blob: 082b896b37b3199bc112008cb8377f7cf50b2fc9 [file] [log] [blame]
Misha Brukmana85d6bc2002-11-22 22:42:50 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Chris Lattnerabf05b22003-08-03 21:55:55 +000016#include "X86GenInstrInfo.inc"
Evan Chengaa3c1412006-05-30 21:45:53 +000017#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson718cb662007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng0488db92007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000028
Brian Gaeked0fde302003-11-11 22:41:34 +000029using namespace llvm;
30
Owen Anderson43dbe052008-01-07 01:35:02 +000031namespace {
32 cl::opt<bool>
33 NoFusing("disable-spill-fusing",
34 cl::desc("Disable fusing of spill code into instructions"));
35 cl::opt<bool>
36 PrintFailedFusing("print-failed-fuse-candidates",
37 cl::desc("Print instructions that the allocator wants to"
38 " fuse, but the X86 backend currently can't"),
39 cl::Hidden);
Evan Chengd8850a52008-02-22 09:25:47 +000040 cl::opt<bool>
41 ReMatPICLoad("remat-pic-load",
42 cl::desc("Allow rematerializing pic load"),
43 cl::init(false), cl::Hidden);
Owen Anderson43dbe052008-01-07 01:35:02 +000044}
45
Evan Chengaa3c1412006-05-30 21:45:53 +000046X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattner64105522008-01-01 01:03:04 +000047 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Evan Cheng25ab6902006-09-08 06:48:29 +000048 TM(tm), RI(tm, *this) {
Owen Anderson43dbe052008-01-07 01:35:02 +000049 SmallVector<unsigned,16> AmbEntries;
50 static const unsigned OpTbl2Addr[][2] = {
51 { X86::ADC32ri, X86::ADC32mi },
52 { X86::ADC32ri8, X86::ADC32mi8 },
53 { X86::ADC32rr, X86::ADC32mr },
54 { X86::ADC64ri32, X86::ADC64mi32 },
55 { X86::ADC64ri8, X86::ADC64mi8 },
56 { X86::ADC64rr, X86::ADC64mr },
57 { X86::ADD16ri, X86::ADD16mi },
58 { X86::ADD16ri8, X86::ADD16mi8 },
59 { X86::ADD16rr, X86::ADD16mr },
60 { X86::ADD32ri, X86::ADD32mi },
61 { X86::ADD32ri8, X86::ADD32mi8 },
62 { X86::ADD32rr, X86::ADD32mr },
63 { X86::ADD64ri32, X86::ADD64mi32 },
64 { X86::ADD64ri8, X86::ADD64mi8 },
65 { X86::ADD64rr, X86::ADD64mr },
66 { X86::ADD8ri, X86::ADD8mi },
67 { X86::ADD8rr, X86::ADD8mr },
68 { X86::AND16ri, X86::AND16mi },
69 { X86::AND16ri8, X86::AND16mi8 },
70 { X86::AND16rr, X86::AND16mr },
71 { X86::AND32ri, X86::AND32mi },
72 { X86::AND32ri8, X86::AND32mi8 },
73 { X86::AND32rr, X86::AND32mr },
74 { X86::AND64ri32, X86::AND64mi32 },
75 { X86::AND64ri8, X86::AND64mi8 },
76 { X86::AND64rr, X86::AND64mr },
77 { X86::AND8ri, X86::AND8mi },
78 { X86::AND8rr, X86::AND8mr },
79 { X86::DEC16r, X86::DEC16m },
80 { X86::DEC32r, X86::DEC32m },
81 { X86::DEC64_16r, X86::DEC64_16m },
82 { X86::DEC64_32r, X86::DEC64_32m },
83 { X86::DEC64r, X86::DEC64m },
84 { X86::DEC8r, X86::DEC8m },
85 { X86::INC16r, X86::INC16m },
86 { X86::INC32r, X86::INC32m },
87 { X86::INC64_16r, X86::INC64_16m },
88 { X86::INC64_32r, X86::INC64_32m },
89 { X86::INC64r, X86::INC64m },
90 { X86::INC8r, X86::INC8m },
91 { X86::NEG16r, X86::NEG16m },
92 { X86::NEG32r, X86::NEG32m },
93 { X86::NEG64r, X86::NEG64m },
94 { X86::NEG8r, X86::NEG8m },
95 { X86::NOT16r, X86::NOT16m },
96 { X86::NOT32r, X86::NOT32m },
97 { X86::NOT64r, X86::NOT64m },
98 { X86::NOT8r, X86::NOT8m },
99 { X86::OR16ri, X86::OR16mi },
100 { X86::OR16ri8, X86::OR16mi8 },
101 { X86::OR16rr, X86::OR16mr },
102 { X86::OR32ri, X86::OR32mi },
103 { X86::OR32ri8, X86::OR32mi8 },
104 { X86::OR32rr, X86::OR32mr },
105 { X86::OR64ri32, X86::OR64mi32 },
106 { X86::OR64ri8, X86::OR64mi8 },
107 { X86::OR64rr, X86::OR64mr },
108 { X86::OR8ri, X86::OR8mi },
109 { X86::OR8rr, X86::OR8mr },
110 { X86::ROL16r1, X86::ROL16m1 },
111 { X86::ROL16rCL, X86::ROL16mCL },
112 { X86::ROL16ri, X86::ROL16mi },
113 { X86::ROL32r1, X86::ROL32m1 },
114 { X86::ROL32rCL, X86::ROL32mCL },
115 { X86::ROL32ri, X86::ROL32mi },
116 { X86::ROL64r1, X86::ROL64m1 },
117 { X86::ROL64rCL, X86::ROL64mCL },
118 { X86::ROL64ri, X86::ROL64mi },
119 { X86::ROL8r1, X86::ROL8m1 },
120 { X86::ROL8rCL, X86::ROL8mCL },
121 { X86::ROL8ri, X86::ROL8mi },
122 { X86::ROR16r1, X86::ROR16m1 },
123 { X86::ROR16rCL, X86::ROR16mCL },
124 { X86::ROR16ri, X86::ROR16mi },
125 { X86::ROR32r1, X86::ROR32m1 },
126 { X86::ROR32rCL, X86::ROR32mCL },
127 { X86::ROR32ri, X86::ROR32mi },
128 { X86::ROR64r1, X86::ROR64m1 },
129 { X86::ROR64rCL, X86::ROR64mCL },
130 { X86::ROR64ri, X86::ROR64mi },
131 { X86::ROR8r1, X86::ROR8m1 },
132 { X86::ROR8rCL, X86::ROR8mCL },
133 { X86::ROR8ri, X86::ROR8mi },
134 { X86::SAR16r1, X86::SAR16m1 },
135 { X86::SAR16rCL, X86::SAR16mCL },
136 { X86::SAR16ri, X86::SAR16mi },
137 { X86::SAR32r1, X86::SAR32m1 },
138 { X86::SAR32rCL, X86::SAR32mCL },
139 { X86::SAR32ri, X86::SAR32mi },
140 { X86::SAR64r1, X86::SAR64m1 },
141 { X86::SAR64rCL, X86::SAR64mCL },
142 { X86::SAR64ri, X86::SAR64mi },
143 { X86::SAR8r1, X86::SAR8m1 },
144 { X86::SAR8rCL, X86::SAR8mCL },
145 { X86::SAR8ri, X86::SAR8mi },
146 { X86::SBB32ri, X86::SBB32mi },
147 { X86::SBB32ri8, X86::SBB32mi8 },
148 { X86::SBB32rr, X86::SBB32mr },
149 { X86::SBB64ri32, X86::SBB64mi32 },
150 { X86::SBB64ri8, X86::SBB64mi8 },
151 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson43dbe052008-01-07 01:35:02 +0000152 { X86::SHL16rCL, X86::SHL16mCL },
153 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000154 { X86::SHL32rCL, X86::SHL32mCL },
155 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000156 { X86::SHL64rCL, X86::SHL64mCL },
157 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000158 { X86::SHL8rCL, X86::SHL8mCL },
159 { X86::SHL8ri, X86::SHL8mi },
160 { X86::SHLD16rrCL, X86::SHLD16mrCL },
161 { X86::SHLD16rri8, X86::SHLD16mri8 },
162 { X86::SHLD32rrCL, X86::SHLD32mrCL },
163 { X86::SHLD32rri8, X86::SHLD32mri8 },
164 { X86::SHLD64rrCL, X86::SHLD64mrCL },
165 { X86::SHLD64rri8, X86::SHLD64mri8 },
166 { X86::SHR16r1, X86::SHR16m1 },
167 { X86::SHR16rCL, X86::SHR16mCL },
168 { X86::SHR16ri, X86::SHR16mi },
169 { X86::SHR32r1, X86::SHR32m1 },
170 { X86::SHR32rCL, X86::SHR32mCL },
171 { X86::SHR32ri, X86::SHR32mi },
172 { X86::SHR64r1, X86::SHR64m1 },
173 { X86::SHR64rCL, X86::SHR64mCL },
174 { X86::SHR64ri, X86::SHR64mi },
175 { X86::SHR8r1, X86::SHR8m1 },
176 { X86::SHR8rCL, X86::SHR8mCL },
177 { X86::SHR8ri, X86::SHR8mi },
178 { X86::SHRD16rrCL, X86::SHRD16mrCL },
179 { X86::SHRD16rri8, X86::SHRD16mri8 },
180 { X86::SHRD32rrCL, X86::SHRD32mrCL },
181 { X86::SHRD32rri8, X86::SHRD32mri8 },
182 { X86::SHRD64rrCL, X86::SHRD64mrCL },
183 { X86::SHRD64rri8, X86::SHRD64mri8 },
184 { X86::SUB16ri, X86::SUB16mi },
185 { X86::SUB16ri8, X86::SUB16mi8 },
186 { X86::SUB16rr, X86::SUB16mr },
187 { X86::SUB32ri, X86::SUB32mi },
188 { X86::SUB32ri8, X86::SUB32mi8 },
189 { X86::SUB32rr, X86::SUB32mr },
190 { X86::SUB64ri32, X86::SUB64mi32 },
191 { X86::SUB64ri8, X86::SUB64mi8 },
192 { X86::SUB64rr, X86::SUB64mr },
193 { X86::SUB8ri, X86::SUB8mi },
194 { X86::SUB8rr, X86::SUB8mr },
195 { X86::XOR16ri, X86::XOR16mi },
196 { X86::XOR16ri8, X86::XOR16mi8 },
197 { X86::XOR16rr, X86::XOR16mr },
198 { X86::XOR32ri, X86::XOR32mi },
199 { X86::XOR32ri8, X86::XOR32mi8 },
200 { X86::XOR32rr, X86::XOR32mr },
201 { X86::XOR64ri32, X86::XOR64mi32 },
202 { X86::XOR64ri8, X86::XOR64mi8 },
203 { X86::XOR64rr, X86::XOR64mr },
204 { X86::XOR8ri, X86::XOR8mi },
205 { X86::XOR8rr, X86::XOR8mr }
206 };
207
208 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
209 unsigned RegOp = OpTbl2Addr[i][0];
210 unsigned MemOp = OpTbl2Addr[i][1];
211 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
212 assert(false && "Duplicated entries?");
213 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
214 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
215 std::make_pair(RegOp, AuxInfo))))
216 AmbEntries.push_back(MemOp);
217 }
218
219 // If the third value is 1, then it's folding either a load or a store.
220 static const unsigned OpTbl0[][3] = {
221 { X86::CALL32r, X86::CALL32m, 1 },
222 { X86::CALL64r, X86::CALL64m, 1 },
223 { X86::CMP16ri, X86::CMP16mi, 1 },
224 { X86::CMP16ri8, X86::CMP16mi8, 1 },
225 { X86::CMP32ri, X86::CMP32mi, 1 },
226 { X86::CMP32ri8, X86::CMP32mi8, 1 },
227 { X86::CMP64ri32, X86::CMP64mi32, 1 },
228 { X86::CMP64ri8, X86::CMP64mi8, 1 },
229 { X86::CMP8ri, X86::CMP8mi, 1 },
230 { X86::DIV16r, X86::DIV16m, 1 },
231 { X86::DIV32r, X86::DIV32m, 1 },
232 { X86::DIV64r, X86::DIV64m, 1 },
233 { X86::DIV8r, X86::DIV8m, 1 },
234 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
235 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
236 { X86::IDIV16r, X86::IDIV16m, 1 },
237 { X86::IDIV32r, X86::IDIV32m, 1 },
238 { X86::IDIV64r, X86::IDIV64m, 1 },
239 { X86::IDIV8r, X86::IDIV8m, 1 },
240 { X86::IMUL16r, X86::IMUL16m, 1 },
241 { X86::IMUL32r, X86::IMUL32m, 1 },
242 { X86::IMUL64r, X86::IMUL64m, 1 },
243 { X86::IMUL8r, X86::IMUL8m, 1 },
244 { X86::JMP32r, X86::JMP32m, 1 },
245 { X86::JMP64r, X86::JMP64m, 1 },
246 { X86::MOV16ri, X86::MOV16mi, 0 },
247 { X86::MOV16rr, X86::MOV16mr, 0 },
248 { X86::MOV16to16_, X86::MOV16_mr, 0 },
249 { X86::MOV32ri, X86::MOV32mi, 0 },
250 { X86::MOV32rr, X86::MOV32mr, 0 },
251 { X86::MOV32to32_, X86::MOV32_mr, 0 },
252 { X86::MOV64ri32, X86::MOV64mi32, 0 },
253 { X86::MOV64rr, X86::MOV64mr, 0 },
254 { X86::MOV8ri, X86::MOV8mi, 0 },
255 { X86::MOV8rr, X86::MOV8mr, 0 },
256 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
257 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
258 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
259 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
260 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
261 { X86::MOVSDrr, X86::MOVSDmr, 0 },
262 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
263 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
264 { X86::MOVSSrr, X86::MOVSSmr, 0 },
265 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
266 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
267 { X86::MUL16r, X86::MUL16m, 1 },
268 { X86::MUL32r, X86::MUL32m, 1 },
269 { X86::MUL64r, X86::MUL64m, 1 },
270 { X86::MUL8r, X86::MUL8m, 1 },
271 { X86::SETAEr, X86::SETAEm, 0 },
272 { X86::SETAr, X86::SETAm, 0 },
273 { X86::SETBEr, X86::SETBEm, 0 },
274 { X86::SETBr, X86::SETBm, 0 },
275 { X86::SETEr, X86::SETEm, 0 },
276 { X86::SETGEr, X86::SETGEm, 0 },
277 { X86::SETGr, X86::SETGm, 0 },
278 { X86::SETLEr, X86::SETLEm, 0 },
279 { X86::SETLr, X86::SETLm, 0 },
280 { X86::SETNEr, X86::SETNEm, 0 },
281 { X86::SETNPr, X86::SETNPm, 0 },
282 { X86::SETNSr, X86::SETNSm, 0 },
283 { X86::SETPr, X86::SETPm, 0 },
284 { X86::SETSr, X86::SETSm, 0 },
285 { X86::TAILJMPr, X86::TAILJMPm, 1 },
286 { X86::TEST16ri, X86::TEST16mi, 1 },
287 { X86::TEST32ri, X86::TEST32mi, 1 },
288 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000289 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000290 };
291
292 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
293 unsigned RegOp = OpTbl0[i][0];
294 unsigned MemOp = OpTbl0[i][1];
295 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
296 assert(false && "Duplicated entries?");
297 unsigned FoldedLoad = OpTbl0[i][2];
298 // Index 0, folded load or store.
299 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
300 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
301 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
302 std::make_pair(RegOp, AuxInfo))))
303 AmbEntries.push_back(MemOp);
304 }
305
306 static const unsigned OpTbl1[][2] = {
307 { X86::CMP16rr, X86::CMP16rm },
308 { X86::CMP32rr, X86::CMP32rm },
309 { X86::CMP64rr, X86::CMP64rm },
310 { X86::CMP8rr, X86::CMP8rm },
311 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
312 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
313 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
314 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
315 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
316 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
317 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
318 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
319 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
320 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
321 { X86::FsMOVAPDrr, X86::MOVSDrm },
322 { X86::FsMOVAPSrr, X86::MOVSSrm },
323 { X86::IMUL16rri, X86::IMUL16rmi },
324 { X86::IMUL16rri8, X86::IMUL16rmi8 },
325 { X86::IMUL32rri, X86::IMUL32rmi },
326 { X86::IMUL32rri8, X86::IMUL32rmi8 },
327 { X86::IMUL64rri32, X86::IMUL64rmi32 },
328 { X86::IMUL64rri8, X86::IMUL64rmi8 },
329 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
330 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
331 { X86::Int_COMISDrr, X86::Int_COMISDrm },
332 { X86::Int_COMISSrr, X86::Int_COMISSrm },
333 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
334 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
335 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
336 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
337 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
338 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
339 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
340 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
341 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
342 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
343 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
344 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
345 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
346 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
347 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
348 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
349 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
350 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
351 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
352 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
353 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
354 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
355 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
356 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
357 { X86::MOV16rr, X86::MOV16rm },
358 { X86::MOV16to16_, X86::MOV16_rm },
359 { X86::MOV32rr, X86::MOV32rm },
360 { X86::MOV32to32_, X86::MOV32_rm },
361 { X86::MOV64rr, X86::MOV64rm },
362 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
363 { X86::MOV64toSDrr, X86::MOV64toSDrm },
364 { X86::MOV8rr, X86::MOV8rm },
365 { X86::MOVAPDrr, X86::MOVAPDrm },
366 { X86::MOVAPSrr, X86::MOVAPSrm },
367 { X86::MOVDDUPrr, X86::MOVDDUPrm },
368 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
369 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
370 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
371 { X86::MOVSDrr, X86::MOVSDrm },
372 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
373 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
374 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
375 { X86::MOVSSrr, X86::MOVSSrm },
376 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
377 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
378 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
379 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
380 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
381 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
382 { X86::MOVUPDrr, X86::MOVUPDrm },
383 { X86::MOVUPSrr, X86::MOVUPSrm },
384 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
385 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
386 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
387 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
388 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
389 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
390 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
391 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
392 { X86::PSHUFDri, X86::PSHUFDmi },
393 { X86::PSHUFHWri, X86::PSHUFHWmi },
394 { X86::PSHUFLWri, X86::PSHUFLWmi },
395 { X86::PsMOVZX64rr32, X86::PsMOVZX64rm32 },
396 { X86::RCPPSr, X86::RCPPSm },
397 { X86::RCPPSr_Int, X86::RCPPSm_Int },
398 { X86::RSQRTPSr, X86::RSQRTPSm },
399 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
400 { X86::RSQRTSSr, X86::RSQRTSSm },
401 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
402 { X86::SQRTPDr, X86::SQRTPDm },
403 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
404 { X86::SQRTPSr, X86::SQRTPSm },
405 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
406 { X86::SQRTSDr, X86::SQRTSDm },
407 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
408 { X86::SQRTSSr, X86::SQRTSSm },
409 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
410 { X86::TEST16rr, X86::TEST16rm },
411 { X86::TEST32rr, X86::TEST32rm },
412 { X86::TEST64rr, X86::TEST64rm },
413 { X86::TEST8rr, X86::TEST8rm },
414 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
415 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000416 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson43dbe052008-01-07 01:35:02 +0000417 };
418
419 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
420 unsigned RegOp = OpTbl1[i][0];
421 unsigned MemOp = OpTbl1[i][1];
422 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
423 assert(false && "Duplicated entries?");
424 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
425 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
426 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
427 std::make_pair(RegOp, AuxInfo))))
428 AmbEntries.push_back(MemOp);
429 }
430
431 static const unsigned OpTbl2[][2] = {
432 { X86::ADC32rr, X86::ADC32rm },
433 { X86::ADC64rr, X86::ADC64rm },
434 { X86::ADD16rr, X86::ADD16rm },
435 { X86::ADD32rr, X86::ADD32rm },
436 { X86::ADD64rr, X86::ADD64rm },
437 { X86::ADD8rr, X86::ADD8rm },
438 { X86::ADDPDrr, X86::ADDPDrm },
439 { X86::ADDPSrr, X86::ADDPSrm },
440 { X86::ADDSDrr, X86::ADDSDrm },
441 { X86::ADDSSrr, X86::ADDSSrm },
442 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
443 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
444 { X86::AND16rr, X86::AND16rm },
445 { X86::AND32rr, X86::AND32rm },
446 { X86::AND64rr, X86::AND64rm },
447 { X86::AND8rr, X86::AND8rm },
448 { X86::ANDNPDrr, X86::ANDNPDrm },
449 { X86::ANDNPSrr, X86::ANDNPSrm },
450 { X86::ANDPDrr, X86::ANDPDrm },
451 { X86::ANDPSrr, X86::ANDPSrm },
452 { X86::CMOVA16rr, X86::CMOVA16rm },
453 { X86::CMOVA32rr, X86::CMOVA32rm },
454 { X86::CMOVA64rr, X86::CMOVA64rm },
455 { X86::CMOVAE16rr, X86::CMOVAE16rm },
456 { X86::CMOVAE32rr, X86::CMOVAE32rm },
457 { X86::CMOVAE64rr, X86::CMOVAE64rm },
458 { X86::CMOVB16rr, X86::CMOVB16rm },
459 { X86::CMOVB32rr, X86::CMOVB32rm },
460 { X86::CMOVB64rr, X86::CMOVB64rm },
461 { X86::CMOVBE16rr, X86::CMOVBE16rm },
462 { X86::CMOVBE32rr, X86::CMOVBE32rm },
463 { X86::CMOVBE64rr, X86::CMOVBE64rm },
464 { X86::CMOVE16rr, X86::CMOVE16rm },
465 { X86::CMOVE32rr, X86::CMOVE32rm },
466 { X86::CMOVE64rr, X86::CMOVE64rm },
467 { X86::CMOVG16rr, X86::CMOVG16rm },
468 { X86::CMOVG32rr, X86::CMOVG32rm },
469 { X86::CMOVG64rr, X86::CMOVG64rm },
470 { X86::CMOVGE16rr, X86::CMOVGE16rm },
471 { X86::CMOVGE32rr, X86::CMOVGE32rm },
472 { X86::CMOVGE64rr, X86::CMOVGE64rm },
473 { X86::CMOVL16rr, X86::CMOVL16rm },
474 { X86::CMOVL32rr, X86::CMOVL32rm },
475 { X86::CMOVL64rr, X86::CMOVL64rm },
476 { X86::CMOVLE16rr, X86::CMOVLE16rm },
477 { X86::CMOVLE32rr, X86::CMOVLE32rm },
478 { X86::CMOVLE64rr, X86::CMOVLE64rm },
479 { X86::CMOVNE16rr, X86::CMOVNE16rm },
480 { X86::CMOVNE32rr, X86::CMOVNE32rm },
481 { X86::CMOVNE64rr, X86::CMOVNE64rm },
482 { X86::CMOVNP16rr, X86::CMOVNP16rm },
483 { X86::CMOVNP32rr, X86::CMOVNP32rm },
484 { X86::CMOVNP64rr, X86::CMOVNP64rm },
485 { X86::CMOVNS16rr, X86::CMOVNS16rm },
486 { X86::CMOVNS32rr, X86::CMOVNS32rm },
487 { X86::CMOVNS64rr, X86::CMOVNS64rm },
488 { X86::CMOVP16rr, X86::CMOVP16rm },
489 { X86::CMOVP32rr, X86::CMOVP32rm },
490 { X86::CMOVP64rr, X86::CMOVP64rm },
491 { X86::CMOVS16rr, X86::CMOVS16rm },
492 { X86::CMOVS32rr, X86::CMOVS32rm },
493 { X86::CMOVS64rr, X86::CMOVS64rm },
494 { X86::CMPPDrri, X86::CMPPDrmi },
495 { X86::CMPPSrri, X86::CMPPSrmi },
496 { X86::CMPSDrr, X86::CMPSDrm },
497 { X86::CMPSSrr, X86::CMPSSrm },
498 { X86::DIVPDrr, X86::DIVPDrm },
499 { X86::DIVPSrr, X86::DIVPSrm },
500 { X86::DIVSDrr, X86::DIVSDrm },
501 { X86::DIVSSrr, X86::DIVSSrm },
Evan Cheng33663fc2008-02-08 00:12:56 +0000502 { X86::FsANDNPDrr, X86::FsANDNPDrm },
503 { X86::FsANDNPSrr, X86::FsANDNPSrm },
504 { X86::FsANDPDrr, X86::FsANDPDrm },
505 { X86::FsANDPSrr, X86::FsANDPSrm },
506 { X86::FsORPDrr, X86::FsORPDrm },
507 { X86::FsORPSrr, X86::FsORPSrm },
508 { X86::FsXORPDrr, X86::FsXORPDrm },
509 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson43dbe052008-01-07 01:35:02 +0000510 { X86::HADDPDrr, X86::HADDPDrm },
511 { X86::HADDPSrr, X86::HADDPSrm },
512 { X86::HSUBPDrr, X86::HSUBPDrm },
513 { X86::HSUBPSrr, X86::HSUBPSrm },
514 { X86::IMUL16rr, X86::IMUL16rm },
515 { X86::IMUL32rr, X86::IMUL32rm },
516 { X86::IMUL64rr, X86::IMUL64rm },
517 { X86::MAXPDrr, X86::MAXPDrm },
518 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
519 { X86::MAXPSrr, X86::MAXPSrm },
520 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
521 { X86::MAXSDrr, X86::MAXSDrm },
522 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
523 { X86::MAXSSrr, X86::MAXSSrm },
524 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
525 { X86::MINPDrr, X86::MINPDrm },
526 { X86::MINPDrr_Int, X86::MINPDrm_Int },
527 { X86::MINPSrr, X86::MINPSrm },
528 { X86::MINPSrr_Int, X86::MINPSrm_Int },
529 { X86::MINSDrr, X86::MINSDrm },
530 { X86::MINSDrr_Int, X86::MINSDrm_Int },
531 { X86::MINSSrr, X86::MINSSrm },
532 { X86::MINSSrr_Int, X86::MINSSrm_Int },
533 { X86::MULPDrr, X86::MULPDrm },
534 { X86::MULPSrr, X86::MULPSrm },
535 { X86::MULSDrr, X86::MULSDrm },
536 { X86::MULSSrr, X86::MULSSrm },
537 { X86::OR16rr, X86::OR16rm },
538 { X86::OR32rr, X86::OR32rm },
539 { X86::OR64rr, X86::OR64rm },
540 { X86::OR8rr, X86::OR8rm },
541 { X86::ORPDrr, X86::ORPDrm },
542 { X86::ORPSrr, X86::ORPSrm },
543 { X86::PACKSSDWrr, X86::PACKSSDWrm },
544 { X86::PACKSSWBrr, X86::PACKSSWBrm },
545 { X86::PACKUSWBrr, X86::PACKUSWBrm },
546 { X86::PADDBrr, X86::PADDBrm },
547 { X86::PADDDrr, X86::PADDDrm },
548 { X86::PADDQrr, X86::PADDQrm },
549 { X86::PADDSBrr, X86::PADDSBrm },
550 { X86::PADDSWrr, X86::PADDSWrm },
551 { X86::PADDWrr, X86::PADDWrm },
552 { X86::PANDNrr, X86::PANDNrm },
553 { X86::PANDrr, X86::PANDrm },
554 { X86::PAVGBrr, X86::PAVGBrm },
555 { X86::PAVGWrr, X86::PAVGWrm },
556 { X86::PCMPEQBrr, X86::PCMPEQBrm },
557 { X86::PCMPEQDrr, X86::PCMPEQDrm },
558 { X86::PCMPEQWrr, X86::PCMPEQWrm },
559 { X86::PCMPGTBrr, X86::PCMPGTBrm },
560 { X86::PCMPGTDrr, X86::PCMPGTDrm },
561 { X86::PCMPGTWrr, X86::PCMPGTWrm },
562 { X86::PINSRWrri, X86::PINSRWrmi },
563 { X86::PMADDWDrr, X86::PMADDWDrm },
564 { X86::PMAXSWrr, X86::PMAXSWrm },
565 { X86::PMAXUBrr, X86::PMAXUBrm },
566 { X86::PMINSWrr, X86::PMINSWrm },
567 { X86::PMINUBrr, X86::PMINUBrm },
568 { X86::PMULHUWrr, X86::PMULHUWrm },
569 { X86::PMULHWrr, X86::PMULHWrm },
570 { X86::PMULLWrr, X86::PMULLWrm },
571 { X86::PMULUDQrr, X86::PMULUDQrm },
572 { X86::PORrr, X86::PORrm },
573 { X86::PSADBWrr, X86::PSADBWrm },
574 { X86::PSLLDrr, X86::PSLLDrm },
575 { X86::PSLLQrr, X86::PSLLQrm },
576 { X86::PSLLWrr, X86::PSLLWrm },
577 { X86::PSRADrr, X86::PSRADrm },
578 { X86::PSRAWrr, X86::PSRAWrm },
579 { X86::PSRLDrr, X86::PSRLDrm },
580 { X86::PSRLQrr, X86::PSRLQrm },
581 { X86::PSRLWrr, X86::PSRLWrm },
582 { X86::PSUBBrr, X86::PSUBBrm },
583 { X86::PSUBDrr, X86::PSUBDrm },
584 { X86::PSUBSBrr, X86::PSUBSBrm },
585 { X86::PSUBSWrr, X86::PSUBSWrm },
586 { X86::PSUBWrr, X86::PSUBWrm },
587 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
588 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
589 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
590 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
591 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
592 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
593 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
594 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
595 { X86::PXORrr, X86::PXORrm },
596 { X86::SBB32rr, X86::SBB32rm },
597 { X86::SBB64rr, X86::SBB64rm },
598 { X86::SHUFPDrri, X86::SHUFPDrmi },
599 { X86::SHUFPSrri, X86::SHUFPSrmi },
600 { X86::SUB16rr, X86::SUB16rm },
601 { X86::SUB32rr, X86::SUB32rm },
602 { X86::SUB64rr, X86::SUB64rm },
603 { X86::SUB8rr, X86::SUB8rm },
604 { X86::SUBPDrr, X86::SUBPDrm },
605 { X86::SUBPSrr, X86::SUBPSrm },
606 { X86::SUBSDrr, X86::SUBSDrm },
607 { X86::SUBSSrr, X86::SUBSSrm },
608 // FIXME: TEST*rr -> swapped operand of TEST*mr.
609 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
610 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
611 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
612 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
613 { X86::XOR16rr, X86::XOR16rm },
614 { X86::XOR32rr, X86::XOR32rm },
615 { X86::XOR64rr, X86::XOR64rm },
616 { X86::XOR8rr, X86::XOR8rm },
617 { X86::XORPDrr, X86::XORPDrm },
618 { X86::XORPSrr, X86::XORPSrm }
619 };
620
621 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
622 unsigned RegOp = OpTbl2[i][0];
623 unsigned MemOp = OpTbl2[i][1];
624 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
625 assert(false && "Duplicated entries?");
626 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
627 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
628 std::make_pair(RegOp, AuxInfo))))
629 AmbEntries.push_back(MemOp);
630 }
631
632 // Remove ambiguous entries.
633 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Chris Lattner72614082002-10-25 22:55:53 +0000634}
635
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000636bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
637 unsigned& sourceReg,
638 unsigned& destReg) const {
Chris Lattnercc8cd0c2008-01-07 02:48:55 +0000639 unsigned oc = MI.getOpcode();
Evan Cheng25ab6902006-09-08 06:48:29 +0000640 if (oc == X86::MOV8rr || oc == X86::MOV16rr ||
641 oc == X86::MOV32rr || oc == X86::MOV64rr ||
Evan Cheng403be7e2006-05-08 08:01:26 +0000642 oc == X86::MOV16to16_ || oc == X86::MOV32to32_ ||
Dale Johannesene377d4d2007-07-04 21:07:47 +0000643 oc == X86::MOV_Fp3232 || oc == X86::MOVSSrr || oc == X86::MOVSDrr ||
644 oc == X86::MOV_Fp3264 || oc == X86::MOV_Fp6432 || oc == X86::MOV_Fp6464 ||
Evan Chengfe5cb192006-02-16 22:45:17 +0000645 oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr ||
Evan Cheng82521dd2006-03-21 07:09:35 +0000646 oc == X86::MOVAPSrr || oc == X86::MOVAPDrr ||
Evan Cheng11e15b32006-04-03 20:53:28 +0000647 oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr ||
Bill Wendling2f88dcd2007-03-08 22:09:11 +0000648 oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr ||
Bill Wendling6dd29e02007-04-24 21:17:46 +0000649 oc == X86::MMX_MOVD64rr || oc == X86::MMX_MOVQ64rr) {
Evan Cheng1e3417292007-04-25 07:12:14 +0000650 assert(MI.getNumOperands() >= 2 &&
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000651 MI.getOperand(0).isRegister() &&
652 MI.getOperand(1).isRegister() &&
653 "invalid register-register move instruction");
Alkis Evlogimenosbe766c72004-02-13 21:01:20 +0000654 sourceReg = MI.getOperand(1).getReg();
655 destReg = MI.getOperand(0).getReg();
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000656 return true;
657 }
658 return false;
659}
Alkis Evlogimenos36f506e2004-07-31 09:38:47 +0000660
Chris Lattner40839602006-02-02 20:12:32 +0000661unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
662 int &FrameIndex) const {
663 switch (MI->getOpcode()) {
664 default: break;
665 case X86::MOV8rm:
666 case X86::MOV16rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000667 case X86::MOV16_rm:
Chris Lattner40839602006-02-02 20:12:32 +0000668 case X86::MOV32rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000669 case X86::MOV32_rm:
Evan Cheng25ab6902006-09-08 06:48:29 +0000670 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000671 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +0000672 case X86::MOVSSrm:
673 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +0000674 case X86::MOVAPSrm:
675 case X86::MOVAPDrm:
Bill Wendling823efee2007-04-03 06:00:37 +0000676 case X86::MMX_MOVD64rm:
677 case X86::MMX_MOVQ64rm:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000678 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
679 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000680 MI->getOperand(2).getImm() == 1 &&
Chris Lattner40839602006-02-02 20:12:32 +0000681 MI->getOperand(3).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000682 MI->getOperand(4).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000683 FrameIndex = MI->getOperand(1).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000684 return MI->getOperand(0).getReg();
685 }
686 break;
687 }
688 return 0;
689}
690
691unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
692 int &FrameIndex) const {
693 switch (MI->getOpcode()) {
694 default: break;
695 case X86::MOV8mr:
696 case X86::MOV16mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000697 case X86::MOV16_mr:
Chris Lattner40839602006-02-02 20:12:32 +0000698 case X86::MOV32mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000699 case X86::MOV32_mr:
Evan Cheng25ab6902006-09-08 06:48:29 +0000700 case X86::MOV64mr:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000701 case X86::ST_FpP64m:
Chris Lattner40839602006-02-02 20:12:32 +0000702 case X86::MOVSSmr:
703 case X86::MOVSDmr:
Chris Lattner993c8972006-04-18 16:44:51 +0000704 case X86::MOVAPSmr:
705 case X86::MOVAPDmr:
Bill Wendling823efee2007-04-03 06:00:37 +0000706 case X86::MMX_MOVD64mr:
707 case X86::MMX_MOVQ64mr:
Bill Wendling71bfd112007-04-03 23:48:32 +0000708 case X86::MMX_MOVNTQmr:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000709 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
710 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000711 MI->getOperand(1).getImm() == 1 &&
Chris Lattner1c07e722006-02-02 20:38:12 +0000712 MI->getOperand(2).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000713 MI->getOperand(3).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000714 FrameIndex = MI->getOperand(0).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000715 return MI->getOperand(4).getReg();
716 }
717 break;
718 }
719 return 0;
720}
721
722
Bill Wendling041b3f82007-12-08 23:58:46 +0000723bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
Dan Gohmanc101e952007-06-14 20:50:44 +0000724 switch (MI->getOpcode()) {
725 default: break;
726 case X86::MOV8rm:
727 case X86::MOV16rm:
728 case X86::MOV16_rm:
729 case X86::MOV32rm:
730 case X86::MOV32_rm:
731 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000732 case X86::LD_Fp64m:
Dan Gohmanc101e952007-06-14 20:50:44 +0000733 case X86::MOVSSrm:
734 case X86::MOVSDrm:
735 case X86::MOVAPSrm:
736 case X86::MOVAPDrm:
737 case X86::MMX_MOVD64rm:
738 case X86::MMX_MOVQ64rm:
Dan Gohman82a87a02007-06-19 01:48:05 +0000739 // Loads from constant pools are trivially rematerializable.
Chris Lattner3b5a2212008-01-05 05:28:30 +0000740 if (MI->getOperand(1).isReg() && MI->getOperand(2).isImm() &&
741 MI->getOperand(3).isReg() && MI->getOperand(4).isCPI() &&
Chris Lattner3b5a2212008-01-05 05:28:30 +0000742 MI->getOperand(2).getImm() == 1 &&
Evan Chengd8850a52008-02-22 09:25:47 +0000743 MI->getOperand(3).getReg() == 0) {
744 unsigned BaseReg = MI->getOperand(1).getReg();
745 if (BaseReg == 0)
746 return true;
747 if (!ReMatPICLoad)
748 return false;
749 // Allow re-materialization of PIC load.
750 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
751 bool isPICBase = false;
752 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
753 E = MRI.def_end(); I != E; ++I) {
754 MachineInstr *DefMI = I.getOperand().getParent();
755 if (DefMI->getOpcode() != X86::MOVPC32r)
756 return false;
757 assert(!isPICBase && "More than one PIC base?");
758 isPICBase = true;
759 }
760 return isPICBase;
761 }
Chris Lattnerf29495a2008-01-05 06:10:42 +0000762
763 // If this is a load from a fixed argument slot, we know the value is
764 // invariant across the whole function, because we don't redefine argument
765 // values.
766#if 0
767 // FIXME: This is disabled due to a remat bug. rdar://5671644
Chris Lattner87943902008-01-10 04:16:31 +0000768 if (MI->getOperand(1).isFI()) {
769 const MachineFrameInfo &MFI=*MI->getParent()->getParent()->getFrameInfo();
770 int Idx = MI->getOperand(1).getIndex();
771 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
772 }
Chris Lattnerf29495a2008-01-05 06:10:42 +0000773#endif
774
Chris Lattner3b5a2212008-01-05 05:28:30 +0000775 return false;
Dan Gohmanc101e952007-06-14 20:50:44 +0000776 }
Dan Gohmand45eddd2007-06-26 00:48:07 +0000777 // All other instructions marked M_REMATERIALIZABLE are always trivially
778 // rematerializable.
779 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +0000780}
781
Chris Lattnera22edc82008-01-10 23:08:24 +0000782/// isInvariantLoad - Return true if the specified instruction (which is marked
783/// mayLoad) is loading from a location whose value is invariant across the
784/// function. For example, loading a value from the constant pool or from
785/// from the argument area of a function if it does not change. This should
786/// only return true of *all* loads the instruction does are invariant (if it
787/// does multiple loads).
788bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner828bb6c2008-01-12 00:35:08 +0000789 // This code cares about loads from three cases: constant pool entries,
790 // invariant argument slots, and global stubs. In order to handle these cases
791 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner144ad582008-01-12 00:53:16 +0000792 // operand and base our analysis on it. This is safe because the address of
Chris Lattner828bb6c2008-01-12 00:35:08 +0000793 // none of these three cases is ever used as anything other than a load base
794 // and X86 doesn't have any instructions that load from multiple places.
795
796 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
797 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnera22edc82008-01-10 23:08:24 +0000798 // Loads from constant pools are trivially invariant.
Chris Lattner828bb6c2008-01-12 00:35:08 +0000799 if (MO.isCPI())
Chris Lattner3b5a2212008-01-05 05:28:30 +0000800 return true;
Chris Lattner828bb6c2008-01-12 00:35:08 +0000801
802 if (MO.isGlobal()) {
803 if (TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(MO.getGlobal(),
804 TM, false))
805 return true;
806 return false;
807 }
808
809 // If this is a load from an invariant stack slot, the load is a constant.
810 if (MO.isFI()) {
811 const MachineFrameInfo &MFI =
812 *MI->getParent()->getParent()->getFrameInfo();
813 int Idx = MO.getIndex();
Chris Lattner87943902008-01-10 04:16:31 +0000814 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
815 }
Bill Wendling627c00b2007-12-17 23:07:56 +0000816 }
Chris Lattner828bb6c2008-01-12 00:35:08 +0000817
Chris Lattnera22edc82008-01-10 23:08:24 +0000818 // All other instances of these instructions are presumed to have other
819 // issues.
Chris Lattnera83b34b2008-01-05 05:26:26 +0000820 return false;
Bill Wendling627c00b2007-12-17 23:07:56 +0000821}
822
Evan Cheng3f411c72007-10-05 08:04:01 +0000823/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
824/// is not marked dead.
825static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +0000826 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
827 MachineOperand &MO = MI->getOperand(i);
828 if (MO.isRegister() && MO.isDef() &&
829 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
830 return true;
831 }
832 }
833 return false;
834}
835
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000836/// convertToThreeAddress - This method must be implemented by targets that
837/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
838/// may be able to convert a two-address instruction into a true
839/// three-address instruction on demand. This allows the X86 target (for
840/// example) to convert ADD and SHL instructions into LEA instructions if they
841/// would require register copies due to two-addressness.
842///
843/// This method returns a null pointer if the transformation cannot be
844/// performed, otherwise it returns the new instruction.
845///
Evan Cheng258ff672006-12-01 21:52:41 +0000846MachineInstr *
847X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
848 MachineBasicBlock::iterator &MBBI,
849 LiveVariables &LV) const {
850 MachineInstr *MI = MBBI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000851 // All instructions input are two-addr instructions. Get the known operands.
852 unsigned Dest = MI->getOperand(0).getReg();
853 unsigned Src = MI->getOperand(1).getReg();
854
Evan Cheng6ce7dc22006-11-15 20:58:11 +0000855 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +0000856 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000857 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Cheng258ff672006-12-01 21:52:41 +0000858 bool DisableLEA16 = true;
859
Evan Cheng559dc462007-10-05 20:34:26 +0000860 unsigned MIOpc = MI->getOpcode();
861 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +0000862 case X86::SHUFPSrri: {
863 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000864 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
865
Evan Chengaa3c1412006-05-30 21:45:53 +0000866 unsigned A = MI->getOperand(0).getReg();
867 unsigned B = MI->getOperand(1).getReg();
868 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000869 unsigned M = MI->getOperand(3).getImm();
870 if (B != C) return 0;
Evan Chengc0f64ff2006-11-27 23:37:22 +0000871 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000872 break;
873 }
Chris Lattner995f5502007-03-28 18:12:31 +0000874 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000875 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +0000876 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
877 // the flags produced by a shift yet, so this is safe.
878 unsigned Dest = MI->getOperand(0).getReg();
879 unsigned Src = MI->getOperand(1).getReg();
880 unsigned ShAmt = MI->getOperand(2).getImm();
881 if (ShAmt == 0 || ShAmt >= 4) return 0;
882
883 NewMI = BuildMI(get(X86::LEA64r), Dest)
884 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
885 break;
886 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000887 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000888 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000889 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
890 // the flags produced by a shift yet, so this is safe.
891 unsigned Dest = MI->getOperand(0).getReg();
892 unsigned Src = MI->getOperand(1).getReg();
893 unsigned ShAmt = MI->getOperand(2).getImm();
894 if (ShAmt == 0 || ShAmt >= 4) return 0;
895
Chris Lattnerf2177b82007-03-28 00:58:40 +0000896 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
897 X86::LEA64_32r : X86::LEA32r;
898 NewMI = BuildMI(get(Opc), Dest)
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000899 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
900 break;
901 }
902 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000903 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +0000904 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
905 // the flags produced by a shift yet, so this is safe.
906 unsigned Dest = MI->getOperand(0).getReg();
907 unsigned Src = MI->getOperand(1).getReg();
908 unsigned ShAmt = MI->getOperand(2).getImm();
909 if (ShAmt == 0 || ShAmt >= 4) return 0;
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000910
Christopher Lambb8133712007-08-10 21:18:25 +0000911 if (DisableLEA16) {
912 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner84bc5422007-12-31 04:13:23 +0000913 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng61d9c862007-09-06 00:14:41 +0000914 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
915 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner84bc5422007-12-31 04:13:23 +0000916 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
917 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Christopher Lambb8133712007-08-10 21:18:25 +0000918
Evan Cheng61d9c862007-09-06 00:14:41 +0000919 MachineInstr *Ins =
920 BuildMI(get(X86::INSERT_SUBREG), leaInReg).addReg(Src).addImm(2);
Christopher Lambb8133712007-08-10 21:18:25 +0000921 Ins->copyKillDeadInfo(MI);
922
923 NewMI = BuildMI(get(Opc), leaOutReg)
924 .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
925
Evan Cheng61d9c862007-09-06 00:14:41 +0000926 MachineInstr *Ext =
927 BuildMI(get(X86::EXTRACT_SUBREG), Dest).addReg(leaOutReg).addImm(2);
Christopher Lambb8133712007-08-10 21:18:25 +0000928 Ext->copyKillDeadInfo(MI);
929
930 MFI->insert(MBBI, Ins); // Insert the insert_subreg
931 LV.instructionChanged(MI, NewMI); // Update live variables
932 LV.addVirtualRegisterKilled(leaInReg, NewMI);
933 MFI->insert(MBBI, NewMI); // Insert the new inst
934 LV.addVirtualRegisterKilled(leaOutReg, Ext);
Evan Cheng61d9c862007-09-06 00:14:41 +0000935 MFI->insert(MBBI, Ext); // Insert the extract_subreg
Christopher Lambb8133712007-08-10 21:18:25 +0000936 return Ext;
937 } else {
938 NewMI = BuildMI(get(X86::LEA16r), Dest)
939 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
940 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000941 break;
Evan Chengccba76b2006-05-30 20:26:50 +0000942 }
Evan Cheng559dc462007-10-05 20:34:26 +0000943 default: {
944 // The following opcodes also sets the condition code register(s). Only
945 // convert them to equivalent lea if the condition code register def's
946 // are dead!
947 if (hasLiveCondCodeDef(MI))
948 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +0000949
Evan Chengb76143c2007-10-09 07:14:53 +0000950 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng559dc462007-10-05 20:34:26 +0000951 switch (MIOpc) {
952 default: return 0;
953 case X86::INC64r:
Evan Chengb75ed322007-10-05 21:55:32 +0000954 case X86::INC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +0000955 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000956 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
957 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000958 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
959 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000960 }
Evan Cheng559dc462007-10-05 20:34:26 +0000961 case X86::INC16r:
962 case X86::INC64_16r:
963 if (DisableLEA16) return 0;
964 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
965 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
966 break;
967 case X86::DEC64r:
Evan Chengb75ed322007-10-05 21:55:32 +0000968 case X86::DEC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +0000969 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000970 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
971 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000972 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
973 break;
974 }
975 case X86::DEC16r:
976 case X86::DEC64_16r:
977 if (DisableLEA16) return 0;
978 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
979 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
980 break;
981 case X86::ADD64rr:
982 case X86::ADD32rr: {
983 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000984 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
985 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000986 NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
987 MI->getOperand(2).getReg());
988 break;
989 }
990 case X86::ADD16rr:
991 if (DisableLEA16) return 0;
992 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
993 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
994 MI->getOperand(2).getReg());
995 break;
996 case X86::ADD64ri32:
997 case X86::ADD64ri8:
998 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
999 if (MI->getOperand(2).isImmediate())
1000 NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001001 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001002 break;
1003 case X86::ADD32ri:
1004 case X86::ADD32ri8:
1005 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001006 if (MI->getOperand(2).isImmediate()) {
1007 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1008 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001009 MI->getOperand(2).getImm());
Evan Chengb76143c2007-10-09 07:14:53 +00001010 }
Evan Cheng559dc462007-10-05 20:34:26 +00001011 break;
1012 case X86::ADD16ri:
1013 case X86::ADD16ri8:
1014 if (DisableLEA16) return 0;
1015 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1016 if (MI->getOperand(2).isImmediate())
1017 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001018 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001019 break;
1020 case X86::SHL16ri:
1021 if (DisableLEA16) return 0;
1022 case X86::SHL32ri:
1023 case X86::SHL64ri: {
1024 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1025 "Unknown shl instruction!");
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001026 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng559dc462007-10-05 20:34:26 +00001027 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1028 X86AddressMode AM;
1029 AM.Scale = 1 << ShAmt;
1030 AM.IndexReg = Src;
1031 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chengb76143c2007-10-09 07:14:53 +00001032 : (MIOpc == X86::SHL32ri
1033 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Cheng559dc462007-10-05 20:34:26 +00001034 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
1035 }
1036 break;
1037 }
1038 }
1039 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001040 }
1041
Evan Cheng15246732008-02-07 08:29:53 +00001042 if (!NewMI) return 0;
1043
Evan Cheng559dc462007-10-05 20:34:26 +00001044 NewMI->copyKillDeadInfo(MI);
1045 LV.instructionChanged(MI, NewMI); // Update live variables
1046 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001047 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001048}
1049
Chris Lattner41e431b2005-01-19 07:11:01 +00001050/// commuteInstruction - We have a few instructions that must be hacked on to
1051/// commute them.
1052///
1053MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
1054 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00001055 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1056 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00001057 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00001058 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1059 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1060 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00001061 unsigned Opc;
1062 unsigned Size;
1063 switch (MI->getOpcode()) {
1064 default: assert(0 && "Unreachable!");
1065 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1066 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1067 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1068 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00001069 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1070 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00001071 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001072 unsigned Amt = MI->getOperand(3).getImm();
Chris Lattner41e431b2005-01-19 07:11:01 +00001073 unsigned A = MI->getOperand(0).getReg();
1074 unsigned B = MI->getOperand(1).getReg();
1075 unsigned C = MI->getOperand(2).getReg();
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001076 bool BisKill = MI->getOperand(1).isKill();
1077 bool CisKill = MI->getOperand(2).isKill();
Evan Chenga4d16a12008-02-13 02:46:49 +00001078 // If machine instrs are no longer in two-address forms, update
1079 // destination register as well.
1080 if (A == B) {
1081 // Must be two address instruction!
1082 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1083 "Expecting a two-address instruction!");
1084 A = C;
1085 CisKill = false;
1086 }
Evan Chengc0f64ff2006-11-27 23:37:22 +00001087 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001088 .addReg(B, false, false, BisKill).addImm(Size-Amt);
Chris Lattner41e431b2005-01-19 07:11:01 +00001089 }
Evan Cheng7ad42d92007-10-05 23:13:21 +00001090 case X86::CMOVB16rr:
1091 case X86::CMOVB32rr:
1092 case X86::CMOVB64rr:
1093 case X86::CMOVAE16rr:
1094 case X86::CMOVAE32rr:
1095 case X86::CMOVAE64rr:
1096 case X86::CMOVE16rr:
1097 case X86::CMOVE32rr:
1098 case X86::CMOVE64rr:
1099 case X86::CMOVNE16rr:
1100 case X86::CMOVNE32rr:
1101 case X86::CMOVNE64rr:
1102 case X86::CMOVBE16rr:
1103 case X86::CMOVBE32rr:
1104 case X86::CMOVBE64rr:
1105 case X86::CMOVA16rr:
1106 case X86::CMOVA32rr:
1107 case X86::CMOVA64rr:
1108 case X86::CMOVL16rr:
1109 case X86::CMOVL32rr:
1110 case X86::CMOVL64rr:
1111 case X86::CMOVGE16rr:
1112 case X86::CMOVGE32rr:
1113 case X86::CMOVGE64rr:
1114 case X86::CMOVLE16rr:
1115 case X86::CMOVLE32rr:
1116 case X86::CMOVLE64rr:
1117 case X86::CMOVG16rr:
1118 case X86::CMOVG32rr:
1119 case X86::CMOVG64rr:
1120 case X86::CMOVS16rr:
1121 case X86::CMOVS32rr:
1122 case X86::CMOVS64rr:
1123 case X86::CMOVNS16rr:
1124 case X86::CMOVNS32rr:
1125 case X86::CMOVNS64rr:
1126 case X86::CMOVP16rr:
1127 case X86::CMOVP32rr:
1128 case X86::CMOVP64rr:
1129 case X86::CMOVNP16rr:
1130 case X86::CMOVNP32rr:
1131 case X86::CMOVNP64rr: {
Evan Cheng7ad42d92007-10-05 23:13:21 +00001132 unsigned Opc = 0;
1133 switch (MI->getOpcode()) {
1134 default: break;
1135 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1136 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1137 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1138 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1139 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1140 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1141 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1142 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1143 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1144 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1145 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1146 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1147 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1148 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1149 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1150 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1151 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1152 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1153 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1154 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1155 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1156 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1157 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1158 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1159 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1160 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1161 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1162 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1163 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1164 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1165 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1166 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1167 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1168 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1169 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1170 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1171 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1172 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1173 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1174 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1175 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1176 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1177 }
1178
Chris Lattner5080f4d2008-01-11 18:10:50 +00001179 MI->setDesc(get(Opc));
Evan Cheng7ad42d92007-10-05 23:13:21 +00001180 // Fallthrough intended.
1181 }
Chris Lattner41e431b2005-01-19 07:11:01 +00001182 default:
Chris Lattner264e6fe2008-01-01 01:05:34 +00001183 return TargetInstrInfoImpl::commuteInstruction(MI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001184 }
1185}
1186
Chris Lattner7fbe9722006-10-20 17:42:20 +00001187static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1188 switch (BrOpc) {
1189 default: return X86::COND_INVALID;
1190 case X86::JE: return X86::COND_E;
1191 case X86::JNE: return X86::COND_NE;
1192 case X86::JL: return X86::COND_L;
1193 case X86::JLE: return X86::COND_LE;
1194 case X86::JG: return X86::COND_G;
1195 case X86::JGE: return X86::COND_GE;
1196 case X86::JB: return X86::COND_B;
1197 case X86::JBE: return X86::COND_BE;
1198 case X86::JA: return X86::COND_A;
1199 case X86::JAE: return X86::COND_AE;
1200 case X86::JS: return X86::COND_S;
1201 case X86::JNS: return X86::COND_NS;
1202 case X86::JP: return X86::COND_P;
1203 case X86::JNP: return X86::COND_NP;
1204 case X86::JO: return X86::COND_O;
1205 case X86::JNO: return X86::COND_NO;
1206 }
1207}
1208
1209unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1210 switch (CC) {
1211 default: assert(0 && "Illegal condition code!");
Evan Chenge5f62042007-09-29 00:00:36 +00001212 case X86::COND_E: return X86::JE;
1213 case X86::COND_NE: return X86::JNE;
1214 case X86::COND_L: return X86::JL;
1215 case X86::COND_LE: return X86::JLE;
1216 case X86::COND_G: return X86::JG;
1217 case X86::COND_GE: return X86::JGE;
1218 case X86::COND_B: return X86::JB;
1219 case X86::COND_BE: return X86::JBE;
1220 case X86::COND_A: return X86::JA;
1221 case X86::COND_AE: return X86::JAE;
1222 case X86::COND_S: return X86::JS;
1223 case X86::COND_NS: return X86::JNS;
1224 case X86::COND_P: return X86::JP;
1225 case X86::COND_NP: return X86::JNP;
1226 case X86::COND_O: return X86::JO;
1227 case X86::COND_NO: return X86::JNO;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001228 }
1229}
1230
Chris Lattner9cd68752006-10-21 05:52:40 +00001231/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1232/// e.g. turning COND_E to COND_NE.
1233X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1234 switch (CC) {
1235 default: assert(0 && "Illegal condition code!");
1236 case X86::COND_E: return X86::COND_NE;
1237 case X86::COND_NE: return X86::COND_E;
1238 case X86::COND_L: return X86::COND_GE;
1239 case X86::COND_LE: return X86::COND_G;
1240 case X86::COND_G: return X86::COND_LE;
1241 case X86::COND_GE: return X86::COND_L;
1242 case X86::COND_B: return X86::COND_AE;
1243 case X86::COND_BE: return X86::COND_A;
1244 case X86::COND_A: return X86::COND_BE;
1245 case X86::COND_AE: return X86::COND_B;
1246 case X86::COND_S: return X86::COND_NS;
1247 case X86::COND_NS: return X86::COND_S;
1248 case X86::COND_P: return X86::COND_NP;
1249 case X86::COND_NP: return X86::COND_P;
1250 case X86::COND_O: return X86::COND_NO;
1251 case X86::COND_NO: return X86::COND_O;
1252 }
1253}
1254
Dale Johannesen318093b2007-06-14 22:03:45 +00001255bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner749c6f62008-01-07 07:27:27 +00001256 const TargetInstrDesc &TID = MI->getDesc();
1257 if (!TID.isTerminator()) return false;
Chris Lattner69244302008-01-07 01:56:04 +00001258
1259 // Conditional branch is a special case.
Chris Lattner749c6f62008-01-07 07:27:27 +00001260 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner69244302008-01-07 01:56:04 +00001261 return true;
Chris Lattner749c6f62008-01-07 07:27:27 +00001262 if (!TID.isPredicable())
Chris Lattner69244302008-01-07 01:56:04 +00001263 return true;
1264 return !isPredicated(MI);
Dale Johannesen318093b2007-06-14 22:03:45 +00001265}
Chris Lattner9cd68752006-10-21 05:52:40 +00001266
Evan Cheng85dce6c2007-07-26 17:32:14 +00001267// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1268static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1269 const X86InstrInfo &TII) {
1270 if (MI->getOpcode() == X86::FP_REG_KILL)
1271 return false;
1272 return TII.isUnpredicatedTerminator(MI);
1273}
1274
Chris Lattner7fbe9722006-10-20 17:42:20 +00001275bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1276 MachineBasicBlock *&TBB,
1277 MachineBasicBlock *&FBB,
1278 std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001279 // If the block has no terminators, it just falls into the block after it.
1280 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng85dce6c2007-07-26 17:32:14 +00001281 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001282 return false;
1283
1284 // Get the last instruction in the block.
1285 MachineInstr *LastInst = I;
1286
1287 // If there is only one terminator instruction, process it.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001288 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner749c6f62008-01-07 07:27:27 +00001289 if (!LastInst->getDesc().isBranch())
Chris Lattner7fbe9722006-10-20 17:42:20 +00001290 return true;
1291
1292 // If the block ends with a branch there are 3 possibilities:
1293 // it's an unconditional, conditional, or indirect branch.
1294
1295 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001296 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001297 return false;
1298 }
1299 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1300 if (BranchCode == X86::COND_INVALID)
1301 return true; // Can't handle indirect branch.
1302
1303 // Otherwise, block ends with fall-through condbranch.
Chris Lattner8aa797a2007-12-30 23:10:15 +00001304 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001305 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1306 return false;
1307 }
1308
1309 // Get the instruction before it if it's a terminator.
1310 MachineInstr *SecondLastInst = I;
1311
1312 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001313 if (SecondLastInst && I != MBB.begin() &&
1314 isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001315 return true;
1316
Chris Lattner6ce64432006-10-30 22:27:23 +00001317 // If the block ends with X86::JMP and a conditional branch, handle it.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001318 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1319 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001320 TBB = SecondLastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001321 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner8aa797a2007-12-30 23:10:15 +00001322 FBB = LastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001323 return false;
1324 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00001325
Dale Johannesen13e8b512007-06-13 17:59:52 +00001326 // If the block ends with two X86::JMPs, handle it. The second one is not
1327 // executed, so remove it.
1328 if (SecondLastInst->getOpcode() == X86::JMP &&
1329 LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001330 TBB = SecondLastInst->getOperand(0).getMBB();
Dale Johannesen13e8b512007-06-13 17:59:52 +00001331 I = LastInst;
1332 I->eraseFromParent();
1333 return false;
1334 }
1335
Chris Lattner7fbe9722006-10-20 17:42:20 +00001336 // Otherwise, can't handle this.
1337 return true;
1338}
1339
Evan Cheng6ae36262007-05-18 00:18:17 +00001340unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001341 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng6ae36262007-05-18 00:18:17 +00001342 if (I == MBB.begin()) return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001343 --I;
1344 if (I->getOpcode() != X86::JMP &&
1345 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001346 return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001347
1348 // Remove the branch.
1349 I->eraseFromParent();
1350
1351 I = MBB.end();
1352
Evan Cheng6ae36262007-05-18 00:18:17 +00001353 if (I == MBB.begin()) return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001354 --I;
1355 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001356 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001357
1358 // Remove the branch.
1359 I->eraseFromParent();
Evan Cheng6ae36262007-05-18 00:18:17 +00001360 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001361}
1362
Owen Andersonf6372aa2008-01-01 21:11:32 +00001363static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1364 MachineOperand &MO) {
1365 if (MO.isRegister())
1366 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1367 false, false, MO.getSubReg());
1368 else if (MO.isImmediate())
1369 MIB = MIB.addImm(MO.getImm());
1370 else if (MO.isFrameIndex())
1371 MIB = MIB.addFrameIndex(MO.getIndex());
1372 else if (MO.isGlobalAddress())
1373 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1374 else if (MO.isConstantPoolIndex())
1375 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1376 else if (MO.isJumpTableIndex())
1377 MIB = MIB.addJumpTableIndex(MO.getIndex());
1378 else if (MO.isExternalSymbol())
1379 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1380 else
1381 assert(0 && "Unknown operand for X86InstrAddOperand!");
1382
1383 return MIB;
1384}
1385
Evan Cheng6ae36262007-05-18 00:18:17 +00001386unsigned
1387X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1388 MachineBasicBlock *FBB,
1389 const std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001390 // Shouldn't be a fall through.
1391 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00001392 assert((Cond.size() == 1 || Cond.size() == 0) &&
1393 "X86 branch conditions have one component!");
1394
1395 if (FBB == 0) { // One way branch.
1396 if (Cond.empty()) {
1397 // Unconditional branch?
Evan Chengc0f64ff2006-11-27 23:37:22 +00001398 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001399 } else {
1400 // Conditional branch.
1401 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001402 BuildMI(&MBB, get(Opc)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001403 }
Evan Cheng6ae36262007-05-18 00:18:17 +00001404 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001405 }
1406
Chris Lattner879d09c2006-10-21 05:42:09 +00001407 // Two-way Conditional branch.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001408 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001409 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1410 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00001411 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001412}
1413
Owen Andersond10fd972007-12-31 06:32:00 +00001414void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1415 MachineBasicBlock::iterator MI,
1416 unsigned DestReg, unsigned SrcReg,
1417 const TargetRegisterClass *DestRC,
1418 const TargetRegisterClass *SrcRC) const {
1419 if (DestRC != SrcRC) {
1420 // Moving EFLAGS to / from another register requires a push and a pop.
1421 if (SrcRC == &X86::CCRRegClass) {
1422 assert(SrcReg == X86::EFLAGS);
1423 if (DestRC == &X86::GR64RegClass) {
1424 BuildMI(MBB, MI, get(X86::PUSHFQ));
1425 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1426 return;
1427 } else if (DestRC == &X86::GR32RegClass) {
1428 BuildMI(MBB, MI, get(X86::PUSHFD));
1429 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1430 return;
1431 }
1432 } else if (DestRC == &X86::CCRRegClass) {
1433 assert(DestReg == X86::EFLAGS);
1434 if (SrcRC == &X86::GR64RegClass) {
1435 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1436 BuildMI(MBB, MI, get(X86::POPFQ));
1437 return;
1438 } else if (SrcRC == &X86::GR32RegClass) {
1439 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1440 BuildMI(MBB, MI, get(X86::POPFD));
1441 return;
1442 }
1443 }
1444 cerr << "Not yet supported!";
1445 abort();
1446 }
1447
1448 unsigned Opc;
1449 if (DestRC == &X86::GR64RegClass) {
1450 Opc = X86::MOV64rr;
1451 } else if (DestRC == &X86::GR32RegClass) {
1452 Opc = X86::MOV32rr;
1453 } else if (DestRC == &X86::GR16RegClass) {
1454 Opc = X86::MOV16rr;
1455 } else if (DestRC == &X86::GR8RegClass) {
1456 Opc = X86::MOV8rr;
1457 } else if (DestRC == &X86::GR32_RegClass) {
1458 Opc = X86::MOV32_rr;
1459 } else if (DestRC == &X86::GR16_RegClass) {
1460 Opc = X86::MOV16_rr;
1461 } else if (DestRC == &X86::RFP32RegClass) {
1462 Opc = X86::MOV_Fp3232;
1463 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1464 Opc = X86::MOV_Fp6464;
1465 } else if (DestRC == &X86::RFP80RegClass) {
1466 Opc = X86::MOV_Fp8080;
1467 } else if (DestRC == &X86::FR32RegClass) {
1468 Opc = X86::FsMOVAPSrr;
1469 } else if (DestRC == &X86::FR64RegClass) {
1470 Opc = X86::FsMOVAPDrr;
1471 } else if (DestRC == &X86::VR128RegClass) {
1472 Opc = X86::MOVAPSrr;
1473 } else if (DestRC == &X86::VR64RegClass) {
1474 Opc = X86::MMX_MOVQ64rr;
1475 } else {
1476 assert(0 && "Unknown regclass");
1477 abort();
1478 }
1479 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1480}
1481
Owen Andersonf6372aa2008-01-01 21:11:32 +00001482static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1483 unsigned StackAlign) {
1484 unsigned Opc = 0;
1485 if (RC == &X86::GR64RegClass) {
1486 Opc = X86::MOV64mr;
1487 } else if (RC == &X86::GR32RegClass) {
1488 Opc = X86::MOV32mr;
1489 } else if (RC == &X86::GR16RegClass) {
1490 Opc = X86::MOV16mr;
1491 } else if (RC == &X86::GR8RegClass) {
1492 Opc = X86::MOV8mr;
1493 } else if (RC == &X86::GR32_RegClass) {
1494 Opc = X86::MOV32_mr;
1495 } else if (RC == &X86::GR16_RegClass) {
1496 Opc = X86::MOV16_mr;
1497 } else if (RC == &X86::RFP80RegClass) {
1498 Opc = X86::ST_FpP80m; // pops
1499 } else if (RC == &X86::RFP64RegClass) {
1500 Opc = X86::ST_Fp64m;
1501 } else if (RC == &X86::RFP32RegClass) {
1502 Opc = X86::ST_Fp32m;
1503 } else if (RC == &X86::FR32RegClass) {
1504 Opc = X86::MOVSSmr;
1505 } else if (RC == &X86::FR64RegClass) {
1506 Opc = X86::MOVSDmr;
1507 } else if (RC == &X86::VR128RegClass) {
1508 // FIXME: Use movaps once we are capable of selectively
1509 // aligning functions that spill SSE registers on 16-byte boundaries.
1510 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1511 } else if (RC == &X86::VR64RegClass) {
1512 Opc = X86::MMX_MOVQ64mr;
1513 } else {
1514 assert(0 && "Unknown regclass");
1515 abort();
1516 }
1517
1518 return Opc;
1519}
1520
1521void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1522 MachineBasicBlock::iterator MI,
1523 unsigned SrcReg, bool isKill, int FrameIdx,
1524 const TargetRegisterClass *RC) const {
1525 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1526 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1527 .addReg(SrcReg, false, false, isKill);
1528}
1529
1530void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1531 bool isKill,
1532 SmallVectorImpl<MachineOperand> &Addr,
1533 const TargetRegisterClass *RC,
1534 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1535 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1536 MachineInstrBuilder MIB = BuildMI(get(Opc));
1537 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1538 MIB = X86InstrAddOperand(MIB, Addr[i]);
1539 MIB.addReg(SrcReg, false, false, isKill);
1540 NewMIs.push_back(MIB);
1541}
1542
1543static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1544 unsigned StackAlign) {
1545 unsigned Opc = 0;
1546 if (RC == &X86::GR64RegClass) {
1547 Opc = X86::MOV64rm;
1548 } else if (RC == &X86::GR32RegClass) {
1549 Opc = X86::MOV32rm;
1550 } else if (RC == &X86::GR16RegClass) {
1551 Opc = X86::MOV16rm;
1552 } else if (RC == &X86::GR8RegClass) {
1553 Opc = X86::MOV8rm;
1554 } else if (RC == &X86::GR32_RegClass) {
1555 Opc = X86::MOV32_rm;
1556 } else if (RC == &X86::GR16_RegClass) {
1557 Opc = X86::MOV16_rm;
1558 } else if (RC == &X86::RFP80RegClass) {
1559 Opc = X86::LD_Fp80m;
1560 } else if (RC == &X86::RFP64RegClass) {
1561 Opc = X86::LD_Fp64m;
1562 } else if (RC == &X86::RFP32RegClass) {
1563 Opc = X86::LD_Fp32m;
1564 } else if (RC == &X86::FR32RegClass) {
1565 Opc = X86::MOVSSrm;
1566 } else if (RC == &X86::FR64RegClass) {
1567 Opc = X86::MOVSDrm;
1568 } else if (RC == &X86::VR128RegClass) {
1569 // FIXME: Use movaps once we are capable of selectively
1570 // aligning functions that spill SSE registers on 16-byte boundaries.
1571 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1572 } else if (RC == &X86::VR64RegClass) {
1573 Opc = X86::MMX_MOVQ64rm;
1574 } else {
1575 assert(0 && "Unknown regclass");
1576 abort();
1577 }
1578
1579 return Opc;
1580}
1581
1582void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1583 MachineBasicBlock::iterator MI,
1584 unsigned DestReg, int FrameIdx,
1585 const TargetRegisterClass *RC) const{
1586 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1587 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1588}
1589
1590void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1591 SmallVectorImpl<MachineOperand> &Addr,
1592 const TargetRegisterClass *RC,
1593 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1594 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1595 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1596 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1597 MIB = X86InstrAddOperand(MIB, Addr[i]);
1598 NewMIs.push_back(MIB);
1599}
1600
Owen Andersond94b6a12008-01-04 23:57:37 +00001601bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1602 MachineBasicBlock::iterator MI,
1603 const std::vector<CalleeSavedInfo> &CSI) const {
1604 if (CSI.empty())
1605 return false;
1606
1607 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1608 unsigned SlotSize = is64Bit ? 8 : 4;
1609
1610 MachineFunction &MF = *MBB.getParent();
1611 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1612 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1613
1614 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1615 for (unsigned i = CSI.size(); i != 0; --i) {
1616 unsigned Reg = CSI[i-1].getReg();
1617 // Add the callee-saved register as live-in. It's killed at the spill.
1618 MBB.addLiveIn(Reg);
1619 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1620 }
1621 return true;
1622}
1623
1624bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1625 MachineBasicBlock::iterator MI,
1626 const std::vector<CalleeSavedInfo> &CSI) const {
1627 if (CSI.empty())
1628 return false;
1629
1630 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1631
1632 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1633 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1634 unsigned Reg = CSI[i].getReg();
1635 BuildMI(MBB, MI, get(Opc), Reg);
1636 }
1637 return true;
1638}
1639
Owen Anderson43dbe052008-01-07 01:35:02 +00001640static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1641 SmallVector<MachineOperand,4> &MOs,
1642 MachineInstr *MI, const TargetInstrInfo &TII) {
1643 // Create the base instruction with the memory operand as the first part.
1644 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1645 MachineInstrBuilder MIB(NewMI);
1646 unsigned NumAddrOps = MOs.size();
1647 for (unsigned i = 0; i != NumAddrOps; ++i)
1648 MIB = X86InstrAddOperand(MIB, MOs[i]);
1649 if (NumAddrOps < 4) // FrameIndex only
1650 MIB.addImm(1).addReg(0).addImm(0);
1651
1652 // Loop over the rest of the ri operands, converting them over.
Chris Lattner749c6f62008-01-07 07:27:27 +00001653 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson43dbe052008-01-07 01:35:02 +00001654 for (unsigned i = 0; i != NumOps; ++i) {
1655 MachineOperand &MO = MI->getOperand(i+2);
1656 MIB = X86InstrAddOperand(MIB, MO);
1657 }
1658 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1659 MachineOperand &MO = MI->getOperand(i);
1660 MIB = X86InstrAddOperand(MIB, MO);
1661 }
1662 return MIB;
1663}
1664
1665static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1666 SmallVector<MachineOperand,4> &MOs,
1667 MachineInstr *MI, const TargetInstrInfo &TII) {
1668 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1669 MachineInstrBuilder MIB(NewMI);
1670
1671 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1672 MachineOperand &MO = MI->getOperand(i);
1673 if (i == OpNo) {
1674 assert(MO.isRegister() && "Expected to fold into reg operand!");
1675 unsigned NumAddrOps = MOs.size();
1676 for (unsigned i = 0; i != NumAddrOps; ++i)
1677 MIB = X86InstrAddOperand(MIB, MOs[i]);
1678 if (NumAddrOps < 4) // FrameIndex only
1679 MIB.addImm(1).addReg(0).addImm(0);
1680 } else {
1681 MIB = X86InstrAddOperand(MIB, MO);
1682 }
1683 }
1684 return MIB;
1685}
1686
1687static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1688 SmallVector<MachineOperand,4> &MOs,
1689 MachineInstr *MI) {
1690 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1691
1692 unsigned NumAddrOps = MOs.size();
1693 for (unsigned i = 0; i != NumAddrOps; ++i)
1694 MIB = X86InstrAddOperand(MIB, MOs[i]);
1695 if (NumAddrOps < 4) // FrameIndex only
1696 MIB.addImm(1).addReg(0).addImm(0);
1697 return MIB.addImm(0);
1698}
1699
1700MachineInstr*
1701X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
Evan Cheng5fd79d02008-02-08 21:20:40 +00001702 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001703 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1704 bool isTwoAddrFold = false;
Chris Lattner749c6f62008-01-07 07:27:27 +00001705 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001706 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001707 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001708
1709 MachineInstr *NewMI = NULL;
1710 // Folding a memory location into the two-address part of a two-address
1711 // instruction is different than folding it other places. It requires
1712 // replacing the *two* registers with the memory location.
1713 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1714 MI->getOperand(0).isRegister() &&
1715 MI->getOperand(1).isRegister() &&
1716 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1717 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1718 isTwoAddrFold = true;
1719 } else if (i == 0) { // If operand 0
1720 if (MI->getOpcode() == X86::MOV16r0)
1721 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1722 else if (MI->getOpcode() == X86::MOV32r0)
1723 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1724 else if (MI->getOpcode() == X86::MOV64r0)
1725 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1726 else if (MI->getOpcode() == X86::MOV8r0)
1727 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1728 if (NewMI) {
1729 NewMI->copyKillDeadInfo(MI);
1730 return NewMI;
1731 }
1732
1733 OpcodeTablePtr = &RegOp2MemOpTable0;
1734 } else if (i == 1) {
1735 OpcodeTablePtr = &RegOp2MemOpTable1;
1736 } else if (i == 2) {
1737 OpcodeTablePtr = &RegOp2MemOpTable2;
1738 }
1739
1740 // If table selected...
1741 if (OpcodeTablePtr) {
1742 // Find the Opcode to fuse
1743 DenseMap<unsigned*, unsigned>::iterator I =
1744 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1745 if (I != OpcodeTablePtr->end()) {
1746 if (isTwoAddrFold)
1747 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1748 else
1749 NewMI = FuseInst(I->second, i, MOs, MI, *this);
1750 NewMI->copyKillDeadInfo(MI);
1751 return NewMI;
1752 }
1753 }
1754
1755 // No fusion
1756 if (PrintFailedFusing)
Chris Lattner269f0592008-01-09 00:37:18 +00001757 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson43dbe052008-01-07 01:35:02 +00001758 return NULL;
1759}
1760
1761
Evan Cheng5fd79d02008-02-08 21:20:40 +00001762MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1763 MachineInstr *MI,
Owen Anderson43dbe052008-01-07 01:35:02 +00001764 SmallVectorImpl<unsigned> &Ops,
1765 int FrameIndex) const {
1766 // Check switch flag
1767 if (NoFusing) return NULL;
1768
Evan Cheng5fd79d02008-02-08 21:20:40 +00001769 const MachineFrameInfo *MFI = MF.getFrameInfo();
1770 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1771 // FIXME: Move alignment requirement into tables?
1772 if (Alignment < 16) {
1773 switch (MI->getOpcode()) {
1774 default: break;
1775 // Not always safe to fold movsd into these instructions since their load
1776 // folding variants expects the address to be 16 byte aligned.
1777 case X86::FsANDNPDrr:
1778 case X86::FsANDNPSrr:
1779 case X86::FsANDPDrr:
1780 case X86::FsANDPSrr:
1781 case X86::FsORPDrr:
1782 case X86::FsORPSrr:
1783 case X86::FsXORPDrr:
1784 case X86::FsXORPSrr:
1785 return NULL;
1786 }
1787 }
1788
Owen Anderson43dbe052008-01-07 01:35:02 +00001789 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1790 unsigned NewOpc = 0;
1791 switch (MI->getOpcode()) {
1792 default: return NULL;
1793 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1794 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1795 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1796 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1797 }
1798 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001799 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00001800 MI->getOperand(1).ChangeToImmediate(0);
1801 } else if (Ops.size() != 1)
1802 return NULL;
1803
1804 SmallVector<MachineOperand,4> MOs;
1805 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
1806 return foldMemoryOperand(MI, Ops[0], MOs);
1807}
1808
Evan Cheng5fd79d02008-02-08 21:20:40 +00001809MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1810 MachineInstr *MI,
Chris Lattner269f0592008-01-09 00:37:18 +00001811 SmallVectorImpl<unsigned> &Ops,
1812 MachineInstr *LoadMI) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001813 // Check switch flag
1814 if (NoFusing) return NULL;
1815
Evan Cheng5fd79d02008-02-08 21:20:40 +00001816 unsigned Alignment = 0;
1817 for (unsigned i = 0, e = LoadMI->getNumMemOperands(); i != e; ++i) {
1818 const MemOperand &MRO = LoadMI->getMemOperand(i);
1819 unsigned Align = MRO.getAlignment();
1820 if (Align > Alignment)
1821 Alignment = Align;
1822 }
1823
1824 // FIXME: Move alignment requirement into tables?
1825 if (Alignment < 16) {
1826 switch (MI->getOpcode()) {
1827 default: break;
1828 // Not always safe to fold movsd into these instructions since their load
1829 // folding variants expects the address to be 16 byte aligned.
1830 case X86::FsANDNPDrr:
1831 case X86::FsANDNPSrr:
1832 case X86::FsANDPDrr:
1833 case X86::FsANDPSrr:
1834 case X86::FsORPDrr:
1835 case X86::FsORPSrr:
1836 case X86::FsXORPDrr:
1837 case X86::FsXORPSrr:
1838 return NULL;
1839 }
1840 }
1841
Owen Anderson43dbe052008-01-07 01:35:02 +00001842 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1843 unsigned NewOpc = 0;
1844 switch (MI->getOpcode()) {
1845 default: return NULL;
1846 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1847 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1848 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1849 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1850 }
1851 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001852 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00001853 MI->getOperand(1).ChangeToImmediate(0);
1854 } else if (Ops.size() != 1)
1855 return NULL;
1856
1857 SmallVector<MachineOperand,4> MOs;
Chris Lattner749c6f62008-01-07 07:27:27 +00001858 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001859 for (unsigned i = NumOps - 4; i != NumOps; ++i)
1860 MOs.push_back(LoadMI->getOperand(i));
1861 return foldMemoryOperand(MI, Ops[0], MOs);
1862}
1863
1864
1865bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattner269f0592008-01-09 00:37:18 +00001866 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001867 // Check switch flag
1868 if (NoFusing) return 0;
1869
1870 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1871 switch (MI->getOpcode()) {
1872 default: return false;
1873 case X86::TEST8rr:
1874 case X86::TEST16rr:
1875 case X86::TEST32rr:
1876 case X86::TEST64rr:
1877 return true;
1878 }
1879 }
1880
1881 if (Ops.size() != 1)
1882 return false;
1883
1884 unsigned OpNum = Ops[0];
1885 unsigned Opc = MI->getOpcode();
Chris Lattner749c6f62008-01-07 07:27:27 +00001886 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001887 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001888 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001889
1890 // Folding a memory location into the two-address part of a two-address
1891 // instruction is different than folding it other places. It requires
1892 // replacing the *two* registers with the memory location.
1893 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1894 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
1895 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1896 } else if (OpNum == 0) { // If operand 0
1897 switch (Opc) {
1898 case X86::MOV16r0:
1899 case X86::MOV32r0:
1900 case X86::MOV64r0:
1901 case X86::MOV8r0:
1902 return true;
1903 default: break;
1904 }
1905 OpcodeTablePtr = &RegOp2MemOpTable0;
1906 } else if (OpNum == 1) {
1907 OpcodeTablePtr = &RegOp2MemOpTable1;
1908 } else if (OpNum == 2) {
1909 OpcodeTablePtr = &RegOp2MemOpTable2;
1910 }
1911
1912 if (OpcodeTablePtr) {
1913 // Find the Opcode to fuse
1914 DenseMap<unsigned*, unsigned>::iterator I =
1915 OpcodeTablePtr->find((unsigned*)Opc);
1916 if (I != OpcodeTablePtr->end())
1917 return true;
1918 }
1919 return false;
1920}
1921
1922bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
1923 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
1924 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1925 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1926 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
1927 if (I == MemOp2RegOpTable.end())
1928 return false;
1929 unsigned Opc = I->second.first;
1930 unsigned Index = I->second.second & 0xf;
1931 bool FoldedLoad = I->second.second & (1 << 4);
1932 bool FoldedStore = I->second.second & (1 << 5);
1933 if (UnfoldLoad && !FoldedLoad)
1934 return false;
1935 UnfoldLoad &= FoldedLoad;
1936 if (UnfoldStore && !FoldedStore)
1937 return false;
1938 UnfoldStore &= FoldedStore;
1939
Chris Lattner749c6f62008-01-07 07:27:27 +00001940 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00001941 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00001942 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00001943 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
1944 SmallVector<MachineOperand,4> AddrOps;
1945 SmallVector<MachineOperand,2> BeforeOps;
1946 SmallVector<MachineOperand,2> AfterOps;
1947 SmallVector<MachineOperand,4> ImpOps;
1948 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1949 MachineOperand &Op = MI->getOperand(i);
1950 if (i >= Index && i < Index+4)
1951 AddrOps.push_back(Op);
1952 else if (Op.isRegister() && Op.isImplicit())
1953 ImpOps.push_back(Op);
1954 else if (i < Index)
1955 BeforeOps.push_back(Op);
1956 else if (i > Index)
1957 AfterOps.push_back(Op);
1958 }
1959
1960 // Emit the load instruction.
1961 if (UnfoldLoad) {
1962 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
1963 if (UnfoldStore) {
1964 // Address operands cannot be marked isKill.
1965 for (unsigned i = 1; i != 5; ++i) {
1966 MachineOperand &MO = NewMIs[0]->getOperand(i);
1967 if (MO.isRegister())
1968 MO.setIsKill(false);
1969 }
1970 }
1971 }
1972
1973 // Emit the data processing instruction.
1974 MachineInstr *DataMI = new MachineInstr(TID, true);
1975 MachineInstrBuilder MIB(DataMI);
1976
1977 if (FoldedStore)
1978 MIB.addReg(Reg, true);
1979 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
1980 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
1981 if (FoldedLoad)
1982 MIB.addReg(Reg);
1983 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
1984 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
1985 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
1986 MachineOperand &MO = ImpOps[i];
1987 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
1988 }
1989 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
1990 unsigned NewOpc = 0;
1991 switch (DataMI->getOpcode()) {
1992 default: break;
1993 case X86::CMP64ri32:
1994 case X86::CMP32ri:
1995 case X86::CMP16ri:
1996 case X86::CMP8ri: {
1997 MachineOperand &MO0 = DataMI->getOperand(0);
1998 MachineOperand &MO1 = DataMI->getOperand(1);
1999 if (MO1.getImm() == 0) {
2000 switch (DataMI->getOpcode()) {
2001 default: break;
2002 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2003 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2004 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2005 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2006 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00002007 DataMI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002008 MO1.ChangeToRegister(MO0.getReg(), false);
2009 }
2010 }
2011 }
2012 NewMIs.push_back(DataMI);
2013
2014 // Emit the store instruction.
2015 if (UnfoldStore) {
2016 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002017 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002018 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2019 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2020 }
2021
2022 return true;
2023}
2024
2025bool
2026X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2027 SmallVectorImpl<SDNode*> &NewNodes) const {
2028 if (!N->isTargetOpcode())
2029 return false;
2030
2031 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2032 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
2033 if (I == MemOp2RegOpTable.end())
2034 return false;
2035 unsigned Opc = I->second.first;
2036 unsigned Index = I->second.second & 0xf;
2037 bool FoldedLoad = I->second.second & (1 << 4);
2038 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner749c6f62008-01-07 07:27:27 +00002039 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00002040 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002041 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002042 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2043 std::vector<SDOperand> AddrOps;
2044 std::vector<SDOperand> BeforeOps;
2045 std::vector<SDOperand> AfterOps;
2046 unsigned NumOps = N->getNumOperands();
2047 for (unsigned i = 0; i != NumOps-1; ++i) {
2048 SDOperand Op = N->getOperand(i);
2049 if (i >= Index && i < Index+4)
2050 AddrOps.push_back(Op);
2051 else if (i < Index)
2052 BeforeOps.push_back(Op);
2053 else if (i > Index)
2054 AfterOps.push_back(Op);
2055 }
2056 SDOperand Chain = N->getOperand(NumOps-1);
2057 AddrOps.push_back(Chain);
2058
2059 // Emit the load instruction.
2060 SDNode *Load = 0;
2061 if (FoldedLoad) {
2062 MVT::ValueType VT = *RC->vt_begin();
2063 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2064 MVT::Other, &AddrOps[0], AddrOps.size());
2065 NewNodes.push_back(Load);
2066 }
2067
2068 // Emit the data processing instruction.
2069 std::vector<MVT::ValueType> VTs;
2070 const TargetRegisterClass *DstRC = 0;
Chris Lattner349c4952008-01-07 03:13:06 +00002071 if (TID.getNumDefs() > 0) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002072 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002073 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002074 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2075 VTs.push_back(*DstRC->vt_begin());
2076 }
2077 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2078 MVT::ValueType VT = N->getValueType(i);
Chris Lattner349c4952008-01-07 03:13:06 +00002079 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson43dbe052008-01-07 01:35:02 +00002080 VTs.push_back(VT);
2081 }
2082 if (Load)
2083 BeforeOps.push_back(SDOperand(Load, 0));
2084 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2085 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2086 NewNodes.push_back(NewNode);
2087
2088 // Emit the store instruction.
2089 if (FoldedStore) {
2090 AddrOps.pop_back();
2091 AddrOps.push_back(SDOperand(NewNode, 0));
2092 AddrOps.push_back(Chain);
2093 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2094 MVT::Other, &AddrOps[0], AddrOps.size());
2095 NewNodes.push_back(Store);
2096 }
2097
2098 return true;
2099}
2100
2101unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2102 bool UnfoldLoad, bool UnfoldStore) const {
2103 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2104 MemOp2RegOpTable.find((unsigned*)Opc);
2105 if (I == MemOp2RegOpTable.end())
2106 return 0;
2107 bool FoldedLoad = I->second.second & (1 << 4);
2108 bool FoldedStore = I->second.second & (1 << 5);
2109 if (UnfoldLoad && !FoldedLoad)
2110 return 0;
2111 if (UnfoldStore && !FoldedStore)
2112 return 0;
2113 return I->second.first;
2114}
2115
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002116bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2117 if (MBB.empty()) return false;
2118
2119 switch (MBB.back().getOpcode()) {
Arnold Schwaighoferc85e1712007-10-11 19:40:01 +00002120 case X86::TCRETURNri:
2121 case X86::TCRETURNdi:
Evan Cheng126f17a2007-05-21 18:44:17 +00002122 case X86::RET: // Return.
2123 case X86::RETI:
2124 case X86::TAILJMPd:
2125 case X86::TAILJMPr:
2126 case X86::TAILJMPm:
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002127 case X86::JMP: // Uncond branch.
2128 case X86::JMP32r: // Indirect branch.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002129 case X86::JMP64r: // Indirect branch (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002130 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002131 case X86::JMP64m: // Indirect branch through mem (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002132 return true;
2133 default: return false;
2134 }
2135}
2136
Chris Lattner7fbe9722006-10-20 17:42:20 +00002137bool X86InstrInfo::
2138ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00002139 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2140 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2141 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002142}
2143
Evan Cheng25ab6902006-09-08 06:48:29 +00002144const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2145 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2146 if (Subtarget->is64Bit())
2147 return &X86::GR64RegClass;
2148 else
2149 return &X86::GR32RegClass;
2150}