blob: bb7763ddeb6a8e4f1c39613e76d8067fcd471928 [file] [log] [blame]
Chris Lattner02446fc2010-01-04 07:37:31 +00001//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
Eli Friedman74703252011-07-20 21:57:23 +000016#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner02446fc2010-01-04 07:37:31 +000017#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Target/TargetData.h"
20#include "llvm/Support/ConstantRange.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/PatternMatch.h"
23using namespace llvm;
24using namespace PatternMatch;
25
Chris Lattnerb20c0b52011-02-10 05:23:05 +000026static ConstantInt *getOne(Constant *C) {
27 return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
28}
29
Chris Lattner02446fc2010-01-04 07:37:31 +000030/// AddOne - Add one to a ConstantInt
31static Constant *AddOne(Constant *C) {
32 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
33}
34/// SubOne - Subtract one from a ConstantInt
Chris Lattnerb20c0b52011-02-10 05:23:05 +000035static Constant *SubOne(Constant *C) {
36 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
Chris Lattner02446fc2010-01-04 07:37:31 +000037}
38
39static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
40 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
41}
42
43static bool HasAddOverflow(ConstantInt *Result,
44 ConstantInt *In1, ConstantInt *In2,
45 bool IsSigned) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +000046 if (!IsSigned)
Chris Lattner02446fc2010-01-04 07:37:31 +000047 return Result->getValue().ult(In1->getValue());
Chris Lattnerc73b24d2011-07-15 06:08:15 +000048
49 if (In2->isNegative())
50 return Result->getValue().sgt(In1->getValue());
51 return Result->getValue().slt(In1->getValue());
Chris Lattner02446fc2010-01-04 07:37:31 +000052}
53
54/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
55/// overflowed for this type.
56static bool AddWithOverflow(Constant *&Result, Constant *In1,
57 Constant *In2, bool IsSigned = false) {
58 Result = ConstantExpr::getAdd(In1, In2);
59
Chris Lattnerdb125cf2011-07-18 04:54:35 +000060 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
Chris Lattner02446fc2010-01-04 07:37:31 +000061 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
63 if (HasAddOverflow(ExtractElement(Result, Idx),
64 ExtractElement(In1, Idx),
65 ExtractElement(In2, Idx),
66 IsSigned))
67 return true;
68 }
69 return false;
70 }
71
72 return HasAddOverflow(cast<ConstantInt>(Result),
73 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74 IsSigned);
75}
76
77static bool HasSubOverflow(ConstantInt *Result,
78 ConstantInt *In1, ConstantInt *In2,
79 bool IsSigned) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +000080 if (!IsSigned)
Chris Lattner02446fc2010-01-04 07:37:31 +000081 return Result->getValue().ugt(In1->getValue());
Jim Grosbach0cc4a952011-09-30 18:09:53 +000082
Chris Lattnerc73b24d2011-07-15 06:08:15 +000083 if (In2->isNegative())
84 return Result->getValue().slt(In1->getValue());
85
86 return Result->getValue().sgt(In1->getValue());
Chris Lattner02446fc2010-01-04 07:37:31 +000087}
88
89/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
90/// overflowed for this type.
91static bool SubWithOverflow(Constant *&Result, Constant *In1,
92 Constant *In2, bool IsSigned = false) {
93 Result = ConstantExpr::getSub(In1, In2);
94
Chris Lattnerdb125cf2011-07-18 04:54:35 +000095 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
Chris Lattner02446fc2010-01-04 07:37:31 +000096 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
98 if (HasSubOverflow(ExtractElement(Result, Idx),
99 ExtractElement(In1, Idx),
100 ExtractElement(In2, Idx),
101 IsSigned))
102 return true;
103 }
104 return false;
105 }
106
107 return HasSubOverflow(cast<ConstantInt>(Result),
108 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109 IsSigned);
110}
111
112/// isSignBitCheck - Given an exploded icmp instruction, return true if the
113/// comparison only checks the sign bit. If it only checks the sign bit, set
114/// TrueIfSigned if the result of the comparison is true when the input value is
115/// signed.
116static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
117 bool &TrueIfSigned) {
118 switch (pred) {
119 case ICmpInst::ICMP_SLT: // True if LHS s< 0
120 TrueIfSigned = true;
121 return RHS->isZero();
122 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
123 TrueIfSigned = true;
124 return RHS->isAllOnesValue();
125 case ICmpInst::ICMP_SGT: // True if LHS s> -1
126 TrueIfSigned = false;
127 return RHS->isAllOnesValue();
128 case ICmpInst::ICMP_UGT:
129 // True if LHS u> RHS and RHS == high-bit-mask - 1
130 TrueIfSigned = true;
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000131 return RHS->isMaxValue(true);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000132 case ICmpInst::ICMP_UGE:
Chris Lattner02446fc2010-01-04 07:37:31 +0000133 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
134 TrueIfSigned = true;
135 return RHS->getValue().isSignBit();
136 default:
137 return false;
138 }
139}
140
141// isHighOnes - Return true if the constant is of the form 1+0+.
142// This is the same as lowones(~X).
143static bool isHighOnes(const ConstantInt *CI) {
144 return (~CI->getValue() + 1).isPowerOf2();
145}
146
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000147/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
Chris Lattner02446fc2010-01-04 07:37:31 +0000148/// set of known zero and one bits, compute the maximum and minimum values that
149/// could have the specified known zero and known one bits, returning them in
150/// min/max.
151static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
152 const APInt& KnownOne,
153 APInt& Min, APInt& Max) {
154 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
155 KnownZero.getBitWidth() == Min.getBitWidth() &&
156 KnownZero.getBitWidth() == Max.getBitWidth() &&
157 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
158 APInt UnknownBits = ~(KnownZero|KnownOne);
159
160 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
161 // bit if it is unknown.
162 Min = KnownOne;
163 Max = KnownOne|UnknownBits;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000164
Chris Lattner02446fc2010-01-04 07:37:31 +0000165 if (UnknownBits.isNegative()) { // Sign bit is unknown
Jay Foad7a874dd2010-12-01 08:53:58 +0000166 Min.setBit(Min.getBitWidth()-1);
167 Max.clearBit(Max.getBitWidth()-1);
Chris Lattner02446fc2010-01-04 07:37:31 +0000168 }
169}
170
171// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
172// a set of known zero and one bits, compute the maximum and minimum values that
173// could have the specified known zero and known one bits, returning them in
174// min/max.
175static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
176 const APInt &KnownOne,
177 APInt &Min, APInt &Max) {
178 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
179 KnownZero.getBitWidth() == Min.getBitWidth() &&
180 KnownZero.getBitWidth() == Max.getBitWidth() &&
181 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
182 APInt UnknownBits = ~(KnownZero|KnownOne);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000183
Chris Lattner02446fc2010-01-04 07:37:31 +0000184 // The minimum value is when the unknown bits are all zeros.
185 Min = KnownOne;
186 // The maximum value is when the unknown bits are all ones.
187 Max = KnownOne|UnknownBits;
188}
189
190
191
192/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
193/// cmp pred (load (gep GV, ...)), cmpcst
194/// where GV is a global variable with a constant initializer. Try to simplify
195/// this into some simple computation that does not need the load. For example
196/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
197///
198/// If AndCst is non-null, then the loaded value is masked with that constant
199/// before doing the comparison. This handles cases like "A[i]&4 == 0".
200Instruction *InstCombiner::
201FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
202 CmpInst &ICI, ConstantInt *AndCst) {
Chris Lattnerd7f5a582010-01-04 18:57:15 +0000203 // We need TD information to know the pointer size unless this is inbounds.
204 if (!GEP->isInBounds() && TD == 0) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000205
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000206 Constant *Init = GV->getInitializer();
207 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
208 return 0;
209
210 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
211 if (ArrayElementCount > 1024) return 0; // Don't blow up on huge arrays.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000212
Chris Lattner02446fc2010-01-04 07:37:31 +0000213 // There are many forms of this optimization we can handle, for now, just do
214 // the simple index into a single-dimensional array.
215 //
216 // Require: GEP GV, 0, i {{, constant indices}}
217 if (GEP->getNumOperands() < 3 ||
218 !isa<ConstantInt>(GEP->getOperand(1)) ||
219 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
220 isa<Constant>(GEP->getOperand(2)))
221 return 0;
222
223 // Check that indices after the variable are constants and in-range for the
224 // type they index. Collect the indices. This is typically for arrays of
225 // structs.
226 SmallVector<unsigned, 4> LaterIndices;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000227
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000228 Type *EltTy = Init->getType()->getArrayElementType();
Chris Lattner02446fc2010-01-04 07:37:31 +0000229 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
230 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
231 if (Idx == 0) return 0; // Variable index.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000232
Chris Lattner02446fc2010-01-04 07:37:31 +0000233 uint64_t IdxVal = Idx->getZExtValue();
234 if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000235
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000236 if (StructType *STy = dyn_cast<StructType>(EltTy))
Chris Lattner02446fc2010-01-04 07:37:31 +0000237 EltTy = STy->getElementType(IdxVal);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000238 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000239 if (IdxVal >= ATy->getNumElements()) return 0;
240 EltTy = ATy->getElementType();
241 } else {
242 return 0; // Unknown type.
243 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000244
Chris Lattner02446fc2010-01-04 07:37:31 +0000245 LaterIndices.push_back(IdxVal);
246 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000247
Chris Lattner02446fc2010-01-04 07:37:31 +0000248 enum { Overdefined = -3, Undefined = -2 };
249
250 // Variables for our state machines.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000251
Chris Lattner02446fc2010-01-04 07:37:31 +0000252 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
253 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
254 // and 87 is the second (and last) index. FirstTrueElement is -2 when
255 // undefined, otherwise set to the first true element. SecondTrueElement is
256 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
257 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
258
259 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
260 // form "i != 47 & i != 87". Same state transitions as for true elements.
261 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000262
Chris Lattner02446fc2010-01-04 07:37:31 +0000263 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
264 /// define a state machine that triggers for ranges of values that the index
265 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
266 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
267 /// index in the range (inclusive). We use -2 for undefined here because we
268 /// use relative comparisons and don't want 0-1 to match -1.
269 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000270
Chris Lattner02446fc2010-01-04 07:37:31 +0000271 // MagicBitvector - This is a magic bitvector where we set a bit if the
272 // comparison is true for element 'i'. If there are 64 elements or less in
273 // the array, this will fully represent all the comparison results.
274 uint64_t MagicBitvector = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000275
276
Chris Lattner02446fc2010-01-04 07:37:31 +0000277 // Scan the array and see if one of our patterns matches.
278 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000279 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
280 Constant *Elt = Init->getAggregateElement(i);
281 if (Elt == 0) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000282
Chris Lattner02446fc2010-01-04 07:37:31 +0000283 // If this is indexing an array of structures, get the structure element.
284 if (!LaterIndices.empty())
Jay Foadfc6d3a42011-07-13 10:26:04 +0000285 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000286
Chris Lattner02446fc2010-01-04 07:37:31 +0000287 // If the element is masked, handle it.
288 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000289
Chris Lattner02446fc2010-01-04 07:37:31 +0000290 // Find out if the comparison would be true or false for the i'th element.
291 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
Chad Rosieraab8e282011-12-02 01:26:24 +0000292 CompareRHS, TD, TLI);
Chris Lattner02446fc2010-01-04 07:37:31 +0000293 // If the result is undef for this element, ignore it.
294 if (isa<UndefValue>(C)) {
295 // Extend range state machines to cover this element in case there is an
296 // undef in the middle of the range.
297 if (TrueRangeEnd == (int)i-1)
298 TrueRangeEnd = i;
299 if (FalseRangeEnd == (int)i-1)
300 FalseRangeEnd = i;
301 continue;
302 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000303
Chris Lattner02446fc2010-01-04 07:37:31 +0000304 // If we can't compute the result for any of the elements, we have to give
305 // up evaluating the entire conditional.
306 if (!isa<ConstantInt>(C)) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000307
Chris Lattner02446fc2010-01-04 07:37:31 +0000308 // Otherwise, we know if the comparison is true or false for this element,
309 // update our state machines.
310 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000311
Chris Lattner02446fc2010-01-04 07:37:31 +0000312 // State machine for single/double/range index comparison.
313 if (IsTrueForElt) {
314 // Update the TrueElement state machine.
315 if (FirstTrueElement == Undefined)
316 FirstTrueElement = TrueRangeEnd = i; // First true element.
317 else {
318 // Update double-compare state machine.
319 if (SecondTrueElement == Undefined)
320 SecondTrueElement = i;
321 else
322 SecondTrueElement = Overdefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000323
Chris Lattner02446fc2010-01-04 07:37:31 +0000324 // Update range state machine.
325 if (TrueRangeEnd == (int)i-1)
326 TrueRangeEnd = i;
327 else
328 TrueRangeEnd = Overdefined;
329 }
330 } else {
331 // Update the FalseElement state machine.
332 if (FirstFalseElement == Undefined)
333 FirstFalseElement = FalseRangeEnd = i; // First false element.
334 else {
335 // Update double-compare state machine.
336 if (SecondFalseElement == Undefined)
337 SecondFalseElement = i;
338 else
339 SecondFalseElement = Overdefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000340
Chris Lattner02446fc2010-01-04 07:37:31 +0000341 // Update range state machine.
342 if (FalseRangeEnd == (int)i-1)
343 FalseRangeEnd = i;
344 else
345 FalseRangeEnd = Overdefined;
346 }
347 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000348
349
Chris Lattner02446fc2010-01-04 07:37:31 +0000350 // If this element is in range, update our magic bitvector.
351 if (i < 64 && IsTrueForElt)
352 MagicBitvector |= 1ULL << i;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000353
Chris Lattner02446fc2010-01-04 07:37:31 +0000354 // If all of our states become overdefined, bail out early. Since the
355 // predicate is expensive, only check it every 8 elements. This is only
356 // really useful for really huge arrays.
357 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
358 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
359 FalseRangeEnd == Overdefined)
360 return 0;
361 }
362
363 // Now that we've scanned the entire array, emit our new comparison(s). We
364 // order the state machines in complexity of the generated code.
365 Value *Idx = GEP->getOperand(2);
366
Chris Lattnerd7f5a582010-01-04 18:57:15 +0000367 // If the index is larger than the pointer size of the target, truncate the
368 // index down like the GEP would do implicitly. We don't have to do this for
369 // an inbounds GEP because the index can't be out of range.
370 if (!GEP->isInBounds() &&
371 Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
372 Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000373
Chris Lattner02446fc2010-01-04 07:37:31 +0000374 // If the comparison is only true for one or two elements, emit direct
375 // comparisons.
376 if (SecondTrueElement != Overdefined) {
377 // None true -> false.
378 if (FirstTrueElement == Undefined)
379 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000380
Chris Lattner02446fc2010-01-04 07:37:31 +0000381 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000382
Chris Lattner02446fc2010-01-04 07:37:31 +0000383 // True for one element -> 'i == 47'.
384 if (SecondTrueElement == Undefined)
385 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000386
Chris Lattner02446fc2010-01-04 07:37:31 +0000387 // True for two elements -> 'i == 47 | i == 72'.
388 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
389 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
390 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
391 return BinaryOperator::CreateOr(C1, C2);
392 }
393
394 // If the comparison is only false for one or two elements, emit direct
395 // comparisons.
396 if (SecondFalseElement != Overdefined) {
397 // None false -> true.
398 if (FirstFalseElement == Undefined)
399 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000400
Chris Lattner02446fc2010-01-04 07:37:31 +0000401 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
402
403 // False for one element -> 'i != 47'.
404 if (SecondFalseElement == Undefined)
405 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000406
Chris Lattner02446fc2010-01-04 07:37:31 +0000407 // False for two elements -> 'i != 47 & i != 72'.
408 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
409 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
410 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
411 return BinaryOperator::CreateAnd(C1, C2);
412 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000413
Chris Lattner02446fc2010-01-04 07:37:31 +0000414 // If the comparison can be replaced with a range comparison for the elements
415 // where it is true, emit the range check.
416 if (TrueRangeEnd != Overdefined) {
417 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000418
Chris Lattner02446fc2010-01-04 07:37:31 +0000419 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
420 if (FirstTrueElement) {
421 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
422 Idx = Builder->CreateAdd(Idx, Offs);
423 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000424
Chris Lattner02446fc2010-01-04 07:37:31 +0000425 Value *End = ConstantInt::get(Idx->getType(),
426 TrueRangeEnd-FirstTrueElement+1);
427 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
428 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000429
Chris Lattner02446fc2010-01-04 07:37:31 +0000430 // False range check.
431 if (FalseRangeEnd != Overdefined) {
432 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
433 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
434 if (FirstFalseElement) {
435 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
436 Idx = Builder->CreateAdd(Idx, Offs);
437 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000438
Chris Lattner02446fc2010-01-04 07:37:31 +0000439 Value *End = ConstantInt::get(Idx->getType(),
440 FalseRangeEnd-FirstFalseElement);
441 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
442 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000443
444
Chris Lattner02446fc2010-01-04 07:37:31 +0000445 // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
446 // of this load, replace it with computation that does:
447 // ((magic_cst >> i) & 1) != 0
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000448 if (ArrayElementCount <= 32 ||
449 (TD && ArrayElementCount <= 64 && TD->isLegalInteger(64))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000450 Type *Ty;
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000451 if (ArrayElementCount <= 32)
Chris Lattner02446fc2010-01-04 07:37:31 +0000452 Ty = Type::getInt32Ty(Init->getContext());
453 else
454 Ty = Type::getInt64Ty(Init->getContext());
455 Value *V = Builder->CreateIntCast(Idx, Ty, false);
456 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
457 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
458 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
459 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000460
Chris Lattner02446fc2010-01-04 07:37:31 +0000461 return 0;
462}
463
464
465/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
466/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
467/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
468/// be complex, and scales are involved. The above expression would also be
469/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
470/// This later form is less amenable to optimization though, and we are allowed
471/// to generate the first by knowing that pointer arithmetic doesn't overflow.
472///
473/// If we can't emit an optimized form for this expression, this returns null.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000474///
Eli Friedman107ffd52011-05-18 23:11:30 +0000475static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000476 TargetData &TD = *IC.getTargetData();
477 gep_type_iterator GTI = gep_type_begin(GEP);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000478
Chris Lattner02446fc2010-01-04 07:37:31 +0000479 // Check to see if this gep only has a single variable index. If so, and if
480 // any constant indices are a multiple of its scale, then we can compute this
481 // in terms of the scale of the variable index. For example, if the GEP
482 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
483 // because the expression will cross zero at the same point.
484 unsigned i, e = GEP->getNumOperands();
485 int64_t Offset = 0;
486 for (i = 1; i != e; ++i, ++GTI) {
487 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
488 // Compute the aggregate offset of constant indices.
489 if (CI->isZero()) continue;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000490
Chris Lattner02446fc2010-01-04 07:37:31 +0000491 // Handle a struct index, which adds its field offset to the pointer.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000492 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000493 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
494 } else {
495 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
496 Offset += Size*CI->getSExtValue();
497 }
498 } else {
499 // Found our variable index.
500 break;
501 }
502 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000503
Chris Lattner02446fc2010-01-04 07:37:31 +0000504 // If there are no variable indices, we must have a constant offset, just
505 // evaluate it the general way.
506 if (i == e) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000507
Chris Lattner02446fc2010-01-04 07:37:31 +0000508 Value *VariableIdx = GEP->getOperand(i);
509 // Determine the scale factor of the variable element. For example, this is
510 // 4 if the variable index is into an array of i32.
511 uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000512
Chris Lattner02446fc2010-01-04 07:37:31 +0000513 // Verify that there are no other variable indices. If so, emit the hard way.
514 for (++i, ++GTI; i != e; ++i, ++GTI) {
515 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
516 if (!CI) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000517
Chris Lattner02446fc2010-01-04 07:37:31 +0000518 // Compute the aggregate offset of constant indices.
519 if (CI->isZero()) continue;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000520
Chris Lattner02446fc2010-01-04 07:37:31 +0000521 // Handle a struct index, which adds its field offset to the pointer.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000522 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000523 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
524 } else {
525 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
526 Offset += Size*CI->getSExtValue();
527 }
528 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000529
Chris Lattner02446fc2010-01-04 07:37:31 +0000530 // Okay, we know we have a single variable index, which must be a
531 // pointer/array/vector index. If there is no offset, life is simple, return
532 // the index.
533 unsigned IntPtrWidth = TD.getPointerSizeInBits();
534 if (Offset == 0) {
535 // Cast to intptrty in case a truncation occurs. If an extension is needed,
536 // we don't need to bother extending: the extension won't affect where the
537 // computation crosses zero.
Eli Friedman107ffd52011-05-18 23:11:30 +0000538 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000539 Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
Eli Friedman107ffd52011-05-18 23:11:30 +0000540 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
541 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000542 return VariableIdx;
543 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000544
Chris Lattner02446fc2010-01-04 07:37:31 +0000545 // Otherwise, there is an index. The computation we will do will be modulo
546 // the pointer size, so get it.
547 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000548
Chris Lattner02446fc2010-01-04 07:37:31 +0000549 Offset &= PtrSizeMask;
550 VariableScale &= PtrSizeMask;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000551
Chris Lattner02446fc2010-01-04 07:37:31 +0000552 // To do this transformation, any constant index must be a multiple of the
553 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
554 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
555 // multiple of the variable scale.
556 int64_t NewOffs = Offset / (int64_t)VariableScale;
557 if (Offset != NewOffs*(int64_t)VariableScale)
558 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000559
Chris Lattner02446fc2010-01-04 07:37:31 +0000560 // Okay, we can do this evaluation. Start by converting the index to intptr.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000561 Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
Chris Lattner02446fc2010-01-04 07:37:31 +0000562 if (VariableIdx->getType() != IntPtrTy)
Eli Friedman107ffd52011-05-18 23:11:30 +0000563 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
564 true /*Signed*/);
Chris Lattner02446fc2010-01-04 07:37:31 +0000565 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Eli Friedman107ffd52011-05-18 23:11:30 +0000566 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
Chris Lattner02446fc2010-01-04 07:37:31 +0000567}
568
569/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
570/// else. At this point we know that the GEP is on the LHS of the comparison.
571Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
572 ICmpInst::Predicate Cond,
573 Instruction &I) {
574 // Look through bitcasts.
575 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
576 RHS = BCI->getOperand(0);
577
578 Value *PtrBase = GEPLHS->getOperand(0);
579 if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
580 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
581 // This transformation (ignoring the base and scales) is valid because we
582 // know pointers can't overflow since the gep is inbounds. See if we can
583 // output an optimized form.
Eli Friedman107ffd52011-05-18 23:11:30 +0000584 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000585
Chris Lattner02446fc2010-01-04 07:37:31 +0000586 // If not, synthesize the offset the hard way.
587 if (Offset == 0)
588 Offset = EmitGEPOffset(GEPLHS);
589 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
590 Constant::getNullValue(Offset->getType()));
591 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
592 // If the base pointers are different, but the indices are the same, just
593 // compare the base pointer.
594 if (PtrBase != GEPRHS->getOperand(0)) {
595 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
596 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
597 GEPRHS->getOperand(0)->getType();
598 if (IndicesTheSame)
599 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
600 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
601 IndicesTheSame = false;
602 break;
603 }
604
605 // If all indices are the same, just compare the base pointers.
606 if (IndicesTheSame)
607 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
608 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
609
610 // Otherwise, the base pointers are different and the indices are
611 // different, bail out.
612 return 0;
613 }
614
615 // If one of the GEPs has all zero indices, recurse.
616 bool AllZeros = true;
617 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
618 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
619 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
620 AllZeros = false;
621 break;
622 }
623 if (AllZeros)
624 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
625 ICmpInst::getSwappedPredicate(Cond), I);
626
627 // If the other GEP has all zero indices, recurse.
628 AllZeros = true;
629 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
630 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
631 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
632 AllZeros = false;
633 break;
634 }
635 if (AllZeros)
636 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
637
Stuart Hastings67f071e2011-05-14 05:55:10 +0000638 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
Chris Lattner02446fc2010-01-04 07:37:31 +0000639 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
640 // If the GEPs only differ by one index, compare it.
641 unsigned NumDifferences = 0; // Keep track of # differences.
642 unsigned DiffOperand = 0; // The operand that differs.
643 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
644 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
645 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
646 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
647 // Irreconcilable differences.
648 NumDifferences = 2;
649 break;
650 } else {
651 if (NumDifferences++) break;
652 DiffOperand = i;
653 }
654 }
655
656 if (NumDifferences == 0) // SAME GEP?
657 return ReplaceInstUsesWith(I, // No comparison is needed here.
658 ConstantInt::get(Type::getInt1Ty(I.getContext()),
659 ICmpInst::isTrueWhenEqual(Cond)));
660
Stuart Hastings67f071e2011-05-14 05:55:10 +0000661 else if (NumDifferences == 1 && GEPsInBounds) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000662 Value *LHSV = GEPLHS->getOperand(DiffOperand);
663 Value *RHSV = GEPRHS->getOperand(DiffOperand);
664 // Make sure we do a signed comparison here.
665 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
666 }
667 }
668
669 // Only lower this if the icmp is the only user of the GEP or if we expect
670 // the result to fold to a constant!
671 if (TD &&
Stuart Hastings67f071e2011-05-14 05:55:10 +0000672 GEPsInBounds &&
Chris Lattner02446fc2010-01-04 07:37:31 +0000673 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
674 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
675 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
676 Value *L = EmitGEPOffset(GEPLHS);
677 Value *R = EmitGEPOffset(GEPRHS);
678 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
679 }
680 }
681 return 0;
682}
683
684/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
685Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
686 Value *X, ConstantInt *CI,
687 ICmpInst::Predicate Pred,
688 Value *TheAdd) {
689 // If we have X+0, exit early (simplifying logic below) and let it get folded
690 // elsewhere. icmp X+0, X -> icmp X, X
691 if (CI->isZero()) {
692 bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
693 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
694 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000695
Chris Lattner02446fc2010-01-04 07:37:31 +0000696 // (X+4) == X -> false.
697 if (Pred == ICmpInst::ICMP_EQ)
698 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
699
700 // (X+4) != X -> true.
701 if (Pred == ICmpInst::ICMP_NE)
702 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
703
Chris Lattner02446fc2010-01-04 07:37:31 +0000704 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000705 // so the values can never be equal. Similarly for all other "or equals"
Chris Lattner02446fc2010-01-04 07:37:31 +0000706 // operators.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000707
Chris Lattner9aa1e242010-01-08 17:48:19 +0000708 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
Chris Lattner02446fc2010-01-04 07:37:31 +0000709 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
710 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
711 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000712 Value *R =
Chris Lattner9aa1e242010-01-08 17:48:19 +0000713 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
Chris Lattner02446fc2010-01-04 07:37:31 +0000714 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
715 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000716
Chris Lattner02446fc2010-01-04 07:37:31 +0000717 // (X+1) >u X --> X <u (0-1) --> X != 255
718 // (X+2) >u X --> X <u (0-2) --> X <u 254
719 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
Duncan Sandsa7724332011-02-17 07:46:37 +0000720 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
Chris Lattner02446fc2010-01-04 07:37:31 +0000721 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000722
Chris Lattner02446fc2010-01-04 07:37:31 +0000723 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
724 ConstantInt *SMax = ConstantInt::get(X->getContext(),
725 APInt::getSignedMaxValue(BitWidth));
726
727 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
728 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
729 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
730 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
731 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
732 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
Duncan Sandsa7724332011-02-17 07:46:37 +0000733 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
Chris Lattner02446fc2010-01-04 07:37:31 +0000734 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000735
Chris Lattner02446fc2010-01-04 07:37:31 +0000736 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
737 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
738 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
739 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
740 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
741 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000742
Chris Lattner02446fc2010-01-04 07:37:31 +0000743 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
744 Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
745 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
746}
747
748/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
749/// and CmpRHS are both known to be integer constants.
750Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
751 ConstantInt *DivRHS) {
752 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
753 const APInt &CmpRHSV = CmpRHS->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000754
755 // FIXME: If the operand types don't match the type of the divide
Chris Lattner02446fc2010-01-04 07:37:31 +0000756 // then don't attempt this transform. The code below doesn't have the
757 // logic to deal with a signed divide and an unsigned compare (and
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000758 // vice versa). This is because (x /s C1) <s C2 produces different
Chris Lattner02446fc2010-01-04 07:37:31 +0000759 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000760 // (x /u C1) <u C2. Simply casting the operands and result won't
761 // work. :( The if statement below tests that condition and bails
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000762 // if it finds it.
Chris Lattner02446fc2010-01-04 07:37:31 +0000763 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
764 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
765 return 0;
766 if (DivRHS->isZero())
767 return 0; // The ProdOV computation fails on divide by zero.
768 if (DivIsSigned && DivRHS->isAllOnesValue())
769 return 0; // The overflow computation also screws up here
Chris Lattnerbb75d332011-02-13 08:07:21 +0000770 if (DivRHS->isOne()) {
771 // This eliminates some funny cases with INT_MIN.
772 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
773 return &ICI;
774 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000775
776 // Compute Prod = CI * DivRHS. We are essentially solving an equation
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000777 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
778 // C2 (CI). By solving for X we can turn this into a range check
779 // instead of computing a divide.
Chris Lattner02446fc2010-01-04 07:37:31 +0000780 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
781
782 // Determine if the product overflows by seeing if the product is
783 // not equal to the divide. Make sure we do the same kind of divide
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000784 // as in the LHS instruction that we're folding.
Chris Lattner02446fc2010-01-04 07:37:31 +0000785 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
786 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
787
788 // Get the ICmp opcode
789 ICmpInst::Predicate Pred = ICI.getPredicate();
790
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000791 /// If the division is known to be exact, then there is no remainder from the
792 /// divide, so the covered range size is unit, otherwise it is the divisor.
793 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000794
Chris Lattner02446fc2010-01-04 07:37:31 +0000795 // Figure out the interval that is being checked. For example, a comparison
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000796 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
Chris Lattner02446fc2010-01-04 07:37:31 +0000797 // Compute this interval based on the constants involved and the signedness of
798 // the compare/divide. This computes a half-open interval, keeping track of
799 // whether either value in the interval overflows. After analysis each
800 // overflow variable is set to 0 if it's corresponding bound variable is valid
801 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
802 int LoOverflow = 0, HiOverflow = 0;
803 Constant *LoBound = 0, *HiBound = 0;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000804
Chris Lattner02446fc2010-01-04 07:37:31 +0000805 if (!DivIsSigned) { // udiv
806 // e.g. X/5 op 3 --> [15, 20)
807 LoBound = Prod;
808 HiOverflow = LoOverflow = ProdOV;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000809 if (!HiOverflow) {
810 // If this is not an exact divide, then many values in the range collapse
811 // to the same result value.
812 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
813 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000814
Chris Lattner02446fc2010-01-04 07:37:31 +0000815 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
816 if (CmpRHSV == 0) { // (X / pos) op 0
817 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000818 LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
819 HiBound = RangeSize;
Chris Lattner02446fc2010-01-04 07:37:31 +0000820 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
821 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
822 HiOverflow = LoOverflow = ProdOV;
823 if (!HiOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000824 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
Chris Lattner02446fc2010-01-04 07:37:31 +0000825 } else { // (X / pos) op neg
826 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
827 HiBound = AddOne(Prod);
828 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
829 if (!LoOverflow) {
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000830 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000831 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000832 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000833 }
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000834 } else if (DivRHS->isNegative()) { // Divisor is < 0.
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000835 if (DivI->isExact())
836 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000837 if (CmpRHSV == 0) { // (X / neg) op 0
838 // e.g. X/-5 op 0 --> [-4, 5)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000839 LoBound = AddOne(RangeSize);
840 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000841 if (HiBound == DivRHS) { // -INTMIN = INTMIN
842 HiOverflow = 1; // [INTMIN+1, overflow)
843 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
844 }
845 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
846 // e.g. X/-5 op 3 --> [-19, -14)
847 HiBound = AddOne(Prod);
848 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
849 if (!LoOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000850 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
Chris Lattner02446fc2010-01-04 07:37:31 +0000851 } else { // (X / neg) op neg
852 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
853 LoOverflow = HiOverflow = ProdOV;
854 if (!HiOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000855 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
Chris Lattner02446fc2010-01-04 07:37:31 +0000856 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000857
Chris Lattner02446fc2010-01-04 07:37:31 +0000858 // Dividing by a negative swaps the condition. LT <-> GT
859 Pred = ICmpInst::getSwappedPredicate(Pred);
860 }
861
862 Value *X = DivI->getOperand(0);
863 switch (Pred) {
864 default: llvm_unreachable("Unhandled icmp opcode!");
865 case ICmpInst::ICMP_EQ:
866 if (LoOverflow && HiOverflow)
867 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000868 if (HiOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000869 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
870 ICmpInst::ICMP_UGE, X, LoBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000871 if (LoOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000872 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
873 ICmpInst::ICMP_ULT, X, HiBound);
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000874 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
875 DivIsSigned, true));
Chris Lattner02446fc2010-01-04 07:37:31 +0000876 case ICmpInst::ICMP_NE:
877 if (LoOverflow && HiOverflow)
878 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000879 if (HiOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000880 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
881 ICmpInst::ICMP_ULT, X, LoBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000882 if (LoOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000883 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
884 ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000885 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
886 DivIsSigned, false));
Chris Lattner02446fc2010-01-04 07:37:31 +0000887 case ICmpInst::ICMP_ULT:
888 case ICmpInst::ICMP_SLT:
889 if (LoOverflow == +1) // Low bound is greater than input range.
890 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
891 if (LoOverflow == -1) // Low bound is less than input range.
892 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
893 return new ICmpInst(Pred, X, LoBound);
894 case ICmpInst::ICMP_UGT:
895 case ICmpInst::ICMP_SGT:
896 if (HiOverflow == +1) // High bound greater than input range.
897 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000898 if (HiOverflow == -1) // High bound less than input range.
Chris Lattner02446fc2010-01-04 07:37:31 +0000899 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
900 if (Pred == ICmpInst::ICMP_UGT)
901 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000902 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
Chris Lattner02446fc2010-01-04 07:37:31 +0000903 }
904}
905
Chris Lattner74542aa2011-02-13 07:43:07 +0000906/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
907Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
908 ConstantInt *ShAmt) {
Chris Lattner74542aa2011-02-13 07:43:07 +0000909 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000910
Chris Lattner74542aa2011-02-13 07:43:07 +0000911 // Check that the shift amount is in range. If not, don't perform
912 // undefined shifts. When the shift is visited it will be
913 // simplified.
914 uint32_t TypeBits = CmpRHSV.getBitWidth();
915 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Chris Lattnerbb75d332011-02-13 08:07:21 +0000916 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
Chris Lattner74542aa2011-02-13 07:43:07 +0000917 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000918
Chris Lattnerbb75d332011-02-13 08:07:21 +0000919 if (!ICI.isEquality()) {
920 // If we have an unsigned comparison and an ashr, we can't simplify this.
921 // Similarly for signed comparisons with lshr.
922 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
923 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000924
Eli Friedmana831a9b2011-05-25 23:26:20 +0000925 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
926 // by a power of 2. Since we already have logic to simplify these,
927 // transform to div and then simplify the resultant comparison.
Chris Lattnerbb75d332011-02-13 08:07:21 +0000928 if (Shr->getOpcode() == Instruction::AShr &&
Eli Friedmana831a9b2011-05-25 23:26:20 +0000929 (!Shr->isExact() || ShAmtVal == TypeBits - 1))
Chris Lattnerbb75d332011-02-13 08:07:21 +0000930 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000931
Chris Lattnerbb75d332011-02-13 08:07:21 +0000932 // Revisit the shift (to delete it).
933 Worklist.Add(Shr);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000934
Chris Lattnerbb75d332011-02-13 08:07:21 +0000935 Constant *DivCst =
936 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000937
Chris Lattnerbb75d332011-02-13 08:07:21 +0000938 Value *Tmp =
939 Shr->getOpcode() == Instruction::AShr ?
940 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
941 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000942
Chris Lattnerbb75d332011-02-13 08:07:21 +0000943 ICI.setOperand(0, Tmp);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000944
Chris Lattnerbb75d332011-02-13 08:07:21 +0000945 // If the builder folded the binop, just return it.
946 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
947 if (TheDiv == 0)
948 return &ICI;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000949
Chris Lattnerbb75d332011-02-13 08:07:21 +0000950 // Otherwise, fold this div/compare.
951 assert(TheDiv->getOpcode() == Instruction::SDiv ||
952 TheDiv->getOpcode() == Instruction::UDiv);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000953
Chris Lattnerbb75d332011-02-13 08:07:21 +0000954 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
955 assert(Res && "This div/cst should have folded!");
956 return Res;
957 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000958
959
Chris Lattner74542aa2011-02-13 07:43:07 +0000960 // If we are comparing against bits always shifted out, the
961 // comparison cannot succeed.
962 APInt Comp = CmpRHSV << ShAmtVal;
963 ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
964 if (Shr->getOpcode() == Instruction::LShr)
965 Comp = Comp.lshr(ShAmtVal);
966 else
967 Comp = Comp.ashr(ShAmtVal);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000968
Chris Lattner74542aa2011-02-13 07:43:07 +0000969 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
970 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
971 Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
972 IsICMP_NE);
973 return ReplaceInstUsesWith(ICI, Cst);
974 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000975
Chris Lattner74542aa2011-02-13 07:43:07 +0000976 // Otherwise, check to see if the bits shifted out are known to be zero.
977 // If so, we can compare against the unshifted value:
978 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Chris Lattnere5116f82011-02-13 18:30:09 +0000979 if (Shr->hasOneUse() && Shr->isExact())
Chris Lattner74542aa2011-02-13 07:43:07 +0000980 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000981
Chris Lattner74542aa2011-02-13 07:43:07 +0000982 if (Shr->hasOneUse()) {
983 // Otherwise strength reduce the shift into an and.
984 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
985 Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000986
Chris Lattner74542aa2011-02-13 07:43:07 +0000987 Value *And = Builder->CreateAnd(Shr->getOperand(0),
988 Mask, Shr->getName()+".mask");
989 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
990 }
991 return 0;
992}
993
Chris Lattner02446fc2010-01-04 07:37:31 +0000994
995/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
996///
997Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
998 Instruction *LHSI,
999 ConstantInt *RHS) {
1000 const APInt &RHSV = RHS->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001001
Chris Lattner02446fc2010-01-04 07:37:31 +00001002 switch (LHSI->getOpcode()) {
1003 case Instruction::Trunc:
1004 if (ICI.isEquality() && LHSI->hasOneUse()) {
1005 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1006 // of the high bits truncated out of x are known.
1007 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1008 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1009 APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
1010 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1011 ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001012
Chris Lattner02446fc2010-01-04 07:37:31 +00001013 // If all the high bits are known, we can do this xform.
1014 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1015 // Pull in the high bits from known-ones set.
Jay Foad40f8f622010-12-07 08:25:19 +00001016 APInt NewRHS = RHS->getValue().zext(SrcBits);
Chris Lattner02446fc2010-01-04 07:37:31 +00001017 NewRHS |= KnownOne;
1018 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1019 ConstantInt::get(ICI.getContext(), NewRHS));
1020 }
1021 }
1022 break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001023
Chris Lattner02446fc2010-01-04 07:37:31 +00001024 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
1025 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1026 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1027 // fold the xor.
1028 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1029 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1030 Value *CompareVal = LHSI->getOperand(0);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001031
Chris Lattner02446fc2010-01-04 07:37:31 +00001032 // If the sign bit of the XorCST is not set, there is no change to
1033 // the operation, just stop using the Xor.
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001034 if (!XorCST->isNegative()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001035 ICI.setOperand(0, CompareVal);
1036 Worklist.Add(LHSI);
1037 return &ICI;
1038 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001039
Chris Lattner02446fc2010-01-04 07:37:31 +00001040 // Was the old condition true if the operand is positive?
1041 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001042
Chris Lattner02446fc2010-01-04 07:37:31 +00001043 // If so, the new one isn't.
1044 isTrueIfPositive ^= true;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001045
Chris Lattner02446fc2010-01-04 07:37:31 +00001046 if (isTrueIfPositive)
1047 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1048 SubOne(RHS));
1049 else
1050 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1051 AddOne(RHS));
1052 }
1053
1054 if (LHSI->hasOneUse()) {
1055 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1056 if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1057 const APInt &SignBit = XorCST->getValue();
1058 ICmpInst::Predicate Pred = ICI.isSigned()
1059 ? ICI.getUnsignedPredicate()
1060 : ICI.getSignedPredicate();
1061 return new ICmpInst(Pred, LHSI->getOperand(0),
1062 ConstantInt::get(ICI.getContext(),
1063 RHSV ^ SignBit));
1064 }
1065
1066 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001067 if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001068 const APInt &NotSignBit = XorCST->getValue();
1069 ICmpInst::Predicate Pred = ICI.isSigned()
1070 ? ICI.getUnsignedPredicate()
1071 : ICI.getSignedPredicate();
1072 Pred = ICI.getSwappedPredicate(Pred);
1073 return new ICmpInst(Pred, LHSI->getOperand(0),
1074 ConstantInt::get(ICI.getContext(),
1075 RHSV ^ NotSignBit));
1076 }
1077 }
1078 }
1079 break;
1080 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
1081 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1082 LHSI->getOperand(0)->hasOneUse()) {
1083 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001084
Chris Lattner02446fc2010-01-04 07:37:31 +00001085 // If the LHS is an AND of a truncating cast, we can widen the
1086 // and/compare to be the input width without changing the value
1087 // produced, eliminating a cast.
1088 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1089 // We can do this transformation if either the AND constant does not
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001090 // have its sign bit set or if it is an equality comparison.
Chris Lattner02446fc2010-01-04 07:37:31 +00001091 // Extending a relational comparison when we're checking the sign
1092 // bit would not work.
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001093 if (ICI.isEquality() ||
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001094 (!AndCST->isNegative() && RHSV.isNonNegative())) {
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001095 Value *NewAnd =
Chris Lattner02446fc2010-01-04 07:37:31 +00001096 Builder->CreateAnd(Cast->getOperand(0),
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001097 ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
1098 NewAnd->takeName(LHSI);
Chris Lattner02446fc2010-01-04 07:37:31 +00001099 return new ICmpInst(ICI.getPredicate(), NewAnd,
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001100 ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
Chris Lattner02446fc2010-01-04 07:37:31 +00001101 }
1102 }
Benjamin Kramerffd0ae62011-06-12 22:48:00 +00001103
1104 // If the LHS is an AND of a zext, and we have an equality compare, we can
1105 // shrink the and/compare to the smaller type, eliminating the cast.
1106 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001107 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
Benjamin Kramerffd0ae62011-06-12 22:48:00 +00001108 // Make sure we don't compare the upper bits, SimplifyDemandedBits
1109 // should fold the icmp to true/false in that case.
1110 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1111 Value *NewAnd =
1112 Builder->CreateAnd(Cast->getOperand(0),
1113 ConstantExpr::getTrunc(AndCST, Ty));
1114 NewAnd->takeName(LHSI);
1115 return new ICmpInst(ICI.getPredicate(), NewAnd,
1116 ConstantExpr::getTrunc(RHS, Ty));
1117 }
1118 }
1119
Chris Lattner02446fc2010-01-04 07:37:31 +00001120 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1121 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
1122 // happens a LOT in code produced by the C front-end, for bitfield
1123 // access.
1124 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1125 if (Shift && !Shift->isShift())
1126 Shift = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001127
Chris Lattner02446fc2010-01-04 07:37:31 +00001128 ConstantInt *ShAmt;
1129 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001130 Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
1131 Type *AndTy = AndCST->getType(); // Type of the and.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001132
Chris Lattner02446fc2010-01-04 07:37:31 +00001133 // We can fold this as long as we can't shift unknown bits
1134 // into the mask. This can only happen with signed shift
1135 // rights, as they sign-extend.
1136 if (ShAmt) {
1137 bool CanFold = Shift->isLogicalShift();
1138 if (!CanFold) {
1139 // To test for the bad case of the signed shr, see if any
1140 // of the bits shifted in could be tested after the mask.
1141 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1142 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001143
Chris Lattner02446fc2010-01-04 07:37:31 +00001144 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001145 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
Chris Lattner02446fc2010-01-04 07:37:31 +00001146 AndCST->getValue()) == 0)
1147 CanFold = true;
1148 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001149
Chris Lattner02446fc2010-01-04 07:37:31 +00001150 if (CanFold) {
1151 Constant *NewCst;
1152 if (Shift->getOpcode() == Instruction::Shl)
1153 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1154 else
1155 NewCst = ConstantExpr::getShl(RHS, ShAmt);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001156
Chris Lattner02446fc2010-01-04 07:37:31 +00001157 // Check to see if we are shifting out any of the bits being
1158 // compared.
1159 if (ConstantExpr::get(Shift->getOpcode(),
1160 NewCst, ShAmt) != RHS) {
1161 // If we shifted bits out, the fold is not going to work out.
1162 // As a special case, check to see if this means that the
1163 // result is always true or false now.
1164 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1165 return ReplaceInstUsesWith(ICI,
1166 ConstantInt::getFalse(ICI.getContext()));
1167 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1168 return ReplaceInstUsesWith(ICI,
1169 ConstantInt::getTrue(ICI.getContext()));
1170 } else {
1171 ICI.setOperand(1, NewCst);
1172 Constant *NewAndCST;
1173 if (Shift->getOpcode() == Instruction::Shl)
1174 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1175 else
1176 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1177 LHSI->setOperand(1, NewAndCST);
1178 LHSI->setOperand(0, Shift->getOperand(0));
1179 Worklist.Add(Shift); // Shift is dead.
1180 return &ICI;
1181 }
1182 }
1183 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001184
Chris Lattner02446fc2010-01-04 07:37:31 +00001185 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
1186 // preferable because it allows the C<<Y expression to be hoisted out
1187 // of a loop if Y is invariant and X is not.
1188 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1189 ICI.isEquality() && !Shift->isArithmeticShift() &&
1190 !isa<Constant>(Shift->getOperand(0))) {
1191 // Compute C << Y.
1192 Value *NS;
1193 if (Shift->getOpcode() == Instruction::LShr) {
Benjamin Kramera9390a42011-09-27 20:39:19 +00001194 NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001195 } else {
1196 // Insert a logical shift.
Benjamin Kramera9390a42011-09-27 20:39:19 +00001197 NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001198 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001199
Chris Lattner02446fc2010-01-04 07:37:31 +00001200 // Compute X & (C << Y).
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001201 Value *NewAnd =
Chris Lattner02446fc2010-01-04 07:37:31 +00001202 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001203
Chris Lattner02446fc2010-01-04 07:37:31 +00001204 ICI.setOperand(0, NewAnd);
1205 return &ICI;
1206 }
1207 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001208
Chris Lattner02446fc2010-01-04 07:37:31 +00001209 // Try to optimize things like "A[i]&42 == 0" to index computations.
1210 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1211 if (GetElementPtrInst *GEP =
1212 dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1213 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1214 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1215 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1216 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1217 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1218 return Res;
1219 }
1220 }
1221 break;
1222
1223 case Instruction::Or: {
1224 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1225 break;
1226 Value *P, *Q;
1227 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1228 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1229 // -> and (icmp eq P, null), (icmp eq Q, null).
Chris Lattner02446fc2010-01-04 07:37:31 +00001230 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1231 Constant::getNullValue(P->getType()));
1232 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1233 Constant::getNullValue(Q->getType()));
1234 Instruction *Op;
1235 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1236 Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1237 else
1238 Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1239 return Op;
1240 }
1241 break;
1242 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001243
Chris Lattner02446fc2010-01-04 07:37:31 +00001244 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
1245 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1246 if (!ShAmt) break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001247
Chris Lattner02446fc2010-01-04 07:37:31 +00001248 uint32_t TypeBits = RHSV.getBitWidth();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001249
Chris Lattner02446fc2010-01-04 07:37:31 +00001250 // Check that the shift amount is in range. If not, don't perform
1251 // undefined shifts. When the shift is visited it will be
1252 // simplified.
1253 if (ShAmt->uge(TypeBits))
1254 break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001255
Chris Lattner02446fc2010-01-04 07:37:31 +00001256 if (ICI.isEquality()) {
1257 // If we are comparing against bits always shifted out, the
1258 // comparison cannot succeed.
1259 Constant *Comp =
1260 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1261 ShAmt);
1262 if (Comp != RHS) {// Comparing against a bit that we know is zero.
1263 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1264 Constant *Cst =
1265 ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1266 return ReplaceInstUsesWith(ICI, Cst);
1267 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001268
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001269 // If the shift is NUW, then it is just shifting out zeros, no need for an
1270 // AND.
1271 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1272 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1273 ConstantExpr::getLShr(RHS, ShAmt));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001274
Chris Lattner02446fc2010-01-04 07:37:31 +00001275 if (LHSI->hasOneUse()) {
1276 // Otherwise strength reduce the shift into an and.
1277 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1278 Constant *Mask =
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001279 ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
Chris Lattner02446fc2010-01-04 07:37:31 +00001280 TypeBits-ShAmtVal));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001281
Chris Lattner02446fc2010-01-04 07:37:31 +00001282 Value *And =
1283 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1284 return new ICmpInst(ICI.getPredicate(), And,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001285 ConstantExpr::getLShr(RHS, ShAmt));
Chris Lattner02446fc2010-01-04 07:37:31 +00001286 }
1287 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001288
Chris Lattner02446fc2010-01-04 07:37:31 +00001289 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1290 bool TrueIfSigned = false;
1291 if (LHSI->hasOneUse() &&
1292 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1293 // (X << 31) <s 0 --> (X&1) != 0
Chris Lattnerbb75d332011-02-13 08:07:21 +00001294 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001295 APInt::getOneBitSet(TypeBits,
Chris Lattnerbb75d332011-02-13 08:07:21 +00001296 TypeBits-ShAmt->getZExtValue()-1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001297 Value *And =
1298 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1299 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1300 And, Constant::getNullValue(And->getType()));
1301 }
1302 break;
1303 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001304
Chris Lattner02446fc2010-01-04 07:37:31 +00001305 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
Nick Lewyckyb042f8e2011-02-28 08:31:40 +00001306 case Instruction::AShr: {
1307 // Handle equality comparisons of shift-by-constant.
1308 BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1309 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1310 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
Chris Lattner74542aa2011-02-13 07:43:07 +00001311 return Res;
Nick Lewyckyb042f8e2011-02-28 08:31:40 +00001312 }
1313
1314 // Handle exact shr's.
1315 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1316 if (RHSV.isMinValue())
1317 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1318 }
Chris Lattner02446fc2010-01-04 07:37:31 +00001319 break;
Nick Lewyckyb042f8e2011-02-28 08:31:40 +00001320 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001321
Chris Lattner02446fc2010-01-04 07:37:31 +00001322 case Instruction::SDiv:
1323 case Instruction::UDiv:
1324 // Fold: icmp pred ([us]div X, C1), C2 -> range test
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001325 // Fold this div into the comparison, producing a range check.
1326 // Determine, based on the divide type, what the range is being
1327 // checked. If there is an overflow on the low or high side, remember
Chris Lattner02446fc2010-01-04 07:37:31 +00001328 // it, otherwise compute the range [low, hi) bounding the new value.
1329 // See: InsertRangeTest above for the kinds of replacements possible.
1330 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1331 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1332 DivRHS))
1333 return R;
1334 break;
1335
1336 case Instruction::Add:
1337 // Fold: icmp pred (add X, C1), C2
1338 if (!ICI.isEquality()) {
1339 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1340 if (!LHSC) break;
1341 const APInt &LHSV = LHSC->getValue();
1342
1343 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1344 .subtract(LHSV);
1345
1346 if (ICI.isSigned()) {
1347 if (CR.getLower().isSignBit()) {
1348 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1349 ConstantInt::get(ICI.getContext(),CR.getUpper()));
1350 } else if (CR.getUpper().isSignBit()) {
1351 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1352 ConstantInt::get(ICI.getContext(),CR.getLower()));
1353 }
1354 } else {
1355 if (CR.getLower().isMinValue()) {
1356 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1357 ConstantInt::get(ICI.getContext(),CR.getUpper()));
1358 } else if (CR.getUpper().isMinValue()) {
1359 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1360 ConstantInt::get(ICI.getContext(),CR.getLower()));
1361 }
1362 }
1363 }
1364 break;
1365 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001366
Chris Lattner02446fc2010-01-04 07:37:31 +00001367 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1368 if (ICI.isEquality()) {
1369 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001370
1371 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
Chris Lattner02446fc2010-01-04 07:37:31 +00001372 // the second operand is a constant, simplify a bit.
1373 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1374 switch (BO->getOpcode()) {
1375 case Instruction::SRem:
1376 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1377 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1378 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
Dan Gohmane0567812010-04-08 23:03:40 +00001379 if (V.sgt(1) && V.isPowerOf2()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001380 Value *NewRem =
1381 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1382 BO->getName());
1383 return new ICmpInst(ICI.getPredicate(), NewRem,
1384 Constant::getNullValue(BO->getType()));
1385 }
1386 }
1387 break;
1388 case Instruction::Add:
1389 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1390 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1391 if (BO->hasOneUse())
1392 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1393 ConstantExpr::getSub(RHS, BOp1C));
1394 } else if (RHSV == 0) {
1395 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1396 // efficiently invertible, or if the add has just this one use.
1397 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001398
Chris Lattner02446fc2010-01-04 07:37:31 +00001399 if (Value *NegVal = dyn_castNegVal(BOp1))
1400 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
Chris Lattner5036ce42011-04-26 20:02:45 +00001401 if (Value *NegVal = dyn_castNegVal(BOp0))
Chris Lattner02446fc2010-01-04 07:37:31 +00001402 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
Chris Lattner5036ce42011-04-26 20:02:45 +00001403 if (BO->hasOneUse()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001404 Value *Neg = Builder->CreateNeg(BOp1);
1405 Neg->takeName(BO);
1406 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1407 }
1408 }
1409 break;
1410 case Instruction::Xor:
1411 // For the xor case, we can xor two constants together, eliminating
1412 // the explicit xor.
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001413 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1414 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
Chris Lattner02446fc2010-01-04 07:37:31 +00001415 ConstantExpr::getXor(RHS, BOC));
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001416 } else if (RHSV == 0) {
1417 // Replace ((xor A, B) != 0) with (A != B)
Chris Lattner02446fc2010-01-04 07:37:31 +00001418 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1419 BO->getOperand(1));
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001420 }
Chris Lattner02446fc2010-01-04 07:37:31 +00001421 break;
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001422 case Instruction::Sub:
1423 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1424 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1425 if (BO->hasOneUse())
1426 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1427 ConstantExpr::getSub(BOp0C, RHS));
1428 } else if (RHSV == 0) {
1429 // Replace ((sub A, B) != 0) with (A != B)
1430 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1431 BO->getOperand(1));
1432 }
1433 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001434 case Instruction::Or:
1435 // If bits are being or'd in that are not present in the constant we
1436 // are comparing against, then the comparison could never succeed!
Eli Friedman618898e2010-07-29 18:03:33 +00001437 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001438 Constant *NotCI = ConstantExpr::getNot(RHS);
1439 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1440 return ReplaceInstUsesWith(ICI,
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001441 ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
Chris Lattner02446fc2010-01-04 07:37:31 +00001442 isICMP_NE));
1443 }
1444 break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001445
Chris Lattner02446fc2010-01-04 07:37:31 +00001446 case Instruction::And:
1447 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1448 // If bits are being compared against that are and'd out, then the
1449 // comparison can never succeed!
1450 if ((RHSV & ~BOC->getValue()) != 0)
1451 return ReplaceInstUsesWith(ICI,
1452 ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1453 isICMP_NE));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001454
Chris Lattner02446fc2010-01-04 07:37:31 +00001455 // If we have ((X & C) == C), turn it into ((X & C) != 0).
1456 if (RHS == BOC && RHSV.isPowerOf2())
1457 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1458 ICmpInst::ICMP_NE, LHSI,
1459 Constant::getNullValue(RHS->getType()));
Benjamin Kramerfc87cdc2011-07-04 20:16:36 +00001460
1461 // Don't perform the following transforms if the AND has multiple uses
1462 if (!BO->hasOneUse())
1463 break;
1464
Chris Lattner02446fc2010-01-04 07:37:31 +00001465 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1466 if (BOC->getValue().isSignBit()) {
1467 Value *X = BO->getOperand(0);
1468 Constant *Zero = Constant::getNullValue(X->getType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001469 ICmpInst::Predicate pred = isICMP_NE ?
Chris Lattner02446fc2010-01-04 07:37:31 +00001470 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1471 return new ICmpInst(pred, X, Zero);
1472 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001473
Chris Lattner02446fc2010-01-04 07:37:31 +00001474 // ((X & ~7) == 0) --> X < 8
1475 if (RHSV == 0 && isHighOnes(BOC)) {
1476 Value *X = BO->getOperand(0);
1477 Constant *NegX = ConstantExpr::getNeg(BOC);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001478 ICmpInst::Predicate pred = isICMP_NE ?
Chris Lattner02446fc2010-01-04 07:37:31 +00001479 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1480 return new ICmpInst(pred, X, NegX);
1481 }
1482 }
1483 default: break;
1484 }
1485 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1486 // Handle icmp {eq|ne} <intrinsic>, intcst.
Chris Lattner03357402010-01-05 18:09:56 +00001487 switch (II->getIntrinsicID()) {
1488 case Intrinsic::bswap:
Chris Lattner02446fc2010-01-04 07:37:31 +00001489 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001490 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner02446fc2010-01-04 07:37:31 +00001491 ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1492 return &ICI;
Chris Lattner03357402010-01-05 18:09:56 +00001493 case Intrinsic::ctlz:
1494 case Intrinsic::cttz:
1495 // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
1496 if (RHSV == RHS->getType()->getBitWidth()) {
1497 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001498 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner03357402010-01-05 18:09:56 +00001499 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1500 return &ICI;
1501 }
1502 break;
1503 case Intrinsic::ctpop:
1504 // popcount(A) == 0 -> A == 0 and likewise for !=
1505 if (RHS->isZero()) {
1506 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001507 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner03357402010-01-05 18:09:56 +00001508 ICI.setOperand(1, RHS);
1509 return &ICI;
1510 }
1511 break;
1512 default:
Duncan Sands34727662010-07-12 08:16:59 +00001513 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001514 }
1515 }
1516 }
1517 return 0;
1518}
1519
1520/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1521/// We only handle extending casts so far.
1522///
1523Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1524 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1525 Value *LHSCIOp = LHSCI->getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001526 Type *SrcTy = LHSCIOp->getType();
1527 Type *DestTy = LHSCI->getType();
Chris Lattner02446fc2010-01-04 07:37:31 +00001528 Value *RHSCIOp;
1529
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001530 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
Chris Lattner02446fc2010-01-04 07:37:31 +00001531 // integer type is the same size as the pointer type.
1532 if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1533 TD->getPointerSizeInBits() ==
1534 cast<IntegerType>(DestTy)->getBitWidth()) {
1535 Value *RHSOp = 0;
1536 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1537 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1538 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1539 RHSOp = RHSC->getOperand(0);
1540 // If the pointer types don't match, insert a bitcast.
1541 if (LHSCIOp->getType() != RHSOp->getType())
1542 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1543 }
1544
1545 if (RHSOp)
1546 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1547 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001548
Chris Lattner02446fc2010-01-04 07:37:31 +00001549 // The code below only handles extension cast instructions, so far.
1550 // Enforce this.
1551 if (LHSCI->getOpcode() != Instruction::ZExt &&
1552 LHSCI->getOpcode() != Instruction::SExt)
1553 return 0;
1554
1555 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1556 bool isSignedCmp = ICI.isSigned();
1557
1558 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1559 // Not an extension from the same type?
1560 RHSCIOp = CI->getOperand(0);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001561 if (RHSCIOp->getType() != LHSCIOp->getType())
Chris Lattner02446fc2010-01-04 07:37:31 +00001562 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001563
Chris Lattner02446fc2010-01-04 07:37:31 +00001564 // If the signedness of the two casts doesn't agree (i.e. one is a sext
1565 // and the other is a zext), then we can't handle this.
1566 if (CI->getOpcode() != LHSCI->getOpcode())
1567 return 0;
1568
1569 // Deal with equality cases early.
1570 if (ICI.isEquality())
1571 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1572
1573 // A signed comparison of sign extended values simplifies into a
1574 // signed comparison.
1575 if (isSignedCmp && isSignedExt)
1576 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1577
1578 // The other three cases all fold into an unsigned comparison.
1579 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1580 }
1581
1582 // If we aren't dealing with a constant on the RHS, exit early
1583 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1584 if (!CI)
1585 return 0;
1586
1587 // Compute the constant that would happen if we truncated to SrcTy then
1588 // reextended to DestTy.
1589 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1590 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1591 Res1, DestTy);
1592
1593 // If the re-extended constant didn't change...
1594 if (Res2 == CI) {
1595 // Deal with equality cases early.
1596 if (ICI.isEquality())
1597 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1598
1599 // A signed comparison of sign extended values simplifies into a
1600 // signed comparison.
1601 if (isSignedExt && isSignedCmp)
1602 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1603
1604 // The other three cases all fold into an unsigned comparison.
1605 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1606 }
1607
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001608 // The re-extended constant changed so the constant cannot be represented
Chris Lattner02446fc2010-01-04 07:37:31 +00001609 // in the shorter type. Consequently, we cannot emit a simple comparison.
Duncan Sands9d32f602011-01-20 13:21:55 +00001610 // All the cases that fold to true or false will have already been handled
1611 // by SimplifyICmpInst, so only deal with the tricky case.
Chris Lattner02446fc2010-01-04 07:37:31 +00001612
Duncan Sands9d32f602011-01-20 13:21:55 +00001613 if (isSignedCmp || !isSignedExt)
1614 return 0;
Chris Lattner02446fc2010-01-04 07:37:31 +00001615
1616 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1617 // should have been folded away previously and not enter in here.
Duncan Sands9d32f602011-01-20 13:21:55 +00001618
1619 // We're performing an unsigned comp with a sign extended value.
1620 // This is true if the input is >= 0. [aka >s -1]
1621 Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1622 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
Chris Lattner02446fc2010-01-04 07:37:31 +00001623
1624 // Finally, return the value computed.
Duncan Sands9d32f602011-01-20 13:21:55 +00001625 if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
Chris Lattner02446fc2010-01-04 07:37:31 +00001626 return ReplaceInstUsesWith(ICI, Result);
1627
Duncan Sands9d32f602011-01-20 13:21:55 +00001628 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
Chris Lattner02446fc2010-01-04 07:37:31 +00001629 return BinaryOperator::CreateNot(Result);
1630}
1631
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001632/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1633/// I = icmp ugt (add (add A, B), CI2), CI1
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001634/// If this is of the form:
1635/// sum = a + b
1636/// if (sum+128 >u 255)
1637/// Then replace it with llvm.sadd.with.overflow.i8.
1638///
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001639static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1640 ConstantInt *CI2, ConstantInt *CI1,
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001641 InstCombiner &IC) {
Chris Lattner368397b2010-12-19 17:59:02 +00001642 // The transformation we're trying to do here is to transform this into an
1643 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1644 // with a narrower add, and discard the add-with-constant that is part of the
1645 // range check (if we can't eliminate it, this isn't profitable).
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001646
Chris Lattner368397b2010-12-19 17:59:02 +00001647 // In order to eliminate the add-with-constant, the compare can be its only
1648 // use.
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001649 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
Chris Lattner368397b2010-12-19 17:59:02 +00001650 if (!AddWithCst->hasOneUse()) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001651
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001652 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1653 if (!CI2->getValue().isPowerOf2()) return 0;
1654 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1655 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001656
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001657 // The width of the new add formed is 1 more than the bias.
1658 ++NewWidth;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001659
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001660 // Check to see that CI1 is an all-ones value with NewWidth bits.
1661 if (CI1->getBitWidth() == NewWidth ||
1662 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1663 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001664
Eli Friedman54b92112011-11-28 23:32:19 +00001665 // This is only really a signed overflow check if the inputs have been
1666 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1667 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1668 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1669 if (IC.ComputeNumSignBits(A) < NeededSignBits ||
1670 IC.ComputeNumSignBits(B) < NeededSignBits)
1671 return 0;
1672
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001673 // In order to replace the original add with a narrower
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001674 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1675 // and truncates that discard the high bits of the add. Verify that this is
1676 // the case.
1677 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1678 for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1679 UI != E; ++UI) {
1680 if (*UI == AddWithCst) continue;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001681
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001682 // Only accept truncates for now. We would really like a nice recursive
1683 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1684 // chain to see which bits of a value are actually demanded. If the
1685 // original add had another add which was then immediately truncated, we
1686 // could still do the transformation.
1687 TruncInst *TI = dyn_cast<TruncInst>(*UI);
1688 if (TI == 0 ||
1689 TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1690 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001691
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001692 // If the pattern matches, truncate the inputs to the narrower type and
1693 // use the sadd_with_overflow intrinsic to efficiently compute both the
1694 // result and the overflow bit.
Chris Lattner0a624742010-12-19 18:35:09 +00001695 Module *M = I.getParent()->getParent()->getParent();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001696
Jay Foad5fdd6c82011-07-12 14:06:48 +00001697 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
Chris Lattner0a624742010-12-19 18:35:09 +00001698 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
Benjamin Kramereb9a85f2011-07-14 17:45:39 +00001699 NewType);
Chris Lattner0a624742010-12-19 18:35:09 +00001700
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001701 InstCombiner::BuilderTy *Builder = IC.Builder;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001702
Chris Lattner0a624742010-12-19 18:35:09 +00001703 // Put the new code above the original add, in case there are any uses of the
1704 // add between the add and the compare.
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001705 Builder->SetInsertPoint(OrigAdd);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001706
Chris Lattner0a624742010-12-19 18:35:09 +00001707 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1708 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1709 CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1710 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1711 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001712
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001713 // The inner add was the result of the narrow add, zero extended to the
1714 // wider type. Replace it with the result computed by the intrinsic.
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001715 IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001716
Chris Lattner0a624742010-12-19 18:35:09 +00001717 // The original icmp gets replaced with the overflow value.
1718 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001719}
Chris Lattner02446fc2010-01-04 07:37:31 +00001720
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001721static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1722 InstCombiner &IC) {
1723 // Don't bother doing this transformation for pointers, don't do it for
1724 // vectors.
1725 if (!isa<IntegerType>(OrigAddV->getType())) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001726
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001727 // If the add is a constant expr, then we don't bother transforming it.
1728 Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1729 if (OrigAdd == 0) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001730
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001731 Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001732
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001733 // Put the new code above the original add, in case there are any uses of the
1734 // add between the add and the compare.
1735 InstCombiner::BuilderTy *Builder = IC.Builder;
1736 Builder->SetInsertPoint(OrigAdd);
1737
1738 Module *M = I.getParent()->getParent()->getParent();
Jay Foad5fdd6c82011-07-12 14:06:48 +00001739 Type *Ty = LHS->getType();
Benjamin Kramereb9a85f2011-07-14 17:45:39 +00001740 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001741 CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1742 Value *Add = Builder->CreateExtractValue(Call, 0);
1743
1744 IC.ReplaceInstUsesWith(*OrigAdd, Add);
1745
1746 // The original icmp gets replaced with the overflow value.
1747 return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1748}
1749
Owen Andersonda1c1222011-01-11 00:36:45 +00001750// DemandedBitsLHSMask - When performing a comparison against a constant,
1751// it is possible that not all the bits in the LHS are demanded. This helper
1752// method computes the mask that IS demanded.
1753static APInt DemandedBitsLHSMask(ICmpInst &I,
1754 unsigned BitWidth, bool isSignCheck) {
1755 if (isSignCheck)
1756 return APInt::getSignBit(BitWidth);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001757
Owen Andersonda1c1222011-01-11 00:36:45 +00001758 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
1759 if (!CI) return APInt::getAllOnesValue(BitWidth);
Owen Andersona33b6252011-01-11 18:26:37 +00001760 const APInt &RHS = CI->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001761
Owen Andersonda1c1222011-01-11 00:36:45 +00001762 switch (I.getPredicate()) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001763 // For a UGT comparison, we don't care about any bits that
Owen Andersonda1c1222011-01-11 00:36:45 +00001764 // correspond to the trailing ones of the comparand. The value of these
1765 // bits doesn't impact the outcome of the comparison, because any value
1766 // greater than the RHS must differ in a bit higher than these due to carry.
1767 case ICmpInst::ICMP_UGT: {
1768 unsigned trailingOnes = RHS.countTrailingOnes();
1769 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
1770 return ~lowBitsSet;
1771 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001772
Owen Andersonda1c1222011-01-11 00:36:45 +00001773 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1774 // Any value less than the RHS must differ in a higher bit because of carries.
1775 case ICmpInst::ICMP_ULT: {
1776 unsigned trailingZeros = RHS.countTrailingZeros();
1777 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
1778 return ~lowBitsSet;
1779 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001780
Owen Andersonda1c1222011-01-11 00:36:45 +00001781 default:
1782 return APInt::getAllOnesValue(BitWidth);
1783 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001784
Owen Andersonda1c1222011-01-11 00:36:45 +00001785}
Chris Lattner02446fc2010-01-04 07:37:31 +00001786
1787Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1788 bool Changed = false;
Chris Lattner5f670d42010-02-01 19:54:45 +00001789 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001790
Chris Lattner02446fc2010-01-04 07:37:31 +00001791 /// Orders the operands of the compare so that they are listed from most
1792 /// complex to least complex. This puts constants before unary operators,
1793 /// before binary operators.
Chris Lattner5f670d42010-02-01 19:54:45 +00001794 if (getComplexity(Op0) < getComplexity(Op1)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001795 I.swapOperands();
Chris Lattner5f670d42010-02-01 19:54:45 +00001796 std::swap(Op0, Op1);
Chris Lattner02446fc2010-01-04 07:37:31 +00001797 Changed = true;
1798 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001799
Chris Lattner02446fc2010-01-04 07:37:31 +00001800 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1801 return ReplaceInstUsesWith(I, V);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001802
Pete Cooper65a6b572011-12-01 03:58:40 +00001803 // comparing -val or val with non-zero is the same as just comparing val
Pete Cooper165695d2011-12-01 19:13:26 +00001804 // ie, abs(val) != 0 -> val != 0
Pete Cooper65a6b572011-12-01 03:58:40 +00001805 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
1806 {
Pete Cooper165695d2011-12-01 19:13:26 +00001807 Value *Cond, *SelectTrue, *SelectFalse;
1808 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
Pete Cooper65a6b572011-12-01 03:58:40 +00001809 m_Value(SelectFalse)))) {
Pete Cooper165695d2011-12-01 19:13:26 +00001810 if (Value *V = dyn_castNegVal(SelectTrue)) {
1811 if (V == SelectFalse)
1812 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
1813 }
1814 else if (Value *V = dyn_castNegVal(SelectFalse)) {
1815 if (V == SelectTrue)
1816 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
Pete Cooper65a6b572011-12-01 03:58:40 +00001817 }
1818 }
1819 }
1820
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001821 Type *Ty = Op0->getType();
Chris Lattner02446fc2010-01-04 07:37:31 +00001822
1823 // icmp's with boolean values can always be turned into bitwise operations
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001824 if (Ty->isIntegerTy(1)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001825 switch (I.getPredicate()) {
1826 default: llvm_unreachable("Invalid icmp instruction!");
1827 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
1828 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1829 return BinaryOperator::CreateNot(Xor);
1830 }
1831 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
1832 return BinaryOperator::CreateXor(Op0, Op1);
1833
1834 case ICmpInst::ICMP_UGT:
1835 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
1836 // FALL THROUGH
1837 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
1838 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1839 return BinaryOperator::CreateAnd(Not, Op1);
1840 }
1841 case ICmpInst::ICMP_SGT:
1842 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
1843 // FALL THROUGH
1844 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
1845 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1846 return BinaryOperator::CreateAnd(Not, Op0);
1847 }
1848 case ICmpInst::ICMP_UGE:
1849 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
1850 // FALL THROUGH
1851 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
1852 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1853 return BinaryOperator::CreateOr(Not, Op1);
1854 }
1855 case ICmpInst::ICMP_SGE:
1856 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
1857 // FALL THROUGH
1858 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
1859 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1860 return BinaryOperator::CreateOr(Not, Op0);
1861 }
1862 }
1863 }
1864
1865 unsigned BitWidth = 0;
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001866 if (Ty->isIntOrIntVectorTy())
Chris Lattner02446fc2010-01-04 07:37:31 +00001867 BitWidth = Ty->getScalarSizeInBits();
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001868 else if (TD) // Pointers require TD info to get their size.
1869 BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001870
Chris Lattner02446fc2010-01-04 07:37:31 +00001871 bool isSignBit = false;
1872
1873 // See if we are doing a comparison with a constant.
1874 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1875 Value *A = 0, *B = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001876
Owen Andersone63dda52010-12-17 18:08:00 +00001877 // Match the following pattern, which is a common idiom when writing
1878 // overflow-safe integer arithmetic function. The source performs an
1879 // addition in wider type, and explicitly checks for overflow using
1880 // comparisons against INT_MIN and INT_MAX. Simplify this by using the
1881 // sadd_with_overflow intrinsic.
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001882 //
1883 // TODO: This could probably be generalized to handle other overflow-safe
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001884 // operations if we worked out the formulas to compute the appropriate
Owen Andersone63dda52010-12-17 18:08:00 +00001885 // magic constants.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001886 //
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001887 // sum = a + b
1888 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
Owen Andersone63dda52010-12-17 18:08:00 +00001889 {
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001890 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
Owen Andersone63dda52010-12-17 18:08:00 +00001891 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001892 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001893 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001894 return Res;
Owen Andersone63dda52010-12-17 18:08:00 +00001895 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001896
Chris Lattner02446fc2010-01-04 07:37:31 +00001897 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1898 if (I.isEquality() && CI->isZero() &&
1899 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1900 // (icmp cond A B) if cond is equality
1901 return new ICmpInst(I.getPredicate(), A, B);
1902 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001903
Chris Lattner02446fc2010-01-04 07:37:31 +00001904 // If we have an icmp le or icmp ge instruction, turn it into the
1905 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
1906 // them being folded in the code below. The SimplifyICmpInst code has
1907 // already handled the edge cases for us, so we just assert on them.
1908 switch (I.getPredicate()) {
1909 default: break;
1910 case ICmpInst::ICMP_ULE:
1911 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
1912 return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1913 ConstantInt::get(CI->getContext(), CI->getValue()+1));
1914 case ICmpInst::ICMP_SLE:
1915 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
1916 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1917 ConstantInt::get(CI->getContext(), CI->getValue()+1));
1918 case ICmpInst::ICMP_UGE:
Nick Lewyckyd8d15842011-02-28 06:20:05 +00001919 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
Chris Lattner02446fc2010-01-04 07:37:31 +00001920 return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1921 ConstantInt::get(CI->getContext(), CI->getValue()-1));
1922 case ICmpInst::ICMP_SGE:
Nick Lewyckyd8d15842011-02-28 06:20:05 +00001923 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
Chris Lattner02446fc2010-01-04 07:37:31 +00001924 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1925 ConstantInt::get(CI->getContext(), CI->getValue()-1));
1926 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001927
Chris Lattner02446fc2010-01-04 07:37:31 +00001928 // If this comparison is a normal comparison, it demands all
1929 // bits, if it is a sign bit comparison, it only demands the sign bit.
1930 bool UnusedBit;
1931 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1932 }
1933
1934 // See if we can fold the comparison based on range information we can get
1935 // by checking whether bits are known to be zero or one in the input.
1936 if (BitWidth != 0) {
1937 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1938 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1939
1940 if (SimplifyDemandedBits(I.getOperandUse(0),
Owen Andersonda1c1222011-01-11 00:36:45 +00001941 DemandedBitsLHSMask(I, BitWidth, isSignBit),
Chris Lattner02446fc2010-01-04 07:37:31 +00001942 Op0KnownZero, Op0KnownOne, 0))
1943 return &I;
1944 if (SimplifyDemandedBits(I.getOperandUse(1),
1945 APInt::getAllOnesValue(BitWidth),
1946 Op1KnownZero, Op1KnownOne, 0))
1947 return &I;
1948
1949 // Given the known and unknown bits, compute a range that the LHS could be
1950 // in. Compute the Min, Max and RHS values based on the known bits. For the
1951 // EQ and NE we use unsigned values.
1952 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1953 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1954 if (I.isSigned()) {
1955 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1956 Op0Min, Op0Max);
1957 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1958 Op1Min, Op1Max);
1959 } else {
1960 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1961 Op0Min, Op0Max);
1962 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1963 Op1Min, Op1Max);
1964 }
1965
1966 // If Min and Max are known to be the same, then SimplifyDemandedBits
1967 // figured out that the LHS is a constant. Just constant fold this now so
1968 // that code below can assume that Min != Max.
1969 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1970 return new ICmpInst(I.getPredicate(),
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00001971 ConstantInt::get(Op0->getType(), Op0Min), Op1);
Chris Lattner02446fc2010-01-04 07:37:31 +00001972 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1973 return new ICmpInst(I.getPredicate(), Op0,
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00001974 ConstantInt::get(Op1->getType(), Op1Min));
Chris Lattner02446fc2010-01-04 07:37:31 +00001975
1976 // Based on the range information we know about the LHS, see if we can
Nick Lewyckyd8d15842011-02-28 06:20:05 +00001977 // simplify this comparison. For example, (x&4) < 8 is always true.
Chris Lattner02446fc2010-01-04 07:37:31 +00001978 switch (I.getPredicate()) {
1979 default: llvm_unreachable("Unknown icmp opcode!");
Chris Lattner75d8f592010-11-21 06:44:42 +00001980 case ICmpInst::ICMP_EQ: {
Chris Lattner02446fc2010-01-04 07:37:31 +00001981 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00001982 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001983
Chris Lattner75d8f592010-11-21 06:44:42 +00001984 // If all bits are known zero except for one, then we know at most one
1985 // bit is set. If the comparison is against zero, then this is a check
1986 // to see if *that* bit is set.
1987 APInt Op0KnownZeroInverted = ~Op0KnownZero;
1988 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1989 // If the LHS is an AND with the same constant, look through it.
1990 Value *LHS = 0;
1991 ConstantInt *LHSC = 0;
1992 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1993 LHSC->getValue() != Op0KnownZeroInverted)
1994 LHS = Op0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001995
Chris Lattner75d8f592010-11-21 06:44:42 +00001996 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
Chris Lattner79b967b2010-11-23 02:42:04 +00001997 // then turn "((1 << x)&8) == 0" into "x != 3".
Chris Lattner75d8f592010-11-21 06:44:42 +00001998 Value *X = 0;
1999 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2000 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
Chris Lattner79b967b2010-11-23 02:42:04 +00002001 return new ICmpInst(ICmpInst::ICMP_NE, X,
Chris Lattner75d8f592010-11-21 06:44:42 +00002002 ConstantInt::get(X->getType(), CmpVal));
2003 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002004
Chris Lattner75d8f592010-11-21 06:44:42 +00002005 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
Chris Lattner79b967b2010-11-23 02:42:04 +00002006 // then turn "((8 >>u x)&1) == 0" into "x != 3".
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002007 const APInt *CI;
Chris Lattner75d8f592010-11-21 06:44:42 +00002008 if (Op0KnownZeroInverted == 1 &&
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002009 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
Chris Lattner79b967b2010-11-23 02:42:04 +00002010 return new ICmpInst(ICmpInst::ICMP_NE, X,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002011 ConstantInt::get(X->getType(),
2012 CI->countTrailingZeros()));
Chris Lattner75d8f592010-11-21 06:44:42 +00002013 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002014
Chris Lattner02446fc2010-01-04 07:37:31 +00002015 break;
Chris Lattner75d8f592010-11-21 06:44:42 +00002016 }
2017 case ICmpInst::ICMP_NE: {
Chris Lattner02446fc2010-01-04 07:37:31 +00002018 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002019 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002020
Chris Lattner75d8f592010-11-21 06:44:42 +00002021 // If all bits are known zero except for one, then we know at most one
2022 // bit is set. If the comparison is against zero, then this is a check
2023 // to see if *that* bit is set.
2024 APInt Op0KnownZeroInverted = ~Op0KnownZero;
2025 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2026 // If the LHS is an AND with the same constant, look through it.
2027 Value *LHS = 0;
2028 ConstantInt *LHSC = 0;
2029 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2030 LHSC->getValue() != Op0KnownZeroInverted)
2031 LHS = Op0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002032
Chris Lattner75d8f592010-11-21 06:44:42 +00002033 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
Chris Lattner79b967b2010-11-23 02:42:04 +00002034 // then turn "((1 << x)&8) != 0" into "x == 3".
Chris Lattner75d8f592010-11-21 06:44:42 +00002035 Value *X = 0;
2036 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2037 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
Chris Lattner79b967b2010-11-23 02:42:04 +00002038 return new ICmpInst(ICmpInst::ICMP_EQ, X,
Chris Lattner75d8f592010-11-21 06:44:42 +00002039 ConstantInt::get(X->getType(), CmpVal));
2040 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002041
Chris Lattner75d8f592010-11-21 06:44:42 +00002042 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
Chris Lattner79b967b2010-11-23 02:42:04 +00002043 // then turn "((8 >>u x)&1) != 0" into "x == 3".
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002044 const APInt *CI;
Chris Lattner75d8f592010-11-21 06:44:42 +00002045 if (Op0KnownZeroInverted == 1 &&
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002046 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
Chris Lattner79b967b2010-11-23 02:42:04 +00002047 return new ICmpInst(ICmpInst::ICMP_EQ, X,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002048 ConstantInt::get(X->getType(),
2049 CI->countTrailingZeros()));
Chris Lattner75d8f592010-11-21 06:44:42 +00002050 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002051
Chris Lattner02446fc2010-01-04 07:37:31 +00002052 break;
Chris Lattner75d8f592010-11-21 06:44:42 +00002053 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002054 case ICmpInst::ICMP_ULT:
2055 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002056 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002057 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002058 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002059 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
2060 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2061 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2062 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
2063 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2064 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2065
2066 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
2067 if (CI->isMinValue(true))
2068 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2069 Constant::getAllOnesValue(Op0->getType()));
2070 }
2071 break;
2072 case ICmpInst::ICMP_UGT:
2073 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002074 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002075 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002076 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002077
2078 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
2079 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2080 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2081 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
2082 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2083 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2084
2085 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
2086 if (CI->isMaxValue(true))
2087 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2088 Constant::getNullValue(Op0->getType()));
2089 }
2090 break;
2091 case ICmpInst::ICMP_SLT:
2092 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002093 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002094 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002095 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002096 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
2097 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2098 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2099 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
2100 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2101 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2102 }
2103 break;
2104 case ICmpInst::ICMP_SGT:
2105 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002106 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002107 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002108 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002109
2110 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
2111 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2112 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2113 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
2114 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2115 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2116 }
2117 break;
2118 case ICmpInst::ICMP_SGE:
2119 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2120 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002121 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002122 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002123 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002124 break;
2125 case ICmpInst::ICMP_SLE:
2126 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2127 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002128 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002129 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002130 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002131 break;
2132 case ICmpInst::ICMP_UGE:
2133 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2134 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002135 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002136 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002137 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002138 break;
2139 case ICmpInst::ICMP_ULE:
2140 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2141 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002142 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002143 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002144 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002145 break;
2146 }
2147
2148 // Turn a signed comparison into an unsigned one if both operands
2149 // are known to have the same sign.
2150 if (I.isSigned() &&
2151 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2152 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2153 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2154 }
2155
2156 // Test if the ICmpInst instruction is used exclusively by a select as
2157 // part of a minimum or maximum operation. If so, refrain from doing
2158 // any other folding. This helps out other analyses which understand
2159 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2160 // and CodeGen. And in this case, at least one of the comparison
2161 // operands has at least one user besides the compare (the select),
2162 // which would often largely negate the benefit of folding anyway.
2163 if (I.hasOneUse())
2164 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2165 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2166 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2167 return 0;
2168
2169 // See if we are doing a comparison between a constant and an instruction that
2170 // can be folded into the comparison.
2171 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002172 // Since the RHS is a ConstantInt (CI), if the left hand side is an
2173 // instruction, see if that instruction also has constants so that the
2174 // instruction can be folded into the icmp
Chris Lattner02446fc2010-01-04 07:37:31 +00002175 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2176 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2177 return Res;
2178 }
2179
2180 // Handle icmp with constant (but not simple integer constant) RHS
2181 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2182 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2183 switch (LHSI->getOpcode()) {
2184 case Instruction::GetElementPtr:
2185 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2186 if (RHSC->isNullValue() &&
2187 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2188 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2189 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2190 break;
2191 case Instruction::PHI:
2192 // Only fold icmp into the PHI if the phi and icmp are in the same
2193 // block. If in the same block, we're encouraging jump threading. If
2194 // not, we are just pessimizing the code by making an i1 phi.
2195 if (LHSI->getParent() == I.getParent())
Chris Lattner9922ccf2011-01-16 05:14:26 +00002196 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner02446fc2010-01-04 07:37:31 +00002197 return NV;
2198 break;
2199 case Instruction::Select: {
2200 // If either operand of the select is a constant, we can fold the
2201 // comparison into the select arms, which will cause one to be
2202 // constant folded and the select turned into a bitwise or.
2203 Value *Op1 = 0, *Op2 = 0;
2204 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2205 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2206 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2207 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2208
2209 // We only want to perform this transformation if it will not lead to
2210 // additional code. This is true if either both sides of the select
2211 // fold to a constant (in which case the icmp is replaced with a select
2212 // which will usually simplify) or this is the only user of the
2213 // select (in which case we are trading a select+icmp for a simpler
2214 // select+icmp).
2215 if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2216 if (!Op1)
2217 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2218 RHSC, I.getName());
2219 if (!Op2)
2220 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2221 RHSC, I.getName());
2222 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2223 }
2224 break;
2225 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002226 case Instruction::IntToPtr:
2227 // icmp pred inttoptr(X), null -> icmp pred X, 0
2228 if (RHSC->isNullValue() && TD &&
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002229 TD->getIntPtrType(RHSC->getContext()) ==
Chris Lattner02446fc2010-01-04 07:37:31 +00002230 LHSI->getOperand(0)->getType())
2231 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2232 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2233 break;
2234
2235 case Instruction::Load:
2236 // Try to optimize things like "A[i] > 4" to index computations.
2237 if (GetElementPtrInst *GEP =
2238 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2239 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2240 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2241 !cast<LoadInst>(LHSI)->isVolatile())
2242 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2243 return Res;
2244 }
2245 break;
2246 }
2247 }
2248
2249 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2250 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2251 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2252 return NI;
2253 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2254 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2255 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2256 return NI;
2257
2258 // Test to see if the operands of the icmp are casted versions of other
2259 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
2260 // now.
2261 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002262 if (Op0->getType()->isPointerTy() &&
2263 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00002264 // We keep moving the cast from the left operand over to the right
2265 // operand, where it can often be eliminated completely.
2266 Op0 = CI->getOperand(0);
2267
2268 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2269 // so eliminate it as well.
2270 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2271 Op1 = CI2->getOperand(0);
2272
2273 // If Op1 is a constant, we can fold the cast into the constant.
2274 if (Op0->getType() != Op1->getType()) {
2275 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2276 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2277 } else {
2278 // Otherwise, cast the RHS right before the icmp
2279 Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2280 }
2281 }
2282 return new ICmpInst(I.getPredicate(), Op0, Op1);
2283 }
2284 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002285
Chris Lattner02446fc2010-01-04 07:37:31 +00002286 if (isa<CastInst>(Op0)) {
2287 // Handle the special case of: icmp (cast bool to X), <cst>
2288 // This comes up when you have code like
2289 // int X = A < B;
2290 // if (X) ...
2291 // For generality, we handle any zero-extension of any operand comparison
2292 // with a constant or another cast from the same type.
2293 if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2294 if (Instruction *R = visitICmpInstWithCastAndCast(I))
2295 return R;
2296 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002297
Duncan Sandsa7724332011-02-17 07:46:37 +00002298 // Special logic for binary operators.
2299 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2300 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2301 if (BO0 || BO1) {
2302 CmpInst::Predicate Pred = I.getPredicate();
2303 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2304 if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2305 NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2306 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2307 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2308 if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2309 NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2310 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2311 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2312
2313 // Analyze the case when either Op0 or Op1 is an add instruction.
2314 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2315 Value *A = 0, *B = 0, *C = 0, *D = 0;
2316 if (BO0 && BO0->getOpcode() == Instruction::Add)
2317 A = BO0->getOperand(0), B = BO0->getOperand(1);
2318 if (BO1 && BO1->getOpcode() == Instruction::Add)
2319 C = BO1->getOperand(0), D = BO1->getOperand(1);
2320
2321 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2322 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2323 return new ICmpInst(Pred, A == Op1 ? B : A,
2324 Constant::getNullValue(Op1->getType()));
2325
2326 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2327 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2328 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2329 C == Op0 ? D : C);
2330
Duncan Sands39a7de72011-02-18 16:25:37 +00002331 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
Duncan Sandsa7724332011-02-17 07:46:37 +00002332 if (A && C && (A == C || A == D || B == C || B == D) &&
2333 NoOp0WrapProblem && NoOp1WrapProblem &&
2334 // Try not to increase register pressure.
2335 BO0->hasOneUse() && BO1->hasOneUse()) {
2336 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2337 Value *Y = (A == C || A == D) ? B : A;
2338 Value *Z = (C == A || C == B) ? D : C;
2339 return new ICmpInst(Pred, Y, Z);
2340 }
2341
2342 // Analyze the case when either Op0 or Op1 is a sub instruction.
2343 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2344 A = 0; B = 0; C = 0; D = 0;
2345 if (BO0 && BO0->getOpcode() == Instruction::Sub)
2346 A = BO0->getOperand(0), B = BO0->getOperand(1);
2347 if (BO1 && BO1->getOpcode() == Instruction::Sub)
2348 C = BO1->getOperand(0), D = BO1->getOperand(1);
2349
Duncan Sands39a7de72011-02-18 16:25:37 +00002350 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2351 if (A == Op1 && NoOp0WrapProblem)
2352 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2353
2354 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2355 if (C == Op0 && NoOp1WrapProblem)
2356 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2357
2358 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
Duncan Sandsa7724332011-02-17 07:46:37 +00002359 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2360 // Try not to increase register pressure.
2361 BO0->hasOneUse() && BO1->hasOneUse())
2362 return new ICmpInst(Pred, A, C);
2363
Duncan Sands39a7de72011-02-18 16:25:37 +00002364 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2365 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2366 // Try not to increase register pressure.
2367 BO0->hasOneUse() && BO1->hasOneUse())
2368 return new ICmpInst(Pred, D, B);
2369
Nick Lewycky9feda172011-03-05 04:28:48 +00002370 BinaryOperator *SRem = NULL;
Nick Lewyckydcf77572011-03-08 06:29:47 +00002371 // icmp (srem X, Y), Y
Nick Lewycky9feda172011-03-05 04:28:48 +00002372 if (BO0 && BO0->getOpcode() == Instruction::SRem &&
2373 Op1 == BO0->getOperand(1))
2374 SRem = BO0;
Nick Lewyckydcf77572011-03-08 06:29:47 +00002375 // icmp Y, (srem X, Y)
Nick Lewycky9feda172011-03-05 04:28:48 +00002376 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2377 Op0 == BO1->getOperand(1))
2378 SRem = BO1;
2379 if (SRem) {
2380 // We don't check hasOneUse to avoid increasing register pressure because
2381 // the value we use is the same value this instruction was already using.
2382 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2383 default: break;
2384 case ICmpInst::ICMP_EQ:
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002385 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Nick Lewycky9feda172011-03-05 04:28:48 +00002386 case ICmpInst::ICMP_NE:
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002387 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Nick Lewycky9feda172011-03-05 04:28:48 +00002388 case ICmpInst::ICMP_SGT:
2389 case ICmpInst::ICMP_SGE:
2390 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2391 Constant::getAllOnesValue(SRem->getType()));
2392 case ICmpInst::ICMP_SLT:
2393 case ICmpInst::ICMP_SLE:
2394 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2395 Constant::getNullValue(SRem->getType()));
2396 }
2397 }
2398
Duncan Sandsa7724332011-02-17 07:46:37 +00002399 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
2400 BO0->hasOneUse() && BO1->hasOneUse() &&
2401 BO0->getOperand(1) == BO1->getOperand(1)) {
2402 switch (BO0->getOpcode()) {
2403 default: break;
2404 case Instruction::Add:
2405 case Instruction::Sub:
2406 case Instruction::Xor:
2407 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
2408 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2409 BO1->getOperand(0));
2410 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2411 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2412 if (CI->getValue().isSignBit()) {
2413 ICmpInst::Predicate Pred = I.isSigned()
2414 ? I.getUnsignedPredicate()
2415 : I.getSignedPredicate();
2416 return new ICmpInst(Pred, BO0->getOperand(0),
2417 BO1->getOperand(0));
Chris Lattner02446fc2010-01-04 07:37:31 +00002418 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002419
Chris Lattnerc73b24d2011-07-15 06:08:15 +00002420 if (CI->isMaxValue(true)) {
Duncan Sandsa7724332011-02-17 07:46:37 +00002421 ICmpInst::Predicate Pred = I.isSigned()
2422 ? I.getUnsignedPredicate()
2423 : I.getSignedPredicate();
2424 Pred = I.getSwappedPredicate(Pred);
2425 return new ICmpInst(Pred, BO0->getOperand(0),
2426 BO1->getOperand(0));
2427 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002428 }
Duncan Sandsa7724332011-02-17 07:46:37 +00002429 break;
2430 case Instruction::Mul:
2431 if (!I.isEquality())
2432 break;
2433
2434 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2435 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2436 // Mask = -1 >> count-trailing-zeros(Cst).
2437 if (!CI->isZero() && !CI->isOne()) {
2438 const APInt &AP = CI->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002439 ConstantInt *Mask = ConstantInt::get(I.getContext(),
Duncan Sandsa7724332011-02-17 07:46:37 +00002440 APInt::getLowBitsSet(AP.getBitWidth(),
2441 AP.getBitWidth() -
2442 AP.countTrailingZeros()));
2443 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2444 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2445 return new ICmpInst(I.getPredicate(), And1, And2);
2446 }
2447 }
2448 break;
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002449 case Instruction::UDiv:
2450 case Instruction::LShr:
2451 if (I.isSigned())
2452 break;
2453 // fall-through
2454 case Instruction::SDiv:
2455 case Instruction::AShr:
Eli Friedmanb6e7cd62011-05-05 21:59:18 +00002456 if (!BO0->isExact() || !BO1->isExact())
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002457 break;
2458 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2459 BO1->getOperand(0));
2460 case Instruction::Shl: {
2461 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2462 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2463 if (!NUW && !NSW)
2464 break;
2465 if (!NSW && I.isSigned())
2466 break;
2467 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2468 BO1->getOperand(0));
2469 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002470 }
2471 }
2472 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002473
Chris Lattner02446fc2010-01-04 07:37:31 +00002474 { Value *A, *B;
Chris Lattnerfdb5b012011-01-15 05:41:33 +00002475 // ~x < ~y --> y < x
2476 // ~x < cst --> ~cst < x
2477 if (match(Op0, m_Not(m_Value(A)))) {
2478 if (match(Op1, m_Not(m_Value(B))))
2479 return new ICmpInst(I.getPredicate(), B, A);
Chris Lattner27a98482011-01-15 05:42:47 +00002480 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
Chris Lattnerfdb5b012011-01-15 05:41:33 +00002481 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2482 }
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002483
2484 // (a+b) <u a --> llvm.uadd.with.overflow.
2485 // (a+b) <u b --> llvm.uadd.with.overflow.
2486 if (I.getPredicate() == ICmpInst::ICMP_ULT &&
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002487 match(Op0, m_Add(m_Value(A), m_Value(B))) &&
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002488 (Op1 == A || Op1 == B))
2489 if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2490 return R;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002491
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002492 // a >u (a+b) --> llvm.uadd.with.overflow.
2493 // b >u (a+b) --> llvm.uadd.with.overflow.
2494 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2495 match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2496 (Op0 == A || Op0 == B))
2497 if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2498 return R;
Chris Lattner02446fc2010-01-04 07:37:31 +00002499 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002500
Chris Lattner02446fc2010-01-04 07:37:31 +00002501 if (I.isEquality()) {
2502 Value *A, *B, *C, *D;
Duncan Sands39a7de72011-02-18 16:25:37 +00002503
Chris Lattner02446fc2010-01-04 07:37:31 +00002504 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2505 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
2506 Value *OtherVal = A == Op1 ? B : A;
2507 return new ICmpInst(I.getPredicate(), OtherVal,
2508 Constant::getNullValue(A->getType()));
2509 }
2510
2511 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2512 // A^c1 == C^c2 --> A == C^(c1^c2)
2513 ConstantInt *C1, *C2;
2514 if (match(B, m_ConstantInt(C1)) &&
2515 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2516 Constant *NC = ConstantInt::get(I.getContext(),
2517 C1->getValue() ^ C2->getValue());
Benjamin Kramera9390a42011-09-27 20:39:19 +00002518 Value *Xor = Builder->CreateXor(C, NC);
Chris Lattner02446fc2010-01-04 07:37:31 +00002519 return new ICmpInst(I.getPredicate(), A, Xor);
2520 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002521
Chris Lattner02446fc2010-01-04 07:37:31 +00002522 // A^B == A^D -> B == D
2523 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2524 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2525 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2526 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2527 }
2528 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002529
Chris Lattner02446fc2010-01-04 07:37:31 +00002530 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2531 (A == Op0 || B == Op0)) {
2532 // A == (A^B) -> B == 0
2533 Value *OtherVal = A == Op0 ? B : A;
2534 return new ICmpInst(I.getPredicate(), OtherVal,
2535 Constant::getNullValue(A->getType()));
2536 }
2537
Chris Lattner02446fc2010-01-04 07:37:31 +00002538 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002539 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
Chris Lattner5036ce42011-04-26 20:02:45 +00002540 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00002541 Value *X = 0, *Y = 0, *Z = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002542
Chris Lattner02446fc2010-01-04 07:37:31 +00002543 if (A == C) {
2544 X = B; Y = D; Z = A;
2545 } else if (A == D) {
2546 X = B; Y = C; Z = A;
2547 } else if (B == C) {
2548 X = A; Y = D; Z = B;
2549 } else if (B == D) {
2550 X = A; Y = C; Z = B;
2551 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002552
Chris Lattner02446fc2010-01-04 07:37:31 +00002553 if (X) { // Build (X^Y) & Z
Benjamin Kramera9390a42011-09-27 20:39:19 +00002554 Op1 = Builder->CreateXor(X, Y);
2555 Op1 = Builder->CreateAnd(Op1, Z);
Chris Lattner02446fc2010-01-04 07:37:31 +00002556 I.setOperand(0, Op1);
2557 I.setOperand(1, Constant::getNullValue(Op1->getType()));
2558 return &I;
2559 }
2560 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002561
Chris Lattner325eeb12011-04-26 20:18:20 +00002562 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
2563 // "icmp (and X, mask), cst"
2564 uint64_t ShAmt = 0;
2565 ConstantInt *Cst1;
2566 if (Op0->hasOneUse() &&
2567 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
2568 m_ConstantInt(ShAmt))))) &&
2569 match(Op1, m_ConstantInt(Cst1)) &&
2570 // Only do this when A has multiple uses. This is most important to do
2571 // when it exposes other optimizations.
2572 !A->hasOneUse()) {
2573 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002574
Chris Lattner325eeb12011-04-26 20:18:20 +00002575 if (ShAmt < ASize) {
2576 APInt MaskV =
2577 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
2578 MaskV <<= ShAmt;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002579
Chris Lattner325eeb12011-04-26 20:18:20 +00002580 APInt CmpV = Cst1->getValue().zext(ASize);
2581 CmpV <<= ShAmt;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002582
Chris Lattner325eeb12011-04-26 20:18:20 +00002583 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
2584 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
2585 }
2586 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002587 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002588
Chris Lattner02446fc2010-01-04 07:37:31 +00002589 {
2590 Value *X; ConstantInt *Cst;
2591 // icmp X+Cst, X
2592 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2593 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2594
2595 // icmp X, X+Cst
2596 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2597 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2598 }
2599 return Changed ? &I : 0;
2600}
2601
2602
2603
2604
2605
2606
2607/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2608///
2609Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2610 Instruction *LHSI,
2611 Constant *RHSC) {
2612 if (!isa<ConstantFP>(RHSC)) return 0;
2613 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002614
Chris Lattner02446fc2010-01-04 07:37:31 +00002615 // Get the width of the mantissa. We don't want to hack on conversions that
2616 // might lose information from the integer, e.g. "i64 -> float"
2617 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2618 if (MantissaWidth == -1) return 0; // Unknown.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002619
Chris Lattner02446fc2010-01-04 07:37:31 +00002620 // Check to see that the input is converted from an integer type that is small
2621 // enough that preserves all bits. TODO: check here for "known" sign bits.
2622 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2623 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002624
Chris Lattner02446fc2010-01-04 07:37:31 +00002625 // If this is a uitofp instruction, we need an extra bit to hold the sign.
2626 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2627 if (LHSUnsigned)
2628 ++InputSize;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002629
Chris Lattner02446fc2010-01-04 07:37:31 +00002630 // If the conversion would lose info, don't hack on this.
2631 if ((int)InputSize > MantissaWidth)
2632 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002633
Chris Lattner02446fc2010-01-04 07:37:31 +00002634 // Otherwise, we can potentially simplify the comparison. We know that it
2635 // will always come through as an integer value and we know the constant is
2636 // not a NAN (it would have been previously simplified).
2637 assert(!RHS.isNaN() && "NaN comparison not already folded!");
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002638
Chris Lattner02446fc2010-01-04 07:37:31 +00002639 ICmpInst::Predicate Pred;
2640 switch (I.getPredicate()) {
2641 default: llvm_unreachable("Unexpected predicate!");
2642 case FCmpInst::FCMP_UEQ:
2643 case FCmpInst::FCMP_OEQ:
2644 Pred = ICmpInst::ICMP_EQ;
2645 break;
2646 case FCmpInst::FCMP_UGT:
2647 case FCmpInst::FCMP_OGT:
2648 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2649 break;
2650 case FCmpInst::FCMP_UGE:
2651 case FCmpInst::FCMP_OGE:
2652 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2653 break;
2654 case FCmpInst::FCMP_ULT:
2655 case FCmpInst::FCMP_OLT:
2656 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2657 break;
2658 case FCmpInst::FCMP_ULE:
2659 case FCmpInst::FCMP_OLE:
2660 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2661 break;
2662 case FCmpInst::FCMP_UNE:
2663 case FCmpInst::FCMP_ONE:
2664 Pred = ICmpInst::ICMP_NE;
2665 break;
2666 case FCmpInst::FCMP_ORD:
2667 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2668 case FCmpInst::FCMP_UNO:
2669 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2670 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002671
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002672 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002673
Chris Lattner02446fc2010-01-04 07:37:31 +00002674 // Now we know that the APFloat is a normal number, zero or inf.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002675
Chris Lattner02446fc2010-01-04 07:37:31 +00002676 // See if the FP constant is too large for the integer. For example,
2677 // comparing an i8 to 300.0.
2678 unsigned IntWidth = IntTy->getScalarSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002679
Chris Lattner02446fc2010-01-04 07:37:31 +00002680 if (!LHSUnsigned) {
2681 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
2682 // and large values.
2683 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2684 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2685 APFloat::rmNearestTiesToEven);
2686 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
2687 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
2688 Pred == ICmpInst::ICMP_SLE)
2689 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2690 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2691 }
2692 } else {
2693 // If the RHS value is > UnsignedMax, fold the comparison. This handles
2694 // +INF and large values.
2695 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2696 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2697 APFloat::rmNearestTiesToEven);
2698 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
2699 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
2700 Pred == ICmpInst::ICMP_ULE)
2701 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2702 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2703 }
2704 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002705
Chris Lattner02446fc2010-01-04 07:37:31 +00002706 if (!LHSUnsigned) {
2707 // See if the RHS value is < SignedMin.
2708 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2709 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2710 APFloat::rmNearestTiesToEven);
2711 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2712 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2713 Pred == ICmpInst::ICMP_SGE)
2714 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2715 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2716 }
Devang Patela2e0f6b2012-02-13 23:05:18 +00002717 } else {
2718 // See if the RHS value is < UnsignedMin.
2719 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2720 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
2721 APFloat::rmNearestTiesToEven);
2722 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
2723 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
2724 Pred == ICmpInst::ICMP_UGE)
2725 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2726 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2727 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002728 }
2729
2730 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2731 // [0, UMAX], but it may still be fractional. See if it is fractional by
2732 // casting the FP value to the integer value and back, checking for equality.
2733 // Don't do this for zero, because -0.0 is not fractional.
2734 Constant *RHSInt = LHSUnsigned
2735 ? ConstantExpr::getFPToUI(RHSC, IntTy)
2736 : ConstantExpr::getFPToSI(RHSC, IntTy);
2737 if (!RHS.isZero()) {
2738 bool Equal = LHSUnsigned
2739 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2740 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2741 if (!Equal) {
2742 // If we had a comparison against a fractional value, we have to adjust
2743 // the compare predicate and sometimes the value. RHSC is rounded towards
2744 // zero at this point.
2745 switch (Pred) {
2746 default: llvm_unreachable("Unexpected integer comparison!");
2747 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
2748 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2749 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
2750 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2751 case ICmpInst::ICMP_ULE:
2752 // (float)int <= 4.4 --> int <= 4
2753 // (float)int <= -4.4 --> false
2754 if (RHS.isNegative())
2755 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2756 break;
2757 case ICmpInst::ICMP_SLE:
2758 // (float)int <= 4.4 --> int <= 4
2759 // (float)int <= -4.4 --> int < -4
2760 if (RHS.isNegative())
2761 Pred = ICmpInst::ICMP_SLT;
2762 break;
2763 case ICmpInst::ICMP_ULT:
2764 // (float)int < -4.4 --> false
2765 // (float)int < 4.4 --> int <= 4
2766 if (RHS.isNegative())
2767 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2768 Pred = ICmpInst::ICMP_ULE;
2769 break;
2770 case ICmpInst::ICMP_SLT:
2771 // (float)int < -4.4 --> int < -4
2772 // (float)int < 4.4 --> int <= 4
2773 if (!RHS.isNegative())
2774 Pred = ICmpInst::ICMP_SLE;
2775 break;
2776 case ICmpInst::ICMP_UGT:
2777 // (float)int > 4.4 --> int > 4
2778 // (float)int > -4.4 --> true
2779 if (RHS.isNegative())
2780 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2781 break;
2782 case ICmpInst::ICMP_SGT:
2783 // (float)int > 4.4 --> int > 4
2784 // (float)int > -4.4 --> int >= -4
2785 if (RHS.isNegative())
2786 Pred = ICmpInst::ICMP_SGE;
2787 break;
2788 case ICmpInst::ICMP_UGE:
2789 // (float)int >= -4.4 --> true
2790 // (float)int >= 4.4 --> int > 4
2791 if (!RHS.isNegative())
2792 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2793 Pred = ICmpInst::ICMP_UGT;
2794 break;
2795 case ICmpInst::ICMP_SGE:
2796 // (float)int >= -4.4 --> int >= -4
2797 // (float)int >= 4.4 --> int > 4
2798 if (!RHS.isNegative())
2799 Pred = ICmpInst::ICMP_SGT;
2800 break;
2801 }
2802 }
2803 }
2804
2805 // Lower this FP comparison into an appropriate integer version of the
2806 // comparison.
2807 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2808}
2809
2810Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2811 bool Changed = false;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002812
Chris Lattner02446fc2010-01-04 07:37:31 +00002813 /// Orders the operands of the compare so that they are listed from most
2814 /// complex to least complex. This puts constants before unary operators,
2815 /// before binary operators.
2816 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2817 I.swapOperands();
2818 Changed = true;
2819 }
2820
2821 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002822
Chris Lattner02446fc2010-01-04 07:37:31 +00002823 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2824 return ReplaceInstUsesWith(I, V);
2825
2826 // Simplify 'fcmp pred X, X'
2827 if (Op0 == Op1) {
2828 switch (I.getPredicate()) {
2829 default: llvm_unreachable("Unknown predicate!");
2830 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
2831 case FCmpInst::FCMP_ULT: // True if unordered or less than
2832 case FCmpInst::FCMP_UGT: // True if unordered or greater than
2833 case FCmpInst::FCMP_UNE: // True if unordered or not equal
2834 // Canonicalize these to be 'fcmp uno %X, 0.0'.
2835 I.setPredicate(FCmpInst::FCMP_UNO);
2836 I.setOperand(1, Constant::getNullValue(Op0->getType()));
2837 return &I;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002838
Chris Lattner02446fc2010-01-04 07:37:31 +00002839 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
2840 case FCmpInst::FCMP_OEQ: // True if ordered and equal
2841 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
2842 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
2843 // Canonicalize these to be 'fcmp ord %X, 0.0'.
2844 I.setPredicate(FCmpInst::FCMP_ORD);
2845 I.setOperand(1, Constant::getNullValue(Op0->getType()));
2846 return &I;
2847 }
2848 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002849
Chris Lattner02446fc2010-01-04 07:37:31 +00002850 // Handle fcmp with constant RHS
2851 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2852 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2853 switch (LHSI->getOpcode()) {
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00002854 case Instruction::FPExt: {
2855 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
2856 FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
2857 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
2858 if (!RHSF)
2859 break;
2860
Benjamin Kramer7ebdc372011-03-31 21:35:49 +00002861 // We can't convert a PPC double double.
2862 if (RHSF->getType()->isPPC_FP128Ty())
2863 break;
2864
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00002865 const fltSemantics *Sem;
2866 // FIXME: This shouldn't be here.
Dan Gohmance163392011-12-17 00:04:22 +00002867 if (LHSExt->getSrcTy()->isHalfTy())
2868 Sem = &APFloat::IEEEhalf;
2869 else if (LHSExt->getSrcTy()->isFloatTy())
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00002870 Sem = &APFloat::IEEEsingle;
2871 else if (LHSExt->getSrcTy()->isDoubleTy())
2872 Sem = &APFloat::IEEEdouble;
2873 else if (LHSExt->getSrcTy()->isFP128Ty())
2874 Sem = &APFloat::IEEEquad;
2875 else if (LHSExt->getSrcTy()->isX86_FP80Ty())
2876 Sem = &APFloat::x87DoubleExtended;
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00002877 else
2878 break;
2879
2880 bool Lossy;
2881 APFloat F = RHSF->getValueAPF();
2882 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
2883
Jim Grosbachcbf676b2011-09-30 18:45:50 +00002884 // Avoid lossy conversions and denormals. Zero is a special case
2885 // that's OK to convert.
Jim Grosbach68e05fb2011-09-30 19:58:46 +00002886 APFloat Fabs = F;
2887 Fabs.clearSign();
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00002888 if (!Lossy &&
Jim Grosbach68e05fb2011-09-30 19:58:46 +00002889 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
2890 APFloat::cmpLessThan) || Fabs.isZero()))
Jim Grosbachcbf676b2011-09-30 18:45:50 +00002891
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00002892 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
2893 ConstantFP::get(RHSC->getContext(), F));
2894 break;
2895 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002896 case Instruction::PHI:
2897 // Only fold fcmp into the PHI if the phi and fcmp are in the same
2898 // block. If in the same block, we're encouraging jump threading. If
2899 // not, we are just pessimizing the code by making an i1 phi.
2900 if (LHSI->getParent() == I.getParent())
Chris Lattner9922ccf2011-01-16 05:14:26 +00002901 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner02446fc2010-01-04 07:37:31 +00002902 return NV;
2903 break;
2904 case Instruction::SIToFP:
2905 case Instruction::UIToFP:
2906 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2907 return NV;
2908 break;
2909 case Instruction::Select: {
2910 // If either operand of the select is a constant, we can fold the
2911 // comparison into the select arms, which will cause one to be
2912 // constant folded and the select turned into a bitwise or.
2913 Value *Op1 = 0, *Op2 = 0;
2914 if (LHSI->hasOneUse()) {
2915 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2916 // Fold the known value into the constant operand.
2917 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2918 // Insert a new FCmp of the other select operand.
2919 Op2 = Builder->CreateFCmp(I.getPredicate(),
2920 LHSI->getOperand(2), RHSC, I.getName());
2921 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2922 // Fold the known value into the constant operand.
2923 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2924 // Insert a new FCmp of the other select operand.
2925 Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2926 RHSC, I.getName());
2927 }
2928 }
2929
2930 if (Op1)
2931 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2932 break;
2933 }
Benjamin Kramer0db50182011-03-31 10:12:15 +00002934 case Instruction::FSub: {
2935 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
2936 Value *Op;
2937 if (match(LHSI, m_FNeg(m_Value(Op))))
2938 return new FCmpInst(I.getSwappedPredicate(), Op,
2939 ConstantExpr::getFNeg(RHSC));
2940 break;
2941 }
Dan Gohman39516a62010-02-24 06:46:09 +00002942 case Instruction::Load:
2943 if (GetElementPtrInst *GEP =
2944 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2945 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2946 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2947 !cast<LoadInst>(LHSI)->isVolatile())
2948 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2949 return Res;
2950 }
2951 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00002952 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002953 }
2954
Benjamin Kramer00e00d62011-03-31 10:46:03 +00002955 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
Benjamin Kramer68b4bd02011-03-31 10:12:22 +00002956 Value *X, *Y;
2957 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
Benjamin Kramer00e00d62011-03-31 10:46:03 +00002958 return new FCmpInst(I.getSwappedPredicate(), X, Y);
Benjamin Kramer68b4bd02011-03-31 10:12:22 +00002959
Benjamin Kramercd0274c2011-03-31 10:11:58 +00002960 // fcmp (fpext x), (fpext y) -> fcmp x, y
2961 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
2962 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
2963 if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
2964 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
2965 RHSExt->getOperand(0));
2966
Chris Lattner02446fc2010-01-04 07:37:31 +00002967 return Changed ? &I : 0;
2968}