blob: a7595482eedbd4ab9ff9645445b5ee4c7fcad755 [file] [log] [blame]
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11// srem, urem, frem.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
Duncan Sands82fdab32010-12-21 14:00:22 +000016#include "llvm/Analysis/InstructionSimplify.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000017#include "llvm/IR/IntrinsicInst.h"
Chris Lattnerd12c27c2010-01-05 06:09:35 +000018#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
Chris Lattner1add46d2011-05-22 18:18:41 +000022
23/// simplifyValueKnownNonZero - The specific integer value is used in a context
24/// where it is known to be non-zero. If this allows us to simplify the
25/// computation, do so and return the new operand, otherwise return null.
26static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27 // If V has multiple uses, then we would have to do more analysis to determine
28 // if this is safe. For example, the use could be in dynamically unreached
29 // code.
30 if (!V->hasOneUse()) return 0;
Jim Grosbach03fceff2013-04-05 21:20:12 +000031
Chris Lattner613f1a32011-05-23 00:32:19 +000032 bool MadeChange = false;
33
Chris Lattner1add46d2011-05-22 18:18:41 +000034 // ((1 << A) >>u B) --> (1 << (A-B))
35 // Because V cannot be zero, we know that B is less than A.
Chris Lattner6083bb92011-05-23 00:09:55 +000036 Value *A = 0, *B = 0, *PowerOf2 = 0;
37 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
Chris Lattner1add46d2011-05-22 18:18:41 +000038 m_Value(B))) &&
39 // The "1" can be any value known to be a power of 2.
Rafael Espindoladbaa2372012-12-13 03:37:24 +000040 isKnownToBeAPowerOfTwo(PowerOf2)) {
Benjamin Kramera9390a42011-09-27 20:39:19 +000041 A = IC.Builder->CreateSub(A, B);
Chris Lattner6083bb92011-05-23 00:09:55 +000042 return IC.Builder->CreateShl(PowerOf2, A);
Chris Lattner1add46d2011-05-22 18:18:41 +000043 }
Jim Grosbach03fceff2013-04-05 21:20:12 +000044
Chris Lattner613f1a32011-05-23 00:32:19 +000045 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46 // inexact. Similarly for <<.
47 if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
Rafael Espindoladbaa2372012-12-13 03:37:24 +000048 if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
Chris Lattner613f1a32011-05-23 00:32:19 +000049 // We know that this is an exact/nuw shift and that the input is a
50 // non-zero context as well.
51 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
52 I->setOperand(0, V2);
53 MadeChange = true;
54 }
Jim Grosbach03fceff2013-04-05 21:20:12 +000055
Chris Lattner613f1a32011-05-23 00:32:19 +000056 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
57 I->setIsExact();
58 MadeChange = true;
59 }
Jim Grosbach03fceff2013-04-05 21:20:12 +000060
Chris Lattner613f1a32011-05-23 00:32:19 +000061 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
62 I->setHasNoUnsignedWrap();
63 MadeChange = true;
64 }
65 }
66
Chris Lattner6c9b8d32011-05-22 18:26:48 +000067 // TODO: Lots more we could do here:
Chris Lattner6c9b8d32011-05-22 18:26:48 +000068 // If V is a phi node, we can call this on each of its operands.
69 // "select cond, X, 0" can simplify to "X".
Jim Grosbach03fceff2013-04-05 21:20:12 +000070
Chris Lattner613f1a32011-05-23 00:32:19 +000071 return MadeChange ? V : 0;
Chris Lattner1add46d2011-05-22 18:18:41 +000072}
73
74
Chris Lattnerd12c27c2010-01-05 06:09:35 +000075/// MultiplyOverflows - True if the multiply can not be expressed in an int
76/// this size.
77static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
78 uint32_t W = C1->getBitWidth();
79 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
80 if (sign) {
Jay Foad40f8f622010-12-07 08:25:19 +000081 LHSExt = LHSExt.sext(W * 2);
82 RHSExt = RHSExt.sext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000083 } else {
Jay Foad40f8f622010-12-07 08:25:19 +000084 LHSExt = LHSExt.zext(W * 2);
85 RHSExt = RHSExt.zext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000086 }
Jim Grosbach03fceff2013-04-05 21:20:12 +000087
Chris Lattnerd12c27c2010-01-05 06:09:35 +000088 APInt MulExt = LHSExt * RHSExt;
Jim Grosbach03fceff2013-04-05 21:20:12 +000089
Chris Lattnerd12c27c2010-01-05 06:09:35 +000090 if (!sign)
91 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
Jim Grosbach03fceff2013-04-05 21:20:12 +000092
Chris Lattnerd12c27c2010-01-05 06:09:35 +000093 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
94 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
95 return MulExt.slt(Min) || MulExt.sgt(Max);
96}
97
Rafael Espindola4f3d7ee2013-05-31 14:27:15 +000098/// \brief A helper routine of InstCombiner::visitMul().
99///
100/// If C is a vector of known powers of 2, then this function returns
101/// a new vector obtained from C replacing each element with its logBase2.
102/// Return a null pointer otherwise.
103static Constant *getLogBase2Vector(ConstantDataVector *CV) {
104 const APInt *IVal;
105 SmallVector<Constant *, 4> Elts;
106
107 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
108 Constant *Elt = CV->getElementAsConstant(I);
109 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
110 return 0;
111 Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
112 }
113
114 return ConstantVector::get(Elts);
115}
116
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000117Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +0000118 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000119 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
120
Duncan Sands82fdab32010-12-21 14:00:22 +0000121 if (Value *V = SimplifyMulInst(Op0, Op1, TD))
122 return ReplaceInstUsesWith(I, V);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000123
Duncan Sands37bf92b2010-12-22 13:36:08 +0000124 if (Value *V = SimplifyUsingDistributiveLaws(I))
125 return ReplaceInstUsesWith(I, V);
126
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000127 if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
128 return BinaryOperator::CreateNeg(Op0, I.getName());
Jim Grosbach03fceff2013-04-05 21:20:12 +0000129
Rafael Espindola4f3d7ee2013-05-31 14:27:15 +0000130 // Also allow combining multiply instructions on vectors.
131 {
132 Value *NewOp;
133 Constant *C1, *C2;
134 const APInt *IVal;
135 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
136 m_Constant(C1))) &&
137 match(C1, m_APInt(IVal)))
138 // ((X << C1)*C2) == (X * (C2 << C1))
139 return BinaryOperator::CreateMul(NewOp, ConstantExpr::getShl(C1, C2));
Jim Grosbach03fceff2013-04-05 21:20:12 +0000140
Rafael Espindola4f3d7ee2013-05-31 14:27:15 +0000141 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
142 Constant *NewCst = 0;
143 if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
144 // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
145 NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
146 else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
147 // Replace X*(2^C) with X << C, where C is a vector of known
148 // constant powers of 2.
149 NewCst = getLogBase2Vector(CV);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000150
Rafael Espindola4f3d7ee2013-05-31 14:27:15 +0000151 if (NewCst) {
152 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
153 if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
154 if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
155 return Shl;
156 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000157 }
Rafael Espindola4f3d7ee2013-05-31 14:27:15 +0000158 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000159
Rafael Espindola4f3d7ee2013-05-31 14:27:15 +0000160 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000161 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
162 { Value *X; ConstantInt *C1;
163 if (Op0->hasOneUse() &&
164 match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
Benjamin Kramera9390a42011-09-27 20:39:19 +0000165 Value *Add = Builder->CreateMul(X, CI);
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000166 return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000167 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000168 }
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000169
Stuart Hastingsf1002822011-06-01 16:42:47 +0000170 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
171 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
172 // The "* (2**n)" thus becomes a potential shifting opportunity.
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000173 {
174 const APInt & Val = CI->getValue();
175 const APInt &PosVal = Val.abs();
176 if (Val.isNegative() && PosVal.isPowerOf2()) {
Stuart Hastingsf1002822011-06-01 16:42:47 +0000177 Value *X = 0, *Y = 0;
178 if (Op0->hasOneUse()) {
179 ConstantInt *C1;
180 Value *Sub = 0;
181 if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
182 Sub = Builder->CreateSub(X, Y, "suba");
183 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
184 Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
185 if (Sub)
186 return
187 BinaryOperator::CreateMul(Sub,
188 ConstantInt::get(Y->getType(), PosVal));
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000189 }
190 }
191 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000192 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000193
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000194 // Simplify mul instructions with a constant RHS.
Jim Grosbach03fceff2013-04-05 21:20:12 +0000195 if (isa<Constant>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000196 // Try to fold constant mul into select arguments.
197 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
198 if (Instruction *R = FoldOpIntoSelect(I, SI))
199 return R;
200
201 if (isa<PHINode>(Op0))
202 if (Instruction *NV = FoldOpIntoPhi(I))
203 return NV;
204 }
205
206 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
207 if (Value *Op1v = dyn_castNegVal(Op1))
208 return BinaryOperator::CreateMul(Op0v, Op1v);
209
210 // (X / Y) * Y = X - (X % Y)
211 // (X / Y) * -Y = (X % Y) - X
212 {
213 Value *Op1C = Op1;
214 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
215 if (!BO ||
Jim Grosbach03fceff2013-04-05 21:20:12 +0000216 (BO->getOpcode() != Instruction::UDiv &&
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000217 BO->getOpcode() != Instruction::SDiv)) {
218 Op1C = Op0;
219 BO = dyn_cast<BinaryOperator>(Op1);
220 }
221 Value *Neg = dyn_castNegVal(Op1C);
222 if (BO && BO->hasOneUse() &&
223 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
224 (BO->getOpcode() == Instruction::UDiv ||
225 BO->getOpcode() == Instruction::SDiv)) {
226 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
227
Chris Lattner35bda892011-02-06 21:44:57 +0000228 // If the division is exact, X % Y is zero, so we end up with X or -X.
229 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000230 if (SDiv->isExact()) {
231 if (Op1BO == Op1C)
232 return ReplaceInstUsesWith(I, Op0BO);
233 return BinaryOperator::CreateNeg(Op0BO);
234 }
235
236 Value *Rem;
237 if (BO->getOpcode() == Instruction::UDiv)
238 Rem = Builder->CreateURem(Op0BO, Op1BO);
239 else
240 Rem = Builder->CreateSRem(Op0BO, Op1BO);
241 Rem->takeName(BO);
242
243 if (Op1BO == Op1C)
244 return BinaryOperator::CreateSub(Op0BO, Rem);
245 return BinaryOperator::CreateSub(Rem, Op0BO);
246 }
247 }
248
249 /// i1 mul -> i1 and.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000250 if (I.getType()->isIntegerTy(1))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000251 return BinaryOperator::CreateAnd(Op0, Op1);
252
253 // X*(1 << Y) --> X << Y
254 // (1 << Y)*X --> X << Y
255 {
256 Value *Y;
257 if (match(Op0, m_Shl(m_One(), m_Value(Y))))
258 return BinaryOperator::CreateShl(Op1, Y);
259 if (match(Op1, m_Shl(m_One(), m_Value(Y))))
260 return BinaryOperator::CreateShl(Op0, Y);
261 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000262
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000263 // If one of the operands of the multiply is a cast from a boolean value, then
264 // we know the bool is either zero or one, so this is a 'masking' multiply.
265 // X * Y (where Y is 0 or 1) -> X & (0-Y)
Duncan Sands1df98592010-02-16 11:11:14 +0000266 if (!I.getType()->isVectorTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000267 // -2 is "-1 << 1" so it is all bits set except the low one.
268 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000269
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000270 Value *BoolCast = 0, *OtherOp = 0;
271 if (MaskedValueIsZero(Op0, Negative2))
272 BoolCast = Op0, OtherOp = Op1;
273 else if (MaskedValueIsZero(Op1, Negative2))
274 BoolCast = Op1, OtherOp = Op0;
275
276 if (BoolCast) {
277 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
Benjamin Kramera9390a42011-09-27 20:39:19 +0000278 BoolCast);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000279 return BinaryOperator::CreateAnd(V, OtherOp);
280 }
281 }
282
283 return Changed ? &I : 0;
284}
285
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000286//
287// Detect pattern:
288//
289// log2(Y*0.5)
290//
291// And check for corresponding fast math flags
292//
293
294static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
Pedro Artigasef2ef3e2012-11-30 22:47:15 +0000295
296 if (!Op->hasOneUse())
297 return;
298
299 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
300 if (!II)
301 return;
302 if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
303 return;
304 Log2 = II;
305
306 Value *OpLog2Of = II->getArgOperand(0);
307 if (!OpLog2Of->hasOneUse())
308 return;
309
310 Instruction *I = dyn_cast<Instruction>(OpLog2Of);
311 if (!I)
312 return;
313 if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
314 return;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000315
Pedro Artigasef2ef3e2012-11-30 22:47:15 +0000316 ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
317 if (CFP && CFP->isExactlyValue(0.5)) {
318 Y = I->getOperand(1);
319 return;
320 }
321 CFP = dyn_cast<ConstantFP>(I->getOperand(1));
322 if (CFP && CFP->isExactlyValue(0.5))
323 Y = I->getOperand(0);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000324}
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000325
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000326/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
327/// true iff the given value is FMul or FDiv with one and only one operand
328/// being a normal constant (i.e. not Zero/NaN/Infinity).
329static bool isFMulOrFDivWithConstant(Value *V) {
330 Instruction *I = dyn_cast<Instruction>(V);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000331 if (!I || (I->getOpcode() != Instruction::FMul &&
Shuxin Yangf2797312013-01-07 22:41:28 +0000332 I->getOpcode() != Instruction::FDiv))
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000333 return false;
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000334
335 ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
336 ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
337
338 if (C0 && C1)
339 return false;
340
Michael Gottesman07969dc2013-06-19 21:23:18 +0000341 return (C0 && C0->getValueAPF().isFiniteNonZero()) ||
342 (C1 && C1->getValueAPF().isFiniteNonZero());
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000343}
344
345static bool isNormalFp(const ConstantFP *C) {
346 const APFloat &Flt = C->getValueAPF();
Michael Gottesmanc3cfe532013-06-26 23:17:31 +0000347 return Flt.isNormal();
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000348}
349
350/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
351/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
352/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
Jim Grosbach03fceff2013-04-05 21:20:12 +0000353/// This function is to simplify "FMulOrDiv * C" and returns the
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000354/// resulting expression. Note that this function could return NULL in
355/// case the constants cannot be folded into a normal floating-point.
Jim Grosbach03fceff2013-04-05 21:20:12 +0000356///
Shuxin Yangf2797312013-01-07 22:41:28 +0000357Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
358 Instruction *InsertBefore) {
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000359 assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
360
361 Value *Opnd0 = FMulOrDiv->getOperand(0);
362 Value *Opnd1 = FMulOrDiv->getOperand(1);
363
364 ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
365 ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
366
367 BinaryOperator *R = 0;
368
369 // (X * C0) * C => X * (C0*C)
370 if (FMulOrDiv->getOpcode() == Instruction::FMul) {
371 Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
372 if (isNormalFp(cast<ConstantFP>(F)))
373 R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
374 } else {
375 if (C0) {
376 // (C0 / X) * C => (C0 * C) / X
Shuxin Yangb1ccfb32013-09-19 21:13:46 +0000377 if (FMulOrDiv->hasOneUse()) {
378 // It would otherwise introduce another div.
379 ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
380 if (isNormalFp(F))
381 R = BinaryOperator::CreateFDiv(F, Opnd1);
382 }
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000383 } else {
384 // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
385 ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
386 if (isNormalFp(F)) {
387 R = BinaryOperator::CreateFMul(Opnd0, F);
388 } else {
Jim Grosbach03fceff2013-04-05 21:20:12 +0000389 // (X / C1) * C => X / (C1/C)
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000390 Constant *F = ConstantExpr::getFDiv(C1, C);
391 if (isNormalFp(cast<ConstantFP>(F)))
392 R = BinaryOperator::CreateFDiv(Opnd0, F);
393 }
394 }
395 }
396
397 if (R) {
398 R->setHasUnsafeAlgebra(true);
399 InsertNewInstWith(R, *InsertBefore);
400 }
401
402 return R;
403}
404
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000405Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +0000406 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000407 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
408
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000409 if (isa<Constant>(Op0))
410 std::swap(Op0, Op1);
411
Michael Ilsemanc244f382012-12-12 00:28:32 +0000412 if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
413 return ReplaceInstUsesWith(I, V);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000414
Shuxin Yanga1444212013-01-15 21:09:32 +0000415 bool AllowReassociate = I.hasUnsafeAlgebra();
416
Michael Ilsemanc244f382012-12-12 00:28:32 +0000417 // Simplify mul instructions with a constant RHS.
418 if (isa<Constant>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000419 // Try to fold constant mul into select arguments.
420 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
421 if (Instruction *R = FoldOpIntoSelect(I, SI))
422 return R;
423
424 if (isa<PHINode>(Op0))
425 if (Instruction *NV = FoldOpIntoPhi(I))
426 return NV;
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000427
428 ConstantFP *C = dyn_cast<ConstantFP>(Op1);
Michael Gottesman07969dc2013-06-19 21:23:18 +0000429 if (C && AllowReassociate && C->getValueAPF().isFiniteNonZero()) {
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000430 // Let MDC denote an expression in one of these forms:
431 // X * C, C/X, X/C, where C is a constant.
432 //
433 // Try to simplify "MDC * Constant"
434 if (isFMulOrFDivWithConstant(Op0)) {
435 Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
436 if (V)
437 return ReplaceInstUsesWith(I, V);
438 }
439
Quentin Colombetc5a4c252013-02-28 21:12:40 +0000440 // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000441 Instruction *FAddSub = dyn_cast<Instruction>(Op0);
442 if (FAddSub &&
443 (FAddSub->getOpcode() == Instruction::FAdd ||
444 FAddSub->getOpcode() == Instruction::FSub)) {
445 Value *Opnd0 = FAddSub->getOperand(0);
446 Value *Opnd1 = FAddSub->getOperand(1);
447 ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
448 ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
449 bool Swap = false;
450 if (C0) {
Shuxin Yangf2797312013-01-07 22:41:28 +0000451 std::swap(C0, C1);
452 std::swap(Opnd0, Opnd1);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000453 Swap = true;
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000454 }
455
Michael Gottesman07969dc2013-06-19 21:23:18 +0000456 if (C1 && C1->getValueAPF().isFiniteNonZero() &&
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000457 isFMulOrFDivWithConstant(Opnd0)) {
Quentin Colombetc5a4c252013-02-28 21:12:40 +0000458 Value *M1 = ConstantExpr::getFMul(C1, C);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000459 Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ?
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000460 foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
461 0;
462 if (M0 && M1) {
463 if (Swap && FAddSub->getOpcode() == Instruction::FSub)
464 std::swap(M0, M1);
465
Benjamin Kramer6dc5c6b2013-09-30 15:39:59 +0000466 Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
467 ? BinaryOperator::CreateFAdd(M0, M1)
468 : BinaryOperator::CreateFSub(M0, M1);
Shuxin Yanga1444212013-01-15 21:09:32 +0000469 RI->copyFastMathFlags(&I);
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000470 return RI;
471 }
472 }
473 }
474 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000475 }
476
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000477
Pedro Artigas84030dc2012-11-30 19:09:41 +0000478 // Under unsafe algebra do:
479 // X * log2(0.5*Y) = X*log2(Y) - X
480 if (I.hasUnsafeAlgebra()) {
481 Value *OpX = NULL;
482 Value *OpY = NULL;
483 IntrinsicInst *Log2;
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000484 detectLog2OfHalf(Op0, OpY, Log2);
485 if (OpY) {
486 OpX = Op1;
487 } else {
488 detectLog2OfHalf(Op1, OpY, Log2);
489 if (OpY) {
490 OpX = Op0;
Pedro Artigas84030dc2012-11-30 19:09:41 +0000491 }
492 }
493 // if pattern detected emit alternate sequence
494 if (OpX && OpY) {
Benjamin Kramer6dc5c6b2013-09-30 15:39:59 +0000495 BuilderTy::FastMathFlagGuard Guard(*Builder);
496 Builder->SetFastMathFlags(Log2->getFastMathFlags());
Pedro Artigas84030dc2012-11-30 19:09:41 +0000497 Log2->setArgOperand(0, OpY);
498 Value *FMulVal = Builder->CreateFMul(OpX, Log2);
Benjamin Kramer6dc5c6b2013-09-30 15:39:59 +0000499 Value *FSub = Builder->CreateFSub(FMulVal, OpX);
500 FSub->takeName(&I);
501 return ReplaceInstUsesWith(I, FSub);
Pedro Artigas84030dc2012-11-30 19:09:41 +0000502 }
503 }
504
Shuxin Yanga1444212013-01-15 21:09:32 +0000505 // Handle symmetric situation in a 2-iteration loop
506 Value *Opnd0 = Op0;
507 Value *Opnd1 = Op1;
508 for (int i = 0; i < 2; i++) {
509 bool IgnoreZeroSign = I.hasNoSignedZeros();
510 if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
Benjamin Kramer6dc5c6b2013-09-30 15:39:59 +0000511 BuilderTy::FastMathFlagGuard Guard(*Builder);
512 Builder->SetFastMathFlags(I.getFastMathFlags());
513
Shuxin Yanga1444212013-01-15 21:09:32 +0000514 Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
515 Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
Shuxin Yanga5ed0312012-12-14 18:46:06 +0000516
Shuxin Yanga1444212013-01-15 21:09:32 +0000517 // -X * -Y => X*Y
518 if (N1)
519 return BinaryOperator::CreateFMul(N0, N1);
Shuxin Yanga5ed0312012-12-14 18:46:06 +0000520
Shuxin Yanga1444212013-01-15 21:09:32 +0000521 if (Opnd0->hasOneUse()) {
522 // -X * Y => -(X*Y) (Promote negation as high as possible)
523 Value *T = Builder->CreateFMul(N0, Opnd1);
Benjamin Kramer6dc5c6b2013-09-30 15:39:59 +0000524 Value *Neg = Builder->CreateFNeg(T);
525 Neg->takeName(&I);
526 return ReplaceInstUsesWith(I, Neg);
Shuxin Yanga5ed0312012-12-14 18:46:06 +0000527 }
528 }
Shuxin Yanga1444212013-01-15 21:09:32 +0000529
530 // (X*Y) * X => (X*X) * Y where Y != X
Jim Grosbach03fceff2013-04-05 21:20:12 +0000531 // The purpose is two-fold:
Shuxin Yanga1444212013-01-15 21:09:32 +0000532 // 1) to form a power expression (of X).
533 // 2) potentially shorten the critical path: After transformation, the
534 // latency of the instruction Y is amortized by the expression of X*X,
535 // and therefore Y is in a "less critical" position compared to what it
536 // was before the transformation.
537 //
538 if (AllowReassociate) {
539 Value *Opnd0_0, *Opnd0_1;
540 if (Opnd0->hasOneUse() &&
541 match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
542 Value *Y = 0;
543 if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
544 Y = Opnd0_1;
545 else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
546 Y = Opnd0_0;
547
548 if (Y) {
Benjamin Kramer6dc5c6b2013-09-30 15:39:59 +0000549 BuilderTy::FastMathFlagGuard Guard(*Builder);
550 Builder->SetFastMathFlags(I.getFastMathFlags());
551 Value *T = Builder->CreateFMul(Opnd1, Opnd1);
Shuxin Yanga1444212013-01-15 21:09:32 +0000552
Benjamin Kramer6dc5c6b2013-09-30 15:39:59 +0000553 Value *R = Builder->CreateFMul(T, Y);
554 R->takeName(&I);
555 return ReplaceInstUsesWith(I, R);
Shuxin Yanga1444212013-01-15 21:09:32 +0000556 }
557 }
558 }
559
Stephen Lin54bf58a2013-07-17 20:06:03 +0000560 // B * (uitofp i1 C) -> select C, B, 0
561 if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
562 Value *LHS = Op0, *RHS = Op1;
563 Value *B, *C;
Stephen Lin3b6bb792013-07-26 17:55:00 +0000564 if (!match(RHS, m_UIToFP(m_Value(C))))
Stephen Lin54bf58a2013-07-17 20:06:03 +0000565 std::swap(LHS, RHS);
566
Stephen Lin3b6bb792013-07-26 17:55:00 +0000567 if (match(RHS, m_UIToFP(m_Value(C))) && C->getType()->isIntegerTy(1)) {
Stephen Lin54bf58a2013-07-17 20:06:03 +0000568 B = LHS;
569 Value *Zero = ConstantFP::getNegativeZero(B->getType());
570 return SelectInst::Create(C, B, Zero);
571 }
572 }
573
574 // A * (1 - uitofp i1 C) -> select C, 0, A
575 if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
576 Value *LHS = Op0, *RHS = Op1;
577 Value *A, *C;
Stephen Lin3b6bb792013-07-26 17:55:00 +0000578 if (!match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))))
Stephen Lin54bf58a2013-07-17 20:06:03 +0000579 std::swap(LHS, RHS);
580
Stephen Lin3b6bb792013-07-26 17:55:00 +0000581 if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) &&
Stephen Lin54bf58a2013-07-17 20:06:03 +0000582 C->getType()->isIntegerTy(1)) {
583 A = LHS;
584 Value *Zero = ConstantFP::getNegativeZero(A->getType());
585 return SelectInst::Create(C, Zero, A);
586 }
587 }
588
Shuxin Yanga1444212013-01-15 21:09:32 +0000589 if (!isa<Constant>(Op1))
590 std::swap(Opnd0, Opnd1);
591 else
592 break;
Shuxin Yanga5ed0312012-12-14 18:46:06 +0000593 }
594
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000595 return Changed ? &I : 0;
596}
597
598/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
599/// instruction.
600bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
601 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
Jim Grosbach03fceff2013-04-05 21:20:12 +0000602
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000603 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
604 int NonNullOperand = -1;
605 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
606 if (ST->isNullValue())
607 NonNullOperand = 2;
608 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
609 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
610 if (ST->isNullValue())
611 NonNullOperand = 1;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000612
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000613 if (NonNullOperand == -1)
614 return false;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000615
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000616 Value *SelectCond = SI->getOperand(0);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000617
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000618 // Change the div/rem to use 'Y' instead of the select.
619 I.setOperand(1, SI->getOperand(NonNullOperand));
Jim Grosbach03fceff2013-04-05 21:20:12 +0000620
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000621 // Okay, we know we replace the operand of the div/rem with 'Y' with no
622 // problem. However, the select, or the condition of the select may have
623 // multiple uses. Based on our knowledge that the operand must be non-zero,
624 // propagate the known value for the select into other uses of it, and
625 // propagate a known value of the condition into its other users.
Jim Grosbach03fceff2013-04-05 21:20:12 +0000626
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000627 // If the select and condition only have a single use, don't bother with this,
628 // early exit.
629 if (SI->use_empty() && SelectCond->hasOneUse())
630 return true;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000631
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000632 // Scan the current block backward, looking for other uses of SI.
633 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
Jim Grosbach03fceff2013-04-05 21:20:12 +0000634
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000635 while (BBI != BBFront) {
636 --BBI;
637 // If we found a call to a function, we can't assume it will return, so
638 // information from below it cannot be propagated above it.
639 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
640 break;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000641
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000642 // Replace uses of the select or its condition with the known values.
643 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
644 I != E; ++I) {
645 if (*I == SI) {
646 *I = SI->getOperand(NonNullOperand);
647 Worklist.Add(BBI);
648 } else if (*I == SelectCond) {
Jakub Staszak6a72c842013-06-06 23:34:59 +0000649 *I = Builder->getInt1(NonNullOperand == 1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000650 Worklist.Add(BBI);
651 }
652 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000653
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000654 // If we past the instruction, quit looking for it.
655 if (&*BBI == SI)
656 SI = 0;
657 if (&*BBI == SelectCond)
658 SelectCond = 0;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000659
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000660 // If we ran out of things to eliminate, break out of the loop.
661 if (SelectCond == 0 && SI == 0)
662 break;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000663
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000664 }
665 return true;
666}
667
668
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000669/// This function implements the transforms common to both integer division
670/// instructions (udiv and sdiv). It is called by the visitors to those integer
671/// division instructions.
672/// @brief Common integer divide transforms
673Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
674 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
675
Chris Lattner1add46d2011-05-22 18:18:41 +0000676 // The RHS is known non-zero.
677 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
678 I.setOperand(1, V);
679 return &I;
680 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000681
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000682 // Handle cases involving: [su]div X, (select Cond, Y, Z)
683 // This does not apply for fdiv.
684 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
685 return &I;
686
687 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000688 // (X / C1) / C2 -> X / (C1*C2)
689 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
690 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
691 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
692 if (MultiplyOverflows(RHS, LHSRHS,
693 I.getOpcode()==Instruction::SDiv))
694 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000695 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
696 ConstantExpr::getMul(RHS, LHSRHS));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000697 }
698
699 if (!RHS->isZero()) { // avoid X udiv 0
700 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
701 if (Instruction *R = FoldOpIntoSelect(I, SI))
702 return R;
703 if (isa<PHINode>(Op0))
704 if (Instruction *NV = FoldOpIntoPhi(I))
705 return NV;
706 }
707 }
708
Benjamin Kramer23b02cd2011-04-30 18:16:00 +0000709 // See if we can fold away this div instruction.
710 if (SimplifyDemandedInstructionBits(I))
711 return &I;
712
Duncan Sands593faa52011-01-28 16:51:11 +0000713 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
714 Value *X = 0, *Z = 0;
715 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
716 bool isSigned = I.getOpcode() == Instruction::SDiv;
717 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
718 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
719 return BinaryOperator::Create(I.getOpcode(), X, Op1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000720 }
721
722 return 0;
723}
724
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000725/// dyn_castZExtVal - Checks if V is a zext or constant that can
726/// be truncated to Ty without losing bits.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000727static Value *dyn_castZExtVal(Value *V, Type *Ty) {
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000728 if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
729 if (Z->getSrcTy() == Ty)
730 return Z->getOperand(0);
731 } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
732 if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
733 return ConstantExpr::getTrunc(C, Ty);
734 }
735 return 0;
736}
737
David Majnemere7006bb2013-07-04 21:17:49 +0000738namespace {
739const unsigned MaxDepth = 6;
740typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
741 const BinaryOperator &I,
742 InstCombiner &IC);
743
744/// \brief Used to maintain state for visitUDivOperand().
745struct UDivFoldAction {
746 FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
747 ///< operand. This can be zero if this action
748 ///< joins two actions together.
749
750 Value *OperandToFold; ///< Which operand to fold.
751 union {
752 Instruction *FoldResult; ///< The instruction returned when FoldAction is
753 ///< invoked.
754
755 size_t SelectLHSIdx; ///< Stores the LHS action index if this action
756 ///< joins two actions together.
757 };
758
759 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
760 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(0) {}
761 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
762 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
763};
764}
765
766// X udiv 2^C -> X >> C
767static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
768 const BinaryOperator &I, InstCombiner &IC) {
769 const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
770 BinaryOperator *LShr = BinaryOperator::CreateLShr(
771 Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
772 if (I.isExact()) LShr->setIsExact();
773 return LShr;
774}
775
776// X udiv C, where C >= signbit
777static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
778 const BinaryOperator &I, InstCombiner &IC) {
779 Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
780
781 return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
782 ConstantInt::get(I.getType(), 1));
783}
784
785// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
786static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
787 InstCombiner &IC) {
788 Instruction *ShiftLeft = cast<Instruction>(Op1);
789 if (isa<ZExtInst>(ShiftLeft))
790 ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0));
791
792 const APInt &CI =
793 cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger();
794 Value *N = ShiftLeft->getOperand(1);
795 if (CI != 1)
796 N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2()));
797 if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
798 N = IC.Builder->CreateZExt(N, Z->getDestTy());
799 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
800 if (I.isExact()) LShr->setIsExact();
801 return LShr;
802}
803
804// \brief Recursively visits the possible right hand operands of a udiv
805// instruction, seeing through select instructions, to determine if we can
806// replace the udiv with something simpler. If we find that an operand is not
807// able to simplify the udiv, we abort the entire transformation.
808static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
809 SmallVectorImpl<UDivFoldAction> &Actions,
810 unsigned Depth = 0) {
811 // Check to see if this is an unsigned division with an exact power of 2,
812 // if so, convert to a right shift.
813 if (match(Op1, m_Power2())) {
814 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
815 return Actions.size();
816 }
817
818 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
819 // X udiv C, where C >= signbit
820 if (C->getValue().isNegative()) {
821 Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
822 return Actions.size();
823 }
824
825 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
826 if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
827 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
828 Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
829 return Actions.size();
830 }
831
832 // The remaining tests are all recursive, so bail out if we hit the limit.
833 if (Depth++ == MaxDepth)
834 return 0;
835
836 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
837 if (size_t LHSIdx = visitUDivOperand(Op0, SI->getOperand(1), I, Actions))
838 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions)) {
839 Actions.push_back(UDivFoldAction((FoldUDivOperandCb)0, Op1, LHSIdx-1));
840 return Actions.size();
841 }
842
843 return 0;
844}
845
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000846Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
847 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
848
Duncan Sands593faa52011-01-28 16:51:11 +0000849 if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
850 return ReplaceInstUsesWith(I, V);
851
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000852 // Handle the integer div common cases
853 if (Instruction *Common = commonIDivTransforms(I))
854 return Common;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000855
Benjamin Kramerc81fe9c2012-08-30 15:07:40 +0000856 // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
Nadav Rotema694e2a2012-08-28 12:23:22 +0000857 if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
Benjamin Krameraac7c652012-08-28 13:08:13 +0000858 Value *X;
859 ConstantInt *C1;
860 if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
Benjamin Kramer37dca632012-08-28 13:59:23 +0000861 APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
Benjamin Krameraac7c652012-08-28 13:08:13 +0000862 return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
Nadav Rotem9753f0b2012-08-28 10:01:43 +0000863 }
864 }
865
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000866 // (zext A) udiv (zext B) --> zext (A udiv B)
867 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
868 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
869 return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
870 I.isExact()),
871 I.getType());
872
David Majnemere7006bb2013-07-04 21:17:49 +0000873 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
874 SmallVector<UDivFoldAction, 6> UDivActions;
875 if (visitUDivOperand(Op0, Op1, I, UDivActions))
876 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
877 FoldUDivOperandCb Action = UDivActions[i].FoldAction;
878 Value *ActionOp1 = UDivActions[i].OperandToFold;
879 Instruction *Inst;
880 if (Action)
881 Inst = Action(Op0, ActionOp1, I, *this);
882 else {
883 // This action joins two actions together. The RHS of this action is
884 // simply the last action we processed, we saved the LHS action index in
885 // the joining action.
886 size_t SelectRHSIdx = i - 1;
887 Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
888 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
889 Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
890 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
891 SelectLHS, SelectRHS);
892 }
893
894 // If this is the last action to process, return it to the InstCombiner.
895 // Otherwise, we insert it before the UDiv and record it so that we may
896 // use it as part of a joining action (i.e., a SelectInst).
897 if (e - i != 1) {
898 Inst->insertBefore(&I);
899 UDivActions[i].FoldResult = Inst;
900 } else
901 return Inst;
902 }
903
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000904 return 0;
905}
906
907Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
908 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
909
Duncan Sands593faa52011-01-28 16:51:11 +0000910 if (Value *V = SimplifySDivInst(Op0, Op1, TD))
911 return ReplaceInstUsesWith(I, V);
912
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000913 // Handle the integer div common cases
914 if (Instruction *Common = commonIDivTransforms(I))
915 return Common;
916
917 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
918 // sdiv X, -1 == -X
919 if (RHS->isAllOnesValue())
920 return BinaryOperator::CreateNeg(Op0);
921
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000922 // sdiv X, C --> ashr exact X, log2(C)
923 if (I.isExact() && RHS->getValue().isNonNegative() &&
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000924 RHS->getValue().isPowerOf2()) {
925 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
926 RHS->getValue().exactLogBase2());
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000927 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000928 }
929
930 // -X/C --> X/-C provided the negation doesn't overflow.
931 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000932 if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000933 return BinaryOperator::CreateSDiv(Sub->getOperand(1),
934 ConstantExpr::getNeg(RHS));
935 }
936
937 // If the sign bits of both operands are zero (i.e. we can prove they are
938 // unsigned inputs), turn this into a udiv.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000939 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000940 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
941 if (MaskedValueIsZero(Op0, Mask)) {
942 if (MaskedValueIsZero(Op1, Mask)) {
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000943 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000944 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
945 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000946
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000947 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000948 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
949 // Safe because the only negative value (1 << Y) can take on is
950 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
951 // the sign bit set.
952 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
953 }
954 }
955 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000956
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000957 return 0;
958}
959
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000960/// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
961/// FP value and:
Jim Grosbach03fceff2013-04-05 21:20:12 +0000962/// 1) 1/C is exact, or
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000963/// 2) reciprocal is allowed.
Sylvestre Ledruda2ed452013-05-14 23:36:24 +0000964/// If the conversion was successful, the simplified expression "X * 1/C" is
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000965/// returned; otherwise, NULL is returned.
966///
967static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
968 ConstantFP *Divisor,
969 bool AllowReciprocal) {
970 const APFloat &FpVal = Divisor->getValueAPF();
971 APFloat Reciprocal(FpVal.getSemantics());
972 bool Cvt = FpVal.getExactInverse(&Reciprocal);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000973
Michael Gottesman07969dc2013-06-19 21:23:18 +0000974 if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000975 Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
976 (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
977 Cvt = !Reciprocal.isDenormal();
978 }
979
980 if (!Cvt)
981 return 0;
982
983 ConstantFP *R;
984 R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
985 return BinaryOperator::CreateFMul(Dividend, R);
986}
987
Frits van Bommel31726c12011-01-29 17:50:27 +0000988Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
989 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
990
991 if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
992 return ReplaceInstUsesWith(I, V);
993
Stephen Lina98ce502013-07-20 07:13:13 +0000994 if (isa<Constant>(Op0))
995 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
996 if (Instruction *R = FoldOpIntoSelect(I, SI))
997 return R;
998
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000999 bool AllowReassociate = I.hasUnsafeAlgebra();
1000 bool AllowReciprocal = I.hasAllowReciprocal();
Benjamin Kramer54673962011-03-30 15:42:35 +00001001
Shuxin Yang7d72cf82013-01-14 22:48:41 +00001002 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Stephen Lina98ce502013-07-20 07:13:13 +00001003 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1004 if (Instruction *R = FoldOpIntoSelect(I, SI))
1005 return R;
1006
Shuxin Yang7d72cf82013-01-14 22:48:41 +00001007 if (AllowReassociate) {
1008 ConstantFP *C1 = 0;
1009 ConstantFP *C2 = Op1C;
1010 Value *X;
1011 Instruction *Res = 0;
1012
1013 if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) {
1014 // (X*C1)/C2 => X * (C1/C2)
1015 //
1016 Constant *C = ConstantExpr::getFDiv(C1, C2);
1017 const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
Michael Gottesmanc3cfe532013-06-26 23:17:31 +00001018 if (F.isNormal())
Shuxin Yang7d72cf82013-01-14 22:48:41 +00001019 Res = BinaryOperator::CreateFMul(X, C);
1020 } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) {
1021 // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
1022 //
1023 Constant *C = ConstantExpr::getFMul(C1, C2);
1024 const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
Michael Gottesmanc3cfe532013-06-26 23:17:31 +00001025 if (F.isNormal()) {
Jim Grosbach03fceff2013-04-05 21:20:12 +00001026 Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C),
Shuxin Yang7d72cf82013-01-14 22:48:41 +00001027 AllowReciprocal);
1028 if (!Res)
Jim Grosbach03fceff2013-04-05 21:20:12 +00001029 Res = BinaryOperator::CreateFDiv(X, C);
Shuxin Yang7d72cf82013-01-14 22:48:41 +00001030 }
1031 }
1032
1033 if (Res) {
1034 Res->setFastMathFlags(I.getFastMathFlags());
1035 return Res;
1036 }
1037 }
1038
1039 // X / C => X * 1/C
1040 if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal))
1041 return T;
1042
1043 return 0;
1044 }
1045
1046 if (AllowReassociate && isa<ConstantFP>(Op0)) {
1047 ConstantFP *C1 = cast<ConstantFP>(Op0), *C2;
1048 Constant *Fold = 0;
1049 Value *X;
1050 bool CreateDiv = true;
1051
1052 // C1 / (X*C2) => (C1/C2) / X
1053 if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2))))
1054 Fold = ConstantExpr::getFDiv(C1, C2);
1055 else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) {
1056 // C1 / (X/C2) => (C1*C2) / X
1057 Fold = ConstantExpr::getFMul(C1, C2);
1058 } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) {
1059 // C1 / (C2/X) => (C1/C2) * X
1060 Fold = ConstantExpr::getFDiv(C1, C2);
1061 CreateDiv = false;
1062 }
1063
1064 if (Fold) {
1065 const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF();
Michael Gottesmanc3cfe532013-06-26 23:17:31 +00001066 if (FoldC.isNormal()) {
Jim Grosbach03fceff2013-04-05 21:20:12 +00001067 Instruction *R = CreateDiv ?
Shuxin Yang7d72cf82013-01-14 22:48:41 +00001068 BinaryOperator::CreateFDiv(Fold, X) :
1069 BinaryOperator::CreateFMul(X, Fold);
1070 R->setFastMathFlags(I.getFastMathFlags());
1071 return R;
1072 }
1073 }
1074 return 0;
1075 }
1076
1077 if (AllowReassociate) {
1078 Value *X, *Y;
1079 Value *NewInst = 0;
1080 Instruction *SimpR = 0;
1081
1082 if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
1083 // (X/Y) / Z => X / (Y*Z)
1084 //
1085 if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) {
1086 NewInst = Builder->CreateFMul(Y, Op1);
1087 SimpR = BinaryOperator::CreateFDiv(X, NewInst);
1088 }
1089 } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
1090 // Z / (X/Y) => Z*Y / X
1091 //
1092 if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) {
1093 NewInst = Builder->CreateFMul(Op0, Y);
1094 SimpR = BinaryOperator::CreateFDiv(NewInst, X);
1095 }
1096 }
1097
1098 if (NewInst) {
1099 if (Instruction *T = dyn_cast<Instruction>(NewInst))
1100 T->setDebugLoc(I.getDebugLoc());
1101 SimpR->setFastMathFlags(I.getFastMathFlags());
1102 return SimpR;
Benjamin Kramer54673962011-03-30 15:42:35 +00001103 }
1104 }
1105
Frits van Bommel31726c12011-01-29 17:50:27 +00001106 return 0;
1107}
1108
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001109/// This function implements the transforms common to both integer remainder
1110/// instructions (urem and srem). It is called by the visitors to those integer
1111/// remainder instructions.
1112/// @brief Common integer remainder transforms
1113Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1114 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1115
Chris Lattner1add46d2011-05-22 18:18:41 +00001116 // The RHS is known non-zero.
1117 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
1118 I.setOperand(1, V);
1119 return &I;
1120 }
1121
Duncan Sandsf24ed772011-05-02 16:27:02 +00001122 // Handle cases involving: rem X, (select Cond, Y, Z)
1123 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1124 return &I;
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001125
Duncan Sands00676a62011-05-02 18:41:29 +00001126 if (isa<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001127 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1128 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1129 if (Instruction *R = FoldOpIntoSelect(I, SI))
1130 return R;
1131 } else if (isa<PHINode>(Op0I)) {
1132 if (Instruction *NV = FoldOpIntoPhi(I))
1133 return NV;
1134 }
1135
1136 // See if we can fold away this rem instruction.
1137 if (SimplifyDemandedInstructionBits(I))
1138 return &I;
1139 }
1140 }
1141
1142 return 0;
1143}
1144
1145Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1146 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1147
Duncan Sandsf24ed772011-05-02 16:27:02 +00001148 if (Value *V = SimplifyURemInst(Op0, Op1, TD))
1149 return ReplaceInstUsesWith(I, V);
1150
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001151 if (Instruction *common = commonIRemTransforms(I))
1152 return common;
Jim Grosbach03fceff2013-04-05 21:20:12 +00001153
David Majnemerfa49d7d2013-05-12 00:07:05 +00001154 // (zext A) urem (zext B) --> zext (A urem B)
1155 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
1156 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
1157 return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
1158 I.getType());
1159
David Majnemera8ccefc2013-05-11 09:01:28 +00001160 // X urem Y -> X and Y-1, where Y is a power of 2,
1161 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +00001162 Constant *N1 = Constant::getAllOnesValue(I.getType());
Benjamin Kramera9390a42011-09-27 20:39:19 +00001163 Value *Add = Builder->CreateAdd(Op1, N1);
Chris Lattner7a6aa1a2011-02-10 05:36:31 +00001164 return BinaryOperator::CreateAnd(Op0, Add);
1165 }
1166
Nick Lewycky75681bb2013-07-13 01:16:47 +00001167 // 1 urem X -> zext(X != 1)
1168 if (match(Op0, m_One())) {
1169 Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
1170 Value *Ext = Builder->CreateZExt(Cmp, I.getType());
1171 return ReplaceInstUsesWith(I, Ext);
1172 }
1173
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001174 return 0;
1175}
1176
1177Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1178 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1179
Duncan Sandsf24ed772011-05-02 16:27:02 +00001180 if (Value *V = SimplifySRemInst(Op0, Op1, TD))
1181 return ReplaceInstUsesWith(I, V);
1182
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001183 // Handle the integer rem common cases
1184 if (Instruction *Common = commonIRemTransforms(I))
1185 return Common;
Jim Grosbach03fceff2013-04-05 21:20:12 +00001186
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001187 if (Value *RHSNeg = dyn_castNegVal(Op1))
1188 if (!isa<Constant>(RHSNeg) ||
1189 (isa<ConstantInt>(RHSNeg) &&
1190 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
1191 // X % -Y -> X % Y
1192 Worklist.AddValue(I.getOperand(1));
1193 I.setOperand(1, RHSNeg);
1194 return &I;
1195 }
1196
1197 // If the sign bits of both operands are zero (i.e. we can prove they are
1198 // unsigned inputs), turn this into a urem.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001199 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001200 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
1201 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001202 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001203 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1204 }
1205 }
1206
1207 // If it's a constant vector, flip any negative values positive.
Chris Lattnera78fa8c2012-01-27 03:08:05 +00001208 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1209 Constant *C = cast<Constant>(Op1);
1210 unsigned VWidth = C->getType()->getVectorNumElements();
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001211
1212 bool hasNegative = false;
Chris Lattnera78fa8c2012-01-27 03:08:05 +00001213 bool hasMissing = false;
1214 for (unsigned i = 0; i != VWidth; ++i) {
1215 Constant *Elt = C->getAggregateElement(i);
1216 if (Elt == 0) {
1217 hasMissing = true;
1218 break;
1219 }
1220
1221 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001222 if (RHS->isNegative())
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001223 hasNegative = true;
Chris Lattnera78fa8c2012-01-27 03:08:05 +00001224 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001225
Chris Lattnera78fa8c2012-01-27 03:08:05 +00001226 if (hasNegative && !hasMissing) {
Chris Lattner4ca829e2012-01-25 06:02:56 +00001227 SmallVector<Constant *, 16> Elts(VWidth);
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001228 for (unsigned i = 0; i != VWidth; ++i) {
Chris Lattner7302d802012-02-06 21:56:39 +00001229 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
Chris Lattnera78fa8c2012-01-27 03:08:05 +00001230 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001231 if (RHS->isNegative())
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001232 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001233 }
1234 }
1235
1236 Constant *NewRHSV = ConstantVector::get(Elts);
Chris Lattnera78fa8c2012-01-27 03:08:05 +00001237 if (NewRHSV != C) { // Don't loop on -MININT
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001238 Worklist.AddValue(I.getOperand(1));
1239 I.setOperand(1, NewRHSV);
1240 return &I;
1241 }
1242 }
1243 }
1244
1245 return 0;
1246}
1247
1248Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001249 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001250
Duncan Sandsf24ed772011-05-02 16:27:02 +00001251 if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
1252 return ReplaceInstUsesWith(I, V);
1253
1254 // Handle cases involving: rem X, (select Cond, Y, Z)
1255 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1256 return &I;
1257
1258 return 0;
1259}