blob: e7a512ce0fd6858f676517f3c3f78f05011831d7 [file] [log] [blame]
Chris Lattner173234a2008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000016#include "llvm/ADT/SmallPtrSet.h"
Dan Gohman24371272010-12-15 20:10:26 +000017#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramer66292102013-09-24 16:37:51 +000018#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000019#include "llvm/IR/Constants.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/IR/GlobalAlias.h"
22#include "llvm/IR/GlobalVariable.h"
23#include "llvm/IR/Instructions.h"
24#include "llvm/IR/IntrinsicInst.h"
25#include "llvm/IR/LLVMContext.h"
26#include "llvm/IR/Metadata.h"
27#include "llvm/IR/Operator.h"
Rafael Espindola7c7121e2012-03-30 15:52:11 +000028#include "llvm/Support/ConstantRange.h"
Chris Lattner173234a2008-06-02 01:18:21 +000029#include "llvm/Support/GetElementPtrTypeIterator.h"
30#include "llvm/Support/MathExtras.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000031#include "llvm/Support/PatternMatch.h"
Chris Lattner32a9e7a2008-06-04 04:46:14 +000032#include <cstring>
Chris Lattner173234a2008-06-02 01:18:21 +000033using namespace llvm;
Duncan Sandsd70d1a52011-01-25 09:38:29 +000034using namespace llvm::PatternMatch;
35
36const unsigned MaxDepth = 6;
37
38/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
39/// unknown returns 0). For vector types, returns the element type's bitwidth.
Micah Villmow3574eca2012-10-08 16:38:25 +000040static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd70d1a52011-01-25 09:38:29 +000041 if (unsigned BitWidth = Ty->getScalarSizeInBits())
42 return BitWidth;
Matt Arsenaultd080fb12013-08-10 17:34:08 +000043
44 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
Duncan Sandsd70d1a52011-01-25 09:38:29 +000045}
Chris Lattner173234a2008-06-02 01:18:21 +000046
Nick Lewycky00cbccc2012-03-09 09:23:50 +000047static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
Nick Lewycky00cbccc2012-03-09 09:23:50 +000048 APInt &KnownZero, APInt &KnownOne,
49 APInt &KnownZero2, APInt &KnownOne2,
Micah Villmow3574eca2012-10-08 16:38:25 +000050 const DataLayout *TD, unsigned Depth) {
Nick Lewycky00cbccc2012-03-09 09:23:50 +000051 if (!Add) {
52 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
53 // We know that the top bits of C-X are clear if X contains less bits
54 // than C (i.e. no wrap-around can happen). For example, 20-X is
55 // positive if we can prove that X is >= 0 and < 16.
56 if (!CLHS->getValue().isNegative()) {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000057 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewycky00cbccc2012-03-09 09:23:50 +000058 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
59 // NLZ can't be BitWidth with no sign bit
60 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000061 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +000062
Nick Lewycky00cbccc2012-03-09 09:23:50 +000063 // If all of the MaskV bits are known to be zero, then we know the
64 // output top bits are zero, because we now know that the output is
65 // from [0-C].
66 if ((KnownZero2 & MaskV) == MaskV) {
67 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
68 // Top bits known zero.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000069 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
Nick Lewycky00cbccc2012-03-09 09:23:50 +000070 }
71 }
72 }
73 }
74
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000075 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewycky00cbccc2012-03-09 09:23:50 +000076
77 // If one of the operands has trailing zeros, then the bits that the
78 // other operand has in those bit positions will be preserved in the
79 // result. For an add, this works with either operand. For a subtract,
80 // this only works if the known zeros are in the right operand.
81 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000082 llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
Nick Lewycky00cbccc2012-03-09 09:23:50 +000083 assert((LHSKnownZero & LHSKnownOne) == 0 &&
84 "Bits known to be one AND zero?");
85 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
86
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000087 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +000088 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
Nick Lewycky00cbccc2012-03-09 09:23:50 +000089 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
90
91 // Determine which operand has more trailing zeros, and use that
92 // many bits from the other operand.
93 if (LHSKnownZeroOut > RHSKnownZeroOut) {
94 if (Add) {
95 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
96 KnownZero |= KnownZero2 & Mask;
97 KnownOne |= KnownOne2 & Mask;
98 } else {
99 // If the known zeros are in the left operand for a subtract,
100 // fall back to the minimum known zeros in both operands.
101 KnownZero |= APInt::getLowBitsSet(BitWidth,
102 std::min(LHSKnownZeroOut,
103 RHSKnownZeroOut));
104 }
105 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
106 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
107 KnownZero |= LHSKnownZero & Mask;
108 KnownOne |= LHSKnownOne & Mask;
109 }
110
111 // Are we still trying to solve for the sign bit?
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000112 if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000113 if (NSW) {
114 if (Add) {
115 // Adding two positive numbers can't wrap into negative
116 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
117 KnownZero |= APInt::getSignBit(BitWidth);
118 // and adding two negative numbers can't wrap into positive.
119 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
120 KnownOne |= APInt::getSignBit(BitWidth);
121 } else {
122 // Subtracting a negative number from a positive one can't wrap
123 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
124 KnownZero |= APInt::getSignBit(BitWidth);
125 // neither can subtracting a positive number from a negative one.
126 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
127 KnownOne |= APInt::getSignBit(BitWidth);
128 }
129 }
130 }
131}
132
Nick Lewyckyf201a062012-03-18 23:28:48 +0000133static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
Nick Lewyckyf201a062012-03-18 23:28:48 +0000134 APInt &KnownZero, APInt &KnownOne,
135 APInt &KnownZero2, APInt &KnownOne2,
Micah Villmow3574eca2012-10-08 16:38:25 +0000136 const DataLayout *TD, unsigned Depth) {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000137 unsigned BitWidth = KnownZero.getBitWidth();
138 ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
139 ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
Nick Lewyckyf201a062012-03-18 23:28:48 +0000140 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
141 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
142
143 bool isKnownNegative = false;
144 bool isKnownNonNegative = false;
145 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000146 if (NSW) {
Nick Lewyckyf201a062012-03-18 23:28:48 +0000147 if (Op0 == Op1) {
148 // The product of a number with itself is non-negative.
149 isKnownNonNegative = true;
150 } else {
151 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
152 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
153 bool isKnownNegativeOp1 = KnownOne.isNegative();
154 bool isKnownNegativeOp0 = KnownOne2.isNegative();
155 // The product of two numbers with the same sign is non-negative.
156 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
157 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
158 // The product of a negative number and a non-negative number is either
159 // negative or zero.
160 if (!isKnownNonNegative)
161 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
162 isKnownNonZero(Op0, TD, Depth)) ||
163 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
164 isKnownNonZero(Op1, TD, Depth));
165 }
166 }
167
168 // If low bits are zero in either operand, output low known-0 bits.
169 // Also compute a conserative estimate for high known-0 bits.
170 // More trickiness is possible, but this is sufficient for the
171 // interesting case of alignment computation.
172 KnownOne.clearAllBits();
173 unsigned TrailZ = KnownZero.countTrailingOnes() +
174 KnownZero2.countTrailingOnes();
175 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
176 KnownZero2.countLeadingOnes(),
177 BitWidth) - BitWidth;
178
179 TrailZ = std::min(TrailZ, BitWidth);
180 LeadZ = std::min(LeadZ, BitWidth);
181 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
182 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyf201a062012-03-18 23:28:48 +0000183
184 // Only make use of no-wrap flags if we failed to compute the sign bit
185 // directly. This matters if the multiplication always overflows, in
186 // which case we prefer to follow the result of the direct computation,
187 // though as the program is invoking undefined behaviour we can choose
188 // whatever we like here.
189 if (isKnownNonNegative && !KnownOne.isNegative())
190 KnownZero.setBit(BitWidth - 1);
191 else if (isKnownNegative && !KnownZero.isNegative())
192 KnownOne.setBit(BitWidth - 1);
193}
194
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000195void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
196 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000197 unsigned NumRanges = Ranges.getNumOperands() / 2;
198 assert(NumRanges >= 1);
199
200 // Use the high end of the ranges to find leading zeros.
201 unsigned MinLeadingZeros = BitWidth;
202 for (unsigned i = 0; i < NumRanges; ++i) {
203 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
204 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
205 ConstantRange Range(Lower->getValue(), Upper->getValue());
206 if (Range.isWrappedSet())
207 MinLeadingZeros = 0; // -1 has no zeros
208 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
209 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
210 }
211
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000212 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000213}
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000214/// ComputeMaskedBits - Determine which of the bits are known to be either zero
215/// or one and return them in the KnownZero/KnownOne bit sets.
216///
Chris Lattner173234a2008-06-02 01:18:21 +0000217/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
218/// we cannot optimize based on the assumption that it is zero without changing
219/// it to be an explicit zero. If we don't change it to zero, other code could
220/// optimized based on the contradictory assumption that it is non-zero.
221/// Because instcombine aggressively folds operations with undef args anyway,
222/// this won't lose us code quality.
Chris Lattnercf5128e2009-09-08 00:06:16 +0000223///
224/// This function is defined on values with integer type, values with pointer
225/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000226/// where V is a vector, known zero, and known one values are the
Chris Lattnercf5128e2009-09-08 00:06:16 +0000227/// same width as the vector element, and the bit is set only if it is true
228/// for all of the elements in the vector.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000229void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Micah Villmow3574eca2012-10-08 16:38:25 +0000230 const DataLayout *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +0000231 assert(V && "No Value?");
Dan Gohman9004c8a2009-05-21 02:28:33 +0000232 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000233 unsigned BitWidth = KnownZero.getBitWidth();
234
Nadav Rotem16087692011-12-05 06:29:09 +0000235 assert((V->getType()->isIntOrIntVectorTy() ||
236 V->getType()->getScalarType()->isPointerTy()) &&
237 "Not integer or pointer type!");
Dan Gohman6de29f82009-06-15 22:12:54 +0000238 assert((!TD ||
239 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000240 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman6de29f82009-06-15 22:12:54 +0000241 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem16087692011-12-05 06:29:09 +0000242 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner173234a2008-06-02 01:18:21 +0000243 KnownOne.getBitWidth() == BitWidth &&
244 "V, Mask, KnownOne and KnownZero should have same BitWidth");
245
246 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
247 // We know all of the bits for a constant!
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000248 KnownOne = CI->getValue();
249 KnownZero = ~KnownOne;
Chris Lattner173234a2008-06-02 01:18:21 +0000250 return;
251 }
Dan Gohman6de29f82009-06-15 22:12:54 +0000252 // Null and aggregate-zero are all-zeros.
253 if (isa<ConstantPointerNull>(V) ||
254 isa<ConstantAggregateZero>(V)) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000255 KnownOne.clearAllBits();
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000256 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000257 return;
258 }
Dan Gohman6de29f82009-06-15 22:12:54 +0000259 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner7302d802012-02-06 21:56:39 +0000260 // each element. There is no real need to handle ConstantVector here, because
261 // we don't handle undef in any particularly useful way.
Chris Lattnerdf390282012-01-24 07:54:10 +0000262 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
263 // We know that CDS must be a vector of integers. Take the intersection of
264 // each element.
265 KnownZero.setAllBits(); KnownOne.setAllBits();
266 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner0f193b82012-01-25 01:27:20 +0000267 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerdf390282012-01-24 07:54:10 +0000268 Elt = CDS->getElementAsInteger(i);
269 KnownZero &= ~Elt;
Craig Topperc4265e12012-12-22 19:15:35 +0000270 KnownOne &= Elt;
Chris Lattnerdf390282012-01-24 07:54:10 +0000271 }
272 return;
273 }
Craig Topperc4265e12012-12-22 19:15:35 +0000274
Chris Lattner173234a2008-06-02 01:18:21 +0000275 // The address of an aligned GlobalValue has trailing zeros.
276 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
277 unsigned Align = GV->getAlignment();
Nick Lewycky891495e2012-03-07 02:27:53 +0000278 if (Align == 0 && TD) {
Eli Friedmanc4c2a022011-11-28 22:48:22 +0000279 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
280 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky891495e2012-03-07 02:27:53 +0000281 if (ObjectType->isSized()) {
282 // If the object is defined in the current Module, we'll be giving
283 // it the preferred alignment. Otherwise, we have to assume that it
284 // may only have the minimum ABI alignment.
285 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
286 Align = TD->getPreferredAlignment(GVar);
287 else
288 Align = TD->getABITypeAlignment(ObjectType);
289 }
Eli Friedmanc4c2a022011-11-28 22:48:22 +0000290 }
Dan Gohman00407252009-08-11 15:50:03 +0000291 }
Chris Lattner173234a2008-06-02 01:18:21 +0000292 if (Align > 0)
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000293 KnownZero = APInt::getLowBitsSet(BitWidth,
Michael J. Spencerc6af2432013-05-24 22:23:49 +0000294 countTrailingZeros(Align));
Chris Lattner173234a2008-06-02 01:18:21 +0000295 else
Jay Foad7a874dd2010-12-01 08:53:58 +0000296 KnownZero.clearAllBits();
297 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000298 return;
299 }
Dan Gohman307a7c42009-09-15 16:14:44 +0000300 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
301 // the bits of its aliasee.
302 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
303 if (GA->mayBeOverridden()) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000304 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Dan Gohman307a7c42009-09-15 16:14:44 +0000305 } else {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000306 ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
Dan Gohman307a7c42009-09-15 16:14:44 +0000307 }
308 return;
309 }
Craig Topperc4265e12012-12-22 19:15:35 +0000310
Chris Lattnerb3f06732011-05-23 00:03:39 +0000311 if (Argument *A = dyn_cast<Argument>(V)) {
Duncan Sandsffcf6df2012-10-04 13:36:31 +0000312 unsigned Align = 0;
313
314 if (A->hasByValAttr()) {
315 // Get alignment information off byval arguments if specified in the IR.
316 Align = A->getParamAlignment();
317 } else if (TD && A->hasStructRetAttr()) {
318 // An sret parameter has at least the ABI alignment of the return type.
319 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
320 if (EltTy->isSized())
321 Align = TD->getABITypeAlignment(EltTy);
322 }
323
324 if (Align)
Michael J. Spencerc6af2432013-05-24 22:23:49 +0000325 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattnerb3f06732011-05-23 00:03:39 +0000326 return;
327 }
Chris Lattner173234a2008-06-02 01:18:21 +0000328
Chris Lattnerb3f06732011-05-23 00:03:39 +0000329 // Start out not knowing anything.
330 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000331
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000332 if (Depth == MaxDepth)
Chris Lattner173234a2008-06-02 01:18:21 +0000333 return; // Limit search depth.
334
Dan Gohmanca178902009-07-17 20:47:02 +0000335 Operator *I = dyn_cast<Operator>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000336 if (!I) return;
337
338 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohmanca178902009-07-17 20:47:02 +0000339 switch (I->getOpcode()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000340 default: break;
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000341 case Instruction::Load:
342 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000343 computeMaskedBitsLoad(*MD, KnownZero);
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000344 return;
Chris Lattner173234a2008-06-02 01:18:21 +0000345 case Instruction::And: {
346 // If either the LHS or the RHS are Zero, the result is zero.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000347 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
348 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000349 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
350 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
351
Chris Lattner173234a2008-06-02 01:18:21 +0000352 // Output known-1 bits are only known if set in both the LHS & RHS.
353 KnownOne &= KnownOne2;
354 // Output known-0 are known to be clear if zero in either the LHS | RHS.
355 KnownZero |= KnownZero2;
356 return;
357 }
358 case Instruction::Or: {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000359 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
360 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000361 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
362 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
363
Chris Lattner173234a2008-06-02 01:18:21 +0000364 // Output known-0 bits are only known if clear in both the LHS & RHS.
365 KnownZero &= KnownZero2;
366 // Output known-1 are known to be set if set in either the LHS | RHS.
367 KnownOne |= KnownOne2;
368 return;
369 }
370 case Instruction::Xor: {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000371 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
372 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000373 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
374 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
375
Chris Lattner173234a2008-06-02 01:18:21 +0000376 // Output known-0 bits are known if clear or set in both the LHS & RHS.
377 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
378 // Output known-1 are known to be set if set in only one of the LHS, RHS.
379 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
380 KnownZero = KnownZeroOut;
381 return;
382 }
383 case Instruction::Mul: {
Nick Lewyckyf201a062012-03-18 23:28:48 +0000384 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
385 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000386 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewyckyf201a062012-03-18 23:28:48 +0000387 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000388 }
389 case Instruction::UDiv: {
390 // For the purposes of computing leading zeros we can conservatively
391 // treat a udiv as a logical right shift by the power of 2 known to
392 // be less than the denominator.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000393 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000394 unsigned LeadZ = KnownZero2.countLeadingOnes();
395
Jay Foad7a874dd2010-12-01 08:53:58 +0000396 KnownOne2.clearAllBits();
397 KnownZero2.clearAllBits();
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000398 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000399 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
400 if (RHSUnknownLeadingOnes != BitWidth)
401 LeadZ = std::min(BitWidth,
402 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
403
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000404 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Chris Lattner173234a2008-06-02 01:18:21 +0000405 return;
406 }
407 case Instruction::Select:
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000408 ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
409 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000410 Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000411 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
412 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000413
414 // Only known if known in both the LHS and RHS.
415 KnownOne &= KnownOne2;
416 KnownZero &= KnownZero2;
417 return;
418 case Instruction::FPTrunc:
419 case Instruction::FPExt:
420 case Instruction::FPToUI:
421 case Instruction::FPToSI:
422 case Instruction::SIToFP:
423 case Instruction::UIToFP:
424 return; // Can't work with floating point.
425 case Instruction::PtrToInt:
426 case Instruction::IntToPtr:
427 // We can't handle these if we don't know the pointer size.
428 if (!TD) return;
429 // FALL THROUGH and handle them the same as zext/trunc.
430 case Instruction::ZExt:
431 case Instruction::Trunc: {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000432 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem12145f02012-10-26 17:17:05 +0000433
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000434 unsigned SrcBitWidth;
Chris Lattner173234a2008-06-02 01:18:21 +0000435 // Note that we handle pointer operands here because of inttoptr/ptrtoint
436 // which fall through here.
Nadav Rotem521396a2012-12-19 20:47:04 +0000437 if(TD) {
438 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
439 } else {
440 SrcBitWidth = SrcTy->getScalarSizeInBits();
441 if (!SrcBitWidth) return;
442 }
Nadav Rotem12145f02012-10-26 17:17:05 +0000443
444 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad40f8f622010-12-07 08:25:19 +0000445 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
446 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000447 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Jay Foad40f8f622010-12-07 08:25:19 +0000448 KnownZero = KnownZero.zextOrTrunc(BitWidth);
449 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000450 // Any top bits are known to be zero.
451 if (BitWidth > SrcBitWidth)
452 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
453 return;
454 }
455 case Instruction::BitCast: {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000456 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands1df98592010-02-16 11:11:14 +0000457 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattner0dabb0b2009-07-02 16:04:08 +0000458 // TODO: For now, not handling conversions like:
459 // (bitcast i64 %x to <2 x i32>)
Duncan Sands1df98592010-02-16 11:11:14 +0000460 !I->getType()->isVectorTy()) {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000461 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000462 return;
463 }
464 break;
465 }
466 case Instruction::SExt: {
467 // Compute the bits in the result that are not present in the input.
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000468 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topperc4265e12012-12-22 19:15:35 +0000469
Jay Foad40f8f622010-12-07 08:25:19 +0000470 KnownZero = KnownZero.trunc(SrcBitWidth);
471 KnownOne = KnownOne.trunc(SrcBitWidth);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000472 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000473 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Jay Foad40f8f622010-12-07 08:25:19 +0000474 KnownZero = KnownZero.zext(BitWidth);
475 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000476
477 // If the sign bit of the input is known set or clear, then we know the
478 // top bits of the result.
479 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
480 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
481 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
482 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
483 return;
484 }
485 case Instruction::Shl:
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000486 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner173234a2008-06-02 01:18:21 +0000487 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
488 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000489 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000490 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000491 KnownZero <<= ShiftAmt;
492 KnownOne <<= ShiftAmt;
493 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
494 return;
495 }
496 break;
497 case Instruction::LShr:
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000498 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner173234a2008-06-02 01:18:21 +0000499 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
500 // Compute the new bits that are at the top now.
501 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topperc4265e12012-12-22 19:15:35 +0000502
Chris Lattner173234a2008-06-02 01:18:21 +0000503 // Unsigned shift right.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000504 ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000505 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000506 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
507 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
508 // high bits known zero.
509 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
510 return;
511 }
512 break;
513 case Instruction::AShr:
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000514 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner173234a2008-06-02 01:18:21 +0000515 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
516 // Compute the new bits that are at the top now.
Chris Lattner43b40a42011-01-04 18:19:15 +0000517 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topperc4265e12012-12-22 19:15:35 +0000518
Chris Lattner173234a2008-06-02 01:18:21 +0000519 // Signed shift right.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000520 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +0000521 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000522 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
523 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topperc4265e12012-12-22 19:15:35 +0000524
Chris Lattner173234a2008-06-02 01:18:21 +0000525 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
526 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
527 KnownZero |= HighBits;
528 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
529 KnownOne |= HighBits;
530 return;
531 }
532 break;
533 case Instruction::Sub: {
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000534 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
535 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000536 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
537 Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000538 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000539 }
Chris Lattner173234a2008-06-02 01:18:21 +0000540 case Instruction::Add: {
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000541 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
542 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000543 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
544 Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000545 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000546 }
547 case Instruction::SRem:
548 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sandscfd54182010-01-29 06:18:37 +0000549 APInt RA = Rem->getValue().abs();
550 if (RA.isPowerOf2()) {
551 APInt LowBits = RA - 1;
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000552 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000553
Duncan Sandscfd54182010-01-29 06:18:37 +0000554 // The low bits of the first operand are unchanged by the srem.
555 KnownZero = KnownZero2 & LowBits;
556 KnownOne = KnownOne2 & LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000557
Duncan Sandscfd54182010-01-29 06:18:37 +0000558 // If the first operand is non-negative or has all low bits zero, then
559 // the upper bits are all zero.
560 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
561 KnownZero |= ~LowBits;
562
563 // If the first operand is negative and not all low bits are zero, then
564 // the upper bits are all one.
565 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
566 KnownOne |= ~LowBits;
567
Craig Topperc4265e12012-12-22 19:15:35 +0000568 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000569 }
570 }
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000571
572 // The sign bit is the LHS's sign bit, except when the result of the
573 // remainder is zero.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000574 if (KnownZero.isNonNegative()) {
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000575 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000576 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000577 Depth+1);
578 // If it's known zero, our sign bit is also zero.
579 if (LHSKnownZero.isNegative())
Duncan Sands5ff30e72012-04-30 11:56:58 +0000580 KnownZero.setBit(BitWidth - 1);
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000581 }
582
Chris Lattner173234a2008-06-02 01:18:21 +0000583 break;
584 case Instruction::URem: {
585 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
586 APInt RA = Rem->getValue();
587 if (RA.isPowerOf2()) {
588 APInt LowBits = (RA - 1);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000589 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000590 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000591 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000592 KnownZero |= ~LowBits;
593 KnownOne &= LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000594 break;
595 }
596 }
597
598 // Since the result is less than or equal to either operand, any leading
599 // zero bits in either operand must also exist in the result.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000600 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
601 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000602
Chris Lattner79abedb2009-01-20 18:22:57 +0000603 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner173234a2008-06-02 01:18:21 +0000604 KnownZero2.countLeadingOnes());
Jay Foad7a874dd2010-12-01 08:53:58 +0000605 KnownOne.clearAllBits();
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000606 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner173234a2008-06-02 01:18:21 +0000607 break;
608 }
609
Victor Hernandeza276c602009-10-17 01:18:07 +0000610 case Instruction::Alloca: {
Victor Hernandez7b929da2009-10-23 21:09:37 +0000611 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000612 unsigned Align = AI->getAlignment();
Victor Hernandeza276c602009-10-17 01:18:07 +0000613 if (Align == 0 && TD)
614 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Craig Topperc4265e12012-12-22 19:15:35 +0000615
Chris Lattner173234a2008-06-02 01:18:21 +0000616 if (Align > 0)
Michael J. Spencerc6af2432013-05-24 22:23:49 +0000617 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner173234a2008-06-02 01:18:21 +0000618 break;
619 }
620 case Instruction::GetElementPtr: {
621 // Analyze all of the subscripts of this getelementptr instruction
622 // to determine if we can prove known low zero bits.
Chris Lattner173234a2008-06-02 01:18:21 +0000623 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000624 ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
625 Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000626 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
627
628 gep_type_iterator GTI = gep_type_begin(I);
629 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
630 Value *Index = I->getOperand(i);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000631 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner173234a2008-06-02 01:18:21 +0000632 // Handle struct member offset arithmetic.
Matt Arsenaultc4d070a2013-08-19 21:43:16 +0000633 if (!TD)
634 return;
635
636 // Handle case when index is vector zeroinitializer
637 Constant *CIndex = cast<Constant>(Index);
638 if (CIndex->isZeroValue())
639 continue;
640
641 if (CIndex->getType()->isVectorTy())
642 Index = CIndex->getSplatValue();
643
Chris Lattner173234a2008-06-02 01:18:21 +0000644 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaultc4d070a2013-08-19 21:43:16 +0000645 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner173234a2008-06-02 01:18:21 +0000646 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerc6af2432013-05-24 22:23:49 +0000647 TrailZ = std::min<unsigned>(TrailZ,
648 countTrailingZeros(Offset));
Chris Lattner173234a2008-06-02 01:18:21 +0000649 } else {
650 // Handle array index arithmetic.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000651 Type *IndexedTy = GTI.getIndexedType();
Chris Lattner173234a2008-06-02 01:18:21 +0000652 if (!IndexedTy->isSized()) return;
Dan Gohman6de29f82009-06-15 22:12:54 +0000653 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sands777d2302009-05-09 07:06:46 +0000654 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000655 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000656 ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000657 TrailZ = std::min(TrailZ,
Michael J. Spencerc6af2432013-05-24 22:23:49 +0000658 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner79abedb2009-01-20 18:22:57 +0000659 LocalKnownZero.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000660 }
661 }
Craig Topperc4265e12012-12-22 19:15:35 +0000662
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000663 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner173234a2008-06-02 01:18:21 +0000664 break;
665 }
666 case Instruction::PHI: {
667 PHINode *P = cast<PHINode>(I);
668 // Handle the case of a simple two-predecessor recurrence PHI.
669 // There's a lot more that could theoretically be done here, but
670 // this is sufficient to catch some interesting cases.
671 if (P->getNumIncomingValues() == 2) {
672 for (unsigned i = 0; i != 2; ++i) {
673 Value *L = P->getIncomingValue(i);
674 Value *R = P->getIncomingValue(!i);
Dan Gohmanca178902009-07-17 20:47:02 +0000675 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner173234a2008-06-02 01:18:21 +0000676 if (!LU)
677 continue;
Dan Gohmanca178902009-07-17 20:47:02 +0000678 unsigned Opcode = LU->getOpcode();
Chris Lattner173234a2008-06-02 01:18:21 +0000679 // Check for operations that have the property that if
680 // both their operands have low zero bits, the result
681 // will have low zero bits.
682 if (Opcode == Instruction::Add ||
683 Opcode == Instruction::Sub ||
684 Opcode == Instruction::And ||
685 Opcode == Instruction::Or ||
686 Opcode == Instruction::Mul) {
687 Value *LL = LU->getOperand(0);
688 Value *LR = LU->getOperand(1);
689 // Find a recurrence.
690 if (LL == I)
691 L = LR;
692 else if (LR == I)
693 L = LL;
694 else
695 break;
696 // Ok, we have a PHI of the form L op= R. Check for low
697 // zero bits.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000698 ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
David Greenec714f132008-10-27 23:24:03 +0000699
700 // We need to take the minimum number of known bits
701 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000702 ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
David Greenec714f132008-10-27 23:24:03 +0000703
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000704 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greenec714f132008-10-27 23:24:03 +0000705 std::min(KnownZero2.countTrailingOnes(),
706 KnownZero3.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000707 break;
708 }
709 }
710 }
Dan Gohman9004c8a2009-05-21 02:28:33 +0000711
Nick Lewycky3b739d22011-02-10 23:54:10 +0000712 // Unreachable blocks may have zero-operand PHI nodes.
713 if (P->getNumIncomingValues() == 0)
714 return;
715
Dan Gohman9004c8a2009-05-21 02:28:33 +0000716 // Otherwise take the unions of the known bit sets of the operands,
717 // taking conservative care to avoid excessive recursion.
718 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands606199f2011-03-08 12:39:03 +0000719 // Skip if every incoming value references to ourself.
Nuno Lopes0fd518b2012-07-03 21:15:40 +0000720 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands606199f2011-03-08 12:39:03 +0000721 break;
722
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000723 KnownZero = APInt::getAllOnesValue(BitWidth);
724 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohman9004c8a2009-05-21 02:28:33 +0000725 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
726 // Skip direct self references.
727 if (P->getIncomingValue(i) == P) continue;
728
729 KnownZero2 = APInt(BitWidth, 0);
730 KnownOne2 = APInt(BitWidth, 0);
731 // Recurse, but cap the recursion to one level, because we don't
732 // want to waste time spinning around in loops.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000733 ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
734 MaxDepth-1);
Dan Gohman9004c8a2009-05-21 02:28:33 +0000735 KnownZero &= KnownZero2;
736 KnownOne &= KnownOne2;
737 // If all bits have been ruled out, there's no need to check
738 // more operands.
739 if (!KnownZero && !KnownOne)
740 break;
741 }
742 }
Chris Lattner173234a2008-06-02 01:18:21 +0000743 break;
744 }
745 case Instruction::Call:
746 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
747 switch (II->getIntrinsicID()) {
748 default: break;
Chris Lattner173234a2008-06-02 01:18:21 +0000749 case Intrinsic::ctlz:
750 case Intrinsic::cttz: {
751 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer009da052011-12-24 17:31:46 +0000752 // If this call is undefined for 0, the result will be less than 2^n.
753 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
754 LowBits -= 1;
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000755 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer009da052011-12-24 17:31:46 +0000756 break;
757 }
758 case Intrinsic::ctpop: {
759 unsigned LowBits = Log2_32(BitWidth)+1;
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000760 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner173234a2008-06-02 01:18:21 +0000761 break;
762 }
Chad Rosier62660312011-05-26 23:13:19 +0000763 case Intrinsic::x86_sse42_crc32_64_8:
764 case Intrinsic::x86_sse42_crc32_64_64:
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000765 KnownZero = APInt::getHighBitsSet(64, 32);
Evan Chengcb559c12011-05-22 18:25:30 +0000766 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000767 }
768 }
769 break;
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000770 case Instruction::ExtractValue:
771 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
772 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
773 if (EVI->getNumIndices() != 1) break;
774 if (EVI->getIndices()[0] == 0) {
775 switch (II->getIntrinsicID()) {
776 default: break;
777 case Intrinsic::uadd_with_overflow:
778 case Intrinsic::sadd_with_overflow:
779 ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000780 II->getArgOperand(1), false, KnownZero,
781 KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000782 break;
783 case Intrinsic::usub_with_overflow:
784 case Intrinsic::ssub_with_overflow:
785 ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000786 II->getArgOperand(1), false, KnownZero,
787 KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000788 break;
Nick Lewyckyf201a062012-03-18 23:28:48 +0000789 case Intrinsic::umul_with_overflow:
790 case Intrinsic::smul_with_overflow:
791 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000792 false, KnownZero, KnownOne,
Nick Lewyckyf201a062012-03-18 23:28:48 +0000793 KnownZero2, KnownOne2, TD, Depth);
794 break;
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000795 }
796 }
797 }
Chris Lattner173234a2008-06-02 01:18:21 +0000798 }
799}
800
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000801/// ComputeSignBit - Determine whether the sign bit is known to be zero or
802/// one. Convenience wrapper around ComputeMaskedBits.
803void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Micah Villmow3574eca2012-10-08 16:38:25 +0000804 const DataLayout *TD, unsigned Depth) {
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000805 unsigned BitWidth = getBitWidth(V->getType(), TD);
806 if (!BitWidth) {
807 KnownZero = false;
808 KnownOne = false;
809 return;
810 }
811 APInt ZeroBits(BitWidth, 0);
812 APInt OneBits(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000813 ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000814 KnownOne = OneBits[BitWidth - 1];
815 KnownZero = ZeroBits[BitWidth - 1];
816}
817
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000818/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000819/// bit set when defined. For vectors return true if every element is known to
820/// be a power of two when defined. Supports values with integer or pointer
821/// types and vectors of integers.
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000822bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000823 if (Constant *C = dyn_cast<Constant>(V)) {
824 if (C->isNullValue())
825 return OrZero;
826 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
827 return CI->getValue().isPowerOf2();
828 // TODO: Handle vector constants.
829 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000830
831 // 1 << X is clearly a power of two if the one is not shifted off the end. If
832 // it is shifted off the end then the result is undefined.
833 if (match(V, m_Shl(m_One(), m_Value())))
834 return true;
835
836 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
837 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands93c78022011-02-01 08:50:33 +0000838 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000839 return true;
840
841 // The remaining tests are all recursive, so bail out if we hit the limit.
842 if (Depth++ == MaxDepth)
843 return false;
844
Duncan Sands4604fc72011-10-28 18:30:05 +0000845 Value *X = 0, *Y = 0;
846 // A shift of a power of two is a power of two or zero.
847 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
848 match(V, m_Shr(m_Value(X), m_Value()))))
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000849 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
Duncan Sands4604fc72011-10-28 18:30:05 +0000850
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000851 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000852 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000853
854 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000855 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
856 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000857
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000858 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
859 // A power of two and'd with anything is a power of two or zero.
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000860 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
861 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000862 return true;
863 // X & (-X) is always a power of two or zero.
864 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
865 return true;
866 return false;
867 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000868
David Majnemer36850ad2013-07-30 21:01:36 +0000869 // Adding a power-of-two or zero to the same power-of-two or zero yields
870 // either the original power-of-two, a larger power-of-two or zero.
871 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
872 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
873 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
874 if (match(X, m_And(m_Specific(Y), m_Value())) ||
875 match(X, m_And(m_Value(), m_Specific(Y))))
876 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth))
877 return true;
878 if (match(Y, m_And(m_Specific(X), m_Value())) ||
879 match(Y, m_And(m_Value(), m_Specific(X))))
880 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth))
881 return true;
882
883 unsigned BitWidth = V->getType()->getScalarSizeInBits();
884 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
885 ComputeMaskedBits(X, LHSZeroBits, LHSOneBits, 0, Depth);
886
887 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
888 ComputeMaskedBits(Y, RHSZeroBits, RHSOneBits, 0, Depth);
889 // If i8 V is a power of two or zero:
890 // ZeroBits: 1 1 1 0 1 1 1 1
891 // ~ZeroBits: 0 0 0 1 0 0 0 0
892 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
893 // If OrZero isn't set, we cannot give back a zero result.
894 // Make sure either the LHS or RHS has a bit set.
895 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
896 return true;
897 }
898 }
David Majnemercb9d4662013-05-18 19:30:37 +0000899
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000900 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewycky1f7bc702011-03-21 21:40:32 +0000901 // is a power of two only if the first operand is a power of two and not
902 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer55c6d572012-01-01 17:55:30 +0000903 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
904 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Rafael Espindoladbaa2372012-12-13 03:37:24 +0000905 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000906 }
907
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000908 return false;
909}
910
Chandler Carruth70d3beb2012-12-07 02:08:58 +0000911/// \brief Test whether a GEP's result is known to be non-null.
912///
913/// Uses properties inherent in a GEP to try to determine whether it is known
914/// to be non-null.
915///
916/// Currently this routine does not support vector GEPs.
917static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
918 unsigned Depth) {
919 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
920 return false;
921
922 // FIXME: Support vector-GEPs.
923 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
924
925 // If the base pointer is non-null, we cannot walk to a null address with an
926 // inbounds GEP in address space zero.
927 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
928 return true;
929
930 // Past this, if we don't have DataLayout, we can't do much.
931 if (!DL)
932 return false;
933
934 // Walk the GEP operands and see if any operand introduces a non-zero offset.
935 // If so, then the GEP cannot produce a null pointer, as doing so would
936 // inherently violate the inbounds contract within address space zero.
937 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
938 GTI != GTE; ++GTI) {
939 // Struct types are easy -- they must always be indexed by a constant.
940 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
941 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
942 unsigned ElementIdx = OpC->getZExtValue();
943 const StructLayout *SL = DL->getStructLayout(STy);
944 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
945 if (ElementOffset > 0)
946 return true;
947 continue;
948 }
949
950 // If we have a zero-sized type, the index doesn't matter. Keep looping.
951 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
952 continue;
953
954 // Fast path the constant operand case both for efficiency and so we don't
955 // increment Depth when just zipping down an all-constant GEP.
956 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
957 if (!OpC->isZero())
958 return true;
959 continue;
960 }
961
962 // We post-increment Depth here because while isKnownNonZero increments it
963 // as well, when we pop back up that increment won't persist. We don't want
964 // to recurse 10k times just because we have 10k GEP operands. We don't
965 // bail completely out because we want to handle constant GEPs regardless
966 // of depth.
967 if (Depth++ >= MaxDepth)
968 continue;
969
970 if (isKnownNonZero(GTI.getOperand(), DL, Depth))
971 return true;
972 }
973
974 return false;
975}
976
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000977/// isKnownNonZero - Return true if the given value is known to be non-zero
978/// when defined. For vectors return true if every element is known to be
979/// non-zero when defined. Supports values with integer or pointer type and
980/// vectors of integers.
Micah Villmow3574eca2012-10-08 16:38:25 +0000981bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000982 if (Constant *C = dyn_cast<Constant>(V)) {
983 if (C->isNullValue())
984 return false;
985 if (isa<ConstantInt>(C))
986 // Must be non-zero due to null test above.
987 return true;
988 // TODO: Handle vectors
989 return false;
990 }
991
992 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000993 if (Depth++ >= MaxDepth)
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000994 return false;
995
Chandler Carruth70d3beb2012-12-07 02:08:58 +0000996 // Check for pointer simplifications.
997 if (V->getType()->isPointerTy()) {
Manman Ren90842422013-03-18 21:23:25 +0000998 if (isKnownNonNull(V))
999 return true;
Chandler Carruth70d3beb2012-12-07 02:08:58 +00001000 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1001 if (isGEPKnownNonNull(GEP, TD, Depth))
1002 return true;
1003 }
1004
Nadav Rotemfd360c32012-12-14 20:43:49 +00001005 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001006
1007 // X | Y != 0 if X != 0 or Y != 0.
1008 Value *X = 0, *Y = 0;
1009 if (match(V, m_Or(m_Value(X), m_Value(Y))))
1010 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
1011
1012 // ext X != 0 if X != 0.
1013 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1014 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
1015
Duncan Sands91367822011-01-29 13:27:00 +00001016 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001017 // if the lowest bit is shifted off the end.
1018 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +00001019 // shl nuw can't remove any non-zero bits.
Duncan Sands32a43cc2011-10-27 19:16:21 +00001020 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewycky3dfd9872011-02-28 08:02:21 +00001021 if (BO->hasNoUnsignedWrap())
1022 return isKnownNonZero(X, TD, Depth);
1023
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001024 APInt KnownZero(BitWidth, 0);
1025 APInt KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001026 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001027 if (KnownOne[0])
1028 return true;
1029 }
Duncan Sands91367822011-01-29 13:27:00 +00001030 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001031 // defined if the sign bit is shifted off the end.
1032 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +00001033 // shr exact can only shift out zero bits.
Duncan Sands32a43cc2011-10-27 19:16:21 +00001034 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewycky3dfd9872011-02-28 08:02:21 +00001035 if (BO->isExact())
1036 return isKnownNonZero(X, TD, Depth);
1037
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001038 bool XKnownNonNegative, XKnownNegative;
1039 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1040 if (XKnownNegative)
1041 return true;
1042 }
Nick Lewycky3dfd9872011-02-28 08:02:21 +00001043 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer55c6d572012-01-01 17:55:30 +00001044 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1045 return isKnownNonZero(X, TD, Depth);
Nick Lewycky3dfd9872011-02-28 08:02:21 +00001046 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001047 // X + Y.
1048 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1049 bool XKnownNonNegative, XKnownNegative;
1050 bool YKnownNonNegative, YKnownNegative;
1051 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1052 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1053
1054 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands227fba12011-01-25 15:14:15 +00001055 // zero unless both X and Y are zero.
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001056 if (XKnownNonNegative && YKnownNonNegative)
Duncan Sands227fba12011-01-25 15:14:15 +00001057 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1058 return true;
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001059
1060 // If X and Y are both negative (as signed values) then their sum is not
1061 // zero unless both X and Y equal INT_MIN.
1062 if (BitWidth && XKnownNegative && YKnownNegative) {
1063 APInt KnownZero(BitWidth, 0);
1064 APInt KnownOne(BitWidth, 0);
1065 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1066 // The sign bit of X is set. If some other bit is set then X is not equal
1067 // to INT_MIN.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001068 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001069 if ((KnownOne & Mask) != 0)
1070 return true;
1071 // The sign bit of Y is set. If some other bit is set then Y is not equal
1072 // to INT_MIN.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001073 ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001074 if ((KnownOne & Mask) != 0)
1075 return true;
1076 }
1077
1078 // The sum of a non-negative number and a power of two is not zero.
Rafael Espindoladbaa2372012-12-13 03:37:24 +00001079 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001080 return true;
Rafael Espindoladbaa2372012-12-13 03:37:24 +00001081 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001082 return true;
1083 }
Duncan Sands32a43cc2011-10-27 19:16:21 +00001084 // X * Y.
1085 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1086 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1087 // If X and Y are non-zero then so is X * Y as long as the multiplication
1088 // does not overflow.
1089 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1090 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
1091 return true;
1092 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001093 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1094 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1095 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1096 isKnownNonZero(SI->getFalseValue(), TD, Depth))
1097 return true;
1098 }
1099
1100 if (!BitWidth) return false;
1101 APInt KnownZero(BitWidth, 0);
1102 APInt KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001103 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001104 return KnownOne != 0;
1105}
1106
Chris Lattner173234a2008-06-02 01:18:21 +00001107/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1108/// this predicate to simplify operations downstream. Mask is known to be zero
1109/// for bits that V cannot have.
Chris Lattnercf5128e2009-09-08 00:06:16 +00001110///
1111/// This function is defined on values with integer type, values with pointer
1112/// type (but only if TD is non-null), and vectors of integers. In the case
1113/// where V is a vector, the mask, known zero, and known one values are the
1114/// same width as the vector element, and the bit is set only if it is true
1115/// for all of the elements in the vector.
Chris Lattner173234a2008-06-02 01:18:21 +00001116bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
Micah Villmow3574eca2012-10-08 16:38:25 +00001117 const DataLayout *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +00001118 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001119 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
Craig Topperc4265e12012-12-22 19:15:35 +00001120 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +00001121 return (KnownZero & Mask) == Mask;
1122}
1123
1124
1125
1126/// ComputeNumSignBits - Return the number of times the sign bit of the
1127/// register is replicated into the other bits. We know that at least 1 bit
1128/// is always equal to the sign bit (itself), but other cases can give us
1129/// information. For example, immediately after an "ashr X, 2", we know that
1130/// the top 3 bits are all equal to each other, so we return 3.
1131///
1132/// 'Op' must have a scalar integer type.
1133///
Micah Villmow3574eca2012-10-08 16:38:25 +00001134unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
Dan Gohman846a2f22009-08-27 17:51:25 +00001135 unsigned Depth) {
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001136 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmow3574eca2012-10-08 16:38:25 +00001137 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohmanbd5ce522009-06-22 22:02:32 +00001138 "on non-integer values!");
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001139 Type *Ty = V->getType();
Dan Gohmanbd5ce522009-06-22 22:02:32 +00001140 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1141 Ty->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +00001142 unsigned Tmp, Tmp2;
1143 unsigned FirstAnswer = 1;
1144
Chris Lattnerd82e5112008-06-02 18:39:07 +00001145 // Note that ConstantInt is handled by the general ComputeMaskedBits case
1146 // below.
1147
Chris Lattner173234a2008-06-02 01:18:21 +00001148 if (Depth == 6)
1149 return 1; // Limit search depth.
Craig Topperc4265e12012-12-22 19:15:35 +00001150
Dan Gohmanca178902009-07-17 20:47:02 +00001151 Operator *U = dyn_cast<Operator>(V);
1152 switch (Operator::getOpcode(V)) {
Chris Lattner173234a2008-06-02 01:18:21 +00001153 default: break;
1154 case Instruction::SExt:
Mon P Wang69a00802009-12-02 04:59:58 +00001155 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +00001156 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
Craig Topperc4265e12012-12-22 19:15:35 +00001157
Chris Lattner6b0dc922012-01-26 21:37:55 +00001158 case Instruction::AShr: {
Chris Lattner173234a2008-06-02 01:18:21 +00001159 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Chris Lattner6b0dc922012-01-26 21:37:55 +00001160 // ashr X, C -> adds C sign bits. Vectors too.
1161 const APInt *ShAmt;
1162 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1163 Tmp += ShAmt->getZExtValue();
Chris Lattner173234a2008-06-02 01:18:21 +00001164 if (Tmp > TyBits) Tmp = TyBits;
1165 }
1166 return Tmp;
Chris Lattner6b0dc922012-01-26 21:37:55 +00001167 }
1168 case Instruction::Shl: {
1169 const APInt *ShAmt;
1170 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner173234a2008-06-02 01:18:21 +00001171 // shl destroys sign bits.
1172 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Chris Lattner6b0dc922012-01-26 21:37:55 +00001173 Tmp2 = ShAmt->getZExtValue();
1174 if (Tmp2 >= TyBits || // Bad shift.
1175 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1176 return Tmp - Tmp2;
Chris Lattner173234a2008-06-02 01:18:21 +00001177 }
1178 break;
Chris Lattner6b0dc922012-01-26 21:37:55 +00001179 }
Chris Lattner173234a2008-06-02 01:18:21 +00001180 case Instruction::And:
1181 case Instruction::Or:
1182 case Instruction::Xor: // NOT is handled here.
1183 // Logical binary ops preserve the number of sign bits at the worst.
1184 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1185 if (Tmp != 1) {
1186 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1187 FirstAnswer = std::min(Tmp, Tmp2);
1188 // We computed what we know about the sign bits as our first
1189 // answer. Now proceed to the generic code that uses
1190 // ComputeMaskedBits, and pick whichever answer is better.
1191 }
1192 break;
1193
1194 case Instruction::Select:
1195 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1196 if (Tmp == 1) return 1; // Early out.
1197 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1198 return std::min(Tmp, Tmp2);
Craig Topperc4265e12012-12-22 19:15:35 +00001199
Chris Lattner173234a2008-06-02 01:18:21 +00001200 case Instruction::Add:
1201 // Add can have at most one carry bit. Thus we know that the output
1202 // is, at worst, one more bit than the inputs.
1203 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1204 if (Tmp == 1) return 1; // Early out.
Craig Topperc4265e12012-12-22 19:15:35 +00001205
Chris Lattner173234a2008-06-02 01:18:21 +00001206 // Special case decrementing a value (ADD X, -1):
Dan Gohman0001e562009-02-24 02:00:40 +00001207 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner173234a2008-06-02 01:18:21 +00001208 if (CRHS->isAllOnesValue()) {
1209 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001210 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +00001211
Chris Lattner173234a2008-06-02 01:18:21 +00001212 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1213 // sign bits set.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001214 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner173234a2008-06-02 01:18:21 +00001215 return TyBits;
Craig Topperc4265e12012-12-22 19:15:35 +00001216
Chris Lattner173234a2008-06-02 01:18:21 +00001217 // If we are subtracting one from a positive number, there is no carry
1218 // out of the result.
1219 if (KnownZero.isNegative())
1220 return Tmp;
1221 }
Craig Topperc4265e12012-12-22 19:15:35 +00001222
Chris Lattner173234a2008-06-02 01:18:21 +00001223 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1224 if (Tmp2 == 1) return 1;
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001225 return std::min(Tmp, Tmp2)-1;
Craig Topperc4265e12012-12-22 19:15:35 +00001226
Chris Lattner173234a2008-06-02 01:18:21 +00001227 case Instruction::Sub:
1228 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1229 if (Tmp2 == 1) return 1;
Craig Topperc4265e12012-12-22 19:15:35 +00001230
Chris Lattner173234a2008-06-02 01:18:21 +00001231 // Handle NEG.
1232 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1233 if (CLHS->isNullValue()) {
1234 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001235 ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +00001236 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1237 // sign bits set.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001238 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner173234a2008-06-02 01:18:21 +00001239 return TyBits;
Craig Topperc4265e12012-12-22 19:15:35 +00001240
Chris Lattner173234a2008-06-02 01:18:21 +00001241 // If the input is known to be positive (the sign bit is known clear),
1242 // the output of the NEG has the same number of sign bits as the input.
1243 if (KnownZero.isNegative())
1244 return Tmp2;
Craig Topperc4265e12012-12-22 19:15:35 +00001245
Chris Lattner173234a2008-06-02 01:18:21 +00001246 // Otherwise, we treat this like a SUB.
1247 }
Craig Topperc4265e12012-12-22 19:15:35 +00001248
Chris Lattner173234a2008-06-02 01:18:21 +00001249 // Sub can have at most one carry bit. Thus we know that the output
1250 // is, at worst, one more bit than the inputs.
1251 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1252 if (Tmp == 1) return 1; // Early out.
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001253 return std::min(Tmp, Tmp2)-1;
Craig Topperc4265e12012-12-22 19:15:35 +00001254
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001255 case Instruction::PHI: {
1256 PHINode *PN = cast<PHINode>(U);
1257 // Don't analyze large in-degree PHIs.
1258 if (PN->getNumIncomingValues() > 4) break;
Craig Topperc4265e12012-12-22 19:15:35 +00001259
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001260 // Take the minimum of all incoming values. This can't infinitely loop
1261 // because of our depth threshold.
1262 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1263 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1264 if (Tmp == 1) return Tmp;
1265 Tmp = std::min(Tmp,
Evan Cheng0af20d82010-03-13 02:20:29 +00001266 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001267 }
1268 return Tmp;
1269 }
1270
Chris Lattner173234a2008-06-02 01:18:21 +00001271 case Instruction::Trunc:
1272 // FIXME: it's tricky to do anything useful for this, but it is an important
1273 // case for targets like X86.
1274 break;
1275 }
Craig Topperc4265e12012-12-22 19:15:35 +00001276
Chris Lattner173234a2008-06-02 01:18:21 +00001277 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1278 // use this information.
1279 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001280 APInt Mask;
1281 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
Craig Topperc4265e12012-12-22 19:15:35 +00001282
Chris Lattner173234a2008-06-02 01:18:21 +00001283 if (KnownZero.isNegative()) { // sign bit is 0
1284 Mask = KnownZero;
1285 } else if (KnownOne.isNegative()) { // sign bit is 1;
1286 Mask = KnownOne;
1287 } else {
1288 // Nothing known.
1289 return FirstAnswer;
1290 }
Craig Topperc4265e12012-12-22 19:15:35 +00001291
Chris Lattner173234a2008-06-02 01:18:21 +00001292 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1293 // the number of identical bits in the top of the input value.
1294 Mask = ~Mask;
1295 Mask <<= Mask.getBitWidth()-TyBits;
1296 // Return # leading zeros. We use 'min' here in case Val was zero before
1297 // shifting. We don't want to return '64' as for an i32 "0".
1298 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1299}
Chris Lattner833f25d2008-06-02 01:29:46 +00001300
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001301/// ComputeMultiple - This function computes the integer multiple of Base that
1302/// equals V. If successful, it returns true and returns the multiple in
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001303/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001304/// through SExt instructions only if LookThroughSExt is true.
1305bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001306 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001307 const unsigned MaxDepth = 6;
1308
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001309 assert(V && "No Value?");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001310 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001311 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001312
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001313 Type *T = V->getType();
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001314
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001315 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001316
1317 if (Base == 0)
1318 return false;
Craig Topperc4265e12012-12-22 19:15:35 +00001319
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001320 if (Base == 1) {
1321 Multiple = V;
1322 return true;
1323 }
1324
1325 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1326 Constant *BaseVal = ConstantInt::get(T, Base);
1327 if (CO && CO == BaseVal) {
1328 // Multiple is 1.
1329 Multiple = ConstantInt::get(T, 1);
1330 return true;
1331 }
1332
1333 if (CI && CI->getZExtValue() % Base == 0) {
1334 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topperc4265e12012-12-22 19:15:35 +00001335 return true;
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001336 }
Craig Topperc4265e12012-12-22 19:15:35 +00001337
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001338 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topperc4265e12012-12-22 19:15:35 +00001339
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001340 Operator *I = dyn_cast<Operator>(V);
1341 if (!I) return false;
1342
1343 switch (I->getOpcode()) {
1344 default: break;
Chris Lattner11fe7262009-11-26 01:50:12 +00001345 case Instruction::SExt:
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001346 if (!LookThroughSExt) return false;
1347 // otherwise fall through to ZExt
Chris Lattner11fe7262009-11-26 01:50:12 +00001348 case Instruction::ZExt:
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001349 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1350 LookThroughSExt, Depth+1);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001351 case Instruction::Shl:
1352 case Instruction::Mul: {
1353 Value *Op0 = I->getOperand(0);
1354 Value *Op1 = I->getOperand(1);
1355
1356 if (I->getOpcode() == Instruction::Shl) {
1357 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1358 if (!Op1CI) return false;
1359 // Turn Op0 << Op1 into Op0 * 2^Op1
1360 APInt Op1Int = Op1CI->getValue();
1361 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foada99793c2010-11-30 09:02:01 +00001362 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00001363 API.setBit(BitToSet);
Jay Foada99793c2010-11-30 09:02:01 +00001364 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001365 }
1366
1367 Value *Mul0 = NULL;
Chris Lattnere9711312010-09-05 17:20:46 +00001368 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1369 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1370 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topperc4265e12012-12-22 19:15:35 +00001371 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattnere9711312010-09-05 17:20:46 +00001372 MulC->getType()->getPrimitiveSizeInBits())
1373 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topperc4265e12012-12-22 19:15:35 +00001374 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattnere9711312010-09-05 17:20:46 +00001375 MulC->getType()->getPrimitiveSizeInBits())
1376 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topperc4265e12012-12-22 19:15:35 +00001377
Chris Lattnere9711312010-09-05 17:20:46 +00001378 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1379 Multiple = ConstantExpr::getMul(MulC, Op1C);
1380 return true;
1381 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001382
1383 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1384 if (Mul0CI->getValue() == 1) {
1385 // V == Base * Op1, so return Op1
1386 Multiple = Op1;
1387 return true;
1388 }
1389 }
1390
Chris Lattnere9711312010-09-05 17:20:46 +00001391 Value *Mul1 = NULL;
1392 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1393 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1394 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topperc4265e12012-12-22 19:15:35 +00001395 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattnere9711312010-09-05 17:20:46 +00001396 MulC->getType()->getPrimitiveSizeInBits())
1397 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topperc4265e12012-12-22 19:15:35 +00001398 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattnere9711312010-09-05 17:20:46 +00001399 MulC->getType()->getPrimitiveSizeInBits())
1400 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topperc4265e12012-12-22 19:15:35 +00001401
Chris Lattnere9711312010-09-05 17:20:46 +00001402 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1403 Multiple = ConstantExpr::getMul(MulC, Op0C);
1404 return true;
1405 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001406
1407 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1408 if (Mul1CI->getValue() == 1) {
1409 // V == Base * Op0, so return Op0
1410 Multiple = Op0;
1411 return true;
1412 }
1413 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001414 }
1415 }
1416
1417 // We could not determine if V is a multiple of Base.
1418 return false;
1419}
1420
Craig Topperc4265e12012-12-22 19:15:35 +00001421/// CannotBeNegativeZero - Return true if we can prove that the specified FP
Chris Lattner833f25d2008-06-02 01:29:46 +00001422/// value is never equal to -0.0.
1423///
1424/// NOTE: this function will need to be revisited when we support non-default
1425/// rounding modes!
1426///
1427bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1428 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1429 return !CFP->getValueAPF().isNegZero();
Craig Topperc4265e12012-12-22 19:15:35 +00001430
Chris Lattner833f25d2008-06-02 01:29:46 +00001431 if (Depth == 6)
1432 return 1; // Limit search depth.
1433
Dan Gohmanca178902009-07-17 20:47:02 +00001434 const Operator *I = dyn_cast<Operator>(V);
Chris Lattner833f25d2008-06-02 01:29:46 +00001435 if (I == 0) return false;
Michael Ilseman85893f42012-12-06 00:07:09 +00001436
1437 // Check if the nsz fast-math flag is set
1438 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1439 if (FPO->hasNoSignedZeros())
1440 return true;
1441
Chris Lattner833f25d2008-06-02 01:29:46 +00001442 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszak603e8742013-03-06 00:16:16 +00001443 if (I->getOpcode() == Instruction::FAdd)
1444 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1445 if (CFP->isNullValue())
1446 return true;
Craig Topperc4265e12012-12-22 19:15:35 +00001447
Chris Lattner833f25d2008-06-02 01:29:46 +00001448 // sitofp and uitofp turn into +0.0 for zero.
1449 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1450 return true;
Craig Topperc4265e12012-12-22 19:15:35 +00001451
Chris Lattner833f25d2008-06-02 01:29:46 +00001452 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1453 // sqrt(-0.0) = -0.0, no other negative results are possible.
1454 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif71339c92010-06-23 23:38:07 +00001455 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topperc4265e12012-12-22 19:15:35 +00001456
Chris Lattner833f25d2008-06-02 01:29:46 +00001457 if (const CallInst *CI = dyn_cast<CallInst>(I))
1458 if (const Function *F = CI->getCalledFunction()) {
1459 if (F->isDeclaration()) {
Daniel Dunbarf0443c12009-07-26 08:34:35 +00001460 // abs(x) != -0.0
1461 if (F->getName() == "abs") return true;
Dale Johannesen9d061752009-09-25 20:54:50 +00001462 // fabs[lf](x) != -0.0
1463 if (F->getName() == "fabs") return true;
1464 if (F->getName() == "fabsf") return true;
1465 if (F->getName() == "fabsl") return true;
1466 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1467 F->getName() == "sqrtl")
Gabor Greif71339c92010-06-23 23:38:07 +00001468 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001469 }
1470 }
Craig Topperc4265e12012-12-22 19:15:35 +00001471
Chris Lattner833f25d2008-06-02 01:29:46 +00001472 return false;
1473}
1474
Chris Lattnerbb897102010-12-26 20:15:01 +00001475/// isBytewiseValue - If the specified value can be set by repeating the same
1476/// byte in memory, return the i8 value that it is represented with. This is
1477/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1478/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1479/// byte store (e.g. i16 0x1234), return null.
1480Value *llvm::isBytewiseValue(Value *V) {
1481 // All byte-wide stores are splatable, even of arbitrary variables.
1482 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattner41bfbb02011-02-19 19:35:49 +00001483
1484 // Handle 'null' ConstantArrayZero etc.
1485 if (Constant *C = dyn_cast<Constant>(V))
1486 if (C->isNullValue())
1487 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topperc4265e12012-12-22 19:15:35 +00001488
Chris Lattnerbb897102010-12-26 20:15:01 +00001489 // Constant float and double values can be handled as integer values if the
Craig Topperc4265e12012-12-22 19:15:35 +00001490 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattnerbb897102010-12-26 20:15:01 +00001491 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1492 if (CFP->getType()->isFloatTy())
1493 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1494 if (CFP->getType()->isDoubleTy())
1495 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1496 // Don't handle long double formats, which have strange constraints.
1497 }
Craig Topperc4265e12012-12-22 19:15:35 +00001498
1499 // We can handle constant integers that are power of two in size and a
Chris Lattnerbb897102010-12-26 20:15:01 +00001500 // multiple of 8 bits.
1501 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1502 unsigned Width = CI->getBitWidth();
1503 if (isPowerOf2_32(Width) && Width > 8) {
1504 // We can handle this value if the recursive binary decomposition is the
1505 // same at all levels.
1506 APInt Val = CI->getValue();
1507 APInt Val2;
1508 while (Val.getBitWidth() != 8) {
1509 unsigned NextWidth = Val.getBitWidth()/2;
1510 Val2 = Val.lshr(NextWidth);
1511 Val2 = Val2.trunc(Val.getBitWidth()/2);
1512 Val = Val.trunc(Val.getBitWidth()/2);
Craig Topperc4265e12012-12-22 19:15:35 +00001513
Chris Lattnerbb897102010-12-26 20:15:01 +00001514 // If the top/bottom halves aren't the same, reject it.
1515 if (Val != Val2)
1516 return 0;
1517 }
1518 return ConstantInt::get(V->getContext(), Val);
1519 }
1520 }
Craig Topperc4265e12012-12-22 19:15:35 +00001521
Chris Lattner18c7f802012-02-05 02:29:43 +00001522 // A ConstantDataArray/Vector is splatable if all its members are equal and
1523 // also splatable.
1524 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1525 Value *Elt = CA->getElementAsConstant(0);
1526 Value *Val = isBytewiseValue(Elt);
Chris Lattnerbb897102010-12-26 20:15:01 +00001527 if (!Val)
1528 return 0;
Craig Topperc4265e12012-12-22 19:15:35 +00001529
Chris Lattner18c7f802012-02-05 02:29:43 +00001530 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1531 if (CA->getElementAsConstant(I) != Elt)
Chris Lattnerbb897102010-12-26 20:15:01 +00001532 return 0;
Craig Topperc4265e12012-12-22 19:15:35 +00001533
Chris Lattnerbb897102010-12-26 20:15:01 +00001534 return Val;
1535 }
Chad Rosierdce42b72011-12-06 00:19:08 +00001536
Chris Lattnerbb897102010-12-26 20:15:01 +00001537 // Conceptually, we could handle things like:
1538 // %a = zext i8 %X to i16
1539 // %b = shl i16 %a, 8
1540 // %c = or i16 %a, %b
1541 // but until there is an example that actually needs this, it doesn't seem
1542 // worth worrying about.
1543 return 0;
1544}
1545
1546
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001547// This is the recursive version of BuildSubAggregate. It takes a few different
1548// arguments. Idxs is the index within the nested struct From that we are
1549// looking at now (which is of type IndexedType). IdxSkip is the number of
1550// indices from Idxs that should be left out when inserting into the resulting
1551// struct. To is the result struct built so far, new insertvalue instructions
1552// build on that.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001553static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper9e639e82013-07-11 16:22:38 +00001554 SmallVectorImpl<unsigned> &Idxs,
Dan Gohman7db949d2009-08-07 01:32:21 +00001555 unsigned IdxSkip,
Dan Gohman7db949d2009-08-07 01:32:21 +00001556 Instruction *InsertBefore) {
Dmitri Gribenko96f498b2013-01-13 16:01:15 +00001557 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001558 if (STy) {
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001559 // Save the original To argument so we can modify it
1560 Value *OrigTo = To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001561 // General case, the type indexed by Idxs is a struct
1562 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1563 // Process each struct element recursively
1564 Idxs.push_back(i);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001565 Value *PrevTo = To;
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001566 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001567 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001568 Idxs.pop_back();
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001569 if (!To) {
1570 // Couldn't find any inserted value for this index? Cleanup
1571 while (PrevTo != OrigTo) {
1572 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1573 PrevTo = Del->getAggregateOperand();
1574 Del->eraseFromParent();
1575 }
1576 // Stop processing elements
1577 break;
1578 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001579 }
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001580 // If we successfully found a value for each of our subaggregates
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001581 if (To)
1582 return To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001583 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001584 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1585 // the struct's elements had a value that was inserted directly. In the latter
1586 // case, perhaps we can't determine each of the subelements individually, but
1587 // we might be able to find the complete struct somewhere.
Craig Topperc4265e12012-12-22 19:15:35 +00001588
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001589 // Find the value that is at that particular spot
Jay Foadfc6d3a42011-07-13 10:26:04 +00001590 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001591
1592 if (!V)
1593 return NULL;
1594
1595 // Insert the value in the new (sub) aggregrate
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001596 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001597 "tmp", InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001598}
1599
1600// This helper takes a nested struct and extracts a part of it (which is again a
1601// struct) into a new value. For example, given the struct:
1602// { a, { b, { c, d }, e } }
1603// and the indices "1, 1" this returns
1604// { c, d }.
1605//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001606// It does this by inserting an insertvalue for each element in the resulting
1607// struct, as opposed to just inserting a single struct. This will only work if
1608// each of the elements of the substruct are known (ie, inserted into From by an
1609// insertvalue instruction somewhere).
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001610//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001611// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foadfc6d3a42011-07-13 10:26:04 +00001612static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohman7db949d2009-08-07 01:32:21 +00001613 Instruction *InsertBefore) {
Matthijs Kooijman97728912008-06-16 13:28:31 +00001614 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001615 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001616 idx_range);
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001617 Value *To = UndefValue::get(IndexedType);
Jay Foadfc6d3a42011-07-13 10:26:04 +00001618 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001619 unsigned IdxSkip = Idxs.size();
1620
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001621 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001622}
1623
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001624/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1625/// the scalar value indexed is already around as a register, for example if it
1626/// were inserted directly into the aggregrate.
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001627///
1628/// If InsertBefore is not null, this function will duplicate (modified)
1629/// insertvalues when a part of a nested struct is extracted.
Jay Foadfc6d3a42011-07-13 10:26:04 +00001630Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1631 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001632 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerdf390282012-01-24 07:54:10 +00001633 // recursion).
Jay Foadfc6d3a42011-07-13 10:26:04 +00001634 if (idx_range.empty())
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001635 return V;
Chris Lattnerdf390282012-01-24 07:54:10 +00001636 // We have indices, so V should have an indexable type.
1637 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1638 "Not looking at a struct or array?");
1639 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1640 "Invalid indices for type?");
Owen Anderson76f600b2009-07-06 22:37:39 +00001641
Chris Lattnera1f00f42012-01-25 06:48:06 +00001642 if (Constant *C = dyn_cast<Constant>(V)) {
1643 C = C->getAggregateElement(idx_range[0]);
1644 if (C == 0) return 0;
1645 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1646 }
Craig Topperc4265e12012-12-22 19:15:35 +00001647
Chris Lattnerdf390282012-01-24 07:54:10 +00001648 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001649 // Loop the indices for the insertvalue instruction in parallel with the
1650 // requested indices
Jay Foadfc6d3a42011-07-13 10:26:04 +00001651 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001652 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1653 i != e; ++i, ++req_idx) {
Jay Foadfc6d3a42011-07-13 10:26:04 +00001654 if (req_idx == idx_range.end()) {
Chris Lattnerdf390282012-01-24 07:54:10 +00001655 // We can't handle this without inserting insertvalues
1656 if (!InsertBefore)
Matthijs Kooijman97728912008-06-16 13:28:31 +00001657 return 0;
Chris Lattnerdf390282012-01-24 07:54:10 +00001658
1659 // The requested index identifies a part of a nested aggregate. Handle
1660 // this specially. For example,
1661 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1662 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1663 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1664 // This can be changed into
1665 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1666 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1667 // which allows the unused 0,0 element from the nested struct to be
1668 // removed.
1669 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1670 InsertBefore);
Duncan Sands9954c762008-06-19 08:47:31 +00001671 }
Craig Topperc4265e12012-12-22 19:15:35 +00001672
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001673 // This insert value inserts something else than what we are looking for.
1674 // See if the (aggregrate) value inserted into has the value we are
1675 // looking for, then.
1676 if (*req_idx != *i)
Jay Foadfc6d3a42011-07-13 10:26:04 +00001677 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001678 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001679 }
1680 // If we end up here, the indices of the insertvalue match with those
1681 // requested (though possibly only partially). Now we recursively look at
1682 // the inserted value, passing any remaining indices.
Jay Foadfc6d3a42011-07-13 10:26:04 +00001683 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001684 makeArrayRef(req_idx, idx_range.end()),
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001685 InsertBefore);
Chris Lattnerdf390282012-01-24 07:54:10 +00001686 }
Craig Topperc4265e12012-12-22 19:15:35 +00001687
Chris Lattnerdf390282012-01-24 07:54:10 +00001688 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001689 // If we're extracting a value from an aggregrate that was extracted from
1690 // something else, we can extract from that something else directly instead.
1691 // However, we will need to chain I's indices with the requested indices.
Craig Topperc4265e12012-12-22 19:15:35 +00001692
1693 // Calculate the number of indices required
Jay Foadfc6d3a42011-07-13 10:26:04 +00001694 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001695 // Allocate some space to put the new indices in
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001696 SmallVector<unsigned, 5> Idxs;
1697 Idxs.reserve(size);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001698 // Add indices from the extract value instruction
Jay Foadfc6d3a42011-07-13 10:26:04 +00001699 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topperc4265e12012-12-22 19:15:35 +00001700
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001701 // Add requested indices
Jay Foadfc6d3a42011-07-13 10:26:04 +00001702 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001703
Craig Topperc4265e12012-12-22 19:15:35 +00001704 assert(Idxs.size() == size
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001705 && "Number of indices added not correct?");
Craig Topperc4265e12012-12-22 19:15:35 +00001706
Jay Foadfc6d3a42011-07-13 10:26:04 +00001707 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001708 }
1709 // Otherwise, we don't know (such as, extracting from a function return value
1710 // or load instruction)
1711 return 0;
1712}
Evan Cheng0ff39b32008-06-30 07:31:25 +00001713
Chris Lattnered58a6f2010-11-30 22:25:26 +00001714/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1715/// it can be expressed as a base pointer plus a constant offset. Return the
1716/// base and offset to the caller.
1717Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Matt Arsenaultd080fb12013-08-10 17:34:08 +00001718 const DataLayout *DL) {
Dan Gohmana070d2a2013-01-31 02:00:45 +00001719 // Without DataLayout, conservatively assume 64-bit offsets, which is
1720 // the widest we support.
Matt Arsenaultd080fb12013-08-10 17:34:08 +00001721 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
Nuno Lopes5cec3472012-12-31 20:48:35 +00001722 APInt ByteOffset(BitWidth, 0);
1723 while (1) {
1724 if (Ptr->getType()->isVectorTy())
1725 break;
Craig Topperc4265e12012-12-22 19:15:35 +00001726
Nuno Lopes5cec3472012-12-31 20:48:35 +00001727 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Matt Arsenaultd080fb12013-08-10 17:34:08 +00001728 if (DL) {
1729 APInt GEPOffset(BitWidth, 0);
1730 if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
1731 break;
1732
1733 ByteOffset += GEPOffset;
1734 }
1735
Nuno Lopes5cec3472012-12-31 20:48:35 +00001736 Ptr = GEP->getPointerOperand();
1737 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1738 Ptr = cast<Operator>(Ptr)->getOperand(0);
1739 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1740 if (GA->mayBeOverridden())
1741 break;
1742 Ptr = GA->getAliasee();
Chris Lattnered58a6f2010-11-30 22:25:26 +00001743 } else {
Nuno Lopes5cec3472012-12-31 20:48:35 +00001744 break;
Chris Lattnered58a6f2010-11-30 22:25:26 +00001745 }
1746 }
Nuno Lopes5cec3472012-12-31 20:48:35 +00001747 Offset = ByteOffset.getSExtValue();
1748 return Ptr;
Chris Lattnered58a6f2010-11-30 22:25:26 +00001749}
1750
1751
Chris Lattner18c7f802012-02-05 02:29:43 +00001752/// getConstantStringInfo - This function computes the length of a
Evan Cheng0ff39b32008-06-30 07:31:25 +00001753/// null-terminated C string pointed to by V. If successful, it returns true
1754/// and returns the string in Str. If unsuccessful, it returns false.
Chris Lattner18c7f802012-02-05 02:29:43 +00001755bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1756 uint64_t Offset, bool TrimAtNul) {
1757 assert(V);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001758
Chris Lattner18c7f802012-02-05 02:29:43 +00001759 // Look through bitcast instructions and geps.
1760 V = V->stripPointerCasts();
Craig Topperc4265e12012-12-22 19:15:35 +00001761
Chris Lattner18c7f802012-02-05 02:29:43 +00001762 // If the value is a GEP instructionor constant expression, treat it as an
1763 // offset.
1764 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001765 // Make sure the GEP has exactly three arguments.
Bill Wendling0582ae92009-03-13 04:39:26 +00001766 if (GEP->getNumOperands() != 3)
1767 return false;
Craig Topperc4265e12012-12-22 19:15:35 +00001768
Evan Cheng0ff39b32008-06-30 07:31:25 +00001769 // Make sure the index-ee is a pointer to array of i8.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001770 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1771 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001772 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
Bill Wendling0582ae92009-03-13 04:39:26 +00001773 return false;
Craig Topperc4265e12012-12-22 19:15:35 +00001774
Evan Cheng0ff39b32008-06-30 07:31:25 +00001775 // Check to make sure that the first operand of the GEP is an integer and
1776 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001777 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Bill Wendling0582ae92009-03-13 04:39:26 +00001778 if (FirstIdx == 0 || !FirstIdx->isZero())
1779 return false;
Craig Topperc4265e12012-12-22 19:15:35 +00001780
Evan Cheng0ff39b32008-06-30 07:31:25 +00001781 // If the second index isn't a ConstantInt, then this is a variable index
1782 // into the array. If this occurs, we can't say anything meaningful about
1783 // the string.
1784 uint64_t StartIdx = 0;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001785 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Cheng0ff39b32008-06-30 07:31:25 +00001786 StartIdx = CI->getZExtValue();
Bill Wendling0582ae92009-03-13 04:39:26 +00001787 else
1788 return false;
Chris Lattner18c7f802012-02-05 02:29:43 +00001789 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001790 }
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001791
Evan Cheng0ff39b32008-06-30 07:31:25 +00001792 // The GEP instruction, constant or instruction, must reference a global
1793 // variable that is a constant and is initialized. The referenced constant
1794 // initializer is the array that we'll use for optimization.
Chris Lattner18c7f802012-02-05 02:29:43 +00001795 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman82555732009-08-19 18:20:44 +00001796 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendling0582ae92009-03-13 04:39:26 +00001797 return false;
Chris Lattner18c7f802012-02-05 02:29:43 +00001798
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001799 // Handle the all-zeros case
Chris Lattner18c7f802012-02-05 02:29:43 +00001800 if (GV->getInitializer()->isNullValue()) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001801 // This is a degenerate case. The initializer is constant zero so the
1802 // length of the string must be zero.
Chris Lattner18c7f802012-02-05 02:29:43 +00001803 Str = "";
Bill Wendling0582ae92009-03-13 04:39:26 +00001804 return true;
1805 }
Craig Topperc4265e12012-12-22 19:15:35 +00001806
Evan Cheng0ff39b32008-06-30 07:31:25 +00001807 // Must be a Constant Array
Chris Lattner18c7f802012-02-05 02:29:43 +00001808 const ConstantDataArray *Array =
1809 dyn_cast<ConstantDataArray>(GV->getInitializer());
1810 if (Array == 0 || !Array->isString())
Bill Wendling0582ae92009-03-13 04:39:26 +00001811 return false;
Craig Topperc4265e12012-12-22 19:15:35 +00001812
Evan Cheng0ff39b32008-06-30 07:31:25 +00001813 // Get the number of elements in the array
Chris Lattner18c7f802012-02-05 02:29:43 +00001814 uint64_t NumElts = Array->getType()->getArrayNumElements();
1815
1816 // Start out with the entire array in the StringRef.
1817 Str = Array->getAsString();
1818
Bill Wendling0582ae92009-03-13 04:39:26 +00001819 if (Offset > NumElts)
1820 return false;
Craig Topperc4265e12012-12-22 19:15:35 +00001821
Chris Lattner18c7f802012-02-05 02:29:43 +00001822 // Skip over 'offset' bytes.
1823 Str = Str.substr(Offset);
Craig Topperc4265e12012-12-22 19:15:35 +00001824
Chris Lattner18c7f802012-02-05 02:29:43 +00001825 if (TrimAtNul) {
1826 // Trim off the \0 and anything after it. If the array is not nul
1827 // terminated, we just return the whole end of string. The client may know
1828 // some other way that the string is length-bound.
1829 Str = Str.substr(0, Str.find('\0'));
1830 }
Bill Wendling0582ae92009-03-13 04:39:26 +00001831 return true;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001832}
Eric Christopher25ec4832010-03-05 06:58:57 +00001833
1834// These next two are very similar to the above, but also look through PHI
1835// nodes.
1836// TODO: See if we can integrate these two together.
1837
1838/// GetStringLengthH - If we can compute the length of the string pointed to by
1839/// the specified pointer, return 'len+1'. If we can't, return 0.
1840static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1841 // Look through noop bitcast instructions.
Chris Lattner18c7f802012-02-05 02:29:43 +00001842 V = V->stripPointerCasts();
Eric Christopher25ec4832010-03-05 06:58:57 +00001843
1844 // If this is a PHI node, there are two cases: either we have already seen it
1845 // or we haven't.
1846 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1847 if (!PHIs.insert(PN))
1848 return ~0ULL; // already in the set.
1849
1850 // If it was new, see if all the input strings are the same length.
1851 uint64_t LenSoFar = ~0ULL;
1852 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1853 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1854 if (Len == 0) return 0; // Unknown length -> unknown.
1855
1856 if (Len == ~0ULL) continue;
1857
1858 if (Len != LenSoFar && LenSoFar != ~0ULL)
1859 return 0; // Disagree -> unknown.
1860 LenSoFar = Len;
1861 }
1862
1863 // Success, all agree.
1864 return LenSoFar;
1865 }
1866
1867 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1868 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1869 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1870 if (Len1 == 0) return 0;
1871 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1872 if (Len2 == 0) return 0;
1873 if (Len1 == ~0ULL) return Len2;
1874 if (Len2 == ~0ULL) return Len1;
1875 if (Len1 != Len2) return 0;
1876 return Len1;
1877 }
Craig Topperc4265e12012-12-22 19:15:35 +00001878
Chris Lattner18c7f802012-02-05 02:29:43 +00001879 // Otherwise, see if we can read the string.
1880 StringRef StrData;
1881 if (!getConstantStringInfo(V, StrData))
Eric Christopher25ec4832010-03-05 06:58:57 +00001882 return 0;
1883
Chris Lattner18c7f802012-02-05 02:29:43 +00001884 return StrData.size()+1;
Eric Christopher25ec4832010-03-05 06:58:57 +00001885}
1886
1887/// GetStringLength - If we can compute the length of the string pointed to by
1888/// the specified pointer, return 'len+1'. If we can't, return 0.
1889uint64_t llvm::GetStringLength(Value *V) {
1890 if (!V->getType()->isPointerTy()) return 0;
1891
1892 SmallPtrSet<PHINode*, 32> PHIs;
1893 uint64_t Len = GetStringLengthH(V, PHIs);
1894 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1895 // an empty string as a length.
1896 return Len == ~0ULL ? 1 : Len;
1897}
Dan Gohman5034dd32010-12-15 20:02:24 +00001898
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001899Value *
Micah Villmow3574eca2012-10-08 16:38:25 +00001900llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohman5034dd32010-12-15 20:02:24 +00001901 if (!V->getType()->isPointerTy())
1902 return V;
1903 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1904 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1905 V = GEP->getPointerOperand();
1906 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1907 V = cast<Operator>(V)->getOperand(0);
1908 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1909 if (GA->mayBeOverridden())
1910 return V;
1911 V = GA->getAliasee();
1912 } else {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001913 // See if InstructionSimplify knows any relevant tricks.
1914 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001915 // TODO: Acquire a DominatorTree and use it.
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001916 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001917 V = Simplified;
1918 continue;
1919 }
1920
Dan Gohman5034dd32010-12-15 20:02:24 +00001921 return V;
1922 }
1923 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1924 }
1925 return V;
1926}
Nick Lewycky99e0b2a2011-06-27 04:20:45 +00001927
Dan Gohmanb401e3b2012-05-10 18:57:38 +00001928void
1929llvm::GetUnderlyingObjects(Value *V,
1930 SmallVectorImpl<Value *> &Objects,
Micah Villmow3574eca2012-10-08 16:38:25 +00001931 const DataLayout *TD,
Dan Gohmanb401e3b2012-05-10 18:57:38 +00001932 unsigned MaxLookup) {
1933 SmallPtrSet<Value *, 4> Visited;
1934 SmallVector<Value *, 4> Worklist;
1935 Worklist.push_back(V);
1936 do {
1937 Value *P = Worklist.pop_back_val();
1938 P = GetUnderlyingObject(P, TD, MaxLookup);
1939
1940 if (!Visited.insert(P))
1941 continue;
1942
1943 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1944 Worklist.push_back(SI->getTrueValue());
1945 Worklist.push_back(SI->getFalseValue());
1946 continue;
1947 }
1948
1949 if (PHINode *PN = dyn_cast<PHINode>(P)) {
1950 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1951 Worklist.push_back(PN->getIncomingValue(i));
1952 continue;
1953 }
1954
1955 Objects.push_back(P);
1956 } while (!Worklist.empty());
1957}
1958
Nick Lewycky99e0b2a2011-06-27 04:20:45 +00001959/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1960/// are lifetime markers.
1961///
1962bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1963 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1964 UI != UE; ++UI) {
1965 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1966 if (!II) return false;
1967
1968 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1969 II->getIntrinsicID() != Intrinsic::lifetime_end)
1970 return false;
1971 }
1972 return true;
1973}
Dan Gohmanf0426602011-12-14 23:49:11 +00001974
Dan Gohmanfebaf842012-01-04 23:01:09 +00001975bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmow3574eca2012-10-08 16:38:25 +00001976 const DataLayout *TD) {
Dan Gohmanfebaf842012-01-04 23:01:09 +00001977 const Operator *Inst = dyn_cast<Operator>(V);
1978 if (!Inst)
1979 return false;
1980
Dan Gohmanf0426602011-12-14 23:49:11 +00001981 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1982 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1983 if (C->canTrap())
1984 return false;
1985
1986 switch (Inst->getOpcode()) {
1987 default:
1988 return true;
1989 case Instruction::UDiv:
1990 case Instruction::URem:
1991 // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1992 return isKnownNonZero(Inst->getOperand(1), TD);
1993 case Instruction::SDiv:
1994 case Instruction::SRem: {
1995 Value *Op = Inst->getOperand(1);
1996 // x / y is undefined if y == 0
1997 if (!isKnownNonZero(Op, TD))
1998 return false;
1999 // x / y might be undefined if y == -1
2000 unsigned BitWidth = getBitWidth(Op->getType(), TD);
2001 if (BitWidth == 0)
2002 return false;
2003 APInt KnownZero(BitWidth, 0);
2004 APInt KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00002005 ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
Dan Gohmanf0426602011-12-14 23:49:11 +00002006 return !!KnownZero;
2007 }
2008 case Instruction::Load: {
2009 const LoadInst *LI = cast<LoadInst>(Inst);
2010 if (!LI->isUnordered())
2011 return false;
2012 return LI->getPointerOperand()->isDereferenceablePointer();
2013 }
Nick Lewycky83696872011-12-21 05:52:02 +00002014 case Instruction::Call: {
2015 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2016 switch (II->getIntrinsicID()) {
Chandler Carruthc0d18b62012-04-07 19:22:18 +00002017 // These synthetic intrinsics have no side-effects, and just mark
2018 // information about their operands.
2019 // FIXME: There are other no-op synthetic instructions that potentially
2020 // should be considered at least *safe* to speculate...
2021 case Intrinsic::dbg_declare:
2022 case Intrinsic::dbg_value:
2023 return true;
2024
Nick Lewycky83696872011-12-21 05:52:02 +00002025 case Intrinsic::bswap:
2026 case Intrinsic::ctlz:
2027 case Intrinsic::ctpop:
2028 case Intrinsic::cttz:
2029 case Intrinsic::objectsize:
2030 case Intrinsic::sadd_with_overflow:
2031 case Intrinsic::smul_with_overflow:
2032 case Intrinsic::ssub_with_overflow:
2033 case Intrinsic::uadd_with_overflow:
2034 case Intrinsic::umul_with_overflow:
2035 case Intrinsic::usub_with_overflow:
2036 return true;
2037 // TODO: some fp intrinsics are marked as having the same error handling
2038 // as libm. They're safe to speculate when they won't error.
2039 // TODO: are convert_{from,to}_fp16 safe?
2040 // TODO: can we list target-specific intrinsics here?
2041 default: break;
2042 }
2043 }
Dan Gohmanf0426602011-12-14 23:49:11 +00002044 return false; // The called function could have undefined behavior or
Nick Lewycky83696872011-12-21 05:52:02 +00002045 // side-effects, even if marked readnone nounwind.
2046 }
Dan Gohmanf0426602011-12-14 23:49:11 +00002047 case Instruction::VAArg:
2048 case Instruction::Alloca:
2049 case Instruction::Invoke:
2050 case Instruction::PHI:
2051 case Instruction::Store:
2052 case Instruction::Ret:
2053 case Instruction::Br:
2054 case Instruction::IndirectBr:
2055 case Instruction::Switch:
Dan Gohmanf0426602011-12-14 23:49:11 +00002056 case Instruction::Unreachable:
2057 case Instruction::Fence:
2058 case Instruction::LandingPad:
2059 case Instruction::AtomicRMW:
2060 case Instruction::AtomicCmpXchg:
2061 case Instruction::Resume:
2062 return false; // Misc instructions which have effects
2063 }
2064}
Dan Gohmande0eb192013-01-31 02:40:59 +00002065
2066/// isKnownNonNull - Return true if we know that the specified value is never
2067/// null.
Benjamin Kramer66292102013-09-24 16:37:51 +00002068bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Dan Gohmande0eb192013-01-31 02:40:59 +00002069 // Alloca never returns null, malloc might.
2070 if (isa<AllocaInst>(V)) return true;
2071
2072 // A byval argument is never null.
2073 if (const Argument *A = dyn_cast<Argument>(V))
2074 return A->hasByValAttr();
2075
2076 // Global values are not null unless extern weak.
2077 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2078 return !GV->hasExternalWeakLinkage();
Benjamin Kramer66292102013-09-24 16:37:51 +00002079
2080 // operator new never returns null.
2081 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2082 return true;
2083
Dan Gohmande0eb192013-01-31 02:40:59 +00002084 return false;
2085}