blob: 3cc380a0e4ba908899c76dbc09c91ef0d2a56272 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000030#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000031#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000032#include "llvm/Support/CFG.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000035#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000036#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
Chris Lattnerec531232009-12-31 07:33:14 +000038#include "llvm/ADT/DenseMap.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000039#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000040using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000041
Chris Lattner0e5f4992006-12-19 21:40:18 +000042STATISTIC(NumLinear , "Number of insts linearized");
43STATISTIC(NumChanged, "Number of insts reassociated");
44STATISTIC(NumAnnihil, "Number of expr tree annihilated");
45STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000046
Chris Lattner0e5f4992006-12-19 21:40:18 +000047namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000048 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000049 unsigned Rank;
50 Value *Op;
51 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
52 };
53 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
54 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
55 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000056}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000057
Devang Patel50cacb22008-11-21 21:00:20 +000058#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000059/// PrintOps - Print out the expression identified in the Ops list.
60///
Chris Lattner9f7b7082009-12-31 18:40:32 +000061static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000062 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000063 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000064 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000065 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000066 dbgs() << "[ ";
67 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
68 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000069 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000070}
Devang Patel59500c82008-11-21 20:00:59 +000071#endif
Chris Lattnere5022fe2006-03-04 09:31:13 +000072
Dan Gohman844731a2008-05-13 00:00:25 +000073namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000074 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +000075 DenseMap<BasicBlock*, unsigned> RankMap;
76 DenseMap<AssertingVH<>, unsigned> ValueRankMap;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000077 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000078 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000079 static char ID; // Pass identification, replacement for typeid
Dan Gohmanae73dc12008-09-04 17:05:41 +000080 Reassociate() : FunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000081
Chris Lattner7e708292002-06-25 16:13:24 +000082 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000083
84 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000085 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000086 }
87 private:
Chris Lattner7e708292002-06-25 16:13:24 +000088 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000089 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +000090 Value *ReassociateExpression(BinaryOperator *I);
Chris Lattner9f7b7082009-12-31 18:40:32 +000091 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +000092 unsigned Idx = 0);
Chris Lattner9f7b7082009-12-31 18:40:32 +000093 Value *OptimizeExpression(BinaryOperator *I,
94 SmallVectorImpl<ValueEntry> &Ops);
95 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
96 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000097 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +000098 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000099 void ReassociateBB(BasicBlock *BB);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000100
101 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +0000102 };
103}
104
Dan Gohman844731a2008-05-13 00:00:25 +0000105char Reassociate::ID = 0;
106static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
107
Brian Gaeked0fde302003-11-11 22:41:34 +0000108// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000109FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000110
Chris Lattnere5022fe2006-03-04 09:31:13 +0000111void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000112 Instruction *Op = dyn_cast<Instruction>(V);
Chris Lattner69e98e22009-12-31 19:24:52 +0000113 if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
Reid Spencere4d87aa2006-12-23 06:05:41 +0000114 return;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000115
Reid Spencere4d87aa2006-12-23 06:05:41 +0000116 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattner69e98e22009-12-31 19:24:52 +0000117
118 ValueRankMap.erase(Op);
119 Op->eraseFromParent();
Chris Lattnere5022fe2006-03-04 09:31:13 +0000120 RemoveDeadBinaryOp(LHS);
121 RemoveDeadBinaryOp(RHS);
122}
123
Chris Lattner9c723192005-05-08 20:57:04 +0000124
125static bool isUnmovableInstruction(Instruction *I) {
126 if (I->getOpcode() == Instruction::PHI ||
127 I->getOpcode() == Instruction::Alloca ||
128 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000129 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000130 (I->getOpcode() == Instruction::Call &&
131 !isa<DbgInfoIntrinsic>(I)) ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000132 I->getOpcode() == Instruction::UDiv ||
133 I->getOpcode() == Instruction::SDiv ||
134 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000135 I->getOpcode() == Instruction::URem ||
136 I->getOpcode() == Instruction::SRem ||
137 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000138 return true;
139 return false;
140}
141
Chris Lattner7e708292002-06-25 16:13:24 +0000142void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000143 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000144
145 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000146 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000147 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000148
Chris Lattner7e708292002-06-25 16:13:24 +0000149 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000150 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000151 E = RPOT.end(); I != E; ++I) {
152 BasicBlock *BB = *I;
153 unsigned BBRank = RankMap[BB] = ++i << 16;
154
155 // Walk the basic block, adding precomputed ranks for any instructions that
156 // we cannot move. This ensures that the ranks for these instructions are
157 // all different in the block.
158 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
159 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000160 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000161 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000162}
163
164unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000165 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000166 if (I == 0) {
167 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
168 return 0; // Otherwise it's a global or constant, rank 0.
169 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000170
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000171 if (unsigned Rank = ValueRankMap[I])
172 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000173
Chris Lattner08b43922005-05-07 04:08:02 +0000174 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
175 // we can reassociate expressions for code motion! Since we do not recurse
176 // for PHI nodes, we cannot have infinite recursion here, because there
177 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000178 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
179 for (unsigned i = 0, e = I->getNumOperands();
180 i != e && Rank != MaxRank; ++i)
181 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000182
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000183 // If this is a not or neg instruction, do not count it for rank. This
184 // assures us that X and ~X will have the same rank.
Chris Lattner42a75512007-01-15 02:27:26 +0000185 if (!I->getType()->isInteger() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000186 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000187 ++Rank;
188
David Greenea1fa76c2010-01-05 01:27:24 +0000189 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000190 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000191
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000192 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000193}
194
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000195/// isReassociableOp - Return true if V is an instruction of the specified
196/// opcode and if it only has one use.
197static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000198 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000199 cast<Instruction>(V)->getOpcode() == Opcode)
200 return cast<BinaryOperator>(V);
201 return 0;
202}
Chris Lattner4fd56002002-05-08 22:19:27 +0000203
Chris Lattnerf33151a2005-05-08 21:28:52 +0000204/// LowerNegateToMultiply - Replace 0-X with X*-1.
205///
Dale Johannesenf4978e22009-03-19 17:22:53 +0000206static Instruction *LowerNegateToMultiply(Instruction *Neg,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000207 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000208 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000209
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000210 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000211 ValueRankMap.erase(Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000212 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000213 Neg->replaceAllUsesWith(Res);
214 Neg->eraseFromParent();
215 return Res;
216}
217
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000218// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
219// Note that if D is also part of the expression tree that we recurse to
220// linearize it as well. Besides that case, this does not recurse into A,B, or
221// C.
222void Reassociate::LinearizeExpr(BinaryOperator *I) {
223 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
224 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000225 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000226 isReassociableOp(RHS, I->getOpcode()) &&
227 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000228
David Greenea1fa76c2010-01-05 01:27:24 +0000229 DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Chris Lattner4fd56002002-05-08 22:19:27 +0000230
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000231 // Move the RHS instruction to live immediately before I, avoiding breaking
232 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000233 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000234
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000235 // Move operands around to do the linearization.
236 I->setOperand(1, RHS->getOperand(0));
237 RHS->setOperand(0, LHS);
238 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000239
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000240 ++NumLinear;
241 MadeChange = true;
David Greenea1fa76c2010-01-05 01:27:24 +0000242 DEBUG(dbgs() << "Linearized: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000243
244 // If D is part of this expression tree, tail recurse.
245 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
246 LinearizeExpr(I);
247}
248
249
250/// LinearizeExprTree - Given an associative binary expression tree, traverse
251/// all of the uses putting it into canonical form. This forces a left-linear
252/// form of the the expression (((a+b)+c)+d), and collects information about the
253/// rank of the non-tree operands.
254///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000255/// NOTE: These intentionally destroys the expression tree operands (turning
256/// them into undef values) to reduce #uses of the values. This means that the
257/// caller MUST use something like RewriteExprTree to put the values back in.
258///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000259void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000260 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000261 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
262 unsigned Opcode = I->getOpcode();
263
264 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
265 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
266 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
267
Chris Lattnerf33151a2005-05-08 21:28:52 +0000268 // If this is a multiply expression tree and it contains internal negations,
269 // transform them into multiplies by -1 so they can be reassociated.
270 if (I->getOpcode() == Instruction::Mul) {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000271 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000272 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000273 LHSBO = isReassociableOp(LHS, Opcode);
274 }
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000275 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000276 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000277 RHSBO = isReassociableOp(RHS, Opcode);
278 }
279 }
280
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000281 if (!LHSBO) {
282 if (!RHSBO) {
283 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
284 // such, just remember these operands and their rank.
285 Ops.push_back(ValueEntry(getRank(LHS), LHS));
286 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000287
288 // Clear the leaves out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000289 I->setOperand(0, UndefValue::get(I->getType()));
290 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000291 return;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000292 }
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000293
294 // Turn X+(Y+Z) -> (Y+Z)+X
295 std::swap(LHSBO, RHSBO);
296 std::swap(LHS, RHS);
297 bool Success = !I->swapOperands();
298 assert(Success && "swapOperands failed");
299 Success = false;
300 MadeChange = true;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000301 } else if (RHSBO) {
302 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
303 // part of the expression tree.
304 LinearizeExpr(I);
305 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
306 RHS = I->getOperand(1);
307 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000308 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000309
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000310 // Okay, now we know that the LHS is a nested expression and that the RHS is
311 // not. Perform reassociation.
312 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000313
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000314 // Move LHS right before I to make sure that the tree expression dominates all
315 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000316 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000317
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000318 // Linearize the expression tree on the LHS.
319 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000320
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000321 // Remember the RHS operand and its rank.
322 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000323
324 // Clear the RHS leaf out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000325 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000326}
327
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000328// RewriteExprTree - Now that the operands for this expression tree are
329// linearized and optimized, emit them in-order. This function is written to be
330// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000331void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000332 SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +0000333 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000334 if (i+2 == Ops.size()) {
335 if (I->getOperand(0) != Ops[i].Op ||
336 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000337 Value *OldLHS = I->getOperand(0);
David Greenea1fa76c2010-01-05 01:27:24 +0000338 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000339 I->setOperand(0, Ops[i].Op);
340 I->setOperand(1, Ops[i+1].Op);
David Greenea1fa76c2010-01-05 01:27:24 +0000341 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000342 MadeChange = true;
343 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000344
345 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
346 // delete the extra, now dead, nodes.
347 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000348 }
349 return;
350 }
351 assert(i+2 < Ops.size() && "Ops index out of range!");
352
353 if (I->getOperand(1) != Ops[i].Op) {
David Greenea1fa76c2010-01-05 01:27:24 +0000354 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000355 I->setOperand(1, Ops[i].Op);
David Greenea1fa76c2010-01-05 01:27:24 +0000356 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000357 MadeChange = true;
358 ++NumChanged;
359 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000360
361 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
362 assert(LHS->getOpcode() == I->getOpcode() &&
363 "Improper expression tree!");
364
365 // Compactify the tree instructions together with each other to guarantee
366 // that the expression tree is dominated by all of Ops.
367 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000368 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000369}
370
371
Chris Lattner4fd56002002-05-08 22:19:27 +0000372
Chris Lattnera36e6c82002-05-16 04:37:07 +0000373// NegateValue - Insert instructions before the instruction pointed to by BI,
374// that computes the negative version of the value specified. The negative
375// version of the value is returned, and BI is left pointing at the instruction
376// that should be processed next by the reassociation pass.
377//
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000378static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000379 if (Constant *C = dyn_cast<Constant>(V))
380 return ConstantExpr::getNeg(C);
381
Chris Lattnera36e6c82002-05-16 04:37:07 +0000382 // We are trying to expose opportunity for reassociation. One of the things
383 // that we want to do to achieve this is to push a negation as deep into an
384 // expression chain as possible, to expose the add instructions. In practice,
385 // this means that we turn this:
386 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
387 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
388 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000389 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000390 //
391 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000392 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000393 // Push the negates through the add.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000394 I->setOperand(0, NegateValue(I->getOperand(0), BI));
395 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000396
Chris Lattner2cd85da2005-09-02 06:38:04 +0000397 // We must move the add instruction here, because the neg instructions do
398 // not dominate the old add instruction in general. By moving it, we are
399 // assured that the neg instructions we just inserted dominate the
400 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000401 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000402 I->moveBefore(BI);
403 I->setName(I->getName()+".neg");
404 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000405 }
Chris Lattner35239932009-12-31 20:34:32 +0000406
407 // Okay, we need to materialize a negated version of V with an instruction.
408 // Scan the use lists of V to see if we have one already.
409 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
410 if (!BinaryOperator::isNeg(*UI)) continue;
411
412 // We found one! Now we have to make sure that the definition dominates
413 // this use. We do this by moving it to the entry block (if it is a
414 // non-instruction value) or right after the definition. These negates will
415 // be zapped by reassociate later, so we don't need much finesse here.
416 BinaryOperator *TheNeg = cast<BinaryOperator>(*UI);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000417
418 // Verify that the negate is in this function, V might be a constant expr.
419 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
420 continue;
Chris Lattner35239932009-12-31 20:34:32 +0000421
422 BasicBlock::iterator InsertPt;
423 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
424 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
425 InsertPt = II->getNormalDest()->begin();
426 } else {
427 InsertPt = InstInput;
428 ++InsertPt;
429 }
430 while (isa<PHINode>(InsertPt)) ++InsertPt;
431 } else {
432 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
433 }
434 TheNeg->moveBefore(InsertPt);
435 return TheNeg;
436 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000437
438 // Insert a 'neg' instruction that subtracts the value from zero to get the
439 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000440 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000441}
442
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000443/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
444/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000445static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000446 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000447 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000448 return false;
449
450 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000451 // subtract or if this is only used by one.
452 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
453 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000454 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000455 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000456 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000457 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000458 if (Sub->hasOneUse() &&
459 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
460 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000461 return true;
462
463 return false;
464}
465
Chris Lattner08b43922005-05-07 04:08:02 +0000466/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
467/// only used by an add, transform this into (X+(0-Y)) to promote better
468/// reassociation.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000469static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000470 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner90461932010-01-01 00:04:26 +0000471 // Convert a subtract into an add and a neg instruction. This allows sub
472 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000473 //
Chris Lattner90461932010-01-01 00:04:26 +0000474 // Calculate the negative value of Operand 1 of the sub instruction,
475 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000476 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000477 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000478 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000479 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000480 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000481
482 // Everyone now refers to the add instruction.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000483 ValueRankMap.erase(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000484 Sub->replaceAllUsesWith(New);
485 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000486
David Greenea1fa76c2010-01-05 01:27:24 +0000487 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000488 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000489}
490
Chris Lattner0975ed52005-05-07 04:24:13 +0000491/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
492/// by one, change this into a multiply by a constant to assist with further
493/// reassociation.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000494static Instruction *ConvertShiftToMul(Instruction *Shl,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000495 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000496 // If an operand of this shift is a reassociable multiply, or if the shift
497 // is used by a reassociable multiply or add, turn into a multiply.
498 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
499 (Shl->hasOneUse() &&
500 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
501 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000502 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000503 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Chris Lattner22a66c42006-03-14 06:55:18 +0000504
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000505 Instruction *Mul =
506 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000507 ValueRankMap.erase(Shl);
Chris Lattner6934a042007-02-11 01:23:03 +0000508 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000509 Shl->replaceAllUsesWith(Mul);
510 Shl->eraseFromParent();
511 return Mul;
512 }
513 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000514}
515
Chris Lattner109d34d2005-05-08 18:59:37 +0000516// Scan backwards and forwards among values with the same rank as element i to
Chris Lattner9506c932010-01-01 01:13:15 +0000517// see if X exists. If X does not exist, return i. This is useful when
518// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000519static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000520 Value *X) {
521 unsigned XRank = Ops[i].Rank;
522 unsigned e = Ops.size();
523 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
524 if (Ops[j].Op == X)
525 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000526 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000527 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
528 if (Ops[j].Op == X)
529 return j;
530 return i;
531}
532
Chris Lattnere5022fe2006-03-04 09:31:13 +0000533/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
534/// and returning the result. Insert the tree before I.
Chris Lattner8d93b252009-12-31 07:48:51 +0000535static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000536 if (Ops.size() == 1) return Ops.back();
537
538 Value *V1 = Ops.back();
539 Ops.pop_back();
540 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000541 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000542}
543
544/// RemoveFactorFromExpression - If V is an expression tree that is a
545/// multiplication sequence, and if this sequence contains a multiply by Factor,
546/// remove Factor from the tree and return the new tree.
547Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
548 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
549 if (!BO) return 0;
550
Chris Lattner9f7b7082009-12-31 18:40:32 +0000551 SmallVector<ValueEntry, 8> Factors;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000552 LinearizeExprTree(BO, Factors);
553
554 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000555 bool NeedsNegate = false;
556 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000557 if (Factors[i].Op == Factor) {
558 FoundFactor = true;
559 Factors.erase(Factors.begin()+i);
560 break;
561 }
Chris Lattner9506c932010-01-01 01:13:15 +0000562
563 // If this is a negative version of this factor, remove it.
564 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
565 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
566 if (FC1->getValue() == -FC2->getValue()) {
567 FoundFactor = NeedsNegate = true;
568 Factors.erase(Factors.begin()+i);
569 break;
570 }
571 }
572
Chris Lattnere9efecb2006-03-14 16:04:29 +0000573 if (!FoundFactor) {
574 // Make sure to restore the operands to the expression tree.
575 RewriteExprTree(BO, Factors);
576 return 0;
577 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000578
Chris Lattner9506c932010-01-01 01:13:15 +0000579 BasicBlock::iterator InsertPt = BO; ++InsertPt;
580
Chris Lattner1e7558b2009-12-31 19:34:45 +0000581 // If this was just a single multiply, remove the multiply and return the only
582 // remaining operand.
583 if (Factors.size() == 1) {
584 ValueRankMap.erase(BO);
585 BO->eraseFromParent();
Chris Lattner9506c932010-01-01 01:13:15 +0000586 V = Factors[0].Op;
587 } else {
588 RewriteExprTree(BO, Factors);
589 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +0000590 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000591
Chris Lattner9506c932010-01-01 01:13:15 +0000592 if (NeedsNegate)
593 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
594
595 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000596}
597
Chris Lattnere9efecb2006-03-14 16:04:29 +0000598/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
599/// add its operands as factors, otherwise add V to the list of factors.
600static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner8d93b252009-12-31 07:48:51 +0000601 SmallVectorImpl<Value*> &Factors) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000602 BinaryOperator *BO;
603 if ((!V->hasOneUse() && !V->use_empty()) ||
604 !(BO = dyn_cast<BinaryOperator>(V)) ||
605 BO->getOpcode() != Instruction::Mul) {
606 Factors.push_back(V);
607 return;
608 }
609
610 // Otherwise, add the LHS and RHS to the list of factors.
611 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
612 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
613}
614
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000615/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
616/// instruction. This optimizes based on identities. If it can be reduced to
617/// a single Value, it is returned, otherwise the Ops list is mutated as
618/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000619static Value *OptimizeAndOrXor(unsigned Opcode,
620 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000621 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
622 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
623 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
624 // First, check for X and ~X in the operand list.
625 assert(i < Ops.size());
626 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
627 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
628 unsigned FoundX = FindInOperandList(Ops, i, X);
629 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000630 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000631 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000632
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000633 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000634 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000635 }
636 }
637
638 // Next, check for duplicate pairs of values, which we assume are next to
639 // each other, due to our sorting criteria.
640 assert(i < Ops.size());
641 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
642 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000643 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000644 Ops.erase(Ops.begin()+i);
645 --i; --e;
646 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000647 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000648 }
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000649
650 // Drop pairs of values for Xor.
651 assert(Opcode == Instruction::Xor);
652 if (e == 2)
653 return Constant::getNullValue(Ops[0].Op->getType());
654
Chris Lattner90461932010-01-01 00:04:26 +0000655 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000656 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
657 i -= 1; e -= 2;
658 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000659 }
660 }
661 return 0;
662}
Chris Lattnere9efecb2006-03-14 16:04:29 +0000663
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000664/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
665/// optimizes based on identities. If it can be reduced to a single Value, it
666/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000667Value *Reassociate::OptimizeAdd(Instruction *I,
668 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000669 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +0000670 // can simplify the expression. X+-X == 0. While we're at it, scan for any
671 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +0000672 //
673 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
674 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000675 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000676 Value *TheOp = Ops[i].Op;
677 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000678 // instances of the operand together. Due to our sorting criteria, we know
679 // that these need to be next to each other in the vector.
680 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
681 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +0000682 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000683 do {
684 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +0000685 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000686 } while (i != Ops.size() && Ops[i].Op == TheOp);
687
Chris Lattnerf8a447d2009-12-31 19:25:19 +0000688 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +0000689 ++NumFactor;
Chris Lattner69e98e22009-12-31 19:24:52 +0000690
691 // Insert a new multiply.
692 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
693 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
694
695 // Now that we have inserted a multiply, optimize it. This allows us to
696 // handle cases that require multiple factoring steps, such as this:
697 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
698 Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
699
700 // If every add operand was a duplicate, return the multiply.
701 if (Ops.empty())
702 return Mul;
703
704 // Otherwise, we had some input that didn't have the dupe, such as
705 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
706 // things being added by this operation.
707 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000708
709 --i;
710 e = Ops.size();
711 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +0000712 }
713
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000714 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +0000715 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000716 continue;
717
Chris Lattner69e98e22009-12-31 19:24:52 +0000718 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000719 unsigned FoundX = FindInOperandList(Ops, i, X);
720 if (FoundX == i)
721 continue;
722
723 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000724 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000725 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000726
727 Ops.erase(Ops.begin()+i);
728 if (i < FoundX)
729 --FoundX;
730 else
731 --i; // Need to back up an extra one.
732 Ops.erase(Ops.begin()+FoundX);
733 ++NumAnnihil;
734 --i; // Revisit element.
735 e -= 2; // Removed two elements.
736 }
Chris Lattner94285e62009-12-31 18:17:13 +0000737
738 // Scan the operand list, checking to see if there are any common factors
739 // between operands. Consider something like A*A+A*B*C+D. We would like to
740 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
741 // To efficiently find this, we count the number of times a factor occurs
742 // for any ADD operands that are MULs.
743 DenseMap<Value*, unsigned> FactorOccurrences;
744
745 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
746 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +0000747 unsigned MaxOcc = 0;
748 Value *MaxOccVal = 0;
749 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
750 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
751 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
752 continue;
753
Chris Lattner94285e62009-12-31 18:17:13 +0000754 // Compute all of the factors of this added value.
755 SmallVector<Value*, 8> Factors;
756 FindSingleUseMultiplyFactors(BOp, Factors);
757 assert(Factors.size() > 1 && "Bad linearize!");
758
759 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +0000760 SmallPtrSet<Value*, 8> Duplicates;
761 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
762 Value *Factor = Factors[i];
763 if (!Duplicates.insert(Factor)) continue;
764
765 unsigned Occ = ++FactorOccurrences[Factor];
766 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
767
768 // If Factor is a negative constant, add the negated value as a factor
769 // because we can percolate the negate out. Watch for minint, which
770 // cannot be positivified.
771 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
772 if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
773 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
774 assert(!Duplicates.count(Factor) &&
775 "Shouldn't have two constant factors, missed a canonicalize");
776
777 unsigned Occ = ++FactorOccurrences[Factor];
778 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
779 }
Chris Lattner94285e62009-12-31 18:17:13 +0000780 }
781 }
782
783 // If any factor occurred more than one time, we can pull it out.
784 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000785 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +0000786 ++NumFactor;
787
788 // Create a new instruction that uses the MaxOccVal twice. If we don't do
789 // this, we could otherwise run into situations where removing a factor
790 // from an expression will drop a use of maxocc, and this can cause
791 // RemoveFactorFromExpression on successive values to behave differently.
792 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
793 SmallVector<Value*, 4> NewMulOps;
794 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
795 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
796 NewMulOps.push_back(V);
797 Ops.erase(Ops.begin()+i);
798 --i; --e;
799 }
800 }
801
802 // No need for extra uses anymore.
803 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +0000804
Chris Lattner94285e62009-12-31 18:17:13 +0000805 unsigned NumAddedValues = NewMulOps.size();
806 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +0000807
Chris Lattner69e98e22009-12-31 19:24:52 +0000808 // Now that we have inserted the add tree, optimize it. This allows us to
809 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +0000810 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000811 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +0000812 (void)NumAddedValues;
Chris Lattner69e98e22009-12-31 19:24:52 +0000813 V = ReassociateExpression(cast<BinaryOperator>(V));
814
815 // Create the multiply.
816 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
817
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000818 // Rerun associate on the multiply in case the inner expression turned into
819 // a multiply. We want to make sure that we keep things in canonical form.
820 V2 = ReassociateExpression(cast<BinaryOperator>(V2));
Chris Lattner94285e62009-12-31 18:17:13 +0000821
822 // If every add operand included the factor (e.g. "A*B + A*C"), then the
823 // entire result expression is just the multiply "A*(B+C)".
824 if (Ops.empty())
825 return V2;
826
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000827 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +0000828 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000829 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +0000830 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
831 }
832
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000833 return 0;
834}
Chris Lattnere5022fe2006-03-04 09:31:13 +0000835
836Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000837 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000838 // Now that we have the linearized expression tree, try to optimize it.
839 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000840 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000841 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000842
Chris Lattnere5022fe2006-03-04 09:31:13 +0000843 unsigned Opcode = I->getOpcode();
844
Chris Lattner46900102005-05-08 00:19:31 +0000845 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
846 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
847 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +0000848 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000849 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000850 }
851
852 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000853 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +0000854 switch (Opcode) {
855 default: break;
856 case Instruction::And:
Chris Lattner90461932010-01-01 00:04:26 +0000857 if (CstVal->isZero()) // X & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +0000858 return CstVal;
Chris Lattner90461932010-01-01 00:04:26 +0000859 if (CstVal->isAllOnesValue()) // X & -1 -> X
Chris Lattner8d93b252009-12-31 07:48:51 +0000860 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +0000861 break;
862 case Instruction::Mul:
Chris Lattner90461932010-01-01 00:04:26 +0000863 if (CstVal->isZero()) { // X * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000864 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000865 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000866 }
Chris Lattner8d93b252009-12-31 07:48:51 +0000867
868 if (cast<ConstantInt>(CstVal)->isOne())
Chris Lattner90461932010-01-01 00:04:26 +0000869 Ops.pop_back(); // X * 1 -> X
Chris Lattner46900102005-05-08 00:19:31 +0000870 break;
871 case Instruction::Or:
Chris Lattner90461932010-01-01 00:04:26 +0000872 if (CstVal->isAllOnesValue()) // X | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +0000873 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000874 // FALLTHROUGH!
875 case Instruction::Add:
876 case Instruction::Xor:
Chris Lattner90461932010-01-01 00:04:26 +0000877 if (CstVal->isZero()) // X [|^+] 0 -> X
Chris Lattner46900102005-05-08 00:19:31 +0000878 Ops.pop_back();
879 break;
880 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000881 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000882
Chris Lattnerec531232009-12-31 07:33:14 +0000883 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +0000884 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000885 switch (Opcode) {
886 default: break;
887 case Instruction::And:
888 case Instruction::Or:
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000889 case Instruction::Xor: {
890 unsigned NumOps = Ops.size();
891 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
892 return Result;
893 IterateOptimization |= Ops.size() != NumOps;
Chris Lattner109d34d2005-05-08 18:59:37 +0000894 break;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000895 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000896
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000897 case Instruction::Add: {
898 unsigned NumOps = Ops.size();
Chris Lattner94285e62009-12-31 18:17:13 +0000899 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000900 return Result;
901 IterateOptimization |= Ops.size() != NumOps;
902 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000903
Chris Lattner109d34d2005-05-08 18:59:37 +0000904 break;
905 //case Instruction::Mul:
906 }
907
Jeff Cohen00b168892005-07-27 06:12:32 +0000908 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000909 return OptimizeExpression(I, Ops);
910 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000911}
912
Chris Lattnera36e6c82002-05-16 04:37:07 +0000913
Chris Lattner08b43922005-05-07 04:08:02 +0000914/// ReassociateBB - Inspect all of the instructions in this basic block,
915/// reassociating them as we go.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000916void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000917 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
918 Instruction *BI = BBI++;
Chris Lattner641f02f2005-05-10 03:39:25 +0000919 if (BI->getOpcode() == Instruction::Shl &&
920 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000921 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Chris Lattner641f02f2005-05-10 03:39:25 +0000922 MadeChange = true;
923 BI = NI;
924 }
925
Chris Lattner6f156852005-05-08 21:33:47 +0000926 // Reject cases where it is pointless to do this.
Reid Spencere4d87aa2006-12-23 06:05:41 +0000927 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
Reid Spencer9d6565a2007-02-15 02:26:10 +0000928 isa<VectorType>(BI->getType()))
Chris Lattner6f156852005-05-08 21:33:47 +0000929 continue; // Floating point ops are not associative.
930
Chris Lattner08b43922005-05-07 04:08:02 +0000931 // If this is a subtract instruction which is not already in negate form,
932 // see if we can convert it to X+-Y.
Chris Lattnerf33151a2005-05-08 21:28:52 +0000933 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000934 if (ShouldBreakUpSubtract(BI)) {
935 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattner5f94af02010-01-05 04:55:35 +0000936 // Reset the BBI iterator in case BreakUpSubtract changed the
937 // instruction it points to.
938 BBI = BI;
939 ++BBI;
Chris Lattnerd5b8d922008-02-18 02:18:25 +0000940 MadeChange = true;
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000941 } else if (BinaryOperator::isNeg(BI)) {
Chris Lattnerf33151a2005-05-08 21:28:52 +0000942 // Otherwise, this is a negation. See if the operand is a multiply tree
943 // and if this is not an inner node of a multiply tree.
944 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
945 (!BI->hasOneUse() ||
946 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000947 BI = LowerNegateToMultiply(BI, ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000948 MadeChange = true;
949 }
Chris Lattner08b43922005-05-07 04:08:02 +0000950 }
Chris Lattnerf33151a2005-05-08 21:28:52 +0000951 }
Chris Lattnere4b73042002-10-31 17:12:59 +0000952
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000953 // If this instruction is a commutative binary operator, process it.
954 if (!BI->isAssociative()) continue;
955 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen00b168892005-07-27 06:12:32 +0000956
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000957 // If this is an interior node of a reassociable tree, ignore it until we
958 // get to the root of the tree, to avoid N^2 analysis.
959 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
960 continue;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000961
Chris Lattner7b4ad942005-09-02 07:07:58 +0000962 // If this is an add tree that is used by a sub instruction, ignore it
963 // until we process the subtract.
964 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
965 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
966 continue;
967
Chris Lattner895b3922006-03-14 07:11:11 +0000968 ReassociateExpression(I);
969 }
970}
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000971
Chris Lattner69e98e22009-12-31 19:24:52 +0000972Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner895b3922006-03-14 07:11:11 +0000973
Chris Lattner69e98e22009-12-31 19:24:52 +0000974 // First, walk the expression tree, linearizing the tree, collecting the
975 // operand information.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000976 SmallVector<ValueEntry, 8> Ops;
Chris Lattner895b3922006-03-14 07:11:11 +0000977 LinearizeExprTree(I, Ops);
978
David Greenea1fa76c2010-01-05 01:27:24 +0000979 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +0000980
981 // Now that we have linearized the tree to a list and have gathered all of
982 // the operands and their ranks, sort the operands by their rank. Use a
983 // stable_sort so that values with equal ranks will have their relative
984 // positions maintained (and so the compiler is deterministic). Note that
985 // this sorts so that the highest ranking values end up at the beginning of
986 // the vector.
987 std::stable_sort(Ops.begin(), Ops.end());
988
989 // OptimizeExpression - Now that we have the expression tree in a convenient
990 // sorted form, optimize it globally if possible.
991 if (Value *V = OptimizeExpression(I, Ops)) {
992 // This expression tree simplified to something that isn't a tree,
993 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +0000994 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +0000995 I->replaceAllUsesWith(V);
996 RemoveDeadBinaryOp(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000997 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +0000998 return V;
Chris Lattner895b3922006-03-14 07:11:11 +0000999 }
1000
1001 // We want to sink immediates as deeply as possible except in the case where
1002 // this is a multiply tree used only by an add, and the immediate is a -1.
1003 // In this case we reassociate to put the negation on the outside so that we
1004 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1005 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1006 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1007 isa<ConstantInt>(Ops.back().Op) &&
1008 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001009 ValueEntry Tmp = Ops.pop_back_val();
1010 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001011 }
1012
David Greenea1fa76c2010-01-05 01:27:24 +00001013 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001014
1015 if (Ops.size() == 1) {
1016 // This expression tree simplified to something that isn't a tree,
1017 // eliminate it.
1018 I->replaceAllUsesWith(Ops[0].Op);
1019 RemoveDeadBinaryOp(I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001020 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +00001021 }
Chris Lattner69e98e22009-12-31 19:24:52 +00001022
1023 // Now that we ordered and optimized the expressions, splat them back into
1024 // the expression tree, removing any unneeded nodes.
1025 RewriteExprTree(I, Ops);
1026 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +00001027}
1028
1029
Chris Lattner7e708292002-06-25 16:13:24 +00001030bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +00001031 // Recalculate the rank map for F
1032 BuildRankMap(F);
1033
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001034 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +00001035 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001036 ReassociateBB(FI);
Chris Lattner4fd56002002-05-08 22:19:27 +00001037
Chris Lattnerf55e7f52010-01-01 00:01:34 +00001038 // We are done with the rank map.
Chris Lattner4fd56002002-05-08 22:19:27 +00001039 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +00001040 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001041 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001042}
Brian Gaeked0fde302003-11-11 22:41:34 +00001043