4558 I.swapOperands(); // Simplified below.
4559 std::swap(Op0, Op1);
4560 }
4561 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4562 if (Op0 == A) // A^(A^B) == B
4563 return ReplaceInstUsesWith(I, B);
4564 else if (Op0 == B) // A^(B^A) == B
4565 return ReplaceInstUsesWith(I, A);
4566 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4567 if (A == Op0) { // A^(A&B) -> A^(B&A)
4568 Op1I->swapOperands();
4569 std::swap(A, B);
4570 }
4571 if (B == Op0) { // A^(B&A) -> (B&A)^A
4572 I.swapOperands(); // Simplified below.
4573 std::swap(Op0, Op1);
4574 }
4575 }
4576 }
4577
4578 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4579 if (Op0I) {
4580 Value *A, *B;
4581 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4582 if (A == Op1) // (B|A)^B == (A|B)^B
4583 std::swap(A, B);
4584 if (B == Op1) { // (A|B)^B == A & ~B
4585 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00004586 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4587 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004588 }
4589 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4590 if (Op1 == A) // (A^B)^A == B
4591 return ReplaceInstUsesWith(I, B);
4592 else if (Op1 == B) // (B^A)^A == B
4593 return ReplaceInstUsesWith(I, A);
4594 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4595 if (A == Op1) // (A&B)^A -> (B&A)^A
4596 std::swap(A, B);
4597 if (B == Op1 && // (B&A)^A == ~B & A
4598 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4599 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00004600 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
4601 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004602 }
4603 }
4604 }
4605
4606 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4607 if (Op0I && Op1I && Op0I->isShift() &&
4608 Op0I->getOpcode() == Op1I->getOpcode() &&
4609 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4610 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4611 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004612 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004613 Op1I->getOperand(0),
4614 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004615 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004616 Op1I->getOperand(1));
4617 }
4618
4619 if (Op0I && Op1I) {
4620 Value *A, *B, *C, *D;
4621 // (A & B)^(A | B) -> A ^ B
4622 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4623 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4624 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004625 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004626 }
4627 // (A | B)^(A & B) -> A ^ B
4628 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4629 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4630 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004631 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004632 }
4633
4634 // (A & B)^(C & D)
4635 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4636 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4637 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4638 // (X & Y)^(X & Y) -> (Y^Z) & X
4639 Value *X = 0, *Y = 0, *Z = 0;
4640 if (A == C)
4641 X = A, Y = B, Z = D;
4642 else if (A == D)
4643 X = A, Y = B, Z = C;
4644 else if (B == C)
4645 X = B, Y = A, Z = D;
4646 else if (B == D)
4647 X = B, Y = A, Z = C;
4648
4649 if (X) {
4650 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004651 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
4652 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004653 }
4654 }
4655 }
4656
4657 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4658 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4659 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4660 return R;
4661
4662 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004663 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004664 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4665 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4666 const Type *SrcTy = Op0C->getOperand(0)->getType();
4667 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4668 // Only do this if the casts both really cause code to be generated.
4669 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4670 I.getType(), TD) &&
4671 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4672 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004673 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004674 Op1C->getOperand(0),
4675 I.getName());
4676 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004677 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004678 }
4679 }
Chris Lattner91882432007-10-24 05:38:08 +00004680 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004681
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004682 return Changed ? &I : 0;
4683}
4684
4685/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4686/// overflowed for this type.
4687static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4688 ConstantInt *In2, bool IsSigned = false) {
4689 Result = cast<ConstantInt>(Add(In1, In2));
4690
4691 if (IsSigned)
4692 if (In2->getValue().isNegative())
4693 return Result->getValue().sgt(In1->getValue());
4694 else
4695 return Result->getValue().slt(In1->getValue());
4696 else
4697 return Result->getValue().ult(In1->getValue());
4698}
4699
Dan Gohmanb80d5612008-09-10 23:30:57 +00004700/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
4701/// overflowed for this type.
4702static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4703 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00004704 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00004705
4706 if (IsSigned)
4707 if (In2->getValue().isNegative())
4708 return Result->getValue().slt(In1->getValue());
4709 else
4710 return Result->getValue().sgt(In1->getValue());
4711 else
4712 return Result->getValue().ugt(In1->getValue());
4713}
4714
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004715/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4716/// code necessary to compute the offset from the base pointer (without adding
4717/// in the base pointer). Return the result as a signed integer of intptr size.
4718static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4719 TargetData &TD = IC.getTargetData();
4720 gep_type_iterator GTI = gep_type_begin(GEP);
4721 const Type *IntPtrTy = TD.getIntPtrType();
4722 Value *Result = Constant::getNullValue(IntPtrTy);
4723
4724 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00004725 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004726 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
4727
Gabor Greif17396002008-06-12 21:37:33 +00004728 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
4729 ++i, ++GTI) {
4730 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00004731 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004732 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
4733 if (OpC->isZero()) continue;
4734
4735 // Handle a struct index, which adds its field offset to the pointer.
4736 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4737 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
4738
4739 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
4740 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
4741 else
4742 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00004743 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004744 ConstantInt::get(IntPtrTy, Size),
4745 GEP->getName()+".offs"), I);
4746 continue;
4747 }
4748
4749 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4750 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
4751 Scale = ConstantExpr::getMul(OC, Scale);
4752 if (Constant *RC = dyn_cast<Constant>(Result))
4753 Result = ConstantExpr::getAdd(RC, Scale);
4754 else {
4755 // Emit an add instruction.
4756 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00004757 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004758 GEP->getName()+".offs"), I);
4759 }
4760 continue;
4761 }
4762 // Convert to correct type.
4763 if (Op->getType() != IntPtrTy) {
4764 if (Constant *OpC = dyn_cast<Constant>(Op))
4765 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
4766 else
4767 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
4768 Op->getName()+".c"), I);
4769 }
4770 if (Size != 1) {
4771 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4772 if (Constant *OpC = dyn_cast<Constant>(Op))
4773 Op = ConstantExpr::getMul(OpC, Scale);
4774 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00004775 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004776 GEP->getName()+".idx"), I);
4777 }
4778
4779 // Emit an add instruction.
4780 if (isa<Constant>(Op) && isa<Constant>(Result))
4781 Result = ConstantExpr::getAdd(cast<Constant>(Op),
4782 cast<Constant>(Result));
4783 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004784 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004785 GEP->getName()+".offs"), I);
4786 }
4787 return Result;
4788}
4789
Chris Lattnereba75862008-04-22 02:53:33 +00004790
4791/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
4792/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
4793/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
4794/// complex, and scales are involved. The above expression would also be legal
4795/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
4796/// later form is less amenable to optimization though, and we are allowed to
4797/// generate the first by knowing that pointer arithmetic doesn't overflow.
4798///
4799/// If we can't emit an optimized form for this expression, this returns null.
4800///
4801static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
4802 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00004803 TargetData &TD = IC.getTargetData();
4804 gep_type_iterator GTI = gep_type_begin(GEP);
4805
4806 // Check to see if this gep only has a single variable index. If so, and if
4807 // any constant indices are a multiple of its scale, then we can compute this
4808 // in terms of the scale of the variable index. For example, if the GEP
4809 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
4810 // because the expression will cross zero at the same point.
4811 unsigned i, e = GEP->getNumOperands();
4812 int64_t Offset = 0;
4813 for (i = 1; i != e; ++i, ++GTI) {
4814 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4815 // Compute the aggregate offset of constant indices.
4816 if (CI->isZero()) continue;
4817
4818 // Handle a struct index, which adds its field offset to the pointer.
4819 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4820 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
4821 } else {
4822 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
4823 Offset += Size*CI->getSExtValue();
4824 }
4825 } else {
4826 // Found our variable index.
4827 break;
4828 }
4829 }
4830
4831 // If there are no variable indices, we must have a constant offset, just
4832 // evaluate it the general way.
4833 if (i == e) return 0;
4834
4835 Value *VariableIdx = GEP->getOperand(i);
4836 // Determine the scale factor of the variable element. For example, this is
4837 // 4 if the variable index is into an array of i32.
4838 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
4839
4840 // Verify that there are no other variable indices. If so, emit the hard way.
4841 for (++i, ++GTI; i != e; ++i, ++GTI) {
4842 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
4843 if (!CI) return 0;
4844
4845 // Compute the aggregate offset of constant indices.
4846 if (CI->isZero()) continue;
4847
4848 // Handle a struct index, which adds its field offset to the pointer.
4849 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4850 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
4851 } else {
4852 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
4853 Offset += Size*CI->getSExtValue();
4854 }
4855 }
4856
4857 // Okay, we know we have a single variable index, which must be a
4858 // pointer/array/vector index. If there is no offset, life is simple, return
4859 // the index.
4860 unsigned IntPtrWidth = TD.getPointerSizeInBits();
4861 if (Offset == 0) {
4862 // Cast to intptrty in case a truncation occurs. If an extension is needed,
4863 // we don't need to bother extending: the extension won't affect where the
4864 // computation crosses zero.
4865 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
4866 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
4867 VariableIdx->getNameStart(), &I);
4868 return VariableIdx;
4869 }
4870
4871 // Otherwise, there is an index. The computation we will do will be modulo
4872 // the pointer size, so get it.
4873 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
4874
4875 Offset &= PtrSizeMask;
4876 VariableScale &= PtrSizeMask;
4877
4878 // To do this transformation, any constant index must be a multiple of the
4879 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
4880 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
4881 // multiple of the variable scale.
4882 int64_t NewOffs = Offset / (int64_t)VariableScale;
4883 if (Offset != NewOffs*(int64_t)VariableScale)
4884 return 0;
4885
4886 // Okay, we can do this evaluation. Start by converting the index to intptr.
4887 const Type *IntPtrTy = TD.getIntPtrType();
4888 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00004889 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00004890 true /*SExt*/,
4891 VariableIdx->getNameStart(), &I);
4892 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00004893 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00004894}
4895
4896
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004897/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
4898/// else. At this point we know that the GEP is on the LHS of the comparison.
4899Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
4900 ICmpInst::Predicate Cond,
4901 Instruction &I) {
4902 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
4903
Chris Lattnereba75862008-04-22 02:53:33 +00004904 // Look through bitcasts.
4905 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
4906 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004907
4908 Value *PtrBase = GEPLHS->getOperand(0);
4909 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00004910 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00004911 // This transformation (ignoring the base and scales) is valid because we
4912 // know pointers can't overflow. See if we can output an optimized form.
4913 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
4914
4915 // If not, synthesize the offset the hard way.
4916 if (Offset == 0)
4917 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00004918 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
4919 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004920 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
4921 // If the base pointers are different, but the indices are the same, just
4922 // compare the base pointer.
4923 if (PtrBase != GEPRHS->getOperand(0)) {
4924 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
4925 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
4926 GEPRHS->getOperand(0)->getType();
4927 if (IndicesTheSame)
4928 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
4929 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
4930 IndicesTheSame = false;
4931 break;
4932 }
4933
4934 // If all indices are the same, just compare the base pointers.
4935 if (IndicesTheSame)
4936 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
4937 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
4938
4939 // Otherwise, the base pointers are different and the indices are
4940 // different, bail out.
4941 return 0;
4942 }
4943
4944 // If one of the GEPs has all zero indices, recurse.
4945 bool AllZeros = true;
4946 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
4947 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
4948 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
4949 AllZeros = false;
4950 break;
4951 }
4952 if (AllZeros)
4953 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
4954 ICmpInst::getSwappedPredicate(Cond), I);
4955
4956 // If the other GEP has all zero indices, recurse.
4957 AllZeros = true;
4958 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
4959 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
4960 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
4961 AllZeros = false;
4962 break;
4963 }
4964 if (AllZeros)
4965 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
4966
4967 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
4968 // If the GEPs only differ by one index, compare it.
4969 unsigned NumDifferences = 0; // Keep track of # differences.
4970 unsigned DiffOperand = 0; // The operand that differs.
4971 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
4972 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
4973 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
4974 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
4975 // Irreconcilable differences.
4976 NumDifferences = 2;
4977 break;
4978 } else {
4979 if (NumDifferences++) break;
4980 DiffOperand = i;
4981 }
4982 }
4983
4984 if (NumDifferences == 0) // SAME GEP?
4985 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00004986 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00004987 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00004988
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004989 else if (NumDifferences == 1) {
4990 Value *LHSV = GEPLHS->getOperand(DiffOperand);
4991 Value *RHSV = GEPRHS->getOperand(DiffOperand);
4992 // Make sure we do a signed comparison here.
4993 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
4994 }
4995 }
4996
4997 // Only lower this if the icmp is the only user of the GEP or if we expect
4998 // the result to fold to a constant!
4999 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5000 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5001 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5002 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5003 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5004 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5005 }
5006 }
5007 return 0;
5008}
5009
Chris Lattnere6b62d92008-05-19 20:18:56 +00005010/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5011///
5012Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5013 Instruction *LHSI,
5014 Constant *RHSC) {
5015 if (!isa<ConstantFP>(RHSC)) return 0;
5016 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5017
5018 // Get the width of the mantissa. We don't want to hack on conversions that
5019 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005020 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005021 if (MantissaWidth == -1) return 0; // Unknown.
5022
5023 // Check to see that the input is converted from an integer type that is small
5024 // enough that preserves all bits. TODO: check here for "known" sign bits.
5025 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5026 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5027
5028 // If this is a uitofp instruction, we need an extra bit to hold the sign.
5029 if (isa<UIToFPInst>(LHSI))
5030 ++InputSize;
5031
5032 // If the conversion would lose info, don't hack on this.
5033 if ((int)InputSize > MantissaWidth)
5034 return 0;
5035
5036 // Otherwise, we can potentially simplify the comparison. We know that it
5037 // will always come through as an integer value and we know the constant is
5038 // not a NAN (it would have been previously simplified).
5039 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5040
5041 ICmpInst::Predicate Pred;
5042 switch (I.getPredicate()) {
5043 default: assert(0 && "Unexpected predicate!");
5044 case FCmpInst::FCMP_UEQ:
5045 case FCmpInst::FCMP_OEQ: Pred = ICmpInst::ICMP_EQ; break;
5046 case FCmpInst::FCMP_UGT:
5047 case FCmpInst::FCMP_OGT: Pred = ICmpInst::ICMP_SGT; break;
5048 case FCmpInst::FCMP_UGE:
5049 case FCmpInst::FCMP_OGE: Pred = ICmpInst::ICMP_SGE; break;
5050 case FCmpInst::FCMP_ULT:
5051 case FCmpInst::FCMP_OLT: Pred = ICmpInst::ICMP_SLT; break;
5052 case FCmpInst::FCMP_ULE:
5053 case FCmpInst::FCMP_OLE: Pred = ICmpInst::ICMP_SLE; break;
5054 case FCmpInst::FCMP_UNE:
5055 case FCmpInst::FCMP_ONE: Pred = ICmpInst::ICMP_NE; break;
5056 case FCmpInst::FCMP_ORD:
5057 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5058 case FCmpInst::FCMP_UNO:
5059 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5060 }
5061
5062 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5063
5064 // Now we know that the APFloat is a normal number, zero or inf.
5065
Chris Lattnerf13ff492008-05-20 03:50:52 +00005066 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005067 // comparing an i8 to 300.0.
5068 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5069
5070 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5071 // and large values.
5072 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5073 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5074 APFloat::rmNearestTiesToEven);
5075 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
Chris Lattner82a80002008-05-24 04:06:28 +00005076 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5077 Pred == ICmpInst::ICMP_SLE)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005078 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5079 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5080 }
5081
5082 // See if the RHS value is < SignedMin.
5083 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5084 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5085 APFloat::rmNearestTiesToEven);
5086 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
Chris Lattner82a80002008-05-24 04:06:28 +00005087 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5088 Pred == ICmpInst::ICMP_SGE)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005089 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5090 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5091 }
5092
5093 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] but
5094 // it may still be fractional. See if it is fractional by casting the FP
5095 // value to the integer value and back, checking for equality. Don't do this
5096 // for zero, because -0.0 is not fractional.
5097 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5098 if (!RHS.isZero() &&
5099 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
5100 // If we had a comparison against a fractional value, we have to adjust
5101 // the compare predicate and sometimes the value. RHSC is rounded towards
5102 // zero at this point.
5103 switch (Pred) {
5104 default: assert(0 && "Unexpected integer comparison!");
5105 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5106 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5107 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5108 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5109 case ICmpInst::ICMP_SLE:
5110 // (float)int <= 4.4 --> int <= 4
5111 // (float)int <= -4.4 --> int < -4
5112 if (RHS.isNegative())
5113 Pred = ICmpInst::ICMP_SLT;
5114 break;
5115 case ICmpInst::ICMP_SLT:
5116 // (float)int < -4.4 --> int < -4
5117 // (float)int < 4.4 --> int <= 4
5118 if (!RHS.isNegative())
5119 Pred = ICmpInst::ICMP_SLE;
5120 break;
5121 case ICmpInst::ICMP_SGT:
5122 // (float)int > 4.4 --> int > 4
5123 // (float)int > -4.4 --> int >= -4
5124 if (RHS.isNegative())
5125 Pred = ICmpInst::ICMP_SGE;
5126 break;
5127 case ICmpInst::ICMP_SGE:
5128 // (float)int >= -4.4 --> int >= -4
5129 // (float)int >= 4.4 --> int > 4
5130 if (!RHS.isNegative())
5131 Pred = ICmpInst::ICMP_SGT;
5132 break;
5133 }
5134 }
5135
5136 // Lower this FP comparison into an appropriate integer version of the
5137 // comparison.
5138 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5139}
5140
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005141Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5142 bool Changed = SimplifyCompare(I);
5143 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5144
5145 // Fold trivial predicates.
5146 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5147 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5148 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5149 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5150
5151 // Simplify 'fcmp pred X, X'
5152 if (Op0 == Op1) {
5153 switch (I.getPredicate()) {
5154 default: assert(0 && "Unknown predicate!");
5155 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5156 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5157 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5158 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5159 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5160 case FCmpInst::FCMP_OLT: // True if ordered and less than
5161 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5162 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5163
5164 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5165 case FCmpInst::FCMP_ULT: // True if unordered or less than
5166 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5167 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5168 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5169 I.setPredicate(FCmpInst::FCMP_UNO);
5170 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5171 return &I;
5172
5173 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5174 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5175 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5176 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5177 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5178 I.setPredicate(FCmpInst::FCMP_ORD);
5179 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5180 return &I;
5181 }
5182 }
5183
5184 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5185 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5186
5187 // Handle fcmp with constant RHS
5188 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005189 // If the constant is a nan, see if we can fold the comparison based on it.
5190 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5191 if (CFP->getValueAPF().isNaN()) {
5192 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
5193 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Chris Lattnerf13ff492008-05-20 03:50:52 +00005194 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5195 "Comparison must be either ordered or unordered!");
5196 // True if unordered.
5197 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
Chris Lattnere6b62d92008-05-19 20:18:56 +00005198 }
5199 }
5200
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005201 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5202 switch (LHSI->getOpcode()) {
5203 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005204 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5205 // block. If in the same block, we're encouraging jump threading. If
5206 // not, we are just pessimizing the code by making an i1 phi.
5207 if (LHSI->getParent() == I.getParent())
5208 if (Instruction *NV = FoldOpIntoPhi(I))
5209 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005210 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005211 case Instruction::SIToFP:
5212 case Instruction::UIToFP:
5213 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5214 return NV;
5215 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005216 case Instruction::Select:
5217 // If either operand of the select is a constant, we can fold the
5218 // comparison into the select arms, which will cause one to be
5219 // constant folded and the select turned into a bitwise or.
5220 Value *Op1 = 0, *Op2 = 0;
5221 if (LHSI->hasOneUse()) {
5222 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5223 // Fold the known value into the constant operand.
5224 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5225 // Insert a new FCmp of the other select operand.
5226 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5227 LHSI->getOperand(2), RHSC,
5228 I.getName()), I);
5229 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5230 // Fold the known value into the constant operand.
5231 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5232 // Insert a new FCmp of the other select operand.
5233 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5234 LHSI->getOperand(1), RHSC,
5235 I.getName()), I);
5236 }
5237 }
5238
5239 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005240 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005241 break;
5242 }
5243 }
5244
5245 return Changed ? &I : 0;
5246}
5247
5248Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5249 bool Changed = SimplifyCompare(I);
5250 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5251 const Type *Ty = Op0->getType();
5252
5253 // icmp X, X
5254 if (Op0 == Op1)
5255 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005256 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005257
5258 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5259 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005260
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005261 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5262 // addresses never equal each other! We already know that Op0 != Op1.
5263 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5264 isa<ConstantPointerNull>(Op0)) &&
5265 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5266 isa<ConstantPointerNull>(Op1)))
5267 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005268 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005269
5270 // icmp's with boolean values can always be turned into bitwise operations
5271 if (Ty == Type::Int1Ty) {
5272 switch (I.getPredicate()) {
5273 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005274 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005275 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005276 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005277 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005278 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005279 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005280 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005281
5282 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005283 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005284 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005285 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005286 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005287 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005288 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005289 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005290 case ICmpInst::ICMP_SGT:
5291 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005292 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005293 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5294 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5295 InsertNewInstBefore(Not, I);
5296 return BinaryOperator::CreateAnd(Not, Op0);
5297 }
5298 case ICmpInst::ICMP_UGE:
5299 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5300 // FALL THROUGH
5301 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005302 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005303 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005304 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005305 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005306 case ICmpInst::ICMP_SGE:
5307 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5308 // FALL THROUGH
5309 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5310 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5311 InsertNewInstBefore(Not, I);
5312 return BinaryOperator::CreateOr(Not, Op0);
5313 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005314 }
5315 }
5316
Dan Gohman58c09632008-09-16 18:46:06 +00005317 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005318 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005319 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005320
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005321 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5322 if (I.isEquality() && CI->isNullValue() &&
5323 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5324 // (icmp cond A B) if cond is equality
5325 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005326 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005327
Dan Gohman58c09632008-09-16 18:46:06 +00005328 // If we have an icmp le or icmp ge instruction, turn it into the
5329 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5330 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005331 switch (I.getPredicate()) {
5332 default: break;
5333 case ICmpInst::ICMP_ULE:
5334 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5335 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5336 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5337 case ICmpInst::ICMP_SLE:
5338 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5339 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5340 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5341 case ICmpInst::ICMP_UGE:
5342 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5343 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5344 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5345 case ICmpInst::ICMP_SGE:
5346 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5347 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5348 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5349 }
5350
Chris Lattnera1308652008-07-11 05:40:05 +00005351 // See if we can fold the comparison based on range information we can get
5352 // by checking whether bits are known to be zero or one in the input.
5353 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5354 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5355
5356 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005357 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005358 bool UnusedBit;
5359 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5360
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005361 if (SimplifyDemandedBits(Op0,
5362 isSignBit ? APInt::getSignBit(BitWidth)
5363 : APInt::getAllOnesValue(BitWidth),
5364 KnownZero, KnownOne, 0))
5365 return &I;
5366
5367 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005368 // in. Compute the Min, Max and RHS values based on the known bits. For the
5369 // EQ and NE we use unsigned values.
5370 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005371 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5372 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5373 else
5374 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5375
Chris Lattnera1308652008-07-11 05:40:05 +00005376 // If Min and Max are known to be the same, then SimplifyDemandedBits
5377 // figured out that the LHS is a constant. Just constant fold this now so
5378 // that code below can assume that Min != Max.
5379 if (Min == Max)
5380 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5381 ConstantInt::get(Min),
5382 CI));
5383
5384 // Based on the range information we know about the LHS, see if we can
5385 // simplify this comparison. For example, (x&4) < 8 is always true.
5386 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005387 switch (I.getPredicate()) { // LE/GE have been folded already.
5388 default: assert(0 && "Unknown icmp opcode!");
5389 case ICmpInst::ICMP_EQ:
5390 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5391 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5392 break;
5393 case ICmpInst::ICMP_NE:
5394 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5395 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5396 break;
5397 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005398 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005399 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005400 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005401 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005402 if (RHSVal == Max) // A <u MAX -> A != MAX
5403 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5404 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5405 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5406
5407 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5408 if (CI->isMinValue(true))
5409 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5410 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005411 break;
5412 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005413 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005414 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005415 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005416 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005417
5418 if (RHSVal == Min) // A >u MIN -> A != MIN
5419 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5420 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5421 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5422
5423 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5424 if (CI->isMaxValue(true))
5425 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5426 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005427 break;
5428 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005429 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005430 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005431 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005432 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005433 if (RHSVal == Max) // A <s MAX -> A != MAX
5434 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005435 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005436 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005437 break;
5438 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005439 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005440 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005441 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005442 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005443
5444 if (RHSVal == Min) // A >s MIN -> A != MIN
5445 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5446 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5447 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005448 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005449 }
Dan Gohman58c09632008-09-16 18:46:06 +00005450 }
5451
5452 // Test if the ICmpInst instruction is used exclusively by a select as
5453 // part of a minimum or maximum operation. If so, refrain from doing
5454 // any other folding. This helps out other analyses which understand
5455 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5456 // and CodeGen. And in this case, at least one of the comparison
5457 // operands has at least one user besides the compare (the select),
5458 // which would often largely negate the benefit of folding anyway.
5459 if (I.hasOneUse())
5460 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5461 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5462 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5463 return 0;
5464
5465 // See if we are doing a comparison between a constant and an instruction that
5466 // can be folded into the comparison.
5467 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005468 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5469 // instruction, see if that instruction also has constants so that the
5470 // instruction can be folded into the icmp
5471 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5472 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5473 return Res;
5474 }
5475
5476 // Handle icmp with constant (but not simple integer constant) RHS
5477 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5478 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5479 switch (LHSI->getOpcode()) {
5480 case Instruction::GetElementPtr:
5481 if (RHSC->isNullValue()) {
5482 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5483 bool isAllZeros = true;
5484 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5485 if (!isa<Constant>(LHSI->getOperand(i)) ||
5486 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5487 isAllZeros = false;
5488 break;
5489 }
5490 if (isAllZeros)
5491 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5492 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5493 }
5494 break;
5495
5496 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005497 // Only fold icmp into the PHI if the phi and fcmp are in the same
5498 // block. If in the same block, we're encouraging jump threading. If
5499 // not, we are just pessimizing the code by making an i1 phi.
5500 if (LHSI->getParent() == I.getParent())
5501 if (Instruction *NV = FoldOpIntoPhi(I))
5502 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005503 break;
5504 case Instruction::Select: {
5505 // If either operand of the select is a constant, we can fold the
5506 // comparison into the select arms, which will cause one to be
5507 // constant folded and the select turned into a bitwise or.
5508 Value *Op1 = 0, *Op2 = 0;
5509 if (LHSI->hasOneUse()) {
5510 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5511 // Fold the known value into the constant operand.
5512 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5513 // Insert a new ICmp of the other select operand.
5514 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5515 LHSI->getOperand(2), RHSC,
5516 I.getName()), I);
5517 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5518 // Fold the known value into the constant operand.
5519 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5520 // Insert a new ICmp of the other select operand.
5521 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5522 LHSI->getOperand(1), RHSC,
5523 I.getName()), I);
5524 }
5525 }
5526
5527 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005528 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005529 break;
5530 }
5531 case Instruction::Malloc:
5532 // If we have (malloc != null), and if the malloc has a single use, we
5533 // can assume it is successful and remove the malloc.
5534 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5535 AddToWorkList(LHSI);
5536 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005537 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005538 }
5539 break;
5540 }
5541 }
5542
5543 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5544 if (User *GEP = dyn_castGetElementPtr(Op0))
5545 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5546 return NI;
5547 if (User *GEP = dyn_castGetElementPtr(Op1))
5548 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5549 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5550 return NI;
5551
5552 // Test to see if the operands of the icmp are casted versions of other
5553 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5554 // now.
5555 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5556 if (isa<PointerType>(Op0->getType()) &&
5557 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5558 // We keep moving the cast from the left operand over to the right
5559 // operand, where it can often be eliminated completely.
5560 Op0 = CI->getOperand(0);
5561
5562 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5563 // so eliminate it as well.
5564 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5565 Op1 = CI2->getOperand(0);
5566
5567 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005568 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005569 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5570 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5571 } else {
5572 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00005573 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005574 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005575 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005576 return new ICmpInst(I.getPredicate(), Op0, Op1);
5577 }
5578 }
5579
5580 if (isa<CastInst>(Op0)) {
5581 // Handle the special case of: icmp (cast bool to X), <cst>
5582 // This comes up when you have code like
5583 // int X = A < B;
5584 // if (X) ...
5585 // For generality, we handle any zero-extension of any operand comparison
5586 // with a constant or another cast from the same type.
5587 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5588 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5589 return R;
5590 }
5591
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005592 // See if it's the same type of instruction on the left and right.
5593 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
5594 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005595 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
5596 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
5597 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00005598 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005599 default: break;
5600 case Instruction::Add:
5601 case Instruction::Sub:
5602 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005603 // a+x icmp eq/ne b+x --> a icmp b
5604 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
5605 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005606 break;
5607 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005608 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
5609 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
5610 // Mask = -1 >> count-trailing-zeros(Cst).
5611 if (!CI->isZero() && !CI->isOne()) {
5612 const APInt &AP = CI->getValue();
5613 ConstantInt *Mask = ConstantInt::get(
5614 APInt::getLowBitsSet(AP.getBitWidth(),
5615 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005616 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005617 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
5618 Mask);
5619 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
5620 Mask);
5621 InsertNewInstBefore(And1, I);
5622 InsertNewInstBefore(And2, I);
5623 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005624 }
5625 }
5626 break;
5627 }
5628 }
5629 }
5630 }
5631
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005632 // ~x < ~y --> y < x
5633 { Value *A, *B;
5634 if (match(Op0, m_Not(m_Value(A))) &&
5635 match(Op1, m_Not(m_Value(B))))
5636 return new ICmpInst(I.getPredicate(), B, A);
5637 }
5638
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005639 if (I.isEquality()) {
5640 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005641
5642 // -x == -y --> x == y
5643 if (match(Op0, m_Neg(m_Value(A))) &&
5644 match(Op1, m_Neg(m_Value(B))))
5645 return new ICmpInst(I.getPredicate(), A, B);
5646
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005647 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5648 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5649 Value *OtherVal = A == Op1 ? B : A;
5650 return new ICmpInst(I.getPredicate(), OtherVal,
5651 Constant::getNullValue(A->getType()));
5652 }
5653
5654 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5655 // A^c1 == C^c2 --> A == C^(c1^c2)
5656 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5657 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5658 if (Op1->hasOneUse()) {
5659 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00005660 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005661 return new ICmpInst(I.getPredicate(), A,
5662 InsertNewInstBefore(Xor, I));
5663 }
5664
5665 // A^B == A^D -> B == D
5666 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
5667 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
5668 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
5669 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
5670 }
5671 }
5672
5673 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
5674 (A == Op0 || B == Op0)) {
5675 // A == (A^B) -> B == 0
5676 Value *OtherVal = A == Op0 ? B : A;
5677 return new ICmpInst(I.getPredicate(), OtherVal,
5678 Constant::getNullValue(A->getType()));
5679 }
5680 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
5681 // (A-B) == A -> B == 0
5682 return new ICmpInst(I.getPredicate(), B,
5683 Constant::getNullValue(B->getType()));
5684 }
5685 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
5686 // A == (A-B) -> B == 0
5687 return new ICmpInst(I.getPredicate(), B,
5688 Constant::getNullValue(B->getType()));
5689 }
5690
5691 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5692 if (Op0->hasOneUse() && Op1->hasOneUse() &&
5693 match(Op0, m_And(m_Value(A), m_Value(B))) &&
5694 match(Op1, m_And(m_Value(C), m_Value(D)))) {
5695 Value *X = 0, *Y = 0, *Z = 0;
5696
5697 if (A == C) {
5698 X = B; Y = D; Z = A;
5699 } else if (A == D) {
5700 X = B; Y = C; Z = A;
5701 } else if (B == C) {
5702 X = A; Y = D; Z = B;
5703 } else if (B == D) {
5704 X = A; Y = C; Z = B;
5705 }
5706
5707 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00005708 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
5709 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005710 I.setOperand(0, Op1);
5711 I.setOperand(1, Constant::getNullValue(Op1->getType()));
5712 return &I;
5713 }
5714 }
5715 }
5716 return Changed ? &I : 0;
5717}
5718
5719
5720/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
5721/// and CmpRHS are both known to be integer constants.
5722Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
5723 ConstantInt *DivRHS) {
5724 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
5725 const APInt &CmpRHSV = CmpRHS->getValue();
5726
5727 // FIXME: If the operand types don't match the type of the divide
5728 // then don't attempt this transform. The code below doesn't have the
5729 // logic to deal with a signed divide and an unsigned compare (and
5730 // vice versa). This is because (x /s C1) <s C2 produces different
5731 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5732 // (x /u C1) <u C2. Simply casting the operands and result won't
5733 // work. :( The if statement below tests that condition and bails
5734 // if it finds it.
5735 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
5736 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
5737 return 0;
5738 if (DivRHS->isZero())
5739 return 0; // The ProdOV computation fails on divide by zero.
5740
5741 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5742 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5743 // C2 (CI). By solving for X we can turn this into a range check
5744 // instead of computing a divide.
5745 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
5746
5747 // Determine if the product overflows by seeing if the product is
5748 // not equal to the divide. Make sure we do the same kind of divide
5749 // as in the LHS instruction that we're folding.
5750 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
5751 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
5752
5753 // Get the ICmp opcode
5754 ICmpInst::Predicate Pred = ICI.getPredicate();
5755
5756 // Figure out the interval that is being checked. For example, a comparison
5757 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
5758 // Compute this interval based on the constants involved and the signedness of
5759 // the compare/divide. This computes a half-open interval, keeping track of
5760 // whether either value in the interval overflows. After analysis each
5761 // overflow variable is set to 0 if it's corresponding bound variable is valid
5762 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
5763 int LoOverflow = 0, HiOverflow = 0;
5764 ConstantInt *LoBound = 0, *HiBound = 0;
5765
5766
5767 if (!DivIsSigned) { // udiv
5768 // e.g. X/5 op 3 --> [15, 20)
5769 LoBound = Prod;
5770 HiOverflow = LoOverflow = ProdOV;
5771 if (!HiOverflow)
5772 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00005773 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005774 if (CmpRHSV == 0) { // (X / pos) op 0
5775 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
5776 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
5777 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00005778 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005779 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
5780 HiOverflow = LoOverflow = ProdOV;
5781 if (!HiOverflow)
5782 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
5783 } else { // (X / pos) op neg
5784 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
5785 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
5786 LoOverflow = AddWithOverflow(LoBound, Prod,
5787 cast<ConstantInt>(DivRHSH), true) ? -1 : 0;
5788 HiBound = AddOne(Prod);
5789 HiOverflow = ProdOV ? -1 : 0;
5790 }
Dan Gohman5dceed12008-02-13 22:09:18 +00005791 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005792 if (CmpRHSV == 0) { // (X / neg) op 0
5793 // e.g. X/-5 op 0 --> [-4, 5)
5794 LoBound = AddOne(DivRHS);
5795 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
5796 if (HiBound == DivRHS) { // -INTMIN = INTMIN
5797 HiOverflow = 1; // [INTMIN+1, overflow)
5798 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
5799 }
Dan Gohman5dceed12008-02-13 22:09:18 +00005800 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005801 // e.g. X/-5 op 3 --> [-19, -14)
5802 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
5803 if (!LoOverflow)
5804 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS), true) ?-1:0;
5805 HiBound = AddOne(Prod);
5806 } else { // (X / neg) op neg
5807 // e.g. X/-5 op -3 --> [15, 20)
5808 LoBound = Prod;
5809 LoOverflow = HiOverflow = ProdOV ? 1 : 0;
Dan Gohman45408ea2008-09-11 00:25:00 +00005810 if (!HiOverflow)
5811 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005812 }
5813
5814 // Dividing by a negative swaps the condition. LT <-> GT
5815 Pred = ICmpInst::getSwappedPredicate(Pred);
5816 }
5817
5818 Value *X = DivI->getOperand(0);
5819 switch (Pred) {
5820 default: assert(0 && "Unhandled icmp opcode!");
5821 case ICmpInst::ICMP_EQ:
5822 if (LoOverflow && HiOverflow)
5823 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5824 else if (HiOverflow)
5825 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5826 ICmpInst::ICMP_UGE, X, LoBound);
5827 else if (LoOverflow)
5828 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5829 ICmpInst::ICMP_ULT, X, HiBound);
5830 else
5831 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
5832 case ICmpInst::ICMP_NE:
5833 if (LoOverflow && HiOverflow)
5834 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5835 else if (HiOverflow)
5836 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5837 ICmpInst::ICMP_ULT, X, LoBound);
5838 else if (LoOverflow)
5839 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5840 ICmpInst::ICMP_UGE, X, HiBound);
5841 else
5842 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
5843 case ICmpInst::ICMP_ULT:
5844 case ICmpInst::ICMP_SLT:
5845 if (LoOverflow == +1) // Low bound is greater than input range.
5846 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5847 if (LoOverflow == -1) // Low bound is less than input range.
5848 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5849 return new ICmpInst(Pred, X, LoBound);
5850 case ICmpInst::ICMP_UGT:
5851 case ICmpInst::ICMP_SGT:
5852 if (HiOverflow == +1) // High bound greater than input range.
5853 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5854 else if (HiOverflow == -1) // High bound less than input range.
5855 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5856 if (Pred == ICmpInst::ICMP_UGT)
5857 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
5858 else
5859 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
5860 }
5861}
5862
5863
5864/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
5865///
5866Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
5867 Instruction *LHSI,
5868 ConstantInt *RHS) {
5869 const APInt &RHSV = RHS->getValue();
5870
5871 switch (LHSI->getOpcode()) {
5872 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
5873 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
5874 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
5875 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005876 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
5877 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005878 Value *CompareVal = LHSI->getOperand(0);
5879
5880 // If the sign bit of the XorCST is not set, there is no change to
5881 // the operation, just stop using the Xor.
5882 if (!XorCST->getValue().isNegative()) {
5883 ICI.setOperand(0, CompareVal);
5884 AddToWorkList(LHSI);
5885 return &ICI;
5886 }
5887
5888 // Was the old condition true if the operand is positive?
5889 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
5890
5891 // If so, the new one isn't.
5892 isTrueIfPositive ^= true;
5893
5894 if (isTrueIfPositive)
5895 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
5896 else
5897 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
5898 }
5899 }
5900 break;
5901 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
5902 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
5903 LHSI->getOperand(0)->hasOneUse()) {
5904 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
5905
5906 // If the LHS is an AND of a truncating cast, we can widen the
5907 // and/compare to be the input width without changing the value
5908 // produced, eliminating a cast.
5909 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
5910 // We can do this transformation if either the AND constant does not
5911 // have its sign bit set or if it is an equality comparison.
5912 // Extending a relational comparison when we're checking the sign
5913 // bit would not work.
5914 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00005915 (ICI.isEquality() ||
5916 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005917 uint32_t BitWidth =
5918 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
5919 APInt NewCST = AndCST->getValue();
5920 NewCST.zext(BitWidth);
5921 APInt NewCI = RHSV;
5922 NewCI.zext(BitWidth);
5923 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00005924 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005925 ConstantInt::get(NewCST),LHSI->getName());
5926 InsertNewInstBefore(NewAnd, ICI);
5927 return new ICmpInst(ICI.getPredicate(), NewAnd,
5928 ConstantInt::get(NewCI));
5929 }
5930 }
5931
5932 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
5933 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
5934 // happens a LOT in code produced by the C front-end, for bitfield
5935 // access.
5936 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
5937 if (Shift && !Shift->isShift())
5938 Shift = 0;
5939
5940 ConstantInt *ShAmt;
5941 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
5942 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
5943 const Type *AndTy = AndCST->getType(); // Type of the and.
5944
5945 // We can fold this as long as we can't shift unknown bits
5946 // into the mask. This can only happen with signed shift
5947 // rights, as they sign-extend.
5948 if (ShAmt) {
5949 bool CanFold = Shift->isLogicalShift();
5950 if (!CanFold) {
5951 // To test for the bad case of the signed shr, see if any
5952 // of the bits shifted in could be tested after the mask.
5953 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
5954 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
5955
5956 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
5957 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
5958 AndCST->getValue()) == 0)
5959 CanFold = true;
5960 }
5961
5962 if (CanFold) {
5963 Constant *NewCst;
5964 if (Shift->getOpcode() == Instruction::Shl)
5965 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
5966 else
5967 NewCst = ConstantExpr::getShl(RHS, ShAmt);
5968
5969 // Check to see if we are shifting out any of the bits being
5970 // compared.
5971 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
5972 // If we shifted bits out, the fold is not going to work out.
5973 // As a special case, check to see if this means that the
5974 // result is always true or false now.
5975 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
5976 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5977 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
5978 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5979 } else {
5980 ICI.setOperand(1, NewCst);
5981 Constant *NewAndCST;
5982 if (Shift->getOpcode() == Instruction::Shl)
5983 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
5984 else
5985 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
5986 LHSI->setOperand(1, NewAndCST);
5987 LHSI->setOperand(0, Shift->getOperand(0));
5988 AddToWorkList(Shift); // Shift is dead.
5989 AddUsesToWorkList(ICI);
5990 return &ICI;
5991 }
5992 }
5993 }
5994
5995 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
5996 // preferable because it allows the C<<Y expression to be hoisted out
5997 // of a loop if Y is invariant and X is not.
5998 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
5999 ICI.isEquality() && !Shift->isArithmeticShift() &&
6000 isa<Instruction>(Shift->getOperand(0))) {
6001 // Compute C << Y.
6002 Value *NS;
6003 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006004 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006005 Shift->getOperand(1), "tmp");
6006 } else {
6007 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006008 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006009 Shift->getOperand(1), "tmp");
6010 }
6011 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6012
6013 // Compute X & (C << Y).
6014 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006015 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006016 InsertNewInstBefore(NewAnd, ICI);
6017
6018 ICI.setOperand(0, NewAnd);
6019 return &ICI;
6020 }
6021 }
6022 break;
6023
6024 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6025 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6026 if (!ShAmt) break;
6027
6028 uint32_t TypeBits = RHSV.getBitWidth();
6029
6030 // Check that the shift amount is in range. If not, don't perform
6031 // undefined shifts. When the shift is visited it will be
6032 // simplified.
6033 if (ShAmt->uge(TypeBits))
6034 break;
6035
6036 if (ICI.isEquality()) {
6037 // If we are comparing against bits always shifted out, the
6038 // comparison cannot succeed.
6039 Constant *Comp =
6040 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6041 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6042 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6043 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6044 return ReplaceInstUsesWith(ICI, Cst);
6045 }
6046
6047 if (LHSI->hasOneUse()) {
6048 // Otherwise strength reduce the shift into an and.
6049 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6050 Constant *Mask =
6051 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6052
6053 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006054 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006055 Mask, LHSI->getName()+".mask");
6056 Value *And = InsertNewInstBefore(AndI, ICI);
6057 return new ICmpInst(ICI.getPredicate(), And,
6058 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6059 }
6060 }
6061
6062 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6063 bool TrueIfSigned = false;
6064 if (LHSI->hasOneUse() &&
6065 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6066 // (X << 31) <s 0 --> (X&1) != 0
6067 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6068 (TypeBits-ShAmt->getZExtValue()-1));
6069 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006070 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006071 Mask, LHSI->getName()+".mask");
6072 Value *And = InsertNewInstBefore(AndI, ICI);
6073
6074 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6075 And, Constant::getNullValue(And->getType()));
6076 }
6077 break;
6078 }
6079
6080 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6081 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006082 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006083 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006084 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006085
Chris Lattner5ee84f82008-03-21 05:19:58 +00006086 // Check that the shift amount is in range. If not, don't perform
6087 // undefined shifts. When the shift is visited it will be
6088 // simplified.
6089 uint32_t TypeBits = RHSV.getBitWidth();
6090 if (ShAmt->uge(TypeBits))
6091 break;
6092
6093 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006094
Chris Lattner5ee84f82008-03-21 05:19:58 +00006095 // If we are comparing against bits always shifted out, the
6096 // comparison cannot succeed.
6097 APInt Comp = RHSV << ShAmtVal;
6098 if (LHSI->getOpcode() == Instruction::LShr)
6099 Comp = Comp.lshr(ShAmtVal);
6100 else
6101 Comp = Comp.ashr(ShAmtVal);
6102
6103 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6104 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6105 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6106 return ReplaceInstUsesWith(ICI, Cst);
6107 }
6108
6109 // Otherwise, check to see if the bits shifted out are known to be zero.
6110 // If so, we can compare against the unshifted value:
6111 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006112 if (LHSI->hasOneUse() &&
6113 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006114 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6115 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6116 ConstantExpr::getShl(RHS, ShAmt));
6117 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006118
Evan Chengfb9292a2008-04-23 00:38:06 +00006119 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006120 // Otherwise strength reduce the shift into an and.
6121 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6122 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006123
Chris Lattner5ee84f82008-03-21 05:19:58 +00006124 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006125 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006126 Mask, LHSI->getName()+".mask");
6127 Value *And = InsertNewInstBefore(AndI, ICI);
6128 return new ICmpInst(ICI.getPredicate(), And,
6129 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006130 }
6131 break;
6132 }
6133
6134 case Instruction::SDiv:
6135 case Instruction::UDiv:
6136 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6137 // Fold this div into the comparison, producing a range check.
6138 // Determine, based on the divide type, what the range is being
6139 // checked. If there is an overflow on the low or high side, remember
6140 // it, otherwise compute the range [low, hi) bounding the new value.
6141 // See: InsertRangeTest above for the kinds of replacements possible.
6142 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6143 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6144 DivRHS))
6145 return R;
6146 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006147
6148 case Instruction::Add:
6149 // Fold: icmp pred (add, X, C1), C2
6150
6151 if (!ICI.isEquality()) {
6152 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6153 if (!LHSC) break;
6154 const APInt &LHSV = LHSC->getValue();
6155
6156 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6157 .subtract(LHSV);
6158
6159 if (ICI.isSignedPredicate()) {
6160 if (CR.getLower().isSignBit()) {
6161 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6162 ConstantInt::get(CR.getUpper()));
6163 } else if (CR.getUpper().isSignBit()) {
6164 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6165 ConstantInt::get(CR.getLower()));
6166 }
6167 } else {
6168 if (CR.getLower().isMinValue()) {
6169 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6170 ConstantInt::get(CR.getUpper()));
6171 } else if (CR.getUpper().isMinValue()) {
6172 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6173 ConstantInt::get(CR.getLower()));
6174 }
6175 }
6176 }
6177 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006178 }
6179
6180 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6181 if (ICI.isEquality()) {
6182 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6183
6184 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6185 // the second operand is a constant, simplify a bit.
6186 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6187 switch (BO->getOpcode()) {
6188 case Instruction::SRem:
6189 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6190 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6191 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6192 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6193 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006194 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006195 BO->getName());
6196 InsertNewInstBefore(NewRem, ICI);
6197 return new ICmpInst(ICI.getPredicate(), NewRem,
6198 Constant::getNullValue(BO->getType()));
6199 }
6200 }
6201 break;
6202 case Instruction::Add:
6203 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6204 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6205 if (BO->hasOneUse())
6206 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6207 Subtract(RHS, BOp1C));
6208 } else if (RHSV == 0) {
6209 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6210 // efficiently invertible, or if the add has just this one use.
6211 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6212
6213 if (Value *NegVal = dyn_castNegVal(BOp1))
6214 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6215 else if (Value *NegVal = dyn_castNegVal(BOp0))
6216 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6217 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006218 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006219 InsertNewInstBefore(Neg, ICI);
6220 Neg->takeName(BO);
6221 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6222 }
6223 }
6224 break;
6225 case Instruction::Xor:
6226 // For the xor case, we can xor two constants together, eliminating
6227 // the explicit xor.
6228 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6229 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6230 ConstantExpr::getXor(RHS, BOC));
6231
6232 // FALLTHROUGH
6233 case Instruction::Sub:
6234 // Replace (([sub|xor] A, B) != 0) with (A != B)
6235 if (RHSV == 0)
6236 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6237 BO->getOperand(1));
6238 break;
6239
6240 case Instruction::Or:
6241 // If bits are being or'd in that are not present in the constant we
6242 // are comparing against, then the comparison could never succeed!
6243 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6244 Constant *NotCI = ConstantExpr::getNot(RHS);
6245 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6246 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6247 isICMP_NE));
6248 }
6249 break;
6250
6251 case Instruction::And:
6252 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6253 // If bits are being compared against that are and'd out, then the
6254 // comparison can never succeed!
6255 if ((RHSV & ~BOC->getValue()) != 0)
6256 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6257 isICMP_NE));
6258
6259 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6260 if (RHS == BOC && RHSV.isPowerOf2())
6261 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6262 ICmpInst::ICMP_NE, LHSI,
6263 Constant::getNullValue(RHS->getType()));
6264
6265 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006266 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006267 Value *X = BO->getOperand(0);
6268 Constant *Zero = Constant::getNullValue(X->getType());
6269 ICmpInst::Predicate pred = isICMP_NE ?
6270 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6271 return new ICmpInst(pred, X, Zero);
6272 }
6273
6274 // ((X & ~7) == 0) --> X < 8
6275 if (RHSV == 0 && isHighOnes(BOC)) {
6276 Value *X = BO->getOperand(0);
6277 Constant *NegX = ConstantExpr::getNeg(BOC);
6278 ICmpInst::Predicate pred = isICMP_NE ?
6279 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6280 return new ICmpInst(pred, X, NegX);
6281 }
6282 }
6283 default: break;
6284 }
6285 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6286 // Handle icmp {eq|ne} <intrinsic>, intcst.
6287 if (II->getIntrinsicID() == Intrinsic::bswap) {
6288 AddToWorkList(II);
6289 ICI.setOperand(0, II->getOperand(1));
6290 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6291 return &ICI;
6292 }
6293 }
6294 } else { // Not a ICMP_EQ/ICMP_NE
6295 // If the LHS is a cast from an integral value of the same size,
6296 // then since we know the RHS is a constant, try to simlify.
6297 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6298 Value *CastOp = Cast->getOperand(0);
6299 const Type *SrcTy = CastOp->getType();
6300 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6301 if (SrcTy->isInteger() &&
6302 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6303 // If this is an unsigned comparison, try to make the comparison use
6304 // smaller constant values.
6305 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6306 // X u< 128 => X s> -1
6307 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6308 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6309 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6310 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6311 // X u> 127 => X s< 0
6312 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6313 Constant::getNullValue(SrcTy));
6314 }
6315 }
6316 }
6317 }
6318 return 0;
6319}
6320
6321/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6322/// We only handle extending casts so far.
6323///
6324Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6325 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6326 Value *LHSCIOp = LHSCI->getOperand(0);
6327 const Type *SrcTy = LHSCIOp->getType();
6328 const Type *DestTy = LHSCI->getType();
6329 Value *RHSCIOp;
6330
6331 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6332 // integer type is the same size as the pointer type.
6333 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6334 getTargetData().getPointerSizeInBits() ==
6335 cast<IntegerType>(DestTy)->getBitWidth()) {
6336 Value *RHSOp = 0;
6337 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6338 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6339 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6340 RHSOp = RHSC->getOperand(0);
6341 // If the pointer types don't match, insert a bitcast.
6342 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006343 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006344 }
6345
6346 if (RHSOp)
6347 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6348 }
6349
6350 // The code below only handles extension cast instructions, so far.
6351 // Enforce this.
6352 if (LHSCI->getOpcode() != Instruction::ZExt &&
6353 LHSCI->getOpcode() != Instruction::SExt)
6354 return 0;
6355
6356 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6357 bool isSignedCmp = ICI.isSignedPredicate();
6358
6359 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6360 // Not an extension from the same type?
6361 RHSCIOp = CI->getOperand(0);
6362 if (RHSCIOp->getType() != LHSCIOp->getType())
6363 return 0;
6364
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006365 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006366 // and the other is a zext), then we can't handle this.
6367 if (CI->getOpcode() != LHSCI->getOpcode())
6368 return 0;
6369
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006370 // Deal with equality cases early.
6371 if (ICI.isEquality())
6372 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6373
6374 // A signed comparison of sign extended values simplifies into a
6375 // signed comparison.
6376 if (isSignedCmp && isSignedExt)
6377 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6378
6379 // The other three cases all fold into an unsigned comparison.
6380 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006381 }
6382
6383 // If we aren't dealing with a constant on the RHS, exit early
6384 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6385 if (!CI)
6386 return 0;
6387
6388 // Compute the constant that would happen if we truncated to SrcTy then
6389 // reextended to DestTy.
6390 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6391 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6392
6393 // If the re-extended constant didn't change...
6394 if (Res2 == CI) {
6395 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6396 // For example, we might have:
6397 // %A = sext short %X to uint
6398 // %B = icmp ugt uint %A, 1330
6399 // It is incorrect to transform this into
6400 // %B = icmp ugt short %X, 1330
6401 // because %A may have negative value.
6402 //
Chris Lattner3d816532008-07-11 04:09:09 +00006403 // However, we allow this when the compare is EQ/NE, because they are
6404 // signless.
6405 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006406 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006407 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006408 }
6409
6410 // The re-extended constant changed so the constant cannot be represented
6411 // in the shorter type. Consequently, we cannot emit a simple comparison.
6412
6413 // First, handle some easy cases. We know the result cannot be equal at this
6414 // point so handle the ICI.isEquality() cases
6415 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6416 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6417 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6418 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6419
6420 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6421 // should have been folded away previously and not enter in here.
6422 Value *Result;
6423 if (isSignedCmp) {
6424 // We're performing a signed comparison.
6425 if (cast<ConstantInt>(CI)->getValue().isNegative())
6426 Result = ConstantInt::getFalse(); // X < (small) --> false
6427 else
6428 Result = ConstantInt::getTrue(); // X < (large) --> true
6429 } else {
6430 // We're performing an unsigned comparison.
6431 if (isSignedExt) {
6432 // We're performing an unsigned comp with a sign extended value.
6433 // This is true if the input is >= 0. [aka >s -1]
6434 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6435 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6436 NegOne, ICI.getName()), ICI);
6437 } else {
6438 // Unsigned extend & unsigned compare -> always true.
6439 Result = ConstantInt::getTrue();
6440 }
6441 }
6442
6443 // Finally, return the value computed.
6444 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006445 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006446 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006447
6448 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6449 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6450 "ICmp should be folded!");
6451 if (Constant *CI = dyn_cast<Constant>(Result))
6452 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6453 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006454}
6455
6456Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6457 return commonShiftTransforms(I);
6458}
6459
6460Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6461 return commonShiftTransforms(I);
6462}
6463
6464Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006465 if (Instruction *R = commonShiftTransforms(I))
6466 return R;
6467
6468 Value *Op0 = I.getOperand(0);
6469
6470 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6471 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6472 if (CSI->isAllOnesValue())
6473 return ReplaceInstUsesWith(I, CSI);
6474
6475 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006476 if (!isa<VectorType>(I.getType()) &&
6477 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006478 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006479 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006480
6481 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006482}
6483
6484Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6485 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6486 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6487
6488 // shl X, 0 == X and shr X, 0 == X
6489 // shl 0, X == 0 and shr 0, X == 0
6490 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6491 Op0 == Constant::getNullValue(Op0->getType()))
6492 return ReplaceInstUsesWith(I, Op0);
6493
6494 if (isa<UndefValue>(Op0)) {
6495 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6496 return ReplaceInstUsesWith(I, Op0);
6497 else // undef << X -> 0, undef >>u X -> 0
6498 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6499 }
6500 if (isa<UndefValue>(Op1)) {
6501 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6502 return ReplaceInstUsesWith(I, Op0);
6503 else // X << undef, X >>u undef -> 0
6504 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6505 }
6506
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006507 // Try to fold constant and into select arguments.
6508 if (isa<Constant>(Op0))
6509 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6510 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6511 return R;
6512
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006513 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6514 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6515 return Res;
6516 return 0;
6517}
6518
6519Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6520 BinaryOperator &I) {
6521 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6522
6523 // See if we can simplify any instructions used by the instruction whose sole
6524 // purpose is to compute bits we don't care about.
6525 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6526 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6527 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6528 KnownZero, KnownOne))
6529 return &I;
6530
6531 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6532 // of a signed value.
6533 //
6534 if (Op1->uge(TypeBits)) {
6535 if (I.getOpcode() != Instruction::AShr)
6536 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6537 else {
6538 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
6539 return &I;
6540 }
6541 }
6542
6543 // ((X*C1) << C2) == (X * (C1 << C2))
6544 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6545 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6546 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00006547 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006548 ConstantExpr::getShl(BOOp, Op1));
6549
6550 // Try to fold constant and into select arguments.
6551 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6552 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6553 return R;
6554 if (isa<PHINode>(Op0))
6555 if (Instruction *NV = FoldOpIntoPhi(I))
6556 return NV;
6557
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006558 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6559 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6560 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6561 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6562 // place. Don't try to do this transformation in this case. Also, we
6563 // require that the input operand is a shift-by-constant so that we have
6564 // confidence that the shifts will get folded together. We could do this
6565 // xform in more cases, but it is unlikely to be profitable.
6566 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6567 isa<ConstantInt>(TrOp->getOperand(1))) {
6568 // Okay, we'll do this xform. Make the shift of shift.
6569 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00006570 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006571 I.getName());
6572 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6573
6574 // For logical shifts, the truncation has the effect of making the high
6575 // part of the register be zeros. Emulate this by inserting an AND to
6576 // clear the top bits as needed. This 'and' will usually be zapped by
6577 // other xforms later if dead.
6578 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
6579 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
6580 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
6581
6582 // The mask we constructed says what the trunc would do if occurring
6583 // between the shifts. We want to know the effect *after* the second
6584 // shift. We know that it is a logical shift by a constant, so adjust the
6585 // mask as appropriate.
6586 if (I.getOpcode() == Instruction::Shl)
6587 MaskV <<= Op1->getZExtValue();
6588 else {
6589 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
6590 MaskV = MaskV.lshr(Op1->getZExtValue());
6591 }
6592
Gabor Greifa645dd32008-05-16 19:29:10 +00006593 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006594 TI->getName());
6595 InsertNewInstBefore(And, I); // shift1 & 0x00FF
6596
6597 // Return the value truncated to the interesting size.
6598 return new TruncInst(And, I.getType());
6599 }
6600 }
6601
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006602 if (Op0->hasOneUse()) {
6603 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6604 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6605 Value *V1, *V2;
6606 ConstantInt *CC;
6607 switch (Op0BO->getOpcode()) {
6608 default: break;
6609 case Instruction::Add:
6610 case Instruction::And:
6611 case Instruction::Or:
6612 case Instruction::Xor: {
6613 // These operators commute.
6614 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
6615 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6616 match(Op0BO->getOperand(1),
6617 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006618 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006619 Op0BO->getOperand(0), Op1,
6620 Op0BO->getName());
6621 InsertNewInstBefore(YS, I); // (Y << C)
6622 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006623 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006624 Op0BO->getOperand(1)->getName());
6625 InsertNewInstBefore(X, I); // (X + (Y << C))
6626 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006627 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006628 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6629 }
6630
6631 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
6632 Value *Op0BOOp1 = Op0BO->getOperand(1);
6633 if (isLeftShift && Op0BOOp1->hasOneUse() &&
6634 match(Op0BOOp1,
6635 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
6636 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6637 V2 == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006638 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006639 Op0BO->getOperand(0), Op1,
6640 Op0BO->getName());
6641 InsertNewInstBefore(YS, I); // (Y << C)
6642 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00006643 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006644 V1->getName()+".mask");
6645 InsertNewInstBefore(XM, I); // X & (CC << C)
6646
Gabor Greifa645dd32008-05-16 19:29:10 +00006647 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006648 }
6649 }
6650
6651 // FALL THROUGH.
6652 case Instruction::Sub: {
6653 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6654 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6655 match(Op0BO->getOperand(0),
6656 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006657 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006658 Op0BO->getOperand(1), Op1,
6659 Op0BO->getName());
6660 InsertNewInstBefore(YS, I); // (Y << C)
6661 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006662 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006663 Op0BO->getOperand(0)->getName());
6664 InsertNewInstBefore(X, I); // (X + (Y << C))
6665 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006666 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006667 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6668 }
6669
6670 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
6671 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6672 match(Op0BO->getOperand(0),
6673 m_And(m_Shr(m_Value(V1), m_Value(V2)),
6674 m_ConstantInt(CC))) && V2 == Op1 &&
6675 cast<BinaryOperator>(Op0BO->getOperand(0))
6676 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006677 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006678 Op0BO->getOperand(1), Op1,
6679 Op0BO->getName());
6680 InsertNewInstBefore(YS, I); // (Y << C)
6681 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00006682 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006683 V1->getName()+".mask");
6684 InsertNewInstBefore(XM, I); // X & (CC << C)
6685
Gabor Greifa645dd32008-05-16 19:29:10 +00006686 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006687 }
6688
6689 break;
6690 }
6691 }
6692
6693
6694 // If the operand is an bitwise operator with a constant RHS, and the
6695 // shift is the only use, we can pull it out of the shift.
6696 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
6697 bool isValid = true; // Valid only for And, Or, Xor
6698 bool highBitSet = false; // Transform if high bit of constant set?
6699
6700 switch (Op0BO->getOpcode()) {
6701 default: isValid = false; break; // Do not perform transform!
6702 case Instruction::Add:
6703 isValid = isLeftShift;
6704 break;
6705 case Instruction::Or:
6706 case Instruction::Xor:
6707 highBitSet = false;
6708 break;
6709 case Instruction::And:
6710 highBitSet = true;
6711 break;
6712 }
6713
6714 // If this is a signed shift right, and the high bit is modified
6715 // by the logical operation, do not perform the transformation.
6716 // The highBitSet boolean indicates the value of the high bit of
6717 // the constant which would cause it to be modified for this
6718 // operation.
6719 //
Chris Lattner15b76e32007-12-06 06:25:04 +00006720 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006721 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006722
6723 if (isValid) {
6724 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
6725
6726 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006727 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006728 InsertNewInstBefore(NewShift, I);
6729 NewShift->takeName(Op0BO);
6730
Gabor Greifa645dd32008-05-16 19:29:10 +00006731 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006732 NewRHS);
6733 }
6734 }
6735 }
6736 }
6737
6738 // Find out if this is a shift of a shift by a constant.
6739 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
6740 if (ShiftOp && !ShiftOp->isShift())
6741 ShiftOp = 0;
6742
6743 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
6744 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
6745 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
6746 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
6747 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
6748 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
6749 Value *X = ShiftOp->getOperand(0);
6750
6751 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
6752 if (AmtSum > TypeBits)
6753 AmtSum = TypeBits;
6754
6755 const IntegerType *Ty = cast<IntegerType>(I.getType());
6756
6757 // Check for (X << c1) << c2 and (X >> c1) >> c2
6758 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006759 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006760 ConstantInt::get(Ty, AmtSum));
6761 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
6762 I.getOpcode() == Instruction::AShr) {
6763 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00006764 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006765 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
6766 I.getOpcode() == Instruction::LShr) {
6767 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6768 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006769 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006770 InsertNewInstBefore(Shift, I);
6771
6772 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006773 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006774 }
6775
6776 // Okay, if we get here, one shift must be left, and the other shift must be
6777 // right. See if the amounts are equal.
6778 if (ShiftAmt1 == ShiftAmt2) {
6779 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6780 if (I.getOpcode() == Instruction::Shl) {
6781 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00006782 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006783 }
6784 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6785 if (I.getOpcode() == Instruction::LShr) {
6786 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00006787 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006788 }
6789 // We can simplify ((X << C) >>s C) into a trunc + sext.
6790 // NOTE: we could do this for any C, but that would make 'unusual' integer
6791 // types. For now, just stick to ones well-supported by the code
6792 // generators.
6793 const Type *SExtType = 0;
6794 switch (Ty->getBitWidth() - ShiftAmt1) {
6795 case 1 :
6796 case 8 :
6797 case 16 :
6798 case 32 :
6799 case 64 :
6800 case 128:
6801 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
6802 break;
6803 default: break;
6804 }
6805 if (SExtType) {
6806 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
6807 InsertNewInstBefore(NewTrunc, I);
6808 return new SExtInst(NewTrunc, Ty);
6809 }
6810 // Otherwise, we can't handle it yet.
6811 } else if (ShiftAmt1 < ShiftAmt2) {
6812 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
6813
6814 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
6815 if (I.getOpcode() == Instruction::Shl) {
6816 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6817 ShiftOp->getOpcode() == Instruction::AShr);
6818 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006819 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006820 InsertNewInstBefore(Shift, I);
6821
6822 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006823 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006824 }
6825
6826 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
6827 if (I.getOpcode() == Instruction::LShr) {
6828 assert(ShiftOp->getOpcode() == Instruction::Shl);
6829 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006830 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006831 InsertNewInstBefore(Shift, I);
6832
6833 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006834 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006835 }
6836
6837 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
6838 } else {
6839 assert(ShiftAmt2 < ShiftAmt1);
6840 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
6841
6842 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
6843 if (I.getOpcode() == Instruction::Shl) {
6844 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6845 ShiftOp->getOpcode() == Instruction::AShr);
6846 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006847 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006848 ConstantInt::get(Ty, ShiftDiff));
6849 InsertNewInstBefore(Shift, I);
6850
6851 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006852 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006853 }
6854
6855 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
6856 if (I.getOpcode() == Instruction::LShr) {
6857 assert(ShiftOp->getOpcode() == Instruction::Shl);
6858 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006859 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006860 InsertNewInstBefore(Shift, I);
6861
6862 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006863 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006864 }
6865
6866 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
6867 }
6868 }
6869 return 0;
6870}
6871
6872
6873/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
6874/// expression. If so, decompose it, returning some value X, such that Val is
6875/// X*Scale+Offset.
6876///
6877static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
6878 int &Offset) {
6879 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
6880 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
6881 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00006882 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006883 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00006884 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
6885 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
6886 if (I->getOpcode() == Instruction::Shl) {
6887 // This is a value scaled by '1 << the shift amt'.
6888 Scale = 1U << RHS->getZExtValue();
6889 Offset = 0;
6890 return I->getOperand(0);
6891 } else if (I->getOpcode() == Instruction::Mul) {
6892 // This value is scaled by 'RHS'.
6893 Scale = RHS->getZExtValue();
6894 Offset = 0;
6895 return I->getOperand(0);
6896 } else if (I->getOpcode() == Instruction::Add) {
6897 // We have X+C. Check to see if we really have (X*C2)+C1,
6898 // where C1 is divisible by C2.
6899 unsigned SubScale;
6900 Value *SubVal =
6901 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
6902 Offset += RHS->getZExtValue();
6903 Scale = SubScale;
6904 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006905 }
6906 }
6907 }
6908
6909 // Otherwise, we can't look past this.
6910 Scale = 1;
6911 Offset = 0;
6912 return Val;
6913}
6914
6915
6916/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
6917/// try to eliminate the cast by moving the type information into the alloc.
6918Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
6919 AllocationInst &AI) {
6920 const PointerType *PTy = cast<PointerType>(CI.getType());
6921
6922 // Remove any uses of AI that are dead.
6923 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
6924
6925 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
6926 Instruction *User = cast<Instruction>(*UI++);
6927 if (isInstructionTriviallyDead(User)) {
6928 while (UI != E && *UI == User)
6929 ++UI; // If this instruction uses AI more than once, don't break UI.
6930
6931 ++NumDeadInst;
6932 DOUT << "IC: DCE: " << *User;
6933 EraseInstFromFunction(*User);
6934 }
6935 }
6936
6937 // Get the type really allocated and the type casted to.
6938 const Type *AllocElTy = AI.getAllocatedType();
6939 const Type *CastElTy = PTy->getElementType();
6940 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
6941
6942 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
6943 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
6944 if (CastElTyAlign < AllocElTyAlign) return 0;
6945
6946 // If the allocation has multiple uses, only promote it if we are strictly
6947 // increasing the alignment of the resultant allocation. If we keep it the
6948 // same, we open the door to infinite loops of various kinds.
6949 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
6950
Duncan Sandsf99fdc62007-11-01 20:53:16 +00006951 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
6952 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006953 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
6954
6955 // See if we can satisfy the modulus by pulling a scale out of the array
6956 // size argument.
6957 unsigned ArraySizeScale;
6958 int ArrayOffset;
6959 Value *NumElements = // See if the array size is a decomposable linear expr.
6960 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
6961
6962 // If we can now satisfy the modulus, by using a non-1 scale, we really can
6963 // do the xform.
6964 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
6965 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
6966
6967 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
6968 Value *Amt = 0;
6969 if (Scale == 1) {
6970 Amt = NumElements;
6971 } else {
6972 // If the allocation size is constant, form a constant mul expression
6973 Amt = ConstantInt::get(Type::Int32Ty, Scale);
6974 if (isa<ConstantInt>(NumElements))
6975 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
6976 // otherwise multiply the amount and the number of elements
6977 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006978 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006979 Amt = InsertNewInstBefore(Tmp, AI);
6980 }
6981 }
6982
6983 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
6984 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00006985 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006986 Amt = InsertNewInstBefore(Tmp, AI);
6987 }
6988
6989 AllocationInst *New;
6990 if (isa<MallocInst>(AI))
6991 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
6992 else
6993 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
6994 InsertNewInstBefore(New, AI);
6995 New->takeName(&AI);
6996
6997 // If the allocation has multiple uses, insert a cast and change all things
6998 // that used it to use the new cast. This will also hack on CI, but it will
6999 // die soon.
7000 if (!AI.hasOneUse()) {
7001 AddUsesToWorkList(AI);
7002 // New is the allocation instruction, pointer typed. AI is the original
7003 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7004 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7005 InsertNewInstBefore(NewCast, AI);
7006 AI.replaceAllUsesWith(NewCast);
7007 }
7008 return ReplaceInstUsesWith(CI, New);
7009}
7010
7011/// CanEvaluateInDifferentType - Return true if we can take the specified value
7012/// and return it as type Ty without inserting any new casts and without
7013/// changing the computed value. This is used by code that tries to decide
7014/// whether promoting or shrinking integer operations to wider or smaller types
7015/// will allow us to eliminate a truncate or extend.
7016///
7017/// This is a truncation operation if Ty is smaller than V->getType(), or an
7018/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007019///
7020/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7021/// should return true if trunc(V) can be computed by computing V in the smaller
7022/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7023/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7024/// efficiently truncated.
7025///
7026/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7027/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7028/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007029bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7030 unsigned CastOpc,
7031 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007032 // We can always evaluate constants in another type.
7033 if (isa<ConstantInt>(V))
7034 return true;
7035
7036 Instruction *I = dyn_cast<Instruction>(V);
7037 if (!I) return false;
7038
7039 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7040
Chris Lattneref70bb82007-08-02 06:11:14 +00007041 // If this is an extension or truncate, we can often eliminate it.
7042 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7043 // If this is a cast from the destination type, we can trivially eliminate
7044 // it, and this will remove a cast overall.
7045 if (I->getOperand(0)->getType() == Ty) {
7046 // If the first operand is itself a cast, and is eliminable, do not count
7047 // this as an eliminable cast. We would prefer to eliminate those two
7048 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007049 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007050 ++NumCastsRemoved;
7051 return true;
7052 }
7053 }
7054
7055 // We can't extend or shrink something that has multiple uses: doing so would
7056 // require duplicating the instruction in general, which isn't profitable.
7057 if (!I->hasOneUse()) return false;
7058
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007059 switch (I->getOpcode()) {
7060 case Instruction::Add:
7061 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007062 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007063 case Instruction::And:
7064 case Instruction::Or:
7065 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007066 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007067 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7068 NumCastsRemoved) &&
7069 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7070 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007071
7072 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007073 // If we are truncating the result of this SHL, and if it's a shift of a
7074 // constant amount, we can always perform a SHL in a smaller type.
7075 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7076 uint32_t BitWidth = Ty->getBitWidth();
7077 if (BitWidth < OrigTy->getBitWidth() &&
7078 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007079 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7080 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007081 }
7082 break;
7083 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007084 // If this is a truncate of a logical shr, we can truncate it to a smaller
7085 // lshr iff we know that the bits we would otherwise be shifting in are
7086 // already zeros.
7087 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7088 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7089 uint32_t BitWidth = Ty->getBitWidth();
7090 if (BitWidth < OrigBitWidth &&
7091 MaskedValueIsZero(I->getOperand(0),
7092 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7093 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007094 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7095 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007096 }
7097 }
7098 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007099 case Instruction::ZExt:
7100 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007101 case Instruction::Trunc:
7102 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007103 // can safely replace it. Note that replacing it does not reduce the number
7104 // of casts in the input.
7105 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007106 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007107 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007108 case Instruction::Select: {
7109 SelectInst *SI = cast<SelectInst>(I);
7110 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7111 NumCastsRemoved) &&
7112 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7113 NumCastsRemoved);
7114 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007115 case Instruction::PHI: {
7116 // We can change a phi if we can change all operands.
7117 PHINode *PN = cast<PHINode>(I);
7118 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7119 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7120 NumCastsRemoved))
7121 return false;
7122 return true;
7123 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007124 default:
7125 // TODO: Can handle more cases here.
7126 break;
7127 }
7128
7129 return false;
7130}
7131
7132/// EvaluateInDifferentType - Given an expression that
7133/// CanEvaluateInDifferentType returns true for, actually insert the code to
7134/// evaluate the expression.
7135Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7136 bool isSigned) {
7137 if (Constant *C = dyn_cast<Constant>(V))
7138 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7139
7140 // Otherwise, it must be an instruction.
7141 Instruction *I = cast<Instruction>(V);
7142 Instruction *Res = 0;
7143 switch (I->getOpcode()) {
7144 case Instruction::Add:
7145 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007146 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007147 case Instruction::And:
7148 case Instruction::Or:
7149 case Instruction::Xor:
7150 case Instruction::AShr:
7151 case Instruction::LShr:
7152 case Instruction::Shl: {
7153 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7154 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007155 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007156 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007157 break;
7158 }
7159 case Instruction::Trunc:
7160 case Instruction::ZExt:
7161 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007162 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007163 // just return the source. There's no need to insert it because it is not
7164 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007165 if (I->getOperand(0)->getType() == Ty)
7166 return I->getOperand(0);
7167
Chris Lattner4200c2062008-06-18 04:00:49 +00007168 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007169 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007170 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007171 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007172 case Instruction::Select: {
7173 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7174 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7175 Res = SelectInst::Create(I->getOperand(0), True, False);
7176 break;
7177 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007178 case Instruction::PHI: {
7179 PHINode *OPN = cast<PHINode>(I);
7180 PHINode *NPN = PHINode::Create(Ty);
7181 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7182 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7183 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7184 }
7185 Res = NPN;
7186 break;
7187 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007188 default:
7189 // TODO: Can handle more cases here.
7190 assert(0 && "Unreachable!");
7191 break;
7192 }
7193
Chris Lattner4200c2062008-06-18 04:00:49 +00007194 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007195 return InsertNewInstBefore(Res, *I);
7196}
7197
7198/// @brief Implement the transforms common to all CastInst visitors.
7199Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7200 Value *Src = CI.getOperand(0);
7201
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007202 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7203 // eliminate it now.
7204 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7205 if (Instruction::CastOps opc =
7206 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7207 // The first cast (CSrc) is eliminable so we need to fix up or replace
7208 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007209 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007210 }
7211 }
7212
7213 // If we are casting a select then fold the cast into the select
7214 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7215 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7216 return NV;
7217
7218 // If we are casting a PHI then fold the cast into the PHI
7219 if (isa<PHINode>(Src))
7220 if (Instruction *NV = FoldOpIntoPhi(CI))
7221 return NV;
7222
7223 return 0;
7224}
7225
7226/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7227Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7228 Value *Src = CI.getOperand(0);
7229
7230 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7231 // If casting the result of a getelementptr instruction with no offset, turn
7232 // this into a cast of the original pointer!
7233 if (GEP->hasAllZeroIndices()) {
7234 // Changing the cast operand is usually not a good idea but it is safe
7235 // here because the pointer operand is being replaced with another
7236 // pointer operand so the opcode doesn't need to change.
7237 AddToWorkList(GEP);
7238 CI.setOperand(0, GEP->getOperand(0));
7239 return &CI;
7240 }
7241
7242 // If the GEP has a single use, and the base pointer is a bitcast, and the
7243 // GEP computes a constant offset, see if we can convert these three
7244 // instructions into fewer. This typically happens with unions and other
7245 // non-type-safe code.
7246 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7247 if (GEP->hasAllConstantIndices()) {
7248 // We are guaranteed to get a constant from EmitGEPOffset.
7249 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7250 int64_t Offset = OffsetV->getSExtValue();
7251
7252 // Get the base pointer input of the bitcast, and the type it points to.
7253 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7254 const Type *GEPIdxTy =
7255 cast<PointerType>(OrigBase->getType())->getElementType();
7256 if (GEPIdxTy->isSized()) {
7257 SmallVector<Value*, 8> NewIndices;
7258
7259 // Start with the index over the outer type. Note that the type size
7260 // might be zero (even if the offset isn't zero) if the indexed type
7261 // is something like [0 x {int, int}]
7262 const Type *IntPtrTy = TD->getIntPtrType();
7263 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007264 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007265 FirstIdx = Offset/TySize;
7266 Offset %= TySize;
7267
7268 // Handle silly modulus not returning values values [0..TySize).
7269 if (Offset < 0) {
7270 --FirstIdx;
7271 Offset += TySize;
7272 assert(Offset >= 0);
7273 }
7274 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7275 }
7276
7277 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7278
7279 // Index into the types. If we fail, set OrigBase to null.
7280 while (Offset) {
7281 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7282 const StructLayout *SL = TD->getStructLayout(STy);
7283 if (Offset < (int64_t)SL->getSizeInBytes()) {
7284 unsigned Elt = SL->getElementContainingOffset(Offset);
7285 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7286
7287 Offset -= SL->getElementOffset(Elt);
7288 GEPIdxTy = STy->getElementType(Elt);
7289 } else {
7290 // Otherwise, we can't index into this, bail out.
7291 Offset = 0;
7292 OrigBase = 0;
7293 }
7294 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7295 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007296 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007297 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7298 Offset %= EltSize;
7299 } else {
7300 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7301 }
7302 GEPIdxTy = STy->getElementType();
7303 } else {
7304 // Otherwise, we can't index into this, bail out.
7305 Offset = 0;
7306 OrigBase = 0;
7307 }
7308 }
7309 if (OrigBase) {
7310 // If we were able to index down into an element, create the GEP
7311 // and bitcast the result. This eliminates one bitcast, potentially
7312 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007313 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7314 NewIndices.begin(),
7315 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007316 InsertNewInstBefore(NGEP, CI);
7317 NGEP->takeName(GEP);
7318
7319 if (isa<BitCastInst>(CI))
7320 return new BitCastInst(NGEP, CI.getType());
7321 assert(isa<PtrToIntInst>(CI));
7322 return new PtrToIntInst(NGEP, CI.getType());
7323 }
7324 }
7325 }
7326 }
7327 }
7328
7329 return commonCastTransforms(CI);
7330}
7331
7332
7333
7334/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7335/// integer types. This function implements the common transforms for all those
7336/// cases.
7337/// @brief Implement the transforms common to CastInst with integer operands
7338Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7339 if (Instruction *Result = commonCastTransforms(CI))
7340 return Result;
7341
7342 Value *Src = CI.getOperand(0);
7343 const Type *SrcTy = Src->getType();
7344 const Type *DestTy = CI.getType();
7345 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7346 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7347
7348 // See if we can simplify any instructions used by the LHS whose sole
7349 // purpose is to compute bits we don't care about.
7350 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7351 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7352 KnownZero, KnownOne))
7353 return &CI;
7354
7355 // If the source isn't an instruction or has more than one use then we
7356 // can't do anything more.
7357 Instruction *SrcI = dyn_cast<Instruction>(Src);
7358 if (!SrcI || !Src->hasOneUse())
7359 return 0;
7360
7361 // Attempt to propagate the cast into the instruction for int->int casts.
7362 int NumCastsRemoved = 0;
7363 if (!isa<BitCastInst>(CI) &&
7364 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007365 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007366 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007367 // eliminates the cast, so it is always a win. If this is a zero-extension,
7368 // we need to do an AND to maintain the clear top-part of the computation,
7369 // so we require that the input have eliminated at least one cast. If this
7370 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007371 // require that two casts have been eliminated.
7372 bool DoXForm;
7373 switch (CI.getOpcode()) {
7374 default:
7375 // All the others use floating point so we shouldn't actually
7376 // get here because of the check above.
7377 assert(0 && "Unknown cast type");
7378 case Instruction::Trunc:
7379 DoXForm = true;
7380 break;
7381 case Instruction::ZExt:
7382 DoXForm = NumCastsRemoved >= 1;
7383 break;
7384 case Instruction::SExt:
7385 DoXForm = NumCastsRemoved >= 2;
7386 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007387 }
7388
7389 if (DoXForm) {
7390 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7391 CI.getOpcode() == Instruction::SExt);
7392 assert(Res->getType() == DestTy);
7393 switch (CI.getOpcode()) {
7394 default: assert(0 && "Unknown cast type!");
7395 case Instruction::Trunc:
7396 case Instruction::BitCast:
7397 // Just replace this cast with the result.
7398 return ReplaceInstUsesWith(CI, Res);
7399 case Instruction::ZExt: {
7400 // We need to emit an AND to clear the high bits.
7401 assert(SrcBitSize < DestBitSize && "Not a zext?");
7402 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7403 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007404 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007405 }
7406 case Instruction::SExt:
7407 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007408 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007409 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7410 CI), DestTy);
7411 }
7412 }
7413 }
7414
7415 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7416 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7417
7418 switch (SrcI->getOpcode()) {
7419 case Instruction::Add:
7420 case Instruction::Mul:
7421 case Instruction::And:
7422 case Instruction::Or:
7423 case Instruction::Xor:
7424 // If we are discarding information, rewrite.
7425 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7426 // Don't insert two casts if they cannot be eliminated. We allow
7427 // two casts to be inserted if the sizes are the same. This could
7428 // only be converting signedness, which is a noop.
7429 if (DestBitSize == SrcBitSize ||
7430 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7431 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7432 Instruction::CastOps opcode = CI.getOpcode();
7433 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7434 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007435 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007436 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7437 }
7438 }
7439
7440 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7441 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7442 SrcI->getOpcode() == Instruction::Xor &&
7443 Op1 == ConstantInt::getTrue() &&
7444 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
7445 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007446 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007447 }
7448 break;
7449 case Instruction::SDiv:
7450 case Instruction::UDiv:
7451 case Instruction::SRem:
7452 case Instruction::URem:
7453 // If we are just changing the sign, rewrite.
7454 if (DestBitSize == SrcBitSize) {
7455 // Don't insert two casts if they cannot be eliminated. We allow
7456 // two casts to be inserted if the sizes are the same. This could
7457 // only be converting signedness, which is a noop.
7458 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7459 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7460 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7461 Op0, DestTy, SrcI);
7462 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7463 Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007464 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007465 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7466 }
7467 }
7468 break;
7469
7470 case Instruction::Shl:
7471 // Allow changing the sign of the source operand. Do not allow
7472 // changing the size of the shift, UNLESS the shift amount is a
7473 // constant. We must not change variable sized shifts to a smaller
7474 // size, because it is undefined to shift more bits out than exist
7475 // in the value.
7476 if (DestBitSize == SrcBitSize ||
7477 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7478 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7479 Instruction::BitCast : Instruction::Trunc);
7480 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7481 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007482 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007483 }
7484 break;
7485 case Instruction::AShr:
7486 // If this is a signed shr, and if all bits shifted in are about to be
7487 // truncated off, turn it into an unsigned shr to allow greater
7488 // simplifications.
7489 if (DestBitSize < SrcBitSize &&
7490 isa<ConstantInt>(Op1)) {
7491 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7492 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7493 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007494 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007495 }
7496 }
7497 break;
7498 }
7499 return 0;
7500}
7501
7502Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7503 if (Instruction *Result = commonIntCastTransforms(CI))
7504 return Result;
7505
7506 Value *Src = CI.getOperand(0);
7507 const Type *Ty = CI.getType();
7508 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7509 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7510
7511 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7512 switch (SrcI->getOpcode()) {
7513 default: break;
7514 case Instruction::LShr:
7515 // We can shrink lshr to something smaller if we know the bits shifted in
7516 // are already zeros.
7517 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7518 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7519
7520 // Get a mask for the bits shifting in.
7521 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7522 Value* SrcIOp0 = SrcI->getOperand(0);
7523 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7524 if (ShAmt >= DestBitWidth) // All zeros.
7525 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7526
7527 // Okay, we can shrink this. Truncate the input, then return a new
7528 // shift.
7529 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7530 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7531 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007532 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007533 }
7534 } else { // This is a variable shr.
7535
7536 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7537 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7538 // loop-invariant and CSE'd.
7539 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
7540 Value *One = ConstantInt::get(SrcI->getType(), 1);
7541
7542 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00007543 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007544 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007545 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007546 SrcI->getOperand(0),
7547 "tmp"), CI);
7548 Value *Zero = Constant::getNullValue(V->getType());
7549 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
7550 }
7551 }
7552 break;
7553 }
7554 }
7555
7556 return 0;
7557}
7558
Evan Chenge3779cf2008-03-24 00:21:34 +00007559/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7560/// in order to eliminate the icmp.
7561Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7562 bool DoXform) {
7563 // If we are just checking for a icmp eq of a single bit and zext'ing it
7564 // to an integer, then shift the bit to the appropriate place and then
7565 // cast to integer to avoid the comparison.
7566 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7567 const APInt &Op1CV = Op1C->getValue();
7568
7569 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7570 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7571 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7572 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7573 if (!DoXform) return ICI;
7574
7575 Value *In = ICI->getOperand(0);
7576 Value *Sh = ConstantInt::get(In->getType(),
7577 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007578 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00007579 In->getName()+".lobit"),
7580 CI);
7581 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007582 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00007583 false/*ZExt*/, "tmp", &CI);
7584
7585 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
7586 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007587 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00007588 In->getName()+".not"),
7589 CI);
7590 }
7591
7592 return ReplaceInstUsesWith(CI, In);
7593 }
7594
7595
7596
7597 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
7598 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7599 // zext (X == 1) to i32 --> X iff X has only the low bit set.
7600 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
7601 // zext (X != 0) to i32 --> X iff X has only the low bit set.
7602 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
7603 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
7604 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7605 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
7606 // This only works for EQ and NE
7607 ICI->isEquality()) {
7608 // If Op1C some other power of two, convert:
7609 uint32_t BitWidth = Op1C->getType()->getBitWidth();
7610 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
7611 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
7612 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
7613
7614 APInt KnownZeroMask(~KnownZero);
7615 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7616 if (!DoXform) return ICI;
7617
7618 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7619 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7620 // (X&4) == 2 --> false
7621 // (X&4) != 2 --> true
7622 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7623 Res = ConstantExpr::getZExt(Res, CI.getType());
7624 return ReplaceInstUsesWith(CI, Res);
7625 }
7626
7627 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7628 Value *In = ICI->getOperand(0);
7629 if (ShiftAmt) {
7630 // Perform a logical shr by shiftamt.
7631 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00007632 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00007633 ConstantInt::get(In->getType(), ShiftAmt),
7634 In->getName()+".lobit"), CI);
7635 }
7636
7637 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
7638 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007639 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00007640 InsertNewInstBefore(cast<Instruction>(In), CI);
7641 }
7642
7643 if (CI.getType() == In->getType())
7644 return ReplaceInstUsesWith(CI, In);
7645 else
Gabor Greifa645dd32008-05-16 19:29:10 +00007646 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00007647 }
7648 }
7649 }
7650
7651 return 0;
7652}
7653
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007654Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
7655 // If one of the common conversion will work ..
7656 if (Instruction *Result = commonIntCastTransforms(CI))
7657 return Result;
7658
7659 Value *Src = CI.getOperand(0);
7660
7661 // If this is a cast of a cast
7662 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7663 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
7664 // types and if the sizes are just right we can convert this into a logical
7665 // 'and' which will be much cheaper than the pair of casts.
7666 if (isa<TruncInst>(CSrc)) {
7667 // Get the sizes of the types involved
7668 Value *A = CSrc->getOperand(0);
7669 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
7670 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
7671 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
7672 // If we're actually extending zero bits and the trunc is a no-op
7673 if (MidSize < DstSize && SrcSize == DstSize) {
7674 // Replace both of the casts with an And of the type mask.
7675 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
7676 Constant *AndConst = ConstantInt::get(AndValue);
7677 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00007678 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007679 // Unfortunately, if the type changed, we need to cast it back.
7680 if (And->getType() != CI.getType()) {
7681 And->setName(CSrc->getName()+".mask");
7682 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007683 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007684 }
7685 return And;
7686 }
7687 }
7688 }
7689
Evan Chenge3779cf2008-03-24 00:21:34 +00007690 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
7691 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007692
Evan Chenge3779cf2008-03-24 00:21:34 +00007693 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
7694 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
7695 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
7696 // of the (zext icmp) will be transformed.
7697 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
7698 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
7699 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
7700 (transformZExtICmp(LHS, CI, false) ||
7701 transformZExtICmp(RHS, CI, false))) {
7702 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
7703 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007704 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007705 }
Evan Chenge3779cf2008-03-24 00:21:34 +00007706 }
7707
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007708 return 0;
7709}
7710
7711Instruction *InstCombiner::visitSExt(SExtInst &CI) {
7712 if (Instruction *I = commonIntCastTransforms(CI))
7713 return I;
7714
7715 Value *Src = CI.getOperand(0);
7716
7717 // sext (x <s 0) -> ashr x, 31 -> all ones if signed
7718 // sext (x >s -1) -> ashr x, 31 -> all ones if not signed
7719 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
7720 // If we are just checking for a icmp eq of a single bit and zext'ing it
7721 // to an integer, then shift the bit to the appropriate place and then
7722 // cast to integer to avoid the comparison.
7723 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7724 const APInt &Op1CV = Op1C->getValue();
7725
7726 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
7727 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
7728 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7729 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
7730 Value *In = ICI->getOperand(0);
7731 Value *Sh = ConstantInt::get(In->getType(),
7732 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007733 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007734 In->getName()+".lobit"),
7735 CI);
7736 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007737 In = CastInst::CreateIntegerCast(In, CI.getType(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007738 true/*SExt*/, "tmp", &CI);
7739
7740 if (ICI->getPredicate() == ICmpInst::ICMP_SGT)
Gabor Greifa645dd32008-05-16 19:29:10 +00007741 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007742 In->getName()+".not"), CI);
7743
7744 return ReplaceInstUsesWith(CI, In);
7745 }
7746 }
7747 }
Dan Gohmanf0f12022008-05-20 21:01:12 +00007748
7749 // See if the value being truncated is already sign extended. If so, just
7750 // eliminate the trunc/sext pair.
7751 if (getOpcode(Src) == Instruction::Trunc) {
7752 Value *Op = cast<User>(Src)->getOperand(0);
7753 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
7754 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
7755 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
7756 unsigned NumSignBits = ComputeNumSignBits(Op);
7757
7758 if (OpBits == DestBits) {
7759 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
7760 // bits, it is already ready.
7761 if (NumSignBits > DestBits-MidBits)
7762 return ReplaceInstUsesWith(CI, Op);
7763 } else if (OpBits < DestBits) {
7764 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
7765 // bits, just sext from i32.
7766 if (NumSignBits > OpBits-MidBits)
7767 return new SExtInst(Op, CI.getType(), "tmp");
7768 } else {
7769 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
7770 // bits, just truncate to i32.
7771 if (NumSignBits > OpBits-MidBits)
7772 return new TruncInst(Op, CI.getType(), "tmp");
7773 }
7774 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00007775
7776 // If the input is a shl/ashr pair of a same constant, then this is a sign
7777 // extension from a smaller value. If we could trust arbitrary bitwidth
7778 // integers, we could turn this into a truncate to the smaller bit and then
7779 // use a sext for the whole extension. Since we don't, look deeper and check
7780 // for a truncate. If the source and dest are the same type, eliminate the
7781 // trunc and extend and just do shifts. For example, turn:
7782 // %a = trunc i32 %i to i8
7783 // %b = shl i8 %a, 6
7784 // %c = ashr i8 %b, 6
7785 // %d = sext i8 %c to i32
7786 // into:
7787 // %a = shl i32 %i, 30
7788 // %d = ashr i32 %a, 30
7789 Value *A = 0;
7790 ConstantInt *BA = 0, *CA = 0;
7791 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
7792 m_ConstantInt(CA))) &&
7793 BA == CA && isa<TruncInst>(A)) {
7794 Value *I = cast<TruncInst>(A)->getOperand(0);
7795 if (I->getType() == CI.getType()) {
7796 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
7797 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
7798 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
7799 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
7800 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
7801 CI.getName()), CI);
7802 return BinaryOperator::CreateAShr(I, ShAmtV);
7803 }
7804 }
7805
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007806 return 0;
7807}
7808
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007809/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
7810/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00007811static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007812 APFloat F = CFP->getValueAPF();
7813 if (F.convert(Sem, APFloat::rmNearestTiesToEven) == APFloat::opOK)
Chris Lattner5e0610f2008-04-20 00:41:09 +00007814 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007815 return 0;
7816}
7817
7818/// LookThroughFPExtensions - If this is an fp extension instruction, look
7819/// through it until we get the source value.
7820static Value *LookThroughFPExtensions(Value *V) {
7821 if (Instruction *I = dyn_cast<Instruction>(V))
7822 if (I->getOpcode() == Instruction::FPExt)
7823 return LookThroughFPExtensions(I->getOperand(0));
7824
7825 // If this value is a constant, return the constant in the smallest FP type
7826 // that can accurately represent it. This allows us to turn
7827 // (float)((double)X+2.0) into x+2.0f.
7828 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
7829 if (CFP->getType() == Type::PPC_FP128Ty)
7830 return V; // No constant folding of this.
7831 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00007832 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007833 return V;
7834 if (CFP->getType() == Type::DoubleTy)
7835 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00007836 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007837 return V;
7838 // Don't try to shrink to various long double types.
7839 }
7840
7841 return V;
7842}
7843
7844Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
7845 if (Instruction *I = commonCastTransforms(CI))
7846 return I;
7847
7848 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
7849 // smaller than the destination type, we can eliminate the truncate by doing
7850 // the add as the smaller type. This applies to add/sub/mul/div as well as
7851 // many builtins (sqrt, etc).
7852 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
7853 if (OpI && OpI->hasOneUse()) {
7854 switch (OpI->getOpcode()) {
7855 default: break;
7856 case Instruction::Add:
7857 case Instruction::Sub:
7858 case Instruction::Mul:
7859 case Instruction::FDiv:
7860 case Instruction::FRem:
7861 const Type *SrcTy = OpI->getType();
7862 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
7863 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
7864 if (LHSTrunc->getType() != SrcTy &&
7865 RHSTrunc->getType() != SrcTy) {
7866 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
7867 // If the source types were both smaller than the destination type of
7868 // the cast, do this xform.
7869 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
7870 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
7871 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
7872 CI.getType(), CI);
7873 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
7874 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007875 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00007876 }
7877 }
7878 break;
7879 }
7880 }
7881 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007882}
7883
7884Instruction *InstCombiner::visitFPExt(CastInst &CI) {
7885 return commonCastTransforms(CI);
7886}
7887
Chris Lattnerdeef1a72008-05-19 20:25:04 +00007888Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00007889 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
7890 if (OpI == 0)
7891 return commonCastTransforms(FI);
7892
7893 // fptoui(uitofp(X)) --> X
7894 // fptoui(sitofp(X)) --> X
7895 // This is safe if the intermediate type has enough bits in its mantissa to
7896 // accurately represent all values of X. For example, do not do this with
7897 // i64->float->i64. This is also safe for sitofp case, because any negative
7898 // 'X' value would cause an undefined result for the fptoui.
7899 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
7900 OpI->getOperand(0)->getType() == FI.getType() &&
7901 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
7902 OpI->getType()->getFPMantissaWidth())
7903 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00007904
7905 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007906}
7907
Chris Lattnerdeef1a72008-05-19 20:25:04 +00007908Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00007909 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
7910 if (OpI == 0)
7911 return commonCastTransforms(FI);
7912
7913 // fptosi(sitofp(X)) --> X
7914 // fptosi(uitofp(X)) --> X
7915 // This is safe if the intermediate type has enough bits in its mantissa to
7916 // accurately represent all values of X. For example, do not do this with
7917 // i64->float->i64. This is also safe for sitofp case, because any negative
7918 // 'X' value would cause an undefined result for the fptoui.
7919 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
7920 OpI->getOperand(0)->getType() == FI.getType() &&
7921 (int)FI.getType()->getPrimitiveSizeInBits() <=
7922 OpI->getType()->getFPMantissaWidth())
7923 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00007924
7925 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007926}
7927
7928Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
7929 return commonCastTransforms(CI);
7930}
7931
7932Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
7933 return commonCastTransforms(CI);
7934}
7935
7936Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
7937 return commonPointerCastTransforms(CI);
7938}
7939
Chris Lattner7c1626482008-01-08 07:23:51 +00007940Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
7941 if (Instruction *I = commonCastTransforms(CI))
7942 return I;
7943
7944 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
7945 if (!DestPointee->isSized()) return 0;
7946
7947 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
7948 ConstantInt *Cst;
7949 Value *X;
7950 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
7951 m_ConstantInt(Cst)))) {
7952 // If the source and destination operands have the same type, see if this
7953 // is a single-index GEP.
7954 if (X->getType() == CI.getType()) {
7955 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00007956 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00007957
7958 // Convert the constant to intptr type.
7959 APInt Offset = Cst->getValue();
7960 Offset.sextOrTrunc(TD->getPointerSizeInBits());
7961
7962 // If Offset is evenly divisible by Size, we can do this xform.
7963 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
7964 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00007965 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00007966 }
7967 }
7968 // TODO: Could handle other cases, e.g. where add is indexing into field of
7969 // struct etc.
7970 } else if (CI.getOperand(0)->hasOneUse() &&
7971 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
7972 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
7973 // "inttoptr+GEP" instead of "add+intptr".
7974
7975 // Get the size of the pointee type.
7976 uint64_t Size = TD->getABITypeSize(DestPointee);
7977
7978 // Convert the constant to intptr type.
7979 APInt Offset = Cst->getValue();
7980 Offset.sextOrTrunc(TD->getPointerSizeInBits());
7981
7982 // If Offset is evenly divisible by Size, we can do this xform.
7983 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
7984 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
7985
7986 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
7987 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00007988 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00007989 }
7990 }
7991 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007992}
7993
7994Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
7995 // If the operands are integer typed then apply the integer transforms,
7996 // otherwise just apply the common ones.
7997 Value *Src = CI.getOperand(0);
7998 const Type *SrcTy = Src->getType();
7999 const Type *DestTy = CI.getType();
8000
8001 if (SrcTy->isInteger() && DestTy->isInteger()) {
8002 if (Instruction *Result = commonIntCastTransforms(CI))
8003 return Result;
8004 } else if (isa<PointerType>(SrcTy)) {
8005 if (Instruction *I = commonPointerCastTransforms(CI))
8006 return I;
8007 } else {
8008 if (Instruction *Result = commonCastTransforms(CI))
8009 return Result;
8010 }
8011
8012
8013 // Get rid of casts from one type to the same type. These are useless and can
8014 // be replaced by the operand.
8015 if (DestTy == Src->getType())
8016 return ReplaceInstUsesWith(CI, Src);
8017
8018 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8019 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8020 const Type *DstElTy = DstPTy->getElementType();
8021 const Type *SrcElTy = SrcPTy->getElementType();
8022
Nate Begemandf5b3612008-03-31 00:22:16 +00008023 // If the address spaces don't match, don't eliminate the bitcast, which is
8024 // required for changing types.
8025 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8026 return 0;
8027
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008028 // If we are casting a malloc or alloca to a pointer to a type of the same
8029 // size, rewrite the allocation instruction to allocate the "right" type.
8030 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8031 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8032 return V;
8033
8034 // If the source and destination are pointers, and this cast is equivalent
8035 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8036 // This can enhance SROA and other transforms that want type-safe pointers.
8037 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8038 unsigned NumZeros = 0;
8039 while (SrcElTy != DstElTy &&
8040 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8041 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8042 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8043 ++NumZeros;
8044 }
8045
8046 // If we found a path from the src to dest, create the getelementptr now.
8047 if (SrcElTy == DstElTy) {
8048 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008049 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8050 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008051 }
8052 }
8053
8054 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8055 if (SVI->hasOneUse()) {
8056 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8057 // a bitconvert to a vector with the same # elts.
8058 if (isa<VectorType>(DestTy) &&
8059 cast<VectorType>(DestTy)->getNumElements() ==
8060 SVI->getType()->getNumElements()) {
8061 CastInst *Tmp;
8062 // If either of the operands is a cast from CI.getType(), then
8063 // evaluating the shuffle in the casted destination's type will allow
8064 // us to eliminate at least one cast.
8065 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8066 Tmp->getOperand(0)->getType() == DestTy) ||
8067 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8068 Tmp->getOperand(0)->getType() == DestTy)) {
8069 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
8070 SVI->getOperand(0), DestTy, &CI);
8071 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
8072 SVI->getOperand(1), DestTy, &CI);
8073 // Return a new shuffle vector. Use the same element ID's, as we
8074 // know the vector types match #elts.
8075 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8076 }
8077 }
8078 }
8079 }
8080 return 0;
8081}
8082
8083/// GetSelectFoldableOperands - We want to turn code that looks like this:
8084/// %C = or %A, %B
8085/// %D = select %cond, %C, %A
8086/// into:
8087/// %C = select %cond, %B, 0
8088/// %D = or %A, %C
8089///
8090/// Assuming that the specified instruction is an operand to the select, return
8091/// a bitmask indicating which operands of this instruction are foldable if they
8092/// equal the other incoming value of the select.
8093///
8094static unsigned GetSelectFoldableOperands(Instruction *I) {
8095 switch (I->getOpcode()) {
8096 case Instruction::Add:
8097 case Instruction::Mul:
8098 case Instruction::And:
8099 case Instruction::Or:
8100 case Instruction::Xor:
8101 return 3; // Can fold through either operand.
8102 case Instruction::Sub: // Can only fold on the amount subtracted.
8103 case Instruction::Shl: // Can only fold on the shift amount.
8104 case Instruction::LShr:
8105 case Instruction::AShr:
8106 return 1;
8107 default:
8108 return 0; // Cannot fold
8109 }
8110}
8111
8112/// GetSelectFoldableConstant - For the same transformation as the previous
8113/// function, return the identity constant that goes into the select.
8114static Constant *GetSelectFoldableConstant(Instruction *I) {
8115 switch (I->getOpcode()) {
8116 default: assert(0 && "This cannot happen!"); abort();
8117 case Instruction::Add:
8118 case Instruction::Sub:
8119 case Instruction::Or:
8120 case Instruction::Xor:
8121 case Instruction::Shl:
8122 case Instruction::LShr:
8123 case Instruction::AShr:
8124 return Constant::getNullValue(I->getType());
8125 case Instruction::And:
8126 return Constant::getAllOnesValue(I->getType());
8127 case Instruction::Mul:
8128 return ConstantInt::get(I->getType(), 1);
8129 }
8130}
8131
8132/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8133/// have the same opcode and only one use each. Try to simplify this.
8134Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8135 Instruction *FI) {
8136 if (TI->getNumOperands() == 1) {
8137 // If this is a non-volatile load or a cast from the same type,
8138 // merge.
8139 if (TI->isCast()) {
8140 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8141 return 0;
8142 } else {
8143 return 0; // unknown unary op.
8144 }
8145
8146 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008147 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8148 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008149 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008150 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008151 TI->getType());
8152 }
8153
8154 // Only handle binary operators here.
8155 if (!isa<BinaryOperator>(TI))
8156 return 0;
8157
8158 // Figure out if the operations have any operands in common.
8159 Value *MatchOp, *OtherOpT, *OtherOpF;
8160 bool MatchIsOpZero;
8161 if (TI->getOperand(0) == FI->getOperand(0)) {
8162 MatchOp = TI->getOperand(0);
8163 OtherOpT = TI->getOperand(1);
8164 OtherOpF = FI->getOperand(1);
8165 MatchIsOpZero = true;
8166 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8167 MatchOp = TI->getOperand(1);
8168 OtherOpT = TI->getOperand(0);
8169 OtherOpF = FI->getOperand(0);
8170 MatchIsOpZero = false;
8171 } else if (!TI->isCommutative()) {
8172 return 0;
8173 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8174 MatchOp = TI->getOperand(0);
8175 OtherOpT = TI->getOperand(1);
8176 OtherOpF = FI->getOperand(0);
8177 MatchIsOpZero = true;
8178 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8179 MatchOp = TI->getOperand(1);
8180 OtherOpT = TI->getOperand(0);
8181 OtherOpF = FI->getOperand(1);
8182 MatchIsOpZero = true;
8183 } else {
8184 return 0;
8185 }
8186
8187 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008188 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8189 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008190 InsertNewInstBefore(NewSI, SI);
8191
8192 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8193 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008194 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008195 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008196 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008197 }
8198 assert(0 && "Shouldn't get here");
8199 return 0;
8200}
8201
Dan Gohman58c09632008-09-16 18:46:06 +00008202/// visitSelectInstWithICmp - Visit a SelectInst that has an
8203/// ICmpInst as its first operand.
8204///
8205Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8206 ICmpInst *ICI) {
8207 bool Changed = false;
8208 ICmpInst::Predicate Pred = ICI->getPredicate();
8209 Value *CmpLHS = ICI->getOperand(0);
8210 Value *CmpRHS = ICI->getOperand(1);
8211 Value *TrueVal = SI.getTrueValue();
8212 Value *FalseVal = SI.getFalseValue();
8213
8214 // Check cases where the comparison is with a constant that
8215 // can be adjusted to fit the min/max idiom. We may edit ICI in
8216 // place here, so make sure the select is the only user.
8217 if (ICI->hasOneUse())
8218 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
8219 switch (Pred) {
8220 default: break;
8221 case ICmpInst::ICMP_ULT:
8222 case ICmpInst::ICMP_SLT: {
8223 // X < MIN ? T : F --> F
8224 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8225 return ReplaceInstUsesWith(SI, FalseVal);
8226 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8227 Constant *AdjustedRHS = SubOne(CI);
8228 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8229 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8230 Pred = ICmpInst::getSwappedPredicate(Pred);
8231 CmpRHS = AdjustedRHS;
8232 std::swap(FalseVal, TrueVal);
8233 ICI->setPredicate(Pred);
8234 ICI->setOperand(1, CmpRHS);
8235 SI.setOperand(1, TrueVal);
8236 SI.setOperand(2, FalseVal);
8237 Changed = true;
8238 }
8239 break;
8240 }
8241 case ICmpInst::ICMP_UGT:
8242 case ICmpInst::ICMP_SGT: {
8243 // X > MAX ? T : F --> F
8244 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8245 return ReplaceInstUsesWith(SI, FalseVal);
8246 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8247 Constant *AdjustedRHS = AddOne(CI);
8248 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8249 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8250 Pred = ICmpInst::getSwappedPredicate(Pred);
8251 CmpRHS = AdjustedRHS;
8252 std::swap(FalseVal, TrueVal);
8253 ICI->setPredicate(Pred);
8254 ICI->setOperand(1, CmpRHS);
8255 SI.setOperand(1, TrueVal);
8256 SI.setOperand(2, FalseVal);
8257 Changed = true;
8258 }
8259 break;
8260 }
8261 }
8262
8263 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8264 // Transform (X == Y) ? X : Y -> Y
8265 if (Pred == ICmpInst::ICMP_EQ)
8266 return ReplaceInstUsesWith(SI, FalseVal);
8267 // Transform (X != Y) ? X : Y -> X
8268 if (Pred == ICmpInst::ICMP_NE)
8269 return ReplaceInstUsesWith(SI, TrueVal);
8270 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8271
8272 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8273 // Transform (X == Y) ? Y : X -> X
8274 if (Pred == ICmpInst::ICMP_EQ)
8275 return ReplaceInstUsesWith(SI, FalseVal);
8276 // Transform (X != Y) ? Y : X -> Y
8277 if (Pred == ICmpInst::ICMP_NE)
8278 return ReplaceInstUsesWith(SI, TrueVal);
8279 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8280 }
8281
8282 /// NOTE: if we wanted to, this is where to detect integer ABS
8283
8284 return Changed ? &SI : 0;
8285}
8286
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008287Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8288 Value *CondVal = SI.getCondition();
8289 Value *TrueVal = SI.getTrueValue();
8290 Value *FalseVal = SI.getFalseValue();
8291
8292 // select true, X, Y -> X
8293 // select false, X, Y -> Y
8294 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8295 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8296
8297 // select C, X, X -> X
8298 if (TrueVal == FalseVal)
8299 return ReplaceInstUsesWith(SI, TrueVal);
8300
8301 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8302 return ReplaceInstUsesWith(SI, FalseVal);
8303 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8304 return ReplaceInstUsesWith(SI, TrueVal);
8305 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8306 if (isa<Constant>(TrueVal))
8307 return ReplaceInstUsesWith(SI, TrueVal);
8308 else
8309 return ReplaceInstUsesWith(SI, FalseVal);
8310 }
8311
8312 if (SI.getType() == Type::Int1Ty) {
8313 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8314 if (C->getZExtValue()) {
8315 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008316 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008317 } else {
8318 // Change: A = select B, false, C --> A = and !B, C
8319 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008320 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008321 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008322 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008323 }
8324 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8325 if (C->getZExtValue() == false) {
8326 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008327 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008328 } else {
8329 // Change: A = select B, C, true --> A = or !B, C
8330 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008331 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008332 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008333 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008334 }
8335 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008336
8337 // select a, b, a -> a&b
8338 // select a, a, b -> a|b
8339 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008340 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008341 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008342 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008343 }
8344
8345 // Selecting between two integer constants?
8346 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8347 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8348 // select C, 1, 0 -> zext C to int
8349 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008350 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008351 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8352 // select C, 0, 1 -> zext !C to int
8353 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008354 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008355 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008356 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008357 }
8358
8359 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
8360
8361 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8362
8363 // (x <s 0) ? -1 : 0 -> ashr x, 31
8364 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8365 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8366 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8367 // The comparison constant and the result are not neccessarily the
8368 // same width. Make an all-ones value by inserting a AShr.
8369 Value *X = IC->getOperand(0);
8370 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8371 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008372 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008373 ShAmt, "ones");
8374 InsertNewInstBefore(SRA, SI);
8375
8376 // Finally, convert to the type of the select RHS. We figure out
8377 // if this requires a SExt, Trunc or BitCast based on the sizes.
8378 Instruction::CastOps opc = Instruction::BitCast;
8379 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8380 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
8381 if (SRASize < SISize)
8382 opc = Instruction::SExt;
8383 else if (SRASize > SISize)
8384 opc = Instruction::Trunc;
Gabor Greifa645dd32008-05-16 19:29:10 +00008385 return CastInst::Create(opc, SRA, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008386 }
8387 }
8388
8389
8390 // If one of the constants is zero (we know they can't both be) and we
8391 // have an icmp instruction with zero, and we have an 'and' with the
8392 // non-constant value, eliminate this whole mess. This corresponds to
8393 // cases like this: ((X & 27) ? 27 : 0)
8394 if (TrueValC->isZero() || FalseValC->isZero())
8395 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8396 cast<Constant>(IC->getOperand(1))->isNullValue())
8397 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8398 if (ICA->getOpcode() == Instruction::And &&
8399 isa<ConstantInt>(ICA->getOperand(1)) &&
8400 (ICA->getOperand(1) == TrueValC ||
8401 ICA->getOperand(1) == FalseValC) &&
8402 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8403 // Okay, now we know that everything is set up, we just don't
8404 // know whether we have a icmp_ne or icmp_eq and whether the
8405 // true or false val is the zero.
8406 bool ShouldNotVal = !TrueValC->isZero();
8407 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8408 Value *V = ICA;
8409 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008410 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008411 Instruction::Xor, V, ICA->getOperand(1)), SI);
8412 return ReplaceInstUsesWith(SI, V);
8413 }
8414 }
8415 }
8416
8417 // See if we are selecting two values based on a comparison of the two values.
8418 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8419 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8420 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008421 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8422 // This is not safe in general for floating point:
8423 // consider X== -0, Y== +0.
8424 // It becomes safe if either operand is a nonzero constant.
8425 ConstantFP *CFPt, *CFPf;
8426 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8427 !CFPt->getValueAPF().isZero()) ||
8428 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8429 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008430 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008431 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008432 // Transform (X != Y) ? X : Y -> X
8433 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8434 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008435 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008436
8437 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8438 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008439 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8440 // This is not safe in general for floating point:
8441 // consider X== -0, Y== +0.
8442 // It becomes safe if either operand is a nonzero constant.
8443 ConstantFP *CFPt, *CFPf;
8444 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8445 !CFPt->getValueAPF().isZero()) ||
8446 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8447 !CFPf->getValueAPF().isZero()))
8448 return ReplaceInstUsesWith(SI, FalseVal);
8449 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008450 // Transform (X != Y) ? Y : X -> Y
8451 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8452 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008453 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008454 }
Dan Gohman58c09632008-09-16 18:46:06 +00008455 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008456 }
8457
8458 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008459 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8460 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8461 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008462
8463 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8464 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8465 if (TI->hasOneUse() && FI->hasOneUse()) {
8466 Instruction *AddOp = 0, *SubOp = 0;
8467
8468 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8469 if (TI->getOpcode() == FI->getOpcode())
8470 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8471 return IV;
8472
8473 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8474 // even legal for FP.
8475 if (TI->getOpcode() == Instruction::Sub &&
8476 FI->getOpcode() == Instruction::Add) {
8477 AddOp = FI; SubOp = TI;
8478 } else if (FI->getOpcode() == Instruction::Sub &&
8479 TI->getOpcode() == Instruction::Add) {
8480 AddOp = TI; SubOp = FI;
8481 }
8482
8483 if (AddOp) {
8484 Value *OtherAddOp = 0;
8485 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8486 OtherAddOp = AddOp->getOperand(1);
8487 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8488 OtherAddOp = AddOp->getOperand(0);
8489 }
8490
8491 if (OtherAddOp) {
8492 // So at this point we know we have (Y -> OtherAddOp):
8493 // select C, (add X, Y), (sub X, Z)
8494 Value *NegVal; // Compute -Z
8495 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8496 NegVal = ConstantExpr::getNeg(C);
8497 } else {
8498 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008499 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008500 }
8501
8502 Value *NewTrueOp = OtherAddOp;
8503 Value *NewFalseOp = NegVal;
8504 if (AddOp != TI)
8505 std::swap(NewTrueOp, NewFalseOp);
8506 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008507 SelectInst::Create(CondVal, NewTrueOp,
8508 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008509
8510 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008511 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008512 }
8513 }
8514 }
8515
8516 // See if we can fold the select into one of our operands.
8517 if (SI.getType()->isInteger()) {
8518 // See the comment above GetSelectFoldableOperands for a description of the
8519 // transformation we are doing here.
8520 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8521 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8522 !isa<Constant>(FalseVal))
8523 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8524 unsigned OpToFold = 0;
8525 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8526 OpToFold = 1;
8527 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8528 OpToFold = 2;
8529 }
8530
8531 if (OpToFold) {
8532 Constant *C = GetSelectFoldableConstant(TVI);
8533 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008534 SelectInst::Create(SI.getCondition(),
8535 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008536 InsertNewInstBefore(NewSel, SI);
8537 NewSel->takeName(TVI);
8538 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008539 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008540 else {
8541 assert(0 && "Unknown instruction!!");
8542 }
8543 }
8544 }
8545
8546 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8547 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8548 !isa<Constant>(TrueVal))
8549 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8550 unsigned OpToFold = 0;
8551 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8552 OpToFold = 1;
8553 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8554 OpToFold = 2;
8555 }
8556
8557 if (OpToFold) {
8558 Constant *C = GetSelectFoldableConstant(FVI);
8559 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008560 SelectInst::Create(SI.getCondition(), C,
8561 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008562 InsertNewInstBefore(NewSel, SI);
8563 NewSel->takeName(FVI);
8564 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008565 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008566 else
8567 assert(0 && "Unknown instruction!!");
8568 }
8569 }
8570 }
8571
8572 if (BinaryOperator::isNot(CondVal)) {
8573 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
8574 SI.setOperand(1, FalseVal);
8575 SI.setOperand(2, TrueVal);
8576 return &SI;
8577 }
8578
8579 return 0;
8580}
8581
Dan Gohman2d648bb2008-04-10 18:43:06 +00008582/// EnforceKnownAlignment - If the specified pointer points to an object that
8583/// we control, modify the object's alignment to PrefAlign. This isn't
8584/// often possible though. If alignment is important, a more reliable approach
8585/// is to simply align all global variables and allocation instructions to
8586/// their preferred alignment from the beginning.
8587///
8588static unsigned EnforceKnownAlignment(Value *V,
8589 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00008590
Dan Gohman2d648bb2008-04-10 18:43:06 +00008591 User *U = dyn_cast<User>(V);
8592 if (!U) return Align;
8593
8594 switch (getOpcode(U)) {
8595 default: break;
8596 case Instruction::BitCast:
8597 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8598 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008599 // If all indexes are zero, it is just the alignment of the base pointer.
8600 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00008601 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00008602 if (!isa<Constant>(*i) ||
8603 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008604 AllZeroOperands = false;
8605 break;
8606 }
Chris Lattner47cf3452007-08-09 19:05:49 +00008607
8608 if (AllZeroOperands) {
8609 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008610 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00008611 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008612 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008613 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008614 }
8615
8616 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
8617 // If there is a large requested alignment and we can, bump up the alignment
8618 // of the global.
8619 if (!GV->isDeclaration()) {
8620 GV->setAlignment(PrefAlign);
8621 Align = PrefAlign;
8622 }
8623 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
8624 // If there is a requested alignment and if this is an alloca, round up. We
8625 // don't do this for malloc, because some systems can't respect the request.
8626 if (isa<AllocaInst>(AI)) {
8627 AI->setAlignment(PrefAlign);
8628 Align = PrefAlign;
8629 }
8630 }
8631
8632 return Align;
8633}
8634
8635/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
8636/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
8637/// and it is more than the alignment of the ultimate object, see if we can
8638/// increase the alignment of the ultimate object, making this check succeed.
8639unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
8640 unsigned PrefAlign) {
8641 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
8642 sizeof(PrefAlign) * CHAR_BIT;
8643 APInt Mask = APInt::getAllOnesValue(BitWidth);
8644 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8645 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
8646 unsigned TrailZ = KnownZero.countTrailingOnes();
8647 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
8648
8649 if (PrefAlign > Align)
8650 Align = EnforceKnownAlignment(V, Align, PrefAlign);
8651
8652 // We don't need to make any adjustment.
8653 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008654}
8655
Chris Lattner00ae5132008-01-13 23:50:23 +00008656Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00008657 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
8658 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00008659 unsigned MinAlign = std::min(DstAlign, SrcAlign);
8660 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
8661
8662 if (CopyAlign < MinAlign) {
8663 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
8664 return MI;
8665 }
8666
8667 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
8668 // load/store.
8669 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
8670 if (MemOpLength == 0) return 0;
8671
Chris Lattnerc669fb62008-01-14 00:28:35 +00008672 // Source and destination pointer types are always "i8*" for intrinsic. See
8673 // if the size is something we can handle with a single primitive load/store.
8674 // A single load+store correctly handles overlapping memory in the memmove
8675 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00008676 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00008677 if (Size == 0) return MI; // Delete this mem transfer.
8678
8679 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00008680 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00008681
Chris Lattnerc669fb62008-01-14 00:28:35 +00008682 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00008683 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00008684
8685 // Memcpy forces the use of i8* for the source and destination. That means
8686 // that if you're using memcpy to move one double around, you'll get a cast
8687 // from double* to i8*. We'd much rather use a double load+store rather than
8688 // an i64 load+store, here because this improves the odds that the source or
8689 // dest address will be promotable. See if we can find a better type than the
8690 // integer datatype.
8691 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
8692 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
8693 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
8694 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
8695 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00008696 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00008697 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
8698 if (STy->getNumElements() == 1)
8699 SrcETy = STy->getElementType(0);
8700 else
8701 break;
8702 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
8703 if (ATy->getNumElements() == 1)
8704 SrcETy = ATy->getElementType();
8705 else
8706 break;
8707 } else
8708 break;
8709 }
8710
Dan Gohmanb8e94f62008-05-23 01:52:21 +00008711 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00008712 NewPtrTy = PointerType::getUnqual(SrcETy);
8713 }
8714 }
8715
8716
Chris Lattner00ae5132008-01-13 23:50:23 +00008717 // If the memcpy/memmove provides better alignment info than we can
8718 // infer, use it.
8719 SrcAlign = std::max(SrcAlign, CopyAlign);
8720 DstAlign = std::max(DstAlign, CopyAlign);
8721
8722 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
8723 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00008724 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
8725 InsertNewInstBefore(L, *MI);
8726 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
8727
8728 // Set the size of the copy to 0, it will be deleted on the next iteration.
8729 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
8730 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00008731}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008732
Chris Lattner5af8a912008-04-30 06:39:11 +00008733Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
8734 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
8735 if (MI->getAlignment()->getZExtValue() < Alignment) {
8736 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
8737 return MI;
8738 }
8739
8740 // Extract the length and alignment and fill if they are constant.
8741 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
8742 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
8743 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
8744 return 0;
8745 uint64_t Len = LenC->getZExtValue();
8746 Alignment = MI->getAlignment()->getZExtValue();
8747
8748 // If the length is zero, this is a no-op
8749 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
8750
8751 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
8752 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
8753 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
8754
8755 Value *Dest = MI->getDest();
8756 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
8757
8758 // Alignment 0 is identity for alignment 1 for memset, but not store.
8759 if (Alignment == 0) Alignment = 1;
8760
8761 // Extract the fill value and store.
8762 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
8763 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
8764 Alignment), *MI);
8765
8766 // Set the size of the copy to 0, it will be deleted on the next iteration.
8767 MI->setLength(Constant::getNullValue(LenC->getType()));
8768 return MI;
8769 }
8770
8771 return 0;
8772}
8773
8774
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008775/// visitCallInst - CallInst simplification. This mostly only handles folding
8776/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
8777/// the heavy lifting.
8778///
8779Instruction *InstCombiner::visitCallInst(CallInst &CI) {
8780 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
8781 if (!II) return visitCallSite(&CI);
8782
8783 // Intrinsics cannot occur in an invoke, so handle them here instead of in
8784 // visitCallSite.
8785 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
8786 bool Changed = false;
8787
8788 // memmove/cpy/set of zero bytes is a noop.
8789 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
8790 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
8791
8792 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
8793 if (CI->getZExtValue() == 1) {
8794 // Replace the instruction with just byte operations. We would
8795 // transform other cases to loads/stores, but we don't know if
8796 // alignment is sufficient.
8797 }
8798 }
8799
8800 // If we have a memmove and the source operation is a constant global,
8801 // then the source and dest pointers can't alias, so we can change this
8802 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00008803 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008804 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
8805 if (GVSrc->isConstant()) {
8806 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008807 Intrinsic::ID MemCpyID;
8808 if (CI.getOperand(3)->getType() == Type::Int32Ty)
8809 MemCpyID = Intrinsic::memcpy_i32;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008810 else
Chris Lattner13c2d6e2008-01-13 22:23:22 +00008811 MemCpyID = Intrinsic::memcpy_i64;
8812 CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008813 Changed = true;
8814 }
Chris Lattner59b27d92008-05-28 05:30:41 +00008815
8816 // memmove(x,x,size) -> noop.
8817 if (MMI->getSource() == MMI->getDest())
8818 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008819 }
8820
8821 // If we can determine a pointer alignment that is bigger than currently
8822 // set, update the alignment.
8823 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00008824 if (Instruction *I = SimplifyMemTransfer(MI))
8825 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00008826 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
8827 if (Instruction *I = SimplifyMemSet(MSI))
8828 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008829 }
8830
8831 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00008832 }
8833
8834 switch (II->getIntrinsicID()) {
8835 default: break;
8836 case Intrinsic::bswap:
8837 // bswap(bswap(x)) -> x
8838 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
8839 if (Operand->getIntrinsicID() == Intrinsic::bswap)
8840 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
8841 break;
8842 case Intrinsic::ppc_altivec_lvx:
8843 case Intrinsic::ppc_altivec_lvxl:
8844 case Intrinsic::x86_sse_loadu_ps:
8845 case Intrinsic::x86_sse2_loadu_pd:
8846 case Intrinsic::x86_sse2_loadu_dq:
8847 // Turn PPC lvx -> load if the pointer is known aligned.
8848 // Turn X86 loadups -> load if the pointer is known aligned.
8849 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
8850 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
8851 PointerType::getUnqual(II->getType()),
8852 CI);
8853 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008854 }
Chris Lattner989ba312008-06-18 04:33:20 +00008855 break;
8856 case Intrinsic::ppc_altivec_stvx:
8857 case Intrinsic::ppc_altivec_stvxl:
8858 // Turn stvx -> store if the pointer is known aligned.
8859 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
8860 const Type *OpPtrTy =
8861 PointerType::getUnqual(II->getOperand(1)->getType());
8862 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
8863 return new StoreInst(II->getOperand(1), Ptr);
8864 }
8865 break;
8866 case Intrinsic::x86_sse_storeu_ps:
8867 case Intrinsic::x86_sse2_storeu_pd:
8868 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00008869 // Turn X86 storeu -> store if the pointer is known aligned.
8870 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
8871 const Type *OpPtrTy =
8872 PointerType::getUnqual(II->getOperand(2)->getType());
8873 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
8874 return new StoreInst(II->getOperand(2), Ptr);
8875 }
8876 break;
8877
8878 case Intrinsic::x86_sse_cvttss2si: {
8879 // These intrinsics only demands the 0th element of its input vector. If
8880 // we can simplify the input based on that, do so now.
8881 uint64_t UndefElts;
8882 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
8883 UndefElts)) {
8884 II->setOperand(1, V);
8885 return II;
8886 }
8887 break;
8888 }
8889
8890 case Intrinsic::ppc_altivec_vperm:
8891 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
8892 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
8893 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008894
Chris Lattner989ba312008-06-18 04:33:20 +00008895 // Check that all of the elements are integer constants or undefs.
8896 bool AllEltsOk = true;
8897 for (unsigned i = 0; i != 16; ++i) {
8898 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
8899 !isa<UndefValue>(Mask->getOperand(i))) {
8900 AllEltsOk = false;
8901 break;
8902 }
8903 }
8904
8905 if (AllEltsOk) {
8906 // Cast the input vectors to byte vectors.
8907 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
8908 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
8909 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008910
Chris Lattner989ba312008-06-18 04:33:20 +00008911 // Only extract each element once.
8912 Value *ExtractedElts[32];
8913 memset(ExtractedElts, 0, sizeof(ExtractedElts));
8914
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008915 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00008916 if (isa<UndefValue>(Mask->getOperand(i)))
8917 continue;
8918 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
8919 Idx &= 31; // Match the hardware behavior.
8920
8921 if (ExtractedElts[Idx] == 0) {
8922 Instruction *Elt =
8923 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
8924 InsertNewInstBefore(Elt, CI);
8925 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008926 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008927
Chris Lattner989ba312008-06-18 04:33:20 +00008928 // Insert this value into the result vector.
8929 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
8930 i, "tmp");
8931 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008932 }
Chris Lattner989ba312008-06-18 04:33:20 +00008933 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008934 }
Chris Lattner989ba312008-06-18 04:33:20 +00008935 }
8936 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008937
Chris Lattner989ba312008-06-18 04:33:20 +00008938 case Intrinsic::stackrestore: {
8939 // If the save is right next to the restore, remove the restore. This can
8940 // happen when variable allocas are DCE'd.
8941 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
8942 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
8943 BasicBlock::iterator BI = SS;
8944 if (&*++BI == II)
8945 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008946 }
Chris Lattner989ba312008-06-18 04:33:20 +00008947 }
8948
8949 // Scan down this block to see if there is another stack restore in the
8950 // same block without an intervening call/alloca.
8951 BasicBlock::iterator BI = II;
8952 TerminatorInst *TI = II->getParent()->getTerminator();
8953 bool CannotRemove = false;
8954 for (++BI; &*BI != TI; ++BI) {
8955 if (isa<AllocaInst>(BI)) {
8956 CannotRemove = true;
8957 break;
8958 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00008959 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
8960 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
8961 // If there is a stackrestore below this one, remove this one.
8962 if (II->getIntrinsicID() == Intrinsic::stackrestore)
8963 return EraseInstFromFunction(CI);
8964 // Otherwise, ignore the intrinsic.
8965 } else {
8966 // If we found a non-intrinsic call, we can't remove the stack
8967 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00008968 CannotRemove = true;
8969 break;
8970 }
Chris Lattner989ba312008-06-18 04:33:20 +00008971 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008972 }
Chris Lattner989ba312008-06-18 04:33:20 +00008973
8974 // If the stack restore is in a return/unwind block and if there are no
8975 // allocas or calls between the restore and the return, nuke the restore.
8976 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
8977 return EraseInstFromFunction(CI);
8978 break;
8979 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008980 }
8981
8982 return visitCallSite(II);
8983}
8984
8985// InvokeInst simplification
8986//
8987Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
8988 return visitCallSite(&II);
8989}
8990
Dale Johannesen96021832008-04-25 21:16:07 +00008991/// isSafeToEliminateVarargsCast - If this cast does not affect the value
8992/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00008993static bool isSafeToEliminateVarargsCast(const CallSite CS,
8994 const CastInst * const CI,
8995 const TargetData * const TD,
8996 const int ix) {
8997 if (!CI->isLosslessCast())
8998 return false;
8999
9000 // The size of ByVal arguments is derived from the type, so we
9001 // can't change to a type with a different size. If the size were
9002 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009003 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009004 return true;
9005
9006 const Type* SrcTy =
9007 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9008 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9009 if (!SrcTy->isSized() || !DstTy->isSized())
9010 return false;
9011 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9012 return false;
9013 return true;
9014}
9015
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009016// visitCallSite - Improvements for call and invoke instructions.
9017//
9018Instruction *InstCombiner::visitCallSite(CallSite CS) {
9019 bool Changed = false;
9020
9021 // If the callee is a constexpr cast of a function, attempt to move the cast
9022 // to the arguments of the call/invoke.
9023 if (transformConstExprCastCall(CS)) return 0;
9024
9025 Value *Callee = CS.getCalledValue();
9026
9027 if (Function *CalleeF = dyn_cast<Function>(Callee))
9028 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9029 Instruction *OldCall = CS.getInstruction();
9030 // If the call and callee calling conventions don't match, this call must
9031 // be unreachable, as the call is undefined.
9032 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009033 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9034 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009035 if (!OldCall->use_empty())
9036 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9037 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9038 return EraseInstFromFunction(*OldCall);
9039 return 0;
9040 }
9041
9042 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9043 // This instruction is not reachable, just remove it. We insert a store to
9044 // undef so that we know that this code is not reachable, despite the fact
9045 // that we can't modify the CFG here.
9046 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009047 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009048 CS.getInstruction());
9049
9050 if (!CS.getInstruction()->use_empty())
9051 CS.getInstruction()->
9052 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9053
9054 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9055 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009056 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9057 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009058 }
9059 return EraseInstFromFunction(*CS.getInstruction());
9060 }
9061
Duncan Sands74833f22007-09-17 10:26:40 +00009062 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9063 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9064 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9065 return transformCallThroughTrampoline(CS);
9066
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009067 const PointerType *PTy = cast<PointerType>(Callee->getType());
9068 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9069 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009070 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009071 // See if we can optimize any arguments passed through the varargs area of
9072 // the call.
9073 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009074 E = CS.arg_end(); I != E; ++I, ++ix) {
9075 CastInst *CI = dyn_cast<CastInst>(*I);
9076 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9077 *I = CI->getOperand(0);
9078 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009079 }
Dale Johannesen35615462008-04-23 18:34:37 +00009080 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009081 }
9082
Duncan Sands2937e352007-12-19 21:13:37 +00009083 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009084 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009085 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009086 Changed = true;
9087 }
9088
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009089 return Changed ? CS.getInstruction() : 0;
9090}
9091
9092// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9093// attempt to move the cast to the arguments of the call/invoke.
9094//
9095bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9096 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9097 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9098 if (CE->getOpcode() != Instruction::BitCast ||
9099 !isa<Function>(CE->getOperand(0)))
9100 return false;
9101 Function *Callee = cast<Function>(CE->getOperand(0));
9102 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009103 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009104
9105 // Okay, this is a cast from a function to a different type. Unless doing so
9106 // would cause a type conversion of one of our arguments, change this call to
9107 // be a direct call with arguments casted to the appropriate types.
9108 //
9109 const FunctionType *FT = Callee->getFunctionType();
9110 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009111 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009112
Duncan Sands7901ce12008-06-01 07:38:42 +00009113 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009114 return false; // TODO: Handle multiple return values.
9115
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009116 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009117 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009118 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009119 // Conversion is ok if changing from one pointer type to another or from
9120 // a pointer to an integer of the same size.
9121 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009122 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009123 return false; // Cannot transform this return value.
9124
Duncan Sands5c489582008-01-06 10:12:28 +00009125 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009126 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009127 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009128 return false; // Cannot transform this return value.
9129
Chris Lattner1c8733e2008-03-12 17:45:29 +00009130 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009131 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009132 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009133 return false; // Attribute not compatible with transformed value.
9134 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009135
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009136 // If the callsite is an invoke instruction, and the return value is used by
9137 // a PHI node in a successor, we cannot change the return type of the call
9138 // because there is no place to put the cast instruction (without breaking
9139 // the critical edge). Bail out in this case.
9140 if (!Caller->use_empty())
9141 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9142 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9143 UI != E; ++UI)
9144 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9145 if (PN->getParent() == II->getNormalDest() ||
9146 PN->getParent() == II->getUnwindDest())
9147 return false;
9148 }
9149
9150 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9151 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9152
9153 CallSite::arg_iterator AI = CS.arg_begin();
9154 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9155 const Type *ParamTy = FT->getParamType(i);
9156 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009157
9158 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009159 return false; // Cannot transform this parameter value.
9160
Devang Patelf2a4a922008-09-26 22:53:05 +00009161 if (CallerPAL.getParamAttributes(i + 1)
9162 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009163 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009164
Duncan Sands7901ce12008-06-01 07:38:42 +00009165 // Converting from one pointer type to another or between a pointer and an
9166 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009167 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009168 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9169 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009170 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009171 }
9172
9173 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9174 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009175 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009176
Chris Lattner1c8733e2008-03-12 17:45:29 +00009177 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9178 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009179 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009180 // won't be dropping them. Check that these extra arguments have attributes
9181 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009182 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9183 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009184 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009185 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009186 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009187 return false;
9188 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009189
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009190 // Okay, we decided that this is a safe thing to do: go ahead and start
9191 // inserting cast instructions as necessary...
9192 std::vector<Value*> Args;
9193 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009194 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009195 attrVec.reserve(NumCommonArgs);
9196
9197 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009198 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009199
9200 // If the return value is not being used, the type may not be compatible
9201 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009202 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009203
9204 // Add the new return attributes.
9205 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009206 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009207
9208 AI = CS.arg_begin();
9209 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9210 const Type *ParamTy = FT->getParamType(i);
9211 if ((*AI)->getType() == ParamTy) {
9212 Args.push_back(*AI);
9213 } else {
9214 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9215 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009216 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009217 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9218 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009219
9220 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009221 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009222 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009223 }
9224
9225 // If the function takes more arguments than the call was taking, add them
9226 // now...
9227 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9228 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9229
9230 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009231 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009232 if (!FT->isVarArg()) {
9233 cerr << "WARNING: While resolving call to function '"
9234 << Callee->getName() << "' arguments were dropped!\n";
9235 } else {
9236 // Add all of the arguments in their promoted form to the arg list...
9237 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9238 const Type *PTy = getPromotedType((*AI)->getType());
9239 if (PTy != (*AI)->getType()) {
9240 // Must promote to pass through va_arg area!
9241 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9242 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009243 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009244 InsertNewInstBefore(Cast, *Caller);
9245 Args.push_back(Cast);
9246 } else {
9247 Args.push_back(*AI);
9248 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009249
Duncan Sands4ced1f82008-01-13 08:02:44 +00009250 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009251 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009252 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009253 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009254 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009255 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009256
Devang Patelf2a4a922008-09-26 22:53:05 +00009257 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9258 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9259
Duncan Sands7901ce12008-06-01 07:38:42 +00009260 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009261 Caller->setName(""); // Void type should not have a name.
9262
Devang Pateld222f862008-09-25 21:00:45 +00009263 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009264
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009265 Instruction *NC;
9266 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009267 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009268 Args.begin(), Args.end(),
9269 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009270 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009271 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009272 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009273 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9274 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009275 CallInst *CI = cast<CallInst>(Caller);
9276 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009277 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009278 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009279 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009280 }
9281
9282 // Insert a cast of the return type as necessary.
9283 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009284 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009285 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009286 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009287 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009288 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009289
9290 // If this is an invoke instruction, we should insert it after the first
9291 // non-phi, instruction in the normal successor block.
9292 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009293 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009294 InsertNewInstBefore(NC, *I);
9295 } else {
9296 // Otherwise, it's a call, just insert cast right after the call instr
9297 InsertNewInstBefore(NC, *Caller);
9298 }
9299 AddUsersToWorkList(*Caller);
9300 } else {
9301 NV = UndefValue::get(Caller->getType());
9302 }
9303 }
9304
9305 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9306 Caller->replaceAllUsesWith(NV);
9307 Caller->eraseFromParent();
9308 RemoveFromWorkList(Caller);
9309 return true;
9310}
9311
Duncan Sands74833f22007-09-17 10:26:40 +00009312// transformCallThroughTrampoline - Turn a call to a function created by the
9313// init_trampoline intrinsic into a direct call to the underlying function.
9314//
9315Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9316 Value *Callee = CS.getCalledValue();
9317 const PointerType *PTy = cast<PointerType>(Callee->getType());
9318 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009319 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009320
9321 // If the call already has the 'nest' attribute somewhere then give up -
9322 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009323 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009324 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009325
9326 IntrinsicInst *Tramp =
9327 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9328
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009329 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009330 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9331 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9332
Devang Pateld222f862008-09-25 21:00:45 +00009333 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009334 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009335 unsigned NestIdx = 1;
9336 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009337 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009338
9339 // Look for a parameter marked with the 'nest' attribute.
9340 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9341 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009342 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009343 // Record the parameter type and any other attributes.
9344 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009345 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009346 break;
9347 }
9348
9349 if (NestTy) {
9350 Instruction *Caller = CS.getInstruction();
9351 std::vector<Value*> NewArgs;
9352 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9353
Devang Pateld222f862008-09-25 21:00:45 +00009354 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009355 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009356
Duncan Sands74833f22007-09-17 10:26:40 +00009357 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009358 // mean appending it. Likewise for attributes.
9359
Devang Patelf2a4a922008-09-26 22:53:05 +00009360 // Add any result attributes.
9361 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009362 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009363
Duncan Sands74833f22007-09-17 10:26:40 +00009364 {
9365 unsigned Idx = 1;
9366 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9367 do {
9368 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009369 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009370 Value *NestVal = Tramp->getOperand(3);
9371 if (NestVal->getType() != NestTy)
9372 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9373 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009374 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009375 }
9376
9377 if (I == E)
9378 break;
9379
Duncan Sands48b81112008-01-14 19:52:09 +00009380 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009381 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009382 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009383 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009384 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009385
9386 ++Idx, ++I;
9387 } while (1);
9388 }
9389
Devang Patelf2a4a922008-09-26 22:53:05 +00009390 // Add any function attributes.
9391 if (Attributes Attr = Attrs.getFnAttributes())
9392 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9393
Duncan Sands74833f22007-09-17 10:26:40 +00009394 // The trampoline may have been bitcast to a bogus type (FTy).
9395 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009396 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009397
Duncan Sands74833f22007-09-17 10:26:40 +00009398 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009399 NewTypes.reserve(FTy->getNumParams()+1);
9400
Duncan Sands74833f22007-09-17 10:26:40 +00009401 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009402 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009403 {
9404 unsigned Idx = 1;
9405 FunctionType::param_iterator I = FTy->param_begin(),
9406 E = FTy->param_end();
9407
9408 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009409 if (Idx == NestIdx)
9410 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009411 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009412
9413 if (I == E)
9414 break;
9415
Duncan Sands48b81112008-01-14 19:52:09 +00009416 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009417 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009418
9419 ++Idx, ++I;
9420 } while (1);
9421 }
9422
9423 // Replace the trampoline call with a direct call. Let the generic
9424 // code sort out any function type mismatches.
9425 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009426 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009427 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9428 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009429 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009430
9431 Instruction *NewCaller;
9432 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009433 NewCaller = InvokeInst::Create(NewCallee,
9434 II->getNormalDest(), II->getUnwindDest(),
9435 NewArgs.begin(), NewArgs.end(),
9436 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009437 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009438 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009439 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009440 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9441 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009442 if (cast<CallInst>(Caller)->isTailCall())
9443 cast<CallInst>(NewCaller)->setTailCall();
9444 cast<CallInst>(NewCaller)->
9445 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009446 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009447 }
9448 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9449 Caller->replaceAllUsesWith(NewCaller);
9450 Caller->eraseFromParent();
9451 RemoveFromWorkList(Caller);
9452 return 0;
9453 }
9454 }
9455
9456 // Replace the trampoline call with a direct call. Since there is no 'nest'
9457 // parameter, there is no need to adjust the argument list. Let the generic
9458 // code sort out any function type mismatches.
9459 Constant *NewCallee =
9460 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9461 CS.setCalledFunction(NewCallee);
9462 return CS.getInstruction();
9463}
9464
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009465/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9466/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9467/// and a single binop.
9468Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9469 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9470 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9471 isa<CmpInst>(FirstInst));
9472 unsigned Opc = FirstInst->getOpcode();
9473 Value *LHSVal = FirstInst->getOperand(0);
9474 Value *RHSVal = FirstInst->getOperand(1);
9475
9476 const Type *LHSType = LHSVal->getType();
9477 const Type *RHSType = RHSVal->getType();
9478
9479 // Scan to see if all operands are the same opcode, all have one use, and all
9480 // kill their operands (i.e. the operands have one use).
9481 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
9482 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9483 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9484 // Verify type of the LHS matches so we don't fold cmp's of different
9485 // types or GEP's with different index types.
9486 I->getOperand(0)->getType() != LHSType ||
9487 I->getOperand(1)->getType() != RHSType)
9488 return 0;
9489
9490 // If they are CmpInst instructions, check their predicates
9491 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9492 if (cast<CmpInst>(I)->getPredicate() !=
9493 cast<CmpInst>(FirstInst)->getPredicate())
9494 return 0;
9495
9496 // Keep track of which operand needs a phi node.
9497 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9498 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9499 }
9500
9501 // Otherwise, this is safe to transform, determine if it is profitable.
9502
9503 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9504 // Indexes are often folded into load/store instructions, so we don't want to
9505 // hide them behind a phi.
9506 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9507 return 0;
9508
9509 Value *InLHS = FirstInst->getOperand(0);
9510 Value *InRHS = FirstInst->getOperand(1);
9511 PHINode *NewLHS = 0, *NewRHS = 0;
9512 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009513 NewLHS = PHINode::Create(LHSType,
9514 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009515 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9516 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9517 InsertNewInstBefore(NewLHS, PN);
9518 LHSVal = NewLHS;
9519 }
9520
9521 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009522 NewRHS = PHINode::Create(RHSType,
9523 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009524 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9525 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9526 InsertNewInstBefore(NewRHS, PN);
9527 RHSVal = NewRHS;
9528 }
9529
9530 // Add all operands to the new PHIs.
9531 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9532 if (NewLHS) {
9533 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9534 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9535 }
9536 if (NewRHS) {
9537 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9538 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9539 }
9540 }
9541
9542 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009543 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009544 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009545 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009546 RHSVal);
9547 else {
9548 assert(isa<GetElementPtrInst>(FirstInst));
Gabor Greifd6da1d02008-04-06 20:25:17 +00009549 return GetElementPtrInst::Create(LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009550 }
9551}
9552
9553/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9554/// of the block that defines it. This means that it must be obvious the value
9555/// of the load is not changed from the point of the load to the end of the
9556/// block it is in.
9557///
9558/// Finally, it is safe, but not profitable, to sink a load targetting a
9559/// non-address-taken alloca. Doing so will cause us to not promote the alloca
9560/// to a register.
9561static bool isSafeToSinkLoad(LoadInst *L) {
9562 BasicBlock::iterator BBI = L, E = L->getParent()->end();
9563
9564 for (++BBI; BBI != E; ++BBI)
9565 if (BBI->mayWriteToMemory())
9566 return false;
9567
9568 // Check for non-address taken alloca. If not address-taken already, it isn't
9569 // profitable to do this xform.
9570 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
9571 bool isAddressTaken = false;
9572 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
9573 UI != E; ++UI) {
9574 if (isa<LoadInst>(UI)) continue;
9575 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
9576 // If storing TO the alloca, then the address isn't taken.
9577 if (SI->getOperand(1) == AI) continue;
9578 }
9579 isAddressTaken = true;
9580 break;
9581 }
9582
9583 if (!isAddressTaken)
9584 return false;
9585 }
9586
9587 return true;
9588}
9589
9590
9591// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
9592// operator and they all are only used by the PHI, PHI together their
9593// inputs, and do the operation once, to the result of the PHI.
9594Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
9595 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9596
9597 // Scan the instruction, looking for input operations that can be folded away.
9598 // If all input operands to the phi are the same instruction (e.g. a cast from
9599 // the same type or "+42") we can pull the operation through the PHI, reducing
9600 // code size and simplifying code.
9601 Constant *ConstantOp = 0;
9602 const Type *CastSrcTy = 0;
9603 bool isVolatile = false;
9604 if (isa<CastInst>(FirstInst)) {
9605 CastSrcTy = FirstInst->getOperand(0)->getType();
9606 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
9607 // Can fold binop, compare or shift here if the RHS is a constant,
9608 // otherwise call FoldPHIArgBinOpIntoPHI.
9609 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
9610 if (ConstantOp == 0)
9611 return FoldPHIArgBinOpIntoPHI(PN);
9612 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
9613 isVolatile = LI->isVolatile();
9614 // We can't sink the load if the loaded value could be modified between the
9615 // load and the PHI.
9616 if (LI->getParent() != PN.getIncomingBlock(0) ||
9617 !isSafeToSinkLoad(LI))
9618 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +00009619
9620 // If the PHI is of volatile loads and the load block has multiple
9621 // successors, sinking it would remove a load of the volatile value from
9622 // the path through the other successor.
9623 if (isVolatile &&
9624 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9625 return 0;
9626
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009627 } else if (isa<GetElementPtrInst>(FirstInst)) {
9628 if (FirstInst->getNumOperands() == 2)
9629 return FoldPHIArgBinOpIntoPHI(PN);
9630 // Can't handle general GEPs yet.
9631 return 0;
9632 } else {
9633 return 0; // Cannot fold this operation.
9634 }
9635
9636 // Check to see if all arguments are the same operation.
9637 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9638 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
9639 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
9640 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
9641 return 0;
9642 if (CastSrcTy) {
9643 if (I->getOperand(0)->getType() != CastSrcTy)
9644 return 0; // Cast operation must match.
9645 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
9646 // We can't sink the load if the loaded value could be modified between
9647 // the load and the PHI.
9648 if (LI->isVolatile() != isVolatile ||
9649 LI->getParent() != PN.getIncomingBlock(i) ||
9650 !isSafeToSinkLoad(LI))
9651 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +00009652
Chris Lattner2d9fdd82008-07-08 17:18:32 +00009653 // If the PHI is of volatile loads and the load block has multiple
9654 // successors, sinking it would remove a load of the volatile value from
9655 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +00009656 if (isVolatile &&
9657 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9658 return 0;
9659
9660
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009661 } else if (I->getOperand(1) != ConstantOp) {
9662 return 0;
9663 }
9664 }
9665
9666 // Okay, they are all the same operation. Create a new PHI node of the
9667 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009668 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
9669 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009670 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
9671
9672 Value *InVal = FirstInst->getOperand(0);
9673 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
9674
9675 // Add all operands to the new PHI.
9676 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9677 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9678 if (NewInVal != InVal)
9679 InVal = 0;
9680 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
9681 }
9682
9683 Value *PhiVal;
9684 if (InVal) {
9685 // The new PHI unions all of the same values together. This is really
9686 // common, so we handle it intelligently here for compile-time speed.
9687 PhiVal = InVal;
9688 delete NewPN;
9689 } else {
9690 InsertNewInstBefore(NewPN, PN);
9691 PhiVal = NewPN;
9692 }
9693
9694 // Insert and return the new operation.
9695 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009696 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +00009697 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009698 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +00009699 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009700 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009701 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +00009702 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
9703
9704 // If this was a volatile load that we are merging, make sure to loop through
9705 // and mark all the input loads as non-volatile. If we don't do this, we will
9706 // insert a new volatile load and the old ones will not be deletable.
9707 if (isVolatile)
9708 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
9709 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
9710
9711 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009712}
9713
9714/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
9715/// that is dead.
9716static bool DeadPHICycle(PHINode *PN,
9717 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
9718 if (PN->use_empty()) return true;
9719 if (!PN->hasOneUse()) return false;
9720
9721 // Remember this node, and if we find the cycle, return.
9722 if (!PotentiallyDeadPHIs.insert(PN))
9723 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +00009724
9725 // Don't scan crazily complex things.
9726 if (PotentiallyDeadPHIs.size() == 16)
9727 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009728
9729 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
9730 return DeadPHICycle(PU, PotentiallyDeadPHIs);
9731
9732 return false;
9733}
9734
Chris Lattner27b695d2007-11-06 21:52:06 +00009735/// PHIsEqualValue - Return true if this phi node is always equal to
9736/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
9737/// z = some value; x = phi (y, z); y = phi (x, z)
9738static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
9739 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
9740 // See if we already saw this PHI node.
9741 if (!ValueEqualPHIs.insert(PN))
9742 return true;
9743
9744 // Don't scan crazily complex things.
9745 if (ValueEqualPHIs.size() == 16)
9746 return false;
9747
9748 // Scan the operands to see if they are either phi nodes or are equal to
9749 // the value.
9750 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9751 Value *Op = PN->getIncomingValue(i);
9752 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
9753 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
9754 return false;
9755 } else if (Op != NonPhiInVal)
9756 return false;
9757 }
9758
9759 return true;
9760}
9761
9762
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009763// PHINode simplification
9764//
9765Instruction *InstCombiner::visitPHINode(PHINode &PN) {
9766 // If LCSSA is around, don't mess with Phi nodes
9767 if (MustPreserveLCSSA) return 0;
9768
9769 if (Value *V = PN.hasConstantValue())
9770 return ReplaceInstUsesWith(PN, V);
9771
9772 // If all PHI operands are the same operation, pull them through the PHI,
9773 // reducing code size.
9774 if (isa<Instruction>(PN.getIncomingValue(0)) &&
9775 PN.getIncomingValue(0)->hasOneUse())
9776 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
9777 return Result;
9778
9779 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
9780 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
9781 // PHI)... break the cycle.
9782 if (PN.hasOneUse()) {
9783 Instruction *PHIUser = cast<Instruction>(PN.use_back());
9784 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
9785 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
9786 PotentiallyDeadPHIs.insert(&PN);
9787 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
9788 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9789 }
9790
9791 // If this phi has a single use, and if that use just computes a value for
9792 // the next iteration of a loop, delete the phi. This occurs with unused
9793 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
9794 // common case here is good because the only other things that catch this
9795 // are induction variable analysis (sometimes) and ADCE, which is only run
9796 // late.
9797 if (PHIUser->hasOneUse() &&
9798 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
9799 PHIUser->use_back() == &PN) {
9800 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9801 }
9802 }
9803
Chris Lattner27b695d2007-11-06 21:52:06 +00009804 // We sometimes end up with phi cycles that non-obviously end up being the
9805 // same value, for example:
9806 // z = some value; x = phi (y, z); y = phi (x, z)
9807 // where the phi nodes don't necessarily need to be in the same block. Do a
9808 // quick check to see if the PHI node only contains a single non-phi value, if
9809 // so, scan to see if the phi cycle is actually equal to that value.
9810 {
9811 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
9812 // Scan for the first non-phi operand.
9813 while (InValNo != NumOperandVals &&
9814 isa<PHINode>(PN.getIncomingValue(InValNo)))
9815 ++InValNo;
9816
9817 if (InValNo != NumOperandVals) {
9818 Value *NonPhiInVal = PN.getOperand(InValNo);
9819
9820 // Scan the rest of the operands to see if there are any conflicts, if so
9821 // there is no need to recursively scan other phis.
9822 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
9823 Value *OpVal = PN.getIncomingValue(InValNo);
9824 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
9825 break;
9826 }
9827
9828 // If we scanned over all operands, then we have one unique value plus
9829 // phi values. Scan PHI nodes to see if they all merge in each other or
9830 // the value.
9831 if (InValNo == NumOperandVals) {
9832 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
9833 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
9834 return ReplaceInstUsesWith(PN, NonPhiInVal);
9835 }
9836 }
9837 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009838 return 0;
9839}
9840
9841static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
9842 Instruction *InsertPoint,
9843 InstCombiner *IC) {
9844 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
9845 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
9846 // We must cast correctly to the pointer type. Ensure that we
9847 // sign extend the integer value if it is smaller as this is
9848 // used for address computation.
9849 Instruction::CastOps opcode =
9850 (VTySize < PtrSize ? Instruction::SExt :
9851 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
9852 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
9853}
9854
9855
9856Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
9857 Value *PtrOp = GEP.getOperand(0);
9858 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
9859 // If so, eliminate the noop.
9860 if (GEP.getNumOperands() == 1)
9861 return ReplaceInstUsesWith(GEP, PtrOp);
9862
9863 if (isa<UndefValue>(GEP.getOperand(0)))
9864 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
9865
9866 bool HasZeroPointerIndex = false;
9867 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
9868 HasZeroPointerIndex = C->isNullValue();
9869
9870 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
9871 return ReplaceInstUsesWith(GEP, PtrOp);
9872
9873 // Eliminate unneeded casts for indices.
9874 bool MadeChange = false;
9875
9876 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +00009877 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
9878 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009879 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +00009880 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009881 if (CI->getOpcode() == Instruction::ZExt ||
9882 CI->getOpcode() == Instruction::SExt) {
9883 const Type *SrcTy = CI->getOperand(0)->getType();
9884 // We can eliminate a cast from i32 to i64 iff the target
9885 // is a 32-bit pointer target.
9886 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
9887 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +00009888 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009889 }
9890 }
9891 }
9892 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +00009893 // to what we need. If narrower, sign-extend it to what we need.
9894 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009895 // insert it. This explicit cast can make subsequent optimizations more
9896 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +00009897 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009898 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009899 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +00009900 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009901 MadeChange = true;
9902 } else {
9903 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
9904 GEP);
Gabor Greif17396002008-06-12 21:37:33 +00009905 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009906 MadeChange = true;
9907 }
Dan Gohman5d639ed2008-09-11 23:06:38 +00009908 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
9909 if (Constant *C = dyn_cast<Constant>(Op)) {
9910 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
9911 MadeChange = true;
9912 } else {
9913 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
9914 GEP);
9915 *i = Op;
9916 MadeChange = true;
9917 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009918 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009919 }
9920 }
9921 if (MadeChange) return &GEP;
9922
9923 // If this GEP instruction doesn't move the pointer, and if the input operand
9924 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
9925 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +00009926 if (GEP.hasAllZeroIndices()) {
9927 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
9928 // If the bitcast is of an allocation, and the allocation will be
9929 // converted to match the type of the cast, don't touch this.
9930 if (isa<AllocationInst>(BCI->getOperand(0))) {
9931 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +00009932 if (Instruction *I = visitBitCast(*BCI)) {
9933 if (I != BCI) {
9934 I->takeName(BCI);
9935 BCI->getParent()->getInstList().insert(BCI, I);
9936 ReplaceInstUsesWith(*BCI, I);
9937 }
Chris Lattnerc59171a2007-10-12 05:30:59 +00009938 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +00009939 }
Chris Lattnerc59171a2007-10-12 05:30:59 +00009940 }
9941 return new BitCastInst(BCI->getOperand(0), GEP.getType());
9942 }
9943 }
9944
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009945 // Combine Indices - If the source pointer to this getelementptr instruction
9946 // is a getelementptr instruction, combine the indices of the two
9947 // getelementptr instructions into a single instruction.
9948 //
9949 SmallVector<Value*, 8> SrcGEPOperands;
9950 if (User *Src = dyn_castGetElementPtr(PtrOp))
9951 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
9952
9953 if (!SrcGEPOperands.empty()) {
9954 // Note that if our source is a gep chain itself that we wait for that
9955 // chain to be resolved before we perform this transformation. This
9956 // avoids us creating a TON of code in some cases.
9957 //
9958 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
9959 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
9960 return 0; // Wait until our source is folded to completion.
9961
9962 SmallVector<Value*, 8> Indices;
9963
9964 // Find out whether the last index in the source GEP is a sequential idx.
9965 bool EndsWithSequential = false;
9966 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
9967 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
9968 EndsWithSequential = !isa<StructType>(*I);
9969
9970 // Can we combine the two pointer arithmetics offsets?
9971 if (EndsWithSequential) {
9972 // Replace: gep (gep %P, long B), long A, ...
9973 // With: T = long A+B; gep %P, T, ...
9974 //
9975 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
9976 if (SO1 == Constant::getNullValue(SO1->getType())) {
9977 Sum = GO1;
9978 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
9979 Sum = SO1;
9980 } else {
9981 // If they aren't the same type, convert both to an integer of the
9982 // target's pointer size.
9983 if (SO1->getType() != GO1->getType()) {
9984 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
9985 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
9986 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
9987 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
9988 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009989 unsigned PS = TD->getPointerSizeInBits();
9990 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009991 // Convert GO1 to SO1's type.
9992 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
9993
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009994 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009995 // Convert SO1 to GO1's type.
9996 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
9997 } else {
9998 const Type *PT = TD->getIntPtrType();
9999 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10000 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10001 }
10002 }
10003 }
10004 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10005 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10006 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010007 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010008 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10009 }
10010 }
10011
10012 // Recycle the GEP we already have if possible.
10013 if (SrcGEPOperands.size() == 2) {
10014 GEP.setOperand(0, SrcGEPOperands[0]);
10015 GEP.setOperand(1, Sum);
10016 return &GEP;
10017 } else {
10018 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10019 SrcGEPOperands.end()-1);
10020 Indices.push_back(Sum);
10021 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10022 }
10023 } else if (isa<Constant>(*GEP.idx_begin()) &&
10024 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10025 SrcGEPOperands.size() != 1) {
10026 // Otherwise we can do the fold if the first index of the GEP is a zero
10027 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10028 SrcGEPOperands.end());
10029 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10030 }
10031
10032 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010033 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10034 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010035
10036 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10037 // GEP of global variable. If all of the indices for this GEP are
10038 // constants, we can promote this to a constexpr instead of an instruction.
10039
10040 // Scan for nonconstants...
10041 SmallVector<Constant*, 8> Indices;
10042 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10043 for (; I != E && isa<Constant>(*I); ++I)
10044 Indices.push_back(cast<Constant>(*I));
10045
10046 if (I == E) { // If they are all constants...
10047 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10048 &Indices[0],Indices.size());
10049
10050 // Replace all uses of the GEP with the new constexpr...
10051 return ReplaceInstUsesWith(GEP, CE);
10052 }
10053 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10054 if (!isa<PointerType>(X->getType())) {
10055 // Not interesting. Source pointer must be a cast from pointer.
10056 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010057 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10058 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010059 //
10060 // This occurs when the program declares an array extern like "int X[];"
10061 //
10062 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10063 const PointerType *XTy = cast<PointerType>(X->getType());
10064 if (const ArrayType *XATy =
10065 dyn_cast<ArrayType>(XTy->getElementType()))
10066 if (const ArrayType *CATy =
10067 dyn_cast<ArrayType>(CPTy->getElementType()))
10068 if (CATy->getElementType() == XATy->getElementType()) {
10069 // At this point, we know that the cast source type is a pointer
10070 // to an array of the same type as the destination pointer
10071 // array. Because the array type is never stepped over (there
10072 // is a leading zero) we can fold the cast into this GEP.
10073 GEP.setOperand(0, X);
10074 return &GEP;
10075 }
10076 } else if (GEP.getNumOperands() == 2) {
10077 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010078 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10079 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010080 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10081 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10082 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010083 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10084 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010085 Value *Idx[2];
10086 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10087 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010088 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010089 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010090 // V and GEP are both pointer types --> BitCast
10091 return new BitCastInst(V, GEP.getType());
10092 }
10093
10094 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010095 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010096 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010097 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010098
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010099 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010100 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010101 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010102
10103 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10104 // allow either a mul, shift, or constant here.
10105 Value *NewIdx = 0;
10106 ConstantInt *Scale = 0;
10107 if (ArrayEltSize == 1) {
10108 NewIdx = GEP.getOperand(1);
10109 Scale = ConstantInt::get(NewIdx->getType(), 1);
10110 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10111 NewIdx = ConstantInt::get(CI->getType(), 1);
10112 Scale = CI;
10113 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10114 if (Inst->getOpcode() == Instruction::Shl &&
10115 isa<ConstantInt>(Inst->getOperand(1))) {
10116 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10117 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10118 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10119 NewIdx = Inst->getOperand(0);
10120 } else if (Inst->getOpcode() == Instruction::Mul &&
10121 isa<ConstantInt>(Inst->getOperand(1))) {
10122 Scale = cast<ConstantInt>(Inst->getOperand(1));
10123 NewIdx = Inst->getOperand(0);
10124 }
10125 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010126
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010127 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010128 // out, perform the transformation. Note, we don't know whether Scale is
10129 // signed or not. We'll use unsigned version of division/modulo
10130 // operation after making sure Scale doesn't have the sign bit set.
10131 if (Scale && Scale->getSExtValue() >= 0LL &&
10132 Scale->getZExtValue() % ArrayEltSize == 0) {
10133 Scale = ConstantInt::get(Scale->getType(),
10134 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010135 if (Scale->getZExtValue() != 1) {
10136 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010137 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010138 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010139 NewIdx = InsertNewInstBefore(Sc, GEP);
10140 }
10141
10142 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010143 Value *Idx[2];
10144 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10145 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010146 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010147 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010148 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10149 // The NewGEP must be pointer typed, so must the old one -> BitCast
10150 return new BitCastInst(NewGEP, GEP.getType());
10151 }
10152 }
10153 }
10154 }
10155
10156 return 0;
10157}
10158
10159Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10160 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010161 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010162 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10163 const Type *NewTy =
10164 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10165 AllocationInst *New = 0;
10166
10167 // Create and insert the replacement instruction...
10168 if (isa<MallocInst>(AI))
10169 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10170 else {
10171 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10172 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10173 }
10174
10175 InsertNewInstBefore(New, AI);
10176
10177 // Scan to the end of the allocation instructions, to skip over a block of
10178 // allocas if possible...
10179 //
10180 BasicBlock::iterator It = New;
10181 while (isa<AllocationInst>(*It)) ++It;
10182
10183 // Now that I is pointing to the first non-allocation-inst in the block,
10184 // insert our getelementptr instruction...
10185 //
10186 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010187 Value *Idx[2];
10188 Idx[0] = NullIdx;
10189 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010190 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10191 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010192
10193 // Now make everything use the getelementptr instead of the original
10194 // allocation.
10195 return ReplaceInstUsesWith(AI, V);
10196 } else if (isa<UndefValue>(AI.getArraySize())) {
10197 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10198 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010199 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010200
10201 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10202 // Note that we only do this for alloca's, because malloc should allocate and
10203 // return a unique pointer, even for a zero byte allocation.
10204 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010205 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010206 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10207
10208 return 0;
10209}
10210
10211Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10212 Value *Op = FI.getOperand(0);
10213
10214 // free undef -> unreachable.
10215 if (isa<UndefValue>(Op)) {
10216 // Insert a new store to null because we cannot modify the CFG here.
10217 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010218 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010219 return EraseInstFromFunction(FI);
10220 }
10221
10222 // If we have 'free null' delete the instruction. This can happen in stl code
10223 // when lots of inlining happens.
10224 if (isa<ConstantPointerNull>(Op))
10225 return EraseInstFromFunction(FI);
10226
10227 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10228 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10229 FI.setOperand(0, CI->getOperand(0));
10230 return &FI;
10231 }
10232
10233 // Change free (gep X, 0,0,0,0) into free(X)
10234 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10235 if (GEPI->hasAllZeroIndices()) {
10236 AddToWorkList(GEPI);
10237 FI.setOperand(0, GEPI->getOperand(0));
10238 return &FI;
10239 }
10240 }
10241
10242 // Change free(malloc) into nothing, if the malloc has a single use.
10243 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10244 if (MI->hasOneUse()) {
10245 EraseInstFromFunction(FI);
10246 return EraseInstFromFunction(*MI);
10247 }
10248
10249 return 0;
10250}
10251
10252
10253/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010254static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010255 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010256 User *CI = cast<User>(LI.getOperand(0));
10257 Value *CastOp = CI->getOperand(0);
10258
Devang Patela0f8ea82007-10-18 19:52:32 +000010259 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10260 // Instead of loading constant c string, use corresponding integer value
10261 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010262 std::string Str;
10263 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010264 unsigned len = Str.length();
10265 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10266 unsigned numBits = Ty->getPrimitiveSizeInBits();
10267 // Replace LI with immediate integer store.
10268 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010269 APInt StrVal(numBits, 0);
10270 APInt SingleChar(numBits, 0);
10271 if (TD->isLittleEndian()) {
10272 for (signed i = len-1; i >= 0; i--) {
10273 SingleChar = (uint64_t) Str[i];
10274 StrVal = (StrVal << 8) | SingleChar;
10275 }
10276 } else {
10277 for (unsigned i = 0; i < len; i++) {
10278 SingleChar = (uint64_t) Str[i];
10279 StrVal = (StrVal << 8) | SingleChar;
10280 }
10281 // Append NULL at the end.
10282 SingleChar = 0;
10283 StrVal = (StrVal << 8) | SingleChar;
10284 }
10285 Value *NL = ConstantInt::get(StrVal);
10286 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010287 }
10288 }
10289 }
10290
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010291 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10292 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10293 const Type *SrcPTy = SrcTy->getElementType();
10294
10295 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10296 isa<VectorType>(DestPTy)) {
10297 // If the source is an array, the code below will not succeed. Check to
10298 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10299 // constants.
10300 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10301 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10302 if (ASrcTy->getNumElements() != 0) {
10303 Value *Idxs[2];
10304 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10305 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10306 SrcTy = cast<PointerType>(CastOp->getType());
10307 SrcPTy = SrcTy->getElementType();
10308 }
10309
10310 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10311 isa<VectorType>(SrcPTy)) &&
10312 // Do not allow turning this into a load of an integer, which is then
10313 // casted to a pointer, this pessimizes pointer analysis a lot.
10314 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10315 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10316 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10317
10318 // Okay, we are casting from one integer or pointer type to another of
10319 // the same size. Instead of casting the pointer before the load, cast
10320 // the result of the loaded value.
10321 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10322 CI->getName(),
10323 LI.isVolatile()),LI);
10324 // Now cast the result of the load.
10325 return new BitCastInst(NewLoad, LI.getType());
10326 }
10327 }
10328 }
10329 return 0;
10330}
10331
10332/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10333/// from this value cannot trap. If it is not obviously safe to load from the
10334/// specified pointer, we do a quick local scan of the basic block containing
10335/// ScanFrom, to determine if the address is already accessed.
10336static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010337 // If it is an alloca it is always safe to load from.
10338 if (isa<AllocaInst>(V)) return true;
10339
Duncan Sandse40a94a2007-09-19 10:25:38 +000010340 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010341 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010342 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010343 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010344
10345 // Otherwise, be a little bit agressive by scanning the local block where we
10346 // want to check to see if the pointer is already being loaded or stored
10347 // from/to. If so, the previous load or store would have already trapped,
10348 // so there is no harm doing an extra load (also, CSE will later eliminate
10349 // the load entirely).
10350 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10351
10352 while (BBI != E) {
10353 --BBI;
10354
Chris Lattner476983a2008-06-20 05:12:56 +000010355 // If we see a free or a call (which might do a free) the pointer could be
10356 // marked invalid.
10357 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10358 return false;
10359
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010360 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10361 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010362 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010363 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010364 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010365
10366 }
10367 return false;
10368}
10369
10370Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10371 Value *Op = LI.getOperand(0);
10372
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010373 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010374 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10375 if (KnownAlign >
10376 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10377 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010378 LI.setAlignment(KnownAlign);
10379
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010380 // load (cast X) --> cast (load X) iff safe
10381 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010382 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010383 return Res;
10384
10385 // None of the following transforms are legal for volatile loads.
10386 if (LI.isVolatile()) return 0;
10387
10388 if (&LI.getParent()->front() != &LI) {
10389 BasicBlock::iterator BBI = &LI; --BBI;
10390 // If the instruction immediately before this is a store to the same
10391 // address, do a simple form of store->load forwarding.
10392 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
10393 if (SI->getOperand(1) == LI.getOperand(0))
10394 return ReplaceInstUsesWith(LI, SI->getOperand(0));
10395 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
10396 if (LIB->getOperand(0) == LI.getOperand(0))
10397 return ReplaceInstUsesWith(LI, LIB);
10398 }
10399
Christopher Lamb2c175392007-12-29 07:56:53 +000010400 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10401 const Value *GEPI0 = GEPI->getOperand(0);
10402 // TODO: Consider a target hook for valid address spaces for this xform.
10403 if (isa<ConstantPointerNull>(GEPI0) &&
10404 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010405 // Insert a new store to null instruction before the load to indicate
10406 // that this code is not reachable. We do this instead of inserting
10407 // an unreachable instruction directly because we cannot modify the
10408 // CFG.
10409 new StoreInst(UndefValue::get(LI.getType()),
10410 Constant::getNullValue(Op->getType()), &LI);
10411 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10412 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010413 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010414
10415 if (Constant *C = dyn_cast<Constant>(Op)) {
10416 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010417 // TODO: Consider a target hook for valid address spaces for this xform.
10418 if (isa<UndefValue>(C) || (C->isNullValue() &&
10419 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010420 // Insert a new store to null instruction before the load to indicate that
10421 // this code is not reachable. We do this instead of inserting an
10422 // unreachable instruction directly because we cannot modify the CFG.
10423 new StoreInst(UndefValue::get(LI.getType()),
10424 Constant::getNullValue(Op->getType()), &LI);
10425 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10426 }
10427
10428 // Instcombine load (constant global) into the value loaded.
10429 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10430 if (GV->isConstant() && !GV->isDeclaration())
10431 return ReplaceInstUsesWith(LI, GV->getInitializer());
10432
10433 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010435 if (CE->getOpcode() == Instruction::GetElementPtr) {
10436 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10437 if (GV->isConstant() && !GV->isDeclaration())
10438 if (Constant *V =
10439 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10440 return ReplaceInstUsesWith(LI, V);
10441 if (CE->getOperand(0)->isNullValue()) {
10442 // Insert a new store to null instruction before the load to indicate
10443 // that this code is not reachable. We do this instead of inserting
10444 // an unreachable instruction directly because we cannot modify the
10445 // CFG.
10446 new StoreInst(UndefValue::get(LI.getType()),
10447 Constant::getNullValue(Op->getType()), &LI);
10448 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10449 }
10450
10451 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010452 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010453 return Res;
10454 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010455 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010456 }
Chris Lattner0270a112007-08-11 18:48:48 +000010457
10458 // If this load comes from anywhere in a constant global, and if the global
10459 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000010460 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000010461 if (GV->isConstant() && GV->hasInitializer()) {
10462 if (GV->getInitializer()->isNullValue())
10463 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10464 else if (isa<UndefValue>(GV->getInitializer()))
10465 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10466 }
10467 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010468
10469 if (Op->hasOneUse()) {
10470 // Change select and PHI nodes to select values instead of addresses: this
10471 // helps alias analysis out a lot, allows many others simplifications, and
10472 // exposes redundancy in the code.
10473 //
10474 // Note that we cannot do the transformation unless we know that the
10475 // introduced loads cannot trap! Something like this is valid as long as
10476 // the condition is always false: load (select bool %C, int* null, int* %G),
10477 // but it would not be valid if we transformed it to load from null
10478 // unconditionally.
10479 //
10480 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10481 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
10482 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10483 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
10484 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
10485 SI->getOperand(1)->getName()+".val"), LI);
10486 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
10487 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000010488 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010489 }
10490
10491 // load (select (cond, null, P)) -> load P
10492 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10493 if (C->isNullValue()) {
10494 LI.setOperand(0, SI->getOperand(2));
10495 return &LI;
10496 }
10497
10498 // load (select (cond, P, null)) -> load P
10499 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10500 if (C->isNullValue()) {
10501 LI.setOperand(0, SI->getOperand(1));
10502 return &LI;
10503 }
10504 }
10505 }
10506 return 0;
10507}
10508
10509/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
10510/// when possible.
10511static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10512 User *CI = cast<User>(SI.getOperand(1));
10513 Value *CastOp = CI->getOperand(0);
10514
10515 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10516 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10517 const Type *SrcPTy = SrcTy->getElementType();
10518
10519 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
10520 // If the source is an array, the code below will not succeed. Check to
10521 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10522 // constants.
10523 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10524 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10525 if (ASrcTy->getNumElements() != 0) {
10526 Value* Idxs[2];
10527 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10528 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10529 SrcTy = cast<PointerType>(CastOp->getType());
10530 SrcPTy = SrcTy->getElementType();
10531 }
10532
10533 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10534 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10535 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10536
10537 // Okay, we are casting from one integer or pointer type to another of
10538 // the same size. Instead of casting the pointer before
10539 // the store, cast the value to be stored.
10540 Value *NewCast;
10541 Value *SIOp0 = SI.getOperand(0);
10542 Instruction::CastOps opcode = Instruction::BitCast;
10543 const Type* CastSrcTy = SIOp0->getType();
10544 const Type* CastDstTy = SrcPTy;
10545 if (isa<PointerType>(CastDstTy)) {
10546 if (CastSrcTy->isInteger())
10547 opcode = Instruction::IntToPtr;
10548 } else if (isa<IntegerType>(CastDstTy)) {
10549 if (isa<PointerType>(SIOp0->getType()))
10550 opcode = Instruction::PtrToInt;
10551 }
10552 if (Constant *C = dyn_cast<Constant>(SIOp0))
10553 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
10554 else
10555 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000010556 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010557 SI);
10558 return new StoreInst(NewCast, CastOp);
10559 }
10560 }
10561 }
10562 return 0;
10563}
10564
10565Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
10566 Value *Val = SI.getOperand(0);
10567 Value *Ptr = SI.getOperand(1);
10568
10569 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
10570 EraseInstFromFunction(SI);
10571 ++NumCombined;
10572 return 0;
10573 }
10574
10575 // If the RHS is an alloca with a single use, zapify the store, making the
10576 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000010577 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010578 if (isa<AllocaInst>(Ptr)) {
10579 EraseInstFromFunction(SI);
10580 ++NumCombined;
10581 return 0;
10582 }
10583
10584 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
10585 if (isa<AllocaInst>(GEP->getOperand(0)) &&
10586 GEP->getOperand(0)->hasOneUse()) {
10587 EraseInstFromFunction(SI);
10588 ++NumCombined;
10589 return 0;
10590 }
10591 }
10592
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010593 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010594 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
10595 if (KnownAlign >
10596 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
10597 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010598 SI.setAlignment(KnownAlign);
10599
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010600 // Do really simple DSE, to catch cases where there are several consequtive
10601 // stores to the same location, separated by a few arithmetic operations. This
10602 // situation often occurs with bitfield accesses.
10603 BasicBlock::iterator BBI = &SI;
10604 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
10605 --ScanInsts) {
10606 --BBI;
10607
10608 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
10609 // Prev store isn't volatile, and stores to the same location?
10610 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
10611 ++NumDeadStore;
10612 ++BBI;
10613 EraseInstFromFunction(*PrevSI);
10614 continue;
10615 }
10616 break;
10617 }
10618
10619 // If this is a load, we have to stop. However, if the loaded value is from
10620 // the pointer we're loading and is producing the pointer we're storing,
10621 // then *this* store is dead (X = load P; store X -> P).
10622 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Chris Lattner24905f72007-09-07 05:33:03 +000010623 if (LI == Val && LI->getOperand(0) == Ptr && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010624 EraseInstFromFunction(SI);
10625 ++NumCombined;
10626 return 0;
10627 }
10628 // Otherwise, this is a load from some other location. Stores before it
10629 // may not be dead.
10630 break;
10631 }
10632
10633 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000010634 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010635 break;
10636 }
10637
10638
10639 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
10640
10641 // store X, null -> turns into 'unreachable' in SimplifyCFG
10642 if (isa<ConstantPointerNull>(Ptr)) {
10643 if (!isa<UndefValue>(Val)) {
10644 SI.setOperand(0, UndefValue::get(Val->getType()));
10645 if (Instruction *U = dyn_cast<Instruction>(Val))
10646 AddToWorkList(U); // Dropped a use.
10647 ++NumCombined;
10648 }
10649 return 0; // Do not modify these!
10650 }
10651
10652 // store undef, Ptr -> noop
10653 if (isa<UndefValue>(Val)) {
10654 EraseInstFromFunction(SI);
10655 ++NumCombined;
10656 return 0;
10657 }
10658
10659 // If the pointer destination is a cast, see if we can fold the cast into the
10660 // source instead.
10661 if (isa<CastInst>(Ptr))
10662 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10663 return Res;
10664 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
10665 if (CE->isCast())
10666 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10667 return Res;
10668
10669
10670 // If this store is the last instruction in the basic block, and if the block
10671 // ends with an unconditional branch, try to move it to the successor block.
10672 BBI = &SI; ++BBI;
10673 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
10674 if (BI->isUnconditional())
10675 if (SimplifyStoreAtEndOfBlock(SI))
10676 return 0; // xform done!
10677
10678 return 0;
10679}
10680
10681/// SimplifyStoreAtEndOfBlock - Turn things like:
10682/// if () { *P = v1; } else { *P = v2 }
10683/// into a phi node with a store in the successor.
10684///
10685/// Simplify things like:
10686/// *P = v1; if () { *P = v2; }
10687/// into a phi node with a store in the successor.
10688///
10689bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
10690 BasicBlock *StoreBB = SI.getParent();
10691
10692 // Check to see if the successor block has exactly two incoming edges. If
10693 // so, see if the other predecessor contains a store to the same location.
10694 // if so, insert a PHI node (if needed) and move the stores down.
10695 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
10696
10697 // Determine whether Dest has exactly two predecessors and, if so, compute
10698 // the other predecessor.
10699 pred_iterator PI = pred_begin(DestBB);
10700 BasicBlock *OtherBB = 0;
10701 if (*PI != StoreBB)
10702 OtherBB = *PI;
10703 ++PI;
10704 if (PI == pred_end(DestBB))
10705 return false;
10706
10707 if (*PI != StoreBB) {
10708 if (OtherBB)
10709 return false;
10710 OtherBB = *PI;
10711 }
10712 if (++PI != pred_end(DestBB))
10713 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000010714
10715 // Bail out if all the relevant blocks aren't distinct (this can happen,
10716 // for example, if SI is in an infinite loop)
10717 if (StoreBB == DestBB || OtherBB == DestBB)
10718 return false;
10719
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010720 // Verify that the other block ends in a branch and is not otherwise empty.
10721 BasicBlock::iterator BBI = OtherBB->getTerminator();
10722 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
10723 if (!OtherBr || BBI == OtherBB->begin())
10724 return false;
10725
10726 // If the other block ends in an unconditional branch, check for the 'if then
10727 // else' case. there is an instruction before the branch.
10728 StoreInst *OtherStore = 0;
10729 if (OtherBr->isUnconditional()) {
10730 // If this isn't a store, or isn't a store to the same location, bail out.
10731 --BBI;
10732 OtherStore = dyn_cast<StoreInst>(BBI);
10733 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
10734 return false;
10735 } else {
10736 // Otherwise, the other block ended with a conditional branch. If one of the
10737 // destinations is StoreBB, then we have the if/then case.
10738 if (OtherBr->getSuccessor(0) != StoreBB &&
10739 OtherBr->getSuccessor(1) != StoreBB)
10740 return false;
10741
10742 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
10743 // if/then triangle. See if there is a store to the same ptr as SI that
10744 // lives in OtherBB.
10745 for (;; --BBI) {
10746 // Check to see if we find the matching store.
10747 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
10748 if (OtherStore->getOperand(1) != SI.getOperand(1))
10749 return false;
10750 break;
10751 }
Eli Friedman3a311d52008-06-13 22:02:12 +000010752 // If we find something that may be using or overwriting the stored
10753 // value, or if we run out of instructions, we can't do the xform.
10754 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010755 BBI == OtherBB->begin())
10756 return false;
10757 }
10758
10759 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000010760 // make sure nothing reads or overwrites the stored value in
10761 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010762 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
10763 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000010764 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010765 return false;
10766 }
10767 }
10768
10769 // Insert a PHI node now if we need it.
10770 Value *MergedVal = OtherStore->getOperand(0);
10771 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000010772 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010773 PN->reserveOperandSpace(2);
10774 PN->addIncoming(SI.getOperand(0), SI.getParent());
10775 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
10776 MergedVal = InsertNewInstBefore(PN, DestBB->front());
10777 }
10778
10779 // Advance to a place where it is safe to insert the new store and
10780 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000010781 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010782 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
10783 OtherStore->isVolatile()), *BBI);
10784
10785 // Nuke the old stores.
10786 EraseInstFromFunction(SI);
10787 EraseInstFromFunction(*OtherStore);
10788 ++NumCombined;
10789 return true;
10790}
10791
10792
10793Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
10794 // Change br (not X), label True, label False to: br X, label False, True
10795 Value *X = 0;
10796 BasicBlock *TrueDest;
10797 BasicBlock *FalseDest;
10798 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
10799 !isa<Constant>(X)) {
10800 // Swap Destinations and condition...
10801 BI.setCondition(X);
10802 BI.setSuccessor(0, FalseDest);
10803 BI.setSuccessor(1, TrueDest);
10804 return &BI;
10805 }
10806
10807 // Cannonicalize fcmp_one -> fcmp_oeq
10808 FCmpInst::Predicate FPred; Value *Y;
10809 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
10810 TrueDest, FalseDest)))
10811 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
10812 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
10813 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
10814 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
10815 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
10816 NewSCC->takeName(I);
10817 // Swap Destinations and condition...
10818 BI.setCondition(NewSCC);
10819 BI.setSuccessor(0, FalseDest);
10820 BI.setSuccessor(1, TrueDest);
10821 RemoveFromWorkList(I);
10822 I->eraseFromParent();
10823 AddToWorkList(NewSCC);
10824 return &BI;
10825 }
10826
10827 // Cannonicalize icmp_ne -> icmp_eq
10828 ICmpInst::Predicate IPred;
10829 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
10830 TrueDest, FalseDest)))
10831 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
10832 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
10833 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
10834 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
10835 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
10836 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
10837 NewSCC->takeName(I);
10838 // Swap Destinations and condition...
10839 BI.setCondition(NewSCC);
10840 BI.setSuccessor(0, FalseDest);
10841 BI.setSuccessor(1, TrueDest);
10842 RemoveFromWorkList(I);
10843 I->eraseFromParent();;
10844 AddToWorkList(NewSCC);
10845 return &BI;
10846 }
10847
10848 return 0;
10849}
10850
10851Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
10852 Value *Cond = SI.getCondition();
10853 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
10854 if (I->getOpcode() == Instruction::Add)
10855 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
10856 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
10857 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
10858 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
10859 AddRHS));
10860 SI.setOperand(0, I->getOperand(0));
10861 AddToWorkList(I);
10862 return &SI;
10863 }
10864 }
10865 return 0;
10866}
10867
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000010868Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000010869 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000010870
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000010871 if (!EV.hasIndices())
10872 return ReplaceInstUsesWith(EV, Agg);
10873
10874 if (Constant *C = dyn_cast<Constant>(Agg)) {
10875 if (isa<UndefValue>(C))
10876 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
10877
10878 if (isa<ConstantAggregateZero>(C))
10879 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
10880
10881 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
10882 // Extract the element indexed by the first index out of the constant
10883 Value *V = C->getOperand(*EV.idx_begin());
10884 if (EV.getNumIndices() > 1)
10885 // Extract the remaining indices out of the constant indexed by the
10886 // first index
10887 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
10888 else
10889 return ReplaceInstUsesWith(EV, V);
10890 }
10891 return 0; // Can't handle other constants
10892 }
10893 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
10894 // We're extracting from an insertvalue instruction, compare the indices
10895 const unsigned *exti, *exte, *insi, *inse;
10896 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
10897 exte = EV.idx_end(), inse = IV->idx_end();
10898 exti != exte && insi != inse;
10899 ++exti, ++insi) {
10900 if (*insi != *exti)
10901 // The insert and extract both reference distinctly different elements.
10902 // This means the extract is not influenced by the insert, and we can
10903 // replace the aggregate operand of the extract with the aggregate
10904 // operand of the insert. i.e., replace
10905 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
10906 // %E = extractvalue { i32, { i32 } } %I, 0
10907 // with
10908 // %E = extractvalue { i32, { i32 } } %A, 0
10909 return ExtractValueInst::Create(IV->getAggregateOperand(),
10910 EV.idx_begin(), EV.idx_end());
10911 }
10912 if (exti == exte && insi == inse)
10913 // Both iterators are at the end: Index lists are identical. Replace
10914 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
10915 // %C = extractvalue { i32, { i32 } } %B, 1, 0
10916 // with "i32 42"
10917 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
10918 if (exti == exte) {
10919 // The extract list is a prefix of the insert list. i.e. replace
10920 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
10921 // %E = extractvalue { i32, { i32 } } %I, 1
10922 // with
10923 // %X = extractvalue { i32, { i32 } } %A, 1
10924 // %E = insertvalue { i32 } %X, i32 42, 0
10925 // by switching the order of the insert and extract (though the
10926 // insertvalue should be left in, since it may have other uses).
10927 Value *NewEV = InsertNewInstBefore(
10928 ExtractValueInst::Create(IV->getAggregateOperand(),
10929 EV.idx_begin(), EV.idx_end()),
10930 EV);
10931 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
10932 insi, inse);
10933 }
10934 if (insi == inse)
10935 // The insert list is a prefix of the extract list
10936 // We can simply remove the common indices from the extract and make it
10937 // operate on the inserted value instead of the insertvalue result.
10938 // i.e., replace
10939 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
10940 // %E = extractvalue { i32, { i32 } } %I, 1, 0
10941 // with
10942 // %E extractvalue { i32 } { i32 42 }, 0
10943 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
10944 exti, exte);
10945 }
10946 // Can't simplify extracts from other values. Note that nested extracts are
10947 // already simplified implicitely by the above (extract ( extract (insert) )
10948 // will be translated into extract ( insert ( extract ) ) first and then just
10949 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000010950 return 0;
10951}
10952
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010953/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
10954/// is to leave as a vector operation.
10955static bool CheapToScalarize(Value *V, bool isConstant) {
10956 if (isa<ConstantAggregateZero>(V))
10957 return true;
10958 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
10959 if (isConstant) return true;
10960 // If all elts are the same, we can extract.
10961 Constant *Op0 = C->getOperand(0);
10962 for (unsigned i = 1; i < C->getNumOperands(); ++i)
10963 if (C->getOperand(i) != Op0)
10964 return false;
10965 return true;
10966 }
10967 Instruction *I = dyn_cast<Instruction>(V);
10968 if (!I) return false;
10969
10970 // Insert element gets simplified to the inserted element or is deleted if
10971 // this is constant idx extract element and its a constant idx insertelt.
10972 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
10973 isa<ConstantInt>(I->getOperand(2)))
10974 return true;
10975 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
10976 return true;
10977 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
10978 if (BO->hasOneUse() &&
10979 (CheapToScalarize(BO->getOperand(0), isConstant) ||
10980 CheapToScalarize(BO->getOperand(1), isConstant)))
10981 return true;
10982 if (CmpInst *CI = dyn_cast<CmpInst>(I))
10983 if (CI->hasOneUse() &&
10984 (CheapToScalarize(CI->getOperand(0), isConstant) ||
10985 CheapToScalarize(CI->getOperand(1), isConstant)))
10986 return true;
10987
10988 return false;
10989}
10990
10991/// Read and decode a shufflevector mask.
10992///
10993/// It turns undef elements into values that are larger than the number of
10994/// elements in the input.
10995static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
10996 unsigned NElts = SVI->getType()->getNumElements();
10997 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
10998 return std::vector<unsigned>(NElts, 0);
10999 if (isa<UndefValue>(SVI->getOperand(2)))
11000 return std::vector<unsigned>(NElts, 2*NElts);
11001
11002 std::vector<unsigned> Result;
11003 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011004 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11005 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011006 Result.push_back(NElts*2); // undef -> 8
11007 else
Gabor Greif17396002008-06-12 21:37:33 +000011008 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011009 return Result;
11010}
11011
11012/// FindScalarElement - Given a vector and an element number, see if the scalar
11013/// value is already around as a register, for example if it were inserted then
11014/// extracted from the vector.
11015static Value *FindScalarElement(Value *V, unsigned EltNo) {
11016 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11017 const VectorType *PTy = cast<VectorType>(V->getType());
11018 unsigned Width = PTy->getNumElements();
11019 if (EltNo >= Width) // Out of range access.
11020 return UndefValue::get(PTy->getElementType());
11021
11022 if (isa<UndefValue>(V))
11023 return UndefValue::get(PTy->getElementType());
11024 else if (isa<ConstantAggregateZero>(V))
11025 return Constant::getNullValue(PTy->getElementType());
11026 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11027 return CP->getOperand(EltNo);
11028 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11029 // If this is an insert to a variable element, we don't know what it is.
11030 if (!isa<ConstantInt>(III->getOperand(2)))
11031 return 0;
11032 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11033
11034 // If this is an insert to the element we are looking for, return the
11035 // inserted value.
11036 if (EltNo == IIElt)
11037 return III->getOperand(1);
11038
11039 // Otherwise, the insertelement doesn't modify the value, recurse on its
11040 // vector input.
11041 return FindScalarElement(III->getOperand(0), EltNo);
11042 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
11043 unsigned InEl = getShuffleMask(SVI)[EltNo];
11044 if (InEl < Width)
11045 return FindScalarElement(SVI->getOperand(0), InEl);
11046 else if (InEl < Width*2)
11047 return FindScalarElement(SVI->getOperand(1), InEl - Width);
11048 else
11049 return UndefValue::get(PTy->getElementType());
11050 }
11051
11052 // Otherwise, we don't know.
11053 return 0;
11054}
11055
11056Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011057 // If vector val is undef, replace extract with scalar undef.
11058 if (isa<UndefValue>(EI.getOperand(0)))
11059 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11060
11061 // If vector val is constant 0, replace extract with scalar 0.
11062 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11063 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11064
11065 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011066 // If vector val is constant with all elements the same, replace EI with
11067 // that element. When the elements are not identical, we cannot replace yet
11068 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011069 Constant *op0 = C->getOperand(0);
11070 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11071 if (C->getOperand(i) != op0) {
11072 op0 = 0;
11073 break;
11074 }
11075 if (op0)
11076 return ReplaceInstUsesWith(EI, op0);
11077 }
11078
11079 // If extracting a specified index from the vector, see if we can recursively
11080 // find a previously computed scalar that was inserted into the vector.
11081 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11082 unsigned IndexVal = IdxC->getZExtValue();
11083 unsigned VectorWidth =
11084 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11085
11086 // If this is extracting an invalid index, turn this into undef, to avoid
11087 // crashing the code below.
11088 if (IndexVal >= VectorWidth)
11089 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11090
11091 // This instruction only demands the single element from the input vector.
11092 // If the input vector has a single use, simplify it based on this use
11093 // property.
11094 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11095 uint64_t UndefElts;
11096 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11097 1 << IndexVal,
11098 UndefElts)) {
11099 EI.setOperand(0, V);
11100 return &EI;
11101 }
11102 }
11103
11104 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11105 return ReplaceInstUsesWith(EI, Elt);
11106
11107 // If the this extractelement is directly using a bitcast from a vector of
11108 // the same number of elements, see if we can find the source element from
11109 // it. In this case, we will end up needing to bitcast the scalars.
11110 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11111 if (const VectorType *VT =
11112 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11113 if (VT->getNumElements() == VectorWidth)
11114 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11115 return new BitCastInst(Elt, EI.getType());
11116 }
11117 }
11118
11119 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11120 if (I->hasOneUse()) {
11121 // Push extractelement into predecessor operation if legal and
11122 // profitable to do so
11123 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11124 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11125 if (CheapToScalarize(BO, isConstantElt)) {
11126 ExtractElementInst *newEI0 =
11127 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11128 EI.getName()+".lhs");
11129 ExtractElementInst *newEI1 =
11130 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11131 EI.getName()+".rhs");
11132 InsertNewInstBefore(newEI0, EI);
11133 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011134 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011135 }
11136 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011137 unsigned AS =
11138 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011139 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11140 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011141 GetElementPtrInst *GEP =
11142 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011143 InsertNewInstBefore(GEP, EI);
11144 return new LoadInst(GEP);
11145 }
11146 }
11147 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11148 // Extracting the inserted element?
11149 if (IE->getOperand(2) == EI.getOperand(1))
11150 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11151 // If the inserted and extracted elements are constants, they must not
11152 // be the same value, extract from the pre-inserted value instead.
11153 if (isa<Constant>(IE->getOperand(2)) &&
11154 isa<Constant>(EI.getOperand(1))) {
11155 AddUsesToWorkList(EI);
11156 EI.setOperand(0, IE->getOperand(0));
11157 return &EI;
11158 }
11159 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11160 // If this is extracting an element from a shufflevector, figure out where
11161 // it came from and extract from the appropriate input element instead.
11162 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11163 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11164 Value *Src;
11165 if (SrcIdx < SVI->getType()->getNumElements())
11166 Src = SVI->getOperand(0);
11167 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
11168 SrcIdx -= SVI->getType()->getNumElements();
11169 Src = SVI->getOperand(1);
11170 } else {
11171 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11172 }
11173 return new ExtractElementInst(Src, SrcIdx);
11174 }
11175 }
11176 }
11177 return 0;
11178}
11179
11180/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11181/// elements from either LHS or RHS, return the shuffle mask and true.
11182/// Otherwise, return false.
11183static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11184 std::vector<Constant*> &Mask) {
11185 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11186 "Invalid CollectSingleShuffleElements");
11187 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11188
11189 if (isa<UndefValue>(V)) {
11190 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11191 return true;
11192 } else if (V == LHS) {
11193 for (unsigned i = 0; i != NumElts; ++i)
11194 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11195 return true;
11196 } else if (V == RHS) {
11197 for (unsigned i = 0; i != NumElts; ++i)
11198 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11199 return true;
11200 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11201 // If this is an insert of an extract from some other vector, include it.
11202 Value *VecOp = IEI->getOperand(0);
11203 Value *ScalarOp = IEI->getOperand(1);
11204 Value *IdxOp = IEI->getOperand(2);
11205
11206 if (!isa<ConstantInt>(IdxOp))
11207 return false;
11208 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11209
11210 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11211 // Okay, we can handle this if the vector we are insertinting into is
11212 // transitively ok.
11213 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11214 // If so, update the mask to reflect the inserted undef.
11215 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11216 return true;
11217 }
11218 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11219 if (isa<ConstantInt>(EI->getOperand(1)) &&
11220 EI->getOperand(0)->getType() == V->getType()) {
11221 unsigned ExtractedIdx =
11222 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11223
11224 // This must be extracting from either LHS or RHS.
11225 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11226 // Okay, we can handle this if the vector we are insertinting into is
11227 // transitively ok.
11228 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11229 // If so, update the mask to reflect the inserted value.
11230 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011231 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011232 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11233 } else {
11234 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011235 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011236 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11237
11238 }
11239 return true;
11240 }
11241 }
11242 }
11243 }
11244 }
11245 // TODO: Handle shufflevector here!
11246
11247 return false;
11248}
11249
11250/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11251/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11252/// that computes V and the LHS value of the shuffle.
11253static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11254 Value *&RHS) {
11255 assert(isa<VectorType>(V->getType()) &&
11256 (RHS == 0 || V->getType() == RHS->getType()) &&
11257 "Invalid shuffle!");
11258 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11259
11260 if (isa<UndefValue>(V)) {
11261 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11262 return V;
11263 } else if (isa<ConstantAggregateZero>(V)) {
11264 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11265 return V;
11266 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11267 // If this is an insert of an extract from some other vector, include it.
11268 Value *VecOp = IEI->getOperand(0);
11269 Value *ScalarOp = IEI->getOperand(1);
11270 Value *IdxOp = IEI->getOperand(2);
11271
11272 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11273 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11274 EI->getOperand(0)->getType() == V->getType()) {
11275 unsigned ExtractedIdx =
11276 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11277 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11278
11279 // Either the extracted from or inserted into vector must be RHSVec,
11280 // otherwise we'd end up with a shuffle of three inputs.
11281 if (EI->getOperand(0) == RHS || RHS == 0) {
11282 RHS = EI->getOperand(0);
11283 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011284 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011285 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11286 return V;
11287 }
11288
11289 if (VecOp == RHS) {
11290 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11291 // Everything but the extracted element is replaced with the RHS.
11292 for (unsigned i = 0; i != NumElts; ++i) {
11293 if (i != InsertedIdx)
11294 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11295 }
11296 return V;
11297 }
11298
11299 // If this insertelement is a chain that comes from exactly these two
11300 // vectors, return the vector and the effective shuffle.
11301 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11302 return EI->getOperand(0);
11303
11304 }
11305 }
11306 }
11307 // TODO: Handle shufflevector here!
11308
11309 // Otherwise, can't do anything fancy. Return an identity vector.
11310 for (unsigned i = 0; i != NumElts; ++i)
11311 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11312 return V;
11313}
11314
11315Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11316 Value *VecOp = IE.getOperand(0);
11317 Value *ScalarOp = IE.getOperand(1);
11318 Value *IdxOp = IE.getOperand(2);
11319
11320 // Inserting an undef or into an undefined place, remove this.
11321 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11322 ReplaceInstUsesWith(IE, VecOp);
11323
11324 // If the inserted element was extracted from some other vector, and if the
11325 // indexes are constant, try to turn this into a shufflevector operation.
11326 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11327 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11328 EI->getOperand(0)->getType() == IE.getType()) {
11329 unsigned NumVectorElts = IE.getType()->getNumElements();
11330 unsigned ExtractedIdx =
11331 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11332 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11333
11334 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11335 return ReplaceInstUsesWith(IE, VecOp);
11336
11337 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11338 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11339
11340 // If we are extracting a value from a vector, then inserting it right
11341 // back into the same place, just use the input vector.
11342 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11343 return ReplaceInstUsesWith(IE, VecOp);
11344
11345 // We could theoretically do this for ANY input. However, doing so could
11346 // turn chains of insertelement instructions into a chain of shufflevector
11347 // instructions, and right now we do not merge shufflevectors. As such,
11348 // only do this in a situation where it is clear that there is benefit.
11349 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11350 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11351 // the values of VecOp, except then one read from EIOp0.
11352 // Build a new shuffle mask.
11353 std::vector<Constant*> Mask;
11354 if (isa<UndefValue>(VecOp))
11355 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11356 else {
11357 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11358 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11359 NumVectorElts));
11360 }
11361 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11362 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11363 ConstantVector::get(Mask));
11364 }
11365
11366 // If this insertelement isn't used by some other insertelement, turn it
11367 // (and any insertelements it points to), into one big shuffle.
11368 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11369 std::vector<Constant*> Mask;
11370 Value *RHS = 0;
11371 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11372 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11373 // We now have a shuffle of LHS, RHS, Mask.
11374 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11375 }
11376 }
11377 }
11378
11379 return 0;
11380}
11381
11382
11383Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11384 Value *LHS = SVI.getOperand(0);
11385 Value *RHS = SVI.getOperand(1);
11386 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11387
11388 bool MadeChange = false;
11389
11390 // Undefined shuffle mask -> undefined value.
11391 if (isa<UndefValue>(SVI.getOperand(2)))
11392 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011393
11394 uint64_t UndefElts;
11395 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
11396 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11397 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000011398 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11399 LHS = SVI.getOperand(0);
11400 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011401 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000011402 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011403
11404 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11405 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11406 if (LHS == RHS || isa<UndefValue>(LHS)) {
11407 if (isa<UndefValue>(LHS) && LHS == RHS) {
11408 // shuffle(undef,undef,mask) -> undef.
11409 return ReplaceInstUsesWith(SVI, LHS);
11410 }
11411
11412 // Remap any references to RHS to use LHS.
11413 std::vector<Constant*> Elts;
11414 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11415 if (Mask[i] >= 2*e)
11416 Elts.push_back(UndefValue::get(Type::Int32Ty));
11417 else {
11418 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000011419 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011420 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011421 Elts.push_back(UndefValue::get(Type::Int32Ty));
11422 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011423 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011424 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11425 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011426 }
11427 }
11428 SVI.setOperand(0, SVI.getOperand(1));
11429 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11430 SVI.setOperand(2, ConstantVector::get(Elts));
11431 LHS = SVI.getOperand(0);
11432 RHS = SVI.getOperand(1);
11433 MadeChange = true;
11434 }
11435
11436 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
11437 bool isLHSID = true, isRHSID = true;
11438
11439 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11440 if (Mask[i] >= e*2) continue; // Ignore undef values.
11441 // Is this an identity shuffle of the LHS value?
11442 isLHSID &= (Mask[i] == i);
11443
11444 // Is this an identity shuffle of the RHS value?
11445 isRHSID &= (Mask[i]-e == i);
11446 }
11447
11448 // Eliminate identity shuffles.
11449 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11450 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
11451
11452 // If the LHS is a shufflevector itself, see if we can combine it with this
11453 // one without producing an unusual shuffle. Here we are really conservative:
11454 // we are absolutely afraid of producing a shuffle mask not in the input
11455 // program, because the code gen may not be smart enough to turn a merged
11456 // shuffle into two specific shuffles: it may produce worse code. As such,
11457 // we only merge two shuffles if the result is one of the two input shuffle
11458 // masks. In this case, merging the shuffles just removes one instruction,
11459 // which we know is safe. This is good for things like turning:
11460 // (splat(splat)) -> splat.
11461 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11462 if (isa<UndefValue>(RHS)) {
11463 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11464
11465 std::vector<unsigned> NewMask;
11466 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11467 if (Mask[i] >= 2*e)
11468 NewMask.push_back(2*e);
11469 else
11470 NewMask.push_back(LHSMask[Mask[i]]);
11471
11472 // If the result mask is equal to the src shuffle or this shuffle mask, do
11473 // the replacement.
11474 if (NewMask == LHSMask || NewMask == Mask) {
11475 std::vector<Constant*> Elts;
11476 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11477 if (NewMask[i] >= e*2) {
11478 Elts.push_back(UndefValue::get(Type::Int32Ty));
11479 } else {
11480 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
11481 }
11482 }
11483 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11484 LHSSVI->getOperand(1),
11485 ConstantVector::get(Elts));
11486 }
11487 }
11488 }
11489
11490 return MadeChange ? &SVI : 0;
11491}
11492
11493
11494
11495
11496/// TryToSinkInstruction - Try to move the specified instruction from its
11497/// current block into the beginning of DestBlock, which can only happen if it's
11498/// safe to move the instruction past all of the instructions between it and the
11499/// end of its block.
11500static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11501 assert(I->hasOneUse() && "Invariants didn't hold!");
11502
11503 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000011504 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
11505 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011506
11507 // Do not sink alloca instructions out of the entry block.
11508 if (isa<AllocaInst>(I) && I->getParent() ==
11509 &DestBlock->getParent()->getEntryBlock())
11510 return false;
11511
11512 // We can only sink load instructions if there is nothing between the load and
11513 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000011514 if (I->mayReadFromMemory()) {
11515 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011516 Scan != E; ++Scan)
11517 if (Scan->mayWriteToMemory())
11518 return false;
11519 }
11520
Dan Gohman514277c2008-05-23 21:05:58 +000011521 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011522
11523 I->moveBefore(InsertPos);
11524 ++NumSunkInst;
11525 return true;
11526}
11527
11528
11529/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11530/// all reachable code to the worklist.
11531///
11532/// This has a couple of tricks to make the code faster and more powerful. In
11533/// particular, we constant fold and DCE instructions as we go, to avoid adding
11534/// them to the worklist (this significantly speeds up instcombine on code where
11535/// many instructions are dead or constant). Additionally, if we find a branch
11536/// whose condition is a known constant, we only visit the reachable successors.
11537///
11538static void AddReachableCodeToWorklist(BasicBlock *BB,
11539 SmallPtrSet<BasicBlock*, 64> &Visited,
11540 InstCombiner &IC,
11541 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000011542 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011543 Worklist.push_back(BB);
11544
11545 while (!Worklist.empty()) {
11546 BB = Worklist.back();
11547 Worklist.pop_back();
11548
11549 // We have now visited this block! If we've already been here, ignore it.
11550 if (!Visited.insert(BB)) continue;
11551
11552 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
11553 Instruction *Inst = BBI++;
11554
11555 // DCE instruction if trivially dead.
11556 if (isInstructionTriviallyDead(Inst)) {
11557 ++NumDeadInst;
11558 DOUT << "IC: DCE: " << *Inst;
11559 Inst->eraseFromParent();
11560 continue;
11561 }
11562
11563 // ConstantProp instruction if trivially constant.
11564 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
11565 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
11566 Inst->replaceAllUsesWith(C);
11567 ++NumConstProp;
11568 Inst->eraseFromParent();
11569 continue;
11570 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000011571
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011572 IC.AddToWorkList(Inst);
11573 }
11574
11575 // Recursively visit successors. If this is a branch or switch on a
11576 // constant, only visit the reachable successor.
11577 TerminatorInst *TI = BB->getTerminator();
11578 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
11579 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
11580 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011581 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011582 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011583 continue;
11584 }
11585 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
11586 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
11587 // See if this is an explicit destination.
11588 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
11589 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011590 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011591 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011592 continue;
11593 }
11594
11595 // Otherwise it is the default destination.
11596 Worklist.push_back(SI->getSuccessor(0));
11597 continue;
11598 }
11599 }
11600
11601 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
11602 Worklist.push_back(TI->getSuccessor(i));
11603 }
11604}
11605
11606bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
11607 bool Changed = false;
11608 TD = &getAnalysis<TargetData>();
11609
11610 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
11611 << F.getNameStr() << "\n");
11612
11613 {
11614 // Do a depth-first traversal of the function, populate the worklist with
11615 // the reachable instructions. Ignore blocks that are not reachable. Keep
11616 // track of which blocks we visit.
11617 SmallPtrSet<BasicBlock*, 64> Visited;
11618 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
11619
11620 // Do a quick scan over the function. If we find any blocks that are
11621 // unreachable, remove any instructions inside of them. This prevents
11622 // the instcombine code from having to deal with some bad special cases.
11623 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
11624 if (!Visited.count(BB)) {
11625 Instruction *Term = BB->getTerminator();
11626 while (Term != BB->begin()) { // Remove instrs bottom-up
11627 BasicBlock::iterator I = Term; --I;
11628
11629 DOUT << "IC: DCE: " << *I;
11630 ++NumDeadInst;
11631
11632 if (!I->use_empty())
11633 I->replaceAllUsesWith(UndefValue::get(I->getType()));
11634 I->eraseFromParent();
11635 }
11636 }
11637 }
11638
11639 while (!Worklist.empty()) {
11640 Instruction *I = RemoveOneFromWorkList();
11641 if (I == 0) continue; // skip null values.
11642
11643 // Check to see if we can DCE the instruction.
11644 if (isInstructionTriviallyDead(I)) {
11645 // Add operands to the worklist.
11646 if (I->getNumOperands() < 4)
11647 AddUsesToWorkList(*I);
11648 ++NumDeadInst;
11649
11650 DOUT << "IC: DCE: " << *I;
11651
11652 I->eraseFromParent();
11653 RemoveFromWorkList(I);
11654 continue;
11655 }
11656
11657 // Instruction isn't dead, see if we can constant propagate it.
11658 if (Constant *C = ConstantFoldInstruction(I, TD)) {
11659 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
11660
11661 // Add operands to the worklist.
11662 AddUsesToWorkList(*I);
11663 ReplaceInstUsesWith(*I, C);
11664
11665 ++NumConstProp;
11666 I->eraseFromParent();
11667 RemoveFromWorkList(I);
11668 continue;
11669 }
11670
Nick Lewyckyadb67922008-05-25 20:56:15 +000011671 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
11672 // See if we can constant fold its operands.
11673 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
11674 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
11675 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
11676 i->set(NewC);
11677 }
11678 }
11679 }
11680
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011681 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000011682 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011683 BasicBlock *BB = I->getParent();
11684 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
11685 if (UserParent != BB) {
11686 bool UserIsSuccessor = false;
11687 // See if the user is one of our successors.
11688 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
11689 if (*SI == UserParent) {
11690 UserIsSuccessor = true;
11691 break;
11692 }
11693
11694 // If the user is one of our immediate successors, and if that successor
11695 // only has us as a predecessors (we'd have to split the critical edge
11696 // otherwise), we can keep going.
11697 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
11698 next(pred_begin(UserParent)) == pred_end(UserParent))
11699 // Okay, the CFG is simple enough, try to sink this instruction.
11700 Changed |= TryToSinkInstruction(I, UserParent);
11701 }
11702 }
11703
11704 // Now that we have an instruction, try combining it to simplify it...
11705#ifndef NDEBUG
11706 std::string OrigI;
11707#endif
11708 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
11709 if (Instruction *Result = visit(*I)) {
11710 ++NumCombined;
11711 // Should we replace the old instruction with a new one?
11712 if (Result != I) {
11713 DOUT << "IC: Old = " << *I
11714 << " New = " << *Result;
11715
11716 // Everything uses the new instruction now.
11717 I->replaceAllUsesWith(Result);
11718
11719 // Push the new instruction and any users onto the worklist.
11720 AddToWorkList(Result);
11721 AddUsersToWorkList(*Result);
11722
11723 // Move the name to the new instruction first.
11724 Result->takeName(I);
11725
11726 // Insert the new instruction into the basic block...
11727 BasicBlock *InstParent = I->getParent();
11728 BasicBlock::iterator InsertPos = I;
11729
11730 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
11731 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
11732 ++InsertPos;
11733
11734 InstParent->getInstList().insert(InsertPos, Result);
11735
11736 // Make sure that we reprocess all operands now that we reduced their
11737 // use counts.
11738 AddUsesToWorkList(*I);
11739
11740 // Instructions can end up on the worklist more than once. Make sure
11741 // we do not process an instruction that has been deleted.
11742 RemoveFromWorkList(I);
11743
11744 // Erase the old instruction.
11745 InstParent->getInstList().erase(I);
11746 } else {
11747#ifndef NDEBUG
11748 DOUT << "IC: Mod = " << OrigI
11749 << " New = " << *I;
11750#endif
11751
11752 // If the instruction was modified, it's possible that it is now dead.
11753 // if so, remove it.
11754 if (isInstructionTriviallyDead(I)) {
11755 // Make sure we process all operands now that we are reducing their
11756 // use counts.
11757 AddUsesToWorkList(*I);
11758
11759 // Instructions may end up in the worklist more than once. Erase all
11760 // occurrences of this instruction.
11761 RemoveFromWorkList(I);
11762 I->eraseFromParent();
11763 } else {
11764 AddToWorkList(I);
11765 AddUsersToWorkList(*I);
11766 }
11767 }
11768 Changed = true;
11769 }
11770 }
11771
11772 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000011773
11774 // Do an explicit clear, this shrinks the map if needed.
11775 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011776 return Changed;
11777}
11778
11779
11780bool InstCombiner::runOnFunction(Function &F) {
11781 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
11782
11783 bool EverMadeChange = false;
11784
11785 // Iterate while there is work to do.
11786 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000011787 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011788 EverMadeChange = true;
11789 return EverMadeChange;
11790}
11791
11792FunctionPass *llvm::createInstructionCombiningPass() {
11793 return new InstCombiner();
11794}
11795
Chris Lattner6297fc72008-08-11 22:06:05 +000011796