blob: 82bb645567037b3757f17a1f3adf3c153496d231 [file] [log] [blame]
Chris Lattnered7b41e2003-05-27 15:45:27 +00001//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnered7b41e2003-05-27 15:45:27 +00009//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation. This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
Chris Lattner38aec322003-09-11 16:45:55 +000013// each member (if possible). Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs. As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
Chris Lattnered7b41e2003-05-27 15:45:27 +000019//
20//===----------------------------------------------------------------------===//
21
Chris Lattner0e5f4992006-12-19 21:40:18 +000022#define DEBUG_TYPE "scalarrepl"
Chris Lattnered7b41e2003-05-27 15:45:27 +000023#include "llvm/Transforms/Scalar.h"
Chris Lattner38aec322003-09-11 16:45:55 +000024#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
Chris Lattnered7b41e2003-05-27 15:45:27 +000026#include "llvm/Function.h"
Chris Lattner79b3bd32007-04-25 06:40:51 +000027#include "llvm/GlobalVariable.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Chris Lattner372dda82007-03-05 07:52:57 +000029#include "llvm/IntrinsicInst.h"
Owen Andersonfa5cbd62009-07-03 19:42:02 +000030#include "llvm/LLVMContext.h"
Chris Lattner72eaa0e2010-09-01 23:09:27 +000031#include "llvm/Module.h"
Chris Lattner372dda82007-03-05 07:52:57 +000032#include "llvm/Pass.h"
Cameron Zwarichb1686c32011-01-18 03:53:26 +000033#include "llvm/Analysis/Dominators.h"
Chris Lattnerc87c50a2011-01-23 22:04:55 +000034#include "llvm/Analysis/Loads.h"
Dan Gohman5034dd32010-12-15 20:02:24 +000035#include "llvm/Analysis/ValueTracking.h"
Chris Lattner38aec322003-09-11 16:45:55 +000036#include "llvm/Target/TargetData.h"
37#include "llvm/Transforms/Utils/PromoteMemToReg.h"
Devang Patel4afc90d2009-02-10 07:00:59 +000038#include "llvm/Transforms/Utils/Local.h"
Chris Lattnere0a1a5b2011-01-14 07:50:47 +000039#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattnera9be1df2010-11-18 06:26:49 +000040#include "llvm/Support/CallSite.h"
Chris Lattner95255282006-06-28 23:17:24 +000041#include "llvm/Support/Debug.h"
Torok Edwin7d696d82009-07-11 13:10:19 +000042#include "llvm/Support/ErrorHandling.h"
Chris Lattnera1888942005-12-12 07:19:13 +000043#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner65a65022009-02-03 19:41:50 +000044#include "llvm/Support/IRBuilder.h"
Chris Lattnera1888942005-12-12 07:19:13 +000045#include "llvm/Support/MathExtras.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000046#include "llvm/Support/raw_ostream.h"
Chris Lattnerc87c50a2011-01-23 22:04:55 +000047#include "llvm/ADT/SetVector.h"
Chris Lattner1ccd1852007-02-12 22:56:41 +000048#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000049#include "llvm/ADT/Statistic.h"
Chris Lattnerd8664732003-12-02 17:43:55 +000050using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000051
Chris Lattner0e5f4992006-12-19 21:40:18 +000052STATISTIC(NumReplaced, "Number of allocas broken up");
53STATISTIC(NumPromoted, "Number of allocas promoted");
Chris Lattnerc87c50a2011-01-23 22:04:55 +000054STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion");
Chris Lattner0e5f4992006-12-19 21:40:18 +000055STATISTIC(NumConverted, "Number of aggregates converted to scalar");
Chris Lattner79b3bd32007-04-25 06:40:51 +000056STATISTIC(NumGlobals, "Number of allocas copied from constant global");
Chris Lattnered7b41e2003-05-27 15:45:27 +000057
Chris Lattner0e5f4992006-12-19 21:40:18 +000058namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000059 struct SROA : public FunctionPass {
Cameron Zwarichb1686c32011-01-18 03:53:26 +000060 SROA(int T, bool hasDT, char &ID)
61 : FunctionPass(ID), HasDomTree(hasDT) {
Devang Patelff366852007-07-09 21:19:23 +000062 if (T == -1)
Chris Lattnerb0e71ed2007-08-02 21:33:36 +000063 SRThreshold = 128;
Devang Patelff366852007-07-09 21:19:23 +000064 else
65 SRThreshold = T;
66 }
Devang Patel794fd752007-05-01 21:15:47 +000067
Chris Lattnered7b41e2003-05-27 15:45:27 +000068 bool runOnFunction(Function &F);
69
Chris Lattner38aec322003-09-11 16:45:55 +000070 bool performScalarRepl(Function &F);
71 bool performPromotion(Function &F);
72
Chris Lattnered7b41e2003-05-27 15:45:27 +000073 private:
Cameron Zwarichb1686c32011-01-18 03:53:26 +000074 bool HasDomTree;
Chris Lattner56c38522009-01-07 06:34:28 +000075 TargetData *TD;
Bob Wilson69743022011-01-13 20:59:44 +000076
Bob Wilsonb742def2009-12-18 20:14:40 +000077 /// DeadInsts - Keep track of instructions we have made dead, so that
78 /// we can remove them after we are done working.
79 SmallVector<Value*, 32> DeadInsts;
80
Chris Lattner39a1c042007-05-30 06:11:23 +000081 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82 /// information about the uses. All these fields are initialized to false
83 /// and set to true when something is learned.
84 struct AllocaInfo {
Chris Lattner6c95d242011-01-23 07:29:29 +000085 /// The alloca to promote.
86 AllocaInst *AI;
87
Chris Lattner145c5322011-01-23 08:27:54 +000088 /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
89 /// looping and avoid redundant work.
90 SmallPtrSet<PHINode*, 8> CheckedPHIs;
91
Chris Lattner39a1c042007-05-30 06:11:23 +000092 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
93 bool isUnsafe : 1;
Bob Wilson69743022011-01-13 20:59:44 +000094
Chris Lattner39a1c042007-05-30 06:11:23 +000095 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
96 bool isMemCpySrc : 1;
97
Zhou Sheng33b0b8d2007-07-06 06:01:16 +000098 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
Chris Lattner39a1c042007-05-30 06:11:23 +000099 bool isMemCpyDst : 1;
100
Chris Lattner7e9b4272011-01-16 06:18:28 +0000101 /// hasSubelementAccess - This is true if a subelement of the alloca is
102 /// ever accessed, or false if the alloca is only accessed with mem
103 /// intrinsics or load/store that only access the entire alloca at once.
104 bool hasSubelementAccess : 1;
105
106 /// hasALoadOrStore - This is true if there are any loads or stores to it.
107 /// The alloca may just be accessed with memcpy, for example, which would
108 /// not set this.
109 bool hasALoadOrStore : 1;
110
Chris Lattner6c95d242011-01-23 07:29:29 +0000111 explicit AllocaInfo(AllocaInst *ai)
112 : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
Chris Lattner7e9b4272011-01-16 06:18:28 +0000113 hasSubelementAccess(false), hasALoadOrStore(false) {}
Chris Lattner39a1c042007-05-30 06:11:23 +0000114 };
Bob Wilson69743022011-01-13 20:59:44 +0000115
Devang Patelff366852007-07-09 21:19:23 +0000116 unsigned SRThreshold;
117
Chris Lattnerd01a0da2011-01-23 07:05:44 +0000118 void MarkUnsafe(AllocaInfo &I, Instruction *User) {
119 I.isUnsafe = true;
120 DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n');
121 }
Chris Lattner39a1c042007-05-30 06:11:23 +0000122
Victor Hernandez6c146ee2010-01-21 23:05:53 +0000123 bool isSafeAllocaToScalarRepl(AllocaInst *AI);
Chris Lattner39a1c042007-05-30 06:11:23 +0000124
Chris Lattner6c95d242011-01-23 07:29:29 +0000125 void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
Chris Lattner145c5322011-01-23 08:27:54 +0000126 void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
127 AllocaInfo &Info);
Chris Lattner6c95d242011-01-23 07:29:29 +0000128 void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
129 void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
Chris Lattnerd01a0da2011-01-23 07:05:44 +0000130 const Type *MemOpType, bool isStore, AllocaInfo &Info,
Chris Lattner145c5322011-01-23 08:27:54 +0000131 Instruction *TheAccess, bool AllowWholeAccess);
Bob Wilsonb742def2009-12-18 20:14:40 +0000132 bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
Bob Wilsone88728d2009-12-19 06:53:17 +0000133 uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
134 const Type *&IdxTy);
Bob Wilson69743022011-01-13 20:59:44 +0000135
136 void DoScalarReplacement(AllocaInst *AI,
Victor Hernandez7b929da2009-10-23 21:09:37 +0000137 std::vector<AllocaInst*> &WorkList);
Bob Wilsonb742def2009-12-18 20:14:40 +0000138 void DeleteDeadInstructions();
Bob Wilson69743022011-01-13 20:59:44 +0000139
Bob Wilsonb742def2009-12-18 20:14:40 +0000140 void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
141 SmallVector<AllocaInst*, 32> &NewElts);
142 void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
143 SmallVector<AllocaInst*, 32> &NewElts);
144 void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
145 SmallVector<AllocaInst*, 32> &NewElts);
146 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Victor Hernandez7b929da2009-10-23 21:09:37 +0000147 AllocaInst *AI,
Chris Lattnerd93afec2009-01-07 07:18:45 +0000148 SmallVector<AllocaInst*, 32> &NewElts);
Victor Hernandez7b929da2009-10-23 21:09:37 +0000149 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
Chris Lattnerd2fa7812009-01-07 08:11:13 +0000150 SmallVector<AllocaInst*, 32> &NewElts);
Victor Hernandez7b929da2009-10-23 21:09:37 +0000151 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Chris Lattner6e733d32009-01-28 20:16:43 +0000152 SmallVector<AllocaInst*, 32> &NewElts);
Bob Wilson69743022011-01-13 20:59:44 +0000153
Chris Lattner31d80102010-04-15 21:59:20 +0000154 static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
Chris Lattnered7b41e2003-05-27 15:45:27 +0000155 };
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000156
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000157 // SROA_DT - SROA that uses DominatorTree.
158 struct SROA_DT : public SROA {
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000159 static char ID;
160 public:
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000161 SROA_DT(int T = -1) : SROA(T, true, ID) {
162 initializeSROA_DTPass(*PassRegistry::getPassRegistry());
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000163 }
164
165 // getAnalysisUsage - This pass does not require any passes, but we know it
166 // will not alter the CFG, so say so.
167 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
168 AU.addRequired<DominatorTree>();
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000169 AU.setPreservesCFG();
170 }
171 };
172
173 // SROA_SSAUp - SROA that uses SSAUpdater.
174 struct SROA_SSAUp : public SROA {
175 static char ID;
176 public:
177 SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
178 initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
179 }
180
181 // getAnalysisUsage - This pass does not require any passes, but we know it
182 // will not alter the CFG, so say so.
183 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
184 AU.setPreservesCFG();
185 }
186 };
187
Chris Lattnered7b41e2003-05-27 15:45:27 +0000188}
189
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000190char SROA_DT::ID = 0;
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000191char SROA_SSAUp::ID = 0;
192
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000193INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
194 "Scalar Replacement of Aggregates (DT)", false, false)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000195INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000196INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
197 "Scalar Replacement of Aggregates (DT)", false, false)
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000198
199INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
200 "Scalar Replacement of Aggregates (SSAUp)", false, false)
201INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
202 "Scalar Replacement of Aggregates (SSAUp)", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000203
Brian Gaeked0fde302003-11-11 22:41:34 +0000204// Public interface to the ScalarReplAggregates pass
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000205FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000206 bool UseDomTree) {
207 if (UseDomTree)
208 return new SROA_DT(Threshold);
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000209 return new SROA_SSAUp(Threshold);
Devang Patelff366852007-07-09 21:19:23 +0000210}
Chris Lattnered7b41e2003-05-27 15:45:27 +0000211
212
Chris Lattner4cc576b2010-04-16 00:24:57 +0000213//===----------------------------------------------------------------------===//
214// Convert To Scalar Optimization.
215//===----------------------------------------------------------------------===//
216
217namespace {
Chris Lattnera001b662010-04-16 00:38:19 +0000218/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
219/// optimization, which scans the uses of an alloca and determines if it can
220/// rewrite it in terms of a single new alloca that can be mem2reg'd.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000221class ConvertToScalarInfo {
Cameron Zwarichd4c9c3e2011-03-16 00:13:35 +0000222 /// AllocaSize - The size of the alloca being considered in bytes.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000223 unsigned AllocaSize;
224 const TargetData &TD;
Bob Wilson69743022011-01-13 20:59:44 +0000225
Chris Lattnera0bada72010-04-16 02:32:17 +0000226 /// IsNotTrivial - This is set to true if there is some access to the object
Chris Lattnera001b662010-04-16 00:38:19 +0000227 /// which means that mem2reg can't promote it.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000228 bool IsNotTrivial;
Bob Wilson69743022011-01-13 20:59:44 +0000229
Chris Lattnera001b662010-04-16 00:38:19 +0000230 /// VectorTy - This tracks the type that we should promote the vector to if
231 /// it is possible to turn it into a vector. This starts out null, and if it
232 /// isn't possible to turn into a vector type, it gets set to VoidTy.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000233 const Type *VectorTy;
Bob Wilson69743022011-01-13 20:59:44 +0000234
Chris Lattnera001b662010-04-16 00:38:19 +0000235 /// HadAVector - True if there is at least one vector access to the alloca.
236 /// We don't want to turn random arrays into vectors and use vector element
237 /// insert/extract, but if there are element accesses to something that is
238 /// also declared as a vector, we do want to promote to a vector.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000239 bool HadAVector;
240
Cameron Zwarich1bcdb6f2011-03-16 08:13:42 +0000241 /// HadNonMemTransferAccess - True if there is at least one access to the
242 /// alloca that is not a MemTransferInst. We don't want to turn structs into
243 /// large integers unless there is some potential for optimization.
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000244 bool HadNonMemTransferAccess;
245
Chris Lattner4cc576b2010-04-16 00:24:57 +0000246public:
247 explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
Cameron Zwarichdeac2682011-03-16 00:13:37 +0000248 : AllocaSize(Size), TD(td), IsNotTrivial(false), VectorTy(0),
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000249 HadAVector(false), HadNonMemTransferAccess(false) { }
Bob Wilson69743022011-01-13 20:59:44 +0000250
Chris Lattnera001b662010-04-16 00:38:19 +0000251 AllocaInst *TryConvert(AllocaInst *AI);
Bob Wilson69743022011-01-13 20:59:44 +0000252
Chris Lattner4cc576b2010-04-16 00:24:57 +0000253private:
254 bool CanConvertToScalar(Value *V, uint64_t Offset);
Cameron Zwarich9827b782011-03-29 05:19:52 +0000255 void MergeInType(const Type *In, uint64_t Offset, bool IsLoadOrStore);
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000256 bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
Chris Lattner4cc576b2010-04-16 00:24:57 +0000257 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
Bob Wilson69743022011-01-13 20:59:44 +0000258
Chris Lattner4cc576b2010-04-16 00:24:57 +0000259 Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
260 uint64_t Offset, IRBuilder<> &Builder);
261 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
262 uint64_t Offset, IRBuilder<> &Builder);
263};
264} // end anonymous namespace.
265
Chris Lattner91abace2010-09-01 05:14:33 +0000266
Chris Lattnera001b662010-04-16 00:38:19 +0000267/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
268/// rewrite it to be a new alloca which is mem2reg'able. This returns the new
269/// alloca if possible or null if not.
270AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
271 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
272 // out.
273 if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
274 return 0;
Bob Wilson69743022011-01-13 20:59:44 +0000275
Chris Lattnera001b662010-04-16 00:38:19 +0000276 // If we were able to find a vector type that can handle this with
277 // insert/extract elements, and if there was at least one use that had
278 // a vector type, promote this to a vector. We don't want to promote
279 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
280 // we just get a lot of insert/extracts. If at least one vector is
281 // involved, then we probably really do have a union of vector/array.
282 const Type *NewTy;
Chris Lattner85a7c692011-01-23 06:40:33 +0000283 if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
Chris Lattnera001b662010-04-16 00:38:19 +0000284 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
285 << *VectorTy << '\n');
286 NewTy = VectorTy; // Use the vector type.
287 } else {
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000288 unsigned BitWidth = AllocaSize * 8;
289 if (!HadAVector && !HadNonMemTransferAccess &&
290 !TD.fitsInLegalInteger(BitWidth))
291 return 0;
292
Chris Lattnera001b662010-04-16 00:38:19 +0000293 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
294 // Create and insert the integer alloca.
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000295 NewTy = IntegerType::get(AI->getContext(), BitWidth);
Chris Lattnera001b662010-04-16 00:38:19 +0000296 }
297 AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
298 ConvertUsesToScalar(AI, NewAI, 0);
299 return NewAI;
300}
301
302/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
303/// so far at the offset specified by Offset (which is specified in bytes).
Chris Lattner4cc576b2010-04-16 00:24:57 +0000304///
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000305/// There are three cases we handle here:
Chris Lattner4cc576b2010-04-16 00:24:57 +0000306/// 1) A union of vector types of the same size and potentially its elements.
307/// Here we turn element accesses into insert/extract element operations.
308/// This promotes a <4 x float> with a store of float to the third element
309/// into a <4 x float> that uses insert element.
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000310/// 2) A union of vector types with power-of-2 size differences, e.g. a float,
311/// <2 x float> and <4 x float>. Here we turn element accesses into insert
312/// and extract element operations, and <2 x float> accesses into a cast to
313/// <2 x double>, an extract, and a cast back to <2 x float>.
314/// 3) A fully general blob of memory, which we turn into some (potentially
Chris Lattner4cc576b2010-04-16 00:24:57 +0000315/// large) integer type with extract and insert operations where the loads
Chris Lattnera001b662010-04-16 00:38:19 +0000316/// and stores would mutate the memory. We mark this by setting VectorTy
317/// to VoidTy.
Cameron Zwarich9827b782011-03-29 05:19:52 +0000318void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset,
319 bool IsLoadOrStore) {
Chris Lattnera001b662010-04-16 00:38:19 +0000320 // If we already decided to turn this into a blob of integer memory, there is
321 // nothing to be done.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000322 if (VectorTy && VectorTy->isVoidTy())
323 return;
Bob Wilson69743022011-01-13 20:59:44 +0000324
Chris Lattner4cc576b2010-04-16 00:24:57 +0000325 // If this could be contributing to a vector, analyze it.
326
327 // If the In type is a vector that is the same size as the alloca, see if it
328 // matches the existing VecTy.
329 if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000330 if (MergeInVectorType(VInTy, Offset))
Chris Lattner4cc576b2010-04-16 00:24:57 +0000331 return;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000332 } else if (In->isFloatTy() || In->isDoubleTy() ||
333 (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
334 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
Cameron Zwarich9827b782011-03-29 05:19:52 +0000335 // Full width accesses can be ignored, because they can always be turned
336 // into bitcasts.
337 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
338 if (IsLoadOrStore && EltSize == AllocaSize)
339 return;
Cameron Zwarich5fc12822011-04-20 21:48:16 +0000340
Chris Lattner4cc576b2010-04-16 00:24:57 +0000341 // If we're accessing something that could be an element of a vector, see
342 // if the implied vector agrees with what we already have and if Offset is
343 // compatible with it.
Cameron Zwarich5fc12822011-04-20 21:48:16 +0000344 if (Offset % EltSize == 0 && AllocaSize % EltSize == 0) {
345 if (!VectorTy) {
Chris Lattner4cc576b2010-04-16 00:24:57 +0000346 VectorTy = VectorType::get(In, AllocaSize/EltSize);
Cameron Zwarich5fc12822011-04-20 21:48:16 +0000347 return;
348 }
349
350 unsigned CurrentEltSize = cast<VectorType>(VectorTy)->getElementType()
351 ->getPrimitiveSizeInBits()/8;
352 if (EltSize == CurrentEltSize)
353 return;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000354 }
355 }
Bob Wilson69743022011-01-13 20:59:44 +0000356
Chris Lattner4cc576b2010-04-16 00:24:57 +0000357 // Otherwise, we have a case that we can't handle with an optimized vector
358 // form. We can still turn this into a large integer.
359 VectorTy = Type::getVoidTy(In->getContext());
360}
361
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000362/// MergeInVectorType - Handles the vector case of MergeInType, returning true
363/// if the type was successfully merged and false otherwise.
364bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
365 uint64_t Offset) {
366 // Remember if we saw a vector type.
367 HadAVector = true;
368
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000369 // TODO: Support nonzero offsets?
370 if (Offset != 0)
371 return false;
372
373 // Only allow vectors that are a power-of-2 away from the size of the alloca.
374 if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
375 return false;
376
377 // If this the first vector we see, remember the type so that we know the
378 // element size.
379 if (!VectorTy) {
380 VectorTy = VInTy;
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000381 return true;
382 }
383
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000384 unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
385 unsigned InBitWidth = VInTy->getBitWidth();
386
387 // Vectors of the same size can be converted using a simple bitcast.
388 if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
389 return true;
390
391 const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
Cameron Zwarichc77a10f2011-03-26 04:58:50 +0000392 const Type *InElementTy = cast<VectorType>(VInTy)->getElementType();
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000393
394 // Do not allow mixed integer and floating-point accesses from vectors of
395 // different sizes.
396 if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
397 return false;
398
399 if (ElementTy->isFloatingPointTy()) {
400 // Only allow floating-point vectors of different sizes if they have the
401 // same element type.
402 // TODO: This could be loosened a bit, but would anything benefit?
403 if (ElementTy != InElementTy)
404 return false;
405
406 // There are no arbitrary-precision floating-point types, which limits the
407 // number of legal vector types with larger element types that we can form
408 // to bitcast and extract a subvector.
409 // TODO: We could support some more cases with mixed fp128 and double here.
410 if (!(BitWidth == 64 || BitWidth == 128) ||
411 !(InBitWidth == 64 || InBitWidth == 128))
412 return false;
413 } else {
414 assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
415 "or floating-point.");
416 unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
417 unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
418
419 // Do not allow integer types smaller than a byte or types whose widths are
420 // not a multiple of a byte.
421 if (BitWidth < 8 || InBitWidth < 8 ||
422 BitWidth % 8 != 0 || InBitWidth % 8 != 0)
423 return false;
424 }
425
426 // Pick the largest of the two vector types.
427 if (InBitWidth > BitWidth)
428 VectorTy = VInTy;
429
430 return true;
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000431}
432
Chris Lattner4cc576b2010-04-16 00:24:57 +0000433/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
434/// its accesses to a single vector type, return true and set VecTy to
435/// the new type. If we could convert the alloca into a single promotable
436/// integer, return true but set VecTy to VoidTy. Further, if the use is not a
437/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
438/// is the current offset from the base of the alloca being analyzed.
439///
440/// If we see at least one access to the value that is as a vector type, set the
441/// SawVec flag.
442bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
443 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
444 Instruction *User = cast<Instruction>(*UI);
Bob Wilson69743022011-01-13 20:59:44 +0000445
Chris Lattner4cc576b2010-04-16 00:24:57 +0000446 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
447 // Don't break volatile loads.
448 if (LI->isVolatile())
449 return false;
Dale Johannesen0488fb62010-09-30 23:57:10 +0000450 // Don't touch MMX operations.
451 if (LI->getType()->isX86_MMXTy())
452 return false;
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000453 HadNonMemTransferAccess = true;
Cameron Zwarich9827b782011-03-29 05:19:52 +0000454 MergeInType(LI->getType(), Offset, true);
Chris Lattner4cc576b2010-04-16 00:24:57 +0000455 continue;
456 }
Bob Wilson69743022011-01-13 20:59:44 +0000457
Chris Lattner4cc576b2010-04-16 00:24:57 +0000458 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
459 // Storing the pointer, not into the value?
460 if (SI->getOperand(0) == V || SI->isVolatile()) return false;
Dale Johannesen0488fb62010-09-30 23:57:10 +0000461 // Don't touch MMX operations.
462 if (SI->getOperand(0)->getType()->isX86_MMXTy())
463 return false;
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000464 HadNonMemTransferAccess = true;
Cameron Zwarich9827b782011-03-29 05:19:52 +0000465 MergeInType(SI->getOperand(0)->getType(), Offset, true);
Chris Lattner4cc576b2010-04-16 00:24:57 +0000466 continue;
467 }
Bob Wilson69743022011-01-13 20:59:44 +0000468
Chris Lattner4cc576b2010-04-16 00:24:57 +0000469 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
Chris Lattnera001b662010-04-16 00:38:19 +0000470 IsNotTrivial = true; // Can't be mem2reg'd.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000471 if (!CanConvertToScalar(BCI, Offset))
472 return false;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000473 continue;
474 }
475
476 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
477 // If this is a GEP with a variable indices, we can't handle it.
478 if (!GEP->hasAllConstantIndices())
479 return false;
Bob Wilson69743022011-01-13 20:59:44 +0000480
Chris Lattner4cc576b2010-04-16 00:24:57 +0000481 // Compute the offset that this GEP adds to the pointer.
482 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
483 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
484 &Indices[0], Indices.size());
485 // See if all uses can be converted.
486 if (!CanConvertToScalar(GEP, Offset+GEPOffset))
487 return false;
Chris Lattnera001b662010-04-16 00:38:19 +0000488 IsNotTrivial = true; // Can't be mem2reg'd.
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000489 HadNonMemTransferAccess = true;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000490 continue;
491 }
492
493 // If this is a constant sized memset of a constant value (e.g. 0) we can
494 // handle it.
495 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
496 // Store of constant value and constant size.
Chris Lattnera001b662010-04-16 00:38:19 +0000497 if (!isa<ConstantInt>(MSI->getValue()) ||
498 !isa<ConstantInt>(MSI->getLength()))
499 return false;
500 IsNotTrivial = true; // Can't be mem2reg'd.
Cameron Zwarich85b0f462011-03-16 00:13:44 +0000501 HadNonMemTransferAccess = true;
Chris Lattnera001b662010-04-16 00:38:19 +0000502 continue;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000503 }
504
505 // If this is a memcpy or memmove into or out of the whole allocation, we
506 // can handle it like a load or store of the scalar type.
507 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
Chris Lattnera001b662010-04-16 00:38:19 +0000508 ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
509 if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
510 return false;
Bob Wilson69743022011-01-13 20:59:44 +0000511
Chris Lattnera001b662010-04-16 00:38:19 +0000512 IsNotTrivial = true; // Can't be mem2reg'd.
513 continue;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000514 }
Bob Wilson69743022011-01-13 20:59:44 +0000515
Chris Lattner4cc576b2010-04-16 00:24:57 +0000516 // Otherwise, we cannot handle this!
517 return false;
518 }
Bob Wilson69743022011-01-13 20:59:44 +0000519
Chris Lattner4cc576b2010-04-16 00:24:57 +0000520 return true;
521}
522
523/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
524/// directly. This happens when we are converting an "integer union" to a
525/// single integer scalar, or when we are converting a "vector union" to a
526/// vector with insert/extractelement instructions.
527///
528/// Offset is an offset from the original alloca, in bits that need to be
529/// shifted to the right. By the end of this, there should be no uses of Ptr.
530void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
531 uint64_t Offset) {
532 while (!Ptr->use_empty()) {
533 Instruction *User = cast<Instruction>(Ptr->use_back());
534
535 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
536 ConvertUsesToScalar(CI, NewAI, Offset);
537 CI->eraseFromParent();
538 continue;
539 }
540
541 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
542 // Compute the offset that this GEP adds to the pointer.
543 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
544 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
545 &Indices[0], Indices.size());
546 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
547 GEP->eraseFromParent();
548 continue;
549 }
Bob Wilson69743022011-01-13 20:59:44 +0000550
Chris Lattner61db1f52010-12-26 22:57:41 +0000551 IRBuilder<> Builder(User);
Bob Wilson69743022011-01-13 20:59:44 +0000552
Chris Lattner4cc576b2010-04-16 00:24:57 +0000553 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
554 // The load is a bit extract from NewAI shifted right by Offset bits.
555 Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
556 Value *NewLoadVal
557 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
558 LI->replaceAllUsesWith(NewLoadVal);
559 LI->eraseFromParent();
560 continue;
561 }
Bob Wilson69743022011-01-13 20:59:44 +0000562
Chris Lattner4cc576b2010-04-16 00:24:57 +0000563 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
564 assert(SI->getOperand(0) != Ptr && "Consistency error!");
565 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
566 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
567 Builder);
568 Builder.CreateStore(New, NewAI);
569 SI->eraseFromParent();
Bob Wilson69743022011-01-13 20:59:44 +0000570
Chris Lattner4cc576b2010-04-16 00:24:57 +0000571 // If the load we just inserted is now dead, then the inserted store
572 // overwrote the entire thing.
573 if (Old->use_empty())
574 Old->eraseFromParent();
575 continue;
576 }
Bob Wilson69743022011-01-13 20:59:44 +0000577
Chris Lattner4cc576b2010-04-16 00:24:57 +0000578 // If this is a constant sized memset of a constant value (e.g. 0) we can
579 // transform it into a store of the expanded constant value.
580 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
581 assert(MSI->getRawDest() == Ptr && "Consistency error!");
582 unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
583 if (NumBytes != 0) {
584 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
Bob Wilson69743022011-01-13 20:59:44 +0000585
Chris Lattner4cc576b2010-04-16 00:24:57 +0000586 // Compute the value replicated the right number of times.
587 APInt APVal(NumBytes*8, Val);
588
589 // Splat the value if non-zero.
590 if (Val)
591 for (unsigned i = 1; i != NumBytes; ++i)
592 APVal |= APVal << 8;
Bob Wilson69743022011-01-13 20:59:44 +0000593
Chris Lattner4cc576b2010-04-16 00:24:57 +0000594 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
595 Value *New = ConvertScalar_InsertValue(
596 ConstantInt::get(User->getContext(), APVal),
597 Old, Offset, Builder);
598 Builder.CreateStore(New, NewAI);
Bob Wilson69743022011-01-13 20:59:44 +0000599
Chris Lattner4cc576b2010-04-16 00:24:57 +0000600 // If the load we just inserted is now dead, then the memset overwrote
601 // the entire thing.
602 if (Old->use_empty())
Bob Wilson69743022011-01-13 20:59:44 +0000603 Old->eraseFromParent();
Chris Lattner4cc576b2010-04-16 00:24:57 +0000604 }
605 MSI->eraseFromParent();
606 continue;
607 }
608
609 // If this is a memcpy or memmove into or out of the whole allocation, we
610 // can handle it like a load or store of the scalar type.
611 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
612 assert(Offset == 0 && "must be store to start of alloca");
Bob Wilson69743022011-01-13 20:59:44 +0000613
Chris Lattner4cc576b2010-04-16 00:24:57 +0000614 // If the source and destination are both to the same alloca, then this is
615 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
616 // as appropriate.
Dan Gohmanbd1801b2011-01-24 18:53:32 +0000617 AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
Bob Wilson69743022011-01-13 20:59:44 +0000618
Dan Gohmanbd1801b2011-01-24 18:53:32 +0000619 if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
Chris Lattner4cc576b2010-04-16 00:24:57 +0000620 // Dest must be OrigAI, change this to be a load from the original
621 // pointer (bitcasted), then a store to our new alloca.
622 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
623 Value *SrcPtr = MTI->getSource();
Mon P Wange90a6332010-12-23 01:41:32 +0000624 const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
625 const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
626 if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
627 AIPTy = PointerType::get(AIPTy->getElementType(),
628 SPTy->getAddressSpace());
629 }
630 SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
631
Chris Lattner4cc576b2010-04-16 00:24:57 +0000632 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
633 SrcVal->setAlignment(MTI->getAlignment());
634 Builder.CreateStore(SrcVal, NewAI);
Dan Gohmanbd1801b2011-01-24 18:53:32 +0000635 } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
Chris Lattner4cc576b2010-04-16 00:24:57 +0000636 // Src must be OrigAI, change this to be a load from NewAI then a store
637 // through the original dest pointer (bitcasted).
638 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
639 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
640
Mon P Wange90a6332010-12-23 01:41:32 +0000641 const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
642 const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
643 if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
644 AIPTy = PointerType::get(AIPTy->getElementType(),
645 DPTy->getAddressSpace());
646 }
647 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
648
Chris Lattner4cc576b2010-04-16 00:24:57 +0000649 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
650 NewStore->setAlignment(MTI->getAlignment());
651 } else {
652 // Noop transfer. Src == Dst
653 }
654
655 MTI->eraseFromParent();
656 continue;
657 }
Bob Wilson69743022011-01-13 20:59:44 +0000658
Chris Lattner4cc576b2010-04-16 00:24:57 +0000659 llvm_unreachable("Unsupported operation!");
660 }
661}
662
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000663/// getScaledElementType - Gets a scaled element type for a partial vector
664/// access of an alloca. The input type must be an integer or float, and
665/// the resulting type must be an integer, float or double.
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000666static const Type *getScaledElementType(const Type *OldTy,
667 unsigned NewBitWidth) {
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000668 assert((OldTy->isIntegerTy() || OldTy->isFloatTy()) && "Partial vector "
669 "accesses must be scaled from integer or float elements.");
670
671 LLVMContext &Context = OldTy->getContext();
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000672
673 if (OldTy->isIntegerTy())
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000674 return Type::getIntNTy(Context, NewBitWidth);
675 if (NewBitWidth == 32)
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000676 return Type::getFloatTy(Context);
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000677 if (NewBitWidth == 64)
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000678 return Type::getDoubleTy(Context);
679
680 llvm_unreachable("Invalid type for a partial vector access of an alloca!");
681}
682
Mon P Wangddf9abf2011-04-14 08:04:01 +0000683/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
684/// to another vector of the same element type which has the same allocation
685/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
686static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
687 IRBuilder<> &Builder) {
688 const Type *FromType = FromVal->getType();
Mon P Wang481823a2011-04-14 19:20:42 +0000689 const VectorType *FromVTy = cast<VectorType>(FromType);
690 const VectorType *ToVTy = cast<VectorType>(ToType);
691 assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
Mon P Wangddf9abf2011-04-14 08:04:01 +0000692 "Vectors must have the same element type");
Mon P Wangddf9abf2011-04-14 08:04:01 +0000693 Value *UnV = UndefValue::get(FromType);
694 unsigned numEltsFrom = FromVTy->getNumElements();
695 unsigned numEltsTo = ToVTy->getNumElements();
696
697 SmallVector<Constant*, 3> Args;
Mon P Wang481823a2011-04-14 19:20:42 +0000698 const Type* Int32Ty = Builder.getInt32Ty();
Mon P Wangddf9abf2011-04-14 08:04:01 +0000699 unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
700 unsigned i;
701 for (i=0; i != minNumElts; ++i)
Mon P Wang481823a2011-04-14 19:20:42 +0000702 Args.push_back(ConstantInt::get(Int32Ty, i));
Mon P Wangddf9abf2011-04-14 08:04:01 +0000703
704 if (i < numEltsTo) {
Mon P Wang481823a2011-04-14 19:20:42 +0000705 Constant* UnC = UndefValue::get(Int32Ty);
Mon P Wangddf9abf2011-04-14 08:04:01 +0000706 for (; i != numEltsTo; ++i)
707 Args.push_back(UnC);
708 }
709 Constant *Mask = ConstantVector::get(Args);
710 return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
711}
712
Chris Lattner4cc576b2010-04-16 00:24:57 +0000713/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
714/// or vector value FromVal, extracting the bits from the offset specified by
715/// Offset. This returns the value, which is of type ToType.
716///
717/// This happens when we are converting an "integer union" to a single
718/// integer scalar, or when we are converting a "vector union" to a vector with
719/// insert/extractelement instructions.
720///
721/// Offset is an offset from the original alloca, in bits that need to be
722/// shifted to the right.
723Value *ConvertToScalarInfo::
724ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
725 uint64_t Offset, IRBuilder<> &Builder) {
726 // If the load is of the whole new alloca, no conversion is needed.
Mon P Wangbe0761c2011-04-13 21:40:02 +0000727 const Type *FromType = FromVal->getType();
728 if (FromType == ToType && Offset == 0)
Chris Lattner4cc576b2010-04-16 00:24:57 +0000729 return FromVal;
730
731 // If the result alloca is a vector type, this is either an element
732 // access or a bitcast to another vector type of the same size.
Mon P Wangbe0761c2011-04-13 21:40:02 +0000733 if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
Cameron Zwarich9827b782011-03-29 05:19:52 +0000734 unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
Mon P Wangbe0761c2011-04-13 21:40:02 +0000735 if (ToTypeSize == AllocaSize) {
Mon P Wangddf9abf2011-04-14 08:04:01 +0000736 // If the two types have the same primitive size, use a bit cast.
737 // Otherwise, it is two vectors with the same element type that has
738 // the same allocation size but different number of elements so use
739 // a shuffle vector.
Mon P Wangbe0761c2011-04-13 21:40:02 +0000740 if (FromType->getPrimitiveSizeInBits() ==
741 ToType->getPrimitiveSizeInBits())
742 return Builder.CreateBitCast(FromVal, ToType, "tmp");
Mon P Wangddf9abf2011-04-14 08:04:01 +0000743 else
744 return CreateShuffleVectorCast(FromVal, ToType, Builder);
Mon P Wangbe0761c2011-04-13 21:40:02 +0000745 }
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000746
Cameron Zwarich9827b782011-03-29 05:19:52 +0000747 if (ToType->isVectorTy()) {
Cameron Zwarich032c10f2011-03-09 07:34:11 +0000748 assert(isPowerOf2_64(AllocaSize / ToTypeSize) &&
749 "Partial vector access of an alloca must have a power-of-2 size "
750 "ratio.");
751 assert(Offset == 0 && "Can't extract a value of a smaller vector type "
752 "from a nonzero offset.");
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000753
Cameron Zwarich032c10f2011-03-09 07:34:11 +0000754 const Type *ToElementTy = cast<VectorType>(ToType)->getElementType();
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000755 const Type *CastElementTy = getScaledElementType(ToElementTy,
756 ToTypeSize * 8);
757 unsigned NumCastVectorElements = AllocaSize / ToTypeSize;
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000758
Cameron Zwarich032c10f2011-03-09 07:34:11 +0000759 LLVMContext &Context = FromVal->getContext();
760 const Type *CastTy = VectorType::get(CastElementTy,
761 NumCastVectorElements);
762 Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
763 Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
764 Type::getInt32Ty(Context), 0), "tmp");
765 return Builder.CreateBitCast(Extract, ToType, "tmp");
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000766 }
Chris Lattner4cc576b2010-04-16 00:24:57 +0000767
768 // Otherwise it must be an element access.
769 unsigned Elt = 0;
770 if (Offset) {
771 unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
772 Elt = Offset/EltSize;
773 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
774 }
775 // Return the element extracted out of it.
776 Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
777 Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
778 if (V->getType() != ToType)
779 V = Builder.CreateBitCast(V, ToType, "tmp");
780 return V;
781 }
Bob Wilson69743022011-01-13 20:59:44 +0000782
Chris Lattner4cc576b2010-04-16 00:24:57 +0000783 // If ToType is a first class aggregate, extract out each of the pieces and
784 // use insertvalue's to form the FCA.
785 if (const StructType *ST = dyn_cast<StructType>(ToType)) {
786 const StructLayout &Layout = *TD.getStructLayout(ST);
787 Value *Res = UndefValue::get(ST);
788 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
789 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
790 Offset+Layout.getElementOffsetInBits(i),
791 Builder);
792 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
793 }
794 return Res;
795 }
Bob Wilson69743022011-01-13 20:59:44 +0000796
Chris Lattner4cc576b2010-04-16 00:24:57 +0000797 if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
798 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
799 Value *Res = UndefValue::get(AT);
800 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
801 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
802 Offset+i*EltSize, Builder);
803 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
804 }
805 return Res;
806 }
807
808 // Otherwise, this must be a union that was converted to an integer value.
809 const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
810
811 // If this is a big-endian system and the load is narrower than the
812 // full alloca type, we need to do a shift to get the right bits.
813 int ShAmt = 0;
814 if (TD.isBigEndian()) {
815 // On big-endian machines, the lowest bit is stored at the bit offset
816 // from the pointer given by getTypeStoreSizeInBits. This matters for
817 // integers with a bitwidth that is not a multiple of 8.
818 ShAmt = TD.getTypeStoreSizeInBits(NTy) -
819 TD.getTypeStoreSizeInBits(ToType) - Offset;
820 } else {
821 ShAmt = Offset;
822 }
823
824 // Note: we support negative bitwidths (with shl) which are not defined.
825 // We do this to support (f.e.) loads off the end of a structure where
826 // only some bits are used.
827 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
828 FromVal = Builder.CreateLShr(FromVal,
829 ConstantInt::get(FromVal->getType(),
830 ShAmt), "tmp");
831 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
Bob Wilson69743022011-01-13 20:59:44 +0000832 FromVal = Builder.CreateShl(FromVal,
Chris Lattner4cc576b2010-04-16 00:24:57 +0000833 ConstantInt::get(FromVal->getType(),
834 -ShAmt), "tmp");
835
836 // Finally, unconditionally truncate the integer to the right width.
837 unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
838 if (LIBitWidth < NTy->getBitWidth())
839 FromVal =
Bob Wilson69743022011-01-13 20:59:44 +0000840 Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
Chris Lattner4cc576b2010-04-16 00:24:57 +0000841 LIBitWidth), "tmp");
842 else if (LIBitWidth > NTy->getBitWidth())
843 FromVal =
Bob Wilson69743022011-01-13 20:59:44 +0000844 Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
Chris Lattner4cc576b2010-04-16 00:24:57 +0000845 LIBitWidth), "tmp");
846
847 // If the result is an integer, this is a trunc or bitcast.
848 if (ToType->isIntegerTy()) {
849 // Should be done.
850 } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
851 // Just do a bitcast, we know the sizes match up.
852 FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
853 } else {
854 // Otherwise must be a pointer.
855 FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
856 }
857 assert(FromVal->getType() == ToType && "Didn't convert right?");
858 return FromVal;
859}
860
861/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
862/// or vector value "Old" at the offset specified by Offset.
863///
864/// This happens when we are converting an "integer union" to a
865/// single integer scalar, or when we are converting a "vector union" to a
866/// vector with insert/extractelement instructions.
867///
868/// Offset is an offset from the original alloca, in bits that need to be
869/// shifted to the right.
870Value *ConvertToScalarInfo::
871ConvertScalar_InsertValue(Value *SV, Value *Old,
872 uint64_t Offset, IRBuilder<> &Builder) {
873 // Convert the stored type to the actual type, shift it left to insert
874 // then 'or' into place.
875 const Type *AllocaType = Old->getType();
876 LLVMContext &Context = Old->getContext();
877
878 if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
879 uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
880 uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
Bob Wilson69743022011-01-13 20:59:44 +0000881
Chris Lattner4cc576b2010-04-16 00:24:57 +0000882 // Changing the whole vector with memset or with an access of a different
883 // vector type?
Mon P Wangbe0761c2011-04-13 21:40:02 +0000884 if (ValSize == VecSize) {
Mon P Wangddf9abf2011-04-14 08:04:01 +0000885 // If the two types have the same primitive size, use a bit cast.
886 // Otherwise, it is two vectors with the same element type that has
887 // the same allocation size but different number of elements so use
888 // a shuffle vector.
Mon P Wangbe0761c2011-04-13 21:40:02 +0000889 if (VTy->getPrimitiveSizeInBits() ==
890 SV->getType()->getPrimitiveSizeInBits())
891 return Builder.CreateBitCast(SV, AllocaType, "tmp");
Mon P Wangddf9abf2011-04-14 08:04:01 +0000892 else
893 return CreateShuffleVectorCast(SV, VTy, Builder);
Mon P Wangbe0761c2011-04-13 21:40:02 +0000894 }
Chris Lattner4cc576b2010-04-16 00:24:57 +0000895
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000896 if (SV->getType()->isVectorTy() && isPowerOf2_64(VecSize / ValSize)) {
897 assert(Offset == 0 && "Can't insert a value of a smaller vector type at "
898 "a nonzero offset.");
899
900 const Type *ToElementTy =
901 cast<VectorType>(SV->getType())->getElementType();
Cameron Zwarich1537ce72011-03-23 05:25:55 +0000902 const Type *CastElementTy = getScaledElementType(ToElementTy, ValSize);
903 unsigned NumCastVectorElements = VecSize / ValSize;
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000904
905 LLVMContext &Context = SV->getContext();
906 const Type *OldCastTy = VectorType::get(CastElementTy,
907 NumCastVectorElements);
908 Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
909
910 Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
911 Value *Insert =
912 Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
913 Type::getInt32Ty(Context), 0), "tmp");
914 return Builder.CreateBitCast(Insert, AllocaType, "tmp");
915 }
916
Chris Lattner4cc576b2010-04-16 00:24:57 +0000917 // Must be an element insertion.
Cameron Zwarichc5c43b92011-04-20 21:48:34 +0000918 assert(SV->getType() == VTy->getElementType());
919 uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
Chris Lattner4cc576b2010-04-16 00:24:57 +0000920 unsigned Elt = Offset/EltSize;
Cameron Zwarichc5c43b92011-04-20 21:48:34 +0000921 return Builder.CreateInsertElement(Old, SV,
Chris Lattner4cc576b2010-04-16 00:24:57 +0000922 ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
923 "tmp");
Chris Lattner4cc576b2010-04-16 00:24:57 +0000924 }
Bob Wilson69743022011-01-13 20:59:44 +0000925
Chris Lattner4cc576b2010-04-16 00:24:57 +0000926 // If SV is a first-class aggregate value, insert each value recursively.
927 if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
928 const StructLayout &Layout = *TD.getStructLayout(ST);
929 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
930 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
Bob Wilson69743022011-01-13 20:59:44 +0000931 Old = ConvertScalar_InsertValue(Elt, Old,
Chris Lattner4cc576b2010-04-16 00:24:57 +0000932 Offset+Layout.getElementOffsetInBits(i),
933 Builder);
934 }
935 return Old;
936 }
Bob Wilson69743022011-01-13 20:59:44 +0000937
Chris Lattner4cc576b2010-04-16 00:24:57 +0000938 if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
939 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
940 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
941 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
942 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
943 }
944 return Old;
945 }
946
947 // If SV is a float, convert it to the appropriate integer type.
948 // If it is a pointer, do the same.
949 unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
950 unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
951 unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
952 unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
953 if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
954 SV = Builder.CreateBitCast(SV,
955 IntegerType::get(SV->getContext(),SrcWidth), "tmp");
956 else if (SV->getType()->isPointerTy())
957 SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
958
959 // Zero extend or truncate the value if needed.
960 if (SV->getType() != AllocaType) {
961 if (SV->getType()->getPrimitiveSizeInBits() <
962 AllocaType->getPrimitiveSizeInBits())
963 SV = Builder.CreateZExt(SV, AllocaType, "tmp");
964 else {
965 // Truncation may be needed if storing more than the alloca can hold
966 // (undefined behavior).
967 SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
968 SrcWidth = DestWidth;
969 SrcStoreWidth = DestStoreWidth;
970 }
971 }
972
973 // If this is a big-endian system and the store is narrower than the
974 // full alloca type, we need to do a shift to get the right bits.
975 int ShAmt = 0;
976 if (TD.isBigEndian()) {
977 // On big-endian machines, the lowest bit is stored at the bit offset
978 // from the pointer given by getTypeStoreSizeInBits. This matters for
979 // integers with a bitwidth that is not a multiple of 8.
980 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
981 } else {
982 ShAmt = Offset;
983 }
984
985 // Note: we support negative bitwidths (with shr) which are not defined.
986 // We do this to support (f.e.) stores off the end of a structure where
987 // only some bits in the structure are set.
988 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
989 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
990 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
991 ShAmt), "tmp");
992 Mask <<= ShAmt;
993 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
994 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
995 -ShAmt), "tmp");
996 Mask = Mask.lshr(-ShAmt);
997 }
998
999 // Mask out the bits we are about to insert from the old value, and or
1000 // in the new bits.
1001 if (SrcWidth != DestWidth) {
1002 assert(DestWidth > SrcWidth);
1003 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1004 SV = Builder.CreateOr(Old, SV, "ins");
1005 }
1006 return SV;
1007}
1008
1009
1010//===----------------------------------------------------------------------===//
1011// SRoA Driver
1012//===----------------------------------------------------------------------===//
1013
1014
Chris Lattnered7b41e2003-05-27 15:45:27 +00001015bool SROA::runOnFunction(Function &F) {
Dan Gohmane4af1cf2009-08-19 18:22:18 +00001016 TD = getAnalysisIfAvailable<TargetData>();
1017
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +00001018 bool Changed = performPromotion(F);
Dan Gohmane4af1cf2009-08-19 18:22:18 +00001019
1020 // FIXME: ScalarRepl currently depends on TargetData more than it
1021 // theoretically needs to. It should be refactored in order to support
1022 // target-independent IR. Until this is done, just skip the actual
1023 // scalar-replacement portion of this pass.
1024 if (!TD) return Changed;
1025
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +00001026 while (1) {
1027 bool LocalChange = performScalarRepl(F);
1028 if (!LocalChange) break; // No need to repromote if no scalarrepl
1029 Changed = true;
1030 LocalChange = performPromotion(F);
1031 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
1032 }
Chris Lattner38aec322003-09-11 16:45:55 +00001033
1034 return Changed;
1035}
1036
Chris Lattnerd0f56132011-01-14 19:50:47 +00001037namespace {
1038class AllocaPromoter : public LoadAndStorePromoter {
1039 AllocaInst *AI;
1040public:
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001041 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S)
1042 : LoadAndStorePromoter(Insts, S), AI(0) {}
Chris Lattnerd0f56132011-01-14 19:50:47 +00001043
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001044 void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
Chris Lattnerd0f56132011-01-14 19:50:47 +00001045 // Remember which alloca we're promoting (for isInstInList).
1046 this->AI = AI;
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001047 LoadAndStorePromoter::run(Insts);
Chris Lattnerd0f56132011-01-14 19:50:47 +00001048 AI->eraseFromParent();
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001049 }
1050
Chris Lattnerd0f56132011-01-14 19:50:47 +00001051 virtual bool isInstInList(Instruction *I,
1052 const SmallVectorImpl<Instruction*> &Insts) const {
1053 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1054 return LI->getOperand(0) == AI;
1055 return cast<StoreInst>(I)->getPointerOperand() == AI;
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001056 }
Chris Lattnerd0f56132011-01-14 19:50:47 +00001057};
1058} // end anon namespace
Chris Lattner38aec322003-09-11 16:45:55 +00001059
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001060/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1061/// subsequently loaded can be rewritten to load both input pointers and then
1062/// select between the result, allowing the load of the alloca to be promoted.
1063/// From this:
1064/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1065/// %V = load i32* %P2
1066/// to:
1067/// %V1 = load i32* %Alloca -> will be mem2reg'd
1068/// %V2 = load i32* %Other
Chris Lattnere3357862011-01-24 01:07:11 +00001069/// %V = select i1 %cond, i32 %V1, i32 %V2
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001070///
1071/// We can do this to a select if its only uses are loads and if the operand to
1072/// the select can be loaded unconditionally.
1073static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1074 bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1075 bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1076
1077 for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1078 UI != UE; ++UI) {
1079 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1080 if (LI == 0 || LI->isVolatile()) return false;
1081
Chris Lattnere3357862011-01-24 01:07:11 +00001082 // Both operands to the select need to be dereferencable, either absolutely
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001083 // (e.g. allocas) or at this point because we can see other accesses to it.
1084 if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1085 LI->getAlignment(), TD))
1086 return false;
1087 if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1088 LI->getAlignment(), TD))
1089 return false;
1090 }
1091
1092 return true;
1093}
1094
Chris Lattnere3357862011-01-24 01:07:11 +00001095/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1096/// subsequently loaded can be rewritten to load both input pointers in the pred
1097/// blocks and then PHI the results, allowing the load of the alloca to be
1098/// promoted.
1099/// From this:
1100/// %P2 = phi [i32* %Alloca, i32* %Other]
1101/// %V = load i32* %P2
1102/// to:
1103/// %V1 = load i32* %Alloca -> will be mem2reg'd
1104/// ...
1105/// %V2 = load i32* %Other
1106/// ...
1107/// %V = phi [i32 %V1, i32 %V2]
1108///
1109/// We can do this to a select if its only uses are loads and if the operand to
1110/// the select can be loaded unconditionally.
1111static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1112 // For now, we can only do this promotion if the load is in the same block as
1113 // the PHI, and if there are no stores between the phi and load.
1114 // TODO: Allow recursive phi users.
1115 // TODO: Allow stores.
1116 BasicBlock *BB = PN->getParent();
1117 unsigned MaxAlign = 0;
1118 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1119 UI != UE; ++UI) {
1120 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1121 if (LI == 0 || LI->isVolatile()) return false;
1122
1123 // For now we only allow loads in the same block as the PHI. This is a
1124 // common case that happens when instcombine merges two loads through a PHI.
1125 if (LI->getParent() != BB) return false;
1126
1127 // Ensure that there are no instructions between the PHI and the load that
1128 // could store.
1129 for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1130 if (BBI->mayWriteToMemory())
1131 return false;
1132
1133 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1134 }
1135
1136 // Okay, we know that we have one or more loads in the same block as the PHI.
1137 // We can transform this if it is safe to push the loads into the predecessor
1138 // blocks. The only thing to watch out for is that we can't put a possibly
1139 // trapping load in the predecessor if it is a critical edge.
1140 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1141 BasicBlock *Pred = PN->getIncomingBlock(i);
1142
1143 // If the predecessor has a single successor, then the edge isn't critical.
1144 if (Pred->getTerminator()->getNumSuccessors() == 1)
1145 continue;
1146
1147 Value *InVal = PN->getIncomingValue(i);
1148
1149 // If the InVal is an invoke in the pred, we can't put a load on the edge.
1150 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1151 if (II->getParent() == Pred)
1152 return false;
1153
1154 // If this pointer is always safe to load, or if we can prove that there is
1155 // already a load in the block, then we can move the load to the pred block.
1156 if (InVal->isDereferenceablePointer() ||
1157 isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1158 continue;
1159
1160 return false;
1161 }
1162
1163 return true;
1164}
1165
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001166
1167/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1168/// direct (non-volatile) loads and stores to it. If the alloca is close but
1169/// not quite there, this will transform the code to allow promotion. As such,
1170/// it is a non-pure predicate.
1171static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1172 SetVector<Instruction*, SmallVector<Instruction*, 4>,
1173 SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1174
1175 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1176 UI != UE; ++UI) {
1177 User *U = *UI;
1178 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1179 if (LI->isVolatile())
1180 return false;
1181 continue;
1182 }
1183
1184 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1185 if (SI->getOperand(0) == AI || SI->isVolatile())
1186 return false; // Don't allow a store OF the AI, only INTO the AI.
1187 continue;
1188 }
1189
1190 if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1191 // If the condition being selected on is a constant, fold the select, yes
1192 // this does (rarely) happen early on.
1193 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1194 Value *Result = SI->getOperand(1+CI->isZero());
1195 SI->replaceAllUsesWith(Result);
1196 SI->eraseFromParent();
1197
1198 // This is very rare and we just scrambled the use list of AI, start
1199 // over completely.
1200 return tryToMakeAllocaBePromotable(AI, TD);
1201 }
1202
1203 // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1204 // loads, then we can transform this by rewriting the select.
1205 if (!isSafeSelectToSpeculate(SI, TD))
1206 return false;
1207
1208 InstsToRewrite.insert(SI);
1209 continue;
1210 }
1211
Chris Lattnere3357862011-01-24 01:07:11 +00001212 if (PHINode *PN = dyn_cast<PHINode>(U)) {
1213 if (PN->use_empty()) { // Dead PHIs can be stripped.
1214 InstsToRewrite.insert(PN);
1215 continue;
1216 }
1217
1218 // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1219 // in the pred blocks, then we can transform this by rewriting the PHI.
1220 if (!isSafePHIToSpeculate(PN, TD))
1221 return false;
1222
1223 InstsToRewrite.insert(PN);
1224 continue;
1225 }
1226
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001227 return false;
1228 }
1229
1230 // If there are no instructions to rewrite, then all uses are load/stores and
1231 // we're done!
1232 if (InstsToRewrite.empty())
1233 return true;
1234
1235 // If we have instructions that need to be rewritten for this to be promotable
1236 // take care of it now.
1237 for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
Chris Lattnere3357862011-01-24 01:07:11 +00001238 if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1239 // Selects in InstsToRewrite only have load uses. Rewrite each as two
1240 // loads with a new select.
1241 while (!SI->use_empty()) {
1242 LoadInst *LI = cast<LoadInst>(SI->use_back());
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001243
Chris Lattnere3357862011-01-24 01:07:11 +00001244 IRBuilder<> Builder(LI);
1245 LoadInst *TrueLoad =
1246 Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1247 LoadInst *FalseLoad =
1248 Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1249
1250 // Transfer alignment and TBAA info if present.
1251 TrueLoad->setAlignment(LI->getAlignment());
1252 FalseLoad->setAlignment(LI->getAlignment());
1253 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1254 TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1255 FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1256 }
1257
1258 Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1259 V->takeName(LI);
1260 LI->replaceAllUsesWith(V);
1261 LI->eraseFromParent();
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001262 }
Chris Lattnere3357862011-01-24 01:07:11 +00001263
1264 // Now that all the loads are gone, the select is gone too.
1265 SI->eraseFromParent();
1266 continue;
1267 }
1268
1269 // Otherwise, we have a PHI node which allows us to push the loads into the
1270 // predecessors.
1271 PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1272 if (PN->use_empty()) {
1273 PN->eraseFromParent();
1274 continue;
1275 }
1276
1277 const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
Jay Foad3ecfc862011-03-30 11:28:46 +00001278 PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1279 PN->getName()+".ld", PN);
Chris Lattnere3357862011-01-24 01:07:11 +00001280
1281 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1282 // matter which one we get and if any differ, it doesn't matter.
1283 LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1284 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1285 unsigned Align = SomeLoad->getAlignment();
1286
1287 // Rewrite all loads of the PN to use the new PHI.
1288 while (!PN->use_empty()) {
1289 LoadInst *LI = cast<LoadInst>(PN->use_back());
1290 LI->replaceAllUsesWith(NewPN);
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001291 LI->eraseFromParent();
1292 }
1293
Chris Lattnere3357862011-01-24 01:07:11 +00001294 // Inject loads into all of the pred blocks. Keep track of which blocks we
1295 // insert them into in case we have multiple edges from the same block.
1296 DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1297
1298 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1299 BasicBlock *Pred = PN->getIncomingBlock(i);
1300 LoadInst *&Load = InsertedLoads[Pred];
1301 if (Load == 0) {
1302 Load = new LoadInst(PN->getIncomingValue(i),
1303 PN->getName() + "." + Pred->getName(),
1304 Pred->getTerminator());
1305 Load->setAlignment(Align);
1306 if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1307 }
1308
1309 NewPN->addIncoming(Load, Pred);
1310 }
1311
1312 PN->eraseFromParent();
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001313 }
1314
1315 ++NumAdjusted;
1316 return true;
1317}
1318
1319
Chris Lattner38aec322003-09-11 16:45:55 +00001320bool SROA::performPromotion(Function &F) {
1321 std::vector<AllocaInst*> Allocas;
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001322 DominatorTree *DT = 0;
Cameron Zwarichb1686c32011-01-18 03:53:26 +00001323 if (HasDomTree)
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001324 DT = &getAnalysis<DominatorTree>();
Chris Lattner38aec322003-09-11 16:45:55 +00001325
Chris Lattner02a3be02003-09-20 14:39:18 +00001326 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
Chris Lattner38aec322003-09-11 16:45:55 +00001327
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +00001328 bool Changed = false;
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001329 SmallVector<Instruction*, 64> Insts;
Chris Lattner38aec322003-09-11 16:45:55 +00001330 while (1) {
1331 Allocas.clear();
1332
1333 // Find allocas that are safe to promote, by looking at all instructions in
1334 // the entry node
1335 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1336 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001337 if (tryToMakeAllocaBePromotable(AI, TD))
Chris Lattner38aec322003-09-11 16:45:55 +00001338 Allocas.push_back(AI);
1339
1340 if (Allocas.empty()) break;
1341
Cameron Zwarichb1686c32011-01-18 03:53:26 +00001342 if (HasDomTree)
Cameron Zwarich419e8a62011-01-17 17:38:41 +00001343 PromoteMemToReg(Allocas, *DT);
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001344 else {
1345 SSAUpdater SSA;
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001346 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1347 AllocaInst *AI = Allocas[i];
1348
1349 // Build list of instructions to promote.
1350 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1351 UI != E; ++UI)
1352 Insts.push_back(cast<Instruction>(*UI));
1353
1354 AllocaPromoter(Insts, SSA).run(AI, Insts);
1355 Insts.clear();
1356 }
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001357 }
Chris Lattner38aec322003-09-11 16:45:55 +00001358 NumPromoted += Allocas.size();
1359 Changed = true;
1360 }
1361
1362 return Changed;
1363}
1364
Chris Lattner4cc576b2010-04-16 00:24:57 +00001365
Bob Wilson3992feb2010-02-03 17:23:56 +00001366/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1367/// SROA. It must be a struct or array type with a small number of elements.
1368static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1369 const Type *T = AI->getAllocatedType();
1370 // Do not promote any struct into more than 32 separate vars.
Chris Lattner963a97f2008-06-22 17:46:21 +00001371 if (const StructType *ST = dyn_cast<StructType>(T))
Bob Wilson3992feb2010-02-03 17:23:56 +00001372 return ST->getNumElements() <= 32;
1373 // Arrays are much less likely to be safe for SROA; only consider
1374 // them if they are very small.
1375 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1376 return AT->getNumElements() <= 8;
1377 return false;
Chris Lattner963a97f2008-06-22 17:46:21 +00001378}
1379
Chris Lattnerc4472072010-04-15 23:50:26 +00001380
Chris Lattner38aec322003-09-11 16:45:55 +00001381// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1382// which runs on all of the malloc/alloca instructions in the function, removing
1383// them if they are only used by getelementptr instructions.
1384//
1385bool SROA::performScalarRepl(Function &F) {
Victor Hernandez7b929da2009-10-23 21:09:37 +00001386 std::vector<AllocaInst*> WorkList;
Chris Lattnered7b41e2003-05-27 15:45:27 +00001387
Chris Lattner31d80102010-04-15 21:59:20 +00001388 // Scan the entry basic block, adding allocas to the worklist.
Chris Lattner02a3be02003-09-20 14:39:18 +00001389 BasicBlock &BB = F.getEntryBlock();
Chris Lattnered7b41e2003-05-27 15:45:27 +00001390 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
Victor Hernandez7b929da2009-10-23 21:09:37 +00001391 if (AllocaInst *A = dyn_cast<AllocaInst>(I))
Chris Lattnered7b41e2003-05-27 15:45:27 +00001392 WorkList.push_back(A);
1393
1394 // Process the worklist
1395 bool Changed = false;
1396 while (!WorkList.empty()) {
Victor Hernandez7b929da2009-10-23 21:09:37 +00001397 AllocaInst *AI = WorkList.back();
Chris Lattnered7b41e2003-05-27 15:45:27 +00001398 WorkList.pop_back();
Bob Wilson69743022011-01-13 20:59:44 +00001399
Chris Lattneradd2bd72006-12-22 23:14:42 +00001400 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
1401 // with unused elements.
1402 if (AI->use_empty()) {
1403 AI->eraseFromParent();
Chris Lattnerc4472072010-04-15 23:50:26 +00001404 Changed = true;
Chris Lattneradd2bd72006-12-22 23:14:42 +00001405 continue;
1406 }
Chris Lattner7809ecd2009-02-03 01:30:09 +00001407
1408 // If this alloca is impossible for us to promote, reject it early.
1409 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1410 continue;
Bob Wilson69743022011-01-13 20:59:44 +00001411
Chris Lattner79b3bd32007-04-25 06:40:51 +00001412 // Check to see if this allocation is only modified by a memcpy/memmove from
1413 // a constant global. If this is the case, we can change all users to use
1414 // the constant global instead. This is commonly produced by the CFE by
1415 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1416 // is only subsequently read.
Chris Lattner31d80102010-04-15 21:59:20 +00001417 if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
David Greene504c7d82010-01-05 01:27:09 +00001418 DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1419 DEBUG(dbgs() << " memcpy = " << *TheCopy << '\n');
Chris Lattner31d80102010-04-15 21:59:20 +00001420 Constant *TheSrc = cast<Constant>(TheCopy->getSource());
Owen Andersonbaf3c402009-07-29 18:55:55 +00001421 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
Chris Lattner79b3bd32007-04-25 06:40:51 +00001422 TheCopy->eraseFromParent(); // Don't mutate the global.
1423 AI->eraseFromParent();
1424 ++NumGlobals;
1425 Changed = true;
1426 continue;
1427 }
Bob Wilson69743022011-01-13 20:59:44 +00001428
Chris Lattner7809ecd2009-02-03 01:30:09 +00001429 // Check to see if we can perform the core SROA transformation. We cannot
1430 // transform the allocation instruction if it is an array allocation
1431 // (allocations OF arrays are ok though), and an allocation of a scalar
1432 // value cannot be decomposed at all.
Duncan Sands777d2302009-05-09 07:06:46 +00001433 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
Bill Wendling5a377cb2009-03-03 12:12:58 +00001434
Nick Lewyckyd3aa25e2009-08-17 05:37:31 +00001435 // Do not promote [0 x %struct].
1436 if (AllocaSize == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00001437
Chris Lattner31d80102010-04-15 21:59:20 +00001438 // Do not promote any struct whose size is too big.
1439 if (AllocaSize > SRThreshold) continue;
Bob Wilson69743022011-01-13 20:59:44 +00001440
Bob Wilson3992feb2010-02-03 17:23:56 +00001441 // If the alloca looks like a good candidate for scalar replacement, and if
1442 // all its users can be transformed, then split up the aggregate into its
1443 // separate elements.
1444 if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1445 DoScalarReplacement(AI, WorkList);
1446 Changed = true;
1447 continue;
1448 }
1449
Chris Lattner6e733d32009-01-28 20:16:43 +00001450 // If we can turn this aggregate value (potentially with casts) into a
1451 // simple scalar value that can be mem2reg'd into a register value.
Chris Lattner2e0d5f82009-01-31 02:28:54 +00001452 // IsNotTrivial tracks whether this is something that mem2reg could have
1453 // promoted itself. If so, we don't want to transform it needlessly. Note
1454 // that we can't just check based on the type: the alloca may be of an i32
1455 // but that has pointer arithmetic to set byte 3 of it or something.
Chris Lattner593375d2010-04-16 00:20:00 +00001456 if (AllocaInst *NewAI =
1457 ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
Chris Lattner7809ecd2009-02-03 01:30:09 +00001458 NewAI->takeName(AI);
1459 AI->eraseFromParent();
1460 ++NumConverted;
1461 Changed = true;
1462 continue;
Bob Wilson69743022011-01-13 20:59:44 +00001463 }
1464
Chris Lattner7809ecd2009-02-03 01:30:09 +00001465 // Otherwise, couldn't process this alloca.
Chris Lattnered7b41e2003-05-27 15:45:27 +00001466 }
1467
1468 return Changed;
1469}
Chris Lattner5e062a12003-05-30 04:15:41 +00001470
Chris Lattnera10b29b2007-04-25 05:02:56 +00001471/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1472/// predicate, do SROA now.
Bob Wilson69743022011-01-13 20:59:44 +00001473void SROA::DoScalarReplacement(AllocaInst *AI,
Victor Hernandez7b929da2009-10-23 21:09:37 +00001474 std::vector<AllocaInst*> &WorkList) {
David Greene504c7d82010-01-05 01:27:09 +00001475 DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
Chris Lattnera10b29b2007-04-25 05:02:56 +00001476 SmallVector<AllocaInst*, 32> ElementAllocas;
1477 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1478 ElementAllocas.reserve(ST->getNumContainedTypes());
1479 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
Bob Wilson69743022011-01-13 20:59:44 +00001480 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
Chris Lattnera10b29b2007-04-25 05:02:56 +00001481 AI->getAlignment(),
Daniel Dunbarfe09b202009-07-30 17:37:43 +00001482 AI->getName() + "." + Twine(i), AI);
Chris Lattnera10b29b2007-04-25 05:02:56 +00001483 ElementAllocas.push_back(NA);
1484 WorkList.push_back(NA); // Add to worklist for recursive processing
1485 }
1486 } else {
1487 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1488 ElementAllocas.reserve(AT->getNumElements());
1489 const Type *ElTy = AT->getElementType();
1490 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Owen Anderson50dead02009-07-15 23:53:25 +00001491 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
Daniel Dunbarfe09b202009-07-30 17:37:43 +00001492 AI->getName() + "." + Twine(i), AI);
Chris Lattnera10b29b2007-04-25 05:02:56 +00001493 ElementAllocas.push_back(NA);
1494 WorkList.push_back(NA); // Add to worklist for recursive processing
1495 }
1496 }
1497
Bob Wilsonb742def2009-12-18 20:14:40 +00001498 // Now that we have created the new alloca instructions, rewrite all the
1499 // uses of the old alloca.
1500 RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
Chris Lattnera59adc42009-12-14 05:11:02 +00001501
Bob Wilsonb742def2009-12-18 20:14:40 +00001502 // Now erase any instructions that were made dead while rewriting the alloca.
1503 DeleteDeadInstructions();
Bob Wilson39c88a62009-12-17 18:34:24 +00001504 AI->eraseFromParent();
Bob Wilsonb742def2009-12-18 20:14:40 +00001505
Dan Gohmanfe601042010-06-22 15:08:57 +00001506 ++NumReplaced;
Chris Lattnera10b29b2007-04-25 05:02:56 +00001507}
Chris Lattnera59adc42009-12-14 05:11:02 +00001508
Bob Wilsonb742def2009-12-18 20:14:40 +00001509/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1510/// recursively including all their operands that become trivially dead.
1511void SROA::DeleteDeadInstructions() {
1512 while (!DeadInsts.empty()) {
1513 Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
Chris Lattnera59adc42009-12-14 05:11:02 +00001514
Bob Wilsonb742def2009-12-18 20:14:40 +00001515 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1516 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1517 // Zero out the operand and see if it becomes trivially dead.
1518 // (But, don't add allocas to the dead instruction list -- they are
1519 // already on the worklist and will be deleted separately.)
1520 *OI = 0;
1521 if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1522 DeadInsts.push_back(U);
Chris Lattnera59adc42009-12-14 05:11:02 +00001523 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001524
1525 I->eraseFromParent();
Chris Lattnera59adc42009-12-14 05:11:02 +00001526 }
Chris Lattnera59adc42009-12-14 05:11:02 +00001527}
Bob Wilson69743022011-01-13 20:59:44 +00001528
Bob Wilsonb742def2009-12-18 20:14:40 +00001529/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1530/// performing scalar replacement of alloca AI. The results are flagged in
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001531/// the Info parameter. Offset indicates the position within AI that is
1532/// referenced by this instruction.
Chris Lattner6c95d242011-01-23 07:29:29 +00001533void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001534 AllocaInfo &Info) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001535 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1536 Instruction *User = cast<Instruction>(*UI);
Chris Lattnerbe883a22003-11-25 21:09:18 +00001537
Bob Wilsonb742def2009-12-18 20:14:40 +00001538 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
Chris Lattner6c95d242011-01-23 07:29:29 +00001539 isSafeForScalarRepl(BC, Offset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001540 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001541 uint64_t GEPOffset = Offset;
Chris Lattner6c95d242011-01-23 07:29:29 +00001542 isSafeGEP(GEPI, GEPOffset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001543 if (!Info.isUnsafe)
Chris Lattner6c95d242011-01-23 07:29:29 +00001544 isSafeForScalarRepl(GEPI, GEPOffset, Info);
Gabor Greif19101c72010-06-28 11:20:42 +00001545 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001546 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001547 if (Length == 0)
1548 return MarkUnsafe(Info, User);
Chris Lattner6c95d242011-01-23 07:29:29 +00001549 isSafeMemAccess(Offset, Length->getZExtValue(), 0,
Chris Lattner145c5322011-01-23 08:27:54 +00001550 UI.getOperandNo() == 0, Info, MI,
1551 true /*AllowWholeAccess*/);
Bob Wilsonb742def2009-12-18 20:14:40 +00001552 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001553 if (LI->isVolatile())
1554 return MarkUnsafe(Info, User);
1555 const Type *LIType = LI->getType();
Chris Lattner6c95d242011-01-23 07:29:29 +00001556 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
Chris Lattner145c5322011-01-23 08:27:54 +00001557 LIType, false, Info, LI, true /*AllowWholeAccess*/);
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001558 Info.hasALoadOrStore = true;
1559
Bob Wilsonb742def2009-12-18 20:14:40 +00001560 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1561 // Store is ok if storing INTO the pointer, not storing the pointer
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001562 if (SI->isVolatile() || SI->getOperand(0) == I)
1563 return MarkUnsafe(Info, User);
1564
1565 const Type *SIType = SI->getOperand(0)->getType();
Chris Lattner6c95d242011-01-23 07:29:29 +00001566 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
Chris Lattner145c5322011-01-23 08:27:54 +00001567 SIType, true, Info, SI, true /*AllowWholeAccess*/);
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001568 Info.hasALoadOrStore = true;
Chris Lattner145c5322011-01-23 08:27:54 +00001569 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1570 isSafePHISelectUseForScalarRepl(User, Offset, Info);
1571 } else {
1572 return MarkUnsafe(Info, User);
1573 }
1574 if (Info.isUnsafe) return;
1575 }
1576}
1577
1578
1579/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1580/// derived from the alloca, we can often still split the alloca into elements.
1581/// This is useful if we have a large alloca where one element is phi'd
1582/// together somewhere: we can SRoA and promote all the other elements even if
1583/// we end up not being able to promote this one.
1584///
1585/// All we require is that the uses of the PHI do not index into other parts of
1586/// the alloca. The most important use case for this is single load and stores
1587/// that are PHI'd together, which can happen due to code sinking.
1588void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1589 AllocaInfo &Info) {
1590 // If we've already checked this PHI, don't do it again.
1591 if (PHINode *PN = dyn_cast<PHINode>(I))
1592 if (!Info.CheckedPHIs.insert(PN))
1593 return;
1594
1595 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1596 Instruction *User = cast<Instruction>(*UI);
1597
1598 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1599 isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1600 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1601 // Only allow "bitcast" GEPs for simplicity. We could generalize this,
1602 // but would have to prove that we're staying inside of an element being
1603 // promoted.
1604 if (!GEPI->hasAllZeroIndices())
1605 return MarkUnsafe(Info, User);
1606 isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1607 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1608 if (LI->isVolatile())
1609 return MarkUnsafe(Info, User);
1610 const Type *LIType = LI->getType();
1611 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1612 LIType, false, Info, LI, false /*AllowWholeAccess*/);
1613 Info.hasALoadOrStore = true;
1614
1615 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1616 // Store is ok if storing INTO the pointer, not storing the pointer
1617 if (SI->isVolatile() || SI->getOperand(0) == I)
1618 return MarkUnsafe(Info, User);
1619
1620 const Type *SIType = SI->getOperand(0)->getType();
1621 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1622 SIType, true, Info, SI, false /*AllowWholeAccess*/);
1623 Info.hasALoadOrStore = true;
1624 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1625 isSafePHISelectUseForScalarRepl(User, Offset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001626 } else {
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001627 return MarkUnsafe(Info, User);
Bob Wilsonb742def2009-12-18 20:14:40 +00001628 }
1629 if (Info.isUnsafe) return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001630 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001631}
Bob Wilson39c88a62009-12-17 18:34:24 +00001632
Bob Wilsonb742def2009-12-18 20:14:40 +00001633/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1634/// replacement. It is safe when all the indices are constant, in-bounds
1635/// references, and when the resulting offset corresponds to an element within
1636/// the alloca type. The results are flagged in the Info parameter. Upon
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001637/// return, Offset is adjusted as specified by the GEP indices.
Chris Lattner6c95d242011-01-23 07:29:29 +00001638void SROA::isSafeGEP(GetElementPtrInst *GEPI,
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001639 uint64_t &Offset, AllocaInfo &Info) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001640 gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1641 if (GEPIt == E)
1642 return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001643
Chris Lattner88e6dc82008-08-23 05:21:06 +00001644 // Walk through the GEP type indices, checking the types that this indexes
1645 // into.
Bob Wilsonb742def2009-12-18 20:14:40 +00001646 for (; GEPIt != E; ++GEPIt) {
Chris Lattner88e6dc82008-08-23 05:21:06 +00001647 // Ignore struct elements, no extra checking needed for these.
Duncan Sands1df98592010-02-16 11:11:14 +00001648 if ((*GEPIt)->isStructTy())
Chris Lattner88e6dc82008-08-23 05:21:06 +00001649 continue;
Matthijs Kooijman5fac55f2008-10-06 16:23:31 +00001650
Bob Wilsonb742def2009-12-18 20:14:40 +00001651 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1652 if (!IdxVal)
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001653 return MarkUnsafe(Info, GEPI);
Chris Lattner88e6dc82008-08-23 05:21:06 +00001654 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001655
Bob Wilsonf27a4cd2009-12-22 06:57:14 +00001656 // Compute the offset due to this GEP and check if the alloca has a
1657 // component element at that offset.
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001658 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1659 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1660 &Indices[0], Indices.size());
Chris Lattner6c95d242011-01-23 07:29:29 +00001661 if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001662 MarkUnsafe(Info, GEPI);
Chris Lattner5e062a12003-05-30 04:15:41 +00001663}
1664
Bob Wilson704d1342011-01-13 17:45:11 +00001665/// isHomogeneousAggregate - Check if type T is a struct or array containing
1666/// elements of the same type (which is always true for arrays). If so,
1667/// return true with NumElts and EltTy set to the number of elements and the
1668/// element type, respectively.
1669static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1670 const Type *&EltTy) {
1671 if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1672 NumElts = AT->getNumElements();
Bob Wilsonf0908ae2011-01-13 18:26:59 +00001673 EltTy = (NumElts == 0 ? 0 : AT->getElementType());
Bob Wilson704d1342011-01-13 17:45:11 +00001674 return true;
1675 }
1676 if (const StructType *ST = dyn_cast<StructType>(T)) {
1677 NumElts = ST->getNumContainedTypes();
Bob Wilsonf0908ae2011-01-13 18:26:59 +00001678 EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
Bob Wilson704d1342011-01-13 17:45:11 +00001679 for (unsigned n = 1; n < NumElts; ++n) {
1680 if (ST->getContainedType(n) != EltTy)
1681 return false;
1682 }
1683 return true;
1684 }
1685 return false;
1686}
1687
1688/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1689/// "homogeneous" aggregates with the same element type and number of elements.
1690static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1691 if (T1 == T2)
1692 return true;
1693
1694 unsigned NumElts1, NumElts2;
1695 const Type *EltTy1, *EltTy2;
1696 if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1697 isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1698 NumElts1 == NumElts2 &&
1699 EltTy1 == EltTy2)
1700 return true;
1701
1702 return false;
1703}
1704
Bob Wilsonb742def2009-12-18 20:14:40 +00001705/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1706/// alloca or has an offset and size that corresponds to a component element
1707/// within it. The offset checked here may have been formed from a GEP with a
1708/// pointer bitcasted to a different type.
Chris Lattner145c5322011-01-23 08:27:54 +00001709///
1710/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1711/// unit. If false, it only allows accesses known to be in a single element.
Chris Lattner6c95d242011-01-23 07:29:29 +00001712void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
Bob Wilsonb742def2009-12-18 20:14:40 +00001713 const Type *MemOpType, bool isStore,
Chris Lattner145c5322011-01-23 08:27:54 +00001714 AllocaInfo &Info, Instruction *TheAccess,
1715 bool AllowWholeAccess) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001716 // Check if this is a load/store of the entire alloca.
Chris Lattner145c5322011-01-23 08:27:54 +00001717 if (Offset == 0 && AllowWholeAccess &&
Chris Lattner6c95d242011-01-23 07:29:29 +00001718 MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
Bob Wilson704d1342011-01-13 17:45:11 +00001719 // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1720 // loads/stores (which are essentially the same as the MemIntrinsics with
1721 // regard to copying padding between elements). But, if an alloca is
1722 // flagged as both a source and destination of such operations, we'll need
1723 // to check later for padding between elements.
1724 if (!MemOpType || MemOpType->isIntegerTy()) {
1725 if (isStore)
1726 Info.isMemCpyDst = true;
1727 else
1728 Info.isMemCpySrc = true;
Bob Wilsonb742def2009-12-18 20:14:40 +00001729 return;
1730 }
Bob Wilson704d1342011-01-13 17:45:11 +00001731 // This is also safe for references using a type that is compatible with
1732 // the type of the alloca, so that loads/stores can be rewritten using
1733 // insertvalue/extractvalue.
Chris Lattner6c95d242011-01-23 07:29:29 +00001734 if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
Chris Lattner7e9b4272011-01-16 06:18:28 +00001735 Info.hasSubelementAccess = true;
Bob Wilson704d1342011-01-13 17:45:11 +00001736 return;
Chris Lattner7e9b4272011-01-16 06:18:28 +00001737 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001738 }
1739 // Check if the offset/size correspond to a component within the alloca type.
Chris Lattner6c95d242011-01-23 07:29:29 +00001740 const Type *T = Info.AI->getAllocatedType();
Chris Lattner7e9b4272011-01-16 06:18:28 +00001741 if (TypeHasComponent(T, Offset, MemSize)) {
1742 Info.hasSubelementAccess = true;
Bob Wilsonb742def2009-12-18 20:14:40 +00001743 return;
Chris Lattner7e9b4272011-01-16 06:18:28 +00001744 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001745
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001746 return MarkUnsafe(Info, TheAccess);
Bob Wilsonb742def2009-12-18 20:14:40 +00001747}
1748
1749/// TypeHasComponent - Return true if T has a component type with the
1750/// specified offset and size. If Size is zero, do not check the size.
1751bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1752 const Type *EltTy;
1753 uint64_t EltSize;
1754 if (const StructType *ST = dyn_cast<StructType>(T)) {
1755 const StructLayout *Layout = TD->getStructLayout(ST);
1756 unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1757 EltTy = ST->getContainedType(EltIdx);
1758 EltSize = TD->getTypeAllocSize(EltTy);
1759 Offset -= Layout->getElementOffset(EltIdx);
1760 } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1761 EltTy = AT->getElementType();
1762 EltSize = TD->getTypeAllocSize(EltTy);
Bob Wilsonf27a4cd2009-12-22 06:57:14 +00001763 if (Offset >= AT->getNumElements() * EltSize)
1764 return false;
Bob Wilsonb742def2009-12-18 20:14:40 +00001765 Offset %= EltSize;
1766 } else {
1767 return false;
1768 }
1769 if (Offset == 0 && (Size == 0 || EltSize == Size))
1770 return true;
1771 // Check if the component spans multiple elements.
1772 if (Offset + Size > EltSize)
1773 return false;
1774 return TypeHasComponent(EltTy, Offset, Size);
1775}
1776
1777/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1778/// the instruction I, which references it, to use the separate elements.
1779/// Offset indicates the position within AI that is referenced by this
1780/// instruction.
1781void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1782 SmallVector<AllocaInst*, 32> &NewElts) {
Chris Lattner145c5322011-01-23 08:27:54 +00001783 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1784 Use &TheUse = UI.getUse();
1785 Instruction *User = cast<Instruction>(*UI++);
Bob Wilsonb742def2009-12-18 20:14:40 +00001786
1787 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1788 RewriteBitCast(BC, AI, Offset, NewElts);
Chris Lattner145c5322011-01-23 08:27:54 +00001789 continue;
1790 }
1791
1792 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001793 RewriteGEP(GEPI, AI, Offset, NewElts);
Chris Lattner145c5322011-01-23 08:27:54 +00001794 continue;
1795 }
1796
1797 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001798 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1799 uint64_t MemSize = Length->getZExtValue();
1800 if (Offset == 0 &&
1801 MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1802 RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
Bob Wilsone88728d2009-12-19 06:53:17 +00001803 // Otherwise the intrinsic can only touch a single element and the
1804 // address operand will be updated, so nothing else needs to be done.
Chris Lattner145c5322011-01-23 08:27:54 +00001805 continue;
1806 }
1807
1808 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001809 const Type *LIType = LI->getType();
Chris Lattner192228e2011-01-16 05:28:59 +00001810
Bob Wilson704d1342011-01-13 17:45:11 +00001811 if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001812 // Replace:
1813 // %res = load { i32, i32 }* %alloc
1814 // with:
1815 // %load.0 = load i32* %alloc.0
1816 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1817 // %load.1 = load i32* %alloc.1
1818 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1819 // (Also works for arrays instead of structs)
1820 Value *Insert = UndefValue::get(LIType);
1821 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1822 Value *Load = new LoadInst(NewElts[i], "load", LI);
1823 Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1824 }
1825 LI->replaceAllUsesWith(Insert);
1826 DeadInsts.push_back(LI);
Duncan Sands1df98592010-02-16 11:11:14 +00001827 } else if (LIType->isIntegerTy() &&
Bob Wilsonb742def2009-12-18 20:14:40 +00001828 TD->getTypeAllocSize(LIType) ==
1829 TD->getTypeAllocSize(AI->getAllocatedType())) {
1830 // If this is a load of the entire alloca to an integer, rewrite it.
1831 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1832 }
Chris Lattner145c5322011-01-23 08:27:54 +00001833 continue;
1834 }
1835
1836 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001837 Value *Val = SI->getOperand(0);
1838 const Type *SIType = Val->getType();
Bob Wilson704d1342011-01-13 17:45:11 +00001839 if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001840 // Replace:
1841 // store { i32, i32 } %val, { i32, i32 }* %alloc
1842 // with:
1843 // %val.0 = extractvalue { i32, i32 } %val, 0
1844 // store i32 %val.0, i32* %alloc.0
1845 // %val.1 = extractvalue { i32, i32 } %val, 1
1846 // store i32 %val.1, i32* %alloc.1
1847 // (Also works for arrays instead of structs)
1848 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1849 Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1850 new StoreInst(Extract, NewElts[i], SI);
1851 }
1852 DeadInsts.push_back(SI);
Duncan Sands1df98592010-02-16 11:11:14 +00001853 } else if (SIType->isIntegerTy() &&
Bob Wilsonb742def2009-12-18 20:14:40 +00001854 TD->getTypeAllocSize(SIType) ==
1855 TD->getTypeAllocSize(AI->getAllocatedType())) {
1856 // If this is a store of the entire alloca from an integer, rewrite it.
1857 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1858 }
Chris Lattner145c5322011-01-23 08:27:54 +00001859 continue;
1860 }
1861
1862 if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1863 // If we have a PHI user of the alloca itself (as opposed to a GEP or
1864 // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to
1865 // the new pointer.
1866 if (!isa<AllocaInst>(I)) continue;
1867
1868 assert(Offset == 0 && NewElts[0] &&
1869 "Direct alloca use should have a zero offset");
1870
1871 // If we have a use of the alloca, we know the derived uses will be
1872 // utilizing just the first element of the scalarized result. Insert a
1873 // bitcast of the first alloca before the user as required.
1874 AllocaInst *NewAI = NewElts[0];
1875 BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1876 NewAI->moveBefore(BCI);
1877 TheUse = BCI;
1878 continue;
Bob Wilsonb742def2009-12-18 20:14:40 +00001879 }
Bob Wilson39c88a62009-12-17 18:34:24 +00001880 }
1881}
1882
Bob Wilsonb742def2009-12-18 20:14:40 +00001883/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1884/// and recursively continue updating all of its uses.
1885void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1886 SmallVector<AllocaInst*, 32> &NewElts) {
1887 RewriteForScalarRepl(BC, AI, Offset, NewElts);
1888 if (BC->getOperand(0) != AI)
1889 return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001890
Bob Wilsonb742def2009-12-18 20:14:40 +00001891 // The bitcast references the original alloca. Replace its uses with
1892 // references to the first new element alloca.
1893 Instruction *Val = NewElts[0];
1894 if (Val->getType() != BC->getDestTy()) {
1895 Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1896 Val->takeName(BC);
Daniel Dunbarfca55c82009-12-16 10:56:17 +00001897 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001898 BC->replaceAllUsesWith(Val);
1899 DeadInsts.push_back(BC);
Daniel Dunbarfca55c82009-12-16 10:56:17 +00001900}
1901
Bob Wilsonb742def2009-12-18 20:14:40 +00001902/// FindElementAndOffset - Return the index of the element containing Offset
1903/// within the specified type, which must be either a struct or an array.
1904/// Sets T to the type of the element and Offset to the offset within that
Bob Wilsone88728d2009-12-19 06:53:17 +00001905/// element. IdxTy is set to the type of the index result to be used in a
1906/// GEP instruction.
1907uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1908 const Type *&IdxTy) {
1909 uint64_t Idx = 0;
Bob Wilsonb742def2009-12-18 20:14:40 +00001910 if (const StructType *ST = dyn_cast<StructType>(T)) {
1911 const StructLayout *Layout = TD->getStructLayout(ST);
1912 Idx = Layout->getElementContainingOffset(Offset);
1913 T = ST->getContainedType(Idx);
1914 Offset -= Layout->getElementOffset(Idx);
Bob Wilsone88728d2009-12-19 06:53:17 +00001915 IdxTy = Type::getInt32Ty(T->getContext());
1916 return Idx;
Chris Lattnera59adc42009-12-14 05:11:02 +00001917 }
Bob Wilsone88728d2009-12-19 06:53:17 +00001918 const ArrayType *AT = cast<ArrayType>(T);
1919 T = AT->getElementType();
1920 uint64_t EltSize = TD->getTypeAllocSize(T);
1921 Idx = Offset / EltSize;
1922 Offset -= Idx * EltSize;
1923 IdxTy = Type::getInt64Ty(T->getContext());
Bob Wilsonb742def2009-12-18 20:14:40 +00001924 return Idx;
1925}
1926
1927/// RewriteGEP - Check if this GEP instruction moves the pointer across
1928/// elements of the alloca that are being split apart, and if so, rewrite
1929/// the GEP to be relative to the new element.
1930void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1931 SmallVector<AllocaInst*, 32> &NewElts) {
1932 uint64_t OldOffset = Offset;
1933 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1934 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1935 &Indices[0], Indices.size());
1936
1937 RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1938
1939 const Type *T = AI->getAllocatedType();
Bob Wilsone88728d2009-12-19 06:53:17 +00001940 const Type *IdxTy;
1941 uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
Bob Wilsonb742def2009-12-18 20:14:40 +00001942 if (GEPI->getOperand(0) == AI)
Bob Wilsone88728d2009-12-19 06:53:17 +00001943 OldIdx = ~0ULL; // Force the GEP to be rewritten.
Bob Wilsonb742def2009-12-18 20:14:40 +00001944
1945 T = AI->getAllocatedType();
1946 uint64_t EltOffset = Offset;
Bob Wilsone88728d2009-12-19 06:53:17 +00001947 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
Bob Wilsonb742def2009-12-18 20:14:40 +00001948
1949 // If this GEP does not move the pointer across elements of the alloca
1950 // being split, then it does not needs to be rewritten.
1951 if (Idx == OldIdx)
1952 return;
1953
1954 const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1955 SmallVector<Value*, 8> NewArgs;
1956 NewArgs.push_back(Constant::getNullValue(i32Ty));
1957 while (EltOffset != 0) {
Bob Wilsone88728d2009-12-19 06:53:17 +00001958 uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1959 NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
Bob Wilsonb742def2009-12-18 20:14:40 +00001960 }
1961 Instruction *Val = NewElts[Idx];
1962 if (NewArgs.size() > 1) {
1963 Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1964 NewArgs.end(), "", GEPI);
1965 Val->takeName(GEPI);
1966 }
1967 if (Val->getType() != GEPI->getType())
Benjamin Kramer2d64ca02010-01-27 19:46:52 +00001968 Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
Bob Wilsonb742def2009-12-18 20:14:40 +00001969 GEPI->replaceAllUsesWith(Val);
1970 DeadInsts.push_back(GEPI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001971}
1972
1973/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1974/// Rewrite it to copy or set the elements of the scalarized memory.
Bob Wilsonb742def2009-12-18 20:14:40 +00001975void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Victor Hernandez7b929da2009-10-23 21:09:37 +00001976 AllocaInst *AI,
Chris Lattnerd93afec2009-01-07 07:18:45 +00001977 SmallVector<AllocaInst*, 32> &NewElts) {
Chris Lattnerd93afec2009-01-07 07:18:45 +00001978 // If this is a memcpy/memmove, construct the other pointer as the
Chris Lattner88fe1ad2009-03-04 19:23:25 +00001979 // appropriate type. The "Other" pointer is the pointer that goes to memory
1980 // that doesn't have anything to do with the alloca that we are promoting. For
1981 // memset, this Value* stays null.
Chris Lattnerd93afec2009-01-07 07:18:45 +00001982 Value *OtherPtr = 0;
Chris Lattnerdfe964c2009-03-08 03:59:00 +00001983 unsigned MemAlignment = MI->getAlignment();
Chris Lattner3ce5e882009-03-08 03:37:16 +00001984 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
Bob Wilsonb742def2009-12-18 20:14:40 +00001985 if (Inst == MTI->getRawDest())
Chris Lattner3ce5e882009-03-08 03:37:16 +00001986 OtherPtr = MTI->getRawSource();
Chris Lattnerd93afec2009-01-07 07:18:45 +00001987 else {
Bob Wilsonb742def2009-12-18 20:14:40 +00001988 assert(Inst == MTI->getRawSource());
Chris Lattner3ce5e882009-03-08 03:37:16 +00001989 OtherPtr = MTI->getRawDest();
Chris Lattnerd93afec2009-01-07 07:18:45 +00001990 }
1991 }
Bob Wilson78c50b82009-12-08 18:22:03 +00001992
Chris Lattnerd93afec2009-01-07 07:18:45 +00001993 // If there is an other pointer, we want to convert it to the same pointer
1994 // type as AI has, so we can GEP through it safely.
1995 if (OtherPtr) {
Chris Lattner0238f8c2010-07-08 00:27:05 +00001996 unsigned AddrSpace =
1997 cast<PointerType>(OtherPtr->getType())->getAddressSpace();
Bob Wilsonb742def2009-12-18 20:14:40 +00001998
1999 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
2000 // optimization, but it's also required to detect the corner case where
2001 // both pointer operands are referencing the same memory, and where
2002 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
2003 // function is only called for mem intrinsics that access the whole
2004 // aggregate, so non-zero GEPs are not an issue here.)
Chris Lattner0238f8c2010-07-08 00:27:05 +00002005 OtherPtr = OtherPtr->stripPointerCasts();
Bob Wilson69743022011-01-13 20:59:44 +00002006
Bob Wilsona756b1d2010-01-19 04:32:48 +00002007 // Copying the alloca to itself is a no-op: just delete it.
2008 if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2009 // This code will run twice for a no-op memcpy -- once for each operand.
2010 // Put only one reference to MI on the DeadInsts list.
2011 for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2012 E = DeadInsts.end(); I != E; ++I)
2013 if (*I == MI) return;
2014 DeadInsts.push_back(MI);
Bob Wilsonb742def2009-12-18 20:14:40 +00002015 return;
Bob Wilsona756b1d2010-01-19 04:32:48 +00002016 }
Bob Wilson69743022011-01-13 20:59:44 +00002017
Chris Lattnerd93afec2009-01-07 07:18:45 +00002018 // If the pointer is not the right type, insert a bitcast to the right
2019 // type.
Chris Lattner0238f8c2010-07-08 00:27:05 +00002020 const Type *NewTy =
2021 PointerType::get(AI->getType()->getElementType(), AddrSpace);
Bob Wilson69743022011-01-13 20:59:44 +00002022
Chris Lattner0238f8c2010-07-08 00:27:05 +00002023 if (OtherPtr->getType() != NewTy)
2024 OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00002025 }
Bob Wilson69743022011-01-13 20:59:44 +00002026
Chris Lattnerd93afec2009-01-07 07:18:45 +00002027 // Process each element of the aggregate.
Bob Wilsonb742def2009-12-18 20:14:40 +00002028 bool SROADest = MI->getRawDest() == Inst;
Bob Wilson69743022011-01-13 20:59:44 +00002029
Owen Anderson1d0be152009-08-13 21:58:54 +00002030 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
Chris Lattnerd93afec2009-01-07 07:18:45 +00002031
2032 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2033 // If this is a memcpy/memmove, emit a GEP of the other element address.
2034 Value *OtherElt = 0;
Chris Lattner1541e0f2009-03-04 19:20:50 +00002035 unsigned OtherEltAlign = MemAlignment;
Bob Wilson69743022011-01-13 20:59:44 +00002036
Bob Wilsona756b1d2010-01-19 04:32:48 +00002037 if (OtherPtr) {
Owen Anderson1d0be152009-08-13 21:58:54 +00002038 Value *Idx[2] = { Zero,
2039 ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
Bob Wilsonb742def2009-12-18 20:14:40 +00002040 OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
Benjamin Kramer2d64ca02010-01-27 19:46:52 +00002041 OtherPtr->getName()+"."+Twine(i),
Bob Wilsonb742def2009-12-18 20:14:40 +00002042 MI);
Chris Lattner1541e0f2009-03-04 19:20:50 +00002043 uint64_t EltOffset;
2044 const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
Chris Lattnerd55c1c12010-04-16 01:05:38 +00002045 const Type *OtherTy = OtherPtrTy->getElementType();
2046 if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
Chris Lattner1541e0f2009-03-04 19:20:50 +00002047 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2048 } else {
Chris Lattnerd55c1c12010-04-16 01:05:38 +00002049 const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00002050 EltOffset = TD->getTypeAllocSize(EltTy)*i;
Chris Lattner1541e0f2009-03-04 19:20:50 +00002051 }
Bob Wilson69743022011-01-13 20:59:44 +00002052
Chris Lattner1541e0f2009-03-04 19:20:50 +00002053 // The alignment of the other pointer is the guaranteed alignment of the
2054 // element, which is affected by both the known alignment of the whole
2055 // mem intrinsic and the alignment of the element. If the alignment of
2056 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2057 // known alignment is just 4 bytes.
2058 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
Chris Lattnerc14d3ca2007-03-08 06:36:54 +00002059 }
Bob Wilson69743022011-01-13 20:59:44 +00002060
Chris Lattnerd93afec2009-01-07 07:18:45 +00002061 Value *EltPtr = NewElts[i];
Chris Lattner1541e0f2009-03-04 19:20:50 +00002062 const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
Bob Wilson69743022011-01-13 20:59:44 +00002063
Chris Lattnerd93afec2009-01-07 07:18:45 +00002064 // If we got down to a scalar, insert a load or store as appropriate.
2065 if (EltTy->isSingleValueType()) {
Chris Lattner3ce5e882009-03-08 03:37:16 +00002066 if (isa<MemTransferInst>(MI)) {
Chris Lattner1541e0f2009-03-04 19:20:50 +00002067 if (SROADest) {
2068 // From Other to Alloca.
2069 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2070 new StoreInst(Elt, EltPtr, MI);
2071 } else {
2072 // From Alloca to Other.
2073 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2074 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2075 }
Chris Lattnerd93afec2009-01-07 07:18:45 +00002076 continue;
2077 }
2078 assert(isa<MemSetInst>(MI));
Bob Wilson69743022011-01-13 20:59:44 +00002079
Chris Lattnerd93afec2009-01-07 07:18:45 +00002080 // If the stored element is zero (common case), just store a null
2081 // constant.
2082 Constant *StoreVal;
Gabor Greif6f14c8c2010-06-30 09:16:16 +00002083 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
Chris Lattnerd93afec2009-01-07 07:18:45 +00002084 if (CI->isZero()) {
Owen Andersona7235ea2009-07-31 20:28:14 +00002085 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
Chris Lattnerd93afec2009-01-07 07:18:45 +00002086 } else {
2087 // If EltTy is a vector type, get the element type.
Dan Gohman44118f02009-06-16 00:20:26 +00002088 const Type *ValTy = EltTy->getScalarType();
2089
Chris Lattnerd93afec2009-01-07 07:18:45 +00002090 // Construct an integer with the right value.
2091 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2092 APInt OneVal(EltSize, CI->getZExtValue());
2093 APInt TotalVal(OneVal);
2094 // Set each byte.
2095 for (unsigned i = 0; 8*i < EltSize; ++i) {
2096 TotalVal = TotalVal.shl(8);
2097 TotalVal |= OneVal;
2098 }
Bob Wilson69743022011-01-13 20:59:44 +00002099
Chris Lattnerd93afec2009-01-07 07:18:45 +00002100 // Convert the integer value to the appropriate type.
Chris Lattnerd55c1c12010-04-16 01:05:38 +00002101 StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
Duncan Sands1df98592010-02-16 11:11:14 +00002102 if (ValTy->isPointerTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +00002103 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002104 else if (ValTy->isFloatingPointTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +00002105 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
Chris Lattnerd93afec2009-01-07 07:18:45 +00002106 assert(StoreVal->getType() == ValTy && "Type mismatch!");
Bob Wilson69743022011-01-13 20:59:44 +00002107
Chris Lattnerd93afec2009-01-07 07:18:45 +00002108 // If the requested value was a vector constant, create it.
2109 if (EltTy != ValTy) {
2110 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2111 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
Chris Lattner2ca5c862011-02-15 00:14:00 +00002112 StoreVal = ConstantVector::get(Elts);
Chris Lattnerd93afec2009-01-07 07:18:45 +00002113 }
2114 }
2115 new StoreInst(StoreVal, EltPtr, MI);
2116 continue;
2117 }
2118 // Otherwise, if we're storing a byte variable, use a memset call for
2119 // this element.
2120 }
Bob Wilson69743022011-01-13 20:59:44 +00002121
Duncan Sands777d2302009-05-09 07:06:46 +00002122 unsigned EltSize = TD->getTypeAllocSize(EltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002123
Chris Lattner61db1f52010-12-26 22:57:41 +00002124 IRBuilder<> Builder(MI);
Bob Wilson69743022011-01-13 20:59:44 +00002125
Chris Lattnerd93afec2009-01-07 07:18:45 +00002126 // Finally, insert the meminst for this element.
Chris Lattner61db1f52010-12-26 22:57:41 +00002127 if (isa<MemSetInst>(MI)) {
2128 Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2129 MI->isVolatile());
Chris Lattnerd93afec2009-01-07 07:18:45 +00002130 } else {
Chris Lattner61db1f52010-12-26 22:57:41 +00002131 assert(isa<MemTransferInst>(MI));
2132 Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr
2133 Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr
Bob Wilson69743022011-01-13 20:59:44 +00002134
Chris Lattner61db1f52010-12-26 22:57:41 +00002135 if (isa<MemCpyInst>(MI))
2136 Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2137 else
2138 Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
Chris Lattnerd93afec2009-01-07 07:18:45 +00002139 }
Chris Lattner372dda82007-03-05 07:52:57 +00002140 }
Bob Wilsonb742def2009-12-18 20:14:40 +00002141 DeadInsts.push_back(MI);
Chris Lattner372dda82007-03-05 07:52:57 +00002142}
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002143
Bob Wilson39fdd692009-12-04 21:57:37 +00002144/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002145/// overwrites the entire allocation. Extract out the pieces of the stored
2146/// integer and store them individually.
Victor Hernandez7b929da2009-10-23 21:09:37 +00002147void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002148 SmallVector<AllocaInst*, 32> &NewElts){
2149 // Extract each element out of the integer according to its structure offset
2150 // and store the element value to the individual alloca.
2151 Value *SrcVal = SI->getOperand(0);
Bob Wilsonb742def2009-12-18 20:14:40 +00002152 const Type *AllocaEltTy = AI->getAllocatedType();
Duncan Sands777d2302009-05-09 07:06:46 +00002153 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002154
Chris Lattner70728532011-01-16 05:58:24 +00002155 IRBuilder<> Builder(SI);
2156
Eli Friedman41b33f42009-06-01 09:14:32 +00002157 // Handle tail padding by extending the operand
2158 if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
Chris Lattner70728532011-01-16 05:58:24 +00002159 SrcVal = Builder.CreateZExt(SrcVal,
2160 IntegerType::get(SI->getContext(), AllocaSizeBits));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002161
David Greene504c7d82010-01-05 01:27:09 +00002162 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
Nick Lewycky59136252009-09-15 07:08:25 +00002163 << '\n');
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002164
2165 // There are two forms here: AI could be an array or struct. Both cases
2166 // have different ways to compute the element offset.
2167 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2168 const StructLayout *Layout = TD->getStructLayout(EltSTy);
Bob Wilson69743022011-01-13 20:59:44 +00002169
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002170 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2171 // Get the number of bits to shift SrcVal to get the value.
2172 const Type *FieldTy = EltSTy->getElementType(i);
2173 uint64_t Shift = Layout->getElementOffsetInBits(i);
Bob Wilson69743022011-01-13 20:59:44 +00002174
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002175 if (TD->isBigEndian())
Duncan Sands777d2302009-05-09 07:06:46 +00002176 Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
Bob Wilson69743022011-01-13 20:59:44 +00002177
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002178 Value *EltVal = SrcVal;
2179 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00002180 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
Chris Lattner70728532011-01-16 05:58:24 +00002181 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002182 }
Bob Wilson69743022011-01-13 20:59:44 +00002183
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002184 // Truncate down to an integer of the right size.
2185 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
Bob Wilson69743022011-01-13 20:59:44 +00002186
Chris Lattner583dd602009-01-09 18:18:43 +00002187 // Ignore zero sized fields like {}, they obviously contain no data.
2188 if (FieldSizeBits == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00002189
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002190 if (FieldSizeBits != AllocaSizeBits)
Chris Lattner70728532011-01-16 05:58:24 +00002191 EltVal = Builder.CreateTrunc(EltVal,
2192 IntegerType::get(SI->getContext(), FieldSizeBits));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002193 Value *DestField = NewElts[i];
2194 if (EltVal->getType() == FieldTy) {
2195 // Storing to an integer field of this size, just do it.
Duncan Sands1df98592010-02-16 11:11:14 +00002196 } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002197 // Bitcast to the right element type (for fp/vector values).
Chris Lattner70728532011-01-16 05:58:24 +00002198 EltVal = Builder.CreateBitCast(EltVal, FieldTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002199 } else {
2200 // Otherwise, bitcast the dest pointer (for aggregates).
Chris Lattner70728532011-01-16 05:58:24 +00002201 DestField = Builder.CreateBitCast(DestField,
2202 PointerType::getUnqual(EltVal->getType()));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002203 }
2204 new StoreInst(EltVal, DestField, SI);
2205 }
Bob Wilson69743022011-01-13 20:59:44 +00002206
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002207 } else {
2208 const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2209 const Type *ArrayEltTy = ATy->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00002210 uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002211 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2212
2213 uint64_t Shift;
Bob Wilson69743022011-01-13 20:59:44 +00002214
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002215 if (TD->isBigEndian())
2216 Shift = AllocaSizeBits-ElementOffset;
Bob Wilson69743022011-01-13 20:59:44 +00002217 else
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002218 Shift = 0;
Bob Wilson69743022011-01-13 20:59:44 +00002219
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002220 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
Chris Lattner583dd602009-01-09 18:18:43 +00002221 // Ignore zero sized fields like {}, they obviously contain no data.
2222 if (ElementSizeBits == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00002223
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002224 Value *EltVal = SrcVal;
2225 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00002226 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
Chris Lattner70728532011-01-16 05:58:24 +00002227 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002228 }
Bob Wilson69743022011-01-13 20:59:44 +00002229
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002230 // Truncate down to an integer of the right size.
2231 if (ElementSizeBits != AllocaSizeBits)
Chris Lattner70728532011-01-16 05:58:24 +00002232 EltVal = Builder.CreateTrunc(EltVal,
2233 IntegerType::get(SI->getContext(),
2234 ElementSizeBits));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002235 Value *DestField = NewElts[i];
2236 if (EltVal->getType() == ArrayEltTy) {
2237 // Storing to an integer field of this size, just do it.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002238 } else if (ArrayEltTy->isFloatingPointTy() ||
Duncan Sands1df98592010-02-16 11:11:14 +00002239 ArrayEltTy->isVectorTy()) {
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002240 // Bitcast to the right element type (for fp/vector values).
Chris Lattner70728532011-01-16 05:58:24 +00002241 EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002242 } else {
2243 // Otherwise, bitcast the dest pointer (for aggregates).
Chris Lattner70728532011-01-16 05:58:24 +00002244 DestField = Builder.CreateBitCast(DestField,
2245 PointerType::getUnqual(EltVal->getType()));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002246 }
2247 new StoreInst(EltVal, DestField, SI);
Bob Wilson69743022011-01-13 20:59:44 +00002248
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002249 if (TD->isBigEndian())
2250 Shift -= ElementOffset;
Bob Wilson69743022011-01-13 20:59:44 +00002251 else
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002252 Shift += ElementOffset;
2253 }
2254 }
Bob Wilson69743022011-01-13 20:59:44 +00002255
Bob Wilsonb742def2009-12-18 20:14:40 +00002256 DeadInsts.push_back(SI);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002257}
2258
Bob Wilson39fdd692009-12-04 21:57:37 +00002259/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002260/// an integer. Load the individual pieces to form the aggregate value.
Victor Hernandez7b929da2009-10-23 21:09:37 +00002261void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002262 SmallVector<AllocaInst*, 32> &NewElts) {
2263 // Extract each element out of the NewElts according to its structure offset
2264 // and form the result value.
Bob Wilsonb742def2009-12-18 20:14:40 +00002265 const Type *AllocaEltTy = AI->getAllocatedType();
Duncan Sands777d2302009-05-09 07:06:46 +00002266 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002267
David Greene504c7d82010-01-05 01:27:09 +00002268 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
Nick Lewycky59136252009-09-15 07:08:25 +00002269 << '\n');
Bob Wilson69743022011-01-13 20:59:44 +00002270
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002271 // There are two forms here: AI could be an array or struct. Both cases
2272 // have different ways to compute the element offset.
2273 const StructLayout *Layout = 0;
2274 uint64_t ArrayEltBitOffset = 0;
2275 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2276 Layout = TD->getStructLayout(EltSTy);
2277 } else {
2278 const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00002279 ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002280 }
2281
2282 Value *ResultVal =
Owen Anderson1d0be152009-08-13 21:58:54 +00002283 Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
Bob Wilson69743022011-01-13 20:59:44 +00002284
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002285 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2286 // Load the value from the alloca. If the NewElt is an aggregate, cast
2287 // the pointer to an integer of the same size before doing the load.
2288 Value *SrcField = NewElts[i];
2289 const Type *FieldTy =
2290 cast<PointerType>(SrcField->getType())->getElementType();
Chris Lattner583dd602009-01-09 18:18:43 +00002291 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
Bob Wilson69743022011-01-13 20:59:44 +00002292
Chris Lattner583dd602009-01-09 18:18:43 +00002293 // Ignore zero sized fields like {}, they obviously contain no data.
2294 if (FieldSizeBits == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00002295
2296 const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +00002297 FieldSizeBits);
Duncan Sands1df98592010-02-16 11:11:14 +00002298 if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2299 !FieldTy->isVectorTy())
Owen Andersonfa5cbd62009-07-03 19:42:02 +00002300 SrcField = new BitCastInst(SrcField,
Owen Andersondebcb012009-07-29 22:17:13 +00002301 PointerType::getUnqual(FieldIntTy),
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002302 "", LI);
2303 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2304
2305 // If SrcField is a fp or vector of the right size but that isn't an
2306 // integer type, bitcast to an integer so we can shift it.
2307 if (SrcField->getType() != FieldIntTy)
2308 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2309
2310 // Zero extend the field to be the same size as the final alloca so that
2311 // we can shift and insert it.
2312 if (SrcField->getType() != ResultVal->getType())
2313 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
Bob Wilson69743022011-01-13 20:59:44 +00002314
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002315 // Determine the number of bits to shift SrcField.
2316 uint64_t Shift;
2317 if (Layout) // Struct case.
2318 Shift = Layout->getElementOffsetInBits(i);
2319 else // Array case.
2320 Shift = i*ArrayEltBitOffset;
Bob Wilson69743022011-01-13 20:59:44 +00002321
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002322 if (TD->isBigEndian())
2323 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
Bob Wilson69743022011-01-13 20:59:44 +00002324
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002325 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00002326 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002327 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2328 }
2329
Chris Lattner14952472010-06-27 07:58:26 +00002330 // Don't create an 'or x, 0' on the first iteration.
2331 if (!isa<Constant>(ResultVal) ||
2332 !cast<Constant>(ResultVal)->isNullValue())
2333 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2334 else
2335 ResultVal = SrcField;
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002336 }
Eli Friedman41b33f42009-06-01 09:14:32 +00002337
2338 // Handle tail padding by truncating the result
2339 if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2340 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2341
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002342 LI->replaceAllUsesWith(ResultVal);
Bob Wilsonb742def2009-12-18 20:14:40 +00002343 DeadInsts.push_back(LI);
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002344}
2345
Duncan Sands3cb36502007-11-04 14:43:57 +00002346/// HasPadding - Return true if the specified type has any structure or
Bob Wilson694a10e2011-01-13 17:45:08 +00002347/// alignment padding in between the elements that would be split apart
2348/// by SROA; return false otherwise.
Duncan Sandsa0fcc082008-06-04 08:21:45 +00002349static bool HasPadding(const Type *Ty, const TargetData &TD) {
Bob Wilson694a10e2011-01-13 17:45:08 +00002350 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2351 Ty = ATy->getElementType();
2352 return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
Chris Lattner39a1c042007-05-30 06:11:23 +00002353 }
Bob Wilson694a10e2011-01-13 17:45:08 +00002354
2355 // SROA currently handles only Arrays and Structs.
2356 const StructType *STy = cast<StructType>(Ty);
2357 const StructLayout *SL = TD.getStructLayout(STy);
2358 unsigned PrevFieldBitOffset = 0;
2359 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2360 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2361
2362 // Check to see if there is any padding between this element and the
2363 // previous one.
2364 if (i) {
2365 unsigned PrevFieldEnd =
2366 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2367 if (PrevFieldEnd < FieldBitOffset)
2368 return true;
2369 }
2370 PrevFieldBitOffset = FieldBitOffset;
2371 }
2372 // Check for tail padding.
2373 if (unsigned EltCount = STy->getNumElements()) {
2374 unsigned PrevFieldEnd = PrevFieldBitOffset +
2375 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2376 if (PrevFieldEnd < SL->getSizeInBits())
2377 return true;
2378 }
2379 return false;
Chris Lattner39a1c042007-05-30 06:11:23 +00002380}
Chris Lattner372dda82007-03-05 07:52:57 +00002381
Chris Lattnerf5990ed2004-11-14 04:24:28 +00002382/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2383/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
2384/// or 1 if safe after canonicalization has been performed.
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002385bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
Chris Lattner5e062a12003-05-30 04:15:41 +00002386 // Loop over the use list of the alloca. We can only transform it if all of
2387 // the users are safe to transform.
Chris Lattner6c95d242011-01-23 07:29:29 +00002388 AllocaInfo Info(AI);
Bob Wilson69743022011-01-13 20:59:44 +00002389
Chris Lattner6c95d242011-01-23 07:29:29 +00002390 isSafeForScalarRepl(AI, 0, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00002391 if (Info.isUnsafe) {
David Greene504c7d82010-01-05 01:27:09 +00002392 DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002393 return false;
Chris Lattnerf5990ed2004-11-14 04:24:28 +00002394 }
Bob Wilson69743022011-01-13 20:59:44 +00002395
Chris Lattner39a1c042007-05-30 06:11:23 +00002396 // Okay, we know all the users are promotable. If the aggregate is a memcpy
2397 // source and destination, we have to be careful. In particular, the memcpy
2398 // could be moving around elements that live in structure padding of the LLVM
2399 // types, but may actually be used. In these cases, we refuse to promote the
2400 // struct.
2401 if (Info.isMemCpySrc && Info.isMemCpyDst &&
Bob Wilsonb742def2009-12-18 20:14:40 +00002402 HasPadding(AI->getAllocatedType(), *TD))
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002403 return false;
Duncan Sands3cb36502007-11-04 14:43:57 +00002404
Chris Lattner396a0562011-01-16 17:46:19 +00002405 // If the alloca never has an access to just *part* of it, but is accessed
2406 // via loads and stores, then we should use ConvertToScalarInfo to promote
Chris Lattner7e9b4272011-01-16 06:18:28 +00002407 // the alloca instead of promoting each piece at a time and inserting fission
2408 // and fusion code.
2409 if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2410 // If the struct/array just has one element, use basic SRoA.
2411 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2412 if (ST->getNumElements() > 1) return false;
2413 } else {
2414 if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2415 return false;
2416 }
2417 }
Chris Lattner145c5322011-01-23 08:27:54 +00002418
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002419 return true;
Chris Lattner5e062a12003-05-30 04:15:41 +00002420}
Chris Lattnera1888942005-12-12 07:19:13 +00002421
Chris Lattner800de312008-02-29 07:03:13 +00002422
Chris Lattner79b3bd32007-04-25 06:40:51 +00002423
2424/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2425/// some part of a constant global variable. This intentionally only accepts
2426/// constant expressions because we don't can't rewrite arbitrary instructions.
2427static bool PointsToConstantGlobal(Value *V) {
2428 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2429 return GV->isConstant();
2430 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Bob Wilson69743022011-01-13 20:59:44 +00002431 if (CE->getOpcode() == Instruction::BitCast ||
Chris Lattner79b3bd32007-04-25 06:40:51 +00002432 CE->getOpcode() == Instruction::GetElementPtr)
2433 return PointsToConstantGlobal(CE->getOperand(0));
2434 return false;
2435}
2436
2437/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2438/// pointer to an alloca. Ignore any reads of the pointer, return false if we
2439/// see any stores or other unknown uses. If we see pointer arithmetic, keep
2440/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2441/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
Nick Lewycky081f8002010-11-24 22:04:20 +00002442/// the alloca, and if the source pointer is a pointer to a constant global, we
Chris Lattner79b3bd32007-04-25 06:40:51 +00002443/// can optimize this.
Chris Lattner31d80102010-04-15 21:59:20 +00002444static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
Chris Lattner79b3bd32007-04-25 06:40:51 +00002445 bool isOffset) {
2446 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
Gabor Greif8a8a4352010-04-06 19:32:30 +00002447 User *U = cast<Instruction>(*UI);
2448
Chris Lattner2e618492010-11-18 06:20:47 +00002449 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
Chris Lattner6e733d32009-01-28 20:16:43 +00002450 // Ignore non-volatile loads, they are always ok.
Chris Lattner2e618492010-11-18 06:20:47 +00002451 if (LI->isVolatile()) return false;
2452 continue;
2453 }
Bob Wilson69743022011-01-13 20:59:44 +00002454
Gabor Greif8a8a4352010-04-06 19:32:30 +00002455 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
Chris Lattner79b3bd32007-04-25 06:40:51 +00002456 // If uses of the bitcast are ok, we are ok.
2457 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2458 return false;
2459 continue;
2460 }
Gabor Greif8a8a4352010-04-06 19:32:30 +00002461 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
Chris Lattner79b3bd32007-04-25 06:40:51 +00002462 // If the GEP has all zero indices, it doesn't offset the pointer. If it
2463 // doesn't, it does.
2464 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2465 isOffset || !GEP->hasAllZeroIndices()))
2466 return false;
2467 continue;
2468 }
Bob Wilson69743022011-01-13 20:59:44 +00002469
Chris Lattner62480652010-11-18 06:41:51 +00002470 if (CallSite CS = U) {
2471 // If this is a readonly/readnone call site, then we know it is just a
2472 // load and we can ignore it.
Chris Lattnera9be1df2010-11-18 06:26:49 +00002473 if (CS.onlyReadsMemory())
2474 continue;
Nick Lewycky081f8002010-11-24 22:04:20 +00002475
2476 // If this is the function being called then we treat it like a load and
2477 // ignore it.
2478 if (CS.isCallee(UI))
2479 continue;
Bob Wilson69743022011-01-13 20:59:44 +00002480
Chris Lattner62480652010-11-18 06:41:51 +00002481 // If this is being passed as a byval argument, the caller is making a
2482 // copy, so it is only a read of the alloca.
2483 unsigned ArgNo = CS.getArgumentNo(UI);
2484 if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2485 continue;
2486 }
Bob Wilson69743022011-01-13 20:59:44 +00002487
Chris Lattner79b3bd32007-04-25 06:40:51 +00002488 // If this is isn't our memcpy/memmove, reject it as something we can't
2489 // handle.
Chris Lattner31d80102010-04-15 21:59:20 +00002490 MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2491 if (MI == 0)
Chris Lattner79b3bd32007-04-25 06:40:51 +00002492 return false;
Bob Wilson69743022011-01-13 20:59:44 +00002493
Chris Lattner2e618492010-11-18 06:20:47 +00002494 // If the transfer is using the alloca as a source of the transfer, then
Chris Lattner2e29ebd2010-11-18 07:32:33 +00002495 // ignore it since it is a load (unless the transfer is volatile).
Chris Lattner2e618492010-11-18 06:20:47 +00002496 if (UI.getOperandNo() == 1) {
2497 if (MI->isVolatile()) return false;
2498 continue;
2499 }
Chris Lattner79b3bd32007-04-25 06:40:51 +00002500
2501 // If we already have seen a copy, reject the second one.
2502 if (TheCopy) return false;
Bob Wilson69743022011-01-13 20:59:44 +00002503
Chris Lattner79b3bd32007-04-25 06:40:51 +00002504 // If the pointer has been offset from the start of the alloca, we can't
2505 // safely handle this.
2506 if (isOffset) return false;
2507
2508 // If the memintrinsic isn't using the alloca as the dest, reject it.
Gabor Greifa6aac4c2010-07-16 09:38:02 +00002509 if (UI.getOperandNo() != 0) return false;
Bob Wilson69743022011-01-13 20:59:44 +00002510
Chris Lattner79b3bd32007-04-25 06:40:51 +00002511 // If the source of the memcpy/move is not a constant global, reject it.
Chris Lattner31d80102010-04-15 21:59:20 +00002512 if (!PointsToConstantGlobal(MI->getSource()))
Chris Lattner79b3bd32007-04-25 06:40:51 +00002513 return false;
Bob Wilson69743022011-01-13 20:59:44 +00002514
Chris Lattner79b3bd32007-04-25 06:40:51 +00002515 // Otherwise, the transform is safe. Remember the copy instruction.
2516 TheCopy = MI;
2517 }
2518 return true;
2519}
2520
2521/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2522/// modified by a copy from a constant global. If we can prove this, we can
2523/// replace any uses of the alloca with uses of the global directly.
Chris Lattner31d80102010-04-15 21:59:20 +00002524MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2525 MemTransferInst *TheCopy = 0;
Chris Lattner79b3bd32007-04-25 06:40:51 +00002526 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2527 return TheCopy;
2528 return 0;
2529}