blob: a687dbde101705f00ea2116042cf172d34ffbbfc [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
183 Instruction *visitAnd(BinaryOperator &I);
184 Instruction *visitOr (BinaryOperator &I);
185 Instruction *visitXor(BinaryOperator &I);
186 Instruction *visitShl(BinaryOperator &I);
187 Instruction *visitAShr(BinaryOperator &I);
188 Instruction *visitLShr(BinaryOperator &I);
189 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000190 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
191 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000192 Instruction *visitFCmpInst(FCmpInst &I);
193 Instruction *visitICmpInst(ICmpInst &I);
194 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
195 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
196 Instruction *LHS,
197 ConstantInt *RHS);
198 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
199 ConstantInt *DivRHS);
200
201 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
202 ICmpInst::Predicate Cond, Instruction &I);
203 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
204 BinaryOperator &I);
205 Instruction *commonCastTransforms(CastInst &CI);
206 Instruction *commonIntCastTransforms(CastInst &CI);
207 Instruction *commonPointerCastTransforms(CastInst &CI);
208 Instruction *visitTrunc(TruncInst &CI);
209 Instruction *visitZExt(ZExtInst &CI);
210 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000211 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000212 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000213 Instruction *visitFPToUI(FPToUIInst &FI);
214 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215 Instruction *visitUIToFP(CastInst &CI);
216 Instruction *visitSIToFP(CastInst &CI);
217 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000218 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 Instruction *visitBitCast(BitCastInst &CI);
220 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
221 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000222 Instruction *visitSelectInst(SelectInst &SI);
223 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224 Instruction *visitCallInst(CallInst &CI);
225 Instruction *visitInvokeInst(InvokeInst &II);
226 Instruction *visitPHINode(PHINode &PN);
227 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
228 Instruction *visitAllocationInst(AllocationInst &AI);
229 Instruction *visitFreeInst(FreeInst &FI);
230 Instruction *visitLoadInst(LoadInst &LI);
231 Instruction *visitStoreInst(StoreInst &SI);
232 Instruction *visitBranchInst(BranchInst &BI);
233 Instruction *visitSwitchInst(SwitchInst &SI);
234 Instruction *visitInsertElementInst(InsertElementInst &IE);
235 Instruction *visitExtractElementInst(ExtractElementInst &EI);
236 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000237 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238
239 // visitInstruction - Specify what to return for unhandled instructions...
240 Instruction *visitInstruction(Instruction &I) { return 0; }
241
242 private:
243 Instruction *visitCallSite(CallSite CS);
244 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000245 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000246 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
247 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000248 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000249
250 public:
251 // InsertNewInstBefore - insert an instruction New before instruction Old
252 // in the program. Add the new instruction to the worklist.
253 //
254 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
255 assert(New && New->getParent() == 0 &&
256 "New instruction already inserted into a basic block!");
257 BasicBlock *BB = Old.getParent();
258 BB->getInstList().insert(&Old, New); // Insert inst
259 AddToWorkList(New);
260 return New;
261 }
262
263 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
264 /// This also adds the cast to the worklist. Finally, this returns the
265 /// cast.
266 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
267 Instruction &Pos) {
268 if (V->getType() == Ty) return V;
269
270 if (Constant *CV = dyn_cast<Constant>(V))
271 return ConstantExpr::getCast(opc, CV, Ty);
272
Gabor Greifa645dd32008-05-16 19:29:10 +0000273 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 AddToWorkList(C);
275 return C;
276 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000277
278 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
279 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
280 }
281
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000282
283 // ReplaceInstUsesWith - This method is to be used when an instruction is
284 // found to be dead, replacable with another preexisting expression. Here
285 // we add all uses of I to the worklist, replace all uses of I with the new
286 // value, then return I, so that the inst combiner will know that I was
287 // modified.
288 //
289 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
290 AddUsersToWorkList(I); // Add all modified instrs to worklist
291 if (&I != V) {
292 I.replaceAllUsesWith(V);
293 return &I;
294 } else {
295 // If we are replacing the instruction with itself, this must be in a
296 // segment of unreachable code, so just clobber the instruction.
297 I.replaceAllUsesWith(UndefValue::get(I.getType()));
298 return &I;
299 }
300 }
301
302 // UpdateValueUsesWith - This method is to be used when an value is
303 // found to be replacable with another preexisting expression or was
304 // updated. Here we add all uses of I to the worklist, replace all uses of
305 // I with the new value (unless the instruction was just updated), then
306 // return true, so that the inst combiner will know that I was modified.
307 //
308 bool UpdateValueUsesWith(Value *Old, Value *New) {
309 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
310 if (Old != New)
311 Old->replaceAllUsesWith(New);
312 if (Instruction *I = dyn_cast<Instruction>(Old))
313 AddToWorkList(I);
314 if (Instruction *I = dyn_cast<Instruction>(New))
315 AddToWorkList(I);
316 return true;
317 }
318
319 // EraseInstFromFunction - When dealing with an instruction that has side
320 // effects or produces a void value, we can't rely on DCE to delete the
321 // instruction. Instead, visit methods should return the value returned by
322 // this function.
323 Instruction *EraseInstFromFunction(Instruction &I) {
324 assert(I.use_empty() && "Cannot erase instruction that is used!");
325 AddUsesToWorkList(I);
326 RemoveFromWorkList(&I);
327 I.eraseFromParent();
328 return 0; // Don't do anything with FI
329 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000330
331 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
332 APInt &KnownOne, unsigned Depth = 0) const {
333 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
334 }
335
336 bool MaskedValueIsZero(Value *V, const APInt &Mask,
337 unsigned Depth = 0) const {
338 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
339 }
340 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
341 return llvm::ComputeNumSignBits(Op, TD, Depth);
342 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343
344 private:
345 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
346 /// InsertBefore instruction. This is specialized a bit to avoid inserting
347 /// casts that are known to not do anything...
348 ///
349 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
350 Value *V, const Type *DestTy,
351 Instruction *InsertBefore);
352
353 /// SimplifyCommutative - This performs a few simplifications for
354 /// commutative operators.
355 bool SimplifyCommutative(BinaryOperator &I);
356
357 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
358 /// most-complex to least-complex order.
359 bool SimplifyCompare(CmpInst &I);
360
361 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
362 /// on the demanded bits.
363 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
364 APInt& KnownZero, APInt& KnownOne,
365 unsigned Depth = 0);
366
367 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
368 uint64_t &UndefElts, unsigned Depth = 0);
369
370 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
371 // PHI node as operand #0, see if we can fold the instruction into the PHI
372 // (which is only possible if all operands to the PHI are constants).
373 Instruction *FoldOpIntoPhi(Instruction &I);
374
375 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
376 // operator and they all are only used by the PHI, PHI together their
377 // inputs, and do the operation once, to the result of the PHI.
378 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
379 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
380
381
382 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
383 ConstantInt *AndRHS, BinaryOperator &TheAnd);
384
385 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
386 bool isSub, Instruction &I);
387 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
388 bool isSigned, bool Inside, Instruction &IB);
389 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
390 Instruction *MatchBSwap(BinaryOperator &I);
391 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000392 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000393 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000394
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000395
396 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000397
Dan Gohman2d648bb2008-04-10 18:43:06 +0000398 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
399 unsigned CastOpc,
400 int &NumCastsRemoved);
401 unsigned GetOrEnforceKnownAlignment(Value *V,
402 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000403
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405}
406
Dan Gohman089efff2008-05-13 00:00:25 +0000407char InstCombiner::ID = 0;
408static RegisterPass<InstCombiner>
409X("instcombine", "Combine redundant instructions");
410
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000411// getComplexity: Assign a complexity or rank value to LLVM Values...
412// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
413static unsigned getComplexity(Value *V) {
414 if (isa<Instruction>(V)) {
415 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
416 return 3;
417 return 4;
418 }
419 if (isa<Argument>(V)) return 3;
420 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
421}
422
423// isOnlyUse - Return true if this instruction will be deleted if we stop using
424// it.
425static bool isOnlyUse(Value *V) {
426 return V->hasOneUse() || isa<Constant>(V);
427}
428
429// getPromotedType - Return the specified type promoted as it would be to pass
430// though a va_arg area...
431static const Type *getPromotedType(const Type *Ty) {
432 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
433 if (ITy->getBitWidth() < 32)
434 return Type::Int32Ty;
435 }
436 return Ty;
437}
438
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000439/// getBitCastOperand - If the specified operand is a CastInst, a constant
440/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
441/// operand value, otherwise return null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442static Value *getBitCastOperand(Value *V) {
443 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000444 // BitCastInst?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 return I->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000446 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
447 // GetElementPtrInst?
448 if (GEP->hasAllZeroIndices())
449 return GEP->getOperand(0);
450 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000452 // BitCast ConstantExp?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 return CE->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000454 else if (CE->getOpcode() == Instruction::GetElementPtr) {
455 // GetElementPtr ConstantExp?
456 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
457 I != E; ++I) {
458 ConstantInt *CI = dyn_cast<ConstantInt>(I);
459 if (!CI || !CI->isZero())
460 // Any non-zero indices? Not cast-like.
461 return 0;
462 }
463 // All-zero indices? This is just like casting.
464 return CE->getOperand(0);
465 }
466 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467 return 0;
468}
469
470/// This function is a wrapper around CastInst::isEliminableCastPair. It
471/// simply extracts arguments and returns what that function returns.
472static Instruction::CastOps
473isEliminableCastPair(
474 const CastInst *CI, ///< The first cast instruction
475 unsigned opcode, ///< The opcode of the second cast instruction
476 const Type *DstTy, ///< The target type for the second cast instruction
477 TargetData *TD ///< The target data for pointer size
478) {
479
480 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
481 const Type *MidTy = CI->getType(); // B from above
482
483 // Get the opcodes of the two Cast instructions
484 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
485 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
486
487 return Instruction::CastOps(
488 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
489 DstTy, TD->getIntPtrType()));
490}
491
492/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
493/// in any code being generated. It does not require codegen if V is simple
494/// enough or if the cast can be folded into other casts.
495static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
496 const Type *Ty, TargetData *TD) {
497 if (V->getType() == Ty || isa<Constant>(V)) return false;
498
499 // If this is another cast that can be eliminated, it isn't codegen either.
500 if (const CastInst *CI = dyn_cast<CastInst>(V))
501 if (isEliminableCastPair(CI, opcode, Ty, TD))
502 return false;
503 return true;
504}
505
506/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
507/// InsertBefore instruction. This is specialized a bit to avoid inserting
508/// casts that are known to not do anything...
509///
510Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
511 Value *V, const Type *DestTy,
512 Instruction *InsertBefore) {
513 if (V->getType() == DestTy) return V;
514 if (Constant *C = dyn_cast<Constant>(V))
515 return ConstantExpr::getCast(opcode, C, DestTy);
516
517 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
518}
519
520// SimplifyCommutative - This performs a few simplifications for commutative
521// operators:
522//
523// 1. Order operands such that they are listed from right (least complex) to
524// left (most complex). This puts constants before unary operators before
525// binary operators.
526//
527// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
528// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
529//
530bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
531 bool Changed = false;
532 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
533 Changed = !I.swapOperands();
534
535 if (!I.isAssociative()) return Changed;
536 Instruction::BinaryOps Opcode = I.getOpcode();
537 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
538 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
539 if (isa<Constant>(I.getOperand(1))) {
540 Constant *Folded = ConstantExpr::get(I.getOpcode(),
541 cast<Constant>(I.getOperand(1)),
542 cast<Constant>(Op->getOperand(1)));
543 I.setOperand(0, Op->getOperand(0));
544 I.setOperand(1, Folded);
545 return true;
546 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
547 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
548 isOnlyUse(Op) && isOnlyUse(Op1)) {
549 Constant *C1 = cast<Constant>(Op->getOperand(1));
550 Constant *C2 = cast<Constant>(Op1->getOperand(1));
551
552 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
553 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000554 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000555 Op1->getOperand(0),
556 Op1->getName(), &I);
557 AddToWorkList(New);
558 I.setOperand(0, New);
559 I.setOperand(1, Folded);
560 return true;
561 }
562 }
563 return Changed;
564}
565
566/// SimplifyCompare - For a CmpInst this function just orders the operands
567/// so that theyare listed from right (least complex) to left (most complex).
568/// This puts constants before unary operators before binary operators.
569bool InstCombiner::SimplifyCompare(CmpInst &I) {
570 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
571 return false;
572 I.swapOperands();
573 // Compare instructions are not associative so there's nothing else we can do.
574 return true;
575}
576
577// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
578// if the LHS is a constant zero (which is the 'negate' form).
579//
580static inline Value *dyn_castNegVal(Value *V) {
581 if (BinaryOperator::isNeg(V))
582 return BinaryOperator::getNegArgument(V);
583
584 // Constants can be considered to be negated values if they can be folded.
585 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
586 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000587
588 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
589 if (C->getType()->getElementType()->isInteger())
590 return ConstantExpr::getNeg(C);
591
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000592 return 0;
593}
594
595static inline Value *dyn_castNotVal(Value *V) {
596 if (BinaryOperator::isNot(V))
597 return BinaryOperator::getNotArgument(V);
598
599 // Constants can be considered to be not'ed values...
600 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
601 return ConstantInt::get(~C->getValue());
602 return 0;
603}
604
605// dyn_castFoldableMul - If this value is a multiply that can be folded into
606// other computations (because it has a constant operand), return the
607// non-constant operand of the multiply, and set CST to point to the multiplier.
608// Otherwise, return null.
609//
610static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
611 if (V->hasOneUse() && V->getType()->isInteger())
612 if (Instruction *I = dyn_cast<Instruction>(V)) {
613 if (I->getOpcode() == Instruction::Mul)
614 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
615 return I->getOperand(0);
616 if (I->getOpcode() == Instruction::Shl)
617 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
618 // The multiplier is really 1 << CST.
619 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
620 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
621 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
622 return I->getOperand(0);
623 }
624 }
625 return 0;
626}
627
628/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
629/// expression, return it.
630static User *dyn_castGetElementPtr(Value *V) {
631 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
632 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
633 if (CE->getOpcode() == Instruction::GetElementPtr)
634 return cast<User>(V);
635 return false;
636}
637
Dan Gohman2d648bb2008-04-10 18:43:06 +0000638/// getOpcode - If this is an Instruction or a ConstantExpr, return the
639/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000640static unsigned getOpcode(const Value *V) {
641 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000642 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000643 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000644 return CE->getOpcode();
645 // Use UserOp1 to mean there's no opcode.
646 return Instruction::UserOp1;
647}
648
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000649/// AddOne - Add one to a ConstantInt
650static ConstantInt *AddOne(ConstantInt *C) {
651 APInt Val(C->getValue());
652 return ConstantInt::get(++Val);
653}
654/// SubOne - Subtract one from a ConstantInt
655static ConstantInt *SubOne(ConstantInt *C) {
656 APInt Val(C->getValue());
657 return ConstantInt::get(--Val);
658}
659/// Add - Add two ConstantInts together
660static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
661 return ConstantInt::get(C1->getValue() + C2->getValue());
662}
663/// And - Bitwise AND two ConstantInts together
664static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
665 return ConstantInt::get(C1->getValue() & C2->getValue());
666}
667/// Subtract - Subtract one ConstantInt from another
668static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
669 return ConstantInt::get(C1->getValue() - C2->getValue());
670}
671/// Multiply - Multiply two ConstantInts together
672static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
673 return ConstantInt::get(C1->getValue() * C2->getValue());
674}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000675/// MultiplyOverflows - True if the multiply can not be expressed in an int
676/// this size.
677static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
678 uint32_t W = C1->getBitWidth();
679 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
680 if (sign) {
681 LHSExt.sext(W * 2);
682 RHSExt.sext(W * 2);
683 } else {
684 LHSExt.zext(W * 2);
685 RHSExt.zext(W * 2);
686 }
687
688 APInt MulExt = LHSExt * RHSExt;
689
690 if (sign) {
691 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
692 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
693 return MulExt.slt(Min) || MulExt.sgt(Max);
694 } else
695 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
696}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000697
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000698
699/// ShrinkDemandedConstant - Check to see if the specified operand of the
700/// specified instruction is a constant integer. If so, check to see if there
701/// are any bits set in the constant that are not demanded. If so, shrink the
702/// constant and return true.
703static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
704 APInt Demanded) {
705 assert(I && "No instruction?");
706 assert(OpNo < I->getNumOperands() && "Operand index too large");
707
708 // If the operand is not a constant integer, nothing to do.
709 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
710 if (!OpC) return false;
711
712 // If there are no bits set that aren't demanded, nothing to do.
713 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
714 if ((~Demanded & OpC->getValue()) == 0)
715 return false;
716
717 // This instruction is producing bits that are not demanded. Shrink the RHS.
718 Demanded &= OpC->getValue();
719 I->setOperand(OpNo, ConstantInt::get(Demanded));
720 return true;
721}
722
723// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
724// set of known zero and one bits, compute the maximum and minimum values that
725// could have the specified known zero and known one bits, returning them in
726// min/max.
727static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
728 const APInt& KnownZero,
729 const APInt& KnownOne,
730 APInt& Min, APInt& Max) {
731 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
732 assert(KnownZero.getBitWidth() == BitWidth &&
733 KnownOne.getBitWidth() == BitWidth &&
734 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
735 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
736 APInt UnknownBits = ~(KnownZero|KnownOne);
737
738 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
739 // bit if it is unknown.
740 Min = KnownOne;
741 Max = KnownOne|UnknownBits;
742
743 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
744 Min.set(BitWidth-1);
745 Max.clear(BitWidth-1);
746 }
747}
748
749// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
750// a set of known zero and one bits, compute the maximum and minimum values that
751// could have the specified known zero and known one bits, returning them in
752// min/max.
753static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000754 const APInt &KnownZero,
755 const APInt &KnownOne,
756 APInt &Min, APInt &Max) {
757 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758 assert(KnownZero.getBitWidth() == BitWidth &&
759 KnownOne.getBitWidth() == BitWidth &&
760 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
761 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
762 APInt UnknownBits = ~(KnownZero|KnownOne);
763
764 // The minimum value is when the unknown bits are all zeros.
765 Min = KnownOne;
766 // The maximum value is when the unknown bits are all ones.
767 Max = KnownOne|UnknownBits;
768}
769
770/// SimplifyDemandedBits - This function attempts to replace V with a simpler
771/// value based on the demanded bits. When this function is called, it is known
772/// that only the bits set in DemandedMask of the result of V are ever used
773/// downstream. Consequently, depending on the mask and V, it may be possible
774/// to replace V with a constant or one of its operands. In such cases, this
775/// function does the replacement and returns true. In all other cases, it
776/// returns false after analyzing the expression and setting KnownOne and known
777/// to be one in the expression. KnownZero contains all the bits that are known
778/// to be zero in the expression. These are provided to potentially allow the
779/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
780/// the expression. KnownOne and KnownZero always follow the invariant that
781/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
782/// the bits in KnownOne and KnownZero may only be accurate for those bits set
783/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
784/// and KnownOne must all be the same.
785bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
786 APInt& KnownZero, APInt& KnownOne,
787 unsigned Depth) {
788 assert(V != 0 && "Null pointer of Value???");
789 assert(Depth <= 6 && "Limit Search Depth");
790 uint32_t BitWidth = DemandedMask.getBitWidth();
791 const IntegerType *VTy = cast<IntegerType>(V->getType());
792 assert(VTy->getBitWidth() == BitWidth &&
793 KnownZero.getBitWidth() == BitWidth &&
794 KnownOne.getBitWidth() == BitWidth &&
795 "Value *V, DemandedMask, KnownZero and KnownOne \
796 must have same BitWidth");
797 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
798 // We know all of the bits for a constant!
799 KnownOne = CI->getValue() & DemandedMask;
800 KnownZero = ~KnownOne & DemandedMask;
801 return false;
802 }
803
804 KnownZero.clear();
805 KnownOne.clear();
806 if (!V->hasOneUse()) { // Other users may use these bits.
807 if (Depth != 0) { // Not at the root.
808 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
809 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
810 return false;
811 }
812 // If this is the root being simplified, allow it to have multiple uses,
813 // just set the DemandedMask to all bits.
814 DemandedMask = APInt::getAllOnesValue(BitWidth);
815 } else if (DemandedMask == 0) { // Not demanding any bits from V.
816 if (V != UndefValue::get(VTy))
817 return UpdateValueUsesWith(V, UndefValue::get(VTy));
818 return false;
819 } else if (Depth == 6) { // Limit search depth.
820 return false;
821 }
822
823 Instruction *I = dyn_cast<Instruction>(V);
824 if (!I) return false; // Only analyze instructions.
825
826 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
827 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
828 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000829 default:
830 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
831 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000832 case Instruction::And:
833 // If either the LHS or the RHS are Zero, the result is zero.
834 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
835 RHSKnownZero, RHSKnownOne, Depth+1))
836 return true;
837 assert((RHSKnownZero & RHSKnownOne) == 0 &&
838 "Bits known to be one AND zero?");
839
840 // If something is known zero on the RHS, the bits aren't demanded on the
841 // LHS.
842 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
843 LHSKnownZero, LHSKnownOne, Depth+1))
844 return true;
845 assert((LHSKnownZero & LHSKnownOne) == 0 &&
846 "Bits known to be one AND zero?");
847
848 // If all of the demanded bits are known 1 on one side, return the other.
849 // These bits cannot contribute to the result of the 'and'.
850 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
851 (DemandedMask & ~LHSKnownZero))
852 return UpdateValueUsesWith(I, I->getOperand(0));
853 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
854 (DemandedMask & ~RHSKnownZero))
855 return UpdateValueUsesWith(I, I->getOperand(1));
856
857 // If all of the demanded bits in the inputs are known zeros, return zero.
858 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
859 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
860
861 // If the RHS is a constant, see if we can simplify it.
862 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
863 return UpdateValueUsesWith(I, I);
864
865 // Output known-1 bits are only known if set in both the LHS & RHS.
866 RHSKnownOne &= LHSKnownOne;
867 // Output known-0 are known to be clear if zero in either the LHS | RHS.
868 RHSKnownZero |= LHSKnownZero;
869 break;
870 case Instruction::Or:
871 // If either the LHS or the RHS are One, the result is One.
872 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
873 RHSKnownZero, RHSKnownOne, Depth+1))
874 return true;
875 assert((RHSKnownZero & RHSKnownOne) == 0 &&
876 "Bits known to be one AND zero?");
877 // If something is known one on the RHS, the bits aren't demanded on the
878 // LHS.
879 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
880 LHSKnownZero, LHSKnownOne, Depth+1))
881 return true;
882 assert((LHSKnownZero & LHSKnownOne) == 0 &&
883 "Bits known to be one AND zero?");
884
885 // If all of the demanded bits are known zero on one side, return the other.
886 // These bits cannot contribute to the result of the 'or'.
887 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
888 (DemandedMask & ~LHSKnownOne))
889 return UpdateValueUsesWith(I, I->getOperand(0));
890 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
891 (DemandedMask & ~RHSKnownOne))
892 return UpdateValueUsesWith(I, I->getOperand(1));
893
894 // If all of the potentially set bits on one side are known to be set on
895 // the other side, just use the 'other' side.
896 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
897 (DemandedMask & (~RHSKnownZero)))
898 return UpdateValueUsesWith(I, I->getOperand(0));
899 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
900 (DemandedMask & (~LHSKnownZero)))
901 return UpdateValueUsesWith(I, I->getOperand(1));
902
903 // If the RHS is a constant, see if we can simplify it.
904 if (ShrinkDemandedConstant(I, 1, DemandedMask))
905 return UpdateValueUsesWith(I, I);
906
907 // Output known-0 bits are only known if clear in both the LHS & RHS.
908 RHSKnownZero &= LHSKnownZero;
909 // Output known-1 are known to be set if set in either the LHS | RHS.
910 RHSKnownOne |= LHSKnownOne;
911 break;
912 case Instruction::Xor: {
913 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
914 RHSKnownZero, RHSKnownOne, Depth+1))
915 return true;
916 assert((RHSKnownZero & RHSKnownOne) == 0 &&
917 "Bits known to be one AND zero?");
918 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
919 LHSKnownZero, LHSKnownOne, Depth+1))
920 return true;
921 assert((LHSKnownZero & LHSKnownOne) == 0 &&
922 "Bits known to be one AND zero?");
923
924 // If all of the demanded bits are known zero on one side, return the other.
925 // These bits cannot contribute to the result of the 'xor'.
926 if ((DemandedMask & RHSKnownZero) == DemandedMask)
927 return UpdateValueUsesWith(I, I->getOperand(0));
928 if ((DemandedMask & LHSKnownZero) == DemandedMask)
929 return UpdateValueUsesWith(I, I->getOperand(1));
930
931 // Output known-0 bits are known if clear or set in both the LHS & RHS.
932 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
933 (RHSKnownOne & LHSKnownOne);
934 // Output known-1 are known to be set if set in only one of the LHS, RHS.
935 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
936 (RHSKnownOne & LHSKnownZero);
937
938 // If all of the demanded bits are known to be zero on one side or the
939 // other, turn this into an *inclusive* or.
940 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
941 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
942 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000943 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944 I->getName());
945 InsertNewInstBefore(Or, *I);
946 return UpdateValueUsesWith(I, Or);
947 }
948
949 // If all of the demanded bits on one side are known, and all of the set
950 // bits on that side are also known to be set on the other side, turn this
951 // into an AND, as we know the bits will be cleared.
952 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
953 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
954 // all known
955 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
956 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
957 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000958 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000959 InsertNewInstBefore(And, *I);
960 return UpdateValueUsesWith(I, And);
961 }
962 }
963
964 // If the RHS is a constant, see if we can simplify it.
965 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
966 if (ShrinkDemandedConstant(I, 1, DemandedMask))
967 return UpdateValueUsesWith(I, I);
968
969 RHSKnownZero = KnownZeroOut;
970 RHSKnownOne = KnownOneOut;
971 break;
972 }
973 case Instruction::Select:
974 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
975 RHSKnownZero, RHSKnownOne, Depth+1))
976 return true;
977 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
978 LHSKnownZero, LHSKnownOne, Depth+1))
979 return true;
980 assert((RHSKnownZero & RHSKnownOne) == 0 &&
981 "Bits known to be one AND zero?");
982 assert((LHSKnownZero & LHSKnownOne) == 0 &&
983 "Bits known to be one AND zero?");
984
985 // If the operands are constants, see if we can simplify them.
986 if (ShrinkDemandedConstant(I, 1, DemandedMask))
987 return UpdateValueUsesWith(I, I);
988 if (ShrinkDemandedConstant(I, 2, DemandedMask))
989 return UpdateValueUsesWith(I, I);
990
991 // Only known if known in both the LHS and RHS.
992 RHSKnownOne &= LHSKnownOne;
993 RHSKnownZero &= LHSKnownZero;
994 break;
995 case Instruction::Trunc: {
996 uint32_t truncBf =
997 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
998 DemandedMask.zext(truncBf);
999 RHSKnownZero.zext(truncBf);
1000 RHSKnownOne.zext(truncBf);
1001 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1002 RHSKnownZero, RHSKnownOne, Depth+1))
1003 return true;
1004 DemandedMask.trunc(BitWidth);
1005 RHSKnownZero.trunc(BitWidth);
1006 RHSKnownOne.trunc(BitWidth);
1007 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1008 "Bits known to be one AND zero?");
1009 break;
1010 }
1011 case Instruction::BitCast:
1012 if (!I->getOperand(0)->getType()->isInteger())
1013 return false;
1014
1015 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1016 RHSKnownZero, RHSKnownOne, Depth+1))
1017 return true;
1018 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1019 "Bits known to be one AND zero?");
1020 break;
1021 case Instruction::ZExt: {
1022 // Compute the bits in the result that are not present in the input.
1023 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1024 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1025
1026 DemandedMask.trunc(SrcBitWidth);
1027 RHSKnownZero.trunc(SrcBitWidth);
1028 RHSKnownOne.trunc(SrcBitWidth);
1029 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1030 RHSKnownZero, RHSKnownOne, Depth+1))
1031 return true;
1032 DemandedMask.zext(BitWidth);
1033 RHSKnownZero.zext(BitWidth);
1034 RHSKnownOne.zext(BitWidth);
1035 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1036 "Bits known to be one AND zero?");
1037 // The top bits are known to be zero.
1038 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1039 break;
1040 }
1041 case Instruction::SExt: {
1042 // Compute the bits in the result that are not present in the input.
1043 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1044 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1045
1046 APInt InputDemandedBits = DemandedMask &
1047 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1048
1049 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1050 // If any of the sign extended bits are demanded, we know that the sign
1051 // bit is demanded.
1052 if ((NewBits & DemandedMask) != 0)
1053 InputDemandedBits.set(SrcBitWidth-1);
1054
1055 InputDemandedBits.trunc(SrcBitWidth);
1056 RHSKnownZero.trunc(SrcBitWidth);
1057 RHSKnownOne.trunc(SrcBitWidth);
1058 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1059 RHSKnownZero, RHSKnownOne, Depth+1))
1060 return true;
1061 InputDemandedBits.zext(BitWidth);
1062 RHSKnownZero.zext(BitWidth);
1063 RHSKnownOne.zext(BitWidth);
1064 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1065 "Bits known to be one AND zero?");
1066
1067 // If the sign bit of the input is known set or clear, then we know the
1068 // top bits of the result.
1069
1070 // If the input sign bit is known zero, or if the NewBits are not demanded
1071 // convert this into a zero extension.
1072 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1073 {
1074 // Convert to ZExt cast
1075 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1076 return UpdateValueUsesWith(I, NewCast);
1077 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1078 RHSKnownOne |= NewBits;
1079 }
1080 break;
1081 }
1082 case Instruction::Add: {
1083 // Figure out what the input bits are. If the top bits of the and result
1084 // are not demanded, then the add doesn't demand them from its input
1085 // either.
1086 uint32_t NLZ = DemandedMask.countLeadingZeros();
1087
1088 // If there is a constant on the RHS, there are a variety of xformations
1089 // we can do.
1090 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1091 // If null, this should be simplified elsewhere. Some of the xforms here
1092 // won't work if the RHS is zero.
1093 if (RHS->isZero())
1094 break;
1095
1096 // If the top bit of the output is demanded, demand everything from the
1097 // input. Otherwise, we demand all the input bits except NLZ top bits.
1098 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1099
1100 // Find information about known zero/one bits in the input.
1101 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1102 LHSKnownZero, LHSKnownOne, Depth+1))
1103 return true;
1104
1105 // If the RHS of the add has bits set that can't affect the input, reduce
1106 // the constant.
1107 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1108 return UpdateValueUsesWith(I, I);
1109
1110 // Avoid excess work.
1111 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1112 break;
1113
1114 // Turn it into OR if input bits are zero.
1115 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1116 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001117 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001118 I->getName());
1119 InsertNewInstBefore(Or, *I);
1120 return UpdateValueUsesWith(I, Or);
1121 }
1122
1123 // We can say something about the output known-zero and known-one bits,
1124 // depending on potential carries from the input constant and the
1125 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1126 // bits set and the RHS constant is 0x01001, then we know we have a known
1127 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1128
1129 // To compute this, we first compute the potential carry bits. These are
1130 // the bits which may be modified. I'm not aware of a better way to do
1131 // this scan.
1132 const APInt& RHSVal = RHS->getValue();
1133 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1134
1135 // Now that we know which bits have carries, compute the known-1/0 sets.
1136
1137 // Bits are known one if they are known zero in one operand and one in the
1138 // other, and there is no input carry.
1139 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1140 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1141
1142 // Bits are known zero if they are known zero in both operands and there
1143 // is no input carry.
1144 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1145 } else {
1146 // If the high-bits of this ADD are not demanded, then it does not demand
1147 // the high bits of its LHS or RHS.
1148 if (DemandedMask[BitWidth-1] == 0) {
1149 // Right fill the mask of bits for this ADD to demand the most
1150 // significant bit and all those below it.
1151 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1152 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1153 LHSKnownZero, LHSKnownOne, Depth+1))
1154 return true;
1155 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1156 LHSKnownZero, LHSKnownOne, Depth+1))
1157 return true;
1158 }
1159 }
1160 break;
1161 }
1162 case Instruction::Sub:
1163 // If the high-bits of this SUB are not demanded, then it does not demand
1164 // the high bits of its LHS or RHS.
1165 if (DemandedMask[BitWidth-1] == 0) {
1166 // Right fill the mask of bits for this SUB to demand the most
1167 // significant bit and all those below it.
1168 uint32_t NLZ = DemandedMask.countLeadingZeros();
1169 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1170 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1171 LHSKnownZero, LHSKnownOne, Depth+1))
1172 return true;
1173 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1174 LHSKnownZero, LHSKnownOne, Depth+1))
1175 return true;
1176 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001177 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1178 // the known zeros and ones.
1179 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001180 break;
1181 case Instruction::Shl:
1182 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1183 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1184 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1185 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1186 RHSKnownZero, RHSKnownOne, Depth+1))
1187 return true;
1188 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1189 "Bits known to be one AND zero?");
1190 RHSKnownZero <<= ShiftAmt;
1191 RHSKnownOne <<= ShiftAmt;
1192 // low bits known zero.
1193 if (ShiftAmt)
1194 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1195 }
1196 break;
1197 case Instruction::LShr:
1198 // For a logical shift right
1199 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1200 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1201
1202 // Unsigned shift right.
1203 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1204 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1205 RHSKnownZero, RHSKnownOne, Depth+1))
1206 return true;
1207 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1208 "Bits known to be one AND zero?");
1209 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1210 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1211 if (ShiftAmt) {
1212 // Compute the new bits that are at the top now.
1213 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1214 RHSKnownZero |= HighBits; // high bits known zero.
1215 }
1216 }
1217 break;
1218 case Instruction::AShr:
1219 // If this is an arithmetic shift right and only the low-bit is set, we can
1220 // always convert this into a logical shr, even if the shift amount is
1221 // variable. The low bit of the shift cannot be an input sign bit unless
1222 // the shift amount is >= the size of the datatype, which is undefined.
1223 if (DemandedMask == 1) {
1224 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001225 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001226 I->getOperand(0), I->getOperand(1), I->getName());
1227 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1228 return UpdateValueUsesWith(I, NewVal);
1229 }
1230
1231 // If the sign bit is the only bit demanded by this ashr, then there is no
1232 // need to do it, the shift doesn't change the high bit.
1233 if (DemandedMask.isSignBit())
1234 return UpdateValueUsesWith(I, I->getOperand(0));
1235
1236 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1237 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1238
1239 // Signed shift right.
1240 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1241 // If any of the "high bits" are demanded, we should set the sign bit as
1242 // demanded.
1243 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1244 DemandedMaskIn.set(BitWidth-1);
1245 if (SimplifyDemandedBits(I->getOperand(0),
1246 DemandedMaskIn,
1247 RHSKnownZero, RHSKnownOne, Depth+1))
1248 return true;
1249 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1250 "Bits known to be one AND zero?");
1251 // Compute the new bits that are at the top now.
1252 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1253 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1254 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1255
1256 // Handle the sign bits.
1257 APInt SignBit(APInt::getSignBit(BitWidth));
1258 // Adjust to where it is now in the mask.
1259 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1260
1261 // If the input sign bit is known to be zero, or if none of the top bits
1262 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001263 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001264 (HighBits & ~DemandedMask) == HighBits) {
1265 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001266 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 I->getOperand(0), SA, I->getName());
1268 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1269 return UpdateValueUsesWith(I, NewVal);
1270 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1271 RHSKnownOne |= HighBits;
1272 }
1273 }
1274 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001275 case Instruction::SRem:
1276 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1277 APInt RA = Rem->getValue();
1278 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001279 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1280 return UpdateValueUsesWith(I, I->getOperand(0));
1281
Dan Gohman5a154a12008-05-06 00:51:48 +00001282 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001283 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1284 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1285 LHSKnownZero, LHSKnownOne, Depth+1))
1286 return true;
1287
1288 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1289 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001290
1291 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001292
1293 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1294 }
1295 }
1296 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001297 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001298 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1299 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001300 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1301 KnownZero2, KnownOne2, Depth+1))
1302 return true;
1303
Dan Gohmanbec16052008-04-28 17:02:21 +00001304 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001305 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001306 KnownZero2, KnownOne2, Depth+1))
1307 return true;
1308
1309 Leaders = std::max(Leaders,
1310 KnownZero2.countLeadingOnes());
1311 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001312 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001313 }
Chris Lattner989ba312008-06-18 04:33:20 +00001314 case Instruction::Call:
1315 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1316 switch (II->getIntrinsicID()) {
1317 default: break;
1318 case Intrinsic::bswap: {
1319 // If the only bits demanded come from one byte of the bswap result,
1320 // just shift the input byte into position to eliminate the bswap.
1321 unsigned NLZ = DemandedMask.countLeadingZeros();
1322 unsigned NTZ = DemandedMask.countTrailingZeros();
1323
1324 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1325 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1326 // have 14 leading zeros, round to 8.
1327 NLZ &= ~7;
1328 NTZ &= ~7;
1329 // If we need exactly one byte, we can do this transformation.
1330 if (BitWidth-NLZ-NTZ == 8) {
1331 unsigned ResultBit = NTZ;
1332 unsigned InputBit = BitWidth-NTZ-8;
1333
1334 // Replace this with either a left or right shift to get the byte into
1335 // the right place.
1336 Instruction *NewVal;
1337 if (InputBit > ResultBit)
1338 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1339 ConstantInt::get(I->getType(), InputBit-ResultBit));
1340 else
1341 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1342 ConstantInt::get(I->getType(), ResultBit-InputBit));
1343 NewVal->takeName(I);
1344 InsertNewInstBefore(NewVal, *I);
1345 return UpdateValueUsesWith(I, NewVal);
1346 }
1347
1348 // TODO: Could compute known zero/one bits based on the input.
1349 break;
1350 }
1351 }
1352 }
Chris Lattner4946e222008-06-18 18:11:55 +00001353 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001354 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001355 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001356
1357 // If the client is only demanding bits that we know, return the known
1358 // constant.
1359 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1360 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1361 return false;
1362}
1363
1364
1365/// SimplifyDemandedVectorElts - The specified value producecs a vector with
1366/// 64 or fewer elements. DemandedElts contains the set of elements that are
1367/// actually used by the caller. This method analyzes which elements of the
1368/// operand are undef and returns that information in UndefElts.
1369///
1370/// If the information about demanded elements can be used to simplify the
1371/// operation, the operation is simplified, then the resultant value is
1372/// returned. This returns null if no change was made.
1373Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1374 uint64_t &UndefElts,
1375 unsigned Depth) {
1376 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1377 assert(VWidth <= 64 && "Vector too wide to analyze!");
1378 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001379 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001380
1381 if (isa<UndefValue>(V)) {
1382 // If the entire vector is undefined, just return this info.
1383 UndefElts = EltMask;
1384 return 0;
1385 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1386 UndefElts = EltMask;
1387 return UndefValue::get(V->getType());
1388 }
1389
1390 UndefElts = 0;
1391 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1392 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1393 Constant *Undef = UndefValue::get(EltTy);
1394
1395 std::vector<Constant*> Elts;
1396 for (unsigned i = 0; i != VWidth; ++i)
1397 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1398 Elts.push_back(Undef);
1399 UndefElts |= (1ULL << i);
1400 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1401 Elts.push_back(Undef);
1402 UndefElts |= (1ULL << i);
1403 } else { // Otherwise, defined.
1404 Elts.push_back(CP->getOperand(i));
1405 }
1406
1407 // If we changed the constant, return it.
1408 Constant *NewCP = ConstantVector::get(Elts);
1409 return NewCP != CP ? NewCP : 0;
1410 } else if (isa<ConstantAggregateZero>(V)) {
1411 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1412 // set to undef.
1413 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1414 Constant *Zero = Constant::getNullValue(EltTy);
1415 Constant *Undef = UndefValue::get(EltTy);
1416 std::vector<Constant*> Elts;
1417 for (unsigned i = 0; i != VWidth; ++i)
1418 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1419 UndefElts = DemandedElts ^ EltMask;
1420 return ConstantVector::get(Elts);
1421 }
1422
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001423 // Limit search depth.
1424 if (Depth == 10)
1425 return false;
1426
1427 // If multiple users are using the root value, procede with
1428 // simplification conservatively assuming that all elements
1429 // are needed.
1430 if (!V->hasOneUse()) {
1431 // Quit if we find multiple users of a non-root value though.
1432 // They'll be handled when it's their turn to be visited by
1433 // the main instcombine process.
1434 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001435 // TODO: Just compute the UndefElts information recursively.
1436 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001437
1438 // Conservatively assume that all elements are needed.
1439 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001440 }
1441
1442 Instruction *I = dyn_cast<Instruction>(V);
1443 if (!I) return false; // Only analyze instructions.
1444
1445 bool MadeChange = false;
1446 uint64_t UndefElts2;
1447 Value *TmpV;
1448 switch (I->getOpcode()) {
1449 default: break;
1450
1451 case Instruction::InsertElement: {
1452 // If this is a variable index, we don't know which element it overwrites.
1453 // demand exactly the same input as we produce.
1454 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1455 if (Idx == 0) {
1456 // Note that we can't propagate undef elt info, because we don't know
1457 // which elt is getting updated.
1458 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1459 UndefElts2, Depth+1);
1460 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1461 break;
1462 }
1463
1464 // If this is inserting an element that isn't demanded, remove this
1465 // insertelement.
1466 unsigned IdxNo = Idx->getZExtValue();
1467 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1468 return AddSoonDeadInstToWorklist(*I, 0);
1469
1470 // Otherwise, the element inserted overwrites whatever was there, so the
1471 // input demanded set is simpler than the output set.
1472 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1473 DemandedElts & ~(1ULL << IdxNo),
1474 UndefElts, Depth+1);
1475 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1476
1477 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001478 UndefElts &= ~(1ULL << IdxNo);
1479 break;
1480 }
1481 case Instruction::ShuffleVector: {
1482 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1483 uint64_t LeftDemanded = 0, RightDemanded = 0;
1484 for (unsigned i = 0; i < VWidth; i++) {
1485 if (DemandedElts & (1ULL << i)) {
1486 unsigned MaskVal = Shuffle->getMaskValue(i);
1487 if (MaskVal != -1u) {
1488 assert(MaskVal < VWidth * 2 &&
1489 "shufflevector mask index out of range!");
1490 if (MaskVal < VWidth)
1491 LeftDemanded |= 1ULL << MaskVal;
1492 else
1493 RightDemanded |= 1ULL << (MaskVal - VWidth);
1494 }
1495 }
1496 }
1497
1498 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1499 UndefElts2, Depth+1);
1500 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1501
1502 uint64_t UndefElts3;
1503 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1504 UndefElts3, Depth+1);
1505 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1506
1507 bool NewUndefElts = false;
1508 for (unsigned i = 0; i < VWidth; i++) {
1509 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001510 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001511 uint64_t NewBit = 1ULL << i;
1512 UndefElts |= NewBit;
1513 } else if (MaskVal < VWidth) {
1514 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1515 NewUndefElts |= NewBit;
1516 UndefElts |= NewBit;
1517 } else {
1518 uint64_t NewBit = ((UndefElts3 >> (MaskVal - VWidth)) & 1) << i;
1519 NewUndefElts |= NewBit;
1520 UndefElts |= NewBit;
1521 }
1522 }
1523
1524 if (NewUndefElts) {
1525 // Add additional discovered undefs.
1526 std::vector<Constant*> Elts;
1527 for (unsigned i = 0; i < VWidth; ++i) {
1528 if (UndefElts & (1ULL << i))
1529 Elts.push_back(UndefValue::get(Type::Int32Ty));
1530 else
1531 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1532 Shuffle->getMaskValue(i)));
1533 }
1534 I->setOperand(2, ConstantVector::get(Elts));
1535 MadeChange = true;
1536 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001537 break;
1538 }
1539 case Instruction::BitCast: {
1540 // Vector->vector casts only.
1541 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1542 if (!VTy) break;
1543 unsigned InVWidth = VTy->getNumElements();
1544 uint64_t InputDemandedElts = 0;
1545 unsigned Ratio;
1546
1547 if (VWidth == InVWidth) {
1548 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1549 // elements as are demanded of us.
1550 Ratio = 1;
1551 InputDemandedElts = DemandedElts;
1552 } else if (VWidth > InVWidth) {
1553 // Untested so far.
1554 break;
1555
1556 // If there are more elements in the result than there are in the source,
1557 // then an input element is live if any of the corresponding output
1558 // elements are live.
1559 Ratio = VWidth/InVWidth;
1560 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1561 if (DemandedElts & (1ULL << OutIdx))
1562 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1563 }
1564 } else {
1565 // Untested so far.
1566 break;
1567
1568 // If there are more elements in the source than there are in the result,
1569 // then an input element is live if the corresponding output element is
1570 // live.
1571 Ratio = InVWidth/VWidth;
1572 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1573 if (DemandedElts & (1ULL << InIdx/Ratio))
1574 InputDemandedElts |= 1ULL << InIdx;
1575 }
1576
1577 // div/rem demand all inputs, because they don't want divide by zero.
1578 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1579 UndefElts2, Depth+1);
1580 if (TmpV) {
1581 I->setOperand(0, TmpV);
1582 MadeChange = true;
1583 }
1584
1585 UndefElts = UndefElts2;
1586 if (VWidth > InVWidth) {
1587 assert(0 && "Unimp");
1588 // If there are more elements in the result than there are in the source,
1589 // then an output element is undef if the corresponding input element is
1590 // undef.
1591 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1592 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1593 UndefElts |= 1ULL << OutIdx;
1594 } else if (VWidth < InVWidth) {
1595 assert(0 && "Unimp");
1596 // If there are more elements in the source than there are in the result,
1597 // then a result element is undef if all of the corresponding input
1598 // elements are undef.
1599 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1600 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1601 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1602 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1603 }
1604 break;
1605 }
1606 case Instruction::And:
1607 case Instruction::Or:
1608 case Instruction::Xor:
1609 case Instruction::Add:
1610 case Instruction::Sub:
1611 case Instruction::Mul:
1612 // div/rem demand all inputs, because they don't want divide by zero.
1613 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1614 UndefElts, Depth+1);
1615 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1616 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1617 UndefElts2, Depth+1);
1618 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1619
1620 // Output elements are undefined if both are undefined. Consider things
1621 // like undef&0. The result is known zero, not undef.
1622 UndefElts &= UndefElts2;
1623 break;
1624
1625 case Instruction::Call: {
1626 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1627 if (!II) break;
1628 switch (II->getIntrinsicID()) {
1629 default: break;
1630
1631 // Binary vector operations that work column-wise. A dest element is a
1632 // function of the corresponding input elements from the two inputs.
1633 case Intrinsic::x86_sse_sub_ss:
1634 case Intrinsic::x86_sse_mul_ss:
1635 case Intrinsic::x86_sse_min_ss:
1636 case Intrinsic::x86_sse_max_ss:
1637 case Intrinsic::x86_sse2_sub_sd:
1638 case Intrinsic::x86_sse2_mul_sd:
1639 case Intrinsic::x86_sse2_min_sd:
1640 case Intrinsic::x86_sse2_max_sd:
1641 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1642 UndefElts, Depth+1);
1643 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1644 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1645 UndefElts2, Depth+1);
1646 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1647
1648 // If only the low elt is demanded and this is a scalarizable intrinsic,
1649 // scalarize it now.
1650 if (DemandedElts == 1) {
1651 switch (II->getIntrinsicID()) {
1652 default: break;
1653 case Intrinsic::x86_sse_sub_ss:
1654 case Intrinsic::x86_sse_mul_ss:
1655 case Intrinsic::x86_sse2_sub_sd:
1656 case Intrinsic::x86_sse2_mul_sd:
1657 // TODO: Lower MIN/MAX/ABS/etc
1658 Value *LHS = II->getOperand(1);
1659 Value *RHS = II->getOperand(2);
1660 // Extract the element as scalars.
1661 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1662 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1663
1664 switch (II->getIntrinsicID()) {
1665 default: assert(0 && "Case stmts out of sync!");
1666 case Intrinsic::x86_sse_sub_ss:
1667 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001668 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001669 II->getName()), *II);
1670 break;
1671 case Intrinsic::x86_sse_mul_ss:
1672 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001673 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001674 II->getName()), *II);
1675 break;
1676 }
1677
1678 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001679 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1680 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001681 InsertNewInstBefore(New, *II);
1682 AddSoonDeadInstToWorklist(*II, 0);
1683 return New;
1684 }
1685 }
1686
1687 // Output elements are undefined if both are undefined. Consider things
1688 // like undef&0. The result is known zero, not undef.
1689 UndefElts &= UndefElts2;
1690 break;
1691 }
1692 break;
1693 }
1694 }
1695 return MadeChange ? I : 0;
1696}
1697
Dan Gohman5d56fd42008-05-19 22:14:15 +00001698
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699/// AssociativeOpt - Perform an optimization on an associative operator. This
1700/// function is designed to check a chain of associative operators for a
1701/// potential to apply a certain optimization. Since the optimization may be
1702/// applicable if the expression was reassociated, this checks the chain, then
1703/// reassociates the expression as necessary to expose the optimization
1704/// opportunity. This makes use of a special Functor, which must define
1705/// 'shouldApply' and 'apply' methods.
1706///
1707template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001708static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001709 unsigned Opcode = Root.getOpcode();
1710 Value *LHS = Root.getOperand(0);
1711
1712 // Quick check, see if the immediate LHS matches...
1713 if (F.shouldApply(LHS))
1714 return F.apply(Root);
1715
1716 // Otherwise, if the LHS is not of the same opcode as the root, return.
1717 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1718 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1719 // Should we apply this transform to the RHS?
1720 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1721
1722 // If not to the RHS, check to see if we should apply to the LHS...
1723 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1724 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1725 ShouldApply = true;
1726 }
1727
1728 // If the functor wants to apply the optimization to the RHS of LHSI,
1729 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1730 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001731 // Now all of the instructions are in the current basic block, go ahead
1732 // and perform the reassociation.
1733 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1734
1735 // First move the selected RHS to the LHS of the root...
1736 Root.setOperand(0, LHSI->getOperand(1));
1737
1738 // Make what used to be the LHS of the root be the user of the root...
1739 Value *ExtraOperand = TmpLHSI->getOperand(1);
1740 if (&Root == TmpLHSI) {
1741 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1742 return 0;
1743 }
1744 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1745 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001746 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001747 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001748 ARI = Root;
1749
1750 // Now propagate the ExtraOperand down the chain of instructions until we
1751 // get to LHSI.
1752 while (TmpLHSI != LHSI) {
1753 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1754 // Move the instruction to immediately before the chain we are
1755 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001756 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001757 ARI = NextLHSI;
1758
1759 Value *NextOp = NextLHSI->getOperand(1);
1760 NextLHSI->setOperand(1, ExtraOperand);
1761 TmpLHSI = NextLHSI;
1762 ExtraOperand = NextOp;
1763 }
1764
1765 // Now that the instructions are reassociated, have the functor perform
1766 // the transformation...
1767 return F.apply(Root);
1768 }
1769
1770 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1771 }
1772 return 0;
1773}
1774
Dan Gohman089efff2008-05-13 00:00:25 +00001775namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001776
Nick Lewycky27f6c132008-05-23 04:34:58 +00001777// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001778struct AddRHS {
1779 Value *RHS;
1780 AddRHS(Value *rhs) : RHS(rhs) {}
1781 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1782 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001783 return BinaryOperator::CreateShl(Add.getOperand(0),
1784 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001785 }
1786};
1787
1788// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1789// iff C1&C2 == 0
1790struct AddMaskingAnd {
1791 Constant *C2;
1792 AddMaskingAnd(Constant *c) : C2(c) {}
1793 bool shouldApply(Value *LHS) const {
1794 ConstantInt *C1;
1795 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1796 ConstantExpr::getAnd(C1, C2)->isNullValue();
1797 }
1798 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001799 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001800 }
1801};
1802
Dan Gohman089efff2008-05-13 00:00:25 +00001803}
1804
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001805static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1806 InstCombiner *IC) {
1807 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
1808 if (Constant *SOC = dyn_cast<Constant>(SO))
1809 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
1810
Gabor Greifa645dd32008-05-16 19:29:10 +00001811 return IC->InsertNewInstBefore(CastInst::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001812 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
1813 }
1814
1815 // Figure out if the constant is the left or the right argument.
1816 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1817 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1818
1819 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1820 if (ConstIsRHS)
1821 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1822 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1823 }
1824
1825 Value *Op0 = SO, *Op1 = ConstOperand;
1826 if (!ConstIsRHS)
1827 std::swap(Op0, Op1);
1828 Instruction *New;
1829 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001830 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001831 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001832 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001833 SO->getName()+".cmp");
1834 else {
1835 assert(0 && "Unknown binary instruction type!");
1836 abort();
1837 }
1838 return IC->InsertNewInstBefore(New, I);
1839}
1840
1841// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1842// constant as the other operand, try to fold the binary operator into the
1843// select arguments. This also works for Cast instructions, which obviously do
1844// not have a second operand.
1845static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1846 InstCombiner *IC) {
1847 // Don't modify shared select instructions
1848 if (!SI->hasOneUse()) return 0;
1849 Value *TV = SI->getOperand(1);
1850 Value *FV = SI->getOperand(2);
1851
1852 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1853 // Bool selects with constant operands can be folded to logical ops.
1854 if (SI->getType() == Type::Int1Ty) return 0;
1855
1856 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1857 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1858
Gabor Greifd6da1d02008-04-06 20:25:17 +00001859 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1860 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001861 }
1862 return 0;
1863}
1864
1865
1866/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1867/// node as operand #0, see if we can fold the instruction into the PHI (which
1868/// is only possible if all operands to the PHI are constants).
1869Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1870 PHINode *PN = cast<PHINode>(I.getOperand(0));
1871 unsigned NumPHIValues = PN->getNumIncomingValues();
1872 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1873
1874 // Check to see if all of the operands of the PHI are constants. If there is
1875 // one non-constant value, remember the BB it is. If there is more than one
1876 // or if *it* is a PHI, bail out.
1877 BasicBlock *NonConstBB = 0;
1878 for (unsigned i = 0; i != NumPHIValues; ++i)
1879 if (!isa<Constant>(PN->getIncomingValue(i))) {
1880 if (NonConstBB) return 0; // More than one non-const value.
1881 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1882 NonConstBB = PN->getIncomingBlock(i);
1883
1884 // If the incoming non-constant value is in I's block, we have an infinite
1885 // loop.
1886 if (NonConstBB == I.getParent())
1887 return 0;
1888 }
1889
1890 // If there is exactly one non-constant value, we can insert a copy of the
1891 // operation in that block. However, if this is a critical edge, we would be
1892 // inserting the computation one some other paths (e.g. inside a loop). Only
1893 // do this if the pred block is unconditionally branching into the phi block.
1894 if (NonConstBB) {
1895 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1896 if (!BI || !BI->isUnconditional()) return 0;
1897 }
1898
1899 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001900 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001901 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1902 InsertNewInstBefore(NewPN, *PN);
1903 NewPN->takeName(PN);
1904
1905 // Next, add all of the operands to the PHI.
1906 if (I.getNumOperands() == 2) {
1907 Constant *C = cast<Constant>(I.getOperand(1));
1908 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001909 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001910 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1911 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1912 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1913 else
1914 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1915 } else {
1916 assert(PN->getIncomingBlock(i) == NonConstBB);
1917 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001918 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001919 PN->getIncomingValue(i), C, "phitmp",
1920 NonConstBB->getTerminator());
1921 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001922 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001923 CI->getPredicate(),
1924 PN->getIncomingValue(i), C, "phitmp",
1925 NonConstBB->getTerminator());
1926 else
1927 assert(0 && "Unknown binop!");
1928
1929 AddToWorkList(cast<Instruction>(InV));
1930 }
1931 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1932 }
1933 } else {
1934 CastInst *CI = cast<CastInst>(&I);
1935 const Type *RetTy = CI->getType();
1936 for (unsigned i = 0; i != NumPHIValues; ++i) {
1937 Value *InV;
1938 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1939 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1940 } else {
1941 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001942 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001943 I.getType(), "phitmp",
1944 NonConstBB->getTerminator());
1945 AddToWorkList(cast<Instruction>(InV));
1946 }
1947 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1948 }
1949 }
1950 return ReplaceInstUsesWith(I, NewPN);
1951}
1952
Chris Lattner55476162008-01-29 06:52:45 +00001953
Chris Lattner3554f972008-05-20 05:46:13 +00001954/// WillNotOverflowSignedAdd - Return true if we can prove that:
1955/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1956/// This basically requires proving that the add in the original type would not
1957/// overflow to change the sign bit or have a carry out.
1958bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1959 // There are different heuristics we can use for this. Here are some simple
1960 // ones.
1961
1962 // Add has the property that adding any two 2's complement numbers can only
1963 // have one carry bit which can change a sign. As such, if LHS and RHS each
1964 // have at least two sign bits, we know that the addition of the two values will
1965 // sign extend fine.
1966 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1967 return true;
1968
1969
1970 // If one of the operands only has one non-zero bit, and if the other operand
1971 // has a known-zero bit in a more significant place than it (not including the
1972 // sign bit) the ripple may go up to and fill the zero, but won't change the
1973 // sign. For example, (X & ~4) + 1.
1974
1975 // TODO: Implement.
1976
1977 return false;
1978}
1979
Chris Lattner55476162008-01-29 06:52:45 +00001980
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001981Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1982 bool Changed = SimplifyCommutative(I);
1983 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1984
1985 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1986 // X + undef -> undef
1987 if (isa<UndefValue>(RHS))
1988 return ReplaceInstUsesWith(I, RHS);
1989
1990 // X + 0 --> X
1991 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1992 if (RHSC->isNullValue())
1993 return ReplaceInstUsesWith(I, LHS);
1994 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00001995 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
1996 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001997 return ReplaceInstUsesWith(I, LHS);
1998 }
1999
2000 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
2001 // X + (signbit) --> X ^ signbit
2002 const APInt& Val = CI->getValue();
2003 uint32_t BitWidth = Val.getBitWidth();
2004 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00002005 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002006
2007 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2008 // (X & 254)+1 -> (X&254)|1
2009 if (!isa<VectorType>(I.getType())) {
2010 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2011 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2012 KnownZero, KnownOne))
2013 return &I;
2014 }
2015 }
2016
2017 if (isa<PHINode>(LHS))
2018 if (Instruction *NV = FoldOpIntoPhi(I))
2019 return NV;
2020
2021 ConstantInt *XorRHS = 0;
2022 Value *XorLHS = 0;
2023 if (isa<ConstantInt>(RHSC) &&
2024 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2025 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2026 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2027
2028 uint32_t Size = TySizeBits / 2;
2029 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2030 APInt CFF80Val(-C0080Val);
2031 do {
2032 if (TySizeBits > Size) {
2033 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2034 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2035 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2036 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2037 // This is a sign extend if the top bits are known zero.
2038 if (!MaskedValueIsZero(XorLHS,
2039 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2040 Size = 0; // Not a sign ext, but can't be any others either.
2041 break;
2042 }
2043 }
2044 Size >>= 1;
2045 C0080Val = APIntOps::lshr(C0080Val, Size);
2046 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2047 } while (Size >= 1);
2048
2049 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002050 // with funny bit widths then this switch statement should be removed. It
2051 // is just here to get the size of the "middle" type back up to something
2052 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002053 const Type *MiddleType = 0;
2054 switch (Size) {
2055 default: break;
2056 case 32: MiddleType = Type::Int32Ty; break;
2057 case 16: MiddleType = Type::Int16Ty; break;
2058 case 8: MiddleType = Type::Int8Ty; break;
2059 }
2060 if (MiddleType) {
2061 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2062 InsertNewInstBefore(NewTrunc, I);
2063 return new SExtInst(NewTrunc, I.getType(), I.getName());
2064 }
2065 }
2066 }
2067
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002068 if (I.getType() == Type::Int1Ty)
2069 return BinaryOperator::CreateXor(LHS, RHS);
2070
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002071 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002072 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002073 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2074
2075 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2076 if (RHSI->getOpcode() == Instruction::Sub)
2077 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2078 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2079 }
2080 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2081 if (LHSI->getOpcode() == Instruction::Sub)
2082 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2083 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2084 }
2085 }
2086
2087 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002088 // -A + -B --> -(A + B)
2089 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002090 if (LHS->getType()->isIntOrIntVector()) {
2091 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002092 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002093 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002094 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002095 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002096 }
2097
Gabor Greifa645dd32008-05-16 19:29:10 +00002098 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002099 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002100
2101 // A + -B --> A - B
2102 if (!isa<Constant>(RHS))
2103 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002104 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002105
2106
2107 ConstantInt *C2;
2108 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2109 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002110 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002111
2112 // X*C1 + X*C2 --> X * (C1+C2)
2113 ConstantInt *C1;
2114 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002115 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002116 }
2117
2118 // X + X*C --> X * (C+1)
2119 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002120 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002121
2122 // X + ~X --> -1 since ~X = -X-1
2123 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2124 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2125
2126
2127 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2128 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2129 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2130 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002131
2132 // A+B --> A|B iff A and B have no bits set in common.
2133 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2134 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2135 APInt LHSKnownOne(IT->getBitWidth(), 0);
2136 APInt LHSKnownZero(IT->getBitWidth(), 0);
2137 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2138 if (LHSKnownZero != 0) {
2139 APInt RHSKnownOne(IT->getBitWidth(), 0);
2140 APInt RHSKnownZero(IT->getBitWidth(), 0);
2141 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2142
2143 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002144 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002145 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002146 }
2147 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002148
Nick Lewycky83598a72008-02-03 07:42:09 +00002149 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002150 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002151 Value *W, *X, *Y, *Z;
2152 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2153 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2154 if (W != Y) {
2155 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002156 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002157 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002158 std::swap(W, X);
2159 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002160 std::swap(Y, Z);
2161 std::swap(W, X);
2162 }
2163 }
2164
2165 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002166 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002167 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002168 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002169 }
2170 }
2171 }
2172
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002173 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2174 Value *X = 0;
2175 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002176 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002177
2178 // (X & FF00) + xx00 -> (X+xx00) & FF00
2179 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2180 Constant *Anded = And(CRHS, C2);
2181 if (Anded == CRHS) {
2182 // See if all bits from the first bit set in the Add RHS up are included
2183 // in the mask. First, get the rightmost bit.
2184 const APInt& AddRHSV = CRHS->getValue();
2185
2186 // Form a mask of all bits from the lowest bit added through the top.
2187 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2188
2189 // See if the and mask includes all of these bits.
2190 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2191
2192 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2193 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002194 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002195 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002196 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002197 }
2198 }
2199 }
2200
2201 // Try to fold constant add into select arguments.
2202 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2203 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2204 return R;
2205 }
2206
2207 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002208 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002209 {
2210 CastInst *CI = dyn_cast<CastInst>(LHS);
2211 Value *Other = RHS;
2212 if (!CI) {
2213 CI = dyn_cast<CastInst>(RHS);
2214 Other = LHS;
2215 }
2216 if (CI && CI->getType()->isSized() &&
2217 (CI->getType()->getPrimitiveSizeInBits() ==
2218 TD->getIntPtrType()->getPrimitiveSizeInBits())
2219 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002220 unsigned AS =
2221 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002222 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2223 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002224 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002225 return new PtrToIntInst(I2, CI->getType());
2226 }
2227 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002228
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002229 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002230 {
2231 SelectInst *SI = dyn_cast<SelectInst>(LHS);
2232 Value *Other = RHS;
2233 if (!SI) {
2234 SI = dyn_cast<SelectInst>(RHS);
2235 Other = LHS;
2236 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002237 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002238 Value *TV = SI->getTrueValue();
2239 Value *FV = SI->getFalseValue();
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002240 Value *A, *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002241
2242 // Can we fold the add into the argument of the select?
2243 // We check both true and false select arguments for a matching subtract.
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002244 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Value(A))) &&
2245 A == Other) // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002246 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002247 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Value(A))) &&
2248 A == Other) // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002249 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002250 }
2251 }
Chris Lattner55476162008-01-29 06:52:45 +00002252
2253 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2254 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2255 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2256 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002257
Chris Lattner3554f972008-05-20 05:46:13 +00002258 // Check for (add (sext x), y), see if we can merge this into an
2259 // integer add followed by a sext.
2260 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2261 // (add (sext x), cst) --> (sext (add x, cst'))
2262 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2263 Constant *CI =
2264 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2265 if (LHSConv->hasOneUse() &&
2266 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2267 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2268 // Insert the new, smaller add.
2269 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2270 CI, "addconv");
2271 InsertNewInstBefore(NewAdd, I);
2272 return new SExtInst(NewAdd, I.getType());
2273 }
2274 }
2275
2276 // (add (sext x), (sext y)) --> (sext (add int x, y))
2277 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2278 // Only do this if x/y have the same type, if at last one of them has a
2279 // single use (so we don't increase the number of sexts), and if the
2280 // integer add will not overflow.
2281 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2282 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2283 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2284 RHSConv->getOperand(0))) {
2285 // Insert the new integer add.
2286 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2287 RHSConv->getOperand(0),
2288 "addconv");
2289 InsertNewInstBefore(NewAdd, I);
2290 return new SExtInst(NewAdd, I.getType());
2291 }
2292 }
2293 }
2294
2295 // Check for (add double (sitofp x), y), see if we can merge this into an
2296 // integer add followed by a promotion.
2297 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2298 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2299 // ... if the constant fits in the integer value. This is useful for things
2300 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2301 // requires a constant pool load, and generally allows the add to be better
2302 // instcombined.
2303 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2304 Constant *CI =
2305 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2306 if (LHSConv->hasOneUse() &&
2307 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2308 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2309 // Insert the new integer add.
2310 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2311 CI, "addconv");
2312 InsertNewInstBefore(NewAdd, I);
2313 return new SIToFPInst(NewAdd, I.getType());
2314 }
2315 }
2316
2317 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2318 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2319 // Only do this if x/y have the same type, if at last one of them has a
2320 // single use (so we don't increase the number of int->fp conversions),
2321 // and if the integer add will not overflow.
2322 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2323 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2324 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2325 RHSConv->getOperand(0))) {
2326 // Insert the new integer add.
2327 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2328 RHSConv->getOperand(0),
2329 "addconv");
2330 InsertNewInstBefore(NewAdd, I);
2331 return new SIToFPInst(NewAdd, I.getType());
2332 }
2333 }
2334 }
2335
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002336 return Changed ? &I : 0;
2337}
2338
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002339Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2340 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2341
Chris Lattner27fbef42008-07-17 06:07:20 +00002342 if (Op0 == Op1 && // sub X, X -> 0
2343 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002344 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2345
2346 // If this is a 'B = x-(-A)', change to B = x+A...
2347 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002348 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002349
2350 if (isa<UndefValue>(Op0))
2351 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2352 if (isa<UndefValue>(Op1))
2353 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2354
2355 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2356 // Replace (-1 - A) with (~A)...
2357 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002358 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002359
2360 // C - ~X == X + (1+C)
2361 Value *X = 0;
2362 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002363 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002364
2365 // -(X >>u 31) -> (X >>s 31)
2366 // -(X >>s 31) -> (X >>u 31)
2367 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002368 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002369 if (SI->getOpcode() == Instruction::LShr) {
2370 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2371 // Check to see if we are shifting out everything but the sign bit.
2372 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2373 SI->getType()->getPrimitiveSizeInBits()-1) {
2374 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002375 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002376 SI->getOperand(0), CU, SI->getName());
2377 }
2378 }
2379 }
2380 else if (SI->getOpcode() == Instruction::AShr) {
2381 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2382 // Check to see if we are shifting out everything but the sign bit.
2383 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2384 SI->getType()->getPrimitiveSizeInBits()-1) {
2385 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002386 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002387 SI->getOperand(0), CU, SI->getName());
2388 }
2389 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002390 }
2391 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002392 }
2393
2394 // Try to fold constant sub into select arguments.
2395 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2396 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2397 return R;
2398
2399 if (isa<PHINode>(Op0))
2400 if (Instruction *NV = FoldOpIntoPhi(I))
2401 return NV;
2402 }
2403
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002404 if (I.getType() == Type::Int1Ty)
2405 return BinaryOperator::CreateXor(Op0, Op1);
2406
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002407 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2408 if (Op1I->getOpcode() == Instruction::Add &&
2409 !Op0->getType()->isFPOrFPVector()) {
2410 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002411 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002412 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002413 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002414 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2415 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2416 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002417 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002418 Op1I->getOperand(0));
2419 }
2420 }
2421
2422 if (Op1I->hasOneUse()) {
2423 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2424 // is not used by anyone else...
2425 //
2426 if (Op1I->getOpcode() == Instruction::Sub &&
2427 !Op1I->getType()->isFPOrFPVector()) {
2428 // Swap the two operands of the subexpr...
2429 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2430 Op1I->setOperand(0, IIOp1);
2431 Op1I->setOperand(1, IIOp0);
2432
2433 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002434 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002435 }
2436
2437 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2438 //
2439 if (Op1I->getOpcode() == Instruction::And &&
2440 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2441 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2442
2443 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002444 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2445 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002446 }
2447
2448 // 0 - (X sdiv C) -> (X sdiv -C)
2449 if (Op1I->getOpcode() == Instruction::SDiv)
2450 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2451 if (CSI->isZero())
2452 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002453 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002454 ConstantExpr::getNeg(DivRHS));
2455
2456 // X - X*C --> X * (1-C)
2457 ConstantInt *C2 = 0;
2458 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2459 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002460 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002461 }
Dan Gohmanda338742007-09-17 17:31:57 +00002462
2463 // X - ((X / Y) * Y) --> X % Y
2464 if (Op1I->getOpcode() == Instruction::Mul)
2465 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2466 if (Op0 == I->getOperand(0) &&
2467 Op1I->getOperand(1) == I->getOperand(1)) {
2468 if (I->getOpcode() == Instruction::SDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002469 return BinaryOperator::CreateSRem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002470 if (I->getOpcode() == Instruction::UDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002471 return BinaryOperator::CreateURem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002472 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002473 }
2474 }
2475
2476 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002477 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002478 if (Op0I->getOpcode() == Instruction::Add) {
2479 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2480 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2481 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2482 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2483 } else if (Op0I->getOpcode() == Instruction::Sub) {
2484 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002485 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002486 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002487 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002488
2489 ConstantInt *C1;
2490 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2491 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002492 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002493
2494 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2495 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002496 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002497 }
2498 return 0;
2499}
2500
2501/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2502/// comparison only checks the sign bit. If it only checks the sign bit, set
2503/// TrueIfSigned if the result of the comparison is true when the input value is
2504/// signed.
2505static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2506 bool &TrueIfSigned) {
2507 switch (pred) {
2508 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2509 TrueIfSigned = true;
2510 return RHS->isZero();
2511 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2512 TrueIfSigned = true;
2513 return RHS->isAllOnesValue();
2514 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2515 TrueIfSigned = false;
2516 return RHS->isAllOnesValue();
2517 case ICmpInst::ICMP_UGT:
2518 // True if LHS u> RHS and RHS == high-bit-mask - 1
2519 TrueIfSigned = true;
2520 return RHS->getValue() ==
2521 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2522 case ICmpInst::ICMP_UGE:
2523 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2524 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002525 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002526 default:
2527 return false;
2528 }
2529}
2530
2531Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2532 bool Changed = SimplifyCommutative(I);
2533 Value *Op0 = I.getOperand(0);
2534
2535 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2536 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2537
2538 // Simplify mul instructions with a constant RHS...
2539 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2540 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2541
2542 // ((X << C1)*C2) == (X * (C2 << C1))
2543 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2544 if (SI->getOpcode() == Instruction::Shl)
2545 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002546 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002547 ConstantExpr::getShl(CI, ShOp));
2548
2549 if (CI->isZero())
2550 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2551 if (CI->equalsInt(1)) // X * 1 == X
2552 return ReplaceInstUsesWith(I, Op0);
2553 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002554 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002555
2556 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2557 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002558 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002559 ConstantInt::get(Op0->getType(), Val.logBase2()));
2560 }
2561 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2562 if (Op1F->isNullValue())
2563 return ReplaceInstUsesWith(I, Op1);
2564
2565 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2566 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002567 if (Op1F->isExactlyValue(1.0))
2568 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2569 } else if (isa<VectorType>(Op1->getType())) {
2570 if (isa<ConstantAggregateZero>(Op1))
2571 return ReplaceInstUsesWith(I, Op1);
2572
2573 // As above, vector X*splat(1.0) -> X in all defined cases.
2574 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1))
2575 if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
2576 if (F->isExactlyValue(1.0))
2577 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002578 }
2579
2580 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2581 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002582 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002583 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002584 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002585 Op1, "tmp");
2586 InsertNewInstBefore(Add, I);
2587 Value *C1C2 = ConstantExpr::getMul(Op1,
2588 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002589 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002590
2591 }
2592
2593 // Try to fold constant mul into select arguments.
2594 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2595 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2596 return R;
2597
2598 if (isa<PHINode>(Op0))
2599 if (Instruction *NV = FoldOpIntoPhi(I))
2600 return NV;
2601 }
2602
2603 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2604 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002605 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002606
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002607 if (I.getType() == Type::Int1Ty)
2608 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2609
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002610 // If one of the operands of the multiply is a cast from a boolean value, then
2611 // we know the bool is either zero or one, so this is a 'masking' multiply.
2612 // See if we can simplify things based on how the boolean was originally
2613 // formed.
2614 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002615 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002616 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2617 BoolCast = CI;
2618 if (!BoolCast)
2619 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2620 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2621 BoolCast = CI;
2622 if (BoolCast) {
2623 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2624 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2625 const Type *SCOpTy = SCIOp0->getType();
2626 bool TIS = false;
2627
2628 // If the icmp is true iff the sign bit of X is set, then convert this
2629 // multiply into a shift/and combination.
2630 if (isa<ConstantInt>(SCIOp1) &&
2631 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2632 TIS) {
2633 // Shift the X value right to turn it into "all signbits".
2634 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2635 SCOpTy->getPrimitiveSizeInBits()-1);
2636 Value *V =
2637 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002638 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002639 BoolCast->getOperand(0)->getName()+
2640 ".mask"), I);
2641
2642 // If the multiply type is not the same as the source type, sign extend
2643 // or truncate to the multiply type.
2644 if (I.getType() != V->getType()) {
2645 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2646 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2647 Instruction::CastOps opcode =
2648 (SrcBits == DstBits ? Instruction::BitCast :
2649 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2650 V = InsertCastBefore(opcode, V, I.getType(), I);
2651 }
2652
2653 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002654 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002655 }
2656 }
2657 }
2658
2659 return Changed ? &I : 0;
2660}
2661
Chris Lattner76972db2008-07-14 00:15:52 +00002662/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2663/// instruction.
2664bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2665 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2666
2667 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2668 int NonNullOperand = -1;
2669 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2670 if (ST->isNullValue())
2671 NonNullOperand = 2;
2672 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2673 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2674 if (ST->isNullValue())
2675 NonNullOperand = 1;
2676
2677 if (NonNullOperand == -1)
2678 return false;
2679
2680 Value *SelectCond = SI->getOperand(0);
2681
2682 // Change the div/rem to use 'Y' instead of the select.
2683 I.setOperand(1, SI->getOperand(NonNullOperand));
2684
2685 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2686 // problem. However, the select, or the condition of the select may have
2687 // multiple uses. Based on our knowledge that the operand must be non-zero,
2688 // propagate the known value for the select into other uses of it, and
2689 // propagate a known value of the condition into its other users.
2690
2691 // If the select and condition only have a single use, don't bother with this,
2692 // early exit.
2693 if (SI->use_empty() && SelectCond->hasOneUse())
2694 return true;
2695
2696 // Scan the current block backward, looking for other uses of SI.
2697 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2698
2699 while (BBI != BBFront) {
2700 --BBI;
2701 // If we found a call to a function, we can't assume it will return, so
2702 // information from below it cannot be propagated above it.
2703 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2704 break;
2705
2706 // Replace uses of the select or its condition with the known values.
2707 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2708 I != E; ++I) {
2709 if (*I == SI) {
2710 *I = SI->getOperand(NonNullOperand);
2711 AddToWorkList(BBI);
2712 } else if (*I == SelectCond) {
2713 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2714 ConstantInt::getFalse();
2715 AddToWorkList(BBI);
2716 }
2717 }
2718
2719 // If we past the instruction, quit looking for it.
2720 if (&*BBI == SI)
2721 SI = 0;
2722 if (&*BBI == SelectCond)
2723 SelectCond = 0;
2724
2725 // If we ran out of things to eliminate, break out of the loop.
2726 if (SelectCond == 0 && SI == 0)
2727 break;
2728
2729 }
2730 return true;
2731}
2732
2733
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002734/// This function implements the transforms on div instructions that work
2735/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2736/// used by the visitors to those instructions.
2737/// @brief Transforms common to all three div instructions
2738Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2739 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2740
Chris Lattner653ef3c2008-02-19 06:12:18 +00002741 // undef / X -> 0 for integer.
2742 // undef / X -> undef for FP (the undef could be a snan).
2743 if (isa<UndefValue>(Op0)) {
2744 if (Op0->getType()->isFPOrFPVector())
2745 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002746 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002747 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002748
2749 // X / undef -> undef
2750 if (isa<UndefValue>(Op1))
2751 return ReplaceInstUsesWith(I, Op1);
2752
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002753 return 0;
2754}
2755
2756/// This function implements the transforms common to both integer division
2757/// instructions (udiv and sdiv). It is called by the visitors to those integer
2758/// division instructions.
2759/// @brief Common integer divide transforms
2760Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2761 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2762
Chris Lattnercefb36c2008-05-16 02:59:42 +00002763 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002764 if (Op0 == Op1) {
2765 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2766 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2767 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2768 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2769 }
2770
2771 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2772 return ReplaceInstUsesWith(I, CI);
2773 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002774
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002775 if (Instruction *Common = commonDivTransforms(I))
2776 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002777
2778 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2779 // This does not apply for fdiv.
2780 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2781 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002782
2783 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2784 // div X, 1 == X
2785 if (RHS->equalsInt(1))
2786 return ReplaceInstUsesWith(I, Op0);
2787
2788 // (X / C1) / C2 -> X / (C1*C2)
2789 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2790 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2791 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002792 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2793 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2794 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002795 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002796 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002797 }
2798
2799 if (!RHS->isZero()) { // avoid X udiv 0
2800 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2801 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2802 return R;
2803 if (isa<PHINode>(Op0))
2804 if (Instruction *NV = FoldOpIntoPhi(I))
2805 return NV;
2806 }
2807 }
2808
2809 // 0 / X == 0, we don't need to preserve faults!
2810 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2811 if (LHS->equalsInt(0))
2812 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2813
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002814 // It can't be division by zero, hence it must be division by one.
2815 if (I.getType() == Type::Int1Ty)
2816 return ReplaceInstUsesWith(I, Op0);
2817
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002818 return 0;
2819}
2820
2821Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2822 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2823
2824 // Handle the integer div common cases
2825 if (Instruction *Common = commonIDivTransforms(I))
2826 return Common;
2827
2828 // X udiv C^2 -> X >> C
2829 // Check to see if this is an unsigned division with an exact power of 2,
2830 // if so, convert to a right shift.
2831 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
2832 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002833 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002834 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
2835 }
2836
2837 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2838 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2839 if (RHSI->getOpcode() == Instruction::Shl &&
2840 isa<ConstantInt>(RHSI->getOperand(0))) {
2841 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2842 if (C1.isPowerOf2()) {
2843 Value *N = RHSI->getOperand(1);
2844 const Type *NTy = N->getType();
2845 if (uint32_t C2 = C1.logBase2()) {
2846 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002847 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002848 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002849 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002850 }
2851 }
2852 }
2853
2854 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2855 // where C1&C2 are powers of two.
2856 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2857 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2858 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2859 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2860 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2861 // Compute the shift amounts
2862 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2863 // Construct the "on true" case of the select
2864 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002865 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002866 Op0, TC, SI->getName()+".t");
2867 TSI = InsertNewInstBefore(TSI, I);
2868
2869 // Construct the "on false" case of the select
2870 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002871 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002872 Op0, FC, SI->getName()+".f");
2873 FSI = InsertNewInstBefore(FSI, I);
2874
2875 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002876 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002877 }
2878 }
2879 return 0;
2880}
2881
2882Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2883 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2884
2885 // Handle the integer div common cases
2886 if (Instruction *Common = commonIDivTransforms(I))
2887 return Common;
2888
2889 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2890 // sdiv X, -1 == -X
2891 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002892 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002893
2894 // -X/C -> X/-C
2895 if (Value *LHSNeg = dyn_castNegVal(Op0))
Gabor Greifa645dd32008-05-16 19:29:10 +00002896 return BinaryOperator::CreateSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002897 }
2898
2899 // If the sign bits of both operands are zero (i.e. we can prove they are
2900 // unsigned inputs), turn this into a udiv.
2901 if (I.getType()->isInteger()) {
2902 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2903 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002904 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002905 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002906 }
2907 }
2908
2909 return 0;
2910}
2911
2912Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2913 return commonDivTransforms(I);
2914}
2915
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002916/// This function implements the transforms on rem instructions that work
2917/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2918/// is used by the visitors to those instructions.
2919/// @brief Transforms common to all three rem instructions
2920Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2921 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2922
Chris Lattner653ef3c2008-02-19 06:12:18 +00002923 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002924 if (Constant *LHS = dyn_cast<Constant>(Op0))
2925 if (LHS->isNullValue())
2926 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2927
Chris Lattner653ef3c2008-02-19 06:12:18 +00002928 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2929 if (I.getType()->isFPOrFPVector())
2930 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002931 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002932 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002933 if (isa<UndefValue>(Op1))
2934 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2935
2936 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002937 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2938 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002939
2940 return 0;
2941}
2942
2943/// This function implements the transforms common to both integer remainder
2944/// instructions (urem and srem). It is called by the visitors to those integer
2945/// remainder instructions.
2946/// @brief Common integer remainder transforms
2947Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2948 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2949
2950 if (Instruction *common = commonRemTransforms(I))
2951 return common;
2952
2953 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2954 // X % 0 == undef, we don't need to preserve faults!
2955 if (RHS->equalsInt(0))
2956 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2957
2958 if (RHS->equalsInt(1)) // X % 1 == 0
2959 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2960
2961 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2962 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2963 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2964 return R;
2965 } else if (isa<PHINode>(Op0I)) {
2966 if (Instruction *NV = FoldOpIntoPhi(I))
2967 return NV;
2968 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00002969
2970 // See if we can fold away this rem instruction.
2971 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
2972 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2973 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2974 KnownZero, KnownOne))
2975 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002976 }
2977 }
2978
2979 return 0;
2980}
2981
2982Instruction *InstCombiner::visitURem(BinaryOperator &I) {
2983 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2984
2985 if (Instruction *common = commonIRemTransforms(I))
2986 return common;
2987
2988 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2989 // X urem C^2 -> X and C
2990 // Check to see if this is an unsigned remainder with an exact power of 2,
2991 // if so, convert to a bitwise and.
2992 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
2993 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00002994 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002995 }
2996
2997 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
2998 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
2999 if (RHSI->getOpcode() == Instruction::Shl &&
3000 isa<ConstantInt>(RHSI->getOperand(0))) {
3001 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3002 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003003 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003004 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003005 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003006 }
3007 }
3008 }
3009
3010 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3011 // where C1&C2 are powers of two.
3012 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3013 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3014 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3015 // STO == 0 and SFO == 0 handled above.
3016 if ((STO->getValue().isPowerOf2()) &&
3017 (SFO->getValue().isPowerOf2())) {
3018 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003019 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003020 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003021 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003022 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003023 }
3024 }
3025 }
3026
3027 return 0;
3028}
3029
3030Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3031 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3032
Dan Gohmandb3dd962007-11-05 23:16:33 +00003033 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003034 if (Instruction *common = commonIRemTransforms(I))
3035 return common;
3036
3037 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003038 if (!isa<Constant>(RHSNeg) ||
3039 (isa<ConstantInt>(RHSNeg) &&
3040 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003041 // X % -Y -> X % Y
3042 AddUsesToWorkList(I);
3043 I.setOperand(1, RHSNeg);
3044 return &I;
3045 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003046
Dan Gohmandb3dd962007-11-05 23:16:33 +00003047 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003048 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003049 if (I.getType()->isInteger()) {
3050 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3051 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3052 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003053 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003054 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003055 }
3056
3057 return 0;
3058}
3059
3060Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3061 return commonRemTransforms(I);
3062}
3063
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003064// isOneBitSet - Return true if there is exactly one bit set in the specified
3065// constant.
3066static bool isOneBitSet(const ConstantInt *CI) {
3067 return CI->getValue().isPowerOf2();
3068}
3069
3070// isHighOnes - Return true if the constant is of the form 1+0+.
3071// This is the same as lowones(~X).
3072static bool isHighOnes(const ConstantInt *CI) {
3073 return (~CI->getValue() + 1).isPowerOf2();
3074}
3075
3076/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3077/// are carefully arranged to allow folding of expressions such as:
3078///
3079/// (A < B) | (A > B) --> (A != B)
3080///
3081/// Note that this is only valid if the first and second predicates have the
3082/// same sign. Is illegal to do: (A u< B) | (A s> B)
3083///
3084/// Three bits are used to represent the condition, as follows:
3085/// 0 A > B
3086/// 1 A == B
3087/// 2 A < B
3088///
3089/// <=> Value Definition
3090/// 000 0 Always false
3091/// 001 1 A > B
3092/// 010 2 A == B
3093/// 011 3 A >= B
3094/// 100 4 A < B
3095/// 101 5 A != B
3096/// 110 6 A <= B
3097/// 111 7 Always true
3098///
3099static unsigned getICmpCode(const ICmpInst *ICI) {
3100 switch (ICI->getPredicate()) {
3101 // False -> 0
3102 case ICmpInst::ICMP_UGT: return 1; // 001
3103 case ICmpInst::ICMP_SGT: return 1; // 001
3104 case ICmpInst::ICMP_EQ: return 2; // 010
3105 case ICmpInst::ICMP_UGE: return 3; // 011
3106 case ICmpInst::ICMP_SGE: return 3; // 011
3107 case ICmpInst::ICMP_ULT: return 4; // 100
3108 case ICmpInst::ICMP_SLT: return 4; // 100
3109 case ICmpInst::ICMP_NE: return 5; // 101
3110 case ICmpInst::ICMP_ULE: return 6; // 110
3111 case ICmpInst::ICMP_SLE: return 6; // 110
3112 // True -> 7
3113 default:
3114 assert(0 && "Invalid ICmp predicate!");
3115 return 0;
3116 }
3117}
3118
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003119/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3120/// predicate into a three bit mask. It also returns whether it is an ordered
3121/// predicate by reference.
3122static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3123 isOrdered = false;
3124 switch (CC) {
3125 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3126 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Chengf1f2cea2008-10-14 18:13:38 +00003127 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3128 case FCmpInst::FCMP_UGT: return 1; // 001
3129 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3130 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003131 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3132 case FCmpInst::FCMP_UGE: return 3; // 011
3133 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3134 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Chengf1f2cea2008-10-14 18:13:38 +00003135 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3136 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003137 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3138 case FCmpInst::FCMP_ULE: return 6; // 110
3139 default:
3140 // Not expecting FCMP_FALSE and FCMP_TRUE;
3141 assert(0 && "Unexpected FCmp predicate!");
3142 return 0;
3143 }
3144}
3145
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003146/// getICmpValue - This is the complement of getICmpCode, which turns an
3147/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003148/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003149/// of predicate to use in the new icmp instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003150static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3151 switch (code) {
3152 default: assert(0 && "Illegal ICmp code!");
3153 case 0: return ConstantInt::getFalse();
3154 case 1:
3155 if (sign)
3156 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3157 else
3158 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3159 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3160 case 3:
3161 if (sign)
3162 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3163 else
3164 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3165 case 4:
3166 if (sign)
3167 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3168 else
3169 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3170 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3171 case 6:
3172 if (sign)
3173 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3174 else
3175 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3176 case 7: return ConstantInt::getTrue();
3177 }
3178}
3179
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003180/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3181/// opcode and two operands into either a FCmp instruction. isordered is passed
3182/// in to determine which kind of predicate to use in the new fcmp instruction.
3183static Value *getFCmpValue(bool isordered, unsigned code,
3184 Value *LHS, Value *RHS) {
3185 switch (code) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003186 default: assert(0 && "Illegal FCmp code!");
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003187 case 0:
3188 if (isordered)
3189 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3190 else
3191 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3192 case 1:
3193 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003194 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3195 else
3196 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Chengf1f2cea2008-10-14 18:13:38 +00003197 case 2:
3198 if (isordered)
3199 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3200 else
3201 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003202 case 3:
3203 if (isordered)
3204 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3205 else
3206 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3207 case 4:
3208 if (isordered)
3209 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3210 else
3211 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3212 case 5:
3213 if (isordered)
Evan Chengf1f2cea2008-10-14 18:13:38 +00003214 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3215 else
3216 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3217 case 6:
3218 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003219 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3220 else
3221 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
3222 }
3223}
3224
3225
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003226static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3227 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3228 (ICmpInst::isSignedPredicate(p1) &&
3229 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
3230 (ICmpInst::isSignedPredicate(p2) &&
3231 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
3232}
3233
3234namespace {
3235// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3236struct FoldICmpLogical {
3237 InstCombiner &IC;
3238 Value *LHS, *RHS;
3239 ICmpInst::Predicate pred;
3240 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3241 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3242 pred(ICI->getPredicate()) {}
3243 bool shouldApply(Value *V) const {
3244 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3245 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003246 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3247 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003248 return false;
3249 }
3250 Instruction *apply(Instruction &Log) const {
3251 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3252 if (ICI->getOperand(0) != LHS) {
3253 assert(ICI->getOperand(1) == LHS);
3254 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3255 }
3256
3257 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3258 unsigned LHSCode = getICmpCode(ICI);
3259 unsigned RHSCode = getICmpCode(RHSICI);
3260 unsigned Code;
3261 switch (Log.getOpcode()) {
3262 case Instruction::And: Code = LHSCode & RHSCode; break;
3263 case Instruction::Or: Code = LHSCode | RHSCode; break;
3264 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3265 default: assert(0 && "Illegal logical opcode!"); return 0;
3266 }
3267
3268 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3269 ICmpInst::isSignedPredicate(ICI->getPredicate());
3270
3271 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3272 if (Instruction *I = dyn_cast<Instruction>(RV))
3273 return I;
3274 // Otherwise, it's a constant boolean value...
3275 return IC.ReplaceInstUsesWith(Log, RV);
3276 }
3277};
3278} // end anonymous namespace
3279
3280// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3281// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3282// guaranteed to be a binary operator.
3283Instruction *InstCombiner::OptAndOp(Instruction *Op,
3284 ConstantInt *OpRHS,
3285 ConstantInt *AndRHS,
3286 BinaryOperator &TheAnd) {
3287 Value *X = Op->getOperand(0);
3288 Constant *Together = 0;
3289 if (!Op->isShift())
3290 Together = And(AndRHS, OpRHS);
3291
3292 switch (Op->getOpcode()) {
3293 case Instruction::Xor:
3294 if (Op->hasOneUse()) {
3295 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003296 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003297 InsertNewInstBefore(And, TheAnd);
3298 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003299 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003300 }
3301 break;
3302 case Instruction::Or:
3303 if (Together == AndRHS) // (X | C) & C --> C
3304 return ReplaceInstUsesWith(TheAnd, AndRHS);
3305
3306 if (Op->hasOneUse() && Together != OpRHS) {
3307 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003308 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003309 InsertNewInstBefore(Or, TheAnd);
3310 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003311 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003312 }
3313 break;
3314 case Instruction::Add:
3315 if (Op->hasOneUse()) {
3316 // Adding a one to a single bit bit-field should be turned into an XOR
3317 // of the bit. First thing to check is to see if this AND is with a
3318 // single bit constant.
3319 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3320
3321 // If there is only one bit set...
3322 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3323 // Ok, at this point, we know that we are masking the result of the
3324 // ADD down to exactly one bit. If the constant we are adding has
3325 // no bits set below this bit, then we can eliminate the ADD.
3326 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3327
3328 // Check to see if any bits below the one bit set in AndRHSV are set.
3329 if ((AddRHS & (AndRHSV-1)) == 0) {
3330 // If not, the only thing that can effect the output of the AND is
3331 // the bit specified by AndRHSV. If that bit is set, the effect of
3332 // the XOR is to toggle the bit. If it is clear, then the ADD has
3333 // no effect.
3334 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3335 TheAnd.setOperand(0, X);
3336 return &TheAnd;
3337 } else {
3338 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003339 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003340 InsertNewInstBefore(NewAnd, TheAnd);
3341 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003342 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003343 }
3344 }
3345 }
3346 }
3347 break;
3348
3349 case Instruction::Shl: {
3350 // We know that the AND will not produce any of the bits shifted in, so if
3351 // the anded constant includes them, clear them now!
3352 //
3353 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3354 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3355 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3356 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3357
3358 if (CI->getValue() == ShlMask) {
3359 // Masking out bits that the shift already masks
3360 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3361 } else if (CI != AndRHS) { // Reducing bits set in and.
3362 TheAnd.setOperand(1, CI);
3363 return &TheAnd;
3364 }
3365 break;
3366 }
3367 case Instruction::LShr:
3368 {
3369 // We know that the AND will not produce any of the bits shifted in, so if
3370 // the anded constant includes them, clear them now! This only applies to
3371 // unsigned shifts, because a signed shr may bring in set bits!
3372 //
3373 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3374 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3375 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3376 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3377
3378 if (CI->getValue() == ShrMask) {
3379 // Masking out bits that the shift already masks.
3380 return ReplaceInstUsesWith(TheAnd, Op);
3381 } else if (CI != AndRHS) {
3382 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3383 return &TheAnd;
3384 }
3385 break;
3386 }
3387 case Instruction::AShr:
3388 // Signed shr.
3389 // See if this is shifting in some sign extension, then masking it out
3390 // with an and.
3391 if (Op->hasOneUse()) {
3392 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3393 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3394 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3395 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3396 if (C == AndRHS) { // Masking out bits shifted in.
3397 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3398 // Make the argument unsigned.
3399 Value *ShVal = Op->getOperand(0);
3400 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003401 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003402 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003403 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003404 }
3405 }
3406 break;
3407 }
3408 return 0;
3409}
3410
3411
3412/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3413/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3414/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3415/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3416/// insert new instructions.
3417Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3418 bool isSigned, bool Inside,
3419 Instruction &IB) {
3420 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3421 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3422 "Lo is not <= Hi in range emission code!");
3423
3424 if (Inside) {
3425 if (Lo == Hi) // Trivially false.
3426 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3427
3428 // V >= Min && V < Hi --> V < Hi
3429 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3430 ICmpInst::Predicate pred = (isSigned ?
3431 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3432 return new ICmpInst(pred, V, Hi);
3433 }
3434
3435 // Emit V-Lo <u Hi-Lo
3436 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003437 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003438 InsertNewInstBefore(Add, IB);
3439 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3440 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3441 }
3442
3443 if (Lo == Hi) // Trivially true.
3444 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3445
3446 // V < Min || V >= Hi -> V > Hi-1
3447 Hi = SubOne(cast<ConstantInt>(Hi));
3448 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3449 ICmpInst::Predicate pred = (isSigned ?
3450 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3451 return new ICmpInst(pred, V, Hi);
3452 }
3453
3454 // Emit V-Lo >u Hi-1-Lo
3455 // Note that Hi has already had one subtracted from it, above.
3456 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003457 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003458 InsertNewInstBefore(Add, IB);
3459 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3460 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3461}
3462
3463// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3464// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3465// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3466// not, since all 1s are not contiguous.
3467static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3468 const APInt& V = Val->getValue();
3469 uint32_t BitWidth = Val->getType()->getBitWidth();
3470 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3471
3472 // look for the first zero bit after the run of ones
3473 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3474 // look for the first non-zero bit
3475 ME = V.getActiveBits();
3476 return true;
3477}
3478
3479/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3480/// where isSub determines whether the operator is a sub. If we can fold one of
3481/// the following xforms:
3482///
3483/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3484/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3485/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3486///
3487/// return (A +/- B).
3488///
3489Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3490 ConstantInt *Mask, bool isSub,
3491 Instruction &I) {
3492 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3493 if (!LHSI || LHSI->getNumOperands() != 2 ||
3494 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3495
3496 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3497
3498 switch (LHSI->getOpcode()) {
3499 default: return 0;
3500 case Instruction::And:
3501 if (And(N, Mask) == Mask) {
3502 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3503 if ((Mask->getValue().countLeadingZeros() +
3504 Mask->getValue().countPopulation()) ==
3505 Mask->getValue().getBitWidth())
3506 break;
3507
3508 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3509 // part, we don't need any explicit masks to take them out of A. If that
3510 // is all N is, ignore it.
3511 uint32_t MB = 0, ME = 0;
3512 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3513 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3514 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3515 if (MaskedValueIsZero(RHS, Mask))
3516 break;
3517 }
3518 }
3519 return 0;
3520 case Instruction::Or:
3521 case Instruction::Xor:
3522 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3523 if ((Mask->getValue().countLeadingZeros() +
3524 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3525 && And(N, Mask)->isZero())
3526 break;
3527 return 0;
3528 }
3529
3530 Instruction *New;
3531 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003532 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003533 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003534 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003535 return InsertNewInstBefore(New, I);
3536}
3537
3538Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3539 bool Changed = SimplifyCommutative(I);
3540 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3541
3542 if (isa<UndefValue>(Op1)) // X & undef -> 0
3543 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3544
3545 // and X, X = X
3546 if (Op0 == Op1)
3547 return ReplaceInstUsesWith(I, Op1);
3548
3549 // See if we can simplify any instructions used by the instruction whose sole
3550 // purpose is to compute bits we don't care about.
3551 if (!isa<VectorType>(I.getType())) {
3552 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3553 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3554 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3555 KnownZero, KnownOne))
3556 return &I;
3557 } else {
3558 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3559 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3560 return ReplaceInstUsesWith(I, I.getOperand(0));
3561 } else if (isa<ConstantAggregateZero>(Op1)) {
3562 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3563 }
3564 }
3565
3566 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3567 const APInt& AndRHSMask = AndRHS->getValue();
3568 APInt NotAndRHS(~AndRHSMask);
3569
3570 // Optimize a variety of ((val OP C1) & C2) combinations...
3571 if (isa<BinaryOperator>(Op0)) {
3572 Instruction *Op0I = cast<Instruction>(Op0);
3573 Value *Op0LHS = Op0I->getOperand(0);
3574 Value *Op0RHS = Op0I->getOperand(1);
3575 switch (Op0I->getOpcode()) {
3576 case Instruction::Xor:
3577 case Instruction::Or:
3578 // If the mask is only needed on one incoming arm, push it up.
3579 if (Op0I->hasOneUse()) {
3580 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3581 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003582 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003583 Op0RHS->getName()+".masked");
3584 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003585 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003586 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3587 }
3588 if (!isa<Constant>(Op0RHS) &&
3589 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3590 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003591 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003592 Op0LHS->getName()+".masked");
3593 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003594 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003595 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3596 }
3597 }
3598
3599 break;
3600 case Instruction::Add:
3601 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3602 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3603 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3604 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003605 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003606 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003607 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003608 break;
3609
3610 case Instruction::Sub:
3611 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3612 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3613 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3614 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003615 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003616
Nick Lewyckya349ba42008-07-10 05:51:40 +00003617 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3618 // has 1's for all bits that the subtraction with A might affect.
3619 if (Op0I->hasOneUse()) {
3620 uint32_t BitWidth = AndRHSMask.getBitWidth();
3621 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3622 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3623
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003624 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003625 if (!(A && A->isZero()) && // avoid infinite recursion.
3626 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003627 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3628 InsertNewInstBefore(NewNeg, I);
3629 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3630 }
3631 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003632 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003633
3634 case Instruction::Shl:
3635 case Instruction::LShr:
3636 // (1 << x) & 1 --> zext(x == 0)
3637 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003638 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003639 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3640 Constant::getNullValue(I.getType()));
3641 InsertNewInstBefore(NewICmp, I);
3642 return new ZExtInst(NewICmp, I.getType());
3643 }
3644 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003645 }
3646
3647 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3648 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3649 return Res;
3650 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3651 // If this is an integer truncation or change from signed-to-unsigned, and
3652 // if the source is an and/or with immediate, transform it. This
3653 // frequently occurs for bitfield accesses.
3654 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3655 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3656 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003657 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003658 if (CastOp->getOpcode() == Instruction::And) {
3659 // Change: and (cast (and X, C1) to T), C2
3660 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3661 // This will fold the two constants together, which may allow
3662 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003663 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003664 CastOp->getOperand(0), I.getType(),
3665 CastOp->getName()+".shrunk");
3666 NewCast = InsertNewInstBefore(NewCast, I);
3667 // trunc_or_bitcast(C1)&C2
3668 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3669 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003670 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003671 } else if (CastOp->getOpcode() == Instruction::Or) {
3672 // Change: and (cast (or X, C1) to T), C2
3673 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3674 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3675 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3676 return ReplaceInstUsesWith(I, AndRHS);
3677 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003678 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003679 }
3680 }
3681
3682 // Try to fold constant and into select arguments.
3683 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3684 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3685 return R;
3686 if (isa<PHINode>(Op0))
3687 if (Instruction *NV = FoldOpIntoPhi(I))
3688 return NV;
3689 }
3690
3691 Value *Op0NotVal = dyn_castNotVal(Op0);
3692 Value *Op1NotVal = dyn_castNotVal(Op1);
3693
3694 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3695 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3696
3697 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3698 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003699 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003700 I.getName()+".demorgan");
3701 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003702 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003703 }
3704
3705 {
3706 Value *A = 0, *B = 0, *C = 0, *D = 0;
3707 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3708 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3709 return ReplaceInstUsesWith(I, Op1);
3710
3711 // (A|B) & ~(A&B) -> A^B
3712 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3713 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003714 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003715 }
3716 }
3717
3718 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3719 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3720 return ReplaceInstUsesWith(I, Op0);
3721
3722 // ~(A&B) & (A|B) -> A^B
3723 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3724 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003725 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003726 }
3727 }
3728
3729 if (Op0->hasOneUse() &&
3730 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3731 if (A == Op1) { // (A^B)&A -> A&(A^B)
3732 I.swapOperands(); // Simplify below
3733 std::swap(Op0, Op1);
3734 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3735 cast<BinaryOperator>(Op0)->swapOperands();
3736 I.swapOperands(); // Simplify below
3737 std::swap(Op0, Op1);
3738 }
3739 }
3740 if (Op1->hasOneUse() &&
3741 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3742 if (B == Op0) { // B&(A^B) -> B&(B^A)
3743 cast<BinaryOperator>(Op1)->swapOperands();
3744 std::swap(A, B);
3745 }
3746 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003747 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003748 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003749 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003750 }
3751 }
3752 }
3753
Nick Lewycky771d6052008-08-06 04:54:03 +00003754 { // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3755 // where C is a power of 2
3756 Value *A, *B;
3757 ConstantInt *C1, *C2;
Evan Cheng94fd9742008-08-20 23:36:48 +00003758 ICmpInst::Predicate LHSCC = ICmpInst::BAD_ICMP_PREDICATE;
3759 ICmpInst::Predicate RHSCC = ICmpInst::BAD_ICMP_PREDICATE;
Nick Lewycky771d6052008-08-06 04:54:03 +00003760 if (match(&I, m_And(m_ICmp(LHSCC, m_Value(A), m_ConstantInt(C1)),
3761 m_ICmp(RHSCC, m_Value(B), m_ConstantInt(C2)))))
3762 if (C1 == C2 && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3763 C1->getValue().isPowerOf2()) {
3764 Instruction *NewOr = BinaryOperator::CreateOr(A, B);
3765 InsertNewInstBefore(NewOr, I);
3766 return new ICmpInst(LHSCC, NewOr, C1);
3767 }
3768 }
3769
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003770 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3771 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3772 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3773 return R;
3774
3775 Value *LHSVal, *RHSVal;
3776 ConstantInt *LHSCst, *RHSCst;
3777 ICmpInst::Predicate LHSCC, RHSCC;
3778 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3779 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3780 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3781 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3782 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3783 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3784 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
Chris Lattner205ad1d2007-11-22 23:47:13 +00003785 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3786
3787 // Don't try to fold ICMP_SLT + ICMP_ULT.
3788 (ICmpInst::isEquality(LHSCC) || ICmpInst::isEquality(RHSCC) ||
3789 ICmpInst::isSignedPredicate(LHSCC) ==
3790 ICmpInst::isSignedPredicate(RHSCC))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003791 // Ensure that the larger constant is on the RHS.
Chris Lattnerda628ca2008-01-13 20:59:02 +00003792 ICmpInst::Predicate GT;
3793 if (ICmpInst::isSignedPredicate(LHSCC) ||
3794 (ICmpInst::isEquality(LHSCC) &&
3795 ICmpInst::isSignedPredicate(RHSCC)))
3796 GT = ICmpInst::ICMP_SGT;
3797 else
3798 GT = ICmpInst::ICMP_UGT;
3799
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003800 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3801 ICmpInst *LHS = cast<ICmpInst>(Op0);
3802 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
3803 std::swap(LHS, RHS);
3804 std::swap(LHSCst, RHSCst);
3805 std::swap(LHSCC, RHSCC);
3806 }
3807
3808 // At this point, we know we have have two icmp instructions
3809 // comparing a value against two constants and and'ing the result
3810 // together. Because of the above check, we know that we only have
3811 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3812 // (from the FoldICmpLogical check above), that the two constants
3813 // are not equal and that the larger constant is on the RHS
3814 assert(LHSCst != RHSCst && "Compares not folded above?");
3815
3816 switch (LHSCC) {
3817 default: assert(0 && "Unknown integer condition code!");
3818 case ICmpInst::ICMP_EQ:
3819 switch (RHSCC) {
3820 default: assert(0 && "Unknown integer condition code!");
3821 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3822 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3823 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3824 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3825 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3826 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3827 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3828 return ReplaceInstUsesWith(I, LHS);
3829 }
3830 case ICmpInst::ICMP_NE:
3831 switch (RHSCC) {
3832 default: assert(0 && "Unknown integer condition code!");
3833 case ICmpInst::ICMP_ULT:
3834 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3835 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3836 break; // (X != 13 & X u< 15) -> no change
3837 case ICmpInst::ICMP_SLT:
3838 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3839 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3840 break; // (X != 13 & X s< 15) -> no change
3841 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3842 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3843 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3844 return ReplaceInstUsesWith(I, RHS);
3845 case ICmpInst::ICMP_NE:
3846 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3847 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00003848 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003849 LHSVal->getName()+".off");
3850 InsertNewInstBefore(Add, I);
3851 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3852 ConstantInt::get(Add->getType(), 1));
3853 }
3854 break; // (X != 13 & X != 15) -> no change
3855 }
3856 break;
3857 case ICmpInst::ICMP_ULT:
3858 switch (RHSCC) {
3859 default: assert(0 && "Unknown integer condition code!");
3860 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3861 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3862 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3863 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3864 break;
3865 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3866 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3867 return ReplaceInstUsesWith(I, LHS);
3868 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3869 break;
3870 }
3871 break;
3872 case ICmpInst::ICMP_SLT:
3873 switch (RHSCC) {
3874 default: assert(0 && "Unknown integer condition code!");
3875 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3876 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3877 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3878 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3879 break;
3880 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3881 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3882 return ReplaceInstUsesWith(I, LHS);
3883 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3884 break;
3885 }
3886 break;
3887 case ICmpInst::ICMP_UGT:
3888 switch (RHSCC) {
3889 default: assert(0 && "Unknown integer condition code!");
Eli Friedman22b85622008-06-21 23:36:13 +00003890 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3892 return ReplaceInstUsesWith(I, RHS);
3893 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3894 break;
3895 case ICmpInst::ICMP_NE:
3896 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3897 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3898 break; // (X u> 13 & X != 15) -> no change
3899 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
3900 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
3901 true, I);
3902 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3903 break;
3904 }
3905 break;
3906 case ICmpInst::ICMP_SGT:
3907 switch (RHSCC) {
3908 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerab0fc252007-11-16 06:04:17 +00003909 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003910 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3911 return ReplaceInstUsesWith(I, RHS);
3912 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3913 break;
3914 case ICmpInst::ICMP_NE:
3915 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3916 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3917 break; // (X s> 13 & X != 15) -> no change
3918 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
3919 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
3920 true, I);
3921 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3922 break;
3923 }
3924 break;
3925 }
3926 }
3927 }
3928
3929 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3930 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3931 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3932 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3933 const Type *SrcTy = Op0C->getOperand(0)->getType();
3934 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3935 // Only do this if the casts both really cause code to be generated.
3936 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
3937 I.getType(), TD) &&
3938 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
3939 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003940 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003941 Op1C->getOperand(0),
3942 I.getName());
3943 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003944 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003945 }
3946 }
3947
3948 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
3949 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3950 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3951 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3952 SI0->getOperand(1) == SI1->getOperand(1) &&
3953 (SI0->hasOneUse() || SI1->hasOneUse())) {
3954 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00003955 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003956 SI1->getOperand(0),
3957 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003958 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003959 SI1->getOperand(1));
3960 }
3961 }
3962
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003963 // If and'ing two fcmp, try combine them into one.
Chris Lattner91882432007-10-24 05:38:08 +00003964 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
3965 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
3966 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003967 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
3968 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner91882432007-10-24 05:38:08 +00003969 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
3970 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
3971 // If either of the constants are nans, then the whole thing returns
3972 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00003973 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00003974 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3975 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
3976 RHS->getOperand(0));
3977 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003978 } else {
3979 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
3980 FCmpInst::Predicate Op0CC, Op1CC;
3981 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
3982 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003983 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
3984 // Swap RHS operands to match LHS.
3985 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
3986 std::swap(Op1LHS, Op1RHS);
3987 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003988 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
3989 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
3990 if (Op0CC == Op1CC)
3991 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
3992 else if (Op0CC == FCmpInst::FCMP_FALSE ||
3993 Op1CC == FCmpInst::FCMP_FALSE)
3994 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3995 else if (Op0CC == FCmpInst::FCMP_TRUE)
3996 return ReplaceInstUsesWith(I, Op1);
3997 else if (Op1CC == FCmpInst::FCMP_TRUE)
3998 return ReplaceInstUsesWith(I, Op0);
3999 bool Op0Ordered;
4000 bool Op1Ordered;
4001 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4002 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4003 if (Op1Pred == 0) {
4004 std::swap(Op0, Op1);
4005 std::swap(Op0Pred, Op1Pred);
4006 std::swap(Op0Ordered, Op1Ordered);
4007 }
4008 if (Op0Pred == 0) {
4009 // uno && ueq -> uno && (uno || eq) -> ueq
4010 // ord && olt -> ord && (ord && lt) -> olt
4011 if (Op0Ordered == Op1Ordered)
4012 return ReplaceInstUsesWith(I, Op1);
4013 // uno && oeq -> uno && (ord && eq) -> false
4014 // uno && ord -> false
4015 if (!Op0Ordered)
4016 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4017 // ord && ueq -> ord && (uno || eq) -> oeq
4018 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4019 Op0LHS, Op0RHS));
4020 }
4021 }
4022 }
4023 }
Chris Lattner91882432007-10-24 05:38:08 +00004024 }
4025 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00004026
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004027 return Changed ? &I : 0;
4028}
4029
Chris Lattner567f5112008-10-05 02:13:19 +00004030/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4031/// capable of providing pieces of a bswap. The subexpression provides pieces
4032/// of a bswap if it is proven that each of the non-zero bytes in the output of
4033/// the expression came from the corresponding "byte swapped" byte in some other
4034/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4035/// we know that the expression deposits the low byte of %X into the high byte
4036/// of the bswap result and that all other bytes are zero. This expression is
4037/// accepted, the high byte of ByteValues is set to X to indicate a correct
4038/// match.
4039///
4040/// This function returns true if the match was unsuccessful and false if so.
4041/// On entry to the function the "OverallLeftShift" is a signed integer value
4042/// indicating the number of bytes that the subexpression is later shifted. For
4043/// example, if the expression is later right shifted by 16 bits, the
4044/// OverallLeftShift value would be -2 on entry. This is used to specify which
4045/// byte of ByteValues is actually being set.
4046///
4047/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4048/// byte is masked to zero by a user. For example, in (X & 255), X will be
4049/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4050/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4051/// always in the local (OverallLeftShift) coordinate space.
4052///
4053static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4054 SmallVector<Value*, 8> &ByteValues) {
4055 if (Instruction *I = dyn_cast<Instruction>(V)) {
4056 // If this is an or instruction, it may be an inner node of the bswap.
4057 if (I->getOpcode() == Instruction::Or) {
4058 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4059 ByteValues) ||
4060 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4061 ByteValues);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004062 }
Chris Lattner567f5112008-10-05 02:13:19 +00004063
4064 // If this is a logical shift by a constant multiple of 8, recurse with
4065 // OverallLeftShift and ByteMask adjusted.
4066 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4067 unsigned ShAmt =
4068 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4069 // Ensure the shift amount is defined and of a byte value.
4070 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4071 return true;
4072
4073 unsigned ByteShift = ShAmt >> 3;
4074 if (I->getOpcode() == Instruction::Shl) {
4075 // X << 2 -> collect(X, +2)
4076 OverallLeftShift += ByteShift;
4077 ByteMask >>= ByteShift;
4078 } else {
4079 // X >>u 2 -> collect(X, -2)
4080 OverallLeftShift -= ByteShift;
4081 ByteMask <<= ByteShift;
Chris Lattner44448592008-10-08 06:42:28 +00004082 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner567f5112008-10-05 02:13:19 +00004083 }
4084
4085 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4086 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4087
4088 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4089 ByteValues);
4090 }
4091
4092 // If this is a logical 'and' with a mask that clears bytes, clear the
4093 // corresponding bytes in ByteMask.
4094 if (I->getOpcode() == Instruction::And &&
4095 isa<ConstantInt>(I->getOperand(1))) {
4096 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4097 unsigned NumBytes = ByteValues.size();
4098 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4099 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4100
4101 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4102 // If this byte is masked out by a later operation, we don't care what
4103 // the and mask is.
4104 if ((ByteMask & (1 << i)) == 0)
4105 continue;
4106
4107 // If the AndMask is all zeros for this byte, clear the bit.
4108 APInt MaskB = AndMask & Byte;
4109 if (MaskB == 0) {
4110 ByteMask &= ~(1U << i);
4111 continue;
4112 }
4113
4114 // If the AndMask is not all ones for this byte, it's not a bytezap.
4115 if (MaskB != Byte)
4116 return true;
4117
4118 // Otherwise, this byte is kept.
4119 }
4120
4121 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4122 ByteValues);
4123 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004124 }
4125
Chris Lattner567f5112008-10-05 02:13:19 +00004126 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4127 // the input value to the bswap. Some observations: 1) if more than one byte
4128 // is demanded from this input, then it could not be successfully assembled
4129 // into a byteswap. At least one of the two bytes would not be aligned with
4130 // their ultimate destination.
4131 if (!isPowerOf2_32(ByteMask)) return true;
4132 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004133
Chris Lattner567f5112008-10-05 02:13:19 +00004134 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4135 // is demanded, it needs to go into byte 0 of the result. This means that the
4136 // byte needs to be shifted until it lands in the right byte bucket. The
4137 // shift amount depends on the position: if the byte is coming from the high
4138 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4139 // low part, it must be shifted left.
4140 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4141 if (InputByteNo < ByteValues.size()/2) {
4142 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4143 return true;
4144 } else {
4145 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4146 return true;
4147 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004148
4149 // If the destination byte value is already defined, the values are or'd
4150 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner567f5112008-10-05 02:13:19 +00004151 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004152 return true;
Chris Lattner567f5112008-10-05 02:13:19 +00004153 ByteValues[DestByteNo] = V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004154 return false;
4155}
4156
4157/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4158/// If so, insert the new bswap intrinsic and return it.
4159Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4160 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner567f5112008-10-05 02:13:19 +00004161 if (!ITy || ITy->getBitWidth() % 16 ||
4162 // ByteMask only allows up to 32-byte values.
4163 ITy->getBitWidth() > 32*8)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004164 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4165
4166 /// ByteValues - For each byte of the result, we keep track of which value
4167 /// defines each byte.
4168 SmallVector<Value*, 8> ByteValues;
4169 ByteValues.resize(ITy->getBitWidth()/8);
4170
4171 // Try to find all the pieces corresponding to the bswap.
Chris Lattner567f5112008-10-05 02:13:19 +00004172 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4173 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004174 return 0;
4175
4176 // Check to see if all of the bytes come from the same value.
4177 Value *V = ByteValues[0];
4178 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4179
4180 // Check to make sure that all of the bytes come from the same value.
4181 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4182 if (ByteValues[i] != V)
4183 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004184 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004185 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004186 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004187 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004188}
4189
4190
4191Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4192 bool Changed = SimplifyCommutative(I);
4193 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4194
4195 if (isa<UndefValue>(Op1)) // X | undef -> -1
4196 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4197
4198 // or X, X = X
4199 if (Op0 == Op1)
4200 return ReplaceInstUsesWith(I, Op0);
4201
4202 // See if we can simplify any instructions used by the instruction whose sole
4203 // purpose is to compute bits we don't care about.
4204 if (!isa<VectorType>(I.getType())) {
4205 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4206 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4207 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4208 KnownZero, KnownOne))
4209 return &I;
4210 } else if (isa<ConstantAggregateZero>(Op1)) {
4211 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4212 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4213 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4214 return ReplaceInstUsesWith(I, I.getOperand(1));
4215 }
4216
4217
4218
4219 // or X, -1 == -1
4220 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4221 ConstantInt *C1 = 0; Value *X = 0;
4222 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4223 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004224 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004225 InsertNewInstBefore(Or, I);
4226 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004227 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004228 ConstantInt::get(RHS->getValue() | C1->getValue()));
4229 }
4230
4231 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4232 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004233 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004234 InsertNewInstBefore(Or, I);
4235 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004236 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004237 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4238 }
4239
4240 // Try to fold constant and into select arguments.
4241 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4242 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4243 return R;
4244 if (isa<PHINode>(Op0))
4245 if (Instruction *NV = FoldOpIntoPhi(I))
4246 return NV;
4247 }
4248
4249 Value *A = 0, *B = 0;
4250 ConstantInt *C1 = 0, *C2 = 0;
4251
4252 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4253 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4254 return ReplaceInstUsesWith(I, Op1);
4255 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4256 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4257 return ReplaceInstUsesWith(I, Op0);
4258
4259 // (A | B) | C and A | (B | C) -> bswap if possible.
4260 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4261 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4262 match(Op1, m_Or(m_Value(), m_Value())) ||
4263 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4264 match(Op1, m_Shift(m_Value(), m_Value())))) {
4265 if (Instruction *BSwap = MatchBSwap(I))
4266 return BSwap;
4267 }
4268
4269 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4270 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4271 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004272 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004273 InsertNewInstBefore(NOr, I);
4274 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004275 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004276 }
4277
4278 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4279 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4280 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004281 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004282 InsertNewInstBefore(NOr, I);
4283 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004284 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004285 }
4286
4287 // (A & C)|(B & D)
4288 Value *C = 0, *D = 0;
4289 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4290 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4291 Value *V1 = 0, *V2 = 0, *V3 = 0;
4292 C1 = dyn_cast<ConstantInt>(C);
4293 C2 = dyn_cast<ConstantInt>(D);
4294 if (C1 && C2) { // (A & C1)|(B & C2)
4295 // If we have: ((V + N) & C1) | (V & C2)
4296 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4297 // replace with V+N.
4298 if (C1->getValue() == ~C2->getValue()) {
4299 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4300 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4301 // Add commutes, try both ways.
4302 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4303 return ReplaceInstUsesWith(I, A);
4304 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4305 return ReplaceInstUsesWith(I, A);
4306 }
4307 // Or commutes, try both ways.
4308 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4309 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4310 // Add commutes, try both ways.
4311 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4312 return ReplaceInstUsesWith(I, B);
4313 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4314 return ReplaceInstUsesWith(I, B);
4315 }
4316 }
4317 V1 = 0; V2 = 0; V3 = 0;
4318 }
4319
4320 // Check to see if we have any common things being and'ed. If so, find the
4321 // terms for V1 & (V2|V3).
4322 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4323 if (A == B) // (A & C)|(A & D) == A & (C|D)
4324 V1 = A, V2 = C, V3 = D;
4325 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4326 V1 = A, V2 = B, V3 = C;
4327 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4328 V1 = C, V2 = A, V3 = D;
4329 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4330 V1 = C, V2 = A, V3 = B;
4331
4332 if (V1) {
4333 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004334 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4335 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004336 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004337 }
4338 }
4339
4340 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4341 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4342 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4343 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4344 SI0->getOperand(1) == SI1->getOperand(1) &&
4345 (SI0->hasOneUse() || SI1->hasOneUse())) {
4346 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004347 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004348 SI1->getOperand(0),
4349 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004350 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004351 SI1->getOperand(1));
4352 }
4353 }
4354
4355 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4356 if (A == Op1) // ~A | A == -1
4357 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4358 } else {
4359 A = 0;
4360 }
4361 // Note, A is still live here!
4362 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4363 if (Op0 == B)
4364 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4365
4366 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4367 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004368 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004369 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004370 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004371 }
4372 }
4373
4374 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4375 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4376 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4377 return R;
4378
4379 Value *LHSVal, *RHSVal;
4380 ConstantInt *LHSCst, *RHSCst;
4381 ICmpInst::Predicate LHSCC, RHSCC;
4382 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4383 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4384 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4385 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4386 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4387 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4388 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4389 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
4390 // We can't fold (ugt x, C) | (sgt x, C2).
4391 PredicatesFoldable(LHSCC, RHSCC)) {
4392 // Ensure that the larger constant is on the RHS.
4393 ICmpInst *LHS = cast<ICmpInst>(Op0);
4394 bool NeedsSwap;
Nick Lewycky5515c7a2008-09-30 06:08:34 +00004395 if (ICmpInst::isEquality(LHSCC) ? ICmpInst::isSignedPredicate(RHSCC)
4396 : ICmpInst::isSignedPredicate(LHSCC))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004397 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4398 else
4399 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4400
4401 if (NeedsSwap) {
4402 std::swap(LHS, RHS);
4403 std::swap(LHSCst, RHSCst);
4404 std::swap(LHSCC, RHSCC);
4405 }
4406
4407 // At this point, we know we have have two icmp instructions
4408 // comparing a value against two constants and or'ing the result
4409 // together. Because of the above check, we know that we only have
4410 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4411 // FoldICmpLogical check above), that the two constants are not
4412 // equal.
4413 assert(LHSCst != RHSCst && "Compares not folded above?");
4414
4415 switch (LHSCC) {
4416 default: assert(0 && "Unknown integer condition code!");
4417 case ICmpInst::ICMP_EQ:
4418 switch (RHSCC) {
4419 default: assert(0 && "Unknown integer condition code!");
4420 case ICmpInst::ICMP_EQ:
4421 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4422 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00004423 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004424 LHSVal->getName()+".off");
4425 InsertNewInstBefore(Add, I);
4426 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4427 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4428 }
4429 break; // (X == 13 | X == 15) -> no change
4430 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4431 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4432 break;
4433 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4434 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4435 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4436 return ReplaceInstUsesWith(I, RHS);
4437 }
4438 break;
4439 case ICmpInst::ICMP_NE:
4440 switch (RHSCC) {
4441 default: assert(0 && "Unknown integer condition code!");
4442 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4443 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4444 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4445 return ReplaceInstUsesWith(I, LHS);
4446 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4447 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4448 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4449 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4450 }
4451 break;
4452 case ICmpInst::ICMP_ULT:
4453 switch (RHSCC) {
4454 default: assert(0 && "Unknown integer condition code!");
4455 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4456 break;
4457 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
Chris Lattner26376862007-11-01 02:18:41 +00004458 // If RHSCst is [us]MAXINT, it is always false. Not handling
4459 // this can cause overflow.
4460 if (RHSCst->isMaxValue(false))
4461 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004462 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4463 false, I);
4464 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4465 break;
4466 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4467 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4468 return ReplaceInstUsesWith(I, RHS);
4469 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4470 break;
4471 }
4472 break;
4473 case ICmpInst::ICMP_SLT:
4474 switch (RHSCC) {
4475 default: assert(0 && "Unknown integer condition code!");
4476 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4477 break;
4478 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
Chris Lattner26376862007-11-01 02:18:41 +00004479 // If RHSCst is [us]MAXINT, it is always false. Not handling
4480 // this can cause overflow.
4481 if (RHSCst->isMaxValue(true))
4482 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004483 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4484 false, I);
4485 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4486 break;
4487 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4488 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4489 return ReplaceInstUsesWith(I, RHS);
4490 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4491 break;
4492 }
4493 break;
4494 case ICmpInst::ICMP_UGT:
4495 switch (RHSCC) {
4496 default: assert(0 && "Unknown integer condition code!");
4497 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4498 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4499 return ReplaceInstUsesWith(I, LHS);
4500 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4501 break;
4502 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4503 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4504 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4505 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4506 break;
4507 }
4508 break;
4509 case ICmpInst::ICMP_SGT:
4510 switch (RHSCC) {
4511 default: assert(0 && "Unknown integer condition code!");
4512 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4513 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4514 return ReplaceInstUsesWith(I, LHS);
4515 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4516 break;
4517 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4518 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4519 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4520 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4521 break;
4522 }
4523 break;
4524 }
4525 }
4526 }
4527
4528 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004529 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004530 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4531 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004532 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4533 !isa<ICmpInst>(Op1C->getOperand(0))) {
4534 const Type *SrcTy = Op0C->getOperand(0)->getType();
4535 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4536 // Only do this if the casts both really cause code to be
4537 // generated.
4538 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4539 I.getType(), TD) &&
4540 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4541 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004542 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004543 Op1C->getOperand(0),
4544 I.getName());
4545 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004546 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004547 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004548 }
4549 }
Chris Lattner91882432007-10-24 05:38:08 +00004550 }
4551
4552
4553 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4554 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4555 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4556 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004557 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
4558 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType())
Chris Lattner91882432007-10-24 05:38:08 +00004559 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4560 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4561 // If either of the constants are nans, then the whole thing returns
4562 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004563 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004564 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4565
4566 // Otherwise, no need to compare the two constants, compare the
4567 // rest.
4568 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4569 RHS->getOperand(0));
4570 }
4571 }
4572 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004573
4574 return Changed ? &I : 0;
4575}
4576
Dan Gohman089efff2008-05-13 00:00:25 +00004577namespace {
4578
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004579// XorSelf - Implements: X ^ X --> 0
4580struct XorSelf {
4581 Value *RHS;
4582 XorSelf(Value *rhs) : RHS(rhs) {}
4583 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4584 Instruction *apply(BinaryOperator &Xor) const {
4585 return &Xor;
4586 }
4587};
4588
Dan Gohman089efff2008-05-13 00:00:25 +00004589}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004590
4591Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4592 bool Changed = SimplifyCommutative(I);
4593 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4594
Evan Chenge5cd8032008-03-25 20:07:13 +00004595 if (isa<UndefValue>(Op1)) {
4596 if (isa<UndefValue>(Op0))
4597 // Handle undef ^ undef -> 0 special case. This is a common
4598 // idiom (misuse).
4599 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004600 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004601 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004602
4603 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4604 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004605 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004606 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4607 }
4608
4609 // See if we can simplify any instructions used by the instruction whose sole
4610 // purpose is to compute bits we don't care about.
4611 if (!isa<VectorType>(I.getType())) {
4612 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4613 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4614 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4615 KnownZero, KnownOne))
4616 return &I;
4617 } else if (isa<ConstantAggregateZero>(Op1)) {
4618 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4619 }
4620
4621 // Is this a ~ operation?
4622 if (Value *NotOp = dyn_castNotVal(&I)) {
4623 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4624 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4625 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4626 if (Op0I->getOpcode() == Instruction::And ||
4627 Op0I->getOpcode() == Instruction::Or) {
4628 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4629 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4630 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004631 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004632 Op0I->getOperand(1)->getName()+".not");
4633 InsertNewInstBefore(NotY, I);
4634 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004635 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004636 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004637 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004638 }
4639 }
4640 }
4641 }
4642
4643
4644 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004645 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4646 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4647 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004648 return new ICmpInst(ICI->getInversePredicate(),
4649 ICI->getOperand(0), ICI->getOperand(1));
4650
Nick Lewycky1405e922007-08-06 20:04:16 +00004651 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4652 return new FCmpInst(FCI->getInversePredicate(),
4653 FCI->getOperand(0), FCI->getOperand(1));
4654 }
4655
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004656 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4657 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4658 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4659 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4660 Instruction::CastOps Opcode = Op0C->getOpcode();
4661 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4662 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4663 Op0C->getDestTy())) {
4664 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4665 CI->getOpcode(), CI->getInversePredicate(),
4666 CI->getOperand(0), CI->getOperand(1)), I);
4667 NewCI->takeName(CI);
4668 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4669 }
4670 }
4671 }
4672 }
4673 }
4674
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004675 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4676 // ~(c-X) == X-c-1 == X+(-c-1)
4677 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4678 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4679 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4680 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4681 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004682 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004683 }
4684
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004685 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004686 if (Op0I->getOpcode() == Instruction::Add) {
4687 // ~(X-c) --> (-c-1)-X
4688 if (RHS->isAllOnesValue()) {
4689 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004690 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004691 ConstantExpr::getSub(NegOp0CI,
4692 ConstantInt::get(I.getType(), 1)),
4693 Op0I->getOperand(0));
4694 } else if (RHS->getValue().isSignBit()) {
4695 // (X + C) ^ signbit -> (X + C + signbit)
4696 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004697 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004698
4699 }
4700 } else if (Op0I->getOpcode() == Instruction::Or) {
4701 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4702 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4703 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4704 // Anything in both C1 and C2 is known to be zero, remove it from
4705 // NewRHS.
4706 Constant *CommonBits = And(Op0CI, RHS);
4707 NewRHS = ConstantExpr::getAnd(NewRHS,
4708 ConstantExpr::getNot(CommonBits));
4709 AddToWorkList(Op0I);
4710 I.setOperand(0, Op0I->getOperand(0));
4711 I.setOperand(1, NewRHS);
4712 return &I;
4713 }
4714 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004715 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004716 }
4717
4718 // Try to fold constant and into select arguments.
4719 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4720 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4721 return R;
4722 if (isa<PHINode>(Op0))
4723 if (Instruction *NV = FoldOpIntoPhi(I))
4724 return NV;
4725 }
4726
4727 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4728 if (X == Op1)
4729 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4730
4731 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4732 if (X == Op0)
4733 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4734
4735
4736 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4737 if (Op1I) {
4738 Value *A, *B;
4739 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4740 if (A == Op0) { // B^(B|A) == (A|B)^B
4741 Op1I->swapOperands();
4742 I.swapOperands();
4743 std::swap(Op0, Op1);
4744 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4745 I.swapOperands(); // Simplified below.
4746 std::swap(Op0, Op1);
4747 }
4748 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4749 if (Op0 == A) // A^(A^B) == B
4750 return ReplaceInstUsesWith(I, B);
4751 else if (Op0 == B) // A^(B^A) == B
4752 return ReplaceInstUsesWith(I, A);
4753 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4754 if (A == Op0) { // A^(A&B) -> A^(B&A)
4755 Op1I->swapOperands();
4756 std::swap(A, B);
4757 }
4758 if (B == Op0) { // A^(B&A) -> (B&A)^A
4759 I.swapOperands(); // Simplified below.
4760 std::swap(Op0, Op1);
4761 }
4762 }
4763 }
4764
4765 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4766 if (Op0I) {
4767 Value *A, *B;
4768 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4769 if (A == Op1) // (B|A)^B == (A|B)^B
4770 std::swap(A, B);
4771 if (B == Op1) { // (A|B)^B == A & ~B
4772 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00004773 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4774 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004775 }
4776 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4777 if (Op1 == A) // (A^B)^A == B
4778 return ReplaceInstUsesWith(I, B);
4779 else if (Op1 == B) // (B^A)^A == B
4780 return ReplaceInstUsesWith(I, A);
4781 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4782 if (A == Op1) // (A&B)^A -> (B&A)^A
4783 std::swap(A, B);
4784 if (B == Op1 && // (B&A)^A == ~B & A
4785 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4786 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00004787 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
4788 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004789 }
4790 }
4791 }
4792
4793 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4794 if (Op0I && Op1I && Op0I->isShift() &&
4795 Op0I->getOpcode() == Op1I->getOpcode() &&
4796 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4797 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4798 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004799 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004800 Op1I->getOperand(0),
4801 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004802 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004803 Op1I->getOperand(1));
4804 }
4805
4806 if (Op0I && Op1I) {
4807 Value *A, *B, *C, *D;
4808 // (A & B)^(A | B) -> A ^ B
4809 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4810 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4811 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004812 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004813 }
4814 // (A | B)^(A & B) -> A ^ B
4815 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4816 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4817 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004818 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004819 }
4820
4821 // (A & B)^(C & D)
4822 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4823 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4824 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4825 // (X & Y)^(X & Y) -> (Y^Z) & X
4826 Value *X = 0, *Y = 0, *Z = 0;
4827 if (A == C)
4828 X = A, Y = B, Z = D;
4829 else if (A == D)
4830 X = A, Y = B, Z = C;
4831 else if (B == C)
4832 X = B, Y = A, Z = D;
4833 else if (B == D)
4834 X = B, Y = A, Z = C;
4835
4836 if (X) {
4837 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004838 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
4839 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004840 }
4841 }
4842 }
4843
4844 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4845 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4846 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4847 return R;
4848
4849 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004850 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004851 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4852 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4853 const Type *SrcTy = Op0C->getOperand(0)->getType();
4854 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4855 // Only do this if the casts both really cause code to be generated.
4856 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4857 I.getType(), TD) &&
4858 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4859 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004860 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004861 Op1C->getOperand(0),
4862 I.getName());
4863 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004864 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004865 }
4866 }
Chris Lattner91882432007-10-24 05:38:08 +00004867 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004868
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004869 return Changed ? &I : 0;
4870}
4871
4872/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4873/// overflowed for this type.
4874static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4875 ConstantInt *In2, bool IsSigned = false) {
4876 Result = cast<ConstantInt>(Add(In1, In2));
4877
4878 if (IsSigned)
4879 if (In2->getValue().isNegative())
4880 return Result->getValue().sgt(In1->getValue());
4881 else
4882 return Result->getValue().slt(In1->getValue());
4883 else
4884 return Result->getValue().ult(In1->getValue());
4885}
4886
Dan Gohmanb80d5612008-09-10 23:30:57 +00004887/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
4888/// overflowed for this type.
4889static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4890 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00004891 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00004892
4893 if (IsSigned)
4894 if (In2->getValue().isNegative())
4895 return Result->getValue().slt(In1->getValue());
4896 else
4897 return Result->getValue().sgt(In1->getValue());
4898 else
4899 return Result->getValue().ugt(In1->getValue());
4900}
4901
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004902/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4903/// code necessary to compute the offset from the base pointer (without adding
4904/// in the base pointer). Return the result as a signed integer of intptr size.
4905static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4906 TargetData &TD = IC.getTargetData();
4907 gep_type_iterator GTI = gep_type_begin(GEP);
4908 const Type *IntPtrTy = TD.getIntPtrType();
4909 Value *Result = Constant::getNullValue(IntPtrTy);
4910
4911 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00004912 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004913 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
4914
Gabor Greif17396002008-06-12 21:37:33 +00004915 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
4916 ++i, ++GTI) {
4917 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00004918 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004919 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
4920 if (OpC->isZero()) continue;
4921
4922 // Handle a struct index, which adds its field offset to the pointer.
4923 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4924 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
4925
4926 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
4927 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
4928 else
4929 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00004930 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004931 ConstantInt::get(IntPtrTy, Size),
4932 GEP->getName()+".offs"), I);
4933 continue;
4934 }
4935
4936 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4937 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
4938 Scale = ConstantExpr::getMul(OC, Scale);
4939 if (Constant *RC = dyn_cast<Constant>(Result))
4940 Result = ConstantExpr::getAdd(RC, Scale);
4941 else {
4942 // Emit an add instruction.
4943 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00004944 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004945 GEP->getName()+".offs"), I);
4946 }
4947 continue;
4948 }
4949 // Convert to correct type.
4950 if (Op->getType() != IntPtrTy) {
4951 if (Constant *OpC = dyn_cast<Constant>(Op))
4952 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
4953 else
4954 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
4955 Op->getName()+".c"), I);
4956 }
4957 if (Size != 1) {
4958 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4959 if (Constant *OpC = dyn_cast<Constant>(Op))
4960 Op = ConstantExpr::getMul(OpC, Scale);
4961 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00004962 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004963 GEP->getName()+".idx"), I);
4964 }
4965
4966 // Emit an add instruction.
4967 if (isa<Constant>(Op) && isa<Constant>(Result))
4968 Result = ConstantExpr::getAdd(cast<Constant>(Op),
4969 cast<Constant>(Result));
4970 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004971 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004972 GEP->getName()+".offs"), I);
4973 }
4974 return Result;
4975}
4976
Chris Lattnereba75862008-04-22 02:53:33 +00004977
4978/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
4979/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
4980/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
4981/// complex, and scales are involved. The above expression would also be legal
4982/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
4983/// later form is less amenable to optimization though, and we are allowed to
4984/// generate the first by knowing that pointer arithmetic doesn't overflow.
4985///
4986/// If we can't emit an optimized form for this expression, this returns null.
4987///
4988static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
4989 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00004990 TargetData &TD = IC.getTargetData();
4991 gep_type_iterator GTI = gep_type_begin(GEP);
4992
4993 // Check to see if this gep only has a single variable index. If so, and if
4994 // any constant indices are a multiple of its scale, then we can compute this
4995 // in terms of the scale of the variable index. For example, if the GEP
4996 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
4997 // because the expression will cross zero at the same point.
4998 unsigned i, e = GEP->getNumOperands();
4999 int64_t Offset = 0;
5000 for (i = 1; i != e; ++i, ++GTI) {
5001 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5002 // Compute the aggregate offset of constant indices.
5003 if (CI->isZero()) continue;
5004
5005 // Handle a struct index, which adds its field offset to the pointer.
5006 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5007 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5008 } else {
5009 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5010 Offset += Size*CI->getSExtValue();
5011 }
5012 } else {
5013 // Found our variable index.
5014 break;
5015 }
5016 }
5017
5018 // If there are no variable indices, we must have a constant offset, just
5019 // evaluate it the general way.
5020 if (i == e) return 0;
5021
5022 Value *VariableIdx = GEP->getOperand(i);
5023 // Determine the scale factor of the variable element. For example, this is
5024 // 4 if the variable index is into an array of i32.
5025 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5026
5027 // Verify that there are no other variable indices. If so, emit the hard way.
5028 for (++i, ++GTI; i != e; ++i, ++GTI) {
5029 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5030 if (!CI) return 0;
5031
5032 // Compute the aggregate offset of constant indices.
5033 if (CI->isZero()) continue;
5034
5035 // Handle a struct index, which adds its field offset to the pointer.
5036 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5037 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5038 } else {
5039 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5040 Offset += Size*CI->getSExtValue();
5041 }
5042 }
5043
5044 // Okay, we know we have a single variable index, which must be a
5045 // pointer/array/vector index. If there is no offset, life is simple, return
5046 // the index.
5047 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5048 if (Offset == 0) {
5049 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5050 // we don't need to bother extending: the extension won't affect where the
5051 // computation crosses zero.
5052 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5053 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5054 VariableIdx->getNameStart(), &I);
5055 return VariableIdx;
5056 }
5057
5058 // Otherwise, there is an index. The computation we will do will be modulo
5059 // the pointer size, so get it.
5060 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5061
5062 Offset &= PtrSizeMask;
5063 VariableScale &= PtrSizeMask;
5064
5065 // To do this transformation, any constant index must be a multiple of the
5066 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5067 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5068 // multiple of the variable scale.
5069 int64_t NewOffs = Offset / (int64_t)VariableScale;
5070 if (Offset != NewOffs*(int64_t)VariableScale)
5071 return 0;
5072
5073 // Okay, we can do this evaluation. Start by converting the index to intptr.
5074 const Type *IntPtrTy = TD.getIntPtrType();
5075 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005076 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005077 true /*SExt*/,
5078 VariableIdx->getNameStart(), &I);
5079 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005080 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005081}
5082
5083
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005084/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5085/// else. At this point we know that the GEP is on the LHS of the comparison.
5086Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5087 ICmpInst::Predicate Cond,
5088 Instruction &I) {
5089 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5090
Chris Lattnereba75862008-04-22 02:53:33 +00005091 // Look through bitcasts.
5092 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5093 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005094
5095 Value *PtrBase = GEPLHS->getOperand(0);
5096 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005097 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005098 // This transformation (ignoring the base and scales) is valid because we
5099 // know pointers can't overflow. See if we can output an optimized form.
5100 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5101
5102 // If not, synthesize the offset the hard way.
5103 if (Offset == 0)
5104 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005105 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5106 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005107 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5108 // If the base pointers are different, but the indices are the same, just
5109 // compare the base pointer.
5110 if (PtrBase != GEPRHS->getOperand(0)) {
5111 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5112 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5113 GEPRHS->getOperand(0)->getType();
5114 if (IndicesTheSame)
5115 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5116 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5117 IndicesTheSame = false;
5118 break;
5119 }
5120
5121 // If all indices are the same, just compare the base pointers.
5122 if (IndicesTheSame)
5123 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5124 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5125
5126 // Otherwise, the base pointers are different and the indices are
5127 // different, bail out.
5128 return 0;
5129 }
5130
5131 // If one of the GEPs has all zero indices, recurse.
5132 bool AllZeros = true;
5133 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5134 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5135 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5136 AllZeros = false;
5137 break;
5138 }
5139 if (AllZeros)
5140 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5141 ICmpInst::getSwappedPredicate(Cond), I);
5142
5143 // If the other GEP has all zero indices, recurse.
5144 AllZeros = true;
5145 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5146 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5147 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5148 AllZeros = false;
5149 break;
5150 }
5151 if (AllZeros)
5152 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5153
5154 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5155 // If the GEPs only differ by one index, compare it.
5156 unsigned NumDifferences = 0; // Keep track of # differences.
5157 unsigned DiffOperand = 0; // The operand that differs.
5158 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5159 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5160 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5161 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5162 // Irreconcilable differences.
5163 NumDifferences = 2;
5164 break;
5165 } else {
5166 if (NumDifferences++) break;
5167 DiffOperand = i;
5168 }
5169 }
5170
5171 if (NumDifferences == 0) // SAME GEP?
5172 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005173 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005174 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005175
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005176 else if (NumDifferences == 1) {
5177 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5178 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5179 // Make sure we do a signed comparison here.
5180 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5181 }
5182 }
5183
5184 // Only lower this if the icmp is the only user of the GEP or if we expect
5185 // the result to fold to a constant!
5186 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5187 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5188 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5189 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5190 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5191 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5192 }
5193 }
5194 return 0;
5195}
5196
Chris Lattnere6b62d92008-05-19 20:18:56 +00005197/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5198///
5199Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5200 Instruction *LHSI,
5201 Constant *RHSC) {
5202 if (!isa<ConstantFP>(RHSC)) return 0;
5203 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5204
5205 // Get the width of the mantissa. We don't want to hack on conversions that
5206 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005207 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005208 if (MantissaWidth == -1) return 0; // Unknown.
5209
5210 // Check to see that the input is converted from an integer type that is small
5211 // enough that preserves all bits. TODO: check here for "known" sign bits.
5212 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5213 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5214
5215 // If this is a uitofp instruction, we need an extra bit to hold the sign.
5216 if (isa<UIToFPInst>(LHSI))
5217 ++InputSize;
5218
5219 // If the conversion would lose info, don't hack on this.
5220 if ((int)InputSize > MantissaWidth)
5221 return 0;
5222
5223 // Otherwise, we can potentially simplify the comparison. We know that it
5224 // will always come through as an integer value and we know the constant is
5225 // not a NAN (it would have been previously simplified).
5226 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5227
5228 ICmpInst::Predicate Pred;
5229 switch (I.getPredicate()) {
5230 default: assert(0 && "Unexpected predicate!");
5231 case FCmpInst::FCMP_UEQ:
5232 case FCmpInst::FCMP_OEQ: Pred = ICmpInst::ICMP_EQ; break;
5233 case FCmpInst::FCMP_UGT:
5234 case FCmpInst::FCMP_OGT: Pred = ICmpInst::ICMP_SGT; break;
5235 case FCmpInst::FCMP_UGE:
5236 case FCmpInst::FCMP_OGE: Pred = ICmpInst::ICMP_SGE; break;
5237 case FCmpInst::FCMP_ULT:
5238 case FCmpInst::FCMP_OLT: Pred = ICmpInst::ICMP_SLT; break;
5239 case FCmpInst::FCMP_ULE:
5240 case FCmpInst::FCMP_OLE: Pred = ICmpInst::ICMP_SLE; break;
5241 case FCmpInst::FCMP_UNE:
5242 case FCmpInst::FCMP_ONE: Pred = ICmpInst::ICMP_NE; break;
5243 case FCmpInst::FCMP_ORD:
5244 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5245 case FCmpInst::FCMP_UNO:
5246 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5247 }
5248
5249 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5250
5251 // Now we know that the APFloat is a normal number, zero or inf.
5252
Chris Lattnerf13ff492008-05-20 03:50:52 +00005253 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005254 // comparing an i8 to 300.0.
5255 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5256
5257 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5258 // and large values.
5259 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5260 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5261 APFloat::rmNearestTiesToEven);
5262 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
Chris Lattner82a80002008-05-24 04:06:28 +00005263 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5264 Pred == ICmpInst::ICMP_SLE)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005265 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5266 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5267 }
5268
5269 // See if the RHS value is < SignedMin.
5270 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5271 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5272 APFloat::rmNearestTiesToEven);
5273 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
Chris Lattner82a80002008-05-24 04:06:28 +00005274 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5275 Pred == ICmpInst::ICMP_SGE)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005276 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5277 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5278 }
5279
5280 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] but
5281 // it may still be fractional. See if it is fractional by casting the FP
5282 // value to the integer value and back, checking for equality. Don't do this
5283 // for zero, because -0.0 is not fractional.
5284 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5285 if (!RHS.isZero() &&
5286 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
5287 // If we had a comparison against a fractional value, we have to adjust
5288 // the compare predicate and sometimes the value. RHSC is rounded towards
5289 // zero at this point.
5290 switch (Pred) {
5291 default: assert(0 && "Unexpected integer comparison!");
5292 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5293 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5294 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5295 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5296 case ICmpInst::ICMP_SLE:
5297 // (float)int <= 4.4 --> int <= 4
5298 // (float)int <= -4.4 --> int < -4
5299 if (RHS.isNegative())
5300 Pred = ICmpInst::ICMP_SLT;
5301 break;
5302 case ICmpInst::ICMP_SLT:
5303 // (float)int < -4.4 --> int < -4
5304 // (float)int < 4.4 --> int <= 4
5305 if (!RHS.isNegative())
5306 Pred = ICmpInst::ICMP_SLE;
5307 break;
5308 case ICmpInst::ICMP_SGT:
5309 // (float)int > 4.4 --> int > 4
5310 // (float)int > -4.4 --> int >= -4
5311 if (RHS.isNegative())
5312 Pred = ICmpInst::ICMP_SGE;
5313 break;
5314 case ICmpInst::ICMP_SGE:
5315 // (float)int >= -4.4 --> int >= -4
5316 // (float)int >= 4.4 --> int > 4
5317 if (!RHS.isNegative())
5318 Pred = ICmpInst::ICMP_SGT;
5319 break;
5320 }
5321 }
5322
5323 // Lower this FP comparison into an appropriate integer version of the
5324 // comparison.
5325 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5326}
5327
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005328Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5329 bool Changed = SimplifyCompare(I);
5330 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5331
5332 // Fold trivial predicates.
5333 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5334 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5335 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5336 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5337
5338 // Simplify 'fcmp pred X, X'
5339 if (Op0 == Op1) {
5340 switch (I.getPredicate()) {
5341 default: assert(0 && "Unknown predicate!");
5342 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5343 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5344 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5345 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5346 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5347 case FCmpInst::FCMP_OLT: // True if ordered and less than
5348 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5349 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5350
5351 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5352 case FCmpInst::FCMP_ULT: // True if unordered or less than
5353 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5354 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5355 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5356 I.setPredicate(FCmpInst::FCMP_UNO);
5357 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5358 return &I;
5359
5360 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5361 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5362 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5363 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5364 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5365 I.setPredicate(FCmpInst::FCMP_ORD);
5366 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5367 return &I;
5368 }
5369 }
5370
5371 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5372 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5373
5374 // Handle fcmp with constant RHS
5375 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005376 // If the constant is a nan, see if we can fold the comparison based on it.
5377 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5378 if (CFP->getValueAPF().isNaN()) {
5379 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
5380 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Chris Lattnerf13ff492008-05-20 03:50:52 +00005381 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5382 "Comparison must be either ordered or unordered!");
5383 // True if unordered.
5384 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
Chris Lattnere6b62d92008-05-19 20:18:56 +00005385 }
5386 }
5387
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005388 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5389 switch (LHSI->getOpcode()) {
5390 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005391 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5392 // block. If in the same block, we're encouraging jump threading. If
5393 // not, we are just pessimizing the code by making an i1 phi.
5394 if (LHSI->getParent() == I.getParent())
5395 if (Instruction *NV = FoldOpIntoPhi(I))
5396 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005397 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005398 case Instruction::SIToFP:
5399 case Instruction::UIToFP:
5400 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5401 return NV;
5402 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005403 case Instruction::Select:
5404 // If either operand of the select is a constant, we can fold the
5405 // comparison into the select arms, which will cause one to be
5406 // constant folded and the select turned into a bitwise or.
5407 Value *Op1 = 0, *Op2 = 0;
5408 if (LHSI->hasOneUse()) {
5409 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5410 // Fold the known value into the constant operand.
5411 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5412 // Insert a new FCmp of the other select operand.
5413 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5414 LHSI->getOperand(2), RHSC,
5415 I.getName()), I);
5416 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5417 // Fold the known value into the constant operand.
5418 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5419 // Insert a new FCmp of the other select operand.
5420 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5421 LHSI->getOperand(1), RHSC,
5422 I.getName()), I);
5423 }
5424 }
5425
5426 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005427 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005428 break;
5429 }
5430 }
5431
5432 return Changed ? &I : 0;
5433}
5434
5435Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5436 bool Changed = SimplifyCompare(I);
5437 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5438 const Type *Ty = Op0->getType();
5439
5440 // icmp X, X
5441 if (Op0 == Op1)
5442 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005443 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005444
5445 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5446 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005447
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005448 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5449 // addresses never equal each other! We already know that Op0 != Op1.
5450 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5451 isa<ConstantPointerNull>(Op0)) &&
5452 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5453 isa<ConstantPointerNull>(Op1)))
5454 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005455 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005456
5457 // icmp's with boolean values can always be turned into bitwise operations
5458 if (Ty == Type::Int1Ty) {
5459 switch (I.getPredicate()) {
5460 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005461 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005462 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005463 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005464 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005465 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005466 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005467 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005468
5469 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005470 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005471 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005472 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005473 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005474 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005475 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005476 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005477 case ICmpInst::ICMP_SGT:
5478 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005479 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005480 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5481 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5482 InsertNewInstBefore(Not, I);
5483 return BinaryOperator::CreateAnd(Not, Op0);
5484 }
5485 case ICmpInst::ICMP_UGE:
5486 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5487 // FALL THROUGH
5488 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005489 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005490 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005491 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005492 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005493 case ICmpInst::ICMP_SGE:
5494 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5495 // FALL THROUGH
5496 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5497 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5498 InsertNewInstBefore(Not, I);
5499 return BinaryOperator::CreateOr(Not, Op0);
5500 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005501 }
5502 }
5503
Dan Gohman58c09632008-09-16 18:46:06 +00005504 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005505 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005506 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005507
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005508 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5509 if (I.isEquality() && CI->isNullValue() &&
5510 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5511 // (icmp cond A B) if cond is equality
5512 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005513 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005514
Dan Gohman58c09632008-09-16 18:46:06 +00005515 // If we have an icmp le or icmp ge instruction, turn it into the
5516 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5517 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005518 switch (I.getPredicate()) {
5519 default: break;
5520 case ICmpInst::ICMP_ULE:
5521 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5522 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5523 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5524 case ICmpInst::ICMP_SLE:
5525 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5526 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5527 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5528 case ICmpInst::ICMP_UGE:
5529 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5530 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5531 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5532 case ICmpInst::ICMP_SGE:
5533 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5534 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5535 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5536 }
5537
Chris Lattnera1308652008-07-11 05:40:05 +00005538 // See if we can fold the comparison based on range information we can get
5539 // by checking whether bits are known to be zero or one in the input.
5540 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5541 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5542
5543 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005544 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005545 bool UnusedBit;
5546 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5547
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005548 if (SimplifyDemandedBits(Op0,
5549 isSignBit ? APInt::getSignBit(BitWidth)
5550 : APInt::getAllOnesValue(BitWidth),
5551 KnownZero, KnownOne, 0))
5552 return &I;
5553
5554 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005555 // in. Compute the Min, Max and RHS values based on the known bits. For the
5556 // EQ and NE we use unsigned values.
5557 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005558 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5559 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5560 else
5561 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5562
Chris Lattnera1308652008-07-11 05:40:05 +00005563 // If Min and Max are known to be the same, then SimplifyDemandedBits
5564 // figured out that the LHS is a constant. Just constant fold this now so
5565 // that code below can assume that Min != Max.
5566 if (Min == Max)
5567 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5568 ConstantInt::get(Min),
5569 CI));
5570
5571 // Based on the range information we know about the LHS, see if we can
5572 // simplify this comparison. For example, (x&4) < 8 is always true.
5573 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005574 switch (I.getPredicate()) { // LE/GE have been folded already.
5575 default: assert(0 && "Unknown icmp opcode!");
5576 case ICmpInst::ICMP_EQ:
5577 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5578 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5579 break;
5580 case ICmpInst::ICMP_NE:
5581 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5582 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5583 break;
5584 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005585 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005586 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005587 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005588 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005589 if (RHSVal == Max) // A <u MAX -> A != MAX
5590 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5591 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5592 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5593
5594 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5595 if (CI->isMinValue(true))
5596 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5597 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005598 break;
5599 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005600 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005601 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005602 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005603 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005604
5605 if (RHSVal == Min) // A >u MIN -> A != MIN
5606 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5607 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5608 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5609
5610 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5611 if (CI->isMaxValue(true))
5612 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5613 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005614 break;
5615 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005616 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005617 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005618 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005619 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005620 if (RHSVal == Max) // A <s MAX -> A != MAX
5621 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005622 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005623 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005624 break;
5625 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005626 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005627 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005628 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005629 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005630
5631 if (RHSVal == Min) // A >s MIN -> A != MIN
5632 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5633 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5634 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005635 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005636 }
Dan Gohman58c09632008-09-16 18:46:06 +00005637 }
5638
5639 // Test if the ICmpInst instruction is used exclusively by a select as
5640 // part of a minimum or maximum operation. If so, refrain from doing
5641 // any other folding. This helps out other analyses which understand
5642 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5643 // and CodeGen. And in this case, at least one of the comparison
5644 // operands has at least one user besides the compare (the select),
5645 // which would often largely negate the benefit of folding anyway.
5646 if (I.hasOneUse())
5647 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5648 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5649 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5650 return 0;
5651
5652 // See if we are doing a comparison between a constant and an instruction that
5653 // can be folded into the comparison.
5654 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005655 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5656 // instruction, see if that instruction also has constants so that the
5657 // instruction can be folded into the icmp
5658 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5659 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5660 return Res;
5661 }
5662
5663 // Handle icmp with constant (but not simple integer constant) RHS
5664 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5665 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5666 switch (LHSI->getOpcode()) {
5667 case Instruction::GetElementPtr:
5668 if (RHSC->isNullValue()) {
5669 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5670 bool isAllZeros = true;
5671 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5672 if (!isa<Constant>(LHSI->getOperand(i)) ||
5673 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5674 isAllZeros = false;
5675 break;
5676 }
5677 if (isAllZeros)
5678 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5679 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5680 }
5681 break;
5682
5683 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005684 // Only fold icmp into the PHI if the phi and fcmp are in the same
5685 // block. If in the same block, we're encouraging jump threading. If
5686 // not, we are just pessimizing the code by making an i1 phi.
5687 if (LHSI->getParent() == I.getParent())
5688 if (Instruction *NV = FoldOpIntoPhi(I))
5689 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005690 break;
5691 case Instruction::Select: {
5692 // If either operand of the select is a constant, we can fold the
5693 // comparison into the select arms, which will cause one to be
5694 // constant folded and the select turned into a bitwise or.
5695 Value *Op1 = 0, *Op2 = 0;
5696 if (LHSI->hasOneUse()) {
5697 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5698 // Fold the known value into the constant operand.
5699 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5700 // Insert a new ICmp of the other select operand.
5701 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5702 LHSI->getOperand(2), RHSC,
5703 I.getName()), I);
5704 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5705 // Fold the known value into the constant operand.
5706 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5707 // Insert a new ICmp of the other select operand.
5708 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5709 LHSI->getOperand(1), RHSC,
5710 I.getName()), I);
5711 }
5712 }
5713
5714 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005715 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005716 break;
5717 }
5718 case Instruction::Malloc:
5719 // If we have (malloc != null), and if the malloc has a single use, we
5720 // can assume it is successful and remove the malloc.
5721 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5722 AddToWorkList(LHSI);
5723 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005724 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005725 }
5726 break;
5727 }
5728 }
5729
5730 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5731 if (User *GEP = dyn_castGetElementPtr(Op0))
5732 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5733 return NI;
5734 if (User *GEP = dyn_castGetElementPtr(Op1))
5735 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5736 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5737 return NI;
5738
5739 // Test to see if the operands of the icmp are casted versions of other
5740 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5741 // now.
5742 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5743 if (isa<PointerType>(Op0->getType()) &&
5744 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5745 // We keep moving the cast from the left operand over to the right
5746 // operand, where it can often be eliminated completely.
5747 Op0 = CI->getOperand(0);
5748
5749 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5750 // so eliminate it as well.
5751 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5752 Op1 = CI2->getOperand(0);
5753
5754 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005755 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005756 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5757 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5758 } else {
5759 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00005760 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005761 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005762 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005763 return new ICmpInst(I.getPredicate(), Op0, Op1);
5764 }
5765 }
5766
5767 if (isa<CastInst>(Op0)) {
5768 // Handle the special case of: icmp (cast bool to X), <cst>
5769 // This comes up when you have code like
5770 // int X = A < B;
5771 // if (X) ...
5772 // For generality, we handle any zero-extension of any operand comparison
5773 // with a constant or another cast from the same type.
5774 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5775 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5776 return R;
5777 }
5778
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005779 // See if it's the same type of instruction on the left and right.
5780 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
5781 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005782 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
5783 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
5784 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00005785 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005786 default: break;
5787 case Instruction::Add:
5788 case Instruction::Sub:
5789 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005790 // a+x icmp eq/ne b+x --> a icmp b
5791 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
5792 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005793 break;
5794 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005795 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
5796 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
5797 // Mask = -1 >> count-trailing-zeros(Cst).
5798 if (!CI->isZero() && !CI->isOne()) {
5799 const APInt &AP = CI->getValue();
5800 ConstantInt *Mask = ConstantInt::get(
5801 APInt::getLowBitsSet(AP.getBitWidth(),
5802 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005803 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005804 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
5805 Mask);
5806 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
5807 Mask);
5808 InsertNewInstBefore(And1, I);
5809 InsertNewInstBefore(And2, I);
5810 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005811 }
5812 }
5813 break;
5814 }
5815 }
5816 }
5817 }
5818
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005819 // ~x < ~y --> y < x
5820 { Value *A, *B;
5821 if (match(Op0, m_Not(m_Value(A))) &&
5822 match(Op1, m_Not(m_Value(B))))
5823 return new ICmpInst(I.getPredicate(), B, A);
5824 }
5825
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005826 if (I.isEquality()) {
5827 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005828
5829 // -x == -y --> x == y
5830 if (match(Op0, m_Neg(m_Value(A))) &&
5831 match(Op1, m_Neg(m_Value(B))))
5832 return new ICmpInst(I.getPredicate(), A, B);
5833
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005834 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5835 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5836 Value *OtherVal = A == Op1 ? B : A;
5837 return new ICmpInst(I.getPredicate(), OtherVal,
5838 Constant::getNullValue(A->getType()));
5839 }
5840
5841 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5842 // A^c1 == C^c2 --> A == C^(c1^c2)
5843 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5844 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5845 if (Op1->hasOneUse()) {
5846 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00005847 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005848 return new ICmpInst(I.getPredicate(), A,
5849 InsertNewInstBefore(Xor, I));
5850 }
5851
5852 // A^B == A^D -> B == D
5853 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
5854 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
5855 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
5856 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
5857 }
5858 }
5859
5860 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
5861 (A == Op0 || B == Op0)) {
5862 // A == (A^B) -> B == 0
5863 Value *OtherVal = A == Op0 ? B : A;
5864 return new ICmpInst(I.getPredicate(), OtherVal,
5865 Constant::getNullValue(A->getType()));
5866 }
5867 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
5868 // (A-B) == A -> B == 0
5869 return new ICmpInst(I.getPredicate(), B,
5870 Constant::getNullValue(B->getType()));
5871 }
5872 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
5873 // A == (A-B) -> B == 0
5874 return new ICmpInst(I.getPredicate(), B,
5875 Constant::getNullValue(B->getType()));
5876 }
5877
5878 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5879 if (Op0->hasOneUse() && Op1->hasOneUse() &&
5880 match(Op0, m_And(m_Value(A), m_Value(B))) &&
5881 match(Op1, m_And(m_Value(C), m_Value(D)))) {
5882 Value *X = 0, *Y = 0, *Z = 0;
5883
5884 if (A == C) {
5885 X = B; Y = D; Z = A;
5886 } else if (A == D) {
5887 X = B; Y = C; Z = A;
5888 } else if (B == C) {
5889 X = A; Y = D; Z = B;
5890 } else if (B == D) {
5891 X = A; Y = C; Z = B;
5892 }
5893
5894 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00005895 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
5896 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005897 I.setOperand(0, Op1);
5898 I.setOperand(1, Constant::getNullValue(Op1->getType()));
5899 return &I;
5900 }
5901 }
5902 }
5903 return Changed ? &I : 0;
5904}
5905
5906
5907/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
5908/// and CmpRHS are both known to be integer constants.
5909Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
5910 ConstantInt *DivRHS) {
5911 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
5912 const APInt &CmpRHSV = CmpRHS->getValue();
5913
5914 // FIXME: If the operand types don't match the type of the divide
5915 // then don't attempt this transform. The code below doesn't have the
5916 // logic to deal with a signed divide and an unsigned compare (and
5917 // vice versa). This is because (x /s C1) <s C2 produces different
5918 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5919 // (x /u C1) <u C2. Simply casting the operands and result won't
5920 // work. :( The if statement below tests that condition and bails
5921 // if it finds it.
5922 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
5923 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
5924 return 0;
5925 if (DivRHS->isZero())
5926 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00005927 if (DivIsSigned && DivRHS->isAllOnesValue())
5928 return 0; // The overflow computation also screws up here
5929 if (DivRHS->isOne())
5930 return 0; // Not worth bothering, and eliminates some funny cases
5931 // with INT_MIN.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005932
5933 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5934 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5935 // C2 (CI). By solving for X we can turn this into a range check
5936 // instead of computing a divide.
5937 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
5938
5939 // Determine if the product overflows by seeing if the product is
5940 // not equal to the divide. Make sure we do the same kind of divide
5941 // as in the LHS instruction that we're folding.
5942 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
5943 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
5944
5945 // Get the ICmp opcode
5946 ICmpInst::Predicate Pred = ICI.getPredicate();
5947
5948 // Figure out the interval that is being checked. For example, a comparison
5949 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
5950 // Compute this interval based on the constants involved and the signedness of
5951 // the compare/divide. This computes a half-open interval, keeping track of
5952 // whether either value in the interval overflows. After analysis each
5953 // overflow variable is set to 0 if it's corresponding bound variable is valid
5954 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
5955 int LoOverflow = 0, HiOverflow = 0;
5956 ConstantInt *LoBound = 0, *HiBound = 0;
5957
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005958 if (!DivIsSigned) { // udiv
5959 // e.g. X/5 op 3 --> [15, 20)
5960 LoBound = Prod;
5961 HiOverflow = LoOverflow = ProdOV;
5962 if (!HiOverflow)
5963 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00005964 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005965 if (CmpRHSV == 0) { // (X / pos) op 0
5966 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
5967 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
5968 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00005969 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005970 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
5971 HiOverflow = LoOverflow = ProdOV;
5972 if (!HiOverflow)
5973 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
5974 } else { // (X / pos) op neg
5975 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005976 HiBound = AddOne(Prod);
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00005977 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
5978 if (!LoOverflow) {
5979 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
5980 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
5981 true) ? -1 : 0;
5982 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005983 }
Dan Gohman5dceed12008-02-13 22:09:18 +00005984 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005985 if (CmpRHSV == 0) { // (X / neg) op 0
5986 // e.g. X/-5 op 0 --> [-4, 5)
5987 LoBound = AddOne(DivRHS);
5988 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
5989 if (HiBound == DivRHS) { // -INTMIN = INTMIN
5990 HiOverflow = 1; // [INTMIN+1, overflow)
5991 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
5992 }
Dan Gohman5dceed12008-02-13 22:09:18 +00005993 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005994 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00005995 HiBound = AddOne(Prod);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005996 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
5997 if (!LoOverflow)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00005998 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005999 } else { // (X / neg) op neg
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006000 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6001 LoOverflow = HiOverflow = ProdOV;
Dan Gohman45408ea2008-09-11 00:25:00 +00006002 if (!HiOverflow)
6003 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006004 }
6005
6006 // Dividing by a negative swaps the condition. LT <-> GT
6007 Pred = ICmpInst::getSwappedPredicate(Pred);
6008 }
6009
6010 Value *X = DivI->getOperand(0);
6011 switch (Pred) {
6012 default: assert(0 && "Unhandled icmp opcode!");
6013 case ICmpInst::ICMP_EQ:
6014 if (LoOverflow && HiOverflow)
6015 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6016 else if (HiOverflow)
6017 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6018 ICmpInst::ICMP_UGE, X, LoBound);
6019 else if (LoOverflow)
6020 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6021 ICmpInst::ICMP_ULT, X, HiBound);
6022 else
6023 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6024 case ICmpInst::ICMP_NE:
6025 if (LoOverflow && HiOverflow)
6026 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6027 else if (HiOverflow)
6028 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6029 ICmpInst::ICMP_ULT, X, LoBound);
6030 else if (LoOverflow)
6031 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6032 ICmpInst::ICMP_UGE, X, HiBound);
6033 else
6034 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6035 case ICmpInst::ICMP_ULT:
6036 case ICmpInst::ICMP_SLT:
6037 if (LoOverflow == +1) // Low bound is greater than input range.
6038 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6039 if (LoOverflow == -1) // Low bound is less than input range.
6040 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6041 return new ICmpInst(Pred, X, LoBound);
6042 case ICmpInst::ICMP_UGT:
6043 case ICmpInst::ICMP_SGT:
6044 if (HiOverflow == +1) // High bound greater than input range.
6045 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6046 else if (HiOverflow == -1) // High bound less than input range.
6047 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6048 if (Pred == ICmpInst::ICMP_UGT)
6049 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6050 else
6051 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6052 }
6053}
6054
6055
6056/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6057///
6058Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6059 Instruction *LHSI,
6060 ConstantInt *RHS) {
6061 const APInt &RHSV = RHS->getValue();
6062
6063 switch (LHSI->getOpcode()) {
6064 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6065 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6066 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6067 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006068 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6069 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006070 Value *CompareVal = LHSI->getOperand(0);
6071
6072 // If the sign bit of the XorCST is not set, there is no change to
6073 // the operation, just stop using the Xor.
6074 if (!XorCST->getValue().isNegative()) {
6075 ICI.setOperand(0, CompareVal);
6076 AddToWorkList(LHSI);
6077 return &ICI;
6078 }
6079
6080 // Was the old condition true if the operand is positive?
6081 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6082
6083 // If so, the new one isn't.
6084 isTrueIfPositive ^= true;
6085
6086 if (isTrueIfPositive)
6087 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6088 else
6089 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6090 }
6091 }
6092 break;
6093 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6094 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6095 LHSI->getOperand(0)->hasOneUse()) {
6096 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6097
6098 // If the LHS is an AND of a truncating cast, we can widen the
6099 // and/compare to be the input width without changing the value
6100 // produced, eliminating a cast.
6101 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6102 // We can do this transformation if either the AND constant does not
6103 // have its sign bit set or if it is an equality comparison.
6104 // Extending a relational comparison when we're checking the sign
6105 // bit would not work.
6106 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00006107 (ICI.isEquality() ||
6108 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006109 uint32_t BitWidth =
6110 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6111 APInt NewCST = AndCST->getValue();
6112 NewCST.zext(BitWidth);
6113 APInt NewCI = RHSV;
6114 NewCI.zext(BitWidth);
6115 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006116 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006117 ConstantInt::get(NewCST),LHSI->getName());
6118 InsertNewInstBefore(NewAnd, ICI);
6119 return new ICmpInst(ICI.getPredicate(), NewAnd,
6120 ConstantInt::get(NewCI));
6121 }
6122 }
6123
6124 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6125 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6126 // happens a LOT in code produced by the C front-end, for bitfield
6127 // access.
6128 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6129 if (Shift && !Shift->isShift())
6130 Shift = 0;
6131
6132 ConstantInt *ShAmt;
6133 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6134 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6135 const Type *AndTy = AndCST->getType(); // Type of the and.
6136
6137 // We can fold this as long as we can't shift unknown bits
6138 // into the mask. This can only happen with signed shift
6139 // rights, as they sign-extend.
6140 if (ShAmt) {
6141 bool CanFold = Shift->isLogicalShift();
6142 if (!CanFold) {
6143 // To test for the bad case of the signed shr, see if any
6144 // of the bits shifted in could be tested after the mask.
6145 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6146 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6147
6148 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6149 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6150 AndCST->getValue()) == 0)
6151 CanFold = true;
6152 }
6153
6154 if (CanFold) {
6155 Constant *NewCst;
6156 if (Shift->getOpcode() == Instruction::Shl)
6157 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6158 else
6159 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6160
6161 // Check to see if we are shifting out any of the bits being
6162 // compared.
6163 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6164 // If we shifted bits out, the fold is not going to work out.
6165 // As a special case, check to see if this means that the
6166 // result is always true or false now.
6167 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6168 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6169 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6170 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6171 } else {
6172 ICI.setOperand(1, NewCst);
6173 Constant *NewAndCST;
6174 if (Shift->getOpcode() == Instruction::Shl)
6175 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6176 else
6177 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6178 LHSI->setOperand(1, NewAndCST);
6179 LHSI->setOperand(0, Shift->getOperand(0));
6180 AddToWorkList(Shift); // Shift is dead.
6181 AddUsesToWorkList(ICI);
6182 return &ICI;
6183 }
6184 }
6185 }
6186
6187 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6188 // preferable because it allows the C<<Y expression to be hoisted out
6189 // of a loop if Y is invariant and X is not.
6190 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6191 ICI.isEquality() && !Shift->isArithmeticShift() &&
6192 isa<Instruction>(Shift->getOperand(0))) {
6193 // Compute C << Y.
6194 Value *NS;
6195 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006196 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006197 Shift->getOperand(1), "tmp");
6198 } else {
6199 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006200 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006201 Shift->getOperand(1), "tmp");
6202 }
6203 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6204
6205 // Compute X & (C << Y).
6206 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006207 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006208 InsertNewInstBefore(NewAnd, ICI);
6209
6210 ICI.setOperand(0, NewAnd);
6211 return &ICI;
6212 }
6213 }
6214 break;
6215
6216 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6217 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6218 if (!ShAmt) break;
6219
6220 uint32_t TypeBits = RHSV.getBitWidth();
6221
6222 // Check that the shift amount is in range. If not, don't perform
6223 // undefined shifts. When the shift is visited it will be
6224 // simplified.
6225 if (ShAmt->uge(TypeBits))
6226 break;
6227
6228 if (ICI.isEquality()) {
6229 // If we are comparing against bits always shifted out, the
6230 // comparison cannot succeed.
6231 Constant *Comp =
6232 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6233 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6234 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6235 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6236 return ReplaceInstUsesWith(ICI, Cst);
6237 }
6238
6239 if (LHSI->hasOneUse()) {
6240 // Otherwise strength reduce the shift into an and.
6241 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6242 Constant *Mask =
6243 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6244
6245 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006246 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006247 Mask, LHSI->getName()+".mask");
6248 Value *And = InsertNewInstBefore(AndI, ICI);
6249 return new ICmpInst(ICI.getPredicate(), And,
6250 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6251 }
6252 }
6253
6254 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6255 bool TrueIfSigned = false;
6256 if (LHSI->hasOneUse() &&
6257 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6258 // (X << 31) <s 0 --> (X&1) != 0
6259 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6260 (TypeBits-ShAmt->getZExtValue()-1));
6261 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006262 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006263 Mask, LHSI->getName()+".mask");
6264 Value *And = InsertNewInstBefore(AndI, ICI);
6265
6266 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6267 And, Constant::getNullValue(And->getType()));
6268 }
6269 break;
6270 }
6271
6272 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6273 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006274 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006275 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006276 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006277
Chris Lattner5ee84f82008-03-21 05:19:58 +00006278 // Check that the shift amount is in range. If not, don't perform
6279 // undefined shifts. When the shift is visited it will be
6280 // simplified.
6281 uint32_t TypeBits = RHSV.getBitWidth();
6282 if (ShAmt->uge(TypeBits))
6283 break;
6284
6285 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006286
Chris Lattner5ee84f82008-03-21 05:19:58 +00006287 // If we are comparing against bits always shifted out, the
6288 // comparison cannot succeed.
6289 APInt Comp = RHSV << ShAmtVal;
6290 if (LHSI->getOpcode() == Instruction::LShr)
6291 Comp = Comp.lshr(ShAmtVal);
6292 else
6293 Comp = Comp.ashr(ShAmtVal);
6294
6295 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6296 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6297 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6298 return ReplaceInstUsesWith(ICI, Cst);
6299 }
6300
6301 // Otherwise, check to see if the bits shifted out are known to be zero.
6302 // If so, we can compare against the unshifted value:
6303 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006304 if (LHSI->hasOneUse() &&
6305 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006306 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6307 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6308 ConstantExpr::getShl(RHS, ShAmt));
6309 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006310
Evan Chengfb9292a2008-04-23 00:38:06 +00006311 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006312 // Otherwise strength reduce the shift into an and.
6313 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6314 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006315
Chris Lattner5ee84f82008-03-21 05:19:58 +00006316 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006317 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006318 Mask, LHSI->getName()+".mask");
6319 Value *And = InsertNewInstBefore(AndI, ICI);
6320 return new ICmpInst(ICI.getPredicate(), And,
6321 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006322 }
6323 break;
6324 }
6325
6326 case Instruction::SDiv:
6327 case Instruction::UDiv:
6328 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6329 // Fold this div into the comparison, producing a range check.
6330 // Determine, based on the divide type, what the range is being
6331 // checked. If there is an overflow on the low or high side, remember
6332 // it, otherwise compute the range [low, hi) bounding the new value.
6333 // See: InsertRangeTest above for the kinds of replacements possible.
6334 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6335 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6336 DivRHS))
6337 return R;
6338 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006339
6340 case Instruction::Add:
6341 // Fold: icmp pred (add, X, C1), C2
6342
6343 if (!ICI.isEquality()) {
6344 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6345 if (!LHSC) break;
6346 const APInt &LHSV = LHSC->getValue();
6347
6348 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6349 .subtract(LHSV);
6350
6351 if (ICI.isSignedPredicate()) {
6352 if (CR.getLower().isSignBit()) {
6353 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6354 ConstantInt::get(CR.getUpper()));
6355 } else if (CR.getUpper().isSignBit()) {
6356 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6357 ConstantInt::get(CR.getLower()));
6358 }
6359 } else {
6360 if (CR.getLower().isMinValue()) {
6361 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6362 ConstantInt::get(CR.getUpper()));
6363 } else if (CR.getUpper().isMinValue()) {
6364 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6365 ConstantInt::get(CR.getLower()));
6366 }
6367 }
6368 }
6369 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006370 }
6371
6372 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6373 if (ICI.isEquality()) {
6374 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6375
6376 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6377 // the second operand is a constant, simplify a bit.
6378 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6379 switch (BO->getOpcode()) {
6380 case Instruction::SRem:
6381 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6382 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6383 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6384 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6385 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006386 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006387 BO->getName());
6388 InsertNewInstBefore(NewRem, ICI);
6389 return new ICmpInst(ICI.getPredicate(), NewRem,
6390 Constant::getNullValue(BO->getType()));
6391 }
6392 }
6393 break;
6394 case Instruction::Add:
6395 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6396 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6397 if (BO->hasOneUse())
6398 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6399 Subtract(RHS, BOp1C));
6400 } else if (RHSV == 0) {
6401 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6402 // efficiently invertible, or if the add has just this one use.
6403 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6404
6405 if (Value *NegVal = dyn_castNegVal(BOp1))
6406 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6407 else if (Value *NegVal = dyn_castNegVal(BOp0))
6408 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6409 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006410 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006411 InsertNewInstBefore(Neg, ICI);
6412 Neg->takeName(BO);
6413 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6414 }
6415 }
6416 break;
6417 case Instruction::Xor:
6418 // For the xor case, we can xor two constants together, eliminating
6419 // the explicit xor.
6420 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6421 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6422 ConstantExpr::getXor(RHS, BOC));
6423
6424 // FALLTHROUGH
6425 case Instruction::Sub:
6426 // Replace (([sub|xor] A, B) != 0) with (A != B)
6427 if (RHSV == 0)
6428 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6429 BO->getOperand(1));
6430 break;
6431
6432 case Instruction::Or:
6433 // If bits are being or'd in that are not present in the constant we
6434 // are comparing against, then the comparison could never succeed!
6435 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6436 Constant *NotCI = ConstantExpr::getNot(RHS);
6437 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6438 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6439 isICMP_NE));
6440 }
6441 break;
6442
6443 case Instruction::And:
6444 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6445 // If bits are being compared against that are and'd out, then the
6446 // comparison can never succeed!
6447 if ((RHSV & ~BOC->getValue()) != 0)
6448 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6449 isICMP_NE));
6450
6451 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6452 if (RHS == BOC && RHSV.isPowerOf2())
6453 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6454 ICmpInst::ICMP_NE, LHSI,
6455 Constant::getNullValue(RHS->getType()));
6456
6457 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006458 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006459 Value *X = BO->getOperand(0);
6460 Constant *Zero = Constant::getNullValue(X->getType());
6461 ICmpInst::Predicate pred = isICMP_NE ?
6462 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6463 return new ICmpInst(pred, X, Zero);
6464 }
6465
6466 // ((X & ~7) == 0) --> X < 8
6467 if (RHSV == 0 && isHighOnes(BOC)) {
6468 Value *X = BO->getOperand(0);
6469 Constant *NegX = ConstantExpr::getNeg(BOC);
6470 ICmpInst::Predicate pred = isICMP_NE ?
6471 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6472 return new ICmpInst(pred, X, NegX);
6473 }
6474 }
6475 default: break;
6476 }
6477 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6478 // Handle icmp {eq|ne} <intrinsic>, intcst.
6479 if (II->getIntrinsicID() == Intrinsic::bswap) {
6480 AddToWorkList(II);
6481 ICI.setOperand(0, II->getOperand(1));
6482 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6483 return &ICI;
6484 }
6485 }
6486 } else { // Not a ICMP_EQ/ICMP_NE
6487 // If the LHS is a cast from an integral value of the same size,
6488 // then since we know the RHS is a constant, try to simlify.
6489 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6490 Value *CastOp = Cast->getOperand(0);
6491 const Type *SrcTy = CastOp->getType();
6492 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6493 if (SrcTy->isInteger() &&
6494 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6495 // If this is an unsigned comparison, try to make the comparison use
6496 // smaller constant values.
6497 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6498 // X u< 128 => X s> -1
6499 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6500 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6501 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6502 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6503 // X u> 127 => X s< 0
6504 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6505 Constant::getNullValue(SrcTy));
6506 }
6507 }
6508 }
6509 }
6510 return 0;
6511}
6512
6513/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6514/// We only handle extending casts so far.
6515///
6516Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6517 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6518 Value *LHSCIOp = LHSCI->getOperand(0);
6519 const Type *SrcTy = LHSCIOp->getType();
6520 const Type *DestTy = LHSCI->getType();
6521 Value *RHSCIOp;
6522
6523 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6524 // integer type is the same size as the pointer type.
6525 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6526 getTargetData().getPointerSizeInBits() ==
6527 cast<IntegerType>(DestTy)->getBitWidth()) {
6528 Value *RHSOp = 0;
6529 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6530 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6531 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6532 RHSOp = RHSC->getOperand(0);
6533 // If the pointer types don't match, insert a bitcast.
6534 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006535 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006536 }
6537
6538 if (RHSOp)
6539 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6540 }
6541
6542 // The code below only handles extension cast instructions, so far.
6543 // Enforce this.
6544 if (LHSCI->getOpcode() != Instruction::ZExt &&
6545 LHSCI->getOpcode() != Instruction::SExt)
6546 return 0;
6547
6548 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6549 bool isSignedCmp = ICI.isSignedPredicate();
6550
6551 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6552 // Not an extension from the same type?
6553 RHSCIOp = CI->getOperand(0);
6554 if (RHSCIOp->getType() != LHSCIOp->getType())
6555 return 0;
6556
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006557 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006558 // and the other is a zext), then we can't handle this.
6559 if (CI->getOpcode() != LHSCI->getOpcode())
6560 return 0;
6561
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006562 // Deal with equality cases early.
6563 if (ICI.isEquality())
6564 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6565
6566 // A signed comparison of sign extended values simplifies into a
6567 // signed comparison.
6568 if (isSignedCmp && isSignedExt)
6569 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6570
6571 // The other three cases all fold into an unsigned comparison.
6572 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006573 }
6574
6575 // If we aren't dealing with a constant on the RHS, exit early
6576 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6577 if (!CI)
6578 return 0;
6579
6580 // Compute the constant that would happen if we truncated to SrcTy then
6581 // reextended to DestTy.
6582 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6583 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6584
6585 // If the re-extended constant didn't change...
6586 if (Res2 == CI) {
6587 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6588 // For example, we might have:
6589 // %A = sext short %X to uint
6590 // %B = icmp ugt uint %A, 1330
6591 // It is incorrect to transform this into
6592 // %B = icmp ugt short %X, 1330
6593 // because %A may have negative value.
6594 //
Chris Lattner3d816532008-07-11 04:09:09 +00006595 // However, we allow this when the compare is EQ/NE, because they are
6596 // signless.
6597 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006598 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006599 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006600 }
6601
6602 // The re-extended constant changed so the constant cannot be represented
6603 // in the shorter type. Consequently, we cannot emit a simple comparison.
6604
6605 // First, handle some easy cases. We know the result cannot be equal at this
6606 // point so handle the ICI.isEquality() cases
6607 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6608 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6609 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6610 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6611
6612 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6613 // should have been folded away previously and not enter in here.
6614 Value *Result;
6615 if (isSignedCmp) {
6616 // We're performing a signed comparison.
6617 if (cast<ConstantInt>(CI)->getValue().isNegative())
6618 Result = ConstantInt::getFalse(); // X < (small) --> false
6619 else
6620 Result = ConstantInt::getTrue(); // X < (large) --> true
6621 } else {
6622 // We're performing an unsigned comparison.
6623 if (isSignedExt) {
6624 // We're performing an unsigned comp with a sign extended value.
6625 // This is true if the input is >= 0. [aka >s -1]
6626 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6627 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6628 NegOne, ICI.getName()), ICI);
6629 } else {
6630 // Unsigned extend & unsigned compare -> always true.
6631 Result = ConstantInt::getTrue();
6632 }
6633 }
6634
6635 // Finally, return the value computed.
6636 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006637 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006638 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006639
6640 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6641 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6642 "ICmp should be folded!");
6643 if (Constant *CI = dyn_cast<Constant>(Result))
6644 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6645 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006646}
6647
6648Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6649 return commonShiftTransforms(I);
6650}
6651
6652Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6653 return commonShiftTransforms(I);
6654}
6655
6656Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006657 if (Instruction *R = commonShiftTransforms(I))
6658 return R;
6659
6660 Value *Op0 = I.getOperand(0);
6661
6662 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6663 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6664 if (CSI->isAllOnesValue())
6665 return ReplaceInstUsesWith(I, CSI);
6666
6667 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006668 if (!isa<VectorType>(I.getType()) &&
6669 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006670 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006671 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006672
6673 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006674}
6675
6676Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6677 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6678 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6679
6680 // shl X, 0 == X and shr X, 0 == X
6681 // shl 0, X == 0 and shr 0, X == 0
6682 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6683 Op0 == Constant::getNullValue(Op0->getType()))
6684 return ReplaceInstUsesWith(I, Op0);
6685
6686 if (isa<UndefValue>(Op0)) {
6687 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6688 return ReplaceInstUsesWith(I, Op0);
6689 else // undef << X -> 0, undef >>u X -> 0
6690 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6691 }
6692 if (isa<UndefValue>(Op1)) {
6693 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6694 return ReplaceInstUsesWith(I, Op0);
6695 else // X << undef, X >>u undef -> 0
6696 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6697 }
6698
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006699 // Try to fold constant and into select arguments.
6700 if (isa<Constant>(Op0))
6701 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6702 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6703 return R;
6704
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006705 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6706 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6707 return Res;
6708 return 0;
6709}
6710
6711Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6712 BinaryOperator &I) {
6713 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6714
6715 // See if we can simplify any instructions used by the instruction whose sole
6716 // purpose is to compute bits we don't care about.
6717 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6718 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6719 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6720 KnownZero, KnownOne))
6721 return &I;
6722
6723 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6724 // of a signed value.
6725 //
6726 if (Op1->uge(TypeBits)) {
6727 if (I.getOpcode() != Instruction::AShr)
6728 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6729 else {
6730 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
6731 return &I;
6732 }
6733 }
6734
6735 // ((X*C1) << C2) == (X * (C1 << C2))
6736 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6737 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6738 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00006739 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006740 ConstantExpr::getShl(BOOp, Op1));
6741
6742 // Try to fold constant and into select arguments.
6743 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6744 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6745 return R;
6746 if (isa<PHINode>(Op0))
6747 if (Instruction *NV = FoldOpIntoPhi(I))
6748 return NV;
6749
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006750 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6751 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6752 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6753 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6754 // place. Don't try to do this transformation in this case. Also, we
6755 // require that the input operand is a shift-by-constant so that we have
6756 // confidence that the shifts will get folded together. We could do this
6757 // xform in more cases, but it is unlikely to be profitable.
6758 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6759 isa<ConstantInt>(TrOp->getOperand(1))) {
6760 // Okay, we'll do this xform. Make the shift of shift.
6761 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00006762 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006763 I.getName());
6764 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6765
6766 // For logical shifts, the truncation has the effect of making the high
6767 // part of the register be zeros. Emulate this by inserting an AND to
6768 // clear the top bits as needed. This 'and' will usually be zapped by
6769 // other xforms later if dead.
6770 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
6771 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
6772 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
6773
6774 // The mask we constructed says what the trunc would do if occurring
6775 // between the shifts. We want to know the effect *after* the second
6776 // shift. We know that it is a logical shift by a constant, so adjust the
6777 // mask as appropriate.
6778 if (I.getOpcode() == Instruction::Shl)
6779 MaskV <<= Op1->getZExtValue();
6780 else {
6781 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
6782 MaskV = MaskV.lshr(Op1->getZExtValue());
6783 }
6784
Gabor Greifa645dd32008-05-16 19:29:10 +00006785 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006786 TI->getName());
6787 InsertNewInstBefore(And, I); // shift1 & 0x00FF
6788
6789 // Return the value truncated to the interesting size.
6790 return new TruncInst(And, I.getType());
6791 }
6792 }
6793
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006794 if (Op0->hasOneUse()) {
6795 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6796 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6797 Value *V1, *V2;
6798 ConstantInt *CC;
6799 switch (Op0BO->getOpcode()) {
6800 default: break;
6801 case Instruction::Add:
6802 case Instruction::And:
6803 case Instruction::Or:
6804 case Instruction::Xor: {
6805 // These operators commute.
6806 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
6807 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6808 match(Op0BO->getOperand(1),
6809 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006810 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006811 Op0BO->getOperand(0), Op1,
6812 Op0BO->getName());
6813 InsertNewInstBefore(YS, I); // (Y << C)
6814 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006815 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006816 Op0BO->getOperand(1)->getName());
6817 InsertNewInstBefore(X, I); // (X + (Y << C))
6818 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006819 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006820 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6821 }
6822
6823 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
6824 Value *Op0BOOp1 = Op0BO->getOperand(1);
6825 if (isLeftShift && Op0BOOp1->hasOneUse() &&
6826 match(Op0BOOp1,
6827 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
6828 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6829 V2 == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006830 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006831 Op0BO->getOperand(0), Op1,
6832 Op0BO->getName());
6833 InsertNewInstBefore(YS, I); // (Y << C)
6834 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00006835 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006836 V1->getName()+".mask");
6837 InsertNewInstBefore(XM, I); // X & (CC << C)
6838
Gabor Greifa645dd32008-05-16 19:29:10 +00006839 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006840 }
6841 }
6842
6843 // FALL THROUGH.
6844 case Instruction::Sub: {
6845 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6846 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6847 match(Op0BO->getOperand(0),
6848 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006849 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006850 Op0BO->getOperand(1), Op1,
6851 Op0BO->getName());
6852 InsertNewInstBefore(YS, I); // (Y << C)
6853 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006854 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006855 Op0BO->getOperand(0)->getName());
6856 InsertNewInstBefore(X, I); // (X + (Y << C))
6857 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006858 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006859 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6860 }
6861
6862 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
6863 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6864 match(Op0BO->getOperand(0),
6865 m_And(m_Shr(m_Value(V1), m_Value(V2)),
6866 m_ConstantInt(CC))) && V2 == Op1 &&
6867 cast<BinaryOperator>(Op0BO->getOperand(0))
6868 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006869 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006870 Op0BO->getOperand(1), Op1,
6871 Op0BO->getName());
6872 InsertNewInstBefore(YS, I); // (Y << C)
6873 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00006874 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006875 V1->getName()+".mask");
6876 InsertNewInstBefore(XM, I); // X & (CC << C)
6877
Gabor Greifa645dd32008-05-16 19:29:10 +00006878 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006879 }
6880
6881 break;
6882 }
6883 }
6884
6885
6886 // If the operand is an bitwise operator with a constant RHS, and the
6887 // shift is the only use, we can pull it out of the shift.
6888 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
6889 bool isValid = true; // Valid only for And, Or, Xor
6890 bool highBitSet = false; // Transform if high bit of constant set?
6891
6892 switch (Op0BO->getOpcode()) {
6893 default: isValid = false; break; // Do not perform transform!
6894 case Instruction::Add:
6895 isValid = isLeftShift;
6896 break;
6897 case Instruction::Or:
6898 case Instruction::Xor:
6899 highBitSet = false;
6900 break;
6901 case Instruction::And:
6902 highBitSet = true;
6903 break;
6904 }
6905
6906 // If this is a signed shift right, and the high bit is modified
6907 // by the logical operation, do not perform the transformation.
6908 // The highBitSet boolean indicates the value of the high bit of
6909 // the constant which would cause it to be modified for this
6910 // operation.
6911 //
Chris Lattner15b76e32007-12-06 06:25:04 +00006912 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006913 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006914
6915 if (isValid) {
6916 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
6917
6918 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006919 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006920 InsertNewInstBefore(NewShift, I);
6921 NewShift->takeName(Op0BO);
6922
Gabor Greifa645dd32008-05-16 19:29:10 +00006923 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006924 NewRHS);
6925 }
6926 }
6927 }
6928 }
6929
6930 // Find out if this is a shift of a shift by a constant.
6931 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
6932 if (ShiftOp && !ShiftOp->isShift())
6933 ShiftOp = 0;
6934
6935 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
6936 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
6937 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
6938 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
6939 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
6940 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
6941 Value *X = ShiftOp->getOperand(0);
6942
6943 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
6944 if (AmtSum > TypeBits)
6945 AmtSum = TypeBits;
6946
6947 const IntegerType *Ty = cast<IntegerType>(I.getType());
6948
6949 // Check for (X << c1) << c2 and (X >> c1) >> c2
6950 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006951 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006952 ConstantInt::get(Ty, AmtSum));
6953 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
6954 I.getOpcode() == Instruction::AShr) {
6955 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00006956 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006957 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
6958 I.getOpcode() == Instruction::LShr) {
6959 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6960 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00006961 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006962 InsertNewInstBefore(Shift, I);
6963
6964 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00006965 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006966 }
6967
6968 // Okay, if we get here, one shift must be left, and the other shift must be
6969 // right. See if the amounts are equal.
6970 if (ShiftAmt1 == ShiftAmt2) {
6971 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6972 if (I.getOpcode() == Instruction::Shl) {
6973 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00006974 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006975 }
6976 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6977 if (I.getOpcode() == Instruction::LShr) {
6978 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00006979 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006980 }
6981 // We can simplify ((X << C) >>s C) into a trunc + sext.
6982 // NOTE: we could do this for any C, but that would make 'unusual' integer
6983 // types. For now, just stick to ones well-supported by the code
6984 // generators.
6985 const Type *SExtType = 0;
6986 switch (Ty->getBitWidth() - ShiftAmt1) {
6987 case 1 :
6988 case 8 :
6989 case 16 :
6990 case 32 :
6991 case 64 :
6992 case 128:
6993 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
6994 break;
6995 default: break;
6996 }
6997 if (SExtType) {
6998 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
6999 InsertNewInstBefore(NewTrunc, I);
7000 return new SExtInst(NewTrunc, Ty);
7001 }
7002 // Otherwise, we can't handle it yet.
7003 } else if (ShiftAmt1 < ShiftAmt2) {
7004 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7005
7006 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7007 if (I.getOpcode() == Instruction::Shl) {
7008 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7009 ShiftOp->getOpcode() == Instruction::AShr);
7010 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007011 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007012 InsertNewInstBefore(Shift, I);
7013
7014 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007015 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007016 }
7017
7018 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7019 if (I.getOpcode() == Instruction::LShr) {
7020 assert(ShiftOp->getOpcode() == Instruction::Shl);
7021 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007022 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007023 InsertNewInstBefore(Shift, I);
7024
7025 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007026 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007027 }
7028
7029 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7030 } else {
7031 assert(ShiftAmt2 < ShiftAmt1);
7032 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7033
7034 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7035 if (I.getOpcode() == Instruction::Shl) {
7036 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7037 ShiftOp->getOpcode() == Instruction::AShr);
7038 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007039 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007040 ConstantInt::get(Ty, ShiftDiff));
7041 InsertNewInstBefore(Shift, I);
7042
7043 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007044 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007045 }
7046
7047 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7048 if (I.getOpcode() == Instruction::LShr) {
7049 assert(ShiftOp->getOpcode() == Instruction::Shl);
7050 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007051 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007052 InsertNewInstBefore(Shift, I);
7053
7054 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007055 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007056 }
7057
7058 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7059 }
7060 }
7061 return 0;
7062}
7063
7064
7065/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7066/// expression. If so, decompose it, returning some value X, such that Val is
7067/// X*Scale+Offset.
7068///
7069static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7070 int &Offset) {
7071 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
7072 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7073 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00007074 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007075 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00007076 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7077 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7078 if (I->getOpcode() == Instruction::Shl) {
7079 // This is a value scaled by '1 << the shift amt'.
7080 Scale = 1U << RHS->getZExtValue();
7081 Offset = 0;
7082 return I->getOperand(0);
7083 } else if (I->getOpcode() == Instruction::Mul) {
7084 // This value is scaled by 'RHS'.
7085 Scale = RHS->getZExtValue();
7086 Offset = 0;
7087 return I->getOperand(0);
7088 } else if (I->getOpcode() == Instruction::Add) {
7089 // We have X+C. Check to see if we really have (X*C2)+C1,
7090 // where C1 is divisible by C2.
7091 unsigned SubScale;
7092 Value *SubVal =
7093 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7094 Offset += RHS->getZExtValue();
7095 Scale = SubScale;
7096 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007097 }
7098 }
7099 }
7100
7101 // Otherwise, we can't look past this.
7102 Scale = 1;
7103 Offset = 0;
7104 return Val;
7105}
7106
7107
7108/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7109/// try to eliminate the cast by moving the type information into the alloc.
7110Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7111 AllocationInst &AI) {
7112 const PointerType *PTy = cast<PointerType>(CI.getType());
7113
7114 // Remove any uses of AI that are dead.
7115 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7116
7117 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7118 Instruction *User = cast<Instruction>(*UI++);
7119 if (isInstructionTriviallyDead(User)) {
7120 while (UI != E && *UI == User)
7121 ++UI; // If this instruction uses AI more than once, don't break UI.
7122
7123 ++NumDeadInst;
7124 DOUT << "IC: DCE: " << *User;
7125 EraseInstFromFunction(*User);
7126 }
7127 }
7128
7129 // Get the type really allocated and the type casted to.
7130 const Type *AllocElTy = AI.getAllocatedType();
7131 const Type *CastElTy = PTy->getElementType();
7132 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7133
7134 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7135 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7136 if (CastElTyAlign < AllocElTyAlign) return 0;
7137
7138 // If the allocation has multiple uses, only promote it if we are strictly
7139 // increasing the alignment of the resultant allocation. If we keep it the
7140 // same, we open the door to infinite loops of various kinds.
7141 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7142
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007143 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7144 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007145 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7146
7147 // See if we can satisfy the modulus by pulling a scale out of the array
7148 // size argument.
7149 unsigned ArraySizeScale;
7150 int ArrayOffset;
7151 Value *NumElements = // See if the array size is a decomposable linear expr.
7152 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7153
7154 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7155 // do the xform.
7156 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7157 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7158
7159 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7160 Value *Amt = 0;
7161 if (Scale == 1) {
7162 Amt = NumElements;
7163 } else {
7164 // If the allocation size is constant, form a constant mul expression
7165 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7166 if (isa<ConstantInt>(NumElements))
7167 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7168 // otherwise multiply the amount and the number of elements
7169 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007170 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007171 Amt = InsertNewInstBefore(Tmp, AI);
7172 }
7173 }
7174
7175 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7176 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007177 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007178 Amt = InsertNewInstBefore(Tmp, AI);
7179 }
7180
7181 AllocationInst *New;
7182 if (isa<MallocInst>(AI))
7183 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7184 else
7185 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7186 InsertNewInstBefore(New, AI);
7187 New->takeName(&AI);
7188
7189 // If the allocation has multiple uses, insert a cast and change all things
7190 // that used it to use the new cast. This will also hack on CI, but it will
7191 // die soon.
7192 if (!AI.hasOneUse()) {
7193 AddUsesToWorkList(AI);
7194 // New is the allocation instruction, pointer typed. AI is the original
7195 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7196 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7197 InsertNewInstBefore(NewCast, AI);
7198 AI.replaceAllUsesWith(NewCast);
7199 }
7200 return ReplaceInstUsesWith(CI, New);
7201}
7202
7203/// CanEvaluateInDifferentType - Return true if we can take the specified value
7204/// and return it as type Ty without inserting any new casts and without
7205/// changing the computed value. This is used by code that tries to decide
7206/// whether promoting or shrinking integer operations to wider or smaller types
7207/// will allow us to eliminate a truncate or extend.
7208///
7209/// This is a truncation operation if Ty is smaller than V->getType(), or an
7210/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007211///
7212/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7213/// should return true if trunc(V) can be computed by computing V in the smaller
7214/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7215/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7216/// efficiently truncated.
7217///
7218/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7219/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7220/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007221bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7222 unsigned CastOpc,
7223 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007224 // We can always evaluate constants in another type.
7225 if (isa<ConstantInt>(V))
7226 return true;
7227
7228 Instruction *I = dyn_cast<Instruction>(V);
7229 if (!I) return false;
7230
7231 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7232
Chris Lattneref70bb82007-08-02 06:11:14 +00007233 // If this is an extension or truncate, we can often eliminate it.
7234 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7235 // If this is a cast from the destination type, we can trivially eliminate
7236 // it, and this will remove a cast overall.
7237 if (I->getOperand(0)->getType() == Ty) {
7238 // If the first operand is itself a cast, and is eliminable, do not count
7239 // this as an eliminable cast. We would prefer to eliminate those two
7240 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007241 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007242 ++NumCastsRemoved;
7243 return true;
7244 }
7245 }
7246
7247 // We can't extend or shrink something that has multiple uses: doing so would
7248 // require duplicating the instruction in general, which isn't profitable.
7249 if (!I->hasOneUse()) return false;
7250
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007251 switch (I->getOpcode()) {
7252 case Instruction::Add:
7253 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007254 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007255 case Instruction::And:
7256 case Instruction::Or:
7257 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007258 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007259 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7260 NumCastsRemoved) &&
7261 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7262 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007263
7264 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007265 // If we are truncating the result of this SHL, and if it's a shift of a
7266 // constant amount, we can always perform a SHL in a smaller type.
7267 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7268 uint32_t BitWidth = Ty->getBitWidth();
7269 if (BitWidth < OrigTy->getBitWidth() &&
7270 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007271 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7272 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007273 }
7274 break;
7275 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007276 // If this is a truncate of a logical shr, we can truncate it to a smaller
7277 // lshr iff we know that the bits we would otherwise be shifting in are
7278 // already zeros.
7279 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7280 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7281 uint32_t BitWidth = Ty->getBitWidth();
7282 if (BitWidth < OrigBitWidth &&
7283 MaskedValueIsZero(I->getOperand(0),
7284 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7285 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007286 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7287 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007288 }
7289 }
7290 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007291 case Instruction::ZExt:
7292 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007293 case Instruction::Trunc:
7294 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007295 // can safely replace it. Note that replacing it does not reduce the number
7296 // of casts in the input.
7297 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007298 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007299 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007300 case Instruction::Select: {
7301 SelectInst *SI = cast<SelectInst>(I);
7302 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7303 NumCastsRemoved) &&
7304 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7305 NumCastsRemoved);
7306 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007307 case Instruction::PHI: {
7308 // We can change a phi if we can change all operands.
7309 PHINode *PN = cast<PHINode>(I);
7310 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7311 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7312 NumCastsRemoved))
7313 return false;
7314 return true;
7315 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007316 default:
7317 // TODO: Can handle more cases here.
7318 break;
7319 }
7320
7321 return false;
7322}
7323
7324/// EvaluateInDifferentType - Given an expression that
7325/// CanEvaluateInDifferentType returns true for, actually insert the code to
7326/// evaluate the expression.
7327Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7328 bool isSigned) {
7329 if (Constant *C = dyn_cast<Constant>(V))
7330 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7331
7332 // Otherwise, it must be an instruction.
7333 Instruction *I = cast<Instruction>(V);
7334 Instruction *Res = 0;
7335 switch (I->getOpcode()) {
7336 case Instruction::Add:
7337 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007338 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007339 case Instruction::And:
7340 case Instruction::Or:
7341 case Instruction::Xor:
7342 case Instruction::AShr:
7343 case Instruction::LShr:
7344 case Instruction::Shl: {
7345 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7346 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007347 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007348 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007349 break;
7350 }
7351 case Instruction::Trunc:
7352 case Instruction::ZExt:
7353 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007354 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007355 // just return the source. There's no need to insert it because it is not
7356 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007357 if (I->getOperand(0)->getType() == Ty)
7358 return I->getOperand(0);
7359
Chris Lattner4200c2062008-06-18 04:00:49 +00007360 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007361 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007362 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007363 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007364 case Instruction::Select: {
7365 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7366 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7367 Res = SelectInst::Create(I->getOperand(0), True, False);
7368 break;
7369 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007370 case Instruction::PHI: {
7371 PHINode *OPN = cast<PHINode>(I);
7372 PHINode *NPN = PHINode::Create(Ty);
7373 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7374 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7375 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7376 }
7377 Res = NPN;
7378 break;
7379 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007380 default:
7381 // TODO: Can handle more cases here.
7382 assert(0 && "Unreachable!");
7383 break;
7384 }
7385
Chris Lattner4200c2062008-06-18 04:00:49 +00007386 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007387 return InsertNewInstBefore(Res, *I);
7388}
7389
7390/// @brief Implement the transforms common to all CastInst visitors.
7391Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7392 Value *Src = CI.getOperand(0);
7393
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007394 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7395 // eliminate it now.
7396 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7397 if (Instruction::CastOps opc =
7398 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7399 // The first cast (CSrc) is eliminable so we need to fix up or replace
7400 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007401 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007402 }
7403 }
7404
7405 // If we are casting a select then fold the cast into the select
7406 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7407 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7408 return NV;
7409
7410 // If we are casting a PHI then fold the cast into the PHI
7411 if (isa<PHINode>(Src))
7412 if (Instruction *NV = FoldOpIntoPhi(CI))
7413 return NV;
7414
7415 return 0;
7416}
7417
7418/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7419Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7420 Value *Src = CI.getOperand(0);
7421
7422 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7423 // If casting the result of a getelementptr instruction with no offset, turn
7424 // this into a cast of the original pointer!
7425 if (GEP->hasAllZeroIndices()) {
7426 // Changing the cast operand is usually not a good idea but it is safe
7427 // here because the pointer operand is being replaced with another
7428 // pointer operand so the opcode doesn't need to change.
7429 AddToWorkList(GEP);
7430 CI.setOperand(0, GEP->getOperand(0));
7431 return &CI;
7432 }
7433
7434 // If the GEP has a single use, and the base pointer is a bitcast, and the
7435 // GEP computes a constant offset, see if we can convert these three
7436 // instructions into fewer. This typically happens with unions and other
7437 // non-type-safe code.
7438 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7439 if (GEP->hasAllConstantIndices()) {
7440 // We are guaranteed to get a constant from EmitGEPOffset.
7441 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7442 int64_t Offset = OffsetV->getSExtValue();
7443
7444 // Get the base pointer input of the bitcast, and the type it points to.
7445 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7446 const Type *GEPIdxTy =
7447 cast<PointerType>(OrigBase->getType())->getElementType();
7448 if (GEPIdxTy->isSized()) {
7449 SmallVector<Value*, 8> NewIndices;
7450
7451 // Start with the index over the outer type. Note that the type size
7452 // might be zero (even if the offset isn't zero) if the indexed type
7453 // is something like [0 x {int, int}]
7454 const Type *IntPtrTy = TD->getIntPtrType();
7455 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007456 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007457 FirstIdx = Offset/TySize;
7458 Offset %= TySize;
7459
7460 // Handle silly modulus not returning values values [0..TySize).
7461 if (Offset < 0) {
7462 --FirstIdx;
7463 Offset += TySize;
7464 assert(Offset >= 0);
7465 }
7466 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7467 }
7468
7469 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7470
7471 // Index into the types. If we fail, set OrigBase to null.
7472 while (Offset) {
7473 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7474 const StructLayout *SL = TD->getStructLayout(STy);
7475 if (Offset < (int64_t)SL->getSizeInBytes()) {
7476 unsigned Elt = SL->getElementContainingOffset(Offset);
7477 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7478
7479 Offset -= SL->getElementOffset(Elt);
7480 GEPIdxTy = STy->getElementType(Elt);
7481 } else {
7482 // Otherwise, we can't index into this, bail out.
7483 Offset = 0;
7484 OrigBase = 0;
7485 }
7486 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7487 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007488 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007489 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7490 Offset %= EltSize;
7491 } else {
7492 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7493 }
7494 GEPIdxTy = STy->getElementType();
7495 } else {
7496 // Otherwise, we can't index into this, bail out.
7497 Offset = 0;
7498 OrigBase = 0;
7499 }
7500 }
7501 if (OrigBase) {
7502 // If we were able to index down into an element, create the GEP
7503 // and bitcast the result. This eliminates one bitcast, potentially
7504 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007505 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7506 NewIndices.begin(),
7507 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007508 InsertNewInstBefore(NGEP, CI);
7509 NGEP->takeName(GEP);
7510
7511 if (isa<BitCastInst>(CI))
7512 return new BitCastInst(NGEP, CI.getType());
7513 assert(isa<PtrToIntInst>(CI));
7514 return new PtrToIntInst(NGEP, CI.getType());
7515 }
7516 }
7517 }
7518 }
7519 }
7520
7521 return commonCastTransforms(CI);
7522}
7523
7524
7525
7526/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7527/// integer types. This function implements the common transforms for all those
7528/// cases.
7529/// @brief Implement the transforms common to CastInst with integer operands
7530Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7531 if (Instruction *Result = commonCastTransforms(CI))
7532 return Result;
7533
7534 Value *Src = CI.getOperand(0);
7535 const Type *SrcTy = Src->getType();
7536 const Type *DestTy = CI.getType();
7537 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7538 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7539
7540 // See if we can simplify any instructions used by the LHS whose sole
7541 // purpose is to compute bits we don't care about.
7542 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7543 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7544 KnownZero, KnownOne))
7545 return &CI;
7546
7547 // If the source isn't an instruction or has more than one use then we
7548 // can't do anything more.
7549 Instruction *SrcI = dyn_cast<Instruction>(Src);
7550 if (!SrcI || !Src->hasOneUse())
7551 return 0;
7552
7553 // Attempt to propagate the cast into the instruction for int->int casts.
7554 int NumCastsRemoved = 0;
7555 if (!isa<BitCastInst>(CI) &&
7556 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007557 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007558 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007559 // eliminates the cast, so it is always a win. If this is a zero-extension,
7560 // we need to do an AND to maintain the clear top-part of the computation,
7561 // so we require that the input have eliminated at least one cast. If this
7562 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007563 // require that two casts have been eliminated.
7564 bool DoXForm;
7565 switch (CI.getOpcode()) {
7566 default:
7567 // All the others use floating point so we shouldn't actually
7568 // get here because of the check above.
7569 assert(0 && "Unknown cast type");
7570 case Instruction::Trunc:
7571 DoXForm = true;
7572 break;
7573 case Instruction::ZExt:
7574 DoXForm = NumCastsRemoved >= 1;
7575 break;
7576 case Instruction::SExt:
7577 DoXForm = NumCastsRemoved >= 2;
7578 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007579 }
7580
7581 if (DoXForm) {
7582 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7583 CI.getOpcode() == Instruction::SExt);
7584 assert(Res->getType() == DestTy);
7585 switch (CI.getOpcode()) {
7586 default: assert(0 && "Unknown cast type!");
7587 case Instruction::Trunc:
7588 case Instruction::BitCast:
7589 // Just replace this cast with the result.
7590 return ReplaceInstUsesWith(CI, Res);
7591 case Instruction::ZExt: {
7592 // We need to emit an AND to clear the high bits.
7593 assert(SrcBitSize < DestBitSize && "Not a zext?");
7594 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7595 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007596 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007597 }
7598 case Instruction::SExt:
7599 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007600 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007601 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7602 CI), DestTy);
7603 }
7604 }
7605 }
7606
7607 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7608 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7609
7610 switch (SrcI->getOpcode()) {
7611 case Instruction::Add:
7612 case Instruction::Mul:
7613 case Instruction::And:
7614 case Instruction::Or:
7615 case Instruction::Xor:
7616 // If we are discarding information, rewrite.
7617 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7618 // Don't insert two casts if they cannot be eliminated. We allow
7619 // two casts to be inserted if the sizes are the same. This could
7620 // only be converting signedness, which is a noop.
7621 if (DestBitSize == SrcBitSize ||
7622 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7623 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7624 Instruction::CastOps opcode = CI.getOpcode();
7625 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7626 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007627 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007628 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7629 }
7630 }
7631
7632 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7633 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7634 SrcI->getOpcode() == Instruction::Xor &&
7635 Op1 == ConstantInt::getTrue() &&
7636 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
7637 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007638 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007639 }
7640 break;
7641 case Instruction::SDiv:
7642 case Instruction::UDiv:
7643 case Instruction::SRem:
7644 case Instruction::URem:
7645 // If we are just changing the sign, rewrite.
7646 if (DestBitSize == SrcBitSize) {
7647 // Don't insert two casts if they cannot be eliminated. We allow
7648 // two casts to be inserted if the sizes are the same. This could
7649 // only be converting signedness, which is a noop.
7650 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7651 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7652 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7653 Op0, DestTy, SrcI);
7654 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7655 Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007656 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007657 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7658 }
7659 }
7660 break;
7661
7662 case Instruction::Shl:
7663 // Allow changing the sign of the source operand. Do not allow
7664 // changing the size of the shift, UNLESS the shift amount is a
7665 // constant. We must not change variable sized shifts to a smaller
7666 // size, because it is undefined to shift more bits out than exist
7667 // in the value.
7668 if (DestBitSize == SrcBitSize ||
7669 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7670 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7671 Instruction::BitCast : Instruction::Trunc);
7672 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7673 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007674 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007675 }
7676 break;
7677 case Instruction::AShr:
7678 // If this is a signed shr, and if all bits shifted in are about to be
7679 // truncated off, turn it into an unsigned shr to allow greater
7680 // simplifications.
7681 if (DestBitSize < SrcBitSize &&
7682 isa<ConstantInt>(Op1)) {
7683 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7684 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7685 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007686 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007687 }
7688 }
7689 break;
7690 }
7691 return 0;
7692}
7693
7694Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7695 if (Instruction *Result = commonIntCastTransforms(CI))
7696 return Result;
7697
7698 Value *Src = CI.getOperand(0);
7699 const Type *Ty = CI.getType();
7700 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7701 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7702
7703 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7704 switch (SrcI->getOpcode()) {
7705 default: break;
7706 case Instruction::LShr:
7707 // We can shrink lshr to something smaller if we know the bits shifted in
7708 // are already zeros.
7709 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7710 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7711
7712 // Get a mask for the bits shifting in.
7713 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7714 Value* SrcIOp0 = SrcI->getOperand(0);
7715 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7716 if (ShAmt >= DestBitWidth) // All zeros.
7717 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7718
7719 // Okay, we can shrink this. Truncate the input, then return a new
7720 // shift.
7721 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7722 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7723 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007724 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007725 }
7726 } else { // This is a variable shr.
7727
7728 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7729 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7730 // loop-invariant and CSE'd.
7731 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
7732 Value *One = ConstantInt::get(SrcI->getType(), 1);
7733
7734 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00007735 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007736 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007737 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007738 SrcI->getOperand(0),
7739 "tmp"), CI);
7740 Value *Zero = Constant::getNullValue(V->getType());
7741 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
7742 }
7743 }
7744 break;
7745 }
7746 }
7747
7748 return 0;
7749}
7750
Evan Chenge3779cf2008-03-24 00:21:34 +00007751/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7752/// in order to eliminate the icmp.
7753Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7754 bool DoXform) {
7755 // If we are just checking for a icmp eq of a single bit and zext'ing it
7756 // to an integer, then shift the bit to the appropriate place and then
7757 // cast to integer to avoid the comparison.
7758 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7759 const APInt &Op1CV = Op1C->getValue();
7760
7761 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7762 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7763 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7764 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7765 if (!DoXform) return ICI;
7766
7767 Value *In = ICI->getOperand(0);
7768 Value *Sh = ConstantInt::get(In->getType(),
7769 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007770 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00007771 In->getName()+".lobit"),
7772 CI);
7773 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007774 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00007775 false/*ZExt*/, "tmp", &CI);
7776
7777 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
7778 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007779 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00007780 In->getName()+".not"),
7781 CI);
7782 }
7783
7784 return ReplaceInstUsesWith(CI, In);
7785 }
7786
7787
7788
7789 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
7790 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7791 // zext (X == 1) to i32 --> X iff X has only the low bit set.
7792 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
7793 // zext (X != 0) to i32 --> X iff X has only the low bit set.
7794 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
7795 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
7796 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7797 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
7798 // This only works for EQ and NE
7799 ICI->isEquality()) {
7800 // If Op1C some other power of two, convert:
7801 uint32_t BitWidth = Op1C->getType()->getBitWidth();
7802 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
7803 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
7804 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
7805
7806 APInt KnownZeroMask(~KnownZero);
7807 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7808 if (!DoXform) return ICI;
7809
7810 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7811 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7812 // (X&4) == 2 --> false
7813 // (X&4) != 2 --> true
7814 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7815 Res = ConstantExpr::getZExt(Res, CI.getType());
7816 return ReplaceInstUsesWith(CI, Res);
7817 }
7818
7819 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7820 Value *In = ICI->getOperand(0);
7821 if (ShiftAmt) {
7822 // Perform a logical shr by shiftamt.
7823 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00007824 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00007825 ConstantInt::get(In->getType(), ShiftAmt),
7826 In->getName()+".lobit"), CI);
7827 }
7828
7829 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
7830 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007831 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00007832 InsertNewInstBefore(cast<Instruction>(In), CI);
7833 }
7834
7835 if (CI.getType() == In->getType())
7836 return ReplaceInstUsesWith(CI, In);
7837 else
Gabor Greifa645dd32008-05-16 19:29:10 +00007838 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00007839 }
7840 }
7841 }
7842
7843 return 0;
7844}
7845
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007846Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
7847 // If one of the common conversion will work ..
7848 if (Instruction *Result = commonIntCastTransforms(CI))
7849 return Result;
7850
7851 Value *Src = CI.getOperand(0);
7852
7853 // If this is a cast of a cast
7854 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7855 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
7856 // types and if the sizes are just right we can convert this into a logical
7857 // 'and' which will be much cheaper than the pair of casts.
7858 if (isa<TruncInst>(CSrc)) {
7859 // Get the sizes of the types involved
7860 Value *A = CSrc->getOperand(0);
7861 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
7862 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
7863 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
7864 // If we're actually extending zero bits and the trunc is a no-op
7865 if (MidSize < DstSize && SrcSize == DstSize) {
7866 // Replace both of the casts with an And of the type mask.
7867 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
7868 Constant *AndConst = ConstantInt::get(AndValue);
7869 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00007870 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007871 // Unfortunately, if the type changed, we need to cast it back.
7872 if (And->getType() != CI.getType()) {
7873 And->setName(CSrc->getName()+".mask");
7874 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007875 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007876 }
7877 return And;
7878 }
7879 }
7880 }
7881
Evan Chenge3779cf2008-03-24 00:21:34 +00007882 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
7883 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007884
Evan Chenge3779cf2008-03-24 00:21:34 +00007885 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
7886 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
7887 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
7888 // of the (zext icmp) will be transformed.
7889 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
7890 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
7891 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
7892 (transformZExtICmp(LHS, CI, false) ||
7893 transformZExtICmp(RHS, CI, false))) {
7894 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
7895 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007896 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007897 }
Evan Chenge3779cf2008-03-24 00:21:34 +00007898 }
7899
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007900 return 0;
7901}
7902
7903Instruction *InstCombiner::visitSExt(SExtInst &CI) {
7904 if (Instruction *I = commonIntCastTransforms(CI))
7905 return I;
7906
7907 Value *Src = CI.getOperand(0);
7908
7909 // sext (x <s 0) -> ashr x, 31 -> all ones if signed
7910 // sext (x >s -1) -> ashr x, 31 -> all ones if not signed
7911 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
7912 // If we are just checking for a icmp eq of a single bit and zext'ing it
7913 // to an integer, then shift the bit to the appropriate place and then
7914 // cast to integer to avoid the comparison.
7915 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7916 const APInt &Op1CV = Op1C->getValue();
7917
7918 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
7919 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
7920 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7921 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
7922 Value *In = ICI->getOperand(0);
7923 Value *Sh = ConstantInt::get(In->getType(),
7924 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007925 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007926 In->getName()+".lobit"),
7927 CI);
7928 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007929 In = CastInst::CreateIntegerCast(In, CI.getType(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007930 true/*SExt*/, "tmp", &CI);
7931
7932 if (ICI->getPredicate() == ICmpInst::ICMP_SGT)
Gabor Greifa645dd32008-05-16 19:29:10 +00007933 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007934 In->getName()+".not"), CI);
7935
7936 return ReplaceInstUsesWith(CI, In);
7937 }
7938 }
7939 }
Dan Gohmanf0f12022008-05-20 21:01:12 +00007940
7941 // See if the value being truncated is already sign extended. If so, just
7942 // eliminate the trunc/sext pair.
7943 if (getOpcode(Src) == Instruction::Trunc) {
7944 Value *Op = cast<User>(Src)->getOperand(0);
7945 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
7946 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
7947 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
7948 unsigned NumSignBits = ComputeNumSignBits(Op);
7949
7950 if (OpBits == DestBits) {
7951 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
7952 // bits, it is already ready.
7953 if (NumSignBits > DestBits-MidBits)
7954 return ReplaceInstUsesWith(CI, Op);
7955 } else if (OpBits < DestBits) {
7956 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
7957 // bits, just sext from i32.
7958 if (NumSignBits > OpBits-MidBits)
7959 return new SExtInst(Op, CI.getType(), "tmp");
7960 } else {
7961 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
7962 // bits, just truncate to i32.
7963 if (NumSignBits > OpBits-MidBits)
7964 return new TruncInst(Op, CI.getType(), "tmp");
7965 }
7966 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00007967
7968 // If the input is a shl/ashr pair of a same constant, then this is a sign
7969 // extension from a smaller value. If we could trust arbitrary bitwidth
7970 // integers, we could turn this into a truncate to the smaller bit and then
7971 // use a sext for the whole extension. Since we don't, look deeper and check
7972 // for a truncate. If the source and dest are the same type, eliminate the
7973 // trunc and extend and just do shifts. For example, turn:
7974 // %a = trunc i32 %i to i8
7975 // %b = shl i8 %a, 6
7976 // %c = ashr i8 %b, 6
7977 // %d = sext i8 %c to i32
7978 // into:
7979 // %a = shl i32 %i, 30
7980 // %d = ashr i32 %a, 30
7981 Value *A = 0;
7982 ConstantInt *BA = 0, *CA = 0;
7983 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
7984 m_ConstantInt(CA))) &&
7985 BA == CA && isa<TruncInst>(A)) {
7986 Value *I = cast<TruncInst>(A)->getOperand(0);
7987 if (I->getType() == CI.getType()) {
7988 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
7989 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
7990 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
7991 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
7992 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
7993 CI.getName()), CI);
7994 return BinaryOperator::CreateAShr(I, ShAmtV);
7995 }
7996 }
7997
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007998 return 0;
7999}
8000
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008001/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8002/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008003static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen6e547b42008-10-09 23:00:39 +00008004 bool losesInfo;
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008005 APFloat F = CFP->getValueAPF();
Dale Johannesen6e547b42008-10-09 23:00:39 +00008006 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8007 if (!losesInfo)
Chris Lattner5e0610f2008-04-20 00:41:09 +00008008 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008009 return 0;
8010}
8011
8012/// LookThroughFPExtensions - If this is an fp extension instruction, look
8013/// through it until we get the source value.
8014static Value *LookThroughFPExtensions(Value *V) {
8015 if (Instruction *I = dyn_cast<Instruction>(V))
8016 if (I->getOpcode() == Instruction::FPExt)
8017 return LookThroughFPExtensions(I->getOperand(0));
8018
8019 // If this value is a constant, return the constant in the smallest FP type
8020 // that can accurately represent it. This allows us to turn
8021 // (float)((double)X+2.0) into x+2.0f.
8022 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8023 if (CFP->getType() == Type::PPC_FP128Ty)
8024 return V; // No constant folding of this.
8025 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008026 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008027 return V;
8028 if (CFP->getType() == Type::DoubleTy)
8029 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008030 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008031 return V;
8032 // Don't try to shrink to various long double types.
8033 }
8034
8035 return V;
8036}
8037
8038Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8039 if (Instruction *I = commonCastTransforms(CI))
8040 return I;
8041
8042 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8043 // smaller than the destination type, we can eliminate the truncate by doing
8044 // the add as the smaller type. This applies to add/sub/mul/div as well as
8045 // many builtins (sqrt, etc).
8046 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8047 if (OpI && OpI->hasOneUse()) {
8048 switch (OpI->getOpcode()) {
8049 default: break;
8050 case Instruction::Add:
8051 case Instruction::Sub:
8052 case Instruction::Mul:
8053 case Instruction::FDiv:
8054 case Instruction::FRem:
8055 const Type *SrcTy = OpI->getType();
8056 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8057 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8058 if (LHSTrunc->getType() != SrcTy &&
8059 RHSTrunc->getType() != SrcTy) {
8060 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8061 // If the source types were both smaller than the destination type of
8062 // the cast, do this xform.
8063 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8064 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8065 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8066 CI.getType(), CI);
8067 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8068 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008069 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008070 }
8071 }
8072 break;
8073 }
8074 }
8075 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008076}
8077
8078Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8079 return commonCastTransforms(CI);
8080}
8081
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008082Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008083 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8084 if (OpI == 0)
8085 return commonCastTransforms(FI);
8086
8087 // fptoui(uitofp(X)) --> X
8088 // fptoui(sitofp(X)) --> X
8089 // This is safe if the intermediate type has enough bits in its mantissa to
8090 // accurately represent all values of X. For example, do not do this with
8091 // i64->float->i64. This is also safe for sitofp case, because any negative
8092 // 'X' value would cause an undefined result for the fptoui.
8093 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8094 OpI->getOperand(0)->getType() == FI.getType() &&
8095 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8096 OpI->getType()->getFPMantissaWidth())
8097 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008098
8099 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008100}
8101
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008102Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008103 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8104 if (OpI == 0)
8105 return commonCastTransforms(FI);
8106
8107 // fptosi(sitofp(X)) --> X
8108 // fptosi(uitofp(X)) --> X
8109 // This is safe if the intermediate type has enough bits in its mantissa to
8110 // accurately represent all values of X. For example, do not do this with
8111 // i64->float->i64. This is also safe for sitofp case, because any negative
8112 // 'X' value would cause an undefined result for the fptoui.
8113 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8114 OpI->getOperand(0)->getType() == FI.getType() &&
8115 (int)FI.getType()->getPrimitiveSizeInBits() <=
8116 OpI->getType()->getFPMantissaWidth())
8117 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008118
8119 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008120}
8121
8122Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8123 return commonCastTransforms(CI);
8124}
8125
8126Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8127 return commonCastTransforms(CI);
8128}
8129
8130Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
8131 return commonPointerCastTransforms(CI);
8132}
8133
Chris Lattner7c1626482008-01-08 07:23:51 +00008134Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8135 if (Instruction *I = commonCastTransforms(CI))
8136 return I;
8137
8138 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8139 if (!DestPointee->isSized()) return 0;
8140
8141 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8142 ConstantInt *Cst;
8143 Value *X;
8144 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8145 m_ConstantInt(Cst)))) {
8146 // If the source and destination operands have the same type, see if this
8147 // is a single-index GEP.
8148 if (X->getType() == CI.getType()) {
8149 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00008150 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008151
8152 // Convert the constant to intptr type.
8153 APInt Offset = Cst->getValue();
8154 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8155
8156 // If Offset is evenly divisible by Size, we can do this xform.
8157 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8158 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00008159 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00008160 }
8161 }
8162 // TODO: Could handle other cases, e.g. where add is indexing into field of
8163 // struct etc.
8164 } else if (CI.getOperand(0)->hasOneUse() &&
8165 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8166 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8167 // "inttoptr+GEP" instead of "add+intptr".
8168
8169 // Get the size of the pointee type.
8170 uint64_t Size = TD->getABITypeSize(DestPointee);
8171
8172 // Convert the constant to intptr type.
8173 APInt Offset = Cst->getValue();
8174 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8175
8176 // If Offset is evenly divisible by Size, we can do this xform.
8177 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8178 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8179
8180 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8181 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008182 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00008183 }
8184 }
8185 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008186}
8187
8188Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8189 // If the operands are integer typed then apply the integer transforms,
8190 // otherwise just apply the common ones.
8191 Value *Src = CI.getOperand(0);
8192 const Type *SrcTy = Src->getType();
8193 const Type *DestTy = CI.getType();
8194
8195 if (SrcTy->isInteger() && DestTy->isInteger()) {
8196 if (Instruction *Result = commonIntCastTransforms(CI))
8197 return Result;
8198 } else if (isa<PointerType>(SrcTy)) {
8199 if (Instruction *I = commonPointerCastTransforms(CI))
8200 return I;
8201 } else {
8202 if (Instruction *Result = commonCastTransforms(CI))
8203 return Result;
8204 }
8205
8206
8207 // Get rid of casts from one type to the same type. These are useless and can
8208 // be replaced by the operand.
8209 if (DestTy == Src->getType())
8210 return ReplaceInstUsesWith(CI, Src);
8211
8212 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8213 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8214 const Type *DstElTy = DstPTy->getElementType();
8215 const Type *SrcElTy = SrcPTy->getElementType();
8216
Nate Begemandf5b3612008-03-31 00:22:16 +00008217 // If the address spaces don't match, don't eliminate the bitcast, which is
8218 // required for changing types.
8219 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8220 return 0;
8221
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008222 // If we are casting a malloc or alloca to a pointer to a type of the same
8223 // size, rewrite the allocation instruction to allocate the "right" type.
8224 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8225 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8226 return V;
8227
8228 // If the source and destination are pointers, and this cast is equivalent
8229 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8230 // This can enhance SROA and other transforms that want type-safe pointers.
8231 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8232 unsigned NumZeros = 0;
8233 while (SrcElTy != DstElTy &&
8234 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8235 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8236 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8237 ++NumZeros;
8238 }
8239
8240 // If we found a path from the src to dest, create the getelementptr now.
8241 if (SrcElTy == DstElTy) {
8242 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008243 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8244 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008245 }
8246 }
8247
8248 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8249 if (SVI->hasOneUse()) {
8250 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8251 // a bitconvert to a vector with the same # elts.
8252 if (isa<VectorType>(DestTy) &&
8253 cast<VectorType>(DestTy)->getNumElements() ==
8254 SVI->getType()->getNumElements()) {
8255 CastInst *Tmp;
8256 // If either of the operands is a cast from CI.getType(), then
8257 // evaluating the shuffle in the casted destination's type will allow
8258 // us to eliminate at least one cast.
8259 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8260 Tmp->getOperand(0)->getType() == DestTy) ||
8261 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8262 Tmp->getOperand(0)->getType() == DestTy)) {
8263 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
8264 SVI->getOperand(0), DestTy, &CI);
8265 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
8266 SVI->getOperand(1), DestTy, &CI);
8267 // Return a new shuffle vector. Use the same element ID's, as we
8268 // know the vector types match #elts.
8269 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8270 }
8271 }
8272 }
8273 }
8274 return 0;
8275}
8276
8277/// GetSelectFoldableOperands - We want to turn code that looks like this:
8278/// %C = or %A, %B
8279/// %D = select %cond, %C, %A
8280/// into:
8281/// %C = select %cond, %B, 0
8282/// %D = or %A, %C
8283///
8284/// Assuming that the specified instruction is an operand to the select, return
8285/// a bitmask indicating which operands of this instruction are foldable if they
8286/// equal the other incoming value of the select.
8287///
8288static unsigned GetSelectFoldableOperands(Instruction *I) {
8289 switch (I->getOpcode()) {
8290 case Instruction::Add:
8291 case Instruction::Mul:
8292 case Instruction::And:
8293 case Instruction::Or:
8294 case Instruction::Xor:
8295 return 3; // Can fold through either operand.
8296 case Instruction::Sub: // Can only fold on the amount subtracted.
8297 case Instruction::Shl: // Can only fold on the shift amount.
8298 case Instruction::LShr:
8299 case Instruction::AShr:
8300 return 1;
8301 default:
8302 return 0; // Cannot fold
8303 }
8304}
8305
8306/// GetSelectFoldableConstant - For the same transformation as the previous
8307/// function, return the identity constant that goes into the select.
8308static Constant *GetSelectFoldableConstant(Instruction *I) {
8309 switch (I->getOpcode()) {
8310 default: assert(0 && "This cannot happen!"); abort();
8311 case Instruction::Add:
8312 case Instruction::Sub:
8313 case Instruction::Or:
8314 case Instruction::Xor:
8315 case Instruction::Shl:
8316 case Instruction::LShr:
8317 case Instruction::AShr:
8318 return Constant::getNullValue(I->getType());
8319 case Instruction::And:
8320 return Constant::getAllOnesValue(I->getType());
8321 case Instruction::Mul:
8322 return ConstantInt::get(I->getType(), 1);
8323 }
8324}
8325
8326/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8327/// have the same opcode and only one use each. Try to simplify this.
8328Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8329 Instruction *FI) {
8330 if (TI->getNumOperands() == 1) {
8331 // If this is a non-volatile load or a cast from the same type,
8332 // merge.
8333 if (TI->isCast()) {
8334 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8335 return 0;
8336 } else {
8337 return 0; // unknown unary op.
8338 }
8339
8340 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008341 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8342 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008343 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008344 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008345 TI->getType());
8346 }
8347
8348 // Only handle binary operators here.
8349 if (!isa<BinaryOperator>(TI))
8350 return 0;
8351
8352 // Figure out if the operations have any operands in common.
8353 Value *MatchOp, *OtherOpT, *OtherOpF;
8354 bool MatchIsOpZero;
8355 if (TI->getOperand(0) == FI->getOperand(0)) {
8356 MatchOp = TI->getOperand(0);
8357 OtherOpT = TI->getOperand(1);
8358 OtherOpF = FI->getOperand(1);
8359 MatchIsOpZero = true;
8360 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8361 MatchOp = TI->getOperand(1);
8362 OtherOpT = TI->getOperand(0);
8363 OtherOpF = FI->getOperand(0);
8364 MatchIsOpZero = false;
8365 } else if (!TI->isCommutative()) {
8366 return 0;
8367 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8368 MatchOp = TI->getOperand(0);
8369 OtherOpT = TI->getOperand(1);
8370 OtherOpF = FI->getOperand(0);
8371 MatchIsOpZero = true;
8372 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8373 MatchOp = TI->getOperand(1);
8374 OtherOpT = TI->getOperand(0);
8375 OtherOpF = FI->getOperand(1);
8376 MatchIsOpZero = true;
8377 } else {
8378 return 0;
8379 }
8380
8381 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008382 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8383 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008384 InsertNewInstBefore(NewSI, SI);
8385
8386 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8387 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008388 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008389 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008390 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008391 }
8392 assert(0 && "Shouldn't get here");
8393 return 0;
8394}
8395
Dan Gohman58c09632008-09-16 18:46:06 +00008396/// visitSelectInstWithICmp - Visit a SelectInst that has an
8397/// ICmpInst as its first operand.
8398///
8399Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8400 ICmpInst *ICI) {
8401 bool Changed = false;
8402 ICmpInst::Predicate Pred = ICI->getPredicate();
8403 Value *CmpLHS = ICI->getOperand(0);
8404 Value *CmpRHS = ICI->getOperand(1);
8405 Value *TrueVal = SI.getTrueValue();
8406 Value *FalseVal = SI.getFalseValue();
8407
8408 // Check cases where the comparison is with a constant that
8409 // can be adjusted to fit the min/max idiom. We may edit ICI in
8410 // place here, so make sure the select is the only user.
8411 if (ICI->hasOneUse())
8412 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
8413 switch (Pred) {
8414 default: break;
8415 case ICmpInst::ICMP_ULT:
8416 case ICmpInst::ICMP_SLT: {
8417 // X < MIN ? T : F --> F
8418 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8419 return ReplaceInstUsesWith(SI, FalseVal);
8420 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8421 Constant *AdjustedRHS = SubOne(CI);
8422 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8423 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8424 Pred = ICmpInst::getSwappedPredicate(Pred);
8425 CmpRHS = AdjustedRHS;
8426 std::swap(FalseVal, TrueVal);
8427 ICI->setPredicate(Pred);
8428 ICI->setOperand(1, CmpRHS);
8429 SI.setOperand(1, TrueVal);
8430 SI.setOperand(2, FalseVal);
8431 Changed = true;
8432 }
8433 break;
8434 }
8435 case ICmpInst::ICMP_UGT:
8436 case ICmpInst::ICMP_SGT: {
8437 // X > MAX ? T : F --> F
8438 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8439 return ReplaceInstUsesWith(SI, FalseVal);
8440 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8441 Constant *AdjustedRHS = AddOne(CI);
8442 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8443 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8444 Pred = ICmpInst::getSwappedPredicate(Pred);
8445 CmpRHS = AdjustedRHS;
8446 std::swap(FalseVal, TrueVal);
8447 ICI->setPredicate(Pred);
8448 ICI->setOperand(1, CmpRHS);
8449 SI.setOperand(1, TrueVal);
8450 SI.setOperand(2, FalseVal);
8451 Changed = true;
8452 }
8453 break;
8454 }
8455 }
8456
8457 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8458 // Transform (X == Y) ? X : Y -> Y
8459 if (Pred == ICmpInst::ICMP_EQ)
8460 return ReplaceInstUsesWith(SI, FalseVal);
8461 // Transform (X != Y) ? X : Y -> X
8462 if (Pred == ICmpInst::ICMP_NE)
8463 return ReplaceInstUsesWith(SI, TrueVal);
8464 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8465
8466 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8467 // Transform (X == Y) ? Y : X -> X
8468 if (Pred == ICmpInst::ICMP_EQ)
8469 return ReplaceInstUsesWith(SI, FalseVal);
8470 // Transform (X != Y) ? Y : X -> Y
8471 if (Pred == ICmpInst::ICMP_NE)
8472 return ReplaceInstUsesWith(SI, TrueVal);
8473 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8474 }
8475
8476 /// NOTE: if we wanted to, this is where to detect integer ABS
8477
8478 return Changed ? &SI : 0;
8479}
8480
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008481Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8482 Value *CondVal = SI.getCondition();
8483 Value *TrueVal = SI.getTrueValue();
8484 Value *FalseVal = SI.getFalseValue();
8485
8486 // select true, X, Y -> X
8487 // select false, X, Y -> Y
8488 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8489 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8490
8491 // select C, X, X -> X
8492 if (TrueVal == FalseVal)
8493 return ReplaceInstUsesWith(SI, TrueVal);
8494
8495 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8496 return ReplaceInstUsesWith(SI, FalseVal);
8497 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8498 return ReplaceInstUsesWith(SI, TrueVal);
8499 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8500 if (isa<Constant>(TrueVal))
8501 return ReplaceInstUsesWith(SI, TrueVal);
8502 else
8503 return ReplaceInstUsesWith(SI, FalseVal);
8504 }
8505
8506 if (SI.getType() == Type::Int1Ty) {
8507 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8508 if (C->getZExtValue()) {
8509 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008510 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008511 } else {
8512 // Change: A = select B, false, C --> A = and !B, C
8513 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008514 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008515 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008516 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008517 }
8518 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8519 if (C->getZExtValue() == false) {
8520 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008521 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008522 } else {
8523 // Change: A = select B, C, true --> A = or !B, C
8524 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008525 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008526 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008527 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008528 }
8529 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008530
8531 // select a, b, a -> a&b
8532 // select a, a, b -> a|b
8533 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008534 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008535 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008536 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008537 }
8538
8539 // Selecting between two integer constants?
8540 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8541 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8542 // select C, 1, 0 -> zext C to int
8543 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008544 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008545 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8546 // select C, 0, 1 -> zext !C to int
8547 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008548 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008549 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008550 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008551 }
8552
8553 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
8554
8555 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8556
8557 // (x <s 0) ? -1 : 0 -> ashr x, 31
8558 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8559 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8560 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8561 // The comparison constant and the result are not neccessarily the
8562 // same width. Make an all-ones value by inserting a AShr.
8563 Value *X = IC->getOperand(0);
8564 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8565 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008566 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008567 ShAmt, "ones");
8568 InsertNewInstBefore(SRA, SI);
8569
8570 // Finally, convert to the type of the select RHS. We figure out
8571 // if this requires a SExt, Trunc or BitCast based on the sizes.
8572 Instruction::CastOps opc = Instruction::BitCast;
8573 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8574 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
8575 if (SRASize < SISize)
8576 opc = Instruction::SExt;
8577 else if (SRASize > SISize)
8578 opc = Instruction::Trunc;
Gabor Greifa645dd32008-05-16 19:29:10 +00008579 return CastInst::Create(opc, SRA, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008580 }
8581 }
8582
8583
8584 // If one of the constants is zero (we know they can't both be) and we
8585 // have an icmp instruction with zero, and we have an 'and' with the
8586 // non-constant value, eliminate this whole mess. This corresponds to
8587 // cases like this: ((X & 27) ? 27 : 0)
8588 if (TrueValC->isZero() || FalseValC->isZero())
8589 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8590 cast<Constant>(IC->getOperand(1))->isNullValue())
8591 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8592 if (ICA->getOpcode() == Instruction::And &&
8593 isa<ConstantInt>(ICA->getOperand(1)) &&
8594 (ICA->getOperand(1) == TrueValC ||
8595 ICA->getOperand(1) == FalseValC) &&
8596 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8597 // Okay, now we know that everything is set up, we just don't
8598 // know whether we have a icmp_ne or icmp_eq and whether the
8599 // true or false val is the zero.
8600 bool ShouldNotVal = !TrueValC->isZero();
8601 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8602 Value *V = ICA;
8603 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008604 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008605 Instruction::Xor, V, ICA->getOperand(1)), SI);
8606 return ReplaceInstUsesWith(SI, V);
8607 }
8608 }
8609 }
8610
8611 // See if we are selecting two values based on a comparison of the two values.
8612 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8613 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8614 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008615 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8616 // This is not safe in general for floating point:
8617 // consider X== -0, Y== +0.
8618 // It becomes safe if either operand is a nonzero constant.
8619 ConstantFP *CFPt, *CFPf;
8620 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8621 !CFPt->getValueAPF().isZero()) ||
8622 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8623 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008624 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008625 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008626 // Transform (X != Y) ? X : Y -> X
8627 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8628 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008629 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008630
8631 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8632 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008633 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8634 // This is not safe in general for floating point:
8635 // consider X== -0, Y== +0.
8636 // It becomes safe if either operand is a nonzero constant.
8637 ConstantFP *CFPt, *CFPf;
8638 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8639 !CFPt->getValueAPF().isZero()) ||
8640 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8641 !CFPf->getValueAPF().isZero()))
8642 return ReplaceInstUsesWith(SI, FalseVal);
8643 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008644 // Transform (X != Y) ? Y : X -> Y
8645 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8646 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008647 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008648 }
Dan Gohman58c09632008-09-16 18:46:06 +00008649 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008650 }
8651
8652 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008653 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8654 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8655 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008656
8657 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8658 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8659 if (TI->hasOneUse() && FI->hasOneUse()) {
8660 Instruction *AddOp = 0, *SubOp = 0;
8661
8662 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8663 if (TI->getOpcode() == FI->getOpcode())
8664 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8665 return IV;
8666
8667 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8668 // even legal for FP.
8669 if (TI->getOpcode() == Instruction::Sub &&
8670 FI->getOpcode() == Instruction::Add) {
8671 AddOp = FI; SubOp = TI;
8672 } else if (FI->getOpcode() == Instruction::Sub &&
8673 TI->getOpcode() == Instruction::Add) {
8674 AddOp = TI; SubOp = FI;
8675 }
8676
8677 if (AddOp) {
8678 Value *OtherAddOp = 0;
8679 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8680 OtherAddOp = AddOp->getOperand(1);
8681 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8682 OtherAddOp = AddOp->getOperand(0);
8683 }
8684
8685 if (OtherAddOp) {
8686 // So at this point we know we have (Y -> OtherAddOp):
8687 // select C, (add X, Y), (sub X, Z)
8688 Value *NegVal; // Compute -Z
8689 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8690 NegVal = ConstantExpr::getNeg(C);
8691 } else {
8692 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008693 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008694 }
8695
8696 Value *NewTrueOp = OtherAddOp;
8697 Value *NewFalseOp = NegVal;
8698 if (AddOp != TI)
8699 std::swap(NewTrueOp, NewFalseOp);
8700 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008701 SelectInst::Create(CondVal, NewTrueOp,
8702 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008703
8704 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008705 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008706 }
8707 }
8708 }
8709
8710 // See if we can fold the select into one of our operands.
8711 if (SI.getType()->isInteger()) {
8712 // See the comment above GetSelectFoldableOperands for a description of the
8713 // transformation we are doing here.
8714 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8715 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8716 !isa<Constant>(FalseVal))
8717 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8718 unsigned OpToFold = 0;
8719 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8720 OpToFold = 1;
8721 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8722 OpToFold = 2;
8723 }
8724
8725 if (OpToFold) {
8726 Constant *C = GetSelectFoldableConstant(TVI);
8727 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008728 SelectInst::Create(SI.getCondition(),
8729 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008730 InsertNewInstBefore(NewSel, SI);
8731 NewSel->takeName(TVI);
8732 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008733 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008734 else {
8735 assert(0 && "Unknown instruction!!");
8736 }
8737 }
8738 }
8739
8740 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8741 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8742 !isa<Constant>(TrueVal))
8743 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8744 unsigned OpToFold = 0;
8745 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8746 OpToFold = 1;
8747 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8748 OpToFold = 2;
8749 }
8750
8751 if (OpToFold) {
8752 Constant *C = GetSelectFoldableConstant(FVI);
8753 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008754 SelectInst::Create(SI.getCondition(), C,
8755 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008756 InsertNewInstBefore(NewSel, SI);
8757 NewSel->takeName(FVI);
8758 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008759 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008760 else
8761 assert(0 && "Unknown instruction!!");
8762 }
8763 }
8764 }
8765
8766 if (BinaryOperator::isNot(CondVal)) {
8767 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
8768 SI.setOperand(1, FalseVal);
8769 SI.setOperand(2, TrueVal);
8770 return &SI;
8771 }
8772
8773 return 0;
8774}
8775
Dan Gohman2d648bb2008-04-10 18:43:06 +00008776/// EnforceKnownAlignment - If the specified pointer points to an object that
8777/// we control, modify the object's alignment to PrefAlign. This isn't
8778/// often possible though. If alignment is important, a more reliable approach
8779/// is to simply align all global variables and allocation instructions to
8780/// their preferred alignment from the beginning.
8781///
8782static unsigned EnforceKnownAlignment(Value *V,
8783 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00008784
Dan Gohman2d648bb2008-04-10 18:43:06 +00008785 User *U = dyn_cast<User>(V);
8786 if (!U) return Align;
8787
8788 switch (getOpcode(U)) {
8789 default: break;
8790 case Instruction::BitCast:
8791 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8792 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008793 // If all indexes are zero, it is just the alignment of the base pointer.
8794 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00008795 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00008796 if (!isa<Constant>(*i) ||
8797 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008798 AllZeroOperands = false;
8799 break;
8800 }
Chris Lattner47cf3452007-08-09 19:05:49 +00008801
8802 if (AllZeroOperands) {
8803 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008804 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00008805 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008806 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008807 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008808 }
8809
8810 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
8811 // If there is a large requested alignment and we can, bump up the alignment
8812 // of the global.
8813 if (!GV->isDeclaration()) {
8814 GV->setAlignment(PrefAlign);
8815 Align = PrefAlign;
8816 }
8817 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
8818 // If there is a requested alignment and if this is an alloca, round up. We
8819 // don't do this for malloc, because some systems can't respect the request.
8820 if (isa<AllocaInst>(AI)) {
8821 AI->setAlignment(PrefAlign);
8822 Align = PrefAlign;
8823 }
8824 }
8825
8826 return Align;
8827}
8828
8829/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
8830/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
8831/// and it is more than the alignment of the ultimate object, see if we can
8832/// increase the alignment of the ultimate object, making this check succeed.
8833unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
8834 unsigned PrefAlign) {
8835 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
8836 sizeof(PrefAlign) * CHAR_BIT;
8837 APInt Mask = APInt::getAllOnesValue(BitWidth);
8838 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8839 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
8840 unsigned TrailZ = KnownZero.countTrailingOnes();
8841 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
8842
8843 if (PrefAlign > Align)
8844 Align = EnforceKnownAlignment(V, Align, PrefAlign);
8845
8846 // We don't need to make any adjustment.
8847 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008848}
8849
Chris Lattner00ae5132008-01-13 23:50:23 +00008850Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00008851 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
8852 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00008853 unsigned MinAlign = std::min(DstAlign, SrcAlign);
8854 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
8855
8856 if (CopyAlign < MinAlign) {
8857 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
8858 return MI;
8859 }
8860
8861 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
8862 // load/store.
8863 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
8864 if (MemOpLength == 0) return 0;
8865
Chris Lattnerc669fb62008-01-14 00:28:35 +00008866 // Source and destination pointer types are always "i8*" for intrinsic. See
8867 // if the size is something we can handle with a single primitive load/store.
8868 // A single load+store correctly handles overlapping memory in the memmove
8869 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00008870 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00008871 if (Size == 0) return MI; // Delete this mem transfer.
8872
8873 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00008874 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00008875
Chris Lattnerc669fb62008-01-14 00:28:35 +00008876 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00008877 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00008878
8879 // Memcpy forces the use of i8* for the source and destination. That means
8880 // that if you're using memcpy to move one double around, you'll get a cast
8881 // from double* to i8*. We'd much rather use a double load+store rather than
8882 // an i64 load+store, here because this improves the odds that the source or
8883 // dest address will be promotable. See if we can find a better type than the
8884 // integer datatype.
8885 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
8886 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
8887 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
8888 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
8889 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00008890 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00008891 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
8892 if (STy->getNumElements() == 1)
8893 SrcETy = STy->getElementType(0);
8894 else
8895 break;
8896 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
8897 if (ATy->getNumElements() == 1)
8898 SrcETy = ATy->getElementType();
8899 else
8900 break;
8901 } else
8902 break;
8903 }
8904
Dan Gohmanb8e94f62008-05-23 01:52:21 +00008905 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00008906 NewPtrTy = PointerType::getUnqual(SrcETy);
8907 }
8908 }
8909
8910
Chris Lattner00ae5132008-01-13 23:50:23 +00008911 // If the memcpy/memmove provides better alignment info than we can
8912 // infer, use it.
8913 SrcAlign = std::max(SrcAlign, CopyAlign);
8914 DstAlign = std::max(DstAlign, CopyAlign);
8915
8916 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
8917 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00008918 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
8919 InsertNewInstBefore(L, *MI);
8920 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
8921
8922 // Set the size of the copy to 0, it will be deleted on the next iteration.
8923 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
8924 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00008925}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008926
Chris Lattner5af8a912008-04-30 06:39:11 +00008927Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
8928 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
8929 if (MI->getAlignment()->getZExtValue() < Alignment) {
8930 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
8931 return MI;
8932 }
8933
8934 // Extract the length and alignment and fill if they are constant.
8935 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
8936 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
8937 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
8938 return 0;
8939 uint64_t Len = LenC->getZExtValue();
8940 Alignment = MI->getAlignment()->getZExtValue();
8941
8942 // If the length is zero, this is a no-op
8943 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
8944
8945 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
8946 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
8947 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
8948
8949 Value *Dest = MI->getDest();
8950 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
8951
8952 // Alignment 0 is identity for alignment 1 for memset, but not store.
8953 if (Alignment == 0) Alignment = 1;
8954
8955 // Extract the fill value and store.
8956 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
8957 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
8958 Alignment), *MI);
8959
8960 // Set the size of the copy to 0, it will be deleted on the next iteration.
8961 MI->setLength(Constant::getNullValue(LenC->getType()));
8962 return MI;
8963 }
8964
8965 return 0;
8966}
8967
8968
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008969/// visitCallInst - CallInst simplification. This mostly only handles folding
8970/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
8971/// the heavy lifting.
8972///
8973Instruction *InstCombiner::visitCallInst(CallInst &CI) {
8974 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
8975 if (!II) return visitCallSite(&CI);
8976
8977 // Intrinsics cannot occur in an invoke, so handle them here instead of in
8978 // visitCallSite.
8979 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
8980 bool Changed = false;
8981
8982 // memmove/cpy/set of zero bytes is a noop.
8983 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
8984 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
8985
8986 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
8987 if (CI->getZExtValue() == 1) {
8988 // Replace the instruction with just byte operations. We would
8989 // transform other cases to loads/stores, but we don't know if
8990 // alignment is sufficient.
8991 }
8992 }
8993
8994 // If we have a memmove and the source operation is a constant global,
8995 // then the source and dest pointers can't alias, so we can change this
8996 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00008997 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008998 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
8999 if (GVSrc->isConstant()) {
9000 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00009001 Intrinsic::ID MemCpyID;
9002 if (CI.getOperand(3)->getType() == Type::Int32Ty)
9003 MemCpyID = Intrinsic::memcpy_i32;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009004 else
Chris Lattner13c2d6e2008-01-13 22:23:22 +00009005 MemCpyID = Intrinsic::memcpy_i64;
9006 CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009007 Changed = true;
9008 }
Chris Lattner59b27d92008-05-28 05:30:41 +00009009
9010 // memmove(x,x,size) -> noop.
9011 if (MMI->getSource() == MMI->getDest())
9012 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009013 }
9014
9015 // If we can determine a pointer alignment that is bigger than currently
9016 // set, update the alignment.
9017 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00009018 if (Instruction *I = SimplifyMemTransfer(MI))
9019 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00009020 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9021 if (Instruction *I = SimplifyMemSet(MSI))
9022 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009023 }
9024
9025 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00009026 }
9027
9028 switch (II->getIntrinsicID()) {
9029 default: break;
9030 case Intrinsic::bswap:
9031 // bswap(bswap(x)) -> x
9032 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9033 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9034 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9035 break;
9036 case Intrinsic::ppc_altivec_lvx:
9037 case Intrinsic::ppc_altivec_lvxl:
9038 case Intrinsic::x86_sse_loadu_ps:
9039 case Intrinsic::x86_sse2_loadu_pd:
9040 case Intrinsic::x86_sse2_loadu_dq:
9041 // Turn PPC lvx -> load if the pointer is known aligned.
9042 // Turn X86 loadups -> load if the pointer is known aligned.
9043 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9044 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9045 PointerType::getUnqual(II->getType()),
9046 CI);
9047 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009048 }
Chris Lattner989ba312008-06-18 04:33:20 +00009049 break;
9050 case Intrinsic::ppc_altivec_stvx:
9051 case Intrinsic::ppc_altivec_stvxl:
9052 // Turn stvx -> store if the pointer is known aligned.
9053 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9054 const Type *OpPtrTy =
9055 PointerType::getUnqual(II->getOperand(1)->getType());
9056 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9057 return new StoreInst(II->getOperand(1), Ptr);
9058 }
9059 break;
9060 case Intrinsic::x86_sse_storeu_ps:
9061 case Intrinsic::x86_sse2_storeu_pd:
9062 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00009063 // Turn X86 storeu -> store if the pointer is known aligned.
9064 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9065 const Type *OpPtrTy =
9066 PointerType::getUnqual(II->getOperand(2)->getType());
9067 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9068 return new StoreInst(II->getOperand(2), Ptr);
9069 }
9070 break;
9071
9072 case Intrinsic::x86_sse_cvttss2si: {
9073 // These intrinsics only demands the 0th element of its input vector. If
9074 // we can simplify the input based on that, do so now.
9075 uint64_t UndefElts;
9076 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9077 UndefElts)) {
9078 II->setOperand(1, V);
9079 return II;
9080 }
9081 break;
9082 }
9083
9084 case Intrinsic::ppc_altivec_vperm:
9085 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9086 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9087 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009088
Chris Lattner989ba312008-06-18 04:33:20 +00009089 // Check that all of the elements are integer constants or undefs.
9090 bool AllEltsOk = true;
9091 for (unsigned i = 0; i != 16; ++i) {
9092 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9093 !isa<UndefValue>(Mask->getOperand(i))) {
9094 AllEltsOk = false;
9095 break;
9096 }
9097 }
9098
9099 if (AllEltsOk) {
9100 // Cast the input vectors to byte vectors.
9101 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9102 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9103 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009104
Chris Lattner989ba312008-06-18 04:33:20 +00009105 // Only extract each element once.
9106 Value *ExtractedElts[32];
9107 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9108
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009109 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00009110 if (isa<UndefValue>(Mask->getOperand(i)))
9111 continue;
9112 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9113 Idx &= 31; // Match the hardware behavior.
9114
9115 if (ExtractedElts[Idx] == 0) {
9116 Instruction *Elt =
9117 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9118 InsertNewInstBefore(Elt, CI);
9119 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009120 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009121
Chris Lattner989ba312008-06-18 04:33:20 +00009122 // Insert this value into the result vector.
9123 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9124 i, "tmp");
9125 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009126 }
Chris Lattner989ba312008-06-18 04:33:20 +00009127 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009128 }
Chris Lattner989ba312008-06-18 04:33:20 +00009129 }
9130 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009131
Chris Lattner989ba312008-06-18 04:33:20 +00009132 case Intrinsic::stackrestore: {
9133 // If the save is right next to the restore, remove the restore. This can
9134 // happen when variable allocas are DCE'd.
9135 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9136 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9137 BasicBlock::iterator BI = SS;
9138 if (&*++BI == II)
9139 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009140 }
Chris Lattner989ba312008-06-18 04:33:20 +00009141 }
9142
9143 // Scan down this block to see if there is another stack restore in the
9144 // same block without an intervening call/alloca.
9145 BasicBlock::iterator BI = II;
9146 TerminatorInst *TI = II->getParent()->getTerminator();
9147 bool CannotRemove = false;
9148 for (++BI; &*BI != TI; ++BI) {
9149 if (isa<AllocaInst>(BI)) {
9150 CannotRemove = true;
9151 break;
9152 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00009153 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9154 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9155 // If there is a stackrestore below this one, remove this one.
9156 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9157 return EraseInstFromFunction(CI);
9158 // Otherwise, ignore the intrinsic.
9159 } else {
9160 // If we found a non-intrinsic call, we can't remove the stack
9161 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00009162 CannotRemove = true;
9163 break;
9164 }
Chris Lattner989ba312008-06-18 04:33:20 +00009165 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009166 }
Chris Lattner989ba312008-06-18 04:33:20 +00009167
9168 // If the stack restore is in a return/unwind block and if there are no
9169 // allocas or calls between the restore and the return, nuke the restore.
9170 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9171 return EraseInstFromFunction(CI);
9172 break;
9173 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009174 }
9175
9176 return visitCallSite(II);
9177}
9178
9179// InvokeInst simplification
9180//
9181Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9182 return visitCallSite(&II);
9183}
9184
Dale Johannesen96021832008-04-25 21:16:07 +00009185/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9186/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00009187static bool isSafeToEliminateVarargsCast(const CallSite CS,
9188 const CastInst * const CI,
9189 const TargetData * const TD,
9190 const int ix) {
9191 if (!CI->isLosslessCast())
9192 return false;
9193
9194 // The size of ByVal arguments is derived from the type, so we
9195 // can't change to a type with a different size. If the size were
9196 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009197 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009198 return true;
9199
9200 const Type* SrcTy =
9201 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9202 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9203 if (!SrcTy->isSized() || !DstTy->isSized())
9204 return false;
9205 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9206 return false;
9207 return true;
9208}
9209
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009210// visitCallSite - Improvements for call and invoke instructions.
9211//
9212Instruction *InstCombiner::visitCallSite(CallSite CS) {
9213 bool Changed = false;
9214
9215 // If the callee is a constexpr cast of a function, attempt to move the cast
9216 // to the arguments of the call/invoke.
9217 if (transformConstExprCastCall(CS)) return 0;
9218
9219 Value *Callee = CS.getCalledValue();
9220
9221 if (Function *CalleeF = dyn_cast<Function>(Callee))
9222 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9223 Instruction *OldCall = CS.getInstruction();
9224 // If the call and callee calling conventions don't match, this call must
9225 // be unreachable, as the call is undefined.
9226 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009227 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9228 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009229 if (!OldCall->use_empty())
9230 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9231 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9232 return EraseInstFromFunction(*OldCall);
9233 return 0;
9234 }
9235
9236 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9237 // This instruction is not reachable, just remove it. We insert a store to
9238 // undef so that we know that this code is not reachable, despite the fact
9239 // that we can't modify the CFG here.
9240 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009241 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009242 CS.getInstruction());
9243
9244 if (!CS.getInstruction()->use_empty())
9245 CS.getInstruction()->
9246 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9247
9248 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9249 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009250 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9251 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009252 }
9253 return EraseInstFromFunction(*CS.getInstruction());
9254 }
9255
Duncan Sands74833f22007-09-17 10:26:40 +00009256 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9257 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9258 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9259 return transformCallThroughTrampoline(CS);
9260
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009261 const PointerType *PTy = cast<PointerType>(Callee->getType());
9262 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9263 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009264 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009265 // See if we can optimize any arguments passed through the varargs area of
9266 // the call.
9267 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009268 E = CS.arg_end(); I != E; ++I, ++ix) {
9269 CastInst *CI = dyn_cast<CastInst>(*I);
9270 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9271 *I = CI->getOperand(0);
9272 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009273 }
Dale Johannesen35615462008-04-23 18:34:37 +00009274 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009275 }
9276
Duncan Sands2937e352007-12-19 21:13:37 +00009277 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009278 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009279 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009280 Changed = true;
9281 }
9282
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009283 return Changed ? CS.getInstruction() : 0;
9284}
9285
9286// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9287// attempt to move the cast to the arguments of the call/invoke.
9288//
9289bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9290 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9291 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9292 if (CE->getOpcode() != Instruction::BitCast ||
9293 !isa<Function>(CE->getOperand(0)))
9294 return false;
9295 Function *Callee = cast<Function>(CE->getOperand(0));
9296 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009297 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009298
9299 // Okay, this is a cast from a function to a different type. Unless doing so
9300 // would cause a type conversion of one of our arguments, change this call to
9301 // be a direct call with arguments casted to the appropriate types.
9302 //
9303 const FunctionType *FT = Callee->getFunctionType();
9304 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009305 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009306
Duncan Sands7901ce12008-06-01 07:38:42 +00009307 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009308 return false; // TODO: Handle multiple return values.
9309
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009310 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009311 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009312 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009313 // Conversion is ok if changing from one pointer type to another or from
9314 // a pointer to an integer of the same size.
9315 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009316 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009317 return false; // Cannot transform this return value.
9318
Duncan Sands5c489582008-01-06 10:12:28 +00009319 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009320 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009321 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009322 return false; // Cannot transform this return value.
9323
Chris Lattner1c8733e2008-03-12 17:45:29 +00009324 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009325 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009326 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009327 return false; // Attribute not compatible with transformed value.
9328 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009329
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009330 // If the callsite is an invoke instruction, and the return value is used by
9331 // a PHI node in a successor, we cannot change the return type of the call
9332 // because there is no place to put the cast instruction (without breaking
9333 // the critical edge). Bail out in this case.
9334 if (!Caller->use_empty())
9335 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9336 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9337 UI != E; ++UI)
9338 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9339 if (PN->getParent() == II->getNormalDest() ||
9340 PN->getParent() == II->getUnwindDest())
9341 return false;
9342 }
9343
9344 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9345 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9346
9347 CallSite::arg_iterator AI = CS.arg_begin();
9348 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9349 const Type *ParamTy = FT->getParamType(i);
9350 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009351
9352 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009353 return false; // Cannot transform this parameter value.
9354
Devang Patelf2a4a922008-09-26 22:53:05 +00009355 if (CallerPAL.getParamAttributes(i + 1)
9356 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009357 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009358
Duncan Sands7901ce12008-06-01 07:38:42 +00009359 // Converting from one pointer type to another or between a pointer and an
9360 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009361 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009362 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9363 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009364 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009365 }
9366
9367 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9368 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009369 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009370
Chris Lattner1c8733e2008-03-12 17:45:29 +00009371 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9372 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009373 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009374 // won't be dropping them. Check that these extra arguments have attributes
9375 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009376 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9377 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009378 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009379 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009380 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009381 return false;
9382 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009383
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009384 // Okay, we decided that this is a safe thing to do: go ahead and start
9385 // inserting cast instructions as necessary...
9386 std::vector<Value*> Args;
9387 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009388 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009389 attrVec.reserve(NumCommonArgs);
9390
9391 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009392 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009393
9394 // If the return value is not being used, the type may not be compatible
9395 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009396 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009397
9398 // Add the new return attributes.
9399 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009400 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009401
9402 AI = CS.arg_begin();
9403 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9404 const Type *ParamTy = FT->getParamType(i);
9405 if ((*AI)->getType() == ParamTy) {
9406 Args.push_back(*AI);
9407 } else {
9408 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9409 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009410 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009411 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9412 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009413
9414 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009415 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009416 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009417 }
9418
9419 // If the function takes more arguments than the call was taking, add them
9420 // now...
9421 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9422 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9423
9424 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009425 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009426 if (!FT->isVarArg()) {
9427 cerr << "WARNING: While resolving call to function '"
9428 << Callee->getName() << "' arguments were dropped!\n";
9429 } else {
9430 // Add all of the arguments in their promoted form to the arg list...
9431 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9432 const Type *PTy = getPromotedType((*AI)->getType());
9433 if (PTy != (*AI)->getType()) {
9434 // Must promote to pass through va_arg area!
9435 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9436 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009437 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009438 InsertNewInstBefore(Cast, *Caller);
9439 Args.push_back(Cast);
9440 } else {
9441 Args.push_back(*AI);
9442 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009443
Duncan Sands4ced1f82008-01-13 08:02:44 +00009444 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009445 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009446 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009447 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009448 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009449 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009450
Devang Patelf2a4a922008-09-26 22:53:05 +00009451 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9452 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9453
Duncan Sands7901ce12008-06-01 07:38:42 +00009454 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009455 Caller->setName(""); // Void type should not have a name.
9456
Devang Pateld222f862008-09-25 21:00:45 +00009457 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009458
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009459 Instruction *NC;
9460 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009461 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009462 Args.begin(), Args.end(),
9463 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009464 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009465 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009466 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009467 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9468 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009469 CallInst *CI = cast<CallInst>(Caller);
9470 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009471 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009472 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009473 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009474 }
9475
9476 // Insert a cast of the return type as necessary.
9477 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009478 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009479 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009480 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009481 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009482 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009483
9484 // If this is an invoke instruction, we should insert it after the first
9485 // non-phi, instruction in the normal successor block.
9486 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009487 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009488 InsertNewInstBefore(NC, *I);
9489 } else {
9490 // Otherwise, it's a call, just insert cast right after the call instr
9491 InsertNewInstBefore(NC, *Caller);
9492 }
9493 AddUsersToWorkList(*Caller);
9494 } else {
9495 NV = UndefValue::get(Caller->getType());
9496 }
9497 }
9498
9499 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9500 Caller->replaceAllUsesWith(NV);
9501 Caller->eraseFromParent();
9502 RemoveFromWorkList(Caller);
9503 return true;
9504}
9505
Duncan Sands74833f22007-09-17 10:26:40 +00009506// transformCallThroughTrampoline - Turn a call to a function created by the
9507// init_trampoline intrinsic into a direct call to the underlying function.
9508//
9509Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9510 Value *Callee = CS.getCalledValue();
9511 const PointerType *PTy = cast<PointerType>(Callee->getType());
9512 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009513 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009514
9515 // If the call already has the 'nest' attribute somewhere then give up -
9516 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009517 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009518 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009519
9520 IntrinsicInst *Tramp =
9521 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9522
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009523 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009524 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9525 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9526
Devang Pateld222f862008-09-25 21:00:45 +00009527 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009528 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009529 unsigned NestIdx = 1;
9530 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009531 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009532
9533 // Look for a parameter marked with the 'nest' attribute.
9534 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9535 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009536 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009537 // Record the parameter type and any other attributes.
9538 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009539 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009540 break;
9541 }
9542
9543 if (NestTy) {
9544 Instruction *Caller = CS.getInstruction();
9545 std::vector<Value*> NewArgs;
9546 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9547
Devang Pateld222f862008-09-25 21:00:45 +00009548 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009549 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009550
Duncan Sands74833f22007-09-17 10:26:40 +00009551 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009552 // mean appending it. Likewise for attributes.
9553
Devang Patelf2a4a922008-09-26 22:53:05 +00009554 // Add any result attributes.
9555 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009556 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009557
Duncan Sands74833f22007-09-17 10:26:40 +00009558 {
9559 unsigned Idx = 1;
9560 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9561 do {
9562 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009563 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009564 Value *NestVal = Tramp->getOperand(3);
9565 if (NestVal->getType() != NestTy)
9566 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9567 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009568 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009569 }
9570
9571 if (I == E)
9572 break;
9573
Duncan Sands48b81112008-01-14 19:52:09 +00009574 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009575 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009576 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009577 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009578 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009579
9580 ++Idx, ++I;
9581 } while (1);
9582 }
9583
Devang Patelf2a4a922008-09-26 22:53:05 +00009584 // Add any function attributes.
9585 if (Attributes Attr = Attrs.getFnAttributes())
9586 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9587
Duncan Sands74833f22007-09-17 10:26:40 +00009588 // The trampoline may have been bitcast to a bogus type (FTy).
9589 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009590 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009591
Duncan Sands74833f22007-09-17 10:26:40 +00009592 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009593 NewTypes.reserve(FTy->getNumParams()+1);
9594
Duncan Sands74833f22007-09-17 10:26:40 +00009595 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009596 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009597 {
9598 unsigned Idx = 1;
9599 FunctionType::param_iterator I = FTy->param_begin(),
9600 E = FTy->param_end();
9601
9602 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009603 if (Idx == NestIdx)
9604 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009605 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009606
9607 if (I == E)
9608 break;
9609
Duncan Sands48b81112008-01-14 19:52:09 +00009610 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009611 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009612
9613 ++Idx, ++I;
9614 } while (1);
9615 }
9616
9617 // Replace the trampoline call with a direct call. Let the generic
9618 // code sort out any function type mismatches.
9619 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009620 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009621 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9622 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009623 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009624
9625 Instruction *NewCaller;
9626 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009627 NewCaller = InvokeInst::Create(NewCallee,
9628 II->getNormalDest(), II->getUnwindDest(),
9629 NewArgs.begin(), NewArgs.end(),
9630 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009631 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009632 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009633 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009634 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9635 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009636 if (cast<CallInst>(Caller)->isTailCall())
9637 cast<CallInst>(NewCaller)->setTailCall();
9638 cast<CallInst>(NewCaller)->
9639 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009640 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009641 }
9642 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9643 Caller->replaceAllUsesWith(NewCaller);
9644 Caller->eraseFromParent();
9645 RemoveFromWorkList(Caller);
9646 return 0;
9647 }
9648 }
9649
9650 // Replace the trampoline call with a direct call. Since there is no 'nest'
9651 // parameter, there is no need to adjust the argument list. Let the generic
9652 // code sort out any function type mismatches.
9653 Constant *NewCallee =
9654 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9655 CS.setCalledFunction(NewCallee);
9656 return CS.getInstruction();
9657}
9658
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009659/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9660/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9661/// and a single binop.
9662Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9663 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9664 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9665 isa<CmpInst>(FirstInst));
9666 unsigned Opc = FirstInst->getOpcode();
9667 Value *LHSVal = FirstInst->getOperand(0);
9668 Value *RHSVal = FirstInst->getOperand(1);
9669
9670 const Type *LHSType = LHSVal->getType();
9671 const Type *RHSType = RHSVal->getType();
9672
9673 // Scan to see if all operands are the same opcode, all have one use, and all
9674 // kill their operands (i.e. the operands have one use).
9675 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
9676 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9677 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9678 // Verify type of the LHS matches so we don't fold cmp's of different
9679 // types or GEP's with different index types.
9680 I->getOperand(0)->getType() != LHSType ||
9681 I->getOperand(1)->getType() != RHSType)
9682 return 0;
9683
9684 // If they are CmpInst instructions, check their predicates
9685 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9686 if (cast<CmpInst>(I)->getPredicate() !=
9687 cast<CmpInst>(FirstInst)->getPredicate())
9688 return 0;
9689
9690 // Keep track of which operand needs a phi node.
9691 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9692 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9693 }
9694
9695 // Otherwise, this is safe to transform, determine if it is profitable.
9696
9697 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9698 // Indexes are often folded into load/store instructions, so we don't want to
9699 // hide them behind a phi.
9700 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9701 return 0;
9702
9703 Value *InLHS = FirstInst->getOperand(0);
9704 Value *InRHS = FirstInst->getOperand(1);
9705 PHINode *NewLHS = 0, *NewRHS = 0;
9706 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009707 NewLHS = PHINode::Create(LHSType,
9708 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009709 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9710 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9711 InsertNewInstBefore(NewLHS, PN);
9712 LHSVal = NewLHS;
9713 }
9714
9715 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009716 NewRHS = PHINode::Create(RHSType,
9717 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009718 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9719 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9720 InsertNewInstBefore(NewRHS, PN);
9721 RHSVal = NewRHS;
9722 }
9723
9724 // Add all operands to the new PHIs.
9725 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9726 if (NewLHS) {
9727 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9728 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9729 }
9730 if (NewRHS) {
9731 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9732 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9733 }
9734 }
9735
9736 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009737 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009738 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009739 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009740 RHSVal);
9741 else {
9742 assert(isa<GetElementPtrInst>(FirstInst));
Gabor Greifd6da1d02008-04-06 20:25:17 +00009743 return GetElementPtrInst::Create(LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009744 }
9745}
9746
9747/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9748/// of the block that defines it. This means that it must be obvious the value
9749/// of the load is not changed from the point of the load to the end of the
9750/// block it is in.
9751///
9752/// Finally, it is safe, but not profitable, to sink a load targetting a
9753/// non-address-taken alloca. Doing so will cause us to not promote the alloca
9754/// to a register.
9755static bool isSafeToSinkLoad(LoadInst *L) {
9756 BasicBlock::iterator BBI = L, E = L->getParent()->end();
9757
9758 for (++BBI; BBI != E; ++BBI)
9759 if (BBI->mayWriteToMemory())
9760 return false;
9761
9762 // Check for non-address taken alloca. If not address-taken already, it isn't
9763 // profitable to do this xform.
9764 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
9765 bool isAddressTaken = false;
9766 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
9767 UI != E; ++UI) {
9768 if (isa<LoadInst>(UI)) continue;
9769 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
9770 // If storing TO the alloca, then the address isn't taken.
9771 if (SI->getOperand(1) == AI) continue;
9772 }
9773 isAddressTaken = true;
9774 break;
9775 }
9776
9777 if (!isAddressTaken)
9778 return false;
9779 }
9780
9781 return true;
9782}
9783
9784
9785// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
9786// operator and they all are only used by the PHI, PHI together their
9787// inputs, and do the operation once, to the result of the PHI.
9788Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
9789 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9790
9791 // Scan the instruction, looking for input operations that can be folded away.
9792 // If all input operands to the phi are the same instruction (e.g. a cast from
9793 // the same type or "+42") we can pull the operation through the PHI, reducing
9794 // code size and simplifying code.
9795 Constant *ConstantOp = 0;
9796 const Type *CastSrcTy = 0;
9797 bool isVolatile = false;
9798 if (isa<CastInst>(FirstInst)) {
9799 CastSrcTy = FirstInst->getOperand(0)->getType();
9800 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
9801 // Can fold binop, compare or shift here if the RHS is a constant,
9802 // otherwise call FoldPHIArgBinOpIntoPHI.
9803 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
9804 if (ConstantOp == 0)
9805 return FoldPHIArgBinOpIntoPHI(PN);
9806 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
9807 isVolatile = LI->isVolatile();
9808 // We can't sink the load if the loaded value could be modified between the
9809 // load and the PHI.
9810 if (LI->getParent() != PN.getIncomingBlock(0) ||
9811 !isSafeToSinkLoad(LI))
9812 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +00009813
9814 // If the PHI is of volatile loads and the load block has multiple
9815 // successors, sinking it would remove a load of the volatile value from
9816 // the path through the other successor.
9817 if (isVolatile &&
9818 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9819 return 0;
9820
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009821 } else if (isa<GetElementPtrInst>(FirstInst)) {
9822 if (FirstInst->getNumOperands() == 2)
9823 return FoldPHIArgBinOpIntoPHI(PN);
9824 // Can't handle general GEPs yet.
9825 return 0;
9826 } else {
9827 return 0; // Cannot fold this operation.
9828 }
9829
9830 // Check to see if all arguments are the same operation.
9831 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9832 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
9833 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
9834 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
9835 return 0;
9836 if (CastSrcTy) {
9837 if (I->getOperand(0)->getType() != CastSrcTy)
9838 return 0; // Cast operation must match.
9839 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
9840 // We can't sink the load if the loaded value could be modified between
9841 // the load and the PHI.
9842 if (LI->isVolatile() != isVolatile ||
9843 LI->getParent() != PN.getIncomingBlock(i) ||
9844 !isSafeToSinkLoad(LI))
9845 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +00009846
Chris Lattner2d9fdd82008-07-08 17:18:32 +00009847 // If the PHI is of volatile loads and the load block has multiple
9848 // successors, sinking it would remove a load of the volatile value from
9849 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +00009850 if (isVolatile &&
9851 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9852 return 0;
9853
9854
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009855 } else if (I->getOperand(1) != ConstantOp) {
9856 return 0;
9857 }
9858 }
9859
9860 // Okay, they are all the same operation. Create a new PHI node of the
9861 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009862 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
9863 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009864 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
9865
9866 Value *InVal = FirstInst->getOperand(0);
9867 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
9868
9869 // Add all operands to the new PHI.
9870 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9871 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9872 if (NewInVal != InVal)
9873 InVal = 0;
9874 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
9875 }
9876
9877 Value *PhiVal;
9878 if (InVal) {
9879 // The new PHI unions all of the same values together. This is really
9880 // common, so we handle it intelligently here for compile-time speed.
9881 PhiVal = InVal;
9882 delete NewPN;
9883 } else {
9884 InsertNewInstBefore(NewPN, PN);
9885 PhiVal = NewPN;
9886 }
9887
9888 // Insert and return the new operation.
9889 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009890 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +00009891 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009892 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +00009893 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009894 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009895 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +00009896 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
9897
9898 // If this was a volatile load that we are merging, make sure to loop through
9899 // and mark all the input loads as non-volatile. If we don't do this, we will
9900 // insert a new volatile load and the old ones will not be deletable.
9901 if (isVolatile)
9902 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
9903 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
9904
9905 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009906}
9907
9908/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
9909/// that is dead.
9910static bool DeadPHICycle(PHINode *PN,
9911 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
9912 if (PN->use_empty()) return true;
9913 if (!PN->hasOneUse()) return false;
9914
9915 // Remember this node, and if we find the cycle, return.
9916 if (!PotentiallyDeadPHIs.insert(PN))
9917 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +00009918
9919 // Don't scan crazily complex things.
9920 if (PotentiallyDeadPHIs.size() == 16)
9921 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009922
9923 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
9924 return DeadPHICycle(PU, PotentiallyDeadPHIs);
9925
9926 return false;
9927}
9928
Chris Lattner27b695d2007-11-06 21:52:06 +00009929/// PHIsEqualValue - Return true if this phi node is always equal to
9930/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
9931/// z = some value; x = phi (y, z); y = phi (x, z)
9932static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
9933 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
9934 // See if we already saw this PHI node.
9935 if (!ValueEqualPHIs.insert(PN))
9936 return true;
9937
9938 // Don't scan crazily complex things.
9939 if (ValueEqualPHIs.size() == 16)
9940 return false;
9941
9942 // Scan the operands to see if they are either phi nodes or are equal to
9943 // the value.
9944 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9945 Value *Op = PN->getIncomingValue(i);
9946 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
9947 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
9948 return false;
9949 } else if (Op != NonPhiInVal)
9950 return false;
9951 }
9952
9953 return true;
9954}
9955
9956
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009957// PHINode simplification
9958//
9959Instruction *InstCombiner::visitPHINode(PHINode &PN) {
9960 // If LCSSA is around, don't mess with Phi nodes
9961 if (MustPreserveLCSSA) return 0;
9962
9963 if (Value *V = PN.hasConstantValue())
9964 return ReplaceInstUsesWith(PN, V);
9965
9966 // If all PHI operands are the same operation, pull them through the PHI,
9967 // reducing code size.
9968 if (isa<Instruction>(PN.getIncomingValue(0)) &&
9969 PN.getIncomingValue(0)->hasOneUse())
9970 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
9971 return Result;
9972
9973 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
9974 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
9975 // PHI)... break the cycle.
9976 if (PN.hasOneUse()) {
9977 Instruction *PHIUser = cast<Instruction>(PN.use_back());
9978 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
9979 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
9980 PotentiallyDeadPHIs.insert(&PN);
9981 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
9982 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9983 }
9984
9985 // If this phi has a single use, and if that use just computes a value for
9986 // the next iteration of a loop, delete the phi. This occurs with unused
9987 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
9988 // common case here is good because the only other things that catch this
9989 // are induction variable analysis (sometimes) and ADCE, which is only run
9990 // late.
9991 if (PHIUser->hasOneUse() &&
9992 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
9993 PHIUser->use_back() == &PN) {
9994 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
9995 }
9996 }
9997
Chris Lattner27b695d2007-11-06 21:52:06 +00009998 // We sometimes end up with phi cycles that non-obviously end up being the
9999 // same value, for example:
10000 // z = some value; x = phi (y, z); y = phi (x, z)
10001 // where the phi nodes don't necessarily need to be in the same block. Do a
10002 // quick check to see if the PHI node only contains a single non-phi value, if
10003 // so, scan to see if the phi cycle is actually equal to that value.
10004 {
10005 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10006 // Scan for the first non-phi operand.
10007 while (InValNo != NumOperandVals &&
10008 isa<PHINode>(PN.getIncomingValue(InValNo)))
10009 ++InValNo;
10010
10011 if (InValNo != NumOperandVals) {
10012 Value *NonPhiInVal = PN.getOperand(InValNo);
10013
10014 // Scan the rest of the operands to see if there are any conflicts, if so
10015 // there is no need to recursively scan other phis.
10016 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10017 Value *OpVal = PN.getIncomingValue(InValNo);
10018 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10019 break;
10020 }
10021
10022 // If we scanned over all operands, then we have one unique value plus
10023 // phi values. Scan PHI nodes to see if they all merge in each other or
10024 // the value.
10025 if (InValNo == NumOperandVals) {
10026 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10027 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10028 return ReplaceInstUsesWith(PN, NonPhiInVal);
10029 }
10030 }
10031 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010032 return 0;
10033}
10034
10035static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10036 Instruction *InsertPoint,
10037 InstCombiner *IC) {
10038 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10039 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
10040 // We must cast correctly to the pointer type. Ensure that we
10041 // sign extend the integer value if it is smaller as this is
10042 // used for address computation.
10043 Instruction::CastOps opcode =
10044 (VTySize < PtrSize ? Instruction::SExt :
10045 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10046 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
10047}
10048
10049
10050Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10051 Value *PtrOp = GEP.getOperand(0);
10052 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10053 // If so, eliminate the noop.
10054 if (GEP.getNumOperands() == 1)
10055 return ReplaceInstUsesWith(GEP, PtrOp);
10056
10057 if (isa<UndefValue>(GEP.getOperand(0)))
10058 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10059
10060 bool HasZeroPointerIndex = false;
10061 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10062 HasZeroPointerIndex = C->isNullValue();
10063
10064 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10065 return ReplaceInstUsesWith(GEP, PtrOp);
10066
10067 // Eliminate unneeded casts for indices.
10068 bool MadeChange = false;
10069
10070 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010071 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10072 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010073 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +000010074 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010075 if (CI->getOpcode() == Instruction::ZExt ||
10076 CI->getOpcode() == Instruction::SExt) {
10077 const Type *SrcTy = CI->getOperand(0)->getType();
10078 // We can eliminate a cast from i32 to i64 iff the target
10079 // is a 32-bit pointer target.
10080 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10081 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +000010082 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010083 }
10084 }
10085 }
10086 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +000010087 // to what we need. If narrower, sign-extend it to what we need.
10088 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010089 // insert it. This explicit cast can make subsequent optimizations more
10090 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +000010091 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010092 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010093 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +000010094 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010095 MadeChange = true;
10096 } else {
10097 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10098 GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010099 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010100 MadeChange = true;
10101 }
Dan Gohman5d639ed2008-09-11 23:06:38 +000010102 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10103 if (Constant *C = dyn_cast<Constant>(Op)) {
10104 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10105 MadeChange = true;
10106 } else {
10107 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10108 GEP);
10109 *i = Op;
10110 MadeChange = true;
10111 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010112 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010113 }
10114 }
10115 if (MadeChange) return &GEP;
10116
10117 // If this GEP instruction doesn't move the pointer, and if the input operand
10118 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10119 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +000010120 if (GEP.hasAllZeroIndices()) {
10121 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10122 // If the bitcast is of an allocation, and the allocation will be
10123 // converted to match the type of the cast, don't touch this.
10124 if (isa<AllocationInst>(BCI->getOperand(0))) {
10125 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +000010126 if (Instruction *I = visitBitCast(*BCI)) {
10127 if (I != BCI) {
10128 I->takeName(BCI);
10129 BCI->getParent()->getInstList().insert(BCI, I);
10130 ReplaceInstUsesWith(*BCI, I);
10131 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010132 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +000010133 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010134 }
10135 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10136 }
10137 }
10138
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010139 // Combine Indices - If the source pointer to this getelementptr instruction
10140 // is a getelementptr instruction, combine the indices of the two
10141 // getelementptr instructions into a single instruction.
10142 //
10143 SmallVector<Value*, 8> SrcGEPOperands;
10144 if (User *Src = dyn_castGetElementPtr(PtrOp))
10145 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
10146
10147 if (!SrcGEPOperands.empty()) {
10148 // Note that if our source is a gep chain itself that we wait for that
10149 // chain to be resolved before we perform this transformation. This
10150 // avoids us creating a TON of code in some cases.
10151 //
10152 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10153 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10154 return 0; // Wait until our source is folded to completion.
10155
10156 SmallVector<Value*, 8> Indices;
10157
10158 // Find out whether the last index in the source GEP is a sequential idx.
10159 bool EndsWithSequential = false;
10160 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10161 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
10162 EndsWithSequential = !isa<StructType>(*I);
10163
10164 // Can we combine the two pointer arithmetics offsets?
10165 if (EndsWithSequential) {
10166 // Replace: gep (gep %P, long B), long A, ...
10167 // With: T = long A+B; gep %P, T, ...
10168 //
10169 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
10170 if (SO1 == Constant::getNullValue(SO1->getType())) {
10171 Sum = GO1;
10172 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10173 Sum = SO1;
10174 } else {
10175 // If they aren't the same type, convert both to an integer of the
10176 // target's pointer size.
10177 if (SO1->getType() != GO1->getType()) {
10178 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
10179 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
10180 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
10181 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
10182 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010183 unsigned PS = TD->getPointerSizeInBits();
10184 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010185 // Convert GO1 to SO1's type.
10186 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
10187
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010188 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010189 // Convert SO1 to GO1's type.
10190 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
10191 } else {
10192 const Type *PT = TD->getIntPtrType();
10193 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10194 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10195 }
10196 }
10197 }
10198 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10199 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10200 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010201 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010202 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10203 }
10204 }
10205
10206 // Recycle the GEP we already have if possible.
10207 if (SrcGEPOperands.size() == 2) {
10208 GEP.setOperand(0, SrcGEPOperands[0]);
10209 GEP.setOperand(1, Sum);
10210 return &GEP;
10211 } else {
10212 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10213 SrcGEPOperands.end()-1);
10214 Indices.push_back(Sum);
10215 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10216 }
10217 } else if (isa<Constant>(*GEP.idx_begin()) &&
10218 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10219 SrcGEPOperands.size() != 1) {
10220 // Otherwise we can do the fold if the first index of the GEP is a zero
10221 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10222 SrcGEPOperands.end());
10223 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10224 }
10225
10226 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010227 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10228 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010229
10230 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10231 // GEP of global variable. If all of the indices for this GEP are
10232 // constants, we can promote this to a constexpr instead of an instruction.
10233
10234 // Scan for nonconstants...
10235 SmallVector<Constant*, 8> Indices;
10236 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10237 for (; I != E && isa<Constant>(*I); ++I)
10238 Indices.push_back(cast<Constant>(*I));
10239
10240 if (I == E) { // If they are all constants...
10241 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10242 &Indices[0],Indices.size());
10243
10244 // Replace all uses of the GEP with the new constexpr...
10245 return ReplaceInstUsesWith(GEP, CE);
10246 }
10247 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10248 if (!isa<PointerType>(X->getType())) {
10249 // Not interesting. Source pointer must be a cast from pointer.
10250 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010251 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10252 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010253 //
10254 // This occurs when the program declares an array extern like "int X[];"
10255 //
10256 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10257 const PointerType *XTy = cast<PointerType>(X->getType());
10258 if (const ArrayType *XATy =
10259 dyn_cast<ArrayType>(XTy->getElementType()))
10260 if (const ArrayType *CATy =
10261 dyn_cast<ArrayType>(CPTy->getElementType()))
10262 if (CATy->getElementType() == XATy->getElementType()) {
10263 // At this point, we know that the cast source type is a pointer
10264 // to an array of the same type as the destination pointer
10265 // array. Because the array type is never stepped over (there
10266 // is a leading zero) we can fold the cast into this GEP.
10267 GEP.setOperand(0, X);
10268 return &GEP;
10269 }
10270 } else if (GEP.getNumOperands() == 2) {
10271 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010272 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10273 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010274 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10275 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10276 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010277 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10278 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010279 Value *Idx[2];
10280 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10281 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010282 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010283 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010284 // V and GEP are both pointer types --> BitCast
10285 return new BitCastInst(V, GEP.getType());
10286 }
10287
10288 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010289 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010290 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010291 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010292
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010293 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010294 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010295 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010296
10297 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10298 // allow either a mul, shift, or constant here.
10299 Value *NewIdx = 0;
10300 ConstantInt *Scale = 0;
10301 if (ArrayEltSize == 1) {
10302 NewIdx = GEP.getOperand(1);
10303 Scale = ConstantInt::get(NewIdx->getType(), 1);
10304 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10305 NewIdx = ConstantInt::get(CI->getType(), 1);
10306 Scale = CI;
10307 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10308 if (Inst->getOpcode() == Instruction::Shl &&
10309 isa<ConstantInt>(Inst->getOperand(1))) {
10310 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10311 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10312 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10313 NewIdx = Inst->getOperand(0);
10314 } else if (Inst->getOpcode() == Instruction::Mul &&
10315 isa<ConstantInt>(Inst->getOperand(1))) {
10316 Scale = cast<ConstantInt>(Inst->getOperand(1));
10317 NewIdx = Inst->getOperand(0);
10318 }
10319 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010320
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010321 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010322 // out, perform the transformation. Note, we don't know whether Scale is
10323 // signed or not. We'll use unsigned version of division/modulo
10324 // operation after making sure Scale doesn't have the sign bit set.
10325 if (Scale && Scale->getSExtValue() >= 0LL &&
10326 Scale->getZExtValue() % ArrayEltSize == 0) {
10327 Scale = ConstantInt::get(Scale->getType(),
10328 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010329 if (Scale->getZExtValue() != 1) {
10330 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010331 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010332 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010333 NewIdx = InsertNewInstBefore(Sc, GEP);
10334 }
10335
10336 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010337 Value *Idx[2];
10338 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10339 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010340 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010341 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010342 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10343 // The NewGEP must be pointer typed, so must the old one -> BitCast
10344 return new BitCastInst(NewGEP, GEP.getType());
10345 }
10346 }
10347 }
10348 }
10349
10350 return 0;
10351}
10352
10353Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10354 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010355 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010356 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10357 const Type *NewTy =
10358 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10359 AllocationInst *New = 0;
10360
10361 // Create and insert the replacement instruction...
10362 if (isa<MallocInst>(AI))
10363 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10364 else {
10365 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10366 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10367 }
10368
10369 InsertNewInstBefore(New, AI);
10370
10371 // Scan to the end of the allocation instructions, to skip over a block of
10372 // allocas if possible...
10373 //
10374 BasicBlock::iterator It = New;
10375 while (isa<AllocationInst>(*It)) ++It;
10376
10377 // Now that I is pointing to the first non-allocation-inst in the block,
10378 // insert our getelementptr instruction...
10379 //
10380 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010381 Value *Idx[2];
10382 Idx[0] = NullIdx;
10383 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010384 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10385 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010386
10387 // Now make everything use the getelementptr instead of the original
10388 // allocation.
10389 return ReplaceInstUsesWith(AI, V);
10390 } else if (isa<UndefValue>(AI.getArraySize())) {
10391 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10392 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010393 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010394
10395 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10396 // Note that we only do this for alloca's, because malloc should allocate and
10397 // return a unique pointer, even for a zero byte allocation.
10398 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010399 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010400 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10401
10402 return 0;
10403}
10404
10405Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10406 Value *Op = FI.getOperand(0);
10407
10408 // free undef -> unreachable.
10409 if (isa<UndefValue>(Op)) {
10410 // Insert a new store to null because we cannot modify the CFG here.
10411 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010412 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010413 return EraseInstFromFunction(FI);
10414 }
10415
10416 // If we have 'free null' delete the instruction. This can happen in stl code
10417 // when lots of inlining happens.
10418 if (isa<ConstantPointerNull>(Op))
10419 return EraseInstFromFunction(FI);
10420
10421 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10422 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10423 FI.setOperand(0, CI->getOperand(0));
10424 return &FI;
10425 }
10426
10427 // Change free (gep X, 0,0,0,0) into free(X)
10428 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10429 if (GEPI->hasAllZeroIndices()) {
10430 AddToWorkList(GEPI);
10431 FI.setOperand(0, GEPI->getOperand(0));
10432 return &FI;
10433 }
10434 }
10435
10436 // Change free(malloc) into nothing, if the malloc has a single use.
10437 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10438 if (MI->hasOneUse()) {
10439 EraseInstFromFunction(FI);
10440 return EraseInstFromFunction(*MI);
10441 }
10442
10443 return 0;
10444}
10445
10446
10447/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010448static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010449 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010450 User *CI = cast<User>(LI.getOperand(0));
10451 Value *CastOp = CI->getOperand(0);
10452
Devang Patela0f8ea82007-10-18 19:52:32 +000010453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10454 // Instead of loading constant c string, use corresponding integer value
10455 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010456 std::string Str;
10457 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010458 unsigned len = Str.length();
10459 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10460 unsigned numBits = Ty->getPrimitiveSizeInBits();
10461 // Replace LI with immediate integer store.
10462 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010463 APInt StrVal(numBits, 0);
10464 APInt SingleChar(numBits, 0);
10465 if (TD->isLittleEndian()) {
10466 for (signed i = len-1; i >= 0; i--) {
10467 SingleChar = (uint64_t) Str[i];
10468 StrVal = (StrVal << 8) | SingleChar;
10469 }
10470 } else {
10471 for (unsigned i = 0; i < len; i++) {
10472 SingleChar = (uint64_t) Str[i];
10473 StrVal = (StrVal << 8) | SingleChar;
10474 }
10475 // Append NULL at the end.
10476 SingleChar = 0;
10477 StrVal = (StrVal << 8) | SingleChar;
10478 }
10479 Value *NL = ConstantInt::get(StrVal);
10480 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010481 }
10482 }
10483 }
10484
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010485 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10486 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10487 const Type *SrcPTy = SrcTy->getElementType();
10488
10489 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10490 isa<VectorType>(DestPTy)) {
10491 // If the source is an array, the code below will not succeed. Check to
10492 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10493 // constants.
10494 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10495 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10496 if (ASrcTy->getNumElements() != 0) {
10497 Value *Idxs[2];
10498 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10499 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10500 SrcTy = cast<PointerType>(CastOp->getType());
10501 SrcPTy = SrcTy->getElementType();
10502 }
10503
10504 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10505 isa<VectorType>(SrcPTy)) &&
10506 // Do not allow turning this into a load of an integer, which is then
10507 // casted to a pointer, this pessimizes pointer analysis a lot.
10508 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10509 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10510 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10511
10512 // Okay, we are casting from one integer or pointer type to another of
10513 // the same size. Instead of casting the pointer before the load, cast
10514 // the result of the loaded value.
10515 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10516 CI->getName(),
10517 LI.isVolatile()),LI);
10518 // Now cast the result of the load.
10519 return new BitCastInst(NewLoad, LI.getType());
10520 }
10521 }
10522 }
10523 return 0;
10524}
10525
10526/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10527/// from this value cannot trap. If it is not obviously safe to load from the
10528/// specified pointer, we do a quick local scan of the basic block containing
10529/// ScanFrom, to determine if the address is already accessed.
10530static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010531 // If it is an alloca it is always safe to load from.
10532 if (isa<AllocaInst>(V)) return true;
10533
Duncan Sandse40a94a2007-09-19 10:25:38 +000010534 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010535 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010536 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010537 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010538
10539 // Otherwise, be a little bit agressive by scanning the local block where we
10540 // want to check to see if the pointer is already being loaded or stored
10541 // from/to. If so, the previous load or store would have already trapped,
10542 // so there is no harm doing an extra load (also, CSE will later eliminate
10543 // the load entirely).
10544 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10545
10546 while (BBI != E) {
10547 --BBI;
10548
Chris Lattner476983a2008-06-20 05:12:56 +000010549 // If we see a free or a call (which might do a free) the pointer could be
10550 // marked invalid.
10551 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10552 return false;
10553
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010554 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10555 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010556 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010557 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010558 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010559
10560 }
10561 return false;
10562}
10563
10564Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10565 Value *Op = LI.getOperand(0);
10566
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010567 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010568 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10569 if (KnownAlign >
10570 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10571 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010572 LI.setAlignment(KnownAlign);
10573
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010574 // load (cast X) --> cast (load X) iff safe
10575 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010576 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010577 return Res;
10578
10579 // None of the following transforms are legal for volatile loads.
10580 if (LI.isVolatile()) return 0;
10581
10582 if (&LI.getParent()->front() != &LI) {
10583 BasicBlock::iterator BBI = &LI; --BBI;
10584 // If the instruction immediately before this is a store to the same
10585 // address, do a simple form of store->load forwarding.
10586 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
10587 if (SI->getOperand(1) == LI.getOperand(0))
10588 return ReplaceInstUsesWith(LI, SI->getOperand(0));
10589 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
10590 if (LIB->getOperand(0) == LI.getOperand(0))
10591 return ReplaceInstUsesWith(LI, LIB);
10592 }
10593
Christopher Lamb2c175392007-12-29 07:56:53 +000010594 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10595 const Value *GEPI0 = GEPI->getOperand(0);
10596 // TODO: Consider a target hook for valid address spaces for this xform.
10597 if (isa<ConstantPointerNull>(GEPI0) &&
10598 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010599 // Insert a new store to null instruction before the load to indicate
10600 // that this code is not reachable. We do this instead of inserting
10601 // an unreachable instruction directly because we cannot modify the
10602 // CFG.
10603 new StoreInst(UndefValue::get(LI.getType()),
10604 Constant::getNullValue(Op->getType()), &LI);
10605 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10606 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010607 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010608
10609 if (Constant *C = dyn_cast<Constant>(Op)) {
10610 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010611 // TODO: Consider a target hook for valid address spaces for this xform.
10612 if (isa<UndefValue>(C) || (C->isNullValue() &&
10613 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010614 // Insert a new store to null instruction before the load to indicate that
10615 // this code is not reachable. We do this instead of inserting an
10616 // unreachable instruction directly because we cannot modify the CFG.
10617 new StoreInst(UndefValue::get(LI.getType()),
10618 Constant::getNullValue(Op->getType()), &LI);
10619 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10620 }
10621
10622 // Instcombine load (constant global) into the value loaded.
10623 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10624 if (GV->isConstant() && !GV->isDeclaration())
10625 return ReplaceInstUsesWith(LI, GV->getInitializer());
10626
10627 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010628 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010629 if (CE->getOpcode() == Instruction::GetElementPtr) {
10630 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10631 if (GV->isConstant() && !GV->isDeclaration())
10632 if (Constant *V =
10633 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10634 return ReplaceInstUsesWith(LI, V);
10635 if (CE->getOperand(0)->isNullValue()) {
10636 // Insert a new store to null instruction before the load to indicate
10637 // that this code is not reachable. We do this instead of inserting
10638 // an unreachable instruction directly because we cannot modify the
10639 // CFG.
10640 new StoreInst(UndefValue::get(LI.getType()),
10641 Constant::getNullValue(Op->getType()), &LI);
10642 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10643 }
10644
10645 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010646 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010647 return Res;
10648 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010649 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010650 }
Chris Lattner0270a112007-08-11 18:48:48 +000010651
10652 // If this load comes from anywhere in a constant global, and if the global
10653 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000010654 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000010655 if (GV->isConstant() && GV->hasInitializer()) {
10656 if (GV->getInitializer()->isNullValue())
10657 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10658 else if (isa<UndefValue>(GV->getInitializer()))
10659 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10660 }
10661 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010662
10663 if (Op->hasOneUse()) {
10664 // Change select and PHI nodes to select values instead of addresses: this
10665 // helps alias analysis out a lot, allows many others simplifications, and
10666 // exposes redundancy in the code.
10667 //
10668 // Note that we cannot do the transformation unless we know that the
10669 // introduced loads cannot trap! Something like this is valid as long as
10670 // the condition is always false: load (select bool %C, int* null, int* %G),
10671 // but it would not be valid if we transformed it to load from null
10672 // unconditionally.
10673 //
10674 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10675 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
10676 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10677 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
10678 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
10679 SI->getOperand(1)->getName()+".val"), LI);
10680 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
10681 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000010682 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010683 }
10684
10685 // load (select (cond, null, P)) -> load P
10686 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10687 if (C->isNullValue()) {
10688 LI.setOperand(0, SI->getOperand(2));
10689 return &LI;
10690 }
10691
10692 // load (select (cond, P, null)) -> load P
10693 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10694 if (C->isNullValue()) {
10695 LI.setOperand(0, SI->getOperand(1));
10696 return &LI;
10697 }
10698 }
10699 }
10700 return 0;
10701}
10702
10703/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
10704/// when possible.
10705static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10706 User *CI = cast<User>(SI.getOperand(1));
10707 Value *CastOp = CI->getOperand(0);
10708
10709 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10710 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10711 const Type *SrcPTy = SrcTy->getElementType();
10712
10713 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
10714 // If the source is an array, the code below will not succeed. Check to
10715 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10716 // constants.
10717 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10718 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10719 if (ASrcTy->getNumElements() != 0) {
10720 Value* Idxs[2];
10721 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10722 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10723 SrcTy = cast<PointerType>(CastOp->getType());
10724 SrcPTy = SrcTy->getElementType();
10725 }
10726
10727 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10728 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10729 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10730
10731 // Okay, we are casting from one integer or pointer type to another of
10732 // the same size. Instead of casting the pointer before
10733 // the store, cast the value to be stored.
10734 Value *NewCast;
10735 Value *SIOp0 = SI.getOperand(0);
10736 Instruction::CastOps opcode = Instruction::BitCast;
10737 const Type* CastSrcTy = SIOp0->getType();
10738 const Type* CastDstTy = SrcPTy;
10739 if (isa<PointerType>(CastDstTy)) {
10740 if (CastSrcTy->isInteger())
10741 opcode = Instruction::IntToPtr;
10742 } else if (isa<IntegerType>(CastDstTy)) {
10743 if (isa<PointerType>(SIOp0->getType()))
10744 opcode = Instruction::PtrToInt;
10745 }
10746 if (Constant *C = dyn_cast<Constant>(SIOp0))
10747 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
10748 else
10749 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000010750 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010751 SI);
10752 return new StoreInst(NewCast, CastOp);
10753 }
10754 }
10755 }
10756 return 0;
10757}
10758
10759Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
10760 Value *Val = SI.getOperand(0);
10761 Value *Ptr = SI.getOperand(1);
10762
10763 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
10764 EraseInstFromFunction(SI);
10765 ++NumCombined;
10766 return 0;
10767 }
10768
10769 // If the RHS is an alloca with a single use, zapify the store, making the
10770 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000010771 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010772 if (isa<AllocaInst>(Ptr)) {
10773 EraseInstFromFunction(SI);
10774 ++NumCombined;
10775 return 0;
10776 }
10777
10778 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
10779 if (isa<AllocaInst>(GEP->getOperand(0)) &&
10780 GEP->getOperand(0)->hasOneUse()) {
10781 EraseInstFromFunction(SI);
10782 ++NumCombined;
10783 return 0;
10784 }
10785 }
10786
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010787 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010788 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
10789 if (KnownAlign >
10790 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
10791 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010792 SI.setAlignment(KnownAlign);
10793
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010794 // Do really simple DSE, to catch cases where there are several consequtive
10795 // stores to the same location, separated by a few arithmetic operations. This
10796 // situation often occurs with bitfield accesses.
10797 BasicBlock::iterator BBI = &SI;
10798 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
10799 --ScanInsts) {
10800 --BBI;
10801
10802 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
10803 // Prev store isn't volatile, and stores to the same location?
10804 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
10805 ++NumDeadStore;
10806 ++BBI;
10807 EraseInstFromFunction(*PrevSI);
10808 continue;
10809 }
10810 break;
10811 }
10812
10813 // If this is a load, we have to stop. However, if the loaded value is from
10814 // the pointer we're loading and is producing the pointer we're storing,
10815 // then *this* store is dead (X = load P; store X -> P).
10816 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Chris Lattner24905f72007-09-07 05:33:03 +000010817 if (LI == Val && LI->getOperand(0) == Ptr && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010818 EraseInstFromFunction(SI);
10819 ++NumCombined;
10820 return 0;
10821 }
10822 // Otherwise, this is a load from some other location. Stores before it
10823 // may not be dead.
10824 break;
10825 }
10826
10827 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000010828 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010829 break;
10830 }
10831
10832
10833 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
10834
10835 // store X, null -> turns into 'unreachable' in SimplifyCFG
10836 if (isa<ConstantPointerNull>(Ptr)) {
10837 if (!isa<UndefValue>(Val)) {
10838 SI.setOperand(0, UndefValue::get(Val->getType()));
10839 if (Instruction *U = dyn_cast<Instruction>(Val))
10840 AddToWorkList(U); // Dropped a use.
10841 ++NumCombined;
10842 }
10843 return 0; // Do not modify these!
10844 }
10845
10846 // store undef, Ptr -> noop
10847 if (isa<UndefValue>(Val)) {
10848 EraseInstFromFunction(SI);
10849 ++NumCombined;
10850 return 0;
10851 }
10852
10853 // If the pointer destination is a cast, see if we can fold the cast into the
10854 // source instead.
10855 if (isa<CastInst>(Ptr))
10856 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10857 return Res;
10858 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
10859 if (CE->isCast())
10860 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
10861 return Res;
10862
10863
10864 // If this store is the last instruction in the basic block, and if the block
10865 // ends with an unconditional branch, try to move it to the successor block.
10866 BBI = &SI; ++BBI;
10867 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
10868 if (BI->isUnconditional())
10869 if (SimplifyStoreAtEndOfBlock(SI))
10870 return 0; // xform done!
10871
10872 return 0;
10873}
10874
10875/// SimplifyStoreAtEndOfBlock - Turn things like:
10876/// if () { *P = v1; } else { *P = v2 }
10877/// into a phi node with a store in the successor.
10878///
10879/// Simplify things like:
10880/// *P = v1; if () { *P = v2; }
10881/// into a phi node with a store in the successor.
10882///
10883bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
10884 BasicBlock *StoreBB = SI.getParent();
10885
10886 // Check to see if the successor block has exactly two incoming edges. If
10887 // so, see if the other predecessor contains a store to the same location.
10888 // if so, insert a PHI node (if needed) and move the stores down.
10889 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
10890
10891 // Determine whether Dest has exactly two predecessors and, if so, compute
10892 // the other predecessor.
10893 pred_iterator PI = pred_begin(DestBB);
10894 BasicBlock *OtherBB = 0;
10895 if (*PI != StoreBB)
10896 OtherBB = *PI;
10897 ++PI;
10898 if (PI == pred_end(DestBB))
10899 return false;
10900
10901 if (*PI != StoreBB) {
10902 if (OtherBB)
10903 return false;
10904 OtherBB = *PI;
10905 }
10906 if (++PI != pred_end(DestBB))
10907 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000010908
10909 // Bail out if all the relevant blocks aren't distinct (this can happen,
10910 // for example, if SI is in an infinite loop)
10911 if (StoreBB == DestBB || OtherBB == DestBB)
10912 return false;
10913
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010914 // Verify that the other block ends in a branch and is not otherwise empty.
10915 BasicBlock::iterator BBI = OtherBB->getTerminator();
10916 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
10917 if (!OtherBr || BBI == OtherBB->begin())
10918 return false;
10919
10920 // If the other block ends in an unconditional branch, check for the 'if then
10921 // else' case. there is an instruction before the branch.
10922 StoreInst *OtherStore = 0;
10923 if (OtherBr->isUnconditional()) {
10924 // If this isn't a store, or isn't a store to the same location, bail out.
10925 --BBI;
10926 OtherStore = dyn_cast<StoreInst>(BBI);
10927 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
10928 return false;
10929 } else {
10930 // Otherwise, the other block ended with a conditional branch. If one of the
10931 // destinations is StoreBB, then we have the if/then case.
10932 if (OtherBr->getSuccessor(0) != StoreBB &&
10933 OtherBr->getSuccessor(1) != StoreBB)
10934 return false;
10935
10936 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
10937 // if/then triangle. See if there is a store to the same ptr as SI that
10938 // lives in OtherBB.
10939 for (;; --BBI) {
10940 // Check to see if we find the matching store.
10941 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
10942 if (OtherStore->getOperand(1) != SI.getOperand(1))
10943 return false;
10944 break;
10945 }
Eli Friedman3a311d52008-06-13 22:02:12 +000010946 // If we find something that may be using or overwriting the stored
10947 // value, or if we run out of instructions, we can't do the xform.
10948 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010949 BBI == OtherBB->begin())
10950 return false;
10951 }
10952
10953 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000010954 // make sure nothing reads or overwrites the stored value in
10955 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010956 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
10957 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000010958 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010959 return false;
10960 }
10961 }
10962
10963 // Insert a PHI node now if we need it.
10964 Value *MergedVal = OtherStore->getOperand(0);
10965 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000010966 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010967 PN->reserveOperandSpace(2);
10968 PN->addIncoming(SI.getOperand(0), SI.getParent());
10969 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
10970 MergedVal = InsertNewInstBefore(PN, DestBB->front());
10971 }
10972
10973 // Advance to a place where it is safe to insert the new store and
10974 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000010975 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010976 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
10977 OtherStore->isVolatile()), *BBI);
10978
10979 // Nuke the old stores.
10980 EraseInstFromFunction(SI);
10981 EraseInstFromFunction(*OtherStore);
10982 ++NumCombined;
10983 return true;
10984}
10985
10986
10987Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
10988 // Change br (not X), label True, label False to: br X, label False, True
10989 Value *X = 0;
10990 BasicBlock *TrueDest;
10991 BasicBlock *FalseDest;
10992 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
10993 !isa<Constant>(X)) {
10994 // Swap Destinations and condition...
10995 BI.setCondition(X);
10996 BI.setSuccessor(0, FalseDest);
10997 BI.setSuccessor(1, TrueDest);
10998 return &BI;
10999 }
11000
11001 // Cannonicalize fcmp_one -> fcmp_oeq
11002 FCmpInst::Predicate FPred; Value *Y;
11003 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11004 TrueDest, FalseDest)))
11005 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11006 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11007 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
11008 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
11009 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11010 NewSCC->takeName(I);
11011 // Swap Destinations and condition...
11012 BI.setCondition(NewSCC);
11013 BI.setSuccessor(0, FalseDest);
11014 BI.setSuccessor(1, TrueDest);
11015 RemoveFromWorkList(I);
11016 I->eraseFromParent();
11017 AddToWorkList(NewSCC);
11018 return &BI;
11019 }
11020
11021 // Cannonicalize icmp_ne -> icmp_eq
11022 ICmpInst::Predicate IPred;
11023 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11024 TrueDest, FalseDest)))
11025 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11026 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11027 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11028 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
11029 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
11030 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11031 NewSCC->takeName(I);
11032 // Swap Destinations and condition...
11033 BI.setCondition(NewSCC);
11034 BI.setSuccessor(0, FalseDest);
11035 BI.setSuccessor(1, TrueDest);
11036 RemoveFromWorkList(I);
11037 I->eraseFromParent();;
11038 AddToWorkList(NewSCC);
11039 return &BI;
11040 }
11041
11042 return 0;
11043}
11044
11045Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11046 Value *Cond = SI.getCondition();
11047 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11048 if (I->getOpcode() == Instruction::Add)
11049 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11050 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11051 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11052 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11053 AddRHS));
11054 SI.setOperand(0, I->getOperand(0));
11055 AddToWorkList(I);
11056 return &SI;
11057 }
11058 }
11059 return 0;
11060}
11061
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011062Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011063 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011064
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011065 if (!EV.hasIndices())
11066 return ReplaceInstUsesWith(EV, Agg);
11067
11068 if (Constant *C = dyn_cast<Constant>(Agg)) {
11069 if (isa<UndefValue>(C))
11070 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11071
11072 if (isa<ConstantAggregateZero>(C))
11073 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11074
11075 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11076 // Extract the element indexed by the first index out of the constant
11077 Value *V = C->getOperand(*EV.idx_begin());
11078 if (EV.getNumIndices() > 1)
11079 // Extract the remaining indices out of the constant indexed by the
11080 // first index
11081 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11082 else
11083 return ReplaceInstUsesWith(EV, V);
11084 }
11085 return 0; // Can't handle other constants
11086 }
11087 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11088 // We're extracting from an insertvalue instruction, compare the indices
11089 const unsigned *exti, *exte, *insi, *inse;
11090 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11091 exte = EV.idx_end(), inse = IV->idx_end();
11092 exti != exte && insi != inse;
11093 ++exti, ++insi) {
11094 if (*insi != *exti)
11095 // The insert and extract both reference distinctly different elements.
11096 // This means the extract is not influenced by the insert, and we can
11097 // replace the aggregate operand of the extract with the aggregate
11098 // operand of the insert. i.e., replace
11099 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11100 // %E = extractvalue { i32, { i32 } } %I, 0
11101 // with
11102 // %E = extractvalue { i32, { i32 } } %A, 0
11103 return ExtractValueInst::Create(IV->getAggregateOperand(),
11104 EV.idx_begin(), EV.idx_end());
11105 }
11106 if (exti == exte && insi == inse)
11107 // Both iterators are at the end: Index lists are identical. Replace
11108 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11109 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11110 // with "i32 42"
11111 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11112 if (exti == exte) {
11113 // The extract list is a prefix of the insert list. i.e. replace
11114 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11115 // %E = extractvalue { i32, { i32 } } %I, 1
11116 // with
11117 // %X = extractvalue { i32, { i32 } } %A, 1
11118 // %E = insertvalue { i32 } %X, i32 42, 0
11119 // by switching the order of the insert and extract (though the
11120 // insertvalue should be left in, since it may have other uses).
11121 Value *NewEV = InsertNewInstBefore(
11122 ExtractValueInst::Create(IV->getAggregateOperand(),
11123 EV.idx_begin(), EV.idx_end()),
11124 EV);
11125 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11126 insi, inse);
11127 }
11128 if (insi == inse)
11129 // The insert list is a prefix of the extract list
11130 // We can simply remove the common indices from the extract and make it
11131 // operate on the inserted value instead of the insertvalue result.
11132 // i.e., replace
11133 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11134 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11135 // with
11136 // %E extractvalue { i32 } { i32 42 }, 0
11137 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11138 exti, exte);
11139 }
11140 // Can't simplify extracts from other values. Note that nested extracts are
11141 // already simplified implicitely by the above (extract ( extract (insert) )
11142 // will be translated into extract ( insert ( extract ) ) first and then just
11143 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011144 return 0;
11145}
11146
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011147/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11148/// is to leave as a vector operation.
11149static bool CheapToScalarize(Value *V, bool isConstant) {
11150 if (isa<ConstantAggregateZero>(V))
11151 return true;
11152 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
11153 if (isConstant) return true;
11154 // If all elts are the same, we can extract.
11155 Constant *Op0 = C->getOperand(0);
11156 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11157 if (C->getOperand(i) != Op0)
11158 return false;
11159 return true;
11160 }
11161 Instruction *I = dyn_cast<Instruction>(V);
11162 if (!I) return false;
11163
11164 // Insert element gets simplified to the inserted element or is deleted if
11165 // this is constant idx extract element and its a constant idx insertelt.
11166 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11167 isa<ConstantInt>(I->getOperand(2)))
11168 return true;
11169 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11170 return true;
11171 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11172 if (BO->hasOneUse() &&
11173 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11174 CheapToScalarize(BO->getOperand(1), isConstant)))
11175 return true;
11176 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11177 if (CI->hasOneUse() &&
11178 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11179 CheapToScalarize(CI->getOperand(1), isConstant)))
11180 return true;
11181
11182 return false;
11183}
11184
11185/// Read and decode a shufflevector mask.
11186///
11187/// It turns undef elements into values that are larger than the number of
11188/// elements in the input.
11189static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11190 unsigned NElts = SVI->getType()->getNumElements();
11191 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11192 return std::vector<unsigned>(NElts, 0);
11193 if (isa<UndefValue>(SVI->getOperand(2)))
11194 return std::vector<unsigned>(NElts, 2*NElts);
11195
11196 std::vector<unsigned> Result;
11197 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011198 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11199 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011200 Result.push_back(NElts*2); // undef -> 8
11201 else
Gabor Greif17396002008-06-12 21:37:33 +000011202 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011203 return Result;
11204}
11205
11206/// FindScalarElement - Given a vector and an element number, see if the scalar
11207/// value is already around as a register, for example if it were inserted then
11208/// extracted from the vector.
11209static Value *FindScalarElement(Value *V, unsigned EltNo) {
11210 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11211 const VectorType *PTy = cast<VectorType>(V->getType());
11212 unsigned Width = PTy->getNumElements();
11213 if (EltNo >= Width) // Out of range access.
11214 return UndefValue::get(PTy->getElementType());
11215
11216 if (isa<UndefValue>(V))
11217 return UndefValue::get(PTy->getElementType());
11218 else if (isa<ConstantAggregateZero>(V))
11219 return Constant::getNullValue(PTy->getElementType());
11220 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11221 return CP->getOperand(EltNo);
11222 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11223 // If this is an insert to a variable element, we don't know what it is.
11224 if (!isa<ConstantInt>(III->getOperand(2)))
11225 return 0;
11226 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11227
11228 // If this is an insert to the element we are looking for, return the
11229 // inserted value.
11230 if (EltNo == IIElt)
11231 return III->getOperand(1);
11232
11233 // Otherwise, the insertelement doesn't modify the value, recurse on its
11234 // vector input.
11235 return FindScalarElement(III->getOperand(0), EltNo);
11236 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
11237 unsigned InEl = getShuffleMask(SVI)[EltNo];
11238 if (InEl < Width)
11239 return FindScalarElement(SVI->getOperand(0), InEl);
11240 else if (InEl < Width*2)
11241 return FindScalarElement(SVI->getOperand(1), InEl - Width);
11242 else
11243 return UndefValue::get(PTy->getElementType());
11244 }
11245
11246 // Otherwise, we don't know.
11247 return 0;
11248}
11249
11250Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011251 // If vector val is undef, replace extract with scalar undef.
11252 if (isa<UndefValue>(EI.getOperand(0)))
11253 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11254
11255 // If vector val is constant 0, replace extract with scalar 0.
11256 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11257 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11258
11259 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011260 // If vector val is constant with all elements the same, replace EI with
11261 // that element. When the elements are not identical, we cannot replace yet
11262 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011263 Constant *op0 = C->getOperand(0);
11264 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11265 if (C->getOperand(i) != op0) {
11266 op0 = 0;
11267 break;
11268 }
11269 if (op0)
11270 return ReplaceInstUsesWith(EI, op0);
11271 }
11272
11273 // If extracting a specified index from the vector, see if we can recursively
11274 // find a previously computed scalar that was inserted into the vector.
11275 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11276 unsigned IndexVal = IdxC->getZExtValue();
11277 unsigned VectorWidth =
11278 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11279
11280 // If this is extracting an invalid index, turn this into undef, to avoid
11281 // crashing the code below.
11282 if (IndexVal >= VectorWidth)
11283 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11284
11285 // This instruction only demands the single element from the input vector.
11286 // If the input vector has a single use, simplify it based on this use
11287 // property.
11288 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11289 uint64_t UndefElts;
11290 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11291 1 << IndexVal,
11292 UndefElts)) {
11293 EI.setOperand(0, V);
11294 return &EI;
11295 }
11296 }
11297
11298 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11299 return ReplaceInstUsesWith(EI, Elt);
11300
11301 // If the this extractelement is directly using a bitcast from a vector of
11302 // the same number of elements, see if we can find the source element from
11303 // it. In this case, we will end up needing to bitcast the scalars.
11304 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11305 if (const VectorType *VT =
11306 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11307 if (VT->getNumElements() == VectorWidth)
11308 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11309 return new BitCastInst(Elt, EI.getType());
11310 }
11311 }
11312
11313 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11314 if (I->hasOneUse()) {
11315 // Push extractelement into predecessor operation if legal and
11316 // profitable to do so
11317 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11318 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11319 if (CheapToScalarize(BO, isConstantElt)) {
11320 ExtractElementInst *newEI0 =
11321 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11322 EI.getName()+".lhs");
11323 ExtractElementInst *newEI1 =
11324 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11325 EI.getName()+".rhs");
11326 InsertNewInstBefore(newEI0, EI);
11327 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011328 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011329 }
11330 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011331 unsigned AS =
11332 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011333 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11334 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011335 GetElementPtrInst *GEP =
11336 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011337 InsertNewInstBefore(GEP, EI);
11338 return new LoadInst(GEP);
11339 }
11340 }
11341 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11342 // Extracting the inserted element?
11343 if (IE->getOperand(2) == EI.getOperand(1))
11344 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11345 // If the inserted and extracted elements are constants, they must not
11346 // be the same value, extract from the pre-inserted value instead.
11347 if (isa<Constant>(IE->getOperand(2)) &&
11348 isa<Constant>(EI.getOperand(1))) {
11349 AddUsesToWorkList(EI);
11350 EI.setOperand(0, IE->getOperand(0));
11351 return &EI;
11352 }
11353 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11354 // If this is extracting an element from a shufflevector, figure out where
11355 // it came from and extract from the appropriate input element instead.
11356 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11357 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11358 Value *Src;
11359 if (SrcIdx < SVI->getType()->getNumElements())
11360 Src = SVI->getOperand(0);
11361 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
11362 SrcIdx -= SVI->getType()->getNumElements();
11363 Src = SVI->getOperand(1);
11364 } else {
11365 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11366 }
11367 return new ExtractElementInst(Src, SrcIdx);
11368 }
11369 }
11370 }
11371 return 0;
11372}
11373
11374/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11375/// elements from either LHS or RHS, return the shuffle mask and true.
11376/// Otherwise, return false.
11377static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11378 std::vector<Constant*> &Mask) {
11379 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11380 "Invalid CollectSingleShuffleElements");
11381 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11382
11383 if (isa<UndefValue>(V)) {
11384 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11385 return true;
11386 } else if (V == LHS) {
11387 for (unsigned i = 0; i != NumElts; ++i)
11388 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11389 return true;
11390 } else if (V == RHS) {
11391 for (unsigned i = 0; i != NumElts; ++i)
11392 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11393 return true;
11394 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11395 // If this is an insert of an extract from some other vector, include it.
11396 Value *VecOp = IEI->getOperand(0);
11397 Value *ScalarOp = IEI->getOperand(1);
11398 Value *IdxOp = IEI->getOperand(2);
11399
11400 if (!isa<ConstantInt>(IdxOp))
11401 return false;
11402 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11403
11404 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11405 // Okay, we can handle this if the vector we are insertinting into is
11406 // transitively ok.
11407 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11408 // If so, update the mask to reflect the inserted undef.
11409 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11410 return true;
11411 }
11412 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11413 if (isa<ConstantInt>(EI->getOperand(1)) &&
11414 EI->getOperand(0)->getType() == V->getType()) {
11415 unsigned ExtractedIdx =
11416 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11417
11418 // This must be extracting from either LHS or RHS.
11419 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11420 // Okay, we can handle this if the vector we are insertinting into is
11421 // transitively ok.
11422 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11423 // If so, update the mask to reflect the inserted value.
11424 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011425 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011426 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11427 } else {
11428 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011429 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011430 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11431
11432 }
11433 return true;
11434 }
11435 }
11436 }
11437 }
11438 }
11439 // TODO: Handle shufflevector here!
11440
11441 return false;
11442}
11443
11444/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11445/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11446/// that computes V and the LHS value of the shuffle.
11447static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11448 Value *&RHS) {
11449 assert(isa<VectorType>(V->getType()) &&
11450 (RHS == 0 || V->getType() == RHS->getType()) &&
11451 "Invalid shuffle!");
11452 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11453
11454 if (isa<UndefValue>(V)) {
11455 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11456 return V;
11457 } else if (isa<ConstantAggregateZero>(V)) {
11458 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11459 return V;
11460 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11461 // If this is an insert of an extract from some other vector, include it.
11462 Value *VecOp = IEI->getOperand(0);
11463 Value *ScalarOp = IEI->getOperand(1);
11464 Value *IdxOp = IEI->getOperand(2);
11465
11466 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11467 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11468 EI->getOperand(0)->getType() == V->getType()) {
11469 unsigned ExtractedIdx =
11470 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11471 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11472
11473 // Either the extracted from or inserted into vector must be RHSVec,
11474 // otherwise we'd end up with a shuffle of three inputs.
11475 if (EI->getOperand(0) == RHS || RHS == 0) {
11476 RHS = EI->getOperand(0);
11477 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011478 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011479 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11480 return V;
11481 }
11482
11483 if (VecOp == RHS) {
11484 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11485 // Everything but the extracted element is replaced with the RHS.
11486 for (unsigned i = 0; i != NumElts; ++i) {
11487 if (i != InsertedIdx)
11488 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11489 }
11490 return V;
11491 }
11492
11493 // If this insertelement is a chain that comes from exactly these two
11494 // vectors, return the vector and the effective shuffle.
11495 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11496 return EI->getOperand(0);
11497
11498 }
11499 }
11500 }
11501 // TODO: Handle shufflevector here!
11502
11503 // Otherwise, can't do anything fancy. Return an identity vector.
11504 for (unsigned i = 0; i != NumElts; ++i)
11505 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11506 return V;
11507}
11508
11509Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11510 Value *VecOp = IE.getOperand(0);
11511 Value *ScalarOp = IE.getOperand(1);
11512 Value *IdxOp = IE.getOperand(2);
11513
11514 // Inserting an undef or into an undefined place, remove this.
11515 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11516 ReplaceInstUsesWith(IE, VecOp);
11517
11518 // If the inserted element was extracted from some other vector, and if the
11519 // indexes are constant, try to turn this into a shufflevector operation.
11520 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11521 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11522 EI->getOperand(0)->getType() == IE.getType()) {
11523 unsigned NumVectorElts = IE.getType()->getNumElements();
11524 unsigned ExtractedIdx =
11525 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11526 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11527
11528 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11529 return ReplaceInstUsesWith(IE, VecOp);
11530
11531 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11532 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11533
11534 // If we are extracting a value from a vector, then inserting it right
11535 // back into the same place, just use the input vector.
11536 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11537 return ReplaceInstUsesWith(IE, VecOp);
11538
11539 // We could theoretically do this for ANY input. However, doing so could
11540 // turn chains of insertelement instructions into a chain of shufflevector
11541 // instructions, and right now we do not merge shufflevectors. As such,
11542 // only do this in a situation where it is clear that there is benefit.
11543 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11544 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11545 // the values of VecOp, except then one read from EIOp0.
11546 // Build a new shuffle mask.
11547 std::vector<Constant*> Mask;
11548 if (isa<UndefValue>(VecOp))
11549 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11550 else {
11551 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11552 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11553 NumVectorElts));
11554 }
11555 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11556 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11557 ConstantVector::get(Mask));
11558 }
11559
11560 // If this insertelement isn't used by some other insertelement, turn it
11561 // (and any insertelements it points to), into one big shuffle.
11562 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11563 std::vector<Constant*> Mask;
11564 Value *RHS = 0;
11565 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11566 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11567 // We now have a shuffle of LHS, RHS, Mask.
11568 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11569 }
11570 }
11571 }
11572
11573 return 0;
11574}
11575
11576
11577Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11578 Value *LHS = SVI.getOperand(0);
11579 Value *RHS = SVI.getOperand(1);
11580 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11581
11582 bool MadeChange = false;
11583
11584 // Undefined shuffle mask -> undefined value.
11585 if (isa<UndefValue>(SVI.getOperand(2)))
11586 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011587
11588 uint64_t UndefElts;
11589 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
11590 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11591 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000011592 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11593 LHS = SVI.getOperand(0);
11594 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011595 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000011596 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011597
11598 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11599 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11600 if (LHS == RHS || isa<UndefValue>(LHS)) {
11601 if (isa<UndefValue>(LHS) && LHS == RHS) {
11602 // shuffle(undef,undef,mask) -> undef.
11603 return ReplaceInstUsesWith(SVI, LHS);
11604 }
11605
11606 // Remap any references to RHS to use LHS.
11607 std::vector<Constant*> Elts;
11608 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11609 if (Mask[i] >= 2*e)
11610 Elts.push_back(UndefValue::get(Type::Int32Ty));
11611 else {
11612 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000011613 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011614 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011615 Elts.push_back(UndefValue::get(Type::Int32Ty));
11616 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011617 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011618 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11619 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011620 }
11621 }
11622 SVI.setOperand(0, SVI.getOperand(1));
11623 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11624 SVI.setOperand(2, ConstantVector::get(Elts));
11625 LHS = SVI.getOperand(0);
11626 RHS = SVI.getOperand(1);
11627 MadeChange = true;
11628 }
11629
11630 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
11631 bool isLHSID = true, isRHSID = true;
11632
11633 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11634 if (Mask[i] >= e*2) continue; // Ignore undef values.
11635 // Is this an identity shuffle of the LHS value?
11636 isLHSID &= (Mask[i] == i);
11637
11638 // Is this an identity shuffle of the RHS value?
11639 isRHSID &= (Mask[i]-e == i);
11640 }
11641
11642 // Eliminate identity shuffles.
11643 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11644 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
11645
11646 // If the LHS is a shufflevector itself, see if we can combine it with this
11647 // one without producing an unusual shuffle. Here we are really conservative:
11648 // we are absolutely afraid of producing a shuffle mask not in the input
11649 // program, because the code gen may not be smart enough to turn a merged
11650 // shuffle into two specific shuffles: it may produce worse code. As such,
11651 // we only merge two shuffles if the result is one of the two input shuffle
11652 // masks. In this case, merging the shuffles just removes one instruction,
11653 // which we know is safe. This is good for things like turning:
11654 // (splat(splat)) -> splat.
11655 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11656 if (isa<UndefValue>(RHS)) {
11657 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11658
11659 std::vector<unsigned> NewMask;
11660 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11661 if (Mask[i] >= 2*e)
11662 NewMask.push_back(2*e);
11663 else
11664 NewMask.push_back(LHSMask[Mask[i]]);
11665
11666 // If the result mask is equal to the src shuffle or this shuffle mask, do
11667 // the replacement.
11668 if (NewMask == LHSMask || NewMask == Mask) {
11669 std::vector<Constant*> Elts;
11670 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11671 if (NewMask[i] >= e*2) {
11672 Elts.push_back(UndefValue::get(Type::Int32Ty));
11673 } else {
11674 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
11675 }
11676 }
11677 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11678 LHSSVI->getOperand(1),
11679 ConstantVector::get(Elts));
11680 }
11681 }
11682 }
11683
11684 return MadeChange ? &SVI : 0;
11685}
11686
11687
11688
11689
11690/// TryToSinkInstruction - Try to move the specified instruction from its
11691/// current block into the beginning of DestBlock, which can only happen if it's
11692/// safe to move the instruction past all of the instructions between it and the
11693/// end of its block.
11694static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11695 assert(I->hasOneUse() && "Invariants didn't hold!");
11696
11697 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000011698 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
11699 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011700
11701 // Do not sink alloca instructions out of the entry block.
11702 if (isa<AllocaInst>(I) && I->getParent() ==
11703 &DestBlock->getParent()->getEntryBlock())
11704 return false;
11705
11706 // We can only sink load instructions if there is nothing between the load and
11707 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000011708 if (I->mayReadFromMemory()) {
11709 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011710 Scan != E; ++Scan)
11711 if (Scan->mayWriteToMemory())
11712 return false;
11713 }
11714
Dan Gohman514277c2008-05-23 21:05:58 +000011715 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011716
11717 I->moveBefore(InsertPos);
11718 ++NumSunkInst;
11719 return true;
11720}
11721
11722
11723/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11724/// all reachable code to the worklist.
11725///
11726/// This has a couple of tricks to make the code faster and more powerful. In
11727/// particular, we constant fold and DCE instructions as we go, to avoid adding
11728/// them to the worklist (this significantly speeds up instcombine on code where
11729/// many instructions are dead or constant). Additionally, if we find a branch
11730/// whose condition is a known constant, we only visit the reachable successors.
11731///
11732static void AddReachableCodeToWorklist(BasicBlock *BB,
11733 SmallPtrSet<BasicBlock*, 64> &Visited,
11734 InstCombiner &IC,
11735 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000011736 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011737 Worklist.push_back(BB);
11738
11739 while (!Worklist.empty()) {
11740 BB = Worklist.back();
11741 Worklist.pop_back();
11742
11743 // We have now visited this block! If we've already been here, ignore it.
11744 if (!Visited.insert(BB)) continue;
11745
11746 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
11747 Instruction *Inst = BBI++;
11748
11749 // DCE instruction if trivially dead.
11750 if (isInstructionTriviallyDead(Inst)) {
11751 ++NumDeadInst;
11752 DOUT << "IC: DCE: " << *Inst;
11753 Inst->eraseFromParent();
11754 continue;
11755 }
11756
11757 // ConstantProp instruction if trivially constant.
11758 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
11759 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
11760 Inst->replaceAllUsesWith(C);
11761 ++NumConstProp;
11762 Inst->eraseFromParent();
11763 continue;
11764 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000011765
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011766 IC.AddToWorkList(Inst);
11767 }
11768
11769 // Recursively visit successors. If this is a branch or switch on a
11770 // constant, only visit the reachable successor.
11771 TerminatorInst *TI = BB->getTerminator();
11772 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
11773 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
11774 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011775 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011776 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011777 continue;
11778 }
11779 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
11780 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
11781 // See if this is an explicit destination.
11782 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
11783 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011784 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011785 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011786 continue;
11787 }
11788
11789 // Otherwise it is the default destination.
11790 Worklist.push_back(SI->getSuccessor(0));
11791 continue;
11792 }
11793 }
11794
11795 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
11796 Worklist.push_back(TI->getSuccessor(i));
11797 }
11798}
11799
11800bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
11801 bool Changed = false;
11802 TD = &getAnalysis<TargetData>();
11803
11804 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
11805 << F.getNameStr() << "\n");
11806
11807 {
11808 // Do a depth-first traversal of the function, populate the worklist with
11809 // the reachable instructions. Ignore blocks that are not reachable. Keep
11810 // track of which blocks we visit.
11811 SmallPtrSet<BasicBlock*, 64> Visited;
11812 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
11813
11814 // Do a quick scan over the function. If we find any blocks that are
11815 // unreachable, remove any instructions inside of them. This prevents
11816 // the instcombine code from having to deal with some bad special cases.
11817 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
11818 if (!Visited.count(BB)) {
11819 Instruction *Term = BB->getTerminator();
11820 while (Term != BB->begin()) { // Remove instrs bottom-up
11821 BasicBlock::iterator I = Term; --I;
11822
11823 DOUT << "IC: DCE: " << *I;
11824 ++NumDeadInst;
11825
11826 if (!I->use_empty())
11827 I->replaceAllUsesWith(UndefValue::get(I->getType()));
11828 I->eraseFromParent();
11829 }
11830 }
11831 }
11832
11833 while (!Worklist.empty()) {
11834 Instruction *I = RemoveOneFromWorkList();
11835 if (I == 0) continue; // skip null values.
11836
11837 // Check to see if we can DCE the instruction.
11838 if (isInstructionTriviallyDead(I)) {
11839 // Add operands to the worklist.
11840 if (I->getNumOperands() < 4)
11841 AddUsesToWorkList(*I);
11842 ++NumDeadInst;
11843
11844 DOUT << "IC: DCE: " << *I;
11845
11846 I->eraseFromParent();
11847 RemoveFromWorkList(I);
11848 continue;
11849 }
11850
11851 // Instruction isn't dead, see if we can constant propagate it.
11852 if (Constant *C = ConstantFoldInstruction(I, TD)) {
11853 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
11854
11855 // Add operands to the worklist.
11856 AddUsesToWorkList(*I);
11857 ReplaceInstUsesWith(*I, C);
11858
11859 ++NumConstProp;
11860 I->eraseFromParent();
11861 RemoveFromWorkList(I);
11862 continue;
11863 }
11864
Nick Lewyckyadb67922008-05-25 20:56:15 +000011865 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
11866 // See if we can constant fold its operands.
11867 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
11868 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
11869 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
11870 i->set(NewC);
11871 }
11872 }
11873 }
11874
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011875 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000011876 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011877 BasicBlock *BB = I->getParent();
11878 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
11879 if (UserParent != BB) {
11880 bool UserIsSuccessor = false;
11881 // See if the user is one of our successors.
11882 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
11883 if (*SI == UserParent) {
11884 UserIsSuccessor = true;
11885 break;
11886 }
11887
11888 // If the user is one of our immediate successors, and if that successor
11889 // only has us as a predecessors (we'd have to split the critical edge
11890 // otherwise), we can keep going.
11891 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
11892 next(pred_begin(UserParent)) == pred_end(UserParent))
11893 // Okay, the CFG is simple enough, try to sink this instruction.
11894 Changed |= TryToSinkInstruction(I, UserParent);
11895 }
11896 }
11897
11898 // Now that we have an instruction, try combining it to simplify it...
11899#ifndef NDEBUG
11900 std::string OrigI;
11901#endif
11902 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
11903 if (Instruction *Result = visit(*I)) {
11904 ++NumCombined;
11905 // Should we replace the old instruction with a new one?
11906 if (Result != I) {
11907 DOUT << "IC: Old = " << *I
11908 << " New = " << *Result;
11909
11910 // Everything uses the new instruction now.
11911 I->replaceAllUsesWith(Result);
11912
11913 // Push the new instruction and any users onto the worklist.
11914 AddToWorkList(Result);
11915 AddUsersToWorkList(*Result);
11916
11917 // Move the name to the new instruction first.
11918 Result->takeName(I);
11919
11920 // Insert the new instruction into the basic block...
11921 BasicBlock *InstParent = I->getParent();
11922 BasicBlock::iterator InsertPos = I;
11923
11924 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
11925 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
11926 ++InsertPos;
11927
11928 InstParent->getInstList().insert(InsertPos, Result);
11929
11930 // Make sure that we reprocess all operands now that we reduced their
11931 // use counts.
11932 AddUsesToWorkList(*I);
11933
11934 // Instructions can end up on the worklist more than once. Make sure
11935 // we do not process an instruction that has been deleted.
11936 RemoveFromWorkList(I);
11937
11938 // Erase the old instruction.
11939 InstParent->getInstList().erase(I);
11940 } else {
11941#ifndef NDEBUG
11942 DOUT << "IC: Mod = " << OrigI
11943 << " New = " << *I;
11944#endif
11945
11946 // If the instruction was modified, it's possible that it is now dead.
11947 // if so, remove it.
11948 if (isInstructionTriviallyDead(I)) {
11949 // Make sure we process all operands now that we are reducing their
11950 // use counts.
11951 AddUsesToWorkList(*I);
11952
11953 // Instructions may end up in the worklist more than once. Erase all
11954 // occurrences of this instruction.
11955 RemoveFromWorkList(I);
11956 I->eraseFromParent();
11957 } else {
11958 AddToWorkList(I);
11959 AddUsersToWorkList(*I);
11960 }
11961 }
11962 Changed = true;
11963 }
11964 }
11965
11966 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000011967
11968 // Do an explicit clear, this shrinks the map if needed.
11969 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011970 return Changed;
11971}
11972
11973
11974bool InstCombiner::runOnFunction(Function &F) {
11975 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
11976
11977 bool EverMadeChange = false;
11978
11979 // Iterate while there is work to do.
11980 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000011981 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011982 EverMadeChange = true;
11983 return EverMadeChange;
11984}
11985
11986FunctionPass *llvm::createInstructionCombiningPass() {
11987 return new InstCombiner();
11988}
11989
Chris Lattner6297fc72008-08-11 22:06:05 +000011990