blob: 803c7279bbc6ce1557373ad5fdd1d4dd3b51bc70 [file] [log] [blame]
Chris Lattner233f7dc2002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner8a2a3112001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman844731a2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Chris Lattner8a2a3112001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner318bf792007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattner8a2a3112001-12-14 16:52:21 +000017// into:
Chris Lattner318bf792007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattner8a2a3112001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner065a6162003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattner2cd91962003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdf17af12003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencere4d87aa2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnere92d2f42003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattnerbac32862004-11-14 19:13:23 +000032// ... etc.
Chris Lattner2cd91962003-07-23 21:41:57 +000033//
Chris Lattner8a2a3112001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner0cea42a2004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattner022103b2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattnerac8f2fd2010-01-04 07:12:23 +000038#include "InstCombine.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000039#include "llvm-c/Initialization.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/StringSwitch.h"
Chris Lattner79066fa2007-01-30 23:46:24 +000043#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner9dbb4292009-11-09 23:28:39 +000044#include "llvm/Analysis/InstructionSimplify.h"
Victor Hernandezf006b182009-10-27 20:05:49 +000045#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000046#include "llvm/IR/DataLayout.h"
47#include "llvm/IR/IntrinsicInst.h"
Chris Lattner804272c2010-01-05 07:54:43 +000048#include "llvm/Support/CFG.h"
Meador Inge2920a712012-11-13 04:16:17 +000049#include "llvm/Support/CommandLine.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000050#include "llvm/Support/Debug.h"
Chris Lattner28977af2004-04-05 01:30:19 +000051#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattneracd1f0f2004-07-30 07:50:03 +000052#include "llvm/Support/PatternMatch.h"
Nick Lewyckyd5061a92011-08-03 00:43:35 +000053#include "llvm/Support/ValueHandle.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000054#include "llvm/Target/TargetLibraryInfo.h"
55#include "llvm/Transforms/Utils/Local.h"
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000056#include <algorithm>
Torok Edwin3eaee312008-04-20 08:33:11 +000057#include <climits>
Chris Lattner67b1e1b2003-12-07 01:24:23 +000058using namespace llvm;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000059using namespace llvm::PatternMatch;
Brian Gaeked0fde302003-11-11 22:41:34 +000060
Chris Lattner0e5f4992006-12-19 21:40:18 +000061STATISTIC(NumCombined , "Number of insts combined");
62STATISTIC(NumConstProp, "Number of constant folds");
63STATISTIC(NumDeadInst , "Number of dead inst eliminated");
Chris Lattner0e5f4992006-12-19 21:40:18 +000064STATISTIC(NumSunkInst , "Number of instructions sunk");
Duncan Sands37bf92b2010-12-22 13:36:08 +000065STATISTIC(NumExpand, "Number of expansions");
Duncan Sandsa3c44a52010-12-22 09:40:51 +000066STATISTIC(NumFactor , "Number of factorizations");
67STATISTIC(NumReassoc , "Number of reassociations");
Chris Lattnera92f6962002-10-01 22:38:41 +000068
Meador Inge2920a712012-11-13 04:16:17 +000069static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
70 cl::init(false),
71 cl::desc("Enable unsafe double to float "
72 "shrinking for math lib calls"));
73
Owen Anderson74cfb0c2010-10-07 20:04:55 +000074// Initialization Routines
75void llvm::initializeInstCombine(PassRegistry &Registry) {
76 initializeInstCombinerPass(Registry);
77}
78
79void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
80 initializeInstCombine(*unwrap(R));
81}
Chris Lattnerdd841ae2002-04-18 17:39:14 +000082
Dan Gohman844731a2008-05-13 00:00:25 +000083char InstCombiner::ID = 0;
Chad Rosier00737bd2011-12-01 21:29:16 +000084INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
85 "Combine redundant instructions", false, false)
86INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
87INITIALIZE_PASS_END(InstCombiner, "instcombine",
Owen Andersonce665bd2010-10-07 22:25:06 +000088 "Combine redundant instructions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +000089
Chris Lattnere0b4b722010-01-04 07:17:19 +000090void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnere0b4b722010-01-04 07:17:19 +000091 AU.setPreservesCFG();
Chad Rosier3d925d22011-11-29 23:57:10 +000092 AU.addRequired<TargetLibraryInfo>();
Chris Lattnere0b4b722010-01-04 07:17:19 +000093}
94
95
Nuno Lopes5c525b52012-05-22 17:19:09 +000096Value *InstCombiner::EmitGEPOffset(User *GEP) {
Micah Villmow3574eca2012-10-08 16:38:25 +000097 return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
Nuno Lopes5c525b52012-05-22 17:19:09 +000098}
99
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000100/// ShouldChangeType - Return true if it is desirable to convert a computation
101/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
102/// type for example, or from a smaller to a larger illegal type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000103bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
Duncan Sands1df98592010-02-16 11:11:14 +0000104 assert(From->isIntegerTy() && To->isIntegerTy());
Jakub Staszak58c1da82012-05-06 13:52:31 +0000105
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000106 // If we don't have TD, we don't know if the source/dest are legal.
107 if (!TD) return false;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000108
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000109 unsigned FromWidth = From->getPrimitiveSizeInBits();
110 unsigned ToWidth = To->getPrimitiveSizeInBits();
111 bool FromLegal = TD->isLegalInteger(FromWidth);
112 bool ToLegal = TD->isLegalInteger(ToWidth);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000113
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000114 // If this is a legal integer from type, and the result would be an illegal
115 // type, don't do the transformation.
116 if (FromLegal && !ToLegal)
117 return false;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000118
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000119 // Otherwise, if both are illegal, do not increase the size of the result. We
120 // do allow things like i160 -> i64, but not i64 -> i160.
121 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
122 return false;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000123
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000124 return true;
125}
126
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000127// Return true, if No Signed Wrap should be maintained for I.
128// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
129// where both B and C should be ConstantInts, results in a constant that does
130// not overflow. This function only handles the Add and Sub opcodes. For
131// all other opcodes, the function conservatively returns false.
132static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
133 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
134 if (!OBO || !OBO->hasNoSignedWrap()) {
135 return false;
136 }
137
138 // We reason about Add and Sub Only.
139 Instruction::BinaryOps Opcode = I.getOpcode();
Jakub Staszak58c1da82012-05-06 13:52:31 +0000140 if (Opcode != Instruction::Add &&
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000141 Opcode != Instruction::Sub) {
142 return false;
143 }
144
145 ConstantInt *CB = dyn_cast<ConstantInt>(B);
146 ConstantInt *CC = dyn_cast<ConstantInt>(C);
147
148 if (!CB || !CC) {
149 return false;
150 }
151
152 const APInt &BVal = CB->getValue();
153 const APInt &CVal = CC->getValue();
154 bool Overflow = false;
155
156 if (Opcode == Instruction::Add) {
157 BVal.sadd_ov(CVal, Overflow);
158 } else {
159 BVal.ssub_ov(CVal, Overflow);
160 }
161
162 return !Overflow;
163}
164
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000165/// Conservatively clears subclassOptionalData after a reassociation or
166/// commutation. We preserve fast-math flags when applicable as they can be
167/// preserved.
168static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
169 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
170 if (!FPMO) {
171 I.clearSubclassOptionalData();
172 return;
173 }
174
175 FastMathFlags FMF = I.getFastMathFlags();
176 I.clearSubclassOptionalData();
177 I.setFastMathFlags(FMF);
178}
179
Duncan Sands096aa792010-11-13 15:10:37 +0000180/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
181/// operators which are associative or commutative:
182//
183// Commutative operators:
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000184//
Chris Lattner4f98c562003-03-10 21:43:22 +0000185// 1. Order operands such that they are listed from right (least complex) to
186// left (most complex). This puts constants before unary operators before
187// binary operators.
188//
Duncan Sands096aa792010-11-13 15:10:37 +0000189// Associative operators:
Chris Lattner4f98c562003-03-10 21:43:22 +0000190//
Duncan Sands096aa792010-11-13 15:10:37 +0000191// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
192// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
193//
194// Associative and commutative operators:
195//
196// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
197// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
198// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
199// if C1 and C2 are constants.
200//
201bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +0000202 Instruction::BinaryOps Opcode = I.getOpcode();
Duncan Sands096aa792010-11-13 15:10:37 +0000203 bool Changed = false;
Chris Lattnerc8802d22003-03-11 00:12:48 +0000204
Duncan Sands096aa792010-11-13 15:10:37 +0000205 do {
206 // Order operands such that they are listed from right (least complex) to
207 // left (most complex). This puts constants before unary operators before
208 // binary operators.
209 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
210 getComplexity(I.getOperand(1)))
211 Changed = !I.swapOperands();
212
213 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
214 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
215
216 if (I.isAssociative()) {
217 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
218 if (Op0 && Op0->getOpcode() == Opcode) {
219 Value *A = Op0->getOperand(0);
220 Value *B = Op0->getOperand(1);
221 Value *C = I.getOperand(1);
222
223 // Does "B op C" simplify?
224 if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
225 // It simplifies to V. Form "A op V".
226 I.setOperand(0, A);
227 I.setOperand(1, V);
Dan Gohman5195b712011-02-02 02:05:46 +0000228 // Conservatively clear the optional flags, since they may not be
229 // preserved by the reassociation.
Nick Lewycky7f0170c2011-08-14 03:41:33 +0000230 if (MaintainNoSignedWrap(I, B, C) &&
Bill Wendling56cb2292012-07-19 00:11:40 +0000231 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
Nick Lewycky7f0170c2011-08-14 03:41:33 +0000232 // Note: this is only valid because SimplifyBinOp doesn't look at
233 // the operands to Op0.
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000234 I.clearSubclassOptionalData();
235 I.setHasNoSignedWrap(true);
236 } else {
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000237 ClearSubclassDataAfterReassociation(I);
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000238 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000239
Duncan Sands096aa792010-11-13 15:10:37 +0000240 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000241 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000242 continue;
Misha Brukmanfd939082005-04-21 23:48:37 +0000243 }
Duncan Sands096aa792010-11-13 15:10:37 +0000244 }
245
246 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
247 if (Op1 && Op1->getOpcode() == Opcode) {
248 Value *A = I.getOperand(0);
249 Value *B = Op1->getOperand(0);
250 Value *C = Op1->getOperand(1);
251
252 // Does "A op B" simplify?
253 if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
254 // It simplifies to V. Form "V op C".
255 I.setOperand(0, V);
256 I.setOperand(1, C);
Dan Gohman5195b712011-02-02 02:05:46 +0000257 // Conservatively clear the optional flags, since they may not be
258 // preserved by the reassociation.
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000259 ClearSubclassDataAfterReassociation(I);
Duncan Sands096aa792010-11-13 15:10:37 +0000260 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000261 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000262 continue;
263 }
264 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000265 }
Duncan Sands096aa792010-11-13 15:10:37 +0000266
267 if (I.isAssociative() && I.isCommutative()) {
268 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
269 if (Op0 && Op0->getOpcode() == Opcode) {
270 Value *A = Op0->getOperand(0);
271 Value *B = Op0->getOperand(1);
272 Value *C = I.getOperand(1);
273
274 // Does "C op A" simplify?
275 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
276 // It simplifies to V. Form "V op B".
277 I.setOperand(0, V);
278 I.setOperand(1, B);
Dan Gohman5195b712011-02-02 02:05:46 +0000279 // Conservatively clear the optional flags, since they may not be
280 // preserved by the reassociation.
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000281 ClearSubclassDataAfterReassociation(I);
Duncan Sands096aa792010-11-13 15:10:37 +0000282 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000283 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000284 continue;
285 }
286 }
287
288 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
289 if (Op1 && Op1->getOpcode() == Opcode) {
290 Value *A = I.getOperand(0);
291 Value *B = Op1->getOperand(0);
292 Value *C = Op1->getOperand(1);
293
294 // Does "C op A" simplify?
295 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
296 // It simplifies to V. Form "B op V".
297 I.setOperand(0, B);
298 I.setOperand(1, V);
Dan Gohman5195b712011-02-02 02:05:46 +0000299 // Conservatively clear the optional flags, since they may not be
300 // preserved by the reassociation.
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000301 ClearSubclassDataAfterReassociation(I);
Duncan Sands096aa792010-11-13 15:10:37 +0000302 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000303 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000304 continue;
305 }
306 }
307
308 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
309 // if C1 and C2 are constants.
310 if (Op0 && Op1 &&
311 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
312 isa<Constant>(Op0->getOperand(1)) &&
313 isa<Constant>(Op1->getOperand(1)) &&
314 Op0->hasOneUse() && Op1->hasOneUse()) {
315 Value *A = Op0->getOperand(0);
316 Constant *C1 = cast<Constant>(Op0->getOperand(1));
317 Value *B = Op1->getOperand(0);
318 Constant *C2 = cast<Constant>(Op1->getOperand(1));
319
320 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000321 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
Eli Friedmana311c342011-05-27 00:19:40 +0000322 InsertNewInstWith(New, I);
Eli Friedmane6f364b2011-05-18 23:58:37 +0000323 New->takeName(Op1);
Duncan Sands096aa792010-11-13 15:10:37 +0000324 I.setOperand(0, New);
325 I.setOperand(1, Folded);
Dan Gohman5195b712011-02-02 02:05:46 +0000326 // Conservatively clear the optional flags, since they may not be
327 // preserved by the reassociation.
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000328 ClearSubclassDataAfterReassociation(I);
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000329
Duncan Sands096aa792010-11-13 15:10:37 +0000330 Changed = true;
331 continue;
332 }
333 }
334
335 // No further simplifications.
336 return Changed;
337 } while (1);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000338}
Chris Lattner8a2a3112001-12-14 16:52:21 +0000339
Duncan Sands5057f382010-11-23 14:23:47 +0000340/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
Duncan Sandsc2b1c0b2010-11-23 15:25:34 +0000341/// "(X LOp Y) ROp (X LOp Z)".
Duncan Sands5057f382010-11-23 14:23:47 +0000342static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
343 Instruction::BinaryOps ROp) {
344 switch (LOp) {
345 default:
346 return false;
347
348 case Instruction::And:
349 // And distributes over Or and Xor.
350 switch (ROp) {
351 default:
352 return false;
353 case Instruction::Or:
354 case Instruction::Xor:
355 return true;
356 }
357
358 case Instruction::Mul:
359 // Multiplication distributes over addition and subtraction.
360 switch (ROp) {
361 default:
362 return false;
363 case Instruction::Add:
364 case Instruction::Sub:
365 return true;
366 }
367
368 case Instruction::Or:
369 // Or distributes over And.
370 switch (ROp) {
371 default:
372 return false;
373 case Instruction::And:
374 return true;
375 }
376 }
377}
378
379/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
380/// "(X ROp Z) LOp (Y ROp Z)".
381static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
382 Instruction::BinaryOps ROp) {
383 if (Instruction::isCommutative(ROp))
384 return LeftDistributesOverRight(ROp, LOp);
385 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
386 // but this requires knowing that the addition does not overflow and other
387 // such subtleties.
388 return false;
389}
390
Duncan Sands37bf92b2010-12-22 13:36:08 +0000391/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
392/// which some other binary operation distributes over either by factorizing
393/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
394/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
395/// a win). Returns the simplified value, or null if it didn't simplify.
396Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
397 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
398 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
399 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
400 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
Duncan Sands5057f382010-11-23 14:23:47 +0000401
Duncan Sands37bf92b2010-12-22 13:36:08 +0000402 // Factorization.
403 if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
404 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
405 // a common term.
406 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
407 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
408 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
Duncan Sands5057f382010-11-23 14:23:47 +0000409
Duncan Sands37bf92b2010-12-22 13:36:08 +0000410 // Does "X op' Y" always equal "Y op' X"?
411 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
Duncan Sands5057f382010-11-23 14:23:47 +0000412
Duncan Sands37bf92b2010-12-22 13:36:08 +0000413 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
414 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
415 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
416 // commutative case, "(A op' B) op (C op' A)"?
417 if (A == C || (InnerCommutative && A == D)) {
418 if (A != C)
419 std::swap(C, D);
420 // Consider forming "A op' (B op D)".
421 // If "B op D" simplifies then it can be formed with no cost.
422 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
423 // If "B op D" doesn't simplify then only go on if both of the existing
424 // operations "A op' B" and "C op' D" will be zapped as no longer used.
425 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
426 V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
427 if (V) {
428 ++NumFactor;
429 V = Builder->CreateBinOp(InnerOpcode, A, V);
430 V->takeName(&I);
431 return V;
432 }
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000433 }
Duncan Sands5057f382010-11-23 14:23:47 +0000434
Duncan Sands37bf92b2010-12-22 13:36:08 +0000435 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
436 if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
437 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
438 // commutative case, "(A op' B) op (B op' D)"?
439 if (B == D || (InnerCommutative && B == C)) {
440 if (B != D)
441 std::swap(C, D);
442 // Consider forming "(A op C) op' B".
443 // If "A op C" simplifies then it can be formed with no cost.
444 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
445 // If "A op C" doesn't simplify then only go on if both of the existing
446 // operations "A op' B" and "C op' D" will be zapped as no longer used.
447 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
448 V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
449 if (V) {
450 ++NumFactor;
451 V = Builder->CreateBinOp(InnerOpcode, V, B);
452 V->takeName(&I);
453 return V;
454 }
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000455 }
Duncan Sands37bf92b2010-12-22 13:36:08 +0000456 }
457
458 // Expansion.
459 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
460 // The instruction has the form "(A op' B) op C". See if expanding it out
461 // to "(A op C) op' (B op C)" results in simplifications.
462 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
463 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
464
465 // Do "A op C" and "B op C" both simplify?
466 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
467 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
468 // They do! Return "L op' R".
469 ++NumExpand;
470 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
471 if ((L == A && R == B) ||
472 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
473 return Op0;
474 // Otherwise return "L op' R" if it simplifies.
475 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
476 return V;
477 // Otherwise, create a new instruction.
478 C = Builder->CreateBinOp(InnerOpcode, L, R);
479 C->takeName(&I);
480 return C;
481 }
482 }
483
484 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
485 // The instruction has the form "A op (B op' C)". See if expanding it out
486 // to "(A op B) op' (A op C)" results in simplifications.
487 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
488 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
489
490 // Do "A op B" and "A op C" both simplify?
491 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
492 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
493 // They do! Return "L op' R".
494 ++NumExpand;
495 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
496 if ((L == B && R == C) ||
497 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
498 return Op1;
499 // Otherwise return "L op' R" if it simplifies.
500 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
501 return V;
502 // Otherwise, create a new instruction.
503 A = Builder->CreateBinOp(InnerOpcode, L, R);
504 A->takeName(&I);
505 return A;
506 }
507 }
Duncan Sands5057f382010-11-23 14:23:47 +0000508
509 return 0;
510}
511
Chris Lattner8d969642003-03-10 23:06:50 +0000512// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
513// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattnerb35dde12002-05-06 16:49:18 +0000514//
Chris Lattner02446fc2010-01-04 07:37:31 +0000515Value *InstCombiner::dyn_castNegVal(Value *V) const {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000516 if (BinaryOperator::isNeg(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000517 return BinaryOperator::getNegArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000518
Chris Lattner0ce85802004-12-14 20:08:06 +0000519 // Constants can be considered to be negated values if they can be folded.
520 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000521 return ConstantExpr::getNeg(C);
Nick Lewycky18b3da62008-05-23 04:54:45 +0000522
Chris Lattner7302d802012-02-06 21:56:39 +0000523 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
524 if (C->getType()->getElementType()->isIntegerTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +0000525 return ConstantExpr::getNeg(C);
Nick Lewycky18b3da62008-05-23 04:54:45 +0000526
Chris Lattner8d969642003-03-10 23:06:50 +0000527 return 0;
Chris Lattnerb35dde12002-05-06 16:49:18 +0000528}
529
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000530// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
531// instruction if the LHS is a constant negative zero (which is the 'negate'
532// form).
533//
Shuxin Yang935e35d2013-01-09 00:13:41 +0000534Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
535 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000536 return BinaryOperator::getFNegArgument(V);
537
538 // Constants can be considered to be negated values if they can be folded.
539 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000540 return ConstantExpr::getFNeg(C);
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000541
Chris Lattner7302d802012-02-06 21:56:39 +0000542 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
543 if (C->getType()->getElementType()->isFloatingPointTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +0000544 return ConstantExpr::getFNeg(C);
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000545
546 return 0;
547}
548
Chris Lattner6e7ba452005-01-01 16:22:27 +0000549static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner2eefe512004-04-09 19:05:30 +0000550 InstCombiner *IC) {
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000551 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattner2345d1d2009-08-30 20:01:10 +0000552 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000553 }
Chris Lattner6e7ba452005-01-01 16:22:27 +0000554
Chris Lattner2eefe512004-04-09 19:05:30 +0000555 // Figure out if the constant is the left or the right argument.
Chris Lattner6e7ba452005-01-01 16:22:27 +0000556 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
557 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattner564a7272003-08-13 19:01:45 +0000558
Chris Lattner2eefe512004-04-09 19:05:30 +0000559 if (Constant *SOC = dyn_cast<Constant>(SO)) {
560 if (ConstIsRHS)
Owen Andersonbaf3c402009-07-29 18:55:55 +0000561 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
562 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner2eefe512004-04-09 19:05:30 +0000563 }
564
565 Value *Op0 = SO, *Op1 = ConstOperand;
566 if (!ConstIsRHS)
567 std::swap(Op0, Op1);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000568
Chris Lattner6e7ba452005-01-01 16:22:27 +0000569 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Chris Lattner74381062009-08-30 07:44:24 +0000570 return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
571 SO->getName()+".op");
572 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
573 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
574 SO->getName()+".cmp");
575 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
576 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
577 SO->getName()+".cmp");
578 llvm_unreachable("Unknown binary instruction type!");
Chris Lattner6e7ba452005-01-01 16:22:27 +0000579}
580
581// FoldOpIntoSelect - Given an instruction with a select as one operand and a
582// constant as the other operand, try to fold the binary operator into the
583// select arguments. This also works for Cast instructions, which obviously do
584// not have a second operand.
Chris Lattner80f43d32010-01-04 07:53:58 +0000585Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
Chris Lattner6e7ba452005-01-01 16:22:27 +0000586 // Don't modify shared select instructions
587 if (!SI->hasOneUse()) return 0;
588 Value *TV = SI->getOperand(1);
589 Value *FV = SI->getOperand(2);
590
591 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner956db272005-04-21 05:43:13 +0000592 // Bool selects with constant operands can be folded to logical ops.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000593 if (SI->getType()->isIntegerTy(1)) return 0;
Chris Lattner956db272005-04-21 05:43:13 +0000594
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000595 // If it's a bitcast involving vectors, make sure it has the same number of
596 // elements on both sides.
597 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000598 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
599 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000600
601 // Verify that either both or neither are vectors.
602 if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
603 // If vectors, verify that they have the same number of elements.
604 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
605 return 0;
606 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000607
Chris Lattner80f43d32010-01-04 07:53:58 +0000608 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
609 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
Chris Lattner6e7ba452005-01-01 16:22:27 +0000610
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000611 return SelectInst::Create(SI->getCondition(),
612 SelectTrueVal, SelectFalseVal);
Chris Lattner6e7ba452005-01-01 16:22:27 +0000613 }
614 return 0;
Chris Lattner2eefe512004-04-09 19:05:30 +0000615}
616
Chris Lattner4e998b22004-09-29 05:07:12 +0000617
Chris Lattner5d1704d2009-09-27 19:57:57 +0000618/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
619/// has a PHI node as operand #0, see if we can fold the instruction into the
620/// PHI (which is only possible if all operands to the PHI are constants).
Chris Lattner213cd612009-09-27 20:46:36 +0000621///
Chris Lattner9922ccf2011-01-16 05:14:26 +0000622Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
Chris Lattner4e998b22004-09-29 05:07:12 +0000623 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattnerbac32862004-11-14 19:13:23 +0000624 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner5aac8322011-01-16 04:37:29 +0000625 if (NumPHIValues == 0)
Chris Lattner213cd612009-09-27 20:46:36 +0000626 return 0;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000627
Chris Lattner084fe622011-01-21 05:08:26 +0000628 // We normally only transform phis with a single use. However, if a PHI has
629 // multiple uses and they are all the same operation, we can fold *all* of the
630 // uses into the PHI.
Chris Lattner192228e2011-01-16 05:28:59 +0000631 if (!PN->hasOneUse()) {
632 // Walk the use list for the instruction, comparing them to I.
633 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
Chris Lattnercd151d22011-01-21 05:29:50 +0000634 UI != E; ++UI) {
635 Instruction *User = cast<Instruction>(*UI);
636 if (User != &I && !I.isIdenticalTo(User))
Chris Lattner192228e2011-01-16 05:28:59 +0000637 return 0;
Chris Lattnercd151d22011-01-21 05:29:50 +0000638 }
Chris Lattner192228e2011-01-16 05:28:59 +0000639 // Otherwise, we can replace *all* users with the new PHI we form.
640 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000641
Chris Lattner5d1704d2009-09-27 19:57:57 +0000642 // Check to see if all of the operands of the PHI are simple constants
643 // (constantint/constantfp/undef). If there is one non-constant value,
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000644 // remember the BB it is in. If there is more than one or if *it* is a PHI,
645 // bail out. We don't do arbitrary constant expressions here because moving
646 // their computation can be expensive without a cost model.
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000647 BasicBlock *NonConstBB = 0;
Chris Lattner5aac8322011-01-16 04:37:29 +0000648 for (unsigned i = 0; i != NumPHIValues; ++i) {
649 Value *InVal = PN->getIncomingValue(i);
650 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
651 continue;
652
653 if (isa<PHINode>(InVal)) return 0; // Itself a phi.
654 if (NonConstBB) return 0; // More than one non-const value.
Jakub Staszak58c1da82012-05-06 13:52:31 +0000655
Chris Lattner5aac8322011-01-16 04:37:29 +0000656 NonConstBB = PN->getIncomingBlock(i);
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000657
658 // If the InVal is an invoke at the end of the pred block, then we can't
659 // insert a computation after it without breaking the edge.
660 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
661 if (II->getParent() == NonConstBB)
662 return 0;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000663
Chris Lattnercd151d22011-01-21 05:29:50 +0000664 // If the incoming non-constant value is in I's block, we will remove one
665 // instruction, but insert another equivalent one, leading to infinite
666 // instcombine.
667 if (NonConstBB == I.getParent())
668 return 0;
Chris Lattner5aac8322011-01-16 04:37:29 +0000669 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000670
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000671 // If there is exactly one non-constant value, we can insert a copy of the
672 // operation in that block. However, if this is a critical edge, we would be
673 // inserting the computation one some other paths (e.g. inside a loop). Only
674 // do this if the pred block is unconditionally branching into the phi block.
Chris Lattner9922ccf2011-01-16 05:14:26 +0000675 if (NonConstBB != 0) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000676 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
677 if (!BI || !BI->isUnconditional()) return 0;
678 }
Chris Lattner4e998b22004-09-29 05:07:12 +0000679
680 // Okay, we can do the transformation: create the new PHI node.
Eli Friedmane6f364b2011-05-18 23:58:37 +0000681 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
Chris Lattner857eb572009-10-21 23:41:58 +0000682 InsertNewInstBefore(NewPN, *PN);
683 NewPN->takeName(PN);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000684
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000685 // If we are going to have to insert a new computation, do so right before the
686 // predecessors terminator.
687 if (NonConstBB)
688 Builder->SetInsertPoint(NonConstBB->getTerminator());
Jakub Staszak58c1da82012-05-06 13:52:31 +0000689
Chris Lattner4e998b22004-09-29 05:07:12 +0000690 // Next, add all of the operands to the PHI.
Chris Lattner5d1704d2009-09-27 19:57:57 +0000691 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
692 // We only currently try to fold the condition of a select when it is a phi,
693 // not the true/false values.
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000694 Value *TrueV = SI->getTrueValue();
695 Value *FalseV = SI->getFalseValue();
Chris Lattner3ddfb212009-09-28 06:49:44 +0000696 BasicBlock *PhiTransBB = PN->getParent();
Chris Lattner5d1704d2009-09-27 19:57:57 +0000697 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000698 BasicBlock *ThisBB = PN->getIncomingBlock(i);
Chris Lattner3ddfb212009-09-28 06:49:44 +0000699 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
700 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Chris Lattner5d1704d2009-09-27 19:57:57 +0000701 Value *InV = 0;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000702 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000703 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000704 else
705 InV = Builder->CreateSelect(PN->getIncomingValue(i),
706 TrueVInPred, FalseVInPred, "phitmp");
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000707 NewPN->addIncoming(InV, ThisBB);
Chris Lattner5d1704d2009-09-27 19:57:57 +0000708 }
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000709 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
710 Constant *C = cast<Constant>(I.getOperand(1));
711 for (unsigned i = 0; i != NumPHIValues; ++i) {
712 Value *InV = 0;
713 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
714 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
715 else if (isa<ICmpInst>(CI))
716 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
717 C, "phitmp");
718 else
719 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
720 C, "phitmp");
721 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
722 }
Chris Lattner5d1704d2009-09-27 19:57:57 +0000723 } else if (I.getNumOperands() == 2) {
Chris Lattner4e998b22004-09-29 05:07:12 +0000724 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattnerbac32862004-11-14 19:13:23 +0000725 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnera9ff5eb2007-08-05 08:47:58 +0000726 Value *InV = 0;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000727 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
728 InV = ConstantExpr::get(I.getOpcode(), InC, C);
729 else
730 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
731 PN->getIncomingValue(i), C, "phitmp");
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000732 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +0000733 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000734 } else {
Reid Spencer3da59db2006-11-27 01:05:10 +0000735 CastInst *CI = cast<CastInst>(&I);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000736 Type *RetTy = CI->getType();
Chris Lattnerbac32862004-11-14 19:13:23 +0000737 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000738 Value *InV;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000739 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000740 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000741 else
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000742 InV = Builder->CreateCast(CI->getOpcode(),
743 PN->getIncomingValue(i), I.getType(), "phitmp");
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000744 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +0000745 }
746 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000747
Chris Lattner192228e2011-01-16 05:28:59 +0000748 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
749 UI != E; ) {
750 Instruction *User = cast<Instruction>(*UI++);
751 if (User == &I) continue;
752 ReplaceInstUsesWith(*User, NewPN);
753 EraseInstFromFunction(*User);
754 }
Chris Lattner4e998b22004-09-29 05:07:12 +0000755 return ReplaceInstUsesWith(I, NewPN);
756}
757
Matt Arsenault8e3367e2013-08-19 22:17:40 +0000758/// FindElementAtOffset - Given a pointer type and a constant offset, determine
759/// whether or not there is a sequence of GEP indices into the pointed type that
760/// will land us at the specified offset. If so, fill them into NewIndices and
761/// return the resultant element type, otherwise return null.
762Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
763 SmallVectorImpl<Value*> &NewIndices) {
764 assert(PtrTy->isPtrOrPtrVectorTy());
765
766 if (!TD)
767 return 0;
768
769 Type *Ty = PtrTy->getPointerElementType();
770 if (!Ty->isSized())
771 return 0;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000772
Chris Lattner46cd5a12009-01-09 05:44:56 +0000773 // Start with the index over the outer type. Note that the type size
774 // might be zero (even if the offset isn't zero) if the indexed type
775 // is something like [0 x {int, int}]
Matt Arsenault8e3367e2013-08-19 22:17:40 +0000776 Type *IntPtrTy = TD->getIntPtrType(PtrTy);
Chris Lattner46cd5a12009-01-09 05:44:56 +0000777 int64_t FirstIdx = 0;
Duncan Sands777d2302009-05-09 07:06:46 +0000778 if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
Chris Lattner46cd5a12009-01-09 05:44:56 +0000779 FirstIdx = Offset/TySize;
Chris Lattner31a69cb2009-01-11 20:41:36 +0000780 Offset -= FirstIdx*TySize;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000781
Benjamin Kramer028dba32013-01-23 17:52:29 +0000782 // Handle hosts where % returns negative instead of values [0..TySize).
783 if (Offset < 0) {
784 --FirstIdx;
785 Offset += TySize;
786 assert(Offset >= 0);
787 }
Chris Lattner46cd5a12009-01-09 05:44:56 +0000788 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
789 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000790
Owen Andersoneed707b2009-07-24 23:12:02 +0000791 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Jakub Staszak58c1da82012-05-06 13:52:31 +0000792
Chris Lattner46cd5a12009-01-09 05:44:56 +0000793 // Index into the types. If we fail, set OrigBase to null.
794 while (Offset) {
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000795 // Indexing into tail padding between struct/array elements.
796 if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
Chris Lattner3914f722009-01-24 01:00:13 +0000797 return 0;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000798
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000799 if (StructType *STy = dyn_cast<StructType>(Ty)) {
Chris Lattner46cd5a12009-01-09 05:44:56 +0000800 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000801 assert(Offset < (int64_t)SL->getSizeInBytes() &&
802 "Offset must stay within the indexed type");
Jakub Staszak58c1da82012-05-06 13:52:31 +0000803
Chris Lattner46cd5a12009-01-09 05:44:56 +0000804 unsigned Elt = SL->getElementContainingOffset(Offset);
Chris Lattner4de84762010-01-04 07:02:48 +0000805 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
806 Elt));
Jakub Staszak58c1da82012-05-06 13:52:31 +0000807
Chris Lattner46cd5a12009-01-09 05:44:56 +0000808 Offset -= SL->getElementOffset(Elt);
809 Ty = STy->getElementType(Elt);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000810 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
Duncan Sands777d2302009-05-09 07:06:46 +0000811 uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000812 assert(EltSize && "Cannot index into a zero-sized array");
Owen Andersoneed707b2009-07-24 23:12:02 +0000813 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000814 Offset %= EltSize;
Chris Lattner1c412d92009-01-11 20:23:52 +0000815 Ty = AT->getElementType();
Chris Lattner46cd5a12009-01-09 05:44:56 +0000816 } else {
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000817 // Otherwise, we can't index into the middle of this atomic type, bail.
Chris Lattner3914f722009-01-24 01:00:13 +0000818 return 0;
Chris Lattner46cd5a12009-01-09 05:44:56 +0000819 }
820 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000821
Chris Lattner3914f722009-01-24 01:00:13 +0000822 return Ty;
Chris Lattner46cd5a12009-01-09 05:44:56 +0000823}
824
Rafael Espindola592ad6a2011-07-31 04:43:41 +0000825static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
826 // If this GEP has only 0 indices, it is the same pointer as
827 // Src. If Src is not a trivial GEP too, don't combine
828 // the indices.
829 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
830 !Src.hasOneUse())
831 return false;
832 return true;
833}
Chris Lattner473945d2002-05-06 18:06:38 +0000834
Duncan Sandsbbc70162012-10-23 08:28:26 +0000835/// Descale - Return a value X such that Val = X * Scale, or null if none. If
836/// the multiplication is known not to overflow then NoSignedWrap is set.
837Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
838 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
839 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
840 Scale.getBitWidth() && "Scale not compatible with value!");
841
842 // If Val is zero or Scale is one then Val = Val * Scale.
843 if (match(Val, m_Zero()) || Scale == 1) {
844 NoSignedWrap = true;
845 return Val;
846 }
847
848 // If Scale is zero then it does not divide Val.
849 if (Scale.isMinValue())
850 return 0;
851
852 // Look through chains of multiplications, searching for a constant that is
853 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
854 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
855 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
856 // down from Val:
857 //
858 // Val = M1 * X || Analysis starts here and works down
859 // M1 = M2 * Y || Doesn't descend into terms with more
860 // M2 = Z * 4 \/ than one use
861 //
862 // Then to modify a term at the bottom:
863 //
864 // Val = M1 * X
865 // M1 = Z * Y || Replaced M2 with Z
866 //
867 // Then to work back up correcting nsw flags.
868
869 // Op - the term we are currently analyzing. Starts at Val then drills down.
870 // Replaced with its descaled value before exiting from the drill down loop.
871 Value *Op = Val;
872
873 // Parent - initially null, but after drilling down notes where Op came from.
874 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
875 // 0'th operand of Val.
876 std::pair<Instruction*, unsigned> Parent;
877
878 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
879 // levels that doesn't overflow.
880 bool RequireNoSignedWrap = false;
881
882 // logScale - log base 2 of the scale. Negative if not a power of 2.
883 int32_t logScale = Scale.exactLogBase2();
884
885 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
886
887 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
888 // If Op is a constant divisible by Scale then descale to the quotient.
889 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
890 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
891 if (!Remainder.isMinValue())
892 // Not divisible by Scale.
893 return 0;
894 // Replace with the quotient in the parent.
895 Op = ConstantInt::get(CI->getType(), Quotient);
896 NoSignedWrap = true;
897 break;
898 }
899
900 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
901
902 if (BO->getOpcode() == Instruction::Mul) {
903 // Multiplication.
904 NoSignedWrap = BO->hasNoSignedWrap();
905 if (RequireNoSignedWrap && !NoSignedWrap)
906 return 0;
907
908 // There are three cases for multiplication: multiplication by exactly
909 // the scale, multiplication by a constant different to the scale, and
910 // multiplication by something else.
911 Value *LHS = BO->getOperand(0);
912 Value *RHS = BO->getOperand(1);
913
914 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
915 // Multiplication by a constant.
916 if (CI->getValue() == Scale) {
917 // Multiplication by exactly the scale, replace the multiplication
918 // by its left-hand side in the parent.
919 Op = LHS;
920 break;
921 }
922
923 // Otherwise drill down into the constant.
924 if (!Op->hasOneUse())
925 return 0;
926
927 Parent = std::make_pair(BO, 1);
928 continue;
929 }
930
931 // Multiplication by something else. Drill down into the left-hand side
932 // since that's where the reassociate pass puts the good stuff.
933 if (!Op->hasOneUse())
934 return 0;
935
936 Parent = std::make_pair(BO, 0);
937 continue;
938 }
939
940 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
941 isa<ConstantInt>(BO->getOperand(1))) {
942 // Multiplication by a power of 2.
943 NoSignedWrap = BO->hasNoSignedWrap();
944 if (RequireNoSignedWrap && !NoSignedWrap)
945 return 0;
946
947 Value *LHS = BO->getOperand(0);
948 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
949 getLimitedValue(Scale.getBitWidth());
950 // Op = LHS << Amt.
951
952 if (Amt == logScale) {
953 // Multiplication by exactly the scale, replace the multiplication
954 // by its left-hand side in the parent.
955 Op = LHS;
956 break;
957 }
958 if (Amt < logScale || !Op->hasOneUse())
959 return 0;
960
961 // Multiplication by more than the scale. Reduce the multiplying amount
962 // by the scale in the parent.
963 Parent = std::make_pair(BO, 1);
964 Op = ConstantInt::get(BO->getType(), Amt - logScale);
965 break;
966 }
967 }
968
969 if (!Op->hasOneUse())
970 return 0;
971
972 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
973 if (Cast->getOpcode() == Instruction::SExt) {
974 // Op is sign-extended from a smaller type, descale in the smaller type.
975 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
976 APInt SmallScale = Scale.trunc(SmallSize);
977 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
978 // descale Op as (sext Y) * Scale. In order to have
979 // sext (Y * SmallScale) = (sext Y) * Scale
980 // some conditions need to hold however: SmallScale must sign-extend to
981 // Scale and the multiplication Y * SmallScale should not overflow.
982 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
983 // SmallScale does not sign-extend to Scale.
984 return 0;
985 assert(SmallScale.exactLogBase2() == logScale);
986 // Require that Y * SmallScale must not overflow.
987 RequireNoSignedWrap = true;
988
989 // Drill down through the cast.
990 Parent = std::make_pair(Cast, 0);
991 Scale = SmallScale;
992 continue;
993 }
994
Duncan Sandsf1ec4e42012-10-23 09:07:02 +0000995 if (Cast->getOpcode() == Instruction::Trunc) {
Duncan Sandsbbc70162012-10-23 08:28:26 +0000996 // Op is truncated from a larger type, descale in the larger type.
997 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
998 // trunc (Y * sext Scale) = (trunc Y) * Scale
999 // always holds. However (trunc Y) * Scale may overflow even if
1000 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1001 // from this point up in the expression (see later).
1002 if (RequireNoSignedWrap)
1003 return 0;
1004
1005 // Drill down through the cast.
1006 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1007 Parent = std::make_pair(Cast, 0);
1008 Scale = Scale.sext(LargeSize);
1009 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1010 logScale = -1;
1011 assert(Scale.exactLogBase2() == logScale);
1012 continue;
1013 }
1014 }
1015
1016 // Unsupported expression, bail out.
1017 return 0;
1018 }
1019
1020 // We know that we can successfully descale, so from here on we can safely
1021 // modify the IR. Op holds the descaled version of the deepest term in the
1022 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1023 // not to overflow.
1024
1025 if (!Parent.first)
1026 // The expression only had one term.
1027 return Op;
1028
1029 // Rewrite the parent using the descaled version of its operand.
1030 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1031 assert(Op != Parent.first->getOperand(Parent.second) &&
1032 "Descaling was a no-op?");
1033 Parent.first->setOperand(Parent.second, Op);
1034 Worklist.Add(Parent.first);
1035
1036 // Now work back up the expression correcting nsw flags. The logic is based
1037 // on the following observation: if X * Y is known not to overflow as a signed
1038 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1039 // then X * Z will not overflow as a signed multiplication either. As we work
1040 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1041 // current level has strictly smaller absolute value than the original.
1042 Instruction *Ancestor = Parent.first;
1043 do {
1044 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1045 // If the multiplication wasn't nsw then we can't say anything about the
1046 // value of the descaled multiplication, and we have to clear nsw flags
1047 // from this point on up.
1048 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1049 NoSignedWrap &= OpNoSignedWrap;
1050 if (NoSignedWrap != OpNoSignedWrap) {
1051 BO->setHasNoSignedWrap(NoSignedWrap);
1052 Worklist.Add(Ancestor);
1053 }
1054 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1055 // The fact that the descaled input to the trunc has smaller absolute
1056 // value than the original input doesn't tell us anything useful about
1057 // the absolute values of the truncations.
1058 NoSignedWrap = false;
1059 }
1060 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1061 "Failed to keep proper track of nsw flags while drilling down?");
1062
1063 if (Ancestor == Val)
1064 // Got to the top, all done!
1065 return Val;
1066
1067 // Move up one level in the expression.
1068 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1069 Ancestor = Ancestor->use_back();
1070 } while (1);
1071}
1072
Chris Lattner7e708292002-06-25 16:13:24 +00001073Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001074 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1075
Jay Foadb9b54eb2011-07-19 15:07:52 +00001076 if (Value *V = SimplifyGEPInst(Ops, TD))
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001077 return ReplaceInstUsesWith(GEP, V);
1078
Chris Lattner620ce142004-05-07 22:09:22 +00001079 Value *PtrOp = GEP.getOperand(0);
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001080
Duncan Sandsa63395a2010-11-22 16:32:50 +00001081 // Eliminate unneeded casts for indices, and replace indices which displace
1082 // by multiples of a zero size type with zero.
Chris Lattnerccf4b342009-08-30 04:49:01 +00001083 if (TD) {
1084 bool MadeChange = false;
Duncan Sandsc5b969a2012-11-03 11:44:17 +00001085 Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType());
Duncan Sandsa63395a2010-11-22 16:32:50 +00001086
Chris Lattnerccf4b342009-08-30 04:49:01 +00001087 gep_type_iterator GTI = gep_type_begin(GEP);
1088 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1089 I != E; ++I, ++GTI) {
Duncan Sandsa63395a2010-11-22 16:32:50 +00001090 // Skip indices into struct types.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001091 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
Duncan Sandsa63395a2010-11-22 16:32:50 +00001092 if (!SeqTy) continue;
1093
1094 // If the element type has zero size then any index over it is equivalent
1095 // to an index of zero, so replace it with zero if it is not zero already.
1096 if (SeqTy->getElementType()->isSized() &&
1097 TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
1098 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1099 *I = Constant::getNullValue(IntPtrTy);
1100 MadeChange = true;
1101 }
1102
Nadav Rotem16087692011-12-05 06:29:09 +00001103 Type *IndexTy = (*I)->getType();
Duncan Sandsc5b969a2012-11-03 11:44:17 +00001104 if (IndexTy != IntPtrTy) {
Duncan Sandsa63395a2010-11-22 16:32:50 +00001105 // If we are using a wider index than needed for this platform, shrink
1106 // it to what we need. If narrower, sign-extend it to what we need.
1107 // This explicit cast can make subsequent optimizations more obvious.
1108 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1109 MadeChange = true;
1110 }
Chris Lattner28977af2004-04-05 01:30:19 +00001111 }
Chris Lattnerccf4b342009-08-30 04:49:01 +00001112 if (MadeChange) return &GEP;
Chris Lattnerdb9654e2007-03-25 20:43:09 +00001113 }
Chris Lattner28977af2004-04-05 01:30:19 +00001114
Chris Lattner90ac28c2002-08-02 19:29:35 +00001115 // Combine Indices - If the source pointer to this getelementptr instruction
1116 // is a getelementptr instruction, combine the indices of the two
1117 // getelementptr instructions into a single instruction.
1118 //
Dan Gohmand6aa02d2009-07-28 01:40:03 +00001119 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
Rafael Espindola592ad6a2011-07-31 04:43:41 +00001120 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
Rafael Espindolab5a12dd2011-07-11 03:43:47 +00001121 return 0;
1122
Duncan Sandsbbc70162012-10-23 08:28:26 +00001123 // Note that if our source is a gep chain itself then we wait for that
Chris Lattner620ce142004-05-07 22:09:22 +00001124 // chain to be resolved before we perform this transformation. This
1125 // avoids us creating a TON of code in some cases.
Rafael Espindola592ad6a2011-07-31 04:43:41 +00001126 if (GEPOperator *SrcGEP =
1127 dyn_cast<GEPOperator>(Src->getOperand(0)))
1128 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001129 return 0; // Wait until our source is folded to completion.
Chris Lattner620ce142004-05-07 22:09:22 +00001130
Chris Lattner72588fc2007-02-15 22:48:32 +00001131 SmallVector<Value*, 8> Indices;
Chris Lattner620ce142004-05-07 22:09:22 +00001132
1133 // Find out whether the last index in the source GEP is a sequential idx.
1134 bool EndsWithSequential = false;
Chris Lattnerab984842009-08-30 05:30:55 +00001135 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1136 I != E; ++I)
Duncan Sands1df98592010-02-16 11:11:14 +00001137 EndsWithSequential = !(*I)->isStructTy();
Misha Brukmanfd939082005-04-21 23:48:37 +00001138
Chris Lattner90ac28c2002-08-02 19:29:35 +00001139 // Can we combine the two pointer arithmetics offsets?
Chris Lattner620ce142004-05-07 22:09:22 +00001140 if (EndsWithSequential) {
Chris Lattnerdecd0812003-03-05 22:33:14 +00001141 // Replace: gep (gep %P, long B), long A, ...
1142 // With: T = long A+B; gep %P, T, ...
1143 //
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001144 Value *Sum;
1145 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1146 Value *GO1 = GEP.getOperand(1);
Owen Andersona7235ea2009-07-31 20:28:14 +00001147 if (SO1 == Constant::getNullValue(SO1->getType())) {
Chris Lattner28977af2004-04-05 01:30:19 +00001148 Sum = GO1;
Owen Andersona7235ea2009-07-31 20:28:14 +00001149 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
Chris Lattner28977af2004-04-05 01:30:19 +00001150 Sum = SO1;
1151 } else {
Chris Lattnerab984842009-08-30 05:30:55 +00001152 // If they aren't the same type, then the input hasn't been processed
1153 // by the loop above yet (which canonicalizes sequential index types to
1154 // intptr_t). Just avoid transforming this until the input has been
1155 // normalized.
1156 if (SO1->getType() != GO1->getType())
1157 return 0;
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001158 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Chris Lattner28977af2004-04-05 01:30:19 +00001159 }
Chris Lattner620ce142004-05-07 22:09:22 +00001160
Chris Lattnerab984842009-08-30 05:30:55 +00001161 // Update the GEP in place if possible.
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001162 if (Src->getNumOperands() == 2) {
1163 GEP.setOperand(0, Src->getOperand(0));
Chris Lattner620ce142004-05-07 22:09:22 +00001164 GEP.setOperand(1, Sum);
1165 return &GEP;
Chris Lattner620ce142004-05-07 22:09:22 +00001166 }
Chris Lattnerab984842009-08-30 05:30:55 +00001167 Indices.append(Src->op_begin()+1, Src->op_end()-1);
Chris Lattnerccf4b342009-08-30 04:49:01 +00001168 Indices.push_back(Sum);
Chris Lattnerab984842009-08-30 05:30:55 +00001169 Indices.append(GEP.op_begin()+2, GEP.op_end());
Misha Brukmanfd939082005-04-21 23:48:37 +00001170 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner28977af2004-04-05 01:30:19 +00001171 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001172 Src->getNumOperands() != 1) {
Chris Lattner90ac28c2002-08-02 19:29:35 +00001173 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerab984842009-08-30 05:30:55 +00001174 Indices.append(Src->op_begin()+1, Src->op_end());
1175 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
Chris Lattner90ac28c2002-08-02 19:29:35 +00001176 }
1177
Dan Gohmanf8dbee72009-09-07 23:54:19 +00001178 if (!Indices.empty())
Chris Lattner948cdeb2010-01-05 07:42:10 +00001179 return (GEP.isInBounds() && Src->isInBounds()) ?
Jay Foada9203102011-07-25 09:48:08 +00001180 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1181 GEP.getName()) :
1182 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
Chris Lattner6e24d832009-08-30 05:00:50 +00001183 }
Nadav Rotem0286ca82011-04-05 14:29:52 +00001184
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001185 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Chris Lattner948cdeb2010-01-05 07:42:10 +00001186 Value *StrippedPtr = PtrOp->stripPointerCasts();
Nadav Rotemc71108b2012-03-26 20:39:18 +00001187 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1188
Nadav Rotem02f0a492012-03-26 21:00:53 +00001189 // We do not handle pointer-vector geps here.
1190 if (!StrippedPtrTy)
1191 return 0;
1192
Nadav Rotem0286ca82011-04-05 14:29:52 +00001193 if (StrippedPtr != PtrOp &&
1194 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
Chris Lattner963f4ba2009-08-30 20:36:46 +00001195
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001196 bool HasZeroPointerIndex = false;
1197 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1198 HasZeroPointerIndex = C->isZero();
Nadav Rotem0286ca82011-04-05 14:29:52 +00001199
Chris Lattner963f4ba2009-08-30 20:36:46 +00001200 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1201 // into : GEP [10 x i8]* X, i32 0, ...
1202 //
1203 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1204 // into : GEP i8* X, ...
Nadav Rotem0286ca82011-04-05 14:29:52 +00001205 //
Chris Lattner963f4ba2009-08-30 20:36:46 +00001206 // This occurs when the program declares an array extern like "int X[];"
Chris Lattner6e24d832009-08-30 05:00:50 +00001207 if (HasZeroPointerIndex) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001208 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1209 if (ArrayType *CATy =
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001210 dyn_cast<ArrayType>(CPTy->getElementType())) {
1211 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
Chris Lattner948cdeb2010-01-05 07:42:10 +00001212 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001213 // -> GEP i8* X, ...
Chris Lattner948cdeb2010-01-05 07:42:10 +00001214 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1215 GetElementPtrInst *Res =
Jay Foada9203102011-07-25 09:48:08 +00001216 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
Chris Lattner948cdeb2010-01-05 07:42:10 +00001217 Res->setIsInBounds(GEP.isInBounds());
1218 return Res;
Chris Lattner963f4ba2009-08-30 20:36:46 +00001219 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001220
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001221 if (ArrayType *XATy =
Chris Lattner948cdeb2010-01-05 07:42:10 +00001222 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001223 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
Chris Lattnereed48272005-09-13 00:40:14 +00001224 if (CATy->getElementType() == XATy->getElementType()) {
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001225 // -> GEP [10 x i8]* X, i32 0, ...
Chris Lattnereed48272005-09-13 00:40:14 +00001226 // At this point, we know that the cast source type is a pointer
1227 // to an array of the same type as the destination pointer
1228 // array. Because the array type is never stepped over (there
1229 // is a leading zero) we can fold the cast into this GEP.
Chris Lattner948cdeb2010-01-05 07:42:10 +00001230 GEP.setOperand(0, StrippedPtr);
Chris Lattnereed48272005-09-13 00:40:14 +00001231 return &GEP;
1232 }
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001233 }
1234 }
Chris Lattnereed48272005-09-13 00:40:14 +00001235 } else if (GEP.getNumOperands() == 2) {
1236 // Transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001237 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1238 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001239 Type *SrcElTy = StrippedPtrTy->getElementType();
Matt Arsenault3ea117e2013-08-14 00:24:34 +00001240 Type *ResElTy = PtrOp->getType()->getPointerElementType();
Duncan Sands1df98592010-02-16 11:11:14 +00001241 if (TD && SrcElTy->isArrayTy() &&
Matt Arsenault3ea117e2013-08-14 00:24:34 +00001242 TD->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
Duncan Sands777d2302009-05-09 07:06:46 +00001243 TD->getTypeAllocSize(ResElTy)) {
Matt Arsenault8e3367e2013-08-19 22:17:40 +00001244 Type *IdxType = TD->getIntPtrType(GEP.getType());
Matt Arsenaultfdc26602013-08-14 00:24:38 +00001245 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
Chris Lattner948cdeb2010-01-05 07:42:10 +00001246 Value *NewGEP = GEP.isInBounds() ?
Jay Foad0a2a60a2011-07-22 08:16:57 +00001247 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1248 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
Reid Spencer3da59db2006-11-27 01:05:10 +00001249 // V and GEP are both pointer types --> BitCast
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001250 return new BitCastInst(NewGEP, GEP.getType());
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001251 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001252
Chris Lattner7835cdd2005-09-13 18:36:04 +00001253 // Transform things like:
Duncan Sandsbbc70162012-10-23 08:28:26 +00001254 // %V = mul i64 %N, 4
1255 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1256 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
1257 if (TD && ResElTy->isSized() && SrcElTy->isSized()) {
1258 // Check that changing the type amounts to dividing the index by a scale
1259 // factor.
1260 uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1261 uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy);
1262 if (ResSize && SrcSize % ResSize == 0) {
1263 Value *Idx = GEP.getOperand(1);
1264 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1265 uint64_t Scale = SrcSize / ResSize;
1266
1267 // Earlier transforms ensure that the index has type IntPtrType, which
1268 // considerably simplifies the logic by eliminating implicit casts.
Matt Arsenault8e3367e2013-08-19 22:17:40 +00001269 assert(Idx->getType() == TD->getIntPtrType(GEP.getType()) &&
Duncan Sandsbbc70162012-10-23 08:28:26 +00001270 "Index not cast to pointer width?");
1271
1272 bool NSW;
1273 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1274 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1275 // If the multiplication NewIdx * Scale may overflow then the new
1276 // GEP may not be "inbounds".
1277 Value *NewGEP = GEP.isInBounds() && NSW ?
1278 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1279 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
1280 // The NewGEP must be pointer typed, so must the old one -> BitCast
1281 return new BitCastInst(NewGEP, GEP.getType());
1282 }
1283 }
1284 }
1285
1286 // Similarly, transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001287 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner7835cdd2005-09-13 18:36:04 +00001288 // (where tmp = 8*tmp2) into:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001289 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Duncan Sandsbbc70162012-10-23 08:28:26 +00001290 if (TD && ResElTy->isSized() && SrcElTy->isSized() &&
1291 SrcElTy->isArrayTy()) {
1292 // Check that changing to the array element type amounts to dividing the
1293 // index by a scale factor.
1294 uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
Matt Arsenault3ea117e2013-08-14 00:24:34 +00001295 uint64_t ArrayEltSize
1296 = TD->getTypeAllocSize(SrcElTy->getArrayElementType());
Duncan Sandsbbc70162012-10-23 08:28:26 +00001297 if (ResSize && ArrayEltSize % ResSize == 0) {
1298 Value *Idx = GEP.getOperand(1);
1299 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1300 uint64_t Scale = ArrayEltSize / ResSize;
Jakub Staszak58c1da82012-05-06 13:52:31 +00001301
Duncan Sandsbbc70162012-10-23 08:28:26 +00001302 // Earlier transforms ensure that the index has type IntPtrType, which
1303 // considerably simplifies the logic by eliminating implicit casts.
Matt Arsenault8e3367e2013-08-19 22:17:40 +00001304 assert(Idx->getType() == TD->getIntPtrType(GEP.getType()) &&
Duncan Sandsbbc70162012-10-23 08:28:26 +00001305 "Index not cast to pointer width?");
1306
1307 bool NSW;
1308 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1309 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1310 // If the multiplication NewIdx * Scale may overflow then the new
1311 // GEP may not be "inbounds".
Matt Arsenaultfdc26602013-08-14 00:24:38 +00001312 Value *Off[2] = {
Matt Arsenault8e3367e2013-08-19 22:17:40 +00001313 Constant::getNullValue(TD->getIntPtrType(GEP.getType())),
Matt Arsenaultfdc26602013-08-14 00:24:38 +00001314 NewIdx
1315 };
1316
Duncan Sandsbbc70162012-10-23 08:28:26 +00001317 Value *NewGEP = GEP.isInBounds() && NSW ?
1318 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1319 Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1320 // The NewGEP must be pointer typed, so must the old one -> BitCast
1321 return new BitCastInst(NewGEP, GEP.getType());
Chris Lattner7835cdd2005-09-13 18:36:04 +00001322 }
1323 }
Chris Lattner7835cdd2005-09-13 18:36:04 +00001324 }
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001325 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00001326 }
Nadav Rotem0286ca82011-04-05 14:29:52 +00001327
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001328 if (!TD)
1329 return 0;
1330
Chris Lattner46cd5a12009-01-09 05:44:56 +00001331 /// See if we can simplify:
Chris Lattner873ff012009-08-30 05:55:36 +00001332 /// X = bitcast A* to B*
Chris Lattner46cd5a12009-01-09 05:44:56 +00001333 /// Y = gep X, <...constant indices...>
1334 /// into a gep of the original struct. This is important for SROA and alias
1335 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
Chris Lattner58407792009-01-09 04:53:57 +00001336 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001337 Value *Operand = BCI->getOperand(0);
1338 PointerType *OpType = cast<PointerType>(Operand->getType());
Matt Arsenault8e3367e2013-08-19 22:17:40 +00001339 unsigned OffsetBits = TD->getPointerTypeSizeInBits(OpType);
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001340 APInt Offset(OffsetBits, 0);
1341 if (!isa<BitCastInst>(Operand) &&
Nuno Lopes98281a22012-12-30 16:25:48 +00001342 GEP.accumulateConstantOffset(*TD, Offset) &&
Nadav Rotem0286ca82011-04-05 14:29:52 +00001343 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1344
Chris Lattner46cd5a12009-01-09 05:44:56 +00001345 // If this GEP instruction doesn't move the pointer, just replace the GEP
1346 // with a bitcast of the real input to the dest type.
Nuno Lopes98281a22012-12-30 16:25:48 +00001347 if (!Offset) {
Chris Lattner46cd5a12009-01-09 05:44:56 +00001348 // If the bitcast is of an allocation, and the allocation will be
1349 // converted to match the type of the cast, don't touch this.
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001350 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
Chris Lattner46cd5a12009-01-09 05:44:56 +00001351 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1352 if (Instruction *I = visitBitCast(*BCI)) {
1353 if (I != BCI) {
1354 I->takeName(BCI);
1355 BCI->getParent()->getInstList().insert(BCI, I);
1356 ReplaceInstUsesWith(*BCI, I);
1357 }
1358 return &GEP;
Chris Lattner58407792009-01-09 04:53:57 +00001359 }
Chris Lattner58407792009-01-09 04:53:57 +00001360 }
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001361 return new BitCastInst(Operand, GEP.getType());
Chris Lattner58407792009-01-09 04:53:57 +00001362 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001363
Chris Lattner46cd5a12009-01-09 05:44:56 +00001364 // Otherwise, if the offset is non-zero, we need to find out if there is a
1365 // field at Offset in 'A's type. If so, we can pull the cast through the
1366 // GEP.
1367 SmallVector<Value*, 8> NewIndices;
Matt Arsenault8e3367e2013-08-19 22:17:40 +00001368 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
Chris Lattner948cdeb2010-01-05 07:42:10 +00001369 Value *NGEP = GEP.isInBounds() ?
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001370 Builder->CreateInBoundsGEP(Operand, NewIndices) :
1371 Builder->CreateGEP(Operand, NewIndices);
Jakub Staszak58c1da82012-05-06 13:52:31 +00001372
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001373 if (NGEP->getType() == GEP.getType())
1374 return ReplaceInstUsesWith(GEP, NGEP);
Chris Lattner46cd5a12009-01-09 05:44:56 +00001375 NGEP->takeName(&GEP);
1376 return new BitCastInst(NGEP, GEP.getType());
1377 }
Chris Lattner58407792009-01-09 04:53:57 +00001378 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001379 }
1380
Chris Lattner8a2a3112001-12-14 16:52:21 +00001381 return 0;
1382}
1383
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001384static bool
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001385isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1386 const TargetLibraryInfo *TLI) {
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001387 SmallVector<Instruction*, 4> Worklist;
1388 Worklist.push_back(AI);
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001389
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001390 do {
1391 Instruction *PI = Worklist.pop_back_val();
1392 for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
1393 ++UI) {
1394 Instruction *I = cast<Instruction>(*UI);
1395 switch (I->getOpcode()) {
1396 default:
1397 // Give up the moment we see something we can't handle.
Nuno Lopes99694582012-07-06 23:09:25 +00001398 return false;
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001399
1400 case Instruction::BitCast:
1401 case Instruction::GetElementPtr:
1402 Users.push_back(I);
1403 Worklist.push_back(I);
1404 continue;
1405
1406 case Instruction::ICmp: {
1407 ICmpInst *ICI = cast<ICmpInst>(I);
1408 // We can fold eq/ne comparisons with null to false/true, respectively.
1409 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1410 return false;
1411 Users.push_back(I);
1412 continue;
1413 }
1414
1415 case Instruction::Call:
1416 // Ignore no-op and store intrinsics.
1417 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1418 switch (II->getIntrinsicID()) {
1419 default:
1420 return false;
1421
1422 case Intrinsic::memmove:
1423 case Intrinsic::memcpy:
1424 case Intrinsic::memset: {
1425 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1426 if (MI->isVolatile() || MI->getRawDest() != PI)
1427 return false;
1428 }
1429 // fall through
1430 case Intrinsic::dbg_declare:
1431 case Intrinsic::dbg_value:
1432 case Intrinsic::invariant_start:
1433 case Intrinsic::invariant_end:
1434 case Intrinsic::lifetime_start:
1435 case Intrinsic::lifetime_end:
1436 case Intrinsic::objectsize:
1437 Users.push_back(I);
1438 continue;
1439 }
1440 }
1441
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001442 if (isFreeCall(I, TLI)) {
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001443 Users.push_back(I);
1444 continue;
1445 }
1446 return false;
1447
1448 case Instruction::Store: {
1449 StoreInst *SI = cast<StoreInst>(I);
1450 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1451 return false;
1452 Users.push_back(I);
1453 continue;
1454 }
1455 }
1456 llvm_unreachable("missing a return?");
Nuno Lopes99694582012-07-06 23:09:25 +00001457 }
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001458 } while (!Worklist.empty());
Duncan Sands1d9b9732010-05-27 19:09:06 +00001459 return true;
1460}
1461
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001462Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
Duncan Sands1d9b9732010-05-27 19:09:06 +00001463 // If we have a malloc call which is only used in any amount of comparisons
1464 // to null and free calls, delete the calls and replace the comparisons with
1465 // true or false as appropriate.
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001466 SmallVector<WeakVH, 64> Users;
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001467 if (isAllocSiteRemovable(&MI, Users, TLI)) {
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001468 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1469 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1470 if (!I) continue;
Duncan Sands1d9b9732010-05-27 19:09:06 +00001471
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001472 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001473 ReplaceInstUsesWith(*C,
1474 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1475 C->isFalseWhenEqual()));
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001476 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001477 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
Nuno Lopes99694582012-07-06 23:09:25 +00001478 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1479 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1480 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1481 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1482 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1483 }
Duncan Sands1d9b9732010-05-27 19:09:06 +00001484 }
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001485 EraseInstFromFunction(*I);
Duncan Sands1d9b9732010-05-27 19:09:06 +00001486 }
Nuno Lopes2b3e9582012-06-21 21:25:05 +00001487
1488 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
Nuno Lopesc363c742012-06-28 22:31:24 +00001489 // Replace invoke with a NOP intrinsic to maintain the original CFG
Nuno Lopes3769fe12012-06-25 17:11:47 +00001490 Module *M = II->getParent()->getParent()->getParent();
Nuno Lopesc363c742012-06-28 22:31:24 +00001491 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1492 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
Dmitri Gribenko5c332db2013-05-05 00:40:33 +00001493 None, "", II->getParent());
Nuno Lopes2b3e9582012-06-21 21:25:05 +00001494 }
Duncan Sands1d9b9732010-05-27 19:09:06 +00001495 return EraseInstFromFunction(MI);
1496 }
1497 return 0;
1498}
1499
Quentin Colombet637582e2013-01-07 18:37:41 +00001500/// \brief Move the call to free before a NULL test.
1501///
1502/// Check if this free is accessed after its argument has been test
1503/// against NULL (property 0).
1504/// If yes, it is legal to move this call in its predecessor block.
1505///
1506/// The move is performed only if the block containing the call to free
1507/// will be removed, i.e.:
1508/// 1. it has only one predecessor P, and P has two successors
1509/// 2. it contains the call and an unconditional branch
1510/// 3. its successor is the same as its predecessor's successor
1511///
1512/// The profitability is out-of concern here and this function should
1513/// be called only if the caller knows this transformation would be
1514/// profitable (e.g., for code size).
1515static Instruction *
1516tryToMoveFreeBeforeNullTest(CallInst &FI) {
1517 Value *Op = FI.getArgOperand(0);
1518 BasicBlock *FreeInstrBB = FI.getParent();
1519 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1520
1521 // Validate part of constraint #1: Only one predecessor
1522 // FIXME: We can extend the number of predecessor, but in that case, we
1523 // would duplicate the call to free in each predecessor and it may
1524 // not be profitable even for code size.
1525 if (!PredBB)
1526 return 0;
1527
1528 // Validate constraint #2: Does this block contains only the call to
1529 // free and an unconditional branch?
1530 // FIXME: We could check if we can speculate everything in the
1531 // predecessor block
1532 if (FreeInstrBB->size() != 2)
1533 return 0;
1534 BasicBlock *SuccBB;
1535 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
1536 return 0;
1537
1538 // Validate the rest of constraint #1 by matching on the pred branch.
1539 TerminatorInst *TI = PredBB->getTerminator();
1540 BasicBlock *TrueBB, *FalseBB;
1541 ICmpInst::Predicate Pred;
1542 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
1543 return 0;
1544 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
1545 return 0;
1546
1547 // Validate constraint #3: Ensure the null case just falls through.
1548 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
1549 return 0;
1550 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1551 "Broken CFG: missing edge from predecessor to successor");
1552
1553 FI.moveBefore(TI);
1554 return &FI;
1555}
Duncan Sands1d9b9732010-05-27 19:09:06 +00001556
1557
Gabor Greif91697372010-06-24 12:21:15 +00001558Instruction *InstCombiner::visitFree(CallInst &FI) {
1559 Value *Op = FI.getArgOperand(0);
Victor Hernandez66284e02009-10-24 04:23:03 +00001560
1561 // free undef -> unreachable.
1562 if (isa<UndefValue>(Op)) {
1563 // Insert a new store to null because we cannot modify the CFG here.
Eli Friedmane6f364b2011-05-18 23:58:37 +00001564 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1565 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
Victor Hernandez66284e02009-10-24 04:23:03 +00001566 return EraseInstFromFunction(FI);
1567 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001568
Victor Hernandez66284e02009-10-24 04:23:03 +00001569 // If we have 'free null' delete the instruction. This can happen in stl code
1570 // when lots of inlining happens.
1571 if (isa<ConstantPointerNull>(Op))
1572 return EraseInstFromFunction(FI);
1573
Quentin Colombet637582e2013-01-07 18:37:41 +00001574 // If we optimize for code size, try to move the call to free before the null
1575 // test so that simplify cfg can remove the empty block and dead code
1576 // elimination the branch. I.e., helps to turn something like:
1577 // if (foo) free(foo);
1578 // into
1579 // free(foo);
1580 if (MinimizeSize)
1581 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1582 return I;
1583
Victor Hernandez66284e02009-10-24 04:23:03 +00001584 return 0;
1585}
Chris Lattner67b1e1b2003-12-07 01:24:23 +00001586
Chris Lattner3284d1f2007-04-15 00:07:55 +00001587
Chris Lattner2f503e62005-01-31 05:36:43 +00001588
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00001589Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1590 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4b828e62005-06-18 17:37:34 +00001591 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001592 BasicBlock *TrueDest;
1593 BasicBlock *FalseDest;
Dan Gohman4ae51262009-08-12 16:23:25 +00001594 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001595 !isa<Constant>(X)) {
1596 // Swap Destinations and condition...
1597 BI.setCondition(X);
Chandler Carruth602650c2011-10-17 01:11:57 +00001598 BI.swapSuccessors();
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001599 return &BI;
1600 }
1601
Reid Spencere4d87aa2006-12-23 06:05:41 +00001602 // Cannonicalize fcmp_one -> fcmp_oeq
1603 FCmpInst::Predicate FPred; Value *Y;
Jakub Staszak58c1da82012-05-06 13:52:31 +00001604 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
Chris Lattner7a1e9242009-08-30 06:13:40 +00001605 TrueDest, FalseDest)) &&
1606 BI.getCondition()->hasOneUse())
1607 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1608 FPred == FCmpInst::FCMP_OGE) {
1609 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1610 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
Jakub Staszak58c1da82012-05-06 13:52:31 +00001611
Chris Lattner7a1e9242009-08-30 06:13:40 +00001612 // Swap Destinations and condition.
Chandler Carruth602650c2011-10-17 01:11:57 +00001613 BI.swapSuccessors();
Chris Lattner7a1e9242009-08-30 06:13:40 +00001614 Worklist.Add(Cond);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001615 return &BI;
1616 }
1617
1618 // Cannonicalize icmp_ne -> icmp_eq
1619 ICmpInst::Predicate IPred;
1620 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
Chris Lattner7a1e9242009-08-30 06:13:40 +00001621 TrueDest, FalseDest)) &&
1622 BI.getCondition()->hasOneUse())
1623 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
1624 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1625 IPred == ICmpInst::ICMP_SGE) {
1626 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1627 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1628 // Swap Destinations and condition.
Chandler Carruth602650c2011-10-17 01:11:57 +00001629 BI.swapSuccessors();
Chris Lattner7a1e9242009-08-30 06:13:40 +00001630 Worklist.Add(Cond);
Chris Lattner40f5d702003-06-04 05:10:11 +00001631 return &BI;
1632 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001633
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00001634 return 0;
1635}
Chris Lattner0864acf2002-11-04 16:18:53 +00001636
Chris Lattner46238a62004-07-03 00:26:11 +00001637Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1638 Value *Cond = SI.getCondition();
1639 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1640 if (I->getOpcode() == Instruction::Add)
1641 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1642 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001643 // Skip the first item since that's the default case.
Stepan Dyatkovskiy3d3abe02012-03-11 06:09:17 +00001644 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
Stepan Dyatkovskiyc10fa6c2012-03-08 07:06:20 +00001645 i != e; ++i) {
1646 ConstantInt* CaseVal = i.getCaseValue();
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001647 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1648 AddRHS);
1649 assert(isa<ConstantInt>(NewCaseVal) &&
1650 "Result of expression should be constant");
Stepan Dyatkovskiyc10fa6c2012-03-08 07:06:20 +00001651 i.setValue(cast<ConstantInt>(NewCaseVal));
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001652 }
1653 SI.setCondition(I->getOperand(0));
Chris Lattner7a1e9242009-08-30 06:13:40 +00001654 Worklist.Add(I);
Chris Lattner46238a62004-07-03 00:26:11 +00001655 return &SI;
1656 }
1657 }
1658 return 0;
1659}
1660
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001661Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001662 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001663
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001664 if (!EV.hasIndices())
1665 return ReplaceInstUsesWith(EV, Agg);
1666
1667 if (Constant *C = dyn_cast<Constant>(Agg)) {
Chris Lattnerd59ae902012-01-26 02:32:04 +00001668 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1669 if (EV.getNumIndices() == 0)
1670 return ReplaceInstUsesWith(EV, C2);
1671 // Extract the remaining indices out of the constant indexed by the
1672 // first index
1673 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001674 }
1675 return 0; // Can't handle other constants
Chris Lattnerd59ae902012-01-26 02:32:04 +00001676 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001677
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001678 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1679 // We're extracting from an insertvalue instruction, compare the indices
1680 const unsigned *exti, *exte, *insi, *inse;
1681 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1682 exte = EV.idx_end(), inse = IV->idx_end();
1683 exti != exte && insi != inse;
1684 ++exti, ++insi) {
1685 if (*insi != *exti)
1686 // The insert and extract both reference distinctly different elements.
1687 // This means the extract is not influenced by the insert, and we can
1688 // replace the aggregate operand of the extract with the aggregate
1689 // operand of the insert. i.e., replace
1690 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1691 // %E = extractvalue { i32, { i32 } } %I, 0
1692 // with
1693 // %E = extractvalue { i32, { i32 } } %A, 0
1694 return ExtractValueInst::Create(IV->getAggregateOperand(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001695 EV.getIndices());
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001696 }
1697 if (exti == exte && insi == inse)
1698 // Both iterators are at the end: Index lists are identical. Replace
1699 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1700 // %C = extractvalue { i32, { i32 } } %B, 1, 0
1701 // with "i32 42"
1702 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1703 if (exti == exte) {
1704 // The extract list is a prefix of the insert list. i.e. replace
1705 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1706 // %E = extractvalue { i32, { i32 } } %I, 1
1707 // with
1708 // %X = extractvalue { i32, { i32 } } %A, 1
1709 // %E = insertvalue { i32 } %X, i32 42, 0
1710 // by switching the order of the insert and extract (though the
1711 // insertvalue should be left in, since it may have other uses).
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001712 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001713 EV.getIndices());
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001714 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001715 makeArrayRef(insi, inse));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001716 }
1717 if (insi == inse)
1718 // The insert list is a prefix of the extract list
1719 // We can simply remove the common indices from the extract and make it
1720 // operate on the inserted value instead of the insertvalue result.
1721 // i.e., replace
1722 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1723 // %E = extractvalue { i32, { i32 } } %I, 1, 0
1724 // with
1725 // %E extractvalue { i32 } { i32 42 }, 0
Jakub Staszak58c1da82012-05-06 13:52:31 +00001726 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001727 makeArrayRef(exti, exte));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001728 }
Chris Lattner7e606e22009-11-09 07:07:56 +00001729 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1730 // We're extracting from an intrinsic, see if we're the only user, which
1731 // allows us to simplify multiple result intrinsics to simpler things that
Gabor Greif91697372010-06-24 12:21:15 +00001732 // just get one value.
Chris Lattner7e606e22009-11-09 07:07:56 +00001733 if (II->hasOneUse()) {
1734 // Check if we're grabbing the overflow bit or the result of a 'with
1735 // overflow' intrinsic. If it's the latter we can remove the intrinsic
1736 // and replace it with a traditional binary instruction.
1737 switch (II->getIntrinsicID()) {
1738 case Intrinsic::uadd_with_overflow:
1739 case Intrinsic::sadd_with_overflow:
1740 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001741 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001742 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001743 EraseInstFromFunction(*II);
1744 return BinaryOperator::CreateAdd(LHS, RHS);
1745 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001746
Chris Lattner74b64612010-12-19 19:43:52 +00001747 // If the normal result of the add is dead, and the RHS is a constant,
1748 // we can transform this into a range comparison.
1749 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
Chris Lattnerf2a97ed2010-12-19 23:24:04 +00001750 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1751 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1752 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1753 ConstantExpr::getNot(CI));
Chris Lattner7e606e22009-11-09 07:07:56 +00001754 break;
1755 case Intrinsic::usub_with_overflow:
1756 case Intrinsic::ssub_with_overflow:
1757 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001758 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001759 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001760 EraseInstFromFunction(*II);
1761 return BinaryOperator::CreateSub(LHS, RHS);
1762 }
1763 break;
1764 case Intrinsic::umul_with_overflow:
1765 case Intrinsic::smul_with_overflow:
1766 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001767 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001768 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001769 EraseInstFromFunction(*II);
1770 return BinaryOperator::CreateMul(LHS, RHS);
1771 }
1772 break;
1773 default:
1774 break;
1775 }
1776 }
1777 }
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001778 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1779 // If the (non-volatile) load only has one use, we can rewrite this to a
1780 // load from a GEP. This reduces the size of the load.
1781 // FIXME: If a load is used only by extractvalue instructions then this
1782 // could be done regardless of having multiple uses.
Eli Friedmancc4a0432011-08-15 22:09:40 +00001783 if (L->isSimple() && L->hasOneUse()) {
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001784 // extractvalue has integer indices, getelementptr has Value*s. Convert.
1785 SmallVector<Value*, 4> Indices;
1786 // Prefix an i32 0 since we need the first element.
1787 Indices.push_back(Builder->getInt32(0));
1788 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1789 I != E; ++I)
1790 Indices.push_back(Builder->getInt32(*I));
1791
1792 // We need to insert these at the location of the old load, not at that of
1793 // the extractvalue.
1794 Builder->SetInsertPoint(L->getParent(), L);
Jay Foad0a2a60a2011-07-22 08:16:57 +00001795 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001796 // Returning the load directly will cause the main loop to insert it in
1797 // the wrong spot, so use ReplaceInstUsesWith().
1798 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1799 }
1800 // We could simplify extracts from other values. Note that nested extracts may
1801 // already be simplified implicitly by the above: extract (extract (insert) )
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001802 // will be translated into extract ( insert ( extract ) ) first and then just
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001803 // the value inserted, if appropriate. Similarly for extracts from single-use
1804 // loads: extract (extract (load)) will be translated to extract (load (gep))
1805 // and if again single-use then via load (gep (gep)) to load (gep).
1806 // However, double extracts from e.g. function arguments or return values
1807 // aren't handled yet.
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001808 return 0;
1809}
1810
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001811enum Personality_Type {
1812 Unknown_Personality,
1813 GNU_Ada_Personality,
Bill Wendling76f267d2011-10-17 21:20:24 +00001814 GNU_CXX_Personality,
1815 GNU_ObjC_Personality
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001816};
1817
1818/// RecognizePersonality - See if the given exception handling personality
1819/// function is one that we understand. If so, return a description of it;
1820/// otherwise return Unknown_Personality.
1821static Personality_Type RecognizePersonality(Value *Pers) {
1822 Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1823 if (!F)
1824 return Unknown_Personality;
1825 return StringSwitch<Personality_Type>(F->getName())
1826 .Case("__gnat_eh_personality", GNU_Ada_Personality)
Bill Wendling76f267d2011-10-17 21:20:24 +00001827 .Case("__gxx_personality_v0", GNU_CXX_Personality)
1828 .Case("__objc_personality_v0", GNU_ObjC_Personality)
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001829 .Default(Unknown_Personality);
1830}
1831
1832/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1833static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1834 switch (Personality) {
1835 case Unknown_Personality:
1836 return false;
1837 case GNU_Ada_Personality:
1838 // While __gnat_all_others_value will match any Ada exception, it doesn't
1839 // match foreign exceptions (or didn't, before gcc-4.7).
1840 return false;
1841 case GNU_CXX_Personality:
Bill Wendling76f267d2011-10-17 21:20:24 +00001842 case GNU_ObjC_Personality:
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001843 return TypeInfo->isNullValue();
1844 }
1845 llvm_unreachable("Unknown personality!");
1846}
1847
1848static bool shorter_filter(const Value *LHS, const Value *RHS) {
1849 return
1850 cast<ArrayType>(LHS->getType())->getNumElements()
1851 <
1852 cast<ArrayType>(RHS->getType())->getNumElements();
1853}
1854
1855Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1856 // The logic here should be correct for any real-world personality function.
1857 // However if that turns out not to be true, the offending logic can always
1858 // be conditioned on the personality function, like the catch-all logic is.
1859 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1860
1861 // Simplify the list of clauses, eg by removing repeated catch clauses
1862 // (these are often created by inlining).
1863 bool MakeNewInstruction = false; // If true, recreate using the following:
1864 SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1865 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
1866
1867 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1868 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1869 bool isLastClause = i + 1 == e;
1870 if (LI.isCatch(i)) {
1871 // A catch clause.
1872 Value *CatchClause = LI.getClause(i);
1873 Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1874
1875 // If we already saw this clause, there is no point in having a second
1876 // copy of it.
1877 if (AlreadyCaught.insert(TypeInfo)) {
1878 // This catch clause was not already seen.
1879 NewClauses.push_back(CatchClause);
1880 } else {
1881 // Repeated catch clause - drop the redundant copy.
1882 MakeNewInstruction = true;
1883 }
1884
1885 // If this is a catch-all then there is no point in keeping any following
1886 // clauses or marking the landingpad as having a cleanup.
1887 if (isCatchAll(Personality, TypeInfo)) {
1888 if (!isLastClause)
1889 MakeNewInstruction = true;
1890 CleanupFlag = false;
1891 break;
1892 }
1893 } else {
1894 // A filter clause. If any of the filter elements were already caught
1895 // then they can be dropped from the filter. It is tempting to try to
1896 // exploit the filter further by saying that any typeinfo that does not
1897 // occur in the filter can't be caught later (and thus can be dropped).
1898 // However this would be wrong, since typeinfos can match without being
1899 // equal (for example if one represents a C++ class, and the other some
1900 // class derived from it).
1901 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1902 Value *FilterClause = LI.getClause(i);
1903 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1904 unsigned NumTypeInfos = FilterType->getNumElements();
1905
1906 // An empty filter catches everything, so there is no point in keeping any
1907 // following clauses or marking the landingpad as having a cleanup. By
1908 // dealing with this case here the following code is made a bit simpler.
1909 if (!NumTypeInfos) {
1910 NewClauses.push_back(FilterClause);
1911 if (!isLastClause)
1912 MakeNewInstruction = true;
1913 CleanupFlag = false;
1914 break;
1915 }
1916
1917 bool MakeNewFilter = false; // If true, make a new filter.
1918 SmallVector<Constant *, 16> NewFilterElts; // New elements.
1919 if (isa<ConstantAggregateZero>(FilterClause)) {
1920 // Not an empty filter - it contains at least one null typeinfo.
1921 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1922 Constant *TypeInfo =
1923 Constant::getNullValue(FilterType->getElementType());
1924 // If this typeinfo is a catch-all then the filter can never match.
1925 if (isCatchAll(Personality, TypeInfo)) {
1926 // Throw the filter away.
1927 MakeNewInstruction = true;
1928 continue;
1929 }
1930
1931 // There is no point in having multiple copies of this typeinfo, so
1932 // discard all but the first copy if there is more than one.
1933 NewFilterElts.push_back(TypeInfo);
1934 if (NumTypeInfos > 1)
1935 MakeNewFilter = true;
1936 } else {
1937 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1938 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1939 NewFilterElts.reserve(NumTypeInfos);
1940
1941 // Remove any filter elements that were already caught or that already
1942 // occurred in the filter. While there, see if any of the elements are
1943 // catch-alls. If so, the filter can be discarded.
1944 bool SawCatchAll = false;
1945 for (unsigned j = 0; j != NumTypeInfos; ++j) {
1946 Value *Elt = Filter->getOperand(j);
1947 Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1948 if (isCatchAll(Personality, TypeInfo)) {
1949 // This element is a catch-all. Bail out, noting this fact.
1950 SawCatchAll = true;
1951 break;
1952 }
1953 if (AlreadyCaught.count(TypeInfo))
1954 // Already caught by an earlier clause, so having it in the filter
1955 // is pointless.
1956 continue;
1957 // There is no point in having multiple copies of the same typeinfo in
1958 // a filter, so only add it if we didn't already.
1959 if (SeenInFilter.insert(TypeInfo))
1960 NewFilterElts.push_back(cast<Constant>(Elt));
1961 }
1962 // A filter containing a catch-all cannot match anything by definition.
1963 if (SawCatchAll) {
1964 // Throw the filter away.
1965 MakeNewInstruction = true;
1966 continue;
1967 }
1968
1969 // If we dropped something from the filter, make a new one.
1970 if (NewFilterElts.size() < NumTypeInfos)
1971 MakeNewFilter = true;
1972 }
1973 if (MakeNewFilter) {
1974 FilterType = ArrayType::get(FilterType->getElementType(),
1975 NewFilterElts.size());
1976 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1977 MakeNewInstruction = true;
1978 }
1979
1980 NewClauses.push_back(FilterClause);
1981
1982 // If the new filter is empty then it will catch everything so there is
1983 // no point in keeping any following clauses or marking the landingpad
1984 // as having a cleanup. The case of the original filter being empty was
1985 // already handled above.
1986 if (MakeNewFilter && !NewFilterElts.size()) {
1987 assert(MakeNewInstruction && "New filter but not a new instruction!");
1988 CleanupFlag = false;
1989 break;
1990 }
1991 }
1992 }
1993
1994 // If several filters occur in a row then reorder them so that the shortest
1995 // filters come first (those with the smallest number of elements). This is
1996 // advantageous because shorter filters are more likely to match, speeding up
1997 // unwinding, but mostly because it increases the effectiveness of the other
1998 // filter optimizations below.
1999 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2000 unsigned j;
2001 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2002 for (j = i; j != e; ++j)
2003 if (!isa<ArrayType>(NewClauses[j]->getType()))
2004 break;
2005
2006 // Check whether the filters are already sorted by length. We need to know
2007 // if sorting them is actually going to do anything so that we only make a
2008 // new landingpad instruction if it does.
2009 for (unsigned k = i; k + 1 < j; ++k)
2010 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2011 // Not sorted, so sort the filters now. Doing an unstable sort would be
2012 // correct too but reordering filters pointlessly might confuse users.
2013 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2014 shorter_filter);
2015 MakeNewInstruction = true;
2016 break;
2017 }
2018
2019 // Look for the next batch of filters.
2020 i = j + 1;
2021 }
2022
2023 // If typeinfos matched if and only if equal, then the elements of a filter L
2024 // that occurs later than a filter F could be replaced by the intersection of
2025 // the elements of F and L. In reality two typeinfos can match without being
2026 // equal (for example if one represents a C++ class, and the other some class
2027 // derived from it) so it would be wrong to perform this transform in general.
2028 // However the transform is correct and useful if F is a subset of L. In that
2029 // case L can be replaced by F, and thus removed altogether since repeating a
2030 // filter is pointless. So here we look at all pairs of filters F and L where
2031 // L follows F in the list of clauses, and remove L if every element of F is
2032 // an element of L. This can occur when inlining C++ functions with exception
2033 // specifications.
2034 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2035 // Examine each filter in turn.
2036 Value *Filter = NewClauses[i];
2037 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2038 if (!FTy)
2039 // Not a filter - skip it.
2040 continue;
2041 unsigned FElts = FTy->getNumElements();
2042 // Examine each filter following this one. Doing this backwards means that
2043 // we don't have to worry about filters disappearing under us when removed.
2044 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2045 Value *LFilter = NewClauses[j];
2046 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2047 if (!LTy)
2048 // Not a filter - skip it.
2049 continue;
2050 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2051 // an element of LFilter, then discard LFilter.
Craig Topper6227d5c2013-07-04 01:31:24 +00002052 SmallVectorImpl<Value *>::iterator J = NewClauses.begin() + j;
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00002053 // If Filter is empty then it is a subset of LFilter.
2054 if (!FElts) {
2055 // Discard LFilter.
2056 NewClauses.erase(J);
2057 MakeNewInstruction = true;
2058 // Move on to the next filter.
2059 continue;
2060 }
2061 unsigned LElts = LTy->getNumElements();
2062 // If Filter is longer than LFilter then it cannot be a subset of it.
2063 if (FElts > LElts)
2064 // Move on to the next filter.
2065 continue;
2066 // At this point we know that LFilter has at least one element.
2067 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002068 // Filter is a subset of LFilter iff Filter contains only zeros (as we
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00002069 // already know that Filter is not longer than LFilter).
2070 if (isa<ConstantAggregateZero>(Filter)) {
2071 assert(FElts <= LElts && "Should have handled this case earlier!");
2072 // Discard LFilter.
2073 NewClauses.erase(J);
2074 MakeNewInstruction = true;
2075 }
2076 // Move on to the next filter.
2077 continue;
2078 }
2079 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2080 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2081 // Since Filter is non-empty and contains only zeros, it is a subset of
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002082 // LFilter iff LFilter contains a zero.
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00002083 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2084 for (unsigned l = 0; l != LElts; ++l)
2085 if (LArray->getOperand(l)->isNullValue()) {
2086 // LFilter contains a zero - discard it.
2087 NewClauses.erase(J);
2088 MakeNewInstruction = true;
2089 break;
2090 }
2091 // Move on to the next filter.
2092 continue;
2093 }
2094 // At this point we know that both filters are ConstantArrays. Loop over
2095 // operands to see whether every element of Filter is also an element of
2096 // LFilter. Since filters tend to be short this is probably faster than
2097 // using a method that scales nicely.
2098 ConstantArray *FArray = cast<ConstantArray>(Filter);
2099 bool AllFound = true;
2100 for (unsigned f = 0; f != FElts; ++f) {
2101 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2102 AllFound = false;
2103 for (unsigned l = 0; l != LElts; ++l) {
2104 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2105 if (LTypeInfo == FTypeInfo) {
2106 AllFound = true;
2107 break;
2108 }
2109 }
2110 if (!AllFound)
2111 break;
2112 }
2113 if (AllFound) {
2114 // Discard LFilter.
2115 NewClauses.erase(J);
2116 MakeNewInstruction = true;
2117 }
2118 // Move on to the next filter.
2119 }
2120 }
2121
2122 // If we changed any of the clauses, replace the old landingpad instruction
2123 // with a new one.
2124 if (MakeNewInstruction) {
2125 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2126 LI.getPersonalityFn(),
2127 NewClauses.size());
2128 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2129 NLI->addClause(NewClauses[i]);
2130 // A landing pad with no clauses must have the cleanup flag set. It is
2131 // theoretically possible, though highly unlikely, that we eliminated all
2132 // clauses. If so, force the cleanup flag to true.
2133 if (NewClauses.empty())
2134 CleanupFlag = true;
2135 NLI->setCleanup(CleanupFlag);
2136 return NLI;
2137 }
2138
2139 // Even if none of the clauses changed, we may nonetheless have understood
2140 // that the cleanup flag is pointless. Clear it if so.
2141 if (LI.isCleanup() != CleanupFlag) {
2142 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2143 LI.setCleanup(CleanupFlag);
2144 return &LI;
2145 }
2146
2147 return 0;
2148}
2149
Chris Lattnera844fc4c2006-04-10 22:45:52 +00002150
Robert Bocchino1d7456d2006-01-13 22:48:06 +00002151
Chris Lattnerea1c4542004-12-08 23:43:58 +00002152
2153/// TryToSinkInstruction - Try to move the specified instruction from its
2154/// current block into the beginning of DestBlock, which can only happen if it's
2155/// safe to move the instruction past all of the instructions between it and the
2156/// end of its block.
2157static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2158 assert(I->hasOneUse() && "Invariants didn't hold!");
2159
Bill Wendling9d6070f2011-08-15 21:14:31 +00002160 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Bill Wendlingc9b2a982011-08-17 20:36:44 +00002161 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2162 isa<TerminatorInst>(I))
Chris Lattnerbfc538c2008-05-09 15:07:33 +00002163 return false;
Misha Brukmanfd939082005-04-21 23:48:37 +00002164
Chris Lattnerea1c4542004-12-08 23:43:58 +00002165 // Do not sink alloca instructions out of the entry block.
Dan Gohmanecb7a772007-03-22 16:38:57 +00002166 if (isa<AllocaInst>(I) && I->getParent() ==
2167 &DestBlock->getParent()->getEntryBlock())
Chris Lattnerea1c4542004-12-08 23:43:58 +00002168 return false;
2169
Chris Lattner96a52a62004-12-09 07:14:34 +00002170 // We can only sink load instructions if there is nothing between the load and
2171 // the end of block that could change the value.
Chris Lattner2539e332008-05-08 17:37:37 +00002172 if (I->mayReadFromMemory()) {
2173 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Chris Lattner96a52a62004-12-09 07:14:34 +00002174 Scan != E; ++Scan)
2175 if (Scan->mayWriteToMemory())
2176 return false;
Chris Lattner96a52a62004-12-09 07:14:34 +00002177 }
Chris Lattnerea1c4542004-12-08 23:43:58 +00002178
Bill Wendling5b6f42f2011-08-16 20:45:24 +00002179 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
Chris Lattner4bc5f802005-08-08 19:11:57 +00002180 I->moveBefore(InsertPos);
Chris Lattnerea1c4542004-12-08 23:43:58 +00002181 ++NumSunkInst;
2182 return true;
2183}
2184
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002185
2186/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2187/// all reachable code to the worklist.
2188///
2189/// This has a couple of tricks to make the code faster and more powerful. In
2190/// particular, we constant fold and DCE instructions as we go, to avoid adding
2191/// them to the worklist (this significantly speeds up instcombine on code where
2192/// many instructions are dead or constant). Additionally, if we find a branch
2193/// whose condition is a known constant, we only visit the reachable successors.
2194///
Jakub Staszak58c1da82012-05-06 13:52:31 +00002195static bool AddReachableCodeToWorklist(BasicBlock *BB,
Chris Lattner1f87a582007-02-15 19:41:52 +00002196 SmallPtrSet<BasicBlock*, 64> &Visited,
Chris Lattnerdbab3862007-03-02 21:28:56 +00002197 InstCombiner &IC,
Micah Villmow3574eca2012-10-08 16:38:25 +00002198 const DataLayout *TD,
Chad Rosier00737bd2011-12-01 21:29:16 +00002199 const TargetLibraryInfo *TLI) {
Chris Lattner2ee743b2009-10-15 04:59:28 +00002200 bool MadeIRChange = false;
Chris Lattner2806dff2008-08-15 04:03:01 +00002201 SmallVector<BasicBlock*, 256> Worklist;
Chris Lattner2c7718a2007-03-23 19:17:18 +00002202 Worklist.push_back(BB);
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002203
Benjamin Kramera53fe602010-10-23 17:10:24 +00002204 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00002205 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2206
Dan Gohman321a8132010-01-05 16:27:25 +00002207 do {
2208 BB = Worklist.pop_back_val();
Jakub Staszak58c1da82012-05-06 13:52:31 +00002209
Chris Lattner2c7718a2007-03-23 19:17:18 +00002210 // We have now visited this block! If we've already been here, ignore it.
2211 if (!Visited.insert(BB)) continue;
Devang Patel7fe1dec2008-11-19 18:56:50 +00002212
Chris Lattner2c7718a2007-03-23 19:17:18 +00002213 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2214 Instruction *Inst = BBI++;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002215
Chris Lattner2c7718a2007-03-23 19:17:18 +00002216 // DCE instruction if trivially dead.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00002217 if (isInstructionTriviallyDead(Inst, TLI)) {
Chris Lattner2c7718a2007-03-23 19:17:18 +00002218 ++NumDeadInst;
Matt Arsenault596aa122013-09-05 19:48:28 +00002219 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
Chris Lattner2c7718a2007-03-23 19:17:18 +00002220 Inst->eraseFromParent();
2221 continue;
2222 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002223
Chris Lattner2c7718a2007-03-23 19:17:18 +00002224 // ConstantProp instruction if trivially constant.
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002225 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
Chad Rosier00737bd2011-12-01 21:29:16 +00002226 if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
Matt Arsenault596aa122013-09-05 19:48:28 +00002227 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002228 << *Inst << '\n');
2229 Inst->replaceAllUsesWith(C);
2230 ++NumConstProp;
2231 Inst->eraseFromParent();
2232 continue;
2233 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002234
Chris Lattner2ee743b2009-10-15 04:59:28 +00002235 if (TD) {
2236 // See if we can constant fold its operands.
2237 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2238 i != e; ++i) {
2239 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2240 if (CE == 0) continue;
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00002241
2242 Constant*& FoldRes = FoldedConstants[CE];
2243 if (!FoldRes)
Chad Rosieraab8e282011-12-02 01:26:24 +00002244 FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00002245 if (!FoldRes)
2246 FoldRes = CE;
2247
2248 if (FoldRes != CE) {
2249 *i = FoldRes;
Chris Lattner2ee743b2009-10-15 04:59:28 +00002250 MadeIRChange = true;
2251 }
2252 }
2253 }
Devang Patel7fe1dec2008-11-19 18:56:50 +00002254
Chris Lattner67f7d542009-10-12 03:58:40 +00002255 InstrsForInstCombineWorklist.push_back(Inst);
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002256 }
Chris Lattner2c7718a2007-03-23 19:17:18 +00002257
2258 // Recursively visit successors. If this is a branch or switch on a
2259 // constant, only visit the reachable successor.
2260 TerminatorInst *TI = BB->getTerminator();
2261 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2262 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2263 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewycky91436992008-03-09 08:50:23 +00002264 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewycky280a6e62008-04-25 16:53:59 +00002265 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +00002266 continue;
2267 }
2268 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2269 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2270 // See if this is an explicit destination.
Stepan Dyatkovskiy3d3abe02012-03-11 06:09:17 +00002271 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
Stepan Dyatkovskiyc10fa6c2012-03-08 07:06:20 +00002272 i != e; ++i)
2273 if (i.getCaseValue() == Cond) {
2274 BasicBlock *ReachableBB = i.getCaseSuccessor();
Nick Lewycky280a6e62008-04-25 16:53:59 +00002275 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +00002276 continue;
2277 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002278
Chris Lattner2c7718a2007-03-23 19:17:18 +00002279 // Otherwise it is the default destination.
Stepan Dyatkovskiy24473122012-02-01 07:49:51 +00002280 Worklist.push_back(SI->getDefaultDest());
Chris Lattner2c7718a2007-03-23 19:17:18 +00002281 continue;
2282 }
2283 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002284
Chris Lattner2c7718a2007-03-23 19:17:18 +00002285 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2286 Worklist.push_back(TI->getSuccessor(i));
Dan Gohman321a8132010-01-05 16:27:25 +00002287 } while (!Worklist.empty());
Jakub Staszak58c1da82012-05-06 13:52:31 +00002288
Chris Lattner67f7d542009-10-12 03:58:40 +00002289 // Once we've found all of the instructions to add to instcombine's worklist,
2290 // add them in reverse order. This way instcombine will visit from the top
2291 // of the function down. This jives well with the way that it adds all uses
2292 // of instructions to the worklist after doing a transformation, thus avoiding
2293 // some N^2 behavior in pathological cases.
2294 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2295 InstrsForInstCombineWorklist.size());
Jakub Staszak58c1da82012-05-06 13:52:31 +00002296
Chris Lattner2ee743b2009-10-15 04:59:28 +00002297 return MadeIRChange;
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002298}
2299
Chris Lattnerec9c3582007-03-03 02:04:50 +00002300bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002301 MadeIRChange = false;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002302
Matt Arsenault596aa122013-09-05 19:48:28 +00002303 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
Benjamin Kramera7b0cb72011-11-15 16:27:03 +00002304 << F.getName() << "\n");
Chris Lattner8a2a3112001-12-14 16:52:21 +00002305
Chris Lattnerb3d59702005-07-07 20:40:38 +00002306 {
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002307 // Do a depth-first traversal of the function, populate the worklist with
2308 // the reachable instructions. Ignore blocks that are not reachable. Keep
2309 // track of which blocks we visit.
Chris Lattner1f87a582007-02-15 19:41:52 +00002310 SmallPtrSet<BasicBlock*, 64> Visited;
Chad Rosier00737bd2011-12-01 21:29:16 +00002311 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
2312 TLI);
Jeff Cohen00b168892005-07-27 06:12:32 +00002313
Chris Lattnerb3d59702005-07-07 20:40:38 +00002314 // Do a quick scan over the function. If we find any blocks that are
2315 // unreachable, remove any instructions inside of them. This prevents
2316 // the instcombine code from having to deal with some bad special cases.
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002317 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2318 if (Visited.count(BB)) continue;
2319
Bill Wendlinga2684682011-09-04 09:43:36 +00002320 // Delete the instructions backwards, as it has a reduced likelihood of
2321 // having to update as many def-use and use-def chains.
2322 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2323 while (EndInst != BB->begin()) {
2324 // Delete the next to last instruction.
2325 BasicBlock::iterator I = EndInst;
2326 Instruction *Inst = --I;
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002327 if (!Inst->use_empty())
2328 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
Bill Wendlinga2684682011-09-04 09:43:36 +00002329 if (isa<LandingPadInst>(Inst)) {
2330 EndInst = Inst;
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002331 continue;
Bill Wendlinga2684682011-09-04 09:43:36 +00002332 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002333 if (!isa<DbgInfoIntrinsic>(Inst)) {
2334 ++NumDeadInst;
2335 MadeIRChange = true;
Chris Lattnerb3d59702005-07-07 20:40:38 +00002336 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002337 Inst->eraseFromParent();
Chris Lattnerb3d59702005-07-07 20:40:38 +00002338 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002339 }
Chris Lattnerb3d59702005-07-07 20:40:38 +00002340 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00002341
Chris Lattner873ff012009-08-30 05:55:36 +00002342 while (!Worklist.isEmpty()) {
2343 Instruction *I = Worklist.RemoveOne();
Chris Lattnerdbab3862007-03-02 21:28:56 +00002344 if (I == 0) continue; // skip null values.
Chris Lattner8a2a3112001-12-14 16:52:21 +00002345
Chris Lattner8c8c66a2006-05-11 17:11:52 +00002346 // Check to see if we can DCE the instruction.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00002347 if (isInstructionTriviallyDead(I, TLI)) {
Matt Arsenault596aa122013-09-05 19:48:28 +00002348 DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
Chris Lattner7a1e9242009-08-30 06:13:40 +00002349 EraseInstFromFunction(*I);
2350 ++NumDeadInst;
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002351 MadeIRChange = true;
Chris Lattner4bb7c022003-10-06 17:11:01 +00002352 continue;
2353 }
Chris Lattner62b14df2002-09-02 04:59:56 +00002354
Chris Lattner8c8c66a2006-05-11 17:11:52 +00002355 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002356 if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
Chad Rosier00737bd2011-12-01 21:29:16 +00002357 if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
Matt Arsenault596aa122013-09-05 19:48:28 +00002358 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
Chris Lattnerad5fec12005-01-28 19:32:01 +00002359
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002360 // Add operands to the worklist.
2361 ReplaceInstUsesWith(*I, C);
2362 ++NumConstProp;
2363 EraseInstFromFunction(*I);
2364 MadeIRChange = true;
2365 continue;
2366 }
Chris Lattner4bb7c022003-10-06 17:11:01 +00002367
Chris Lattnerea1c4542004-12-08 23:43:58 +00002368 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohmanfc74abf2008-07-23 00:34:11 +00002369 if (I->hasOneUse()) {
Chris Lattnerea1c4542004-12-08 23:43:58 +00002370 BasicBlock *BB = I->getParent();
Chris Lattner8db2cd12009-10-14 15:21:58 +00002371 Instruction *UserInst = cast<Instruction>(I->use_back());
2372 BasicBlock *UserParent;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002373
Chris Lattner8db2cd12009-10-14 15:21:58 +00002374 // Get the block the use occurs in.
2375 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2376 UserParent = PN->getIncomingBlock(I->use_begin().getUse());
2377 else
2378 UserParent = UserInst->getParent();
Jakub Staszak58c1da82012-05-06 13:52:31 +00002379
Chris Lattnerea1c4542004-12-08 23:43:58 +00002380 if (UserParent != BB) {
2381 bool UserIsSuccessor = false;
2382 // See if the user is one of our successors.
2383 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2384 if (*SI == UserParent) {
2385 UserIsSuccessor = true;
2386 break;
2387 }
2388
2389 // If the user is one of our immediate successors, and if that successor
2390 // only has us as a predecessors (we'd have to split the critical edge
2391 // otherwise), we can keep going.
Chris Lattner8db2cd12009-10-14 15:21:58 +00002392 if (UserIsSuccessor && UserParent->getSinglePredecessor())
Chris Lattnerea1c4542004-12-08 23:43:58 +00002393 // Okay, the CFG is simple enough, try to sink this instruction.
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002394 MadeIRChange |= TryToSinkInstruction(I, UserParent);
Chris Lattnerea1c4542004-12-08 23:43:58 +00002395 }
2396 }
2397
Chris Lattner74381062009-08-30 07:44:24 +00002398 // Now that we have an instruction, try combining it to simplify it.
2399 Builder->SetInsertPoint(I->getParent(), I);
Eli Friedmanef819d02011-05-18 01:28:27 +00002400 Builder->SetCurrentDebugLocation(I->getDebugLoc());
Jakub Staszak58c1da82012-05-06 13:52:31 +00002401
Reid Spencera9b81012007-03-26 17:44:01 +00002402#ifndef NDEBUG
2403 std::string OrigI;
2404#endif
Chris Lattnerbdff5482009-08-23 04:37:46 +00002405 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
Matt Arsenault596aa122013-09-05 19:48:28 +00002406 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
Jeffrey Yasskin43069632009-10-08 00:12:24 +00002407
Chris Lattner90ac28c2002-08-02 19:29:35 +00002408 if (Instruction *Result = visit(*I)) {
Chris Lattner3dec1f22002-05-10 15:38:35 +00002409 ++NumCombined;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002410 // Should we replace the old instruction with a new one?
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00002411 if (Result != I) {
Matt Arsenault596aa122013-09-05 19:48:28 +00002412 DEBUG(dbgs() << "IC: Old = " << *I << '\n'
Jim Grosbache2999b42011-10-05 20:44:29 +00002413 << " New = " << *Result << '\n');
2414
Eli Friedmana311c342011-05-27 00:19:40 +00002415 if (!I->getDebugLoc().isUnknown())
2416 Result->setDebugLoc(I->getDebugLoc());
Chris Lattnerf523d062004-06-09 05:08:07 +00002417 // Everything uses the new instruction now.
2418 I->replaceAllUsesWith(Result);
2419
Jim Grosbach35d9da32011-10-05 20:53:43 +00002420 // Move the name to the new instruction first.
2421 Result->takeName(I);
2422
Jim Grosbache2999b42011-10-05 20:44:29 +00002423 // Push the new instruction and any users onto the worklist.
2424 Worklist.Add(Result);
2425 Worklist.AddUsersToWorkList(*Result);
2426
Chris Lattner4bb7c022003-10-06 17:11:01 +00002427 // Insert the new instruction into the basic block...
2428 BasicBlock *InstParent = I->getParent();
Chris Lattnerbac32862004-11-14 19:13:23 +00002429 BasicBlock::iterator InsertPos = I;
2430
Eli Friedman049260d2011-11-01 04:49:29 +00002431 // If we replace a PHI with something that isn't a PHI, fix up the
2432 // insertion point.
2433 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2434 InsertPos = InstParent->getFirstInsertionPt();
Chris Lattnerbac32862004-11-14 19:13:23 +00002435
2436 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +00002437
Chris Lattner7a1e9242009-08-30 06:13:40 +00002438 EraseInstFromFunction(*I);
Chris Lattner7e708292002-06-25 16:13:24 +00002439 } else {
Evan Chengc7baf682007-03-27 16:44:48 +00002440#ifndef NDEBUG
Matt Arsenault596aa122013-09-05 19:48:28 +00002441 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
Chris Lattnerbdff5482009-08-23 04:37:46 +00002442 << " New = " << *I << '\n');
Evan Chengc7baf682007-03-27 16:44:48 +00002443#endif
Chris Lattner0cea42a2004-03-13 23:54:27 +00002444
Chris Lattner90ac28c2002-08-02 19:29:35 +00002445 // If the instruction was modified, it's possible that it is now dead.
2446 // if so, remove it.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00002447 if (isInstructionTriviallyDead(I, TLI)) {
Chris Lattner7a1e9242009-08-30 06:13:40 +00002448 EraseInstFromFunction(*I);
Chris Lattnerf523d062004-06-09 05:08:07 +00002449 } else {
Chris Lattner7a1e9242009-08-30 06:13:40 +00002450 Worklist.Add(I);
Chris Lattnere5ecdb52009-08-30 06:22:51 +00002451 Worklist.AddUsersToWorkList(*I);
Chris Lattner90ac28c2002-08-02 19:29:35 +00002452 }
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00002453 }
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002454 MadeIRChange = true;
Chris Lattner8a2a3112001-12-14 16:52:21 +00002455 }
2456 }
2457
Chris Lattner873ff012009-08-30 05:55:36 +00002458 Worklist.Zap();
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002459 return MadeIRChange;
Chris Lattnerbd0ef772002-02-26 21:46:54 +00002460}
2461
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002462namespace {
2463class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2464 InstCombiner *IC;
2465public:
2466 InstCombinerLibCallSimplifier(const DataLayout *TD,
2467 const TargetLibraryInfo *TLI,
2468 InstCombiner *IC)
Meador Inge2920a712012-11-13 04:16:17 +00002469 : LibCallSimplifier(TD, TLI, UnsafeFPShrink) {
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002470 this->IC = IC;
2471 }
2472
2473 /// replaceAllUsesWith - override so that instruction replacement
2474 /// can be defined in terms of the instruction combiner framework.
2475 virtual void replaceAllUsesWith(Instruction *I, Value *With) const {
2476 IC->ReplaceInstUsesWith(*I, With);
2477 }
2478};
2479}
Chris Lattnerec9c3582007-03-03 02:04:50 +00002480
2481bool InstCombiner::runOnFunction(Function &F) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002482 TD = getAnalysisIfAvailable<DataLayout>();
Chad Rosier00737bd2011-12-01 21:29:16 +00002483 TLI = &getAnalysis<TargetLibraryInfo>();
Quentin Colombet637582e2013-01-07 18:37:41 +00002484 // Minimizing size?
2485 MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2486 Attribute::MinSize);
Jakub Staszak58c1da82012-05-06 13:52:31 +00002487
Chris Lattner74381062009-08-30 07:44:24 +00002488 /// Builder - This is an IRBuilder that automatically inserts new
2489 /// instructions into the worklist when they are created.
Jakub Staszak58c1da82012-05-06 13:52:31 +00002490 IRBuilder<true, TargetFolder, InstCombineIRInserter>
Chris Lattnerf55eeb92009-11-06 05:59:53 +00002491 TheBuilder(F.getContext(), TargetFolder(TD),
Chris Lattner74381062009-08-30 07:44:24 +00002492 InstCombineIRInserter(Worklist));
2493 Builder = &TheBuilder;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002494
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002495 InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this);
Meador Inge5e890452012-10-13 16:45:24 +00002496 Simplifier = &TheSimplifier;
2497
Chris Lattnerec9c3582007-03-03 02:04:50 +00002498 bool EverMadeChange = false;
2499
Devang Patel813c9a02011-03-17 22:18:16 +00002500 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2501 // by instcombiner.
2502 EverMadeChange = LowerDbgDeclare(F);
2503
Chris Lattnerec9c3582007-03-03 02:04:50 +00002504 // Iterate while there is work to do.
2505 unsigned Iteration = 0;
Bill Wendlinga6c31122008-05-14 22:45:20 +00002506 while (DoOneIteration(F, Iteration++))
Chris Lattnerec9c3582007-03-03 02:04:50 +00002507 EverMadeChange = true;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002508
Chris Lattner74381062009-08-30 07:44:24 +00002509 Builder = 0;
Chris Lattnerec9c3582007-03-03 02:04:50 +00002510 return EverMadeChange;
2511}
2512
Brian Gaeke96d4bf72004-07-27 17:43:21 +00002513FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002514 return new InstCombiner();
Chris Lattnerbd0ef772002-02-26 21:46:54 +00002515}