blob: f3e198e59ed593d481758c5ba5f8966eab24f1d2 [file] [log] [blame]
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001//===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuild.h"
16#include "llvm/ADT/BitVector.h"
Dan Gohman5b229802008-09-04 20:49:27 +000017#include "llvm/ADT/SmallSet.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000018#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
Bill Wendlingb2a42982008-11-06 02:29:10 +000028#include "llvm/Module.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000029#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
Bill Wendlingb2a42982008-11-06 02:29:10 +000038#include "llvm/CodeGen/PseudoSourceValue.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000039#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Target/TargetFrameInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/MathExtras.h"
50#include <algorithm>
51using namespace llvm;
52
Dale Johannesen601d3c02008-09-05 01:48:15 +000053/// LimitFloatPrecision - Generate low-precision inline sequences for
54/// some float libcalls (6, 8 or 12 bits).
55static unsigned LimitFloatPrecision;
56
57static cl::opt<unsigned, true>
58LimitFPPrecision("limit-float-precision",
59 cl::desc("Generate low-precision inline sequences "
60 "for some float libcalls"),
61 cl::location(LimitFloatPrecision),
62 cl::init(0));
63
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000064/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
65/// insertvalue or extractvalue indices that identify a member, return
66/// the linearized index of the start of the member.
67///
68static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
69 const unsigned *Indices,
70 const unsigned *IndicesEnd,
71 unsigned CurIndex = 0) {
72 // Base case: We're done.
73 if (Indices && Indices == IndicesEnd)
74 return CurIndex;
75
76 // Given a struct type, recursively traverse the elements.
77 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
78 for (StructType::element_iterator EB = STy->element_begin(),
79 EI = EB,
80 EE = STy->element_end();
81 EI != EE; ++EI) {
82 if (Indices && *Indices == unsigned(EI - EB))
83 return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
84 CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
85 }
86 }
87 // Given an array type, recursively traverse the elements.
88 else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
89 const Type *EltTy = ATy->getElementType();
90 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
91 if (Indices && *Indices == i)
92 return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
93 CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
94 }
95 }
96 // We haven't found the type we're looking for, so keep searching.
97 return CurIndex + 1;
98}
99
100/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
101/// MVTs that represent all the individual underlying
102/// non-aggregate types that comprise it.
103///
104/// If Offsets is non-null, it points to a vector to be filled in
105/// with the in-memory offsets of each of the individual values.
106///
107static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
108 SmallVectorImpl<MVT> &ValueVTs,
109 SmallVectorImpl<uint64_t> *Offsets = 0,
110 uint64_t StartingOffset = 0) {
111 // Given a struct type, recursively traverse the elements.
112 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
113 const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
114 for (StructType::element_iterator EB = STy->element_begin(),
115 EI = EB,
116 EE = STy->element_end();
117 EI != EE; ++EI)
118 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
119 StartingOffset + SL->getElementOffset(EI - EB));
120 return;
121 }
122 // Given an array type, recursively traverse the elements.
123 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
124 const Type *EltTy = ATy->getElementType();
125 uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
126 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
127 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
128 StartingOffset + i * EltSize);
129 return;
130 }
131 // Base case: we can get an MVT for this LLVM IR type.
132 ValueVTs.push_back(TLI.getValueType(Ty));
133 if (Offsets)
134 Offsets->push_back(StartingOffset);
135}
136
Dan Gohman2a7c6712008-09-03 23:18:39 +0000137namespace llvm {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000138 /// RegsForValue - This struct represents the registers (physical or virtual)
139 /// that a particular set of values is assigned, and the type information about
140 /// the value. The most common situation is to represent one value at a time,
141 /// but struct or array values are handled element-wise as multiple values.
142 /// The splitting of aggregates is performed recursively, so that we never
143 /// have aggregate-typed registers. The values at this point do not necessarily
144 /// have legal types, so each value may require one or more registers of some
145 /// legal type.
146 ///
147 struct VISIBILITY_HIDDEN RegsForValue {
148 /// TLI - The TargetLowering object.
149 ///
150 const TargetLowering *TLI;
151
152 /// ValueVTs - The value types of the values, which may not be legal, and
153 /// may need be promoted or synthesized from one or more registers.
154 ///
155 SmallVector<MVT, 4> ValueVTs;
156
157 /// RegVTs - The value types of the registers. This is the same size as
158 /// ValueVTs and it records, for each value, what the type of the assigned
159 /// register or registers are. (Individual values are never synthesized
160 /// from more than one type of register.)
161 ///
162 /// With virtual registers, the contents of RegVTs is redundant with TLI's
163 /// getRegisterType member function, however when with physical registers
164 /// it is necessary to have a separate record of the types.
165 ///
166 SmallVector<MVT, 4> RegVTs;
167
168 /// Regs - This list holds the registers assigned to the values.
169 /// Each legal or promoted value requires one register, and each
170 /// expanded value requires multiple registers.
171 ///
172 SmallVector<unsigned, 4> Regs;
173
174 RegsForValue() : TLI(0) {}
175
176 RegsForValue(const TargetLowering &tli,
177 const SmallVector<unsigned, 4> &regs,
178 MVT regvt, MVT valuevt)
179 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
180 RegsForValue(const TargetLowering &tli,
181 const SmallVector<unsigned, 4> &regs,
182 const SmallVector<MVT, 4> &regvts,
183 const SmallVector<MVT, 4> &valuevts)
184 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
185 RegsForValue(const TargetLowering &tli,
186 unsigned Reg, const Type *Ty) : TLI(&tli) {
187 ComputeValueVTs(tli, Ty, ValueVTs);
188
189 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
190 MVT ValueVT = ValueVTs[Value];
191 unsigned NumRegs = TLI->getNumRegisters(ValueVT);
192 MVT RegisterVT = TLI->getRegisterType(ValueVT);
193 for (unsigned i = 0; i != NumRegs; ++i)
194 Regs.push_back(Reg + i);
195 RegVTs.push_back(RegisterVT);
196 Reg += NumRegs;
197 }
198 }
199
200 /// append - Add the specified values to this one.
201 void append(const RegsForValue &RHS) {
202 TLI = RHS.TLI;
203 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
204 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
205 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
206 }
207
208
209 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
210 /// this value and returns the result as a ValueVTs value. This uses
211 /// Chain/Flag as the input and updates them for the output Chain/Flag.
212 /// If the Flag pointer is NULL, no flag is used.
213 SDValue getCopyFromRegs(SelectionDAG &DAG,
214 SDValue &Chain, SDValue *Flag) const;
215
216 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
217 /// specified value into the registers specified by this object. This uses
218 /// Chain/Flag as the input and updates them for the output Chain/Flag.
219 /// If the Flag pointer is NULL, no flag is used.
220 void getCopyToRegs(SDValue Val, SelectionDAG &DAG,
221 SDValue &Chain, SDValue *Flag) const;
222
223 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
224 /// operand list. This adds the code marker and includes the number of
225 /// values added into it.
226 void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
227 std::vector<SDValue> &Ops) const;
228 };
229}
230
231/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
232/// PHI nodes or outside of the basic block that defines it, or used by a
233/// switch or atomic instruction, which may expand to multiple basic blocks.
234static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
235 if (isa<PHINode>(I)) return true;
236 BasicBlock *BB = I->getParent();
237 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
238 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
239 // FIXME: Remove switchinst special case.
240 isa<SwitchInst>(*UI))
241 return true;
242 return false;
243}
244
245/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
246/// entry block, return true. This includes arguments used by switches, since
247/// the switch may expand into multiple basic blocks.
248static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
249 // With FastISel active, we may be splitting blocks, so force creation
250 // of virtual registers for all non-dead arguments.
Dan Gohman33134c42008-09-25 17:05:24 +0000251 // Don't force virtual registers for byval arguments though, because
252 // fast-isel can't handle those in all cases.
253 if (EnableFastISel && !A->hasByValAttr())
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000254 return A->use_empty();
255
256 BasicBlock *Entry = A->getParent()->begin();
257 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
258 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
259 return false; // Use not in entry block.
260 return true;
261}
262
263FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
264 : TLI(tli) {
265}
266
267void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
268 bool EnableFastISel) {
269 Fn = &fn;
270 MF = &mf;
271 RegInfo = &MF->getRegInfo();
272
273 // Create a vreg for each argument register that is not dead and is used
274 // outside of the entry block for the function.
275 for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
276 AI != E; ++AI)
277 if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
278 InitializeRegForValue(AI);
279
280 // Initialize the mapping of values to registers. This is only set up for
281 // instruction values that are used outside of the block that defines
282 // them.
283 Function::iterator BB = Fn->begin(), EB = Fn->end();
284 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
285 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
286 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
287 const Type *Ty = AI->getAllocatedType();
288 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
289 unsigned Align =
290 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
291 AI->getAlignment());
292
293 TySize *= CUI->getZExtValue(); // Get total allocated size.
294 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
295 StaticAllocaMap[AI] =
296 MF->getFrameInfo()->CreateStackObject(TySize, Align);
297 }
298
299 for (; BB != EB; ++BB)
300 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
301 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
302 if (!isa<AllocaInst>(I) ||
303 !StaticAllocaMap.count(cast<AllocaInst>(I)))
304 InitializeRegForValue(I);
305
306 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
307 // also creates the initial PHI MachineInstrs, though none of the input
308 // operands are populated.
309 for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
310 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
311 MBBMap[BB] = MBB;
312 MF->push_back(MBB);
313
314 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
315 // appropriate.
316 PHINode *PN;
317 for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
318 if (PN->use_empty()) continue;
319
320 unsigned PHIReg = ValueMap[PN];
321 assert(PHIReg && "PHI node does not have an assigned virtual register!");
322
323 SmallVector<MVT, 4> ValueVTs;
324 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
325 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
326 MVT VT = ValueVTs[vti];
327 unsigned NumRegisters = TLI.getNumRegisters(VT);
Dan Gohman6448d912008-09-04 15:39:15 +0000328 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000329 for (unsigned i = 0; i != NumRegisters; ++i)
330 BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
331 PHIReg += NumRegisters;
332 }
333 }
334 }
335}
336
337unsigned FunctionLoweringInfo::MakeReg(MVT VT) {
338 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
339}
340
341/// CreateRegForValue - Allocate the appropriate number of virtual registers of
342/// the correctly promoted or expanded types. Assign these registers
343/// consecutive vreg numbers and return the first assigned number.
344///
345/// In the case that the given value has struct or array type, this function
346/// will assign registers for each member or element.
347///
348unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
349 SmallVector<MVT, 4> ValueVTs;
350 ComputeValueVTs(TLI, V->getType(), ValueVTs);
351
352 unsigned FirstReg = 0;
353 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
354 MVT ValueVT = ValueVTs[Value];
355 MVT RegisterVT = TLI.getRegisterType(ValueVT);
356
357 unsigned NumRegs = TLI.getNumRegisters(ValueVT);
358 for (unsigned i = 0; i != NumRegs; ++i) {
359 unsigned R = MakeReg(RegisterVT);
360 if (!FirstReg) FirstReg = R;
361 }
362 }
363 return FirstReg;
364}
365
366/// getCopyFromParts - Create a value that contains the specified legal parts
367/// combined into the value they represent. If the parts combine to a type
368/// larger then ValueVT then AssertOp can be used to specify whether the extra
369/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
370/// (ISD::AssertSext).
371static SDValue getCopyFromParts(SelectionDAG &DAG,
372 const SDValue *Parts,
373 unsigned NumParts,
374 MVT PartVT,
375 MVT ValueVT,
376 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
377 assert(NumParts > 0 && "No parts to assemble!");
378 TargetLowering &TLI = DAG.getTargetLoweringInfo();
379 SDValue Val = Parts[0];
380
381 if (NumParts > 1) {
382 // Assemble the value from multiple parts.
383 if (!ValueVT.isVector()) {
384 unsigned PartBits = PartVT.getSizeInBits();
385 unsigned ValueBits = ValueVT.getSizeInBits();
386
387 // Assemble the power of 2 part.
388 unsigned RoundParts = NumParts & (NumParts - 1) ?
389 1 << Log2_32(NumParts) : NumParts;
390 unsigned RoundBits = PartBits * RoundParts;
391 MVT RoundVT = RoundBits == ValueBits ?
392 ValueVT : MVT::getIntegerVT(RoundBits);
393 SDValue Lo, Hi;
394
Duncan Sandsd22ec5f2008-10-29 14:22:20 +0000395 MVT HalfVT = ValueVT.isInteger() ?
396 MVT::getIntegerVT(RoundBits/2) :
397 MVT::getFloatingPointVT(RoundBits/2);
398
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000399 if (RoundParts > 2) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000400 Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
401 Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
402 PartVT, HalfVT);
403 } else {
Duncan Sandsd22ec5f2008-10-29 14:22:20 +0000404 Lo = DAG.getNode(ISD::BIT_CONVERT, HalfVT, Parts[0]);
405 Hi = DAG.getNode(ISD::BIT_CONVERT, HalfVT, Parts[1]);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000406 }
407 if (TLI.isBigEndian())
408 std::swap(Lo, Hi);
409 Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
410
411 if (RoundParts < NumParts) {
412 // Assemble the trailing non-power-of-2 part.
413 unsigned OddParts = NumParts - RoundParts;
414 MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
415 Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
416
417 // Combine the round and odd parts.
418 Lo = Val;
419 if (TLI.isBigEndian())
420 std::swap(Lo, Hi);
421 MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
422 Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
423 Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
424 DAG.getConstant(Lo.getValueType().getSizeInBits(),
425 TLI.getShiftAmountTy()));
426 Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
427 Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
428 }
429 } else {
430 // Handle a multi-element vector.
431 MVT IntermediateVT, RegisterVT;
432 unsigned NumIntermediates;
433 unsigned NumRegs =
434 TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
435 RegisterVT);
436 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
437 NumParts = NumRegs; // Silence a compiler warning.
438 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
439 assert(RegisterVT == Parts[0].getValueType() &&
440 "Part type doesn't match part!");
441
442 // Assemble the parts into intermediate operands.
443 SmallVector<SDValue, 8> Ops(NumIntermediates);
444 if (NumIntermediates == NumParts) {
445 // If the register was not expanded, truncate or copy the value,
446 // as appropriate.
447 for (unsigned i = 0; i != NumParts; ++i)
448 Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
449 PartVT, IntermediateVT);
450 } else if (NumParts > 0) {
451 // If the intermediate type was expanded, build the intermediate operands
452 // from the parts.
453 assert(NumParts % NumIntermediates == 0 &&
454 "Must expand into a divisible number of parts!");
455 unsigned Factor = NumParts / NumIntermediates;
456 for (unsigned i = 0; i != NumIntermediates; ++i)
457 Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
458 PartVT, IntermediateVT);
459 }
460
461 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
462 // operands.
463 Val = DAG.getNode(IntermediateVT.isVector() ?
464 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
465 ValueVT, &Ops[0], NumIntermediates);
466 }
467 }
468
469 // There is now one part, held in Val. Correct it to match ValueVT.
470 PartVT = Val.getValueType();
471
472 if (PartVT == ValueVT)
473 return Val;
474
475 if (PartVT.isVector()) {
476 assert(ValueVT.isVector() && "Unknown vector conversion!");
477 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
478 }
479
480 if (ValueVT.isVector()) {
481 assert(ValueVT.getVectorElementType() == PartVT &&
482 ValueVT.getVectorNumElements() == 1 &&
483 "Only trivial scalar-to-vector conversions should get here!");
484 return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
485 }
486
487 if (PartVT.isInteger() &&
488 ValueVT.isInteger()) {
489 if (ValueVT.bitsLT(PartVT)) {
490 // For a truncate, see if we have any information to
491 // indicate whether the truncated bits will always be
492 // zero or sign-extension.
493 if (AssertOp != ISD::DELETED_NODE)
494 Val = DAG.getNode(AssertOp, PartVT, Val,
495 DAG.getValueType(ValueVT));
496 return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
497 } else {
498 return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
499 }
500 }
501
502 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
503 if (ValueVT.bitsLT(Val.getValueType()))
504 // FP_ROUND's are always exact here.
505 return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
506 DAG.getIntPtrConstant(1));
507 return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
508 }
509
510 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
511 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
512
513 assert(0 && "Unknown mismatch!");
514 return SDValue();
515}
516
517/// getCopyToParts - Create a series of nodes that contain the specified value
518/// split into legal parts. If the parts contain more bits than Val, then, for
519/// integers, ExtendKind can be used to specify how to generate the extra bits.
Chris Lattner01426e12008-10-21 00:45:36 +0000520static void getCopyToParts(SelectionDAG &DAG, SDValue Val,
521 SDValue *Parts, unsigned NumParts, MVT PartVT,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000522 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
523 TargetLowering &TLI = DAG.getTargetLoweringInfo();
524 MVT PtrVT = TLI.getPointerTy();
525 MVT ValueVT = Val.getValueType();
526 unsigned PartBits = PartVT.getSizeInBits();
527 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
528
529 if (!NumParts)
530 return;
531
532 if (!ValueVT.isVector()) {
533 if (PartVT == ValueVT) {
534 assert(NumParts == 1 && "No-op copy with multiple parts!");
535 Parts[0] = Val;
536 return;
537 }
538
539 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
540 // If the parts cover more bits than the value has, promote the value.
541 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
542 assert(NumParts == 1 && "Do not know what to promote to!");
543 Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
544 } else if (PartVT.isInteger() && ValueVT.isInteger()) {
545 ValueVT = MVT::getIntegerVT(NumParts * PartBits);
546 Val = DAG.getNode(ExtendKind, ValueVT, Val);
547 } else {
548 assert(0 && "Unknown mismatch!");
549 }
550 } else if (PartBits == ValueVT.getSizeInBits()) {
551 // Different types of the same size.
552 assert(NumParts == 1 && PartVT != ValueVT);
553 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
554 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
555 // If the parts cover less bits than value has, truncate the value.
556 if (PartVT.isInteger() && ValueVT.isInteger()) {
557 ValueVT = MVT::getIntegerVT(NumParts * PartBits);
558 Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
559 } else {
560 assert(0 && "Unknown mismatch!");
561 }
562 }
563
564 // The value may have changed - recompute ValueVT.
565 ValueVT = Val.getValueType();
566 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
567 "Failed to tile the value with PartVT!");
568
569 if (NumParts == 1) {
570 assert(PartVT == ValueVT && "Type conversion failed!");
571 Parts[0] = Val;
572 return;
573 }
574
575 // Expand the value into multiple parts.
576 if (NumParts & (NumParts - 1)) {
577 // The number of parts is not a power of 2. Split off and copy the tail.
578 assert(PartVT.isInteger() && ValueVT.isInteger() &&
579 "Do not know what to expand to!");
580 unsigned RoundParts = 1 << Log2_32(NumParts);
581 unsigned RoundBits = RoundParts * PartBits;
582 unsigned OddParts = NumParts - RoundParts;
583 SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
584 DAG.getConstant(RoundBits,
585 TLI.getShiftAmountTy()));
586 getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
587 if (TLI.isBigEndian())
588 // The odd parts were reversed by getCopyToParts - unreverse them.
589 std::reverse(Parts + RoundParts, Parts + NumParts);
590 NumParts = RoundParts;
591 ValueVT = MVT::getIntegerVT(NumParts * PartBits);
592 Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
593 }
594
595 // The number of parts is a power of 2. Repeatedly bisect the value using
596 // EXTRACT_ELEMENT.
597 Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
598 MVT::getIntegerVT(ValueVT.getSizeInBits()),
599 Val);
600 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
601 for (unsigned i = 0; i < NumParts; i += StepSize) {
602 unsigned ThisBits = StepSize * PartBits / 2;
603 MVT ThisVT = MVT::getIntegerVT (ThisBits);
604 SDValue &Part0 = Parts[i];
605 SDValue &Part1 = Parts[i+StepSize/2];
606
607 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
608 DAG.getConstant(1, PtrVT));
609 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
610 DAG.getConstant(0, PtrVT));
611
612 if (ThisBits == PartBits && ThisVT != PartVT) {
613 Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
614 Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
615 }
616 }
617 }
618
619 if (TLI.isBigEndian())
620 std::reverse(Parts, Parts + NumParts);
621
622 return;
623 }
624
625 // Vector ValueVT.
626 if (NumParts == 1) {
627 if (PartVT != ValueVT) {
628 if (PartVT.isVector()) {
629 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
630 } else {
631 assert(ValueVT.getVectorElementType() == PartVT &&
632 ValueVT.getVectorNumElements() == 1 &&
633 "Only trivial vector-to-scalar conversions should get here!");
634 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
635 DAG.getConstant(0, PtrVT));
636 }
637 }
638
639 Parts[0] = Val;
640 return;
641 }
642
643 // Handle a multi-element vector.
644 MVT IntermediateVT, RegisterVT;
645 unsigned NumIntermediates;
646 unsigned NumRegs =
647 DAG.getTargetLoweringInfo()
648 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
649 RegisterVT);
650 unsigned NumElements = ValueVT.getVectorNumElements();
651
652 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
653 NumParts = NumRegs; // Silence a compiler warning.
654 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
655
656 // Split the vector into intermediate operands.
657 SmallVector<SDValue, 8> Ops(NumIntermediates);
658 for (unsigned i = 0; i != NumIntermediates; ++i)
659 if (IntermediateVT.isVector())
660 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
661 IntermediateVT, Val,
662 DAG.getConstant(i * (NumElements / NumIntermediates),
663 PtrVT));
664 else
665 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
666 IntermediateVT, Val,
667 DAG.getConstant(i, PtrVT));
668
669 // Split the intermediate operands into legal parts.
670 if (NumParts == NumIntermediates) {
671 // If the register was not expanded, promote or copy the value,
672 // as appropriate.
673 for (unsigned i = 0; i != NumParts; ++i)
674 getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
675 } else if (NumParts > 0) {
676 // If the intermediate type was expanded, split each the value into
677 // legal parts.
678 assert(NumParts % NumIntermediates == 0 &&
679 "Must expand into a divisible number of parts!");
680 unsigned Factor = NumParts / NumIntermediates;
681 for (unsigned i = 0; i != NumIntermediates; ++i)
682 getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
683 }
684}
685
686
687void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
688 AA = &aa;
689 GFI = gfi;
690 TD = DAG.getTarget().getTargetData();
691}
692
693/// clear - Clear out the curret SelectionDAG and the associated
694/// state and prepare this SelectionDAGLowering object to be used
695/// for a new block. This doesn't clear out information about
696/// additional blocks that are needed to complete switch lowering
697/// or PHI node updating; that information is cleared out as it is
698/// consumed.
699void SelectionDAGLowering::clear() {
700 NodeMap.clear();
701 PendingLoads.clear();
702 PendingExports.clear();
703 DAG.clear();
704}
705
706/// getRoot - Return the current virtual root of the Selection DAG,
707/// flushing any PendingLoad items. This must be done before emitting
708/// a store or any other node that may need to be ordered after any
709/// prior load instructions.
710///
711SDValue SelectionDAGLowering::getRoot() {
712 if (PendingLoads.empty())
713 return DAG.getRoot();
714
715 if (PendingLoads.size() == 1) {
716 SDValue Root = PendingLoads[0];
717 DAG.setRoot(Root);
718 PendingLoads.clear();
719 return Root;
720 }
721
722 // Otherwise, we have to make a token factor node.
723 SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
724 &PendingLoads[0], PendingLoads.size());
725 PendingLoads.clear();
726 DAG.setRoot(Root);
727 return Root;
728}
729
730/// getControlRoot - Similar to getRoot, but instead of flushing all the
731/// PendingLoad items, flush all the PendingExports items. It is necessary
732/// to do this before emitting a terminator instruction.
733///
734SDValue SelectionDAGLowering::getControlRoot() {
735 SDValue Root = DAG.getRoot();
736
737 if (PendingExports.empty())
738 return Root;
739
740 // Turn all of the CopyToReg chains into one factored node.
741 if (Root.getOpcode() != ISD::EntryToken) {
742 unsigned i = 0, e = PendingExports.size();
743 for (; i != e; ++i) {
744 assert(PendingExports[i].getNode()->getNumOperands() > 1);
745 if (PendingExports[i].getNode()->getOperand(0) == Root)
746 break; // Don't add the root if we already indirectly depend on it.
747 }
748
749 if (i == e)
750 PendingExports.push_back(Root);
751 }
752
753 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
754 &PendingExports[0],
755 PendingExports.size());
756 PendingExports.clear();
757 DAG.setRoot(Root);
758 return Root;
759}
760
761void SelectionDAGLowering::visit(Instruction &I) {
762 visit(I.getOpcode(), I);
763}
764
765void SelectionDAGLowering::visit(unsigned Opcode, User &I) {
766 // Note: this doesn't use InstVisitor, because it has to work with
767 // ConstantExpr's in addition to instructions.
768 switch (Opcode) {
769 default: assert(0 && "Unknown instruction type encountered!");
770 abort();
771 // Build the switch statement using the Instruction.def file.
772#define HANDLE_INST(NUM, OPCODE, CLASS) \
773 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
774#include "llvm/Instruction.def"
775 }
776}
777
778void SelectionDAGLowering::visitAdd(User &I) {
779 if (I.getType()->isFPOrFPVector())
780 visitBinary(I, ISD::FADD);
781 else
782 visitBinary(I, ISD::ADD);
783}
784
785void SelectionDAGLowering::visitMul(User &I) {
786 if (I.getType()->isFPOrFPVector())
787 visitBinary(I, ISD::FMUL);
788 else
789 visitBinary(I, ISD::MUL);
790}
791
792SDValue SelectionDAGLowering::getValue(const Value *V) {
793 SDValue &N = NodeMap[V];
794 if (N.getNode()) return N;
795
796 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
797 MVT VT = TLI.getValueType(V->getType(), true);
798
799 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
Dan Gohman4fbd7962008-09-12 18:08:03 +0000800 return N = DAG.getConstant(*CI, VT);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000801
802 if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
803 return N = DAG.getGlobalAddress(GV, VT);
804
805 if (isa<ConstantPointerNull>(C))
806 return N = DAG.getConstant(0, TLI.getPointerTy());
807
808 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
Dan Gohman4fbd7962008-09-12 18:08:03 +0000809 return N = DAG.getConstantFP(*CFP, VT);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000810
811 if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
812 !V->getType()->isAggregateType())
813 return N = DAG.getNode(ISD::UNDEF, VT);
814
815 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
816 visit(CE->getOpcode(), *CE);
817 SDValue N1 = NodeMap[V];
818 assert(N1.getNode() && "visit didn't populate the ValueMap!");
819 return N1;
820 }
821
822 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
823 SmallVector<SDValue, 4> Constants;
824 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
825 OI != OE; ++OI) {
826 SDNode *Val = getValue(*OI).getNode();
827 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
828 Constants.push_back(SDValue(Val, i));
829 }
830 return DAG.getMergeValues(&Constants[0], Constants.size());
831 }
832
833 if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
834 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
835 "Unknown struct or array constant!");
836
837 SmallVector<MVT, 4> ValueVTs;
838 ComputeValueVTs(TLI, C->getType(), ValueVTs);
839 unsigned NumElts = ValueVTs.size();
840 if (NumElts == 0)
841 return SDValue(); // empty struct
842 SmallVector<SDValue, 4> Constants(NumElts);
843 for (unsigned i = 0; i != NumElts; ++i) {
844 MVT EltVT = ValueVTs[i];
845 if (isa<UndefValue>(C))
846 Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
847 else if (EltVT.isFloatingPoint())
848 Constants[i] = DAG.getConstantFP(0, EltVT);
849 else
850 Constants[i] = DAG.getConstant(0, EltVT);
851 }
852 return DAG.getMergeValues(&Constants[0], NumElts);
853 }
854
855 const VectorType *VecTy = cast<VectorType>(V->getType());
856 unsigned NumElements = VecTy->getNumElements();
857
858 // Now that we know the number and type of the elements, get that number of
859 // elements into the Ops array based on what kind of constant it is.
860 SmallVector<SDValue, 16> Ops;
861 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
862 for (unsigned i = 0; i != NumElements; ++i)
863 Ops.push_back(getValue(CP->getOperand(i)));
864 } else {
865 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
866 "Unknown vector constant!");
867 MVT EltVT = TLI.getValueType(VecTy->getElementType());
868
869 SDValue Op;
870 if (isa<UndefValue>(C))
871 Op = DAG.getNode(ISD::UNDEF, EltVT);
872 else if (EltVT.isFloatingPoint())
873 Op = DAG.getConstantFP(0, EltVT);
874 else
875 Op = DAG.getConstant(0, EltVT);
876 Ops.assign(NumElements, Op);
877 }
878
879 // Create a BUILD_VECTOR node.
880 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
881 }
882
883 // If this is a static alloca, generate it as the frameindex instead of
884 // computation.
885 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
886 DenseMap<const AllocaInst*, int>::iterator SI =
887 FuncInfo.StaticAllocaMap.find(AI);
888 if (SI != FuncInfo.StaticAllocaMap.end())
889 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
890 }
891
892 unsigned InReg = FuncInfo.ValueMap[V];
893 assert(InReg && "Value not in map!");
894
895 RegsForValue RFV(TLI, InReg, V->getType());
896 SDValue Chain = DAG.getEntryNode();
897 return RFV.getCopyFromRegs(DAG, Chain, NULL);
898}
899
900
901void SelectionDAGLowering::visitRet(ReturnInst &I) {
902 if (I.getNumOperands() == 0) {
903 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
904 return;
905 }
906
907 SmallVector<SDValue, 8> NewValues;
908 NewValues.push_back(getControlRoot());
909 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000910 SmallVector<MVT, 4> ValueVTs;
911 ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
Dan Gohman7ea1ca62008-10-21 20:00:42 +0000912 unsigned NumValues = ValueVTs.size();
913 if (NumValues == 0) continue;
914
915 SDValue RetOp = getValue(I.getOperand(i));
916 for (unsigned j = 0, f = NumValues; j != f; ++j) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000917 MVT VT = ValueVTs[j];
918
919 // FIXME: C calling convention requires the return type to be promoted to
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000920 // at least 32-bit. But this is not necessary for non-C calling
921 // conventions.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000922 if (VT.isInteger()) {
923 MVT MinVT = TLI.getRegisterType(MVT::i32);
924 if (VT.bitsLT(MinVT))
925 VT = MinVT;
926 }
927
928 unsigned NumParts = TLI.getNumRegisters(VT);
929 MVT PartVT = TLI.getRegisterType(VT);
930 SmallVector<SDValue, 4> Parts(NumParts);
931 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
932
933 const Function *F = I.getParent()->getParent();
Devang Patel05988662008-09-25 21:00:45 +0000934 if (F->paramHasAttr(0, Attribute::SExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000935 ExtendKind = ISD::SIGN_EXTEND;
Devang Patel05988662008-09-25 21:00:45 +0000936 else if (F->paramHasAttr(0, Attribute::ZExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000937 ExtendKind = ISD::ZERO_EXTEND;
938
939 getCopyToParts(DAG, SDValue(RetOp.getNode(), RetOp.getResNo() + j),
940 &Parts[0], NumParts, PartVT, ExtendKind);
941
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000942 // 'inreg' on function refers to return value
943 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
Devang Patel05988662008-09-25 21:00:45 +0000944 if (F->paramHasAttr(0, Attribute::InReg))
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000945 Flags.setInReg();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000946 for (unsigned i = 0; i < NumParts; ++i) {
947 NewValues.push_back(Parts[i]);
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000948 NewValues.push_back(DAG.getArgFlags(Flags));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000949 }
950 }
951 }
952 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
953 &NewValues[0], NewValues.size()));
954}
955
956/// ExportFromCurrentBlock - If this condition isn't known to be exported from
957/// the current basic block, add it to ValueMap now so that we'll get a
958/// CopyTo/FromReg.
959void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
960 // No need to export constants.
961 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
962
963 // Already exported?
964 if (FuncInfo.isExportedInst(V)) return;
965
966 unsigned Reg = FuncInfo.InitializeRegForValue(V);
967 CopyValueToVirtualRegister(V, Reg);
968}
969
970bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
971 const BasicBlock *FromBB) {
972 // The operands of the setcc have to be in this block. We don't know
973 // how to export them from some other block.
974 if (Instruction *VI = dyn_cast<Instruction>(V)) {
975 // Can export from current BB.
976 if (VI->getParent() == FromBB)
977 return true;
978
979 // Is already exported, noop.
980 return FuncInfo.isExportedInst(V);
981 }
982
983 // If this is an argument, we can export it if the BB is the entry block or
984 // if it is already exported.
985 if (isa<Argument>(V)) {
986 if (FromBB == &FromBB->getParent()->getEntryBlock())
987 return true;
988
989 // Otherwise, can only export this if it is already exported.
990 return FuncInfo.isExportedInst(V);
991 }
992
993 // Otherwise, constants can always be exported.
994 return true;
995}
996
997static bool InBlock(const Value *V, const BasicBlock *BB) {
998 if (const Instruction *I = dyn_cast<Instruction>(V))
999 return I->getParent() == BB;
1000 return true;
1001}
1002
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00001003/// getFCmpCondCode - Return the ISD condition code corresponding to
1004/// the given LLVM IR floating-point condition code. This includes
1005/// consideration of global floating-point math flags.
1006///
1007static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
1008 ISD::CondCode FPC, FOC;
1009 switch (Pred) {
1010 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1011 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1012 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1013 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1014 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1015 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1016 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1017 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
1018 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
1019 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1020 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1021 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1022 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1023 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1024 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1025 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
1026 default:
1027 assert(0 && "Invalid FCmp predicate opcode!");
1028 FOC = FPC = ISD::SETFALSE;
1029 break;
1030 }
1031 if (FiniteOnlyFPMath())
1032 return FOC;
1033 else
1034 return FPC;
1035}
1036
1037/// getICmpCondCode - Return the ISD condition code corresponding to
1038/// the given LLVM IR integer condition code.
1039///
1040static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
1041 switch (Pred) {
1042 case ICmpInst::ICMP_EQ: return ISD::SETEQ;
1043 case ICmpInst::ICMP_NE: return ISD::SETNE;
1044 case ICmpInst::ICMP_SLE: return ISD::SETLE;
1045 case ICmpInst::ICMP_ULE: return ISD::SETULE;
1046 case ICmpInst::ICMP_SGE: return ISD::SETGE;
1047 case ICmpInst::ICMP_UGE: return ISD::SETUGE;
1048 case ICmpInst::ICMP_SLT: return ISD::SETLT;
1049 case ICmpInst::ICMP_ULT: return ISD::SETULT;
1050 case ICmpInst::ICMP_SGT: return ISD::SETGT;
1051 case ICmpInst::ICMP_UGT: return ISD::SETUGT;
1052 default:
1053 assert(0 && "Invalid ICmp predicate opcode!");
1054 return ISD::SETNE;
1055 }
1056}
1057
Dan Gohmanc2277342008-10-17 21:16:08 +00001058/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1059/// This function emits a branch and is used at the leaves of an OR or an
1060/// AND operator tree.
1061///
1062void
1063SelectionDAGLowering::EmitBranchForMergedCondition(Value *Cond,
1064 MachineBasicBlock *TBB,
1065 MachineBasicBlock *FBB,
1066 MachineBasicBlock *CurBB) {
1067 const BasicBlock *BB = CurBB->getBasicBlock();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001068
Dan Gohmanc2277342008-10-17 21:16:08 +00001069 // If the leaf of the tree is a comparison, merge the condition into
1070 // the caseblock.
1071 if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1072 // The operands of the cmp have to be in this block. We don't know
1073 // how to export them from some other block. If this is the first block
1074 // of the sequence, no exporting is needed.
1075 if (CurBB == CurMBB ||
1076 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1077 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001078 ISD::CondCode Condition;
1079 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00001080 Condition = getICmpCondCode(IC->getPredicate());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001081 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00001082 Condition = getFCmpCondCode(FC->getPredicate());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001083 } else {
1084 Condition = ISD::SETEQ; // silence warning.
1085 assert(0 && "Unknown compare instruction");
1086 }
Dan Gohmanc2277342008-10-17 21:16:08 +00001087
1088 CaseBlock CB(Condition, BOp->getOperand(0),
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001089 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1090 SwitchCases.push_back(CB);
1091 return;
1092 }
Dan Gohmanc2277342008-10-17 21:16:08 +00001093 }
1094
1095 // Create a CaseBlock record representing this branch.
1096 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1097 NULL, TBB, FBB, CurBB);
1098 SwitchCases.push_back(CB);
1099}
1100
1101/// FindMergedConditions - If Cond is an expression like
1102void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1103 MachineBasicBlock *TBB,
1104 MachineBasicBlock *FBB,
1105 MachineBasicBlock *CurBB,
1106 unsigned Opc) {
1107 // If this node is not part of the or/and tree, emit it as a branch.
1108 Instruction *BOp = dyn_cast<Instruction>(Cond);
1109 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1110 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1111 BOp->getParent() != CurBB->getBasicBlock() ||
1112 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1113 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1114 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001115 return;
1116 }
1117
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001118 // Create TmpBB after CurBB.
1119 MachineFunction::iterator BBI = CurBB;
1120 MachineFunction &MF = DAG.getMachineFunction();
1121 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1122 CurBB->getParent()->insert(++BBI, TmpBB);
1123
1124 if (Opc == Instruction::Or) {
1125 // Codegen X | Y as:
1126 // jmp_if_X TBB
1127 // jmp TmpBB
1128 // TmpBB:
1129 // jmp_if_Y TBB
1130 // jmp FBB
1131 //
1132
1133 // Emit the LHS condition.
1134 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1135
1136 // Emit the RHS condition into TmpBB.
1137 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1138 } else {
1139 assert(Opc == Instruction::And && "Unknown merge op!");
1140 // Codegen X & Y as:
1141 // jmp_if_X TmpBB
1142 // jmp FBB
1143 // TmpBB:
1144 // jmp_if_Y TBB
1145 // jmp FBB
1146 //
1147 // This requires creation of TmpBB after CurBB.
1148
1149 // Emit the LHS condition.
1150 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1151
1152 // Emit the RHS condition into TmpBB.
1153 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1154 }
1155}
1156
1157/// If the set of cases should be emitted as a series of branches, return true.
1158/// If we should emit this as a bunch of and/or'd together conditions, return
1159/// false.
1160bool
1161SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1162 if (Cases.size() != 2) return true;
1163
1164 // If this is two comparisons of the same values or'd or and'd together, they
1165 // will get folded into a single comparison, so don't emit two blocks.
1166 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1167 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1168 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1169 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1170 return false;
1171 }
1172
1173 return true;
1174}
1175
1176void SelectionDAGLowering::visitBr(BranchInst &I) {
1177 // Update machine-CFG edges.
1178 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1179
1180 // Figure out which block is immediately after the current one.
1181 MachineBasicBlock *NextBlock = 0;
1182 MachineFunction::iterator BBI = CurMBB;
1183 if (++BBI != CurMBB->getParent()->end())
1184 NextBlock = BBI;
1185
1186 if (I.isUnconditional()) {
1187 // Update machine-CFG edges.
1188 CurMBB->addSuccessor(Succ0MBB);
1189
1190 // If this is not a fall-through branch, emit the branch.
1191 if (Succ0MBB != NextBlock)
1192 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1193 DAG.getBasicBlock(Succ0MBB)));
1194 return;
1195 }
1196
1197 // If this condition is one of the special cases we handle, do special stuff
1198 // now.
1199 Value *CondVal = I.getCondition();
1200 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1201
1202 // If this is a series of conditions that are or'd or and'd together, emit
1203 // this as a sequence of branches instead of setcc's with and/or operations.
1204 // For example, instead of something like:
1205 // cmp A, B
1206 // C = seteq
1207 // cmp D, E
1208 // F = setle
1209 // or C, F
1210 // jnz foo
1211 // Emit:
1212 // cmp A, B
1213 // je foo
1214 // cmp D, E
1215 // jle foo
1216 //
1217 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1218 if (BOp->hasOneUse() &&
1219 (BOp->getOpcode() == Instruction::And ||
1220 BOp->getOpcode() == Instruction::Or)) {
1221 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1222 // If the compares in later blocks need to use values not currently
1223 // exported from this block, export them now. This block should always
1224 // be the first entry.
1225 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1226
1227 // Allow some cases to be rejected.
1228 if (ShouldEmitAsBranches(SwitchCases)) {
1229 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1230 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1231 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1232 }
1233
1234 // Emit the branch for this block.
1235 visitSwitchCase(SwitchCases[0]);
1236 SwitchCases.erase(SwitchCases.begin());
1237 return;
1238 }
1239
1240 // Okay, we decided not to do this, remove any inserted MBB's and clear
1241 // SwitchCases.
1242 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1243 CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
1244
1245 SwitchCases.clear();
1246 }
1247 }
1248
1249 // Create a CaseBlock record representing this branch.
1250 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1251 NULL, Succ0MBB, Succ1MBB, CurMBB);
1252 // Use visitSwitchCase to actually insert the fast branch sequence for this
1253 // cond branch.
1254 visitSwitchCase(CB);
1255}
1256
1257/// visitSwitchCase - Emits the necessary code to represent a single node in
1258/// the binary search tree resulting from lowering a switch instruction.
1259void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
1260 SDValue Cond;
1261 SDValue CondLHS = getValue(CB.CmpLHS);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001262
1263 // Build the setcc now.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001264 if (CB.CmpMHS == NULL) {
1265 // Fold "(X == true)" to X and "(X == false)" to !X to
1266 // handle common cases produced by branch lowering.
1267 if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1268 Cond = CondLHS;
1269 else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1270 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1271 Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1272 } else
1273 Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1274 } else {
1275 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1276
Anton Korobeynikov23218582008-12-23 22:25:27 +00001277 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1278 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001279
1280 SDValue CmpOp = getValue(CB.CmpMHS);
1281 MVT VT = CmpOp.getValueType();
1282
1283 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1284 Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1285 } else {
1286 SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1287 Cond = DAG.getSetCC(MVT::i1, SUB,
1288 DAG.getConstant(High-Low, VT), ISD::SETULE);
1289 }
1290 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001291
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001292 // Update successor info
1293 CurMBB->addSuccessor(CB.TrueBB);
1294 CurMBB->addSuccessor(CB.FalseBB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001295
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001296 // Set NextBlock to be the MBB immediately after the current one, if any.
1297 // This is used to avoid emitting unnecessary branches to the next block.
1298 MachineBasicBlock *NextBlock = 0;
1299 MachineFunction::iterator BBI = CurMBB;
1300 if (++BBI != CurMBB->getParent()->end())
1301 NextBlock = BBI;
Anton Korobeynikov23218582008-12-23 22:25:27 +00001302
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001303 // If the lhs block is the next block, invert the condition so that we can
1304 // fall through to the lhs instead of the rhs block.
1305 if (CB.TrueBB == NextBlock) {
1306 std::swap(CB.TrueBB, CB.FalseBB);
1307 SDValue True = DAG.getConstant(1, Cond.getValueType());
1308 Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1309 }
1310 SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1311 DAG.getBasicBlock(CB.TrueBB));
Anton Korobeynikov23218582008-12-23 22:25:27 +00001312
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001313 // If the branch was constant folded, fix up the CFG.
1314 if (BrCond.getOpcode() == ISD::BR) {
1315 CurMBB->removeSuccessor(CB.FalseBB);
1316 DAG.setRoot(BrCond);
1317 } else {
1318 // Otherwise, go ahead and insert the false branch.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001319 if (BrCond == getControlRoot())
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001320 CurMBB->removeSuccessor(CB.TrueBB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001321
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001322 if (CB.FalseBB == NextBlock)
1323 DAG.setRoot(BrCond);
1324 else
Anton Korobeynikov23218582008-12-23 22:25:27 +00001325 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001326 DAG.getBasicBlock(CB.FalseBB)));
1327 }
1328}
1329
1330/// visitJumpTable - Emit JumpTable node in the current MBB
1331void SelectionDAGLowering::visitJumpTable(JumpTable &JT) {
1332 // Emit the code for the jump table
1333 assert(JT.Reg != -1U && "Should lower JT Header first!");
1334 MVT PTy = TLI.getPointerTy();
1335 SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1336 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1337 DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1338 Table, Index));
1339 return;
1340}
1341
1342/// visitJumpTableHeader - This function emits necessary code to produce index
1343/// in the JumpTable from switch case.
1344void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
1345 JumpTableHeader &JTH) {
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001346 // Subtract the lowest switch case value from the value being switched on and
1347 // conditional branch to default mbb if the result is greater than the
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001348 // difference between smallest and largest cases.
1349 SDValue SwitchOp = getValue(JTH.SValue);
1350 MVT VT = SwitchOp.getValueType();
1351 SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001352 DAG.getConstant(JTH.First, VT));
Anton Korobeynikov23218582008-12-23 22:25:27 +00001353
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001354 // The SDNode we just created, which holds the value being switched on minus
1355 // the the smallest case value, needs to be copied to a virtual register so it
1356 // can be used as an index into the jump table in a subsequent basic block.
1357 // This value may be smaller or larger than the target's pointer type, and
1358 // therefore require extension or truncating.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001359 if (VT.bitsGT(TLI.getPointerTy()))
1360 SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1361 else
1362 SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001363
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001364 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1365 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1366 JT.Reg = JumpTableReg;
1367
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001368 // Emit the range check for the jump table, and branch to the default block
1369 // for the switch statement if the value being switched on exceeds the largest
1370 // case in the switch.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001371 SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001372 DAG.getConstant(JTH.Last-JTH.First,VT),
1373 ISD::SETUGT);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001374
1375 // Set NextBlock to be the MBB immediately after the current one, if any.
1376 // This is used to avoid emitting unnecessary branches to the next block.
1377 MachineBasicBlock *NextBlock = 0;
1378 MachineFunction::iterator BBI = CurMBB;
1379 if (++BBI != CurMBB->getParent()->end())
1380 NextBlock = BBI;
1381
1382 SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001383 DAG.getBasicBlock(JT.Default));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001384
1385 if (JT.MBB == NextBlock)
1386 DAG.setRoot(BrCond);
1387 else
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001388 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001389 DAG.getBasicBlock(JT.MBB)));
1390
1391 return;
1392}
1393
1394/// visitBitTestHeader - This function emits necessary code to produce value
1395/// suitable for "bit tests"
1396void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
1397 // Subtract the minimum value
1398 SDValue SwitchOp = getValue(B.SValue);
1399 MVT VT = SwitchOp.getValueType();
1400 SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001401 DAG.getConstant(B.First, VT));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001402
1403 // Check range
1404 SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001405 DAG.getConstant(B.Range, VT),
1406 ISD::SETUGT);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001407
1408 SDValue ShiftOp;
1409 if (VT.bitsGT(TLI.getShiftAmountTy()))
1410 ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1411 else
1412 ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1413
1414 // Make desired shift
1415 SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001416 DAG.getConstant(1, TLI.getPointerTy()),
1417 ShiftOp);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001418
1419 unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1420 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1421 B.Reg = SwitchReg;
1422
1423 // Set NextBlock to be the MBB immediately after the current one, if any.
1424 // This is used to avoid emitting unnecessary branches to the next block.
1425 MachineBasicBlock *NextBlock = 0;
1426 MachineFunction::iterator BBI = CurMBB;
1427 if (++BBI != CurMBB->getParent()->end())
1428 NextBlock = BBI;
1429
1430 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1431
1432 CurMBB->addSuccessor(B.Default);
1433 CurMBB->addSuccessor(MBB);
1434
1435 SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001436 DAG.getBasicBlock(B.Default));
Anton Korobeynikov23218582008-12-23 22:25:27 +00001437
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001438 if (MBB == NextBlock)
1439 DAG.setRoot(BrRange);
1440 else
1441 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1442 DAG.getBasicBlock(MBB)));
1443
1444 return;
1445}
1446
1447/// visitBitTestCase - this function produces one "bit test"
1448void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1449 unsigned Reg,
1450 BitTestCase &B) {
1451 // Emit bit tests and jumps
Anton Korobeynikov23218582008-12-23 22:25:27 +00001452 SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001453 TLI.getPointerTy());
Anton Korobeynikov23218582008-12-23 22:25:27 +00001454
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001455 SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001456 DAG.getConstant(B.Mask, TLI.getPointerTy()));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001457 SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001458 DAG.getConstant(0, TLI.getPointerTy()),
1459 ISD::SETNE);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001460
1461 CurMBB->addSuccessor(B.TargetBB);
1462 CurMBB->addSuccessor(NextMBB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001463
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001464 SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
Anton Korobeynikov1bfe2372008-12-23 22:25:45 +00001465 AndCmp, DAG.getBasicBlock(B.TargetBB));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001466
1467 // Set NextBlock to be the MBB immediately after the current one, if any.
1468 // This is used to avoid emitting unnecessary branches to the next block.
1469 MachineBasicBlock *NextBlock = 0;
1470 MachineFunction::iterator BBI = CurMBB;
1471 if (++BBI != CurMBB->getParent()->end())
1472 NextBlock = BBI;
1473
1474 if (NextMBB == NextBlock)
1475 DAG.setRoot(BrAnd);
1476 else
1477 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1478 DAG.getBasicBlock(NextMBB)));
1479
1480 return;
1481}
1482
1483void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1484 // Retrieve successors.
1485 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1486 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1487
1488 if (isa<InlineAsm>(I.getCalledValue()))
1489 visitInlineAsm(&I);
1490 else
1491 LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1492
1493 // If the value of the invoke is used outside of its defining block, make it
1494 // available as a virtual register.
1495 if (!I.use_empty()) {
1496 DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1497 if (VMI != FuncInfo.ValueMap.end())
1498 CopyValueToVirtualRegister(&I, VMI->second);
1499 }
1500
1501 // Update successor info
1502 CurMBB->addSuccessor(Return);
1503 CurMBB->addSuccessor(LandingPad);
1504
1505 // Drop into normal successor.
1506 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1507 DAG.getBasicBlock(Return)));
1508}
1509
1510void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1511}
1512
1513/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1514/// small case ranges).
1515bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1516 CaseRecVector& WorkList,
1517 Value* SV,
1518 MachineBasicBlock* Default) {
1519 Case& BackCase = *(CR.Range.second-1);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001520
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001521 // Size is the number of Cases represented by this range.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001522 size_t Size = CR.Range.second - CR.Range.first;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001523 if (Size > 3)
Anton Korobeynikov23218582008-12-23 22:25:27 +00001524 return false;
1525
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001526 // Get the MachineFunction which holds the current MBB. This is used when
1527 // inserting any additional MBBs necessary to represent the switch.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001528 MachineFunction *CurMF = CurMBB->getParent();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001529
1530 // Figure out which block is immediately after the current one.
1531 MachineBasicBlock *NextBlock = 0;
1532 MachineFunction::iterator BBI = CR.CaseBB;
1533
1534 if (++BBI != CurMBB->getParent()->end())
1535 NextBlock = BBI;
1536
1537 // TODO: If any two of the cases has the same destination, and if one value
1538 // is the same as the other, but has one bit unset that the other has set,
1539 // use bit manipulation to do two compares at once. For example:
1540 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
Anton Korobeynikov23218582008-12-23 22:25:27 +00001541
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001542 // Rearrange the case blocks so that the last one falls through if possible.
1543 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1544 // The last case block won't fall through into 'NextBlock' if we emit the
1545 // branches in this order. See if rearranging a case value would help.
1546 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1547 if (I->BB == NextBlock) {
1548 std::swap(*I, BackCase);
1549 break;
1550 }
1551 }
1552 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001553
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001554 // Create a CaseBlock record representing a conditional branch to
1555 // the Case's target mbb if the value being switched on SV is equal
1556 // to C.
1557 MachineBasicBlock *CurBlock = CR.CaseBB;
1558 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1559 MachineBasicBlock *FallThrough;
1560 if (I != E-1) {
1561 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1562 CurMF->insert(BBI, FallThrough);
1563 } else {
1564 // If the last case doesn't match, go to the default block.
1565 FallThrough = Default;
1566 }
1567
1568 Value *RHS, *LHS, *MHS;
1569 ISD::CondCode CC;
1570 if (I->High == I->Low) {
1571 // This is just small small case range :) containing exactly 1 case
1572 CC = ISD::SETEQ;
1573 LHS = SV; RHS = I->High; MHS = NULL;
1574 } else {
1575 CC = ISD::SETLE;
1576 LHS = I->Low; MHS = SV; RHS = I->High;
1577 }
1578 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001579
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001580 // If emitting the first comparison, just call visitSwitchCase to emit the
1581 // code into the current block. Otherwise, push the CaseBlock onto the
1582 // vector to be later processed by SDISel, and insert the node's MBB
1583 // before the next MBB.
1584 if (CurBlock == CurMBB)
1585 visitSwitchCase(CB);
1586 else
1587 SwitchCases.push_back(CB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001588
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001589 CurBlock = FallThrough;
1590 }
1591
1592 return true;
1593}
1594
1595static inline bool areJTsAllowed(const TargetLowering &TLI) {
1596 return !DisableJumpTables &&
1597 (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1598 TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1599}
Anton Korobeynikov23218582008-12-23 22:25:27 +00001600
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001601static APInt ComputeRange(const APInt &First, const APInt &Last) {
1602 APInt LastExt(Last), FirstExt(First);
1603 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1604 LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1605 return (LastExt - FirstExt + 1ULL);
1606}
1607
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001608/// handleJTSwitchCase - Emit jumptable for current switch case range
1609bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1610 CaseRecVector& WorkList,
1611 Value* SV,
1612 MachineBasicBlock* Default) {
1613 Case& FrontCase = *CR.Range.first;
1614 Case& BackCase = *(CR.Range.second-1);
1615
Anton Korobeynikov23218582008-12-23 22:25:27 +00001616 const APInt& First = cast<ConstantInt>(FrontCase.Low)->getValue();
1617 const APInt& Last = cast<ConstantInt>(BackCase.High)->getValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001618
Anton Korobeynikov23218582008-12-23 22:25:27 +00001619 size_t TSize = 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001620 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1621 I!=E; ++I)
1622 TSize += I->size();
1623
1624 if (!areJTsAllowed(TLI) || TSize <= 3)
1625 return false;
Anton Korobeynikov23218582008-12-23 22:25:27 +00001626
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001627 APInt Range = ComputeRange(First, Last);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001628 double Density = (double)TSize / Range.roundToDouble();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001629 if (Density < 0.4)
1630 return false;
1631
Anton Korobeynikov23218582008-12-23 22:25:27 +00001632 /*DOUT << "Lowering jump table\n"
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001633 << "First entry: " << First.getSExtValue() << ". Last entry: " << Last.getSExtValue() << "\n"
1634 << "Range: " << Range.getSExtValue()
Anton Korobeynikov23218582008-12-23 22:25:27 +00001635 << "Size: " << TSize << ". Density: " << Density << "\n\n";*/
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001636
1637 // Get the MachineFunction which holds the current MBB. This is used when
1638 // inserting any additional MBBs necessary to represent the switch.
1639 MachineFunction *CurMF = CurMBB->getParent();
1640
1641 // Figure out which block is immediately after the current one.
1642 MachineBasicBlock *NextBlock = 0;
1643 MachineFunction::iterator BBI = CR.CaseBB;
1644
1645 if (++BBI != CurMBB->getParent()->end())
1646 NextBlock = BBI;
1647
1648 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1649
1650 // Create a new basic block to hold the code for loading the address
1651 // of the jump table, and jumping to it. Update successor information;
1652 // we will either branch to the default case for the switch, or the jump
1653 // table.
1654 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1655 CurMF->insert(BBI, JumpTableBB);
1656 CR.CaseBB->addSuccessor(Default);
1657 CR.CaseBB->addSuccessor(JumpTableBB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001658
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001659 // Build a vector of destination BBs, corresponding to each target
1660 // of the jump table. If the value of the jump table slot corresponds to
1661 // a case statement, push the case's BB onto the vector, otherwise, push
1662 // the default BB.
1663 std::vector<MachineBasicBlock*> DestBBs;
Anton Korobeynikov23218582008-12-23 22:25:27 +00001664 APInt TEI = First;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001665 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
Anton Korobeynikov23218582008-12-23 22:25:27 +00001666 const APInt& Low = cast<ConstantInt>(I->Low)->getValue();
1667 const APInt& High = cast<ConstantInt>(I->High)->getValue();
1668
1669 if (Low.sle(TEI) && TEI.sle(High)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001670 DestBBs.push_back(I->BB);
1671 if (TEI==High)
1672 ++I;
1673 } else {
1674 DestBBs.push_back(Default);
1675 }
1676 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001677
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001678 // Update successor info. Add one edge to each unique successor.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001679 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1680 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001681 E = DestBBs.end(); I != E; ++I) {
1682 if (!SuccsHandled[(*I)->getNumber()]) {
1683 SuccsHandled[(*I)->getNumber()] = true;
1684 JumpTableBB->addSuccessor(*I);
1685 }
1686 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001687
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001688 // Create a jump table index for this jump table, or return an existing
1689 // one.
1690 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001691
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001692 // Set the jump table information so that we can codegen it as a second
1693 // MachineBasicBlock
1694 JumpTable JT(-1U, JTI, JumpTableBB, Default);
1695 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1696 if (CR.CaseBB == CurMBB)
1697 visitJumpTableHeader(JT, JTH);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001698
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001699 JTCases.push_back(JumpTableBlock(JTH, JT));
1700
1701 return true;
1702}
1703
1704/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1705/// 2 subtrees.
1706bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1707 CaseRecVector& WorkList,
1708 Value* SV,
1709 MachineBasicBlock* Default) {
1710 // Get the MachineFunction which holds the current MBB. This is used when
1711 // inserting any additional MBBs necessary to represent the switch.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001712 MachineFunction *CurMF = CurMBB->getParent();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001713
1714 // Figure out which block is immediately after the current one.
1715 MachineBasicBlock *NextBlock = 0;
1716 MachineFunction::iterator BBI = CR.CaseBB;
1717
1718 if (++BBI != CurMBB->getParent()->end())
1719 NextBlock = BBI;
1720
1721 Case& FrontCase = *CR.Range.first;
1722 Case& BackCase = *(CR.Range.second-1);
1723 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1724
1725 // Size is the number of Cases represented by this range.
1726 unsigned Size = CR.Range.second - CR.Range.first;
1727
Anton Korobeynikov23218582008-12-23 22:25:27 +00001728 const APInt& First = cast<ConstantInt>(FrontCase.Low)->getValue();
1729 const APInt& Last = cast<ConstantInt>(BackCase.High)->getValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001730 double FMetric = 0;
1731 CaseItr Pivot = CR.Range.first + Size/2;
1732
1733 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1734 // (heuristically) allow us to emit JumpTable's later.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001735 size_t TSize = 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001736 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1737 I!=E; ++I)
1738 TSize += I->size();
1739
Anton Korobeynikov23218582008-12-23 22:25:27 +00001740 size_t LSize = FrontCase.size();
1741 size_t RSize = TSize-LSize;
1742 /*DOUT << "Selecting best pivot: \n"
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001743 << "First: " << First.getSExtValue() << ", Last: " << Last.getSExtValue() <<"\n"
Anton Korobeynikov23218582008-12-23 22:25:27 +00001744 << "LSize: " << LSize << ", RSize: " << RSize << "\n";*/
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001745 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1746 J!=E; ++I, ++J) {
Anton Korobeynikov23218582008-12-23 22:25:27 +00001747 const APInt& LEnd = cast<ConstantInt>(I->High)->getValue();
1748 const APInt& RBegin = cast<ConstantInt>(J->Low)->getValue();
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001749 APInt Range = ComputeRange(LEnd, RBegin);
1750 assert((Range - 2ULL).isNonNegative() &&
1751 "Invalid case distance");
Anton Korobeynikov23218582008-12-23 22:25:27 +00001752 double LDensity = (double)LSize / (LEnd - First + 1ULL).roundToDouble();
1753 double RDensity = (double)RSize / (Last - RBegin + 1ULL).roundToDouble();
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001754 double Metric = Range.logBase2()*(LDensity+RDensity);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001755 // Should always split in some non-trivial place
Anton Korobeynikov23218582008-12-23 22:25:27 +00001756 /*DOUT <<"=>Step\n"
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001757 << "LEnd: " << LEnd.getSExtValue() << ", RBegin: " << RBegin.getSExtValue() << "\n"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001758 << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
Anton Korobeynikov23218582008-12-23 22:25:27 +00001759 << "Metric: " << Metric << "\n";*/
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001760 if (FMetric < Metric) {
1761 Pivot = J;
1762 FMetric = Metric;
1763 DOUT << "Current metric set to: " << FMetric << "\n";
1764 }
1765
1766 LSize += J->size();
1767 RSize -= J->size();
1768 }
1769 if (areJTsAllowed(TLI)) {
1770 // If our case is dense we *really* should handle it earlier!
1771 assert((FMetric > 0) && "Should handle dense range earlier!");
1772 } else {
1773 Pivot = CR.Range.first + Size/2;
1774 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001775
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001776 CaseRange LHSR(CR.Range.first, Pivot);
1777 CaseRange RHSR(Pivot, CR.Range.second);
1778 Constant *C = Pivot->Low;
1779 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
Anton Korobeynikov23218582008-12-23 22:25:27 +00001780
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001781 // We know that we branch to the LHS if the Value being switched on is
1782 // less than the Pivot value, C. We use this to optimize our binary
1783 // tree a bit, by recognizing that if SV is greater than or equal to the
1784 // LHS's Case Value, and that Case Value is exactly one less than the
1785 // Pivot's Value, then we can branch directly to the LHS's Target,
1786 // rather than creating a leaf node for it.
1787 if ((LHSR.second - LHSR.first) == 1 &&
1788 LHSR.first->High == CR.GE &&
Anton Korobeynikov23218582008-12-23 22:25:27 +00001789 cast<ConstantInt>(C)->getValue() ==
1790 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001791 TrueBB = LHSR.first->BB;
1792 } else {
1793 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1794 CurMF->insert(BBI, TrueBB);
1795 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1796 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001797
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001798 // Similar to the optimization above, if the Value being switched on is
1799 // known to be less than the Constant CR.LT, and the current Case Value
1800 // is CR.LT - 1, then we can branch directly to the target block for
1801 // the current Case Value, rather than emitting a RHS leaf node for it.
1802 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
Anton Korobeynikov23218582008-12-23 22:25:27 +00001803 cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1804 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001805 FalseBB = RHSR.first->BB;
1806 } else {
1807 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1808 CurMF->insert(BBI, FalseBB);
1809 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1810 }
1811
1812 // Create a CaseBlock record representing a conditional branch to
1813 // the LHS node if the value being switched on SV is less than C.
1814 // Otherwise, branch to LHS.
1815 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1816
1817 if (CR.CaseBB == CurMBB)
1818 visitSwitchCase(CB);
1819 else
1820 SwitchCases.push_back(CB);
1821
1822 return true;
1823}
1824
1825/// handleBitTestsSwitchCase - if current case range has few destination and
1826/// range span less, than machine word bitwidth, encode case range into series
1827/// of masks and emit bit tests with these masks.
1828bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1829 CaseRecVector& WorkList,
1830 Value* SV,
1831 MachineBasicBlock* Default){
1832 unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
1833
1834 Case& FrontCase = *CR.Range.first;
1835 Case& BackCase = *(CR.Range.second-1);
1836
1837 // Get the MachineFunction which holds the current MBB. This is used when
1838 // inserting any additional MBBs necessary to represent the switch.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001839 MachineFunction *CurMF = CurMBB->getParent();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001840
Anton Korobeynikov23218582008-12-23 22:25:27 +00001841 size_t numCmps = 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001842 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1843 I!=E; ++I) {
1844 // Single case counts one, case range - two.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001845 numCmps += (I->Low == I->High ? 1 : 2);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001846 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001847
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001848 // Count unique destinations
1849 SmallSet<MachineBasicBlock*, 4> Dests;
1850 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1851 Dests.insert(I->BB);
1852 if (Dests.size() > 3)
1853 // Don't bother the code below, if there are too much unique destinations
1854 return false;
1855 }
1856 DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1857 << "Total number of comparisons: " << numCmps << "\n";
Anton Korobeynikov23218582008-12-23 22:25:27 +00001858
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001859 // Compute span of values.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001860 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1861 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00001862 APInt cmpRange = maxValue - minValue;
1863
1864 /*DOUT << "Compare range: " << Range.getSExtValue() << "\n"
Anton Korobeynikov23218582008-12-23 22:25:27 +00001865 << "Low bound: " << cast<ConstantInt>(minValue)->getValue() << "\n"
1866 << "High bound: " << cast<ConstantInt>(maxValue)->getValue() << "\n";*/
1867
1868 if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001869 (!(Dests.size() == 1 && numCmps >= 3) &&
1870 !(Dests.size() == 2 && numCmps >= 5) &&
1871 !(Dests.size() >= 3 && numCmps >= 6)))
1872 return false;
Anton Korobeynikov23218582008-12-23 22:25:27 +00001873
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001874 DOUT << "Emitting bit tests\n";
Anton Korobeynikov23218582008-12-23 22:25:27 +00001875 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1876
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001877 // Optimize the case where all the case values fit in a
1878 // word without having to subtract minValue. In this case,
1879 // we can optimize away the subtraction.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001880 if (minValue.isNonNegative() &&
1881 maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
1882 cmpRange = maxValue;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001883 } else {
Anton Korobeynikov23218582008-12-23 22:25:27 +00001884 lowBound = minValue;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001885 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001886
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001887 CaseBitsVector CasesBits;
1888 unsigned i, count = 0;
1889
1890 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1891 MachineBasicBlock* Dest = I->BB;
1892 for (i = 0; i < count; ++i)
1893 if (Dest == CasesBits[i].BB)
1894 break;
Anton Korobeynikov23218582008-12-23 22:25:27 +00001895
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001896 if (i == count) {
1897 assert((count < 3) && "Too much destinations to test!");
1898 CasesBits.push_back(CaseBits(0, Dest, 0));
1899 count++;
1900 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001901
1902 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1903 const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1904
1905 uint64_t lo = (lowValue - lowBound).getZExtValue();
1906 uint64_t hi = (highValue - lowBound).getZExtValue();
1907
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001908 for (uint64_t j = lo; j <= hi; j++) {
1909 CasesBits[i].Mask |= 1ULL << j;
1910 CasesBits[i].Bits++;
1911 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001912
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001913 }
1914 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
Anton Korobeynikov23218582008-12-23 22:25:27 +00001915
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001916 BitTestInfo BTC;
1917
1918 // Figure out which block is immediately after the current one.
1919 MachineFunction::iterator BBI = CR.CaseBB;
1920 ++BBI;
1921
1922 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1923
1924 DOUT << "Cases:\n";
1925 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1926 DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1927 << ", BB: " << CasesBits[i].BB << "\n";
1928
1929 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1930 CurMF->insert(BBI, CaseBB);
1931 BTC.push_back(BitTestCase(CasesBits[i].Mask,
1932 CaseBB,
1933 CasesBits[i].BB));
1934 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00001935
1936 BitTestBlock BTB(lowBound, cmpRange, SV,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001937 -1U, (CR.CaseBB == CurMBB),
1938 CR.CaseBB, Default, BTC);
1939
1940 if (CR.CaseBB == CurMBB)
1941 visitBitTestHeader(BTB);
Anton Korobeynikov23218582008-12-23 22:25:27 +00001942
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001943 BitTestCases.push_back(BTB);
1944
1945 return true;
1946}
1947
1948
1949/// Clusterify - Transform simple list of Cases into list of CaseRange's
Anton Korobeynikov23218582008-12-23 22:25:27 +00001950size_t SelectionDAGLowering::Clusterify(CaseVector& Cases,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001951 const SwitchInst& SI) {
Anton Korobeynikov23218582008-12-23 22:25:27 +00001952 size_t numCmps = 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001953
1954 // Start with "simple" cases
Anton Korobeynikov23218582008-12-23 22:25:27 +00001955 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001956 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1957 Cases.push_back(Case(SI.getSuccessorValue(i),
1958 SI.getSuccessorValue(i),
1959 SMBB));
1960 }
1961 std::sort(Cases.begin(), Cases.end(), CaseCmp());
1962
1963 // Merge case into clusters
Anton Korobeynikov23218582008-12-23 22:25:27 +00001964 if (Cases.size() >= 2)
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001965 // Must recompute end() each iteration because it may be
1966 // invalidated by erase if we hold on to it
Anton Korobeynikov23218582008-12-23 22:25:27 +00001967 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1968 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1969 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001970 MachineBasicBlock* nextBB = J->BB;
1971 MachineBasicBlock* currentBB = I->BB;
1972
1973 // If the two neighboring cases go to the same destination, merge them
1974 // into a single case.
Anton Korobeynikov23218582008-12-23 22:25:27 +00001975 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001976 I->High = J->High;
1977 J = Cases.erase(J);
1978 } else {
1979 I = J++;
1980 }
1981 }
1982
1983 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1984 if (I->Low != I->High)
1985 // A range counts double, since it requires two compares.
1986 ++numCmps;
1987 }
1988
1989 return numCmps;
1990}
1991
Anton Korobeynikov23218582008-12-23 22:25:27 +00001992void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001993 // Figure out which block is immediately after the current one.
1994 MachineBasicBlock *NextBlock = 0;
1995 MachineFunction::iterator BBI = CurMBB;
1996
1997 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1998
1999 // If there is only the default destination, branch to it if it is not the
2000 // next basic block. Otherwise, just fall through.
2001 if (SI.getNumOperands() == 2) {
2002 // Update machine-CFG edges.
2003
2004 // If this is not a fall-through branch, emit the branch.
2005 CurMBB->addSuccessor(Default);
2006 if (Default != NextBlock)
2007 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2008 DAG.getBasicBlock(Default)));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002009 return;
2010 }
Anton Korobeynikov23218582008-12-23 22:25:27 +00002011
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002012 // If there are any non-default case statements, create a vector of Cases
2013 // representing each one, and sort the vector so that we can efficiently
2014 // create a binary search tree from them.
2015 CaseVector Cases;
Anton Korobeynikov23218582008-12-23 22:25:27 +00002016 size_t numCmps = Clusterify(Cases, SI);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002017 DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2018 << ". Total compares: " << numCmps << "\n";
2019
2020 // Get the Value to be switched on and default basic blocks, which will be
2021 // inserted into CaseBlock records, representing basic blocks in the binary
2022 // search tree.
2023 Value *SV = SI.getOperand(0);
2024
2025 // Push the initial CaseRec onto the worklist
2026 CaseRecVector WorkList;
2027 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2028
2029 while (!WorkList.empty()) {
2030 // Grab a record representing a case range to process off the worklist
2031 CaseRec CR = WorkList.back();
2032 WorkList.pop_back();
2033
2034 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2035 continue;
Anton Korobeynikov23218582008-12-23 22:25:27 +00002036
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002037 // If the range has few cases (two or less) emit a series of specific
2038 // tests.
2039 if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2040 continue;
Anton Korobeynikov23218582008-12-23 22:25:27 +00002041
Anton Korobeynikove2f95e92008-12-23 22:26:01 +00002042 // If the switch has more than 5 blocks, and at least 40% dense, and the
2043 // target supports indirect branches, then emit a jump table rather than
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002044 // lowering the switch to a binary tree of conditional branches.
2045 if (handleJTSwitchCase(CR, WorkList, SV, Default))
2046 continue;
Anton Korobeynikov23218582008-12-23 22:25:27 +00002047
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002048 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2049 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2050 handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2051 }
2052}
2053
2054
2055void SelectionDAGLowering::visitSub(User &I) {
2056 // -0.0 - X --> fneg
2057 const Type *Ty = I.getType();
2058 if (isa<VectorType>(Ty)) {
2059 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2060 const VectorType *DestTy = cast<VectorType>(I.getType());
2061 const Type *ElTy = DestTy->getElementType();
2062 if (ElTy->isFloatingPoint()) {
2063 unsigned VL = DestTy->getNumElements();
2064 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2065 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2066 if (CV == CNZ) {
2067 SDValue Op2 = getValue(I.getOperand(1));
2068 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2069 return;
2070 }
2071 }
2072 }
2073 }
2074 if (Ty->isFloatingPoint()) {
2075 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2076 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2077 SDValue Op2 = getValue(I.getOperand(1));
2078 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2079 return;
2080 }
2081 }
2082
2083 visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2084}
2085
2086void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2087 SDValue Op1 = getValue(I.getOperand(0));
2088 SDValue Op2 = getValue(I.getOperand(1));
2089
2090 setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2091}
2092
2093void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2094 SDValue Op1 = getValue(I.getOperand(0));
2095 SDValue Op2 = getValue(I.getOperand(1));
2096 if (!isa<VectorType>(I.getType())) {
2097 if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2098 Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2099 else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2100 Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2101 }
2102
2103 setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2104}
2105
2106void SelectionDAGLowering::visitICmp(User &I) {
2107 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2108 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2109 predicate = IC->getPredicate();
2110 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2111 predicate = ICmpInst::Predicate(IC->getPredicate());
2112 SDValue Op1 = getValue(I.getOperand(0));
2113 SDValue Op2 = getValue(I.getOperand(1));
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00002114 ISD::CondCode Opcode = getICmpCondCode(predicate);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002115 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2116}
2117
2118void SelectionDAGLowering::visitFCmp(User &I) {
2119 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2120 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2121 predicate = FC->getPredicate();
2122 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2123 predicate = FCmpInst::Predicate(FC->getPredicate());
2124 SDValue Op1 = getValue(I.getOperand(0));
2125 SDValue Op2 = getValue(I.getOperand(1));
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00002126 ISD::CondCode Condition = getFCmpCondCode(predicate);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002127 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2128}
2129
2130void SelectionDAGLowering::visitVICmp(User &I) {
2131 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2132 if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2133 predicate = IC->getPredicate();
2134 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2135 predicate = ICmpInst::Predicate(IC->getPredicate());
2136 SDValue Op1 = getValue(I.getOperand(0));
2137 SDValue Op2 = getValue(I.getOperand(1));
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00002138 ISD::CondCode Opcode = getICmpCondCode(predicate);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002139 setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2140}
2141
2142void SelectionDAGLowering::visitVFCmp(User &I) {
2143 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2144 if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2145 predicate = FC->getPredicate();
2146 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2147 predicate = FCmpInst::Predicate(FC->getPredicate());
2148 SDValue Op1 = getValue(I.getOperand(0));
2149 SDValue Op2 = getValue(I.getOperand(1));
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00002150 ISD::CondCode Condition = getFCmpCondCode(predicate);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002151 MVT DestVT = TLI.getValueType(I.getType());
2152
2153 setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2154}
2155
2156void SelectionDAGLowering::visitSelect(User &I) {
Dan Gohman7ea1ca62008-10-21 20:00:42 +00002157 SmallVector<MVT, 4> ValueVTs;
2158 ComputeValueVTs(TLI, I.getType(), ValueVTs);
2159 unsigned NumValues = ValueVTs.size();
2160 if (NumValues != 0) {
2161 SmallVector<SDValue, 4> Values(NumValues);
2162 SDValue Cond = getValue(I.getOperand(0));
2163 SDValue TrueVal = getValue(I.getOperand(1));
2164 SDValue FalseVal = getValue(I.getOperand(2));
2165
2166 for (unsigned i = 0; i != NumValues; ++i)
2167 Values[i] = DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2168 SDValue(TrueVal.getNode(), TrueVal.getResNo() + i),
2169 SDValue(FalseVal.getNode(), FalseVal.getResNo() + i));
2170
Duncan Sandsaaffa052008-12-01 11:41:29 +00002171 setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
2172 DAG.getVTList(&ValueVTs[0], NumValues),
2173 &Values[0], NumValues));
Dan Gohman7ea1ca62008-10-21 20:00:42 +00002174 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002175}
2176
2177
2178void SelectionDAGLowering::visitTrunc(User &I) {
2179 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2180 SDValue N = getValue(I.getOperand(0));
2181 MVT DestVT = TLI.getValueType(I.getType());
2182 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2183}
2184
2185void SelectionDAGLowering::visitZExt(User &I) {
2186 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2187 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2188 SDValue N = getValue(I.getOperand(0));
2189 MVT DestVT = TLI.getValueType(I.getType());
2190 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2191}
2192
2193void SelectionDAGLowering::visitSExt(User &I) {
2194 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2195 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2196 SDValue N = getValue(I.getOperand(0));
2197 MVT DestVT = TLI.getValueType(I.getType());
2198 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2199}
2200
2201void SelectionDAGLowering::visitFPTrunc(User &I) {
2202 // FPTrunc is never a no-op cast, no need to check
2203 SDValue N = getValue(I.getOperand(0));
2204 MVT DestVT = TLI.getValueType(I.getType());
2205 setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2206}
2207
2208void SelectionDAGLowering::visitFPExt(User &I){
2209 // FPTrunc is never a no-op cast, no need to check
2210 SDValue N = getValue(I.getOperand(0));
2211 MVT DestVT = TLI.getValueType(I.getType());
2212 setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2213}
2214
2215void SelectionDAGLowering::visitFPToUI(User &I) {
2216 // FPToUI is never a no-op cast, no need to check
2217 SDValue N = getValue(I.getOperand(0));
2218 MVT DestVT = TLI.getValueType(I.getType());
2219 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2220}
2221
2222void SelectionDAGLowering::visitFPToSI(User &I) {
2223 // FPToSI is never a no-op cast, no need to check
2224 SDValue N = getValue(I.getOperand(0));
2225 MVT DestVT = TLI.getValueType(I.getType());
2226 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2227}
2228
2229void SelectionDAGLowering::visitUIToFP(User &I) {
2230 // UIToFP is never a no-op cast, no need to check
2231 SDValue N = getValue(I.getOperand(0));
2232 MVT DestVT = TLI.getValueType(I.getType());
2233 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2234}
2235
2236void SelectionDAGLowering::visitSIToFP(User &I){
Bill Wendling181b6272008-10-19 20:34:04 +00002237 // SIToFP is never a no-op cast, no need to check
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002238 SDValue N = getValue(I.getOperand(0));
2239 MVT DestVT = TLI.getValueType(I.getType());
2240 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2241}
2242
2243void SelectionDAGLowering::visitPtrToInt(User &I) {
2244 // What to do depends on the size of the integer and the size of the pointer.
2245 // We can either truncate, zero extend, or no-op, accordingly.
2246 SDValue N = getValue(I.getOperand(0));
2247 MVT SrcVT = N.getValueType();
2248 MVT DestVT = TLI.getValueType(I.getType());
2249 SDValue Result;
2250 if (DestVT.bitsLT(SrcVT))
2251 Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2252 else
2253 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2254 Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2255 setValue(&I, Result);
2256}
2257
2258void SelectionDAGLowering::visitIntToPtr(User &I) {
2259 // What to do depends on the size of the integer and the size of the pointer.
2260 // We can either truncate, zero extend, or no-op, accordingly.
2261 SDValue N = getValue(I.getOperand(0));
2262 MVT SrcVT = N.getValueType();
2263 MVT DestVT = TLI.getValueType(I.getType());
2264 if (DestVT.bitsLT(SrcVT))
2265 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2266 else
2267 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2268 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2269}
2270
2271void SelectionDAGLowering::visitBitCast(User &I) {
2272 SDValue N = getValue(I.getOperand(0));
2273 MVT DestVT = TLI.getValueType(I.getType());
2274
2275 // BitCast assures us that source and destination are the same size so this
2276 // is either a BIT_CONVERT or a no-op.
2277 if (DestVT != N.getValueType())
2278 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2279 else
2280 setValue(&I, N); // noop cast.
2281}
2282
2283void SelectionDAGLowering::visitInsertElement(User &I) {
2284 SDValue InVec = getValue(I.getOperand(0));
2285 SDValue InVal = getValue(I.getOperand(1));
2286 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2287 getValue(I.getOperand(2)));
2288
2289 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2290 TLI.getValueType(I.getType()),
2291 InVec, InVal, InIdx));
2292}
2293
2294void SelectionDAGLowering::visitExtractElement(User &I) {
2295 SDValue InVec = getValue(I.getOperand(0));
2296 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2297 getValue(I.getOperand(1)));
2298 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2299 TLI.getValueType(I.getType()), InVec, InIdx));
2300}
2301
Mon P Wangaeb06d22008-11-10 04:46:22 +00002302
2303// Utility for visitShuffleVector - Returns true if the mask is mask starting
2304// from SIndx and increasing to the element length (undefs are allowed).
2305static bool SequentialMask(SDValue Mask, unsigned SIndx) {
Mon P Wangc7849c22008-11-16 05:06:27 +00002306 unsigned MaskNumElts = Mask.getNumOperands();
2307 for (unsigned i = 0; i != MaskNumElts; ++i) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002308 if (Mask.getOperand(i).getOpcode() != ISD::UNDEF) {
2309 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue();
2310 if (Idx != i + SIndx)
2311 return false;
2312 }
2313 }
2314 return true;
2315}
2316
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002317void SelectionDAGLowering::visitShuffleVector(User &I) {
Mon P Wang230e4fa2008-11-21 04:25:21 +00002318 SDValue Src1 = getValue(I.getOperand(0));
2319 SDValue Src2 = getValue(I.getOperand(1));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002320 SDValue Mask = getValue(I.getOperand(2));
2321
Mon P Wangaeb06d22008-11-10 04:46:22 +00002322 MVT VT = TLI.getValueType(I.getType());
Mon P Wang230e4fa2008-11-21 04:25:21 +00002323 MVT SrcVT = Src1.getValueType();
Mon P Wangc7849c22008-11-16 05:06:27 +00002324 int MaskNumElts = Mask.getNumOperands();
2325 int SrcNumElts = SrcVT.getVectorNumElements();
Mon P Wangaeb06d22008-11-10 04:46:22 +00002326
Mon P Wangc7849c22008-11-16 05:06:27 +00002327 if (SrcNumElts == MaskNumElts) {
Mon P Wang230e4fa2008-11-21 04:25:21 +00002328 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Src1, Src2, Mask));
Mon P Wangaeb06d22008-11-10 04:46:22 +00002329 return;
2330 }
2331
2332 // Normalize the shuffle vector since mask and vector length don't match.
Mon P Wangc7849c22008-11-16 05:06:27 +00002333 MVT MaskEltVT = Mask.getValueType().getVectorElementType();
2334
2335 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2336 // Mask is longer than the source vectors and is a multiple of the source
2337 // vectors. We can use concatenate vector to make the mask and vectors
Mon P Wang230e4fa2008-11-21 04:25:21 +00002338 // lengths match.
Mon P Wangc7849c22008-11-16 05:06:27 +00002339 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2340 // The shuffle is concatenating two vectors together.
Mon P Wang230e4fa2008-11-21 04:25:21 +00002341 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, VT, Src1, Src2));
Mon P Wangaeb06d22008-11-10 04:46:22 +00002342 return;
2343 }
2344
Mon P Wangc7849c22008-11-16 05:06:27 +00002345 // Pad both vectors with undefs to make them the same length as the mask.
2346 unsigned NumConcat = MaskNumElts / SrcNumElts;
2347 SDValue UndefVal = DAG.getNode(ISD::UNDEF, SrcVT);
Mon P Wangaeb06d22008-11-10 04:46:22 +00002348
Mon P Wang230e4fa2008-11-21 04:25:21 +00002349 SDValue* MOps1 = new SDValue[NumConcat];
2350 SDValue* MOps2 = new SDValue[NumConcat];
2351 MOps1[0] = Src1;
2352 MOps2[0] = Src2;
Mon P Wangaeb06d22008-11-10 04:46:22 +00002353 for (unsigned i = 1; i != NumConcat; ++i) {
Mon P Wang230e4fa2008-11-21 04:25:21 +00002354 MOps1[i] = UndefVal;
2355 MOps2[i] = UndefVal;
Mon P Wangaeb06d22008-11-10 04:46:22 +00002356 }
Mon P Wang230e4fa2008-11-21 04:25:21 +00002357 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, VT, MOps1, NumConcat);
2358 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, VT, MOps2, NumConcat);
2359
2360 delete [] MOps1;
2361 delete [] MOps2;
2362
Mon P Wangaeb06d22008-11-10 04:46:22 +00002363 // Readjust mask for new input vector length.
2364 SmallVector<SDValue, 8> MappedOps;
Mon P Wangc7849c22008-11-16 05:06:27 +00002365 for (int i = 0; i != MaskNumElts; ++i) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002366 if (Mask.getOperand(i).getOpcode() == ISD::UNDEF) {
2367 MappedOps.push_back(Mask.getOperand(i));
2368 } else {
Mon P Wangc7849c22008-11-16 05:06:27 +00002369 int Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue();
2370 if (Idx < SrcNumElts)
2371 MappedOps.push_back(DAG.getConstant(Idx, MaskEltVT));
2372 else
2373 MappedOps.push_back(DAG.getConstant(Idx + MaskNumElts - SrcNumElts,
2374 MaskEltVT));
Mon P Wangaeb06d22008-11-10 04:46:22 +00002375 }
2376 }
2377 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2378 &MappedOps[0], MappedOps.size());
2379
Mon P Wang230e4fa2008-11-21 04:25:21 +00002380 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Src1, Src2, Mask));
Mon P Wangaeb06d22008-11-10 04:46:22 +00002381 return;
2382 }
2383
Mon P Wangc7849c22008-11-16 05:06:27 +00002384 if (SrcNumElts > MaskNumElts) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002385 // Resulting vector is shorter than the incoming vector.
Mon P Wangc7849c22008-11-16 05:06:27 +00002386 if (SrcNumElts == MaskNumElts && SequentialMask(Mask,0)) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002387 // Shuffle extracts 1st vector.
Mon P Wang230e4fa2008-11-21 04:25:21 +00002388 setValue(&I, Src1);
Mon P Wangaeb06d22008-11-10 04:46:22 +00002389 return;
2390 }
2391
Mon P Wangc7849c22008-11-16 05:06:27 +00002392 if (SrcNumElts == MaskNumElts && SequentialMask(Mask,MaskNumElts)) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002393 // Shuffle extracts 2nd vector.
Mon P Wang230e4fa2008-11-21 04:25:21 +00002394 setValue(&I, Src2);
Mon P Wangaeb06d22008-11-10 04:46:22 +00002395 return;
2396 }
2397
Mon P Wangc7849c22008-11-16 05:06:27 +00002398 // Analyze the access pattern of the vector to see if we can extract
2399 // two subvectors and do the shuffle. The analysis is done by calculating
2400 // the range of elements the mask access on both vectors.
2401 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2402 int MaxRange[2] = {-1, -1};
2403
2404 for (int i = 0; i != MaskNumElts; ++i) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002405 SDValue Arg = Mask.getOperand(i);
2406 if (Arg.getOpcode() != ISD::UNDEF) {
2407 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Mon P Wangc7849c22008-11-16 05:06:27 +00002408 int Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2409 int Input = 0;
2410 if (Idx >= SrcNumElts) {
2411 Input = 1;
2412 Idx -= SrcNumElts;
2413 }
2414 if (Idx > MaxRange[Input])
2415 MaxRange[Input] = Idx;
2416 if (Idx < MinRange[Input])
2417 MinRange[Input] = Idx;
Mon P Wangaeb06d22008-11-10 04:46:22 +00002418 }
2419 }
Mon P Wangaeb06d22008-11-10 04:46:22 +00002420
Mon P Wangc7849c22008-11-16 05:06:27 +00002421 // Check if the access is smaller than the vector size and can we find
2422 // a reasonable extract index.
Mon P Wang230e4fa2008-11-21 04:25:21 +00002423 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract.
Mon P Wangc7849c22008-11-16 05:06:27 +00002424 int StartIdx[2]; // StartIdx to extract from
2425 for (int Input=0; Input < 2; ++Input) {
2426 if (MinRange[Input] == SrcNumElts+1 && MaxRange[Input] == -1) {
2427 RangeUse[Input] = 0; // Unused
2428 StartIdx[Input] = 0;
2429 } else if (MaxRange[Input] - MinRange[Input] < MaskNumElts) {
2430 // Fits within range but we should see if we can find a good
Mon P Wang230e4fa2008-11-21 04:25:21 +00002431 // start index that is a multiple of the mask length.
Mon P Wangc7849c22008-11-16 05:06:27 +00002432 if (MaxRange[Input] < MaskNumElts) {
2433 RangeUse[Input] = 1; // Extract from beginning of the vector
2434 StartIdx[Input] = 0;
2435 } else {
2436 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
Mon P Wang6cce3da2008-11-23 04:35:05 +00002437 if (MaxRange[Input] - StartIdx[Input] < MaskNumElts &&
2438 StartIdx[Input] + MaskNumElts < SrcNumElts)
Mon P Wangc7849c22008-11-16 05:06:27 +00002439 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
Mon P Wangc7849c22008-11-16 05:06:27 +00002440 }
Mon P Wang230e4fa2008-11-21 04:25:21 +00002441 }
Mon P Wangc7849c22008-11-16 05:06:27 +00002442 }
2443
2444 if (RangeUse[0] == 0 && RangeUse[0] == 0) {
2445 setValue(&I, DAG.getNode(ISD::UNDEF, VT)); // Vectors are not used.
2446 return;
2447 }
2448 else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2449 // Extract appropriate subvector and generate a vector shuffle
2450 for (int Input=0; Input < 2; ++Input) {
Mon P Wang230e4fa2008-11-21 04:25:21 +00002451 SDValue& Src = Input == 0 ? Src1 : Src2;
Mon P Wangc7849c22008-11-16 05:06:27 +00002452 if (RangeUse[Input] == 0) {
Mon P Wang230e4fa2008-11-21 04:25:21 +00002453 Src = DAG.getNode(ISD::UNDEF, VT);
Mon P Wangc7849c22008-11-16 05:06:27 +00002454 } else {
Mon P Wang230e4fa2008-11-21 04:25:21 +00002455 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, VT, Src,
2456 DAG.getIntPtrConstant(StartIdx[Input]));
Mon P Wangc7849c22008-11-16 05:06:27 +00002457 }
Mon P Wangaeb06d22008-11-10 04:46:22 +00002458 }
Mon P Wangc7849c22008-11-16 05:06:27 +00002459 // Calculate new mask.
2460 SmallVector<SDValue, 8> MappedOps;
2461 for (int i = 0; i != MaskNumElts; ++i) {
2462 SDValue Arg = Mask.getOperand(i);
2463 if (Arg.getOpcode() == ISD::UNDEF) {
2464 MappedOps.push_back(Arg);
2465 } else {
2466 int Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2467 if (Idx < SrcNumElts)
2468 MappedOps.push_back(DAG.getConstant(Idx - StartIdx[0], MaskEltVT));
2469 else {
2470 Idx = Idx - SrcNumElts - StartIdx[1] + MaskNumElts;
2471 MappedOps.push_back(DAG.getConstant(Idx, MaskEltVT));
2472 }
2473 }
2474 }
2475 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2476 &MappedOps[0], MappedOps.size());
Mon P Wang230e4fa2008-11-21 04:25:21 +00002477 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Src1, Src2, Mask));
Mon P Wangc7849c22008-11-16 05:06:27 +00002478 return;
Mon P Wangaeb06d22008-11-10 04:46:22 +00002479 }
2480 }
2481
Mon P Wangc7849c22008-11-16 05:06:27 +00002482 // We can't use either concat vectors or extract subvectors so fall back to
2483 // replacing the shuffle with extract and build vector.
2484 // to insert and build vector.
Mon P Wangaeb06d22008-11-10 04:46:22 +00002485 MVT EltVT = VT.getVectorElementType();
2486 MVT PtrVT = TLI.getPointerTy();
2487 SmallVector<SDValue,8> Ops;
Mon P Wangc7849c22008-11-16 05:06:27 +00002488 for (int i = 0; i != MaskNumElts; ++i) {
Mon P Wangaeb06d22008-11-10 04:46:22 +00002489 SDValue Arg = Mask.getOperand(i);
2490 if (Arg.getOpcode() == ISD::UNDEF) {
2491 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2492 } else {
2493 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Mon P Wangc7849c22008-11-16 05:06:27 +00002494 int Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2495 if (Idx < SrcNumElts)
Mon P Wang230e4fa2008-11-21 04:25:21 +00002496 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Src1,
Mon P Wangaeb06d22008-11-10 04:46:22 +00002497 DAG.getConstant(Idx, PtrVT)));
2498 else
Mon P Wang230e4fa2008-11-21 04:25:21 +00002499 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Src2,
Mon P Wangc7849c22008-11-16 05:06:27 +00002500 DAG.getConstant(Idx - SrcNumElts, PtrVT)));
Mon P Wangaeb06d22008-11-10 04:46:22 +00002501 }
2502 }
2503 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002504}
2505
2506void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2507 const Value *Op0 = I.getOperand(0);
2508 const Value *Op1 = I.getOperand(1);
2509 const Type *AggTy = I.getType();
2510 const Type *ValTy = Op1->getType();
2511 bool IntoUndef = isa<UndefValue>(Op0);
2512 bool FromUndef = isa<UndefValue>(Op1);
2513
2514 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2515 I.idx_begin(), I.idx_end());
2516
2517 SmallVector<MVT, 4> AggValueVTs;
2518 ComputeValueVTs(TLI, AggTy, AggValueVTs);
2519 SmallVector<MVT, 4> ValValueVTs;
2520 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2521
2522 unsigned NumAggValues = AggValueVTs.size();
2523 unsigned NumValValues = ValValueVTs.size();
2524 SmallVector<SDValue, 4> Values(NumAggValues);
2525
2526 SDValue Agg = getValue(Op0);
2527 SDValue Val = getValue(Op1);
2528 unsigned i = 0;
2529 // Copy the beginning value(s) from the original aggregate.
2530 for (; i != LinearIndex; ++i)
2531 Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2532 SDValue(Agg.getNode(), Agg.getResNo() + i);
2533 // Copy values from the inserted value(s).
2534 for (; i != LinearIndex + NumValValues; ++i)
2535 Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2536 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2537 // Copy remaining value(s) from the original aggregate.
2538 for (; i != NumAggValues; ++i)
2539 Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2540 SDValue(Agg.getNode(), Agg.getResNo() + i);
2541
Duncan Sandsaaffa052008-12-01 11:41:29 +00002542 setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
2543 DAG.getVTList(&AggValueVTs[0], NumAggValues),
2544 &Values[0], NumAggValues));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002545}
2546
2547void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2548 const Value *Op0 = I.getOperand(0);
2549 const Type *AggTy = Op0->getType();
2550 const Type *ValTy = I.getType();
2551 bool OutOfUndef = isa<UndefValue>(Op0);
2552
2553 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2554 I.idx_begin(), I.idx_end());
2555
2556 SmallVector<MVT, 4> ValValueVTs;
2557 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2558
2559 unsigned NumValValues = ValValueVTs.size();
2560 SmallVector<SDValue, 4> Values(NumValValues);
2561
2562 SDValue Agg = getValue(Op0);
2563 // Copy out the selected value(s).
2564 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2565 Values[i - LinearIndex] =
Bill Wendlingf0a2d0c2008-11-20 07:24:30 +00002566 OutOfUndef ?
2567 DAG.getNode(ISD::UNDEF,
2568 Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2569 SDValue(Agg.getNode(), Agg.getResNo() + i);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002570
Duncan Sandsaaffa052008-12-01 11:41:29 +00002571 setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
2572 DAG.getVTList(&ValValueVTs[0], NumValValues),
2573 &Values[0], NumValValues));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002574}
2575
2576
2577void SelectionDAGLowering::visitGetElementPtr(User &I) {
2578 SDValue N = getValue(I.getOperand(0));
2579 const Type *Ty = I.getOperand(0)->getType();
2580
2581 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2582 OI != E; ++OI) {
2583 Value *Idx = *OI;
2584 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2585 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2586 if (Field) {
2587 // N = N + Offset
2588 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2589 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2590 DAG.getIntPtrConstant(Offset));
2591 }
2592 Ty = StTy->getElementType(Field);
2593 } else {
2594 Ty = cast<SequentialType>(Ty)->getElementType();
2595
2596 // If this is a constant subscript, handle it quickly.
2597 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2598 if (CI->getZExtValue() == 0) continue;
2599 uint64_t Offs =
2600 TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2601 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2602 DAG.getIntPtrConstant(Offs));
2603 continue;
2604 }
2605
2606 // N = N + Idx * ElementSize;
2607 uint64_t ElementSize = TD->getABITypeSize(Ty);
2608 SDValue IdxN = getValue(Idx);
2609
2610 // If the index is smaller or larger than intptr_t, truncate or extend
2611 // it.
2612 if (IdxN.getValueType().bitsLT(N.getValueType()))
2613 IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2614 else if (IdxN.getValueType().bitsGT(N.getValueType()))
2615 IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2616
2617 // If this is a multiply by a power of two, turn it into a shl
2618 // immediately. This is a very common case.
2619 if (ElementSize != 1) {
2620 if (isPowerOf2_64(ElementSize)) {
2621 unsigned Amt = Log2_64(ElementSize);
2622 IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2623 DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2624 } else {
2625 SDValue Scale = DAG.getIntPtrConstant(ElementSize);
2626 IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2627 }
2628 }
2629
2630 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2631 }
2632 }
2633 setValue(&I, N);
2634}
2635
2636void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2637 // If this is a fixed sized alloca in the entry block of the function,
2638 // allocate it statically on the stack.
2639 if (FuncInfo.StaticAllocaMap.count(&I))
2640 return; // getValue will auto-populate this.
2641
2642 const Type *Ty = I.getAllocatedType();
2643 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2644 unsigned Align =
2645 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2646 I.getAlignment());
2647
2648 SDValue AllocSize = getValue(I.getArraySize());
2649 MVT IntPtr = TLI.getPointerTy();
2650 if (IntPtr.bitsLT(AllocSize.getValueType()))
2651 AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2652 else if (IntPtr.bitsGT(AllocSize.getValueType()))
2653 AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2654
2655 AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2656 DAG.getIntPtrConstant(TySize));
2657
2658 // Handle alignment. If the requested alignment is less than or equal to
2659 // the stack alignment, ignore it. If the size is greater than or equal to
2660 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2661 unsigned StackAlign =
2662 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2663 if (Align <= StackAlign)
2664 Align = 0;
2665
2666 // Round the size of the allocation up to the stack alignment size
2667 // by add SA-1 to the size.
2668 AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2669 DAG.getIntPtrConstant(StackAlign-1));
2670 // Mask out the low bits for alignment purposes.
2671 AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2672 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2673
2674 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2675 const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2676 MVT::Other);
2677 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2678 setValue(&I, DSA);
2679 DAG.setRoot(DSA.getValue(1));
2680
2681 // Inform the Frame Information that we have just allocated a variable-sized
2682 // object.
2683 CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2684}
2685
2686void SelectionDAGLowering::visitLoad(LoadInst &I) {
2687 const Value *SV = I.getOperand(0);
2688 SDValue Ptr = getValue(SV);
2689
2690 const Type *Ty = I.getType();
2691 bool isVolatile = I.isVolatile();
2692 unsigned Alignment = I.getAlignment();
2693
2694 SmallVector<MVT, 4> ValueVTs;
2695 SmallVector<uint64_t, 4> Offsets;
2696 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2697 unsigned NumValues = ValueVTs.size();
2698 if (NumValues == 0)
2699 return;
2700
2701 SDValue Root;
2702 bool ConstantMemory = false;
2703 if (I.isVolatile())
2704 // Serialize volatile loads with other side effects.
2705 Root = getRoot();
2706 else if (AA->pointsToConstantMemory(SV)) {
2707 // Do not serialize (non-volatile) loads of constant memory with anything.
2708 Root = DAG.getEntryNode();
2709 ConstantMemory = true;
2710 } else {
2711 // Do not serialize non-volatile loads against each other.
2712 Root = DAG.getRoot();
2713 }
2714
2715 SmallVector<SDValue, 4> Values(NumValues);
2716 SmallVector<SDValue, 4> Chains(NumValues);
2717 MVT PtrVT = Ptr.getValueType();
2718 for (unsigned i = 0; i != NumValues; ++i) {
2719 SDValue L = DAG.getLoad(ValueVTs[i], Root,
2720 DAG.getNode(ISD::ADD, PtrVT, Ptr,
2721 DAG.getConstant(Offsets[i], PtrVT)),
2722 SV, Offsets[i],
2723 isVolatile, Alignment);
2724 Values[i] = L;
2725 Chains[i] = L.getValue(1);
2726 }
2727
2728 if (!ConstantMemory) {
2729 SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2730 &Chains[0], NumValues);
2731 if (isVolatile)
2732 DAG.setRoot(Chain);
2733 else
2734 PendingLoads.push_back(Chain);
2735 }
2736
Duncan Sandsaaffa052008-12-01 11:41:29 +00002737 setValue(&I, DAG.getNode(ISD::MERGE_VALUES,
2738 DAG.getVTList(&ValueVTs[0], NumValues),
2739 &Values[0], NumValues));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002740}
2741
2742
2743void SelectionDAGLowering::visitStore(StoreInst &I) {
2744 Value *SrcV = I.getOperand(0);
2745 Value *PtrV = I.getOperand(1);
2746
2747 SmallVector<MVT, 4> ValueVTs;
2748 SmallVector<uint64_t, 4> Offsets;
2749 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2750 unsigned NumValues = ValueVTs.size();
2751 if (NumValues == 0)
2752 return;
2753
2754 // Get the lowered operands. Note that we do this after
2755 // checking if NumResults is zero, because with zero results
2756 // the operands won't have values in the map.
2757 SDValue Src = getValue(SrcV);
2758 SDValue Ptr = getValue(PtrV);
2759
2760 SDValue Root = getRoot();
2761 SmallVector<SDValue, 4> Chains(NumValues);
2762 MVT PtrVT = Ptr.getValueType();
2763 bool isVolatile = I.isVolatile();
2764 unsigned Alignment = I.getAlignment();
2765 for (unsigned i = 0; i != NumValues; ++i)
2766 Chains[i] = DAG.getStore(Root, SDValue(Src.getNode(), Src.getResNo() + i),
2767 DAG.getNode(ISD::ADD, PtrVT, Ptr,
2768 DAG.getConstant(Offsets[i], PtrVT)),
2769 PtrV, Offsets[i],
2770 isVolatile, Alignment);
2771
2772 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2773}
2774
2775/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2776/// node.
2777void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2778 unsigned Intrinsic) {
2779 bool HasChain = !I.doesNotAccessMemory();
2780 bool OnlyLoad = HasChain && I.onlyReadsMemory();
2781
2782 // Build the operand list.
2783 SmallVector<SDValue, 8> Ops;
2784 if (HasChain) { // If this intrinsic has side-effects, chainify it.
2785 if (OnlyLoad) {
2786 // We don't need to serialize loads against other loads.
2787 Ops.push_back(DAG.getRoot());
2788 } else {
2789 Ops.push_back(getRoot());
2790 }
2791 }
Mon P Wang3efcd4a2008-11-01 20:24:53 +00002792
2793 // Info is set by getTgtMemInstrinsic
2794 TargetLowering::IntrinsicInfo Info;
2795 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2796
2797 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2798 if (!IsTgtIntrinsic)
2799 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002800
2801 // Add all operands of the call to the operand list.
2802 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2803 SDValue Op = getValue(I.getOperand(i));
2804 assert(TLI.isTypeLegal(Op.getValueType()) &&
2805 "Intrinsic uses a non-legal type?");
2806 Ops.push_back(Op);
2807 }
2808
2809 std::vector<MVT> VTs;
2810 if (I.getType() != Type::VoidTy) {
2811 MVT VT = TLI.getValueType(I.getType());
2812 if (VT.isVector()) {
2813 const VectorType *DestTy = cast<VectorType>(I.getType());
2814 MVT EltVT = TLI.getValueType(DestTy->getElementType());
2815
2816 VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
2817 assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2818 }
2819
2820 assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2821 VTs.push_back(VT);
2822 }
2823 if (HasChain)
2824 VTs.push_back(MVT::Other);
2825
2826 const MVT *VTList = DAG.getNodeValueTypes(VTs);
2827
2828 // Create the node.
2829 SDValue Result;
Mon P Wang3efcd4a2008-11-01 20:24:53 +00002830 if (IsTgtIntrinsic) {
2831 // This is target intrinsic that touches memory
2832 Result = DAG.getMemIntrinsicNode(Info.opc, VTList, VTs.size(),
2833 &Ops[0], Ops.size(),
2834 Info.memVT, Info.ptrVal, Info.offset,
2835 Info.align, Info.vol,
2836 Info.readMem, Info.writeMem);
2837 }
2838 else if (!HasChain)
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002839 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2840 &Ops[0], Ops.size());
2841 else if (I.getType() != Type::VoidTy)
2842 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2843 &Ops[0], Ops.size());
2844 else
2845 Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2846 &Ops[0], Ops.size());
2847
2848 if (HasChain) {
2849 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2850 if (OnlyLoad)
2851 PendingLoads.push_back(Chain);
2852 else
2853 DAG.setRoot(Chain);
2854 }
2855 if (I.getType() != Type::VoidTy) {
2856 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2857 MVT VT = TLI.getValueType(PTy);
2858 Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2859 }
2860 setValue(&I, Result);
2861 }
2862}
2863
2864/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2865static GlobalVariable *ExtractTypeInfo(Value *V) {
2866 V = V->stripPointerCasts();
2867 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2868 assert ((GV || isa<ConstantPointerNull>(V)) &&
2869 "TypeInfo must be a global variable or NULL");
2870 return GV;
2871}
2872
2873namespace llvm {
2874
2875/// AddCatchInfo - Extract the personality and type infos from an eh.selector
2876/// call, and add them to the specified machine basic block.
2877void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2878 MachineBasicBlock *MBB) {
2879 // Inform the MachineModuleInfo of the personality for this landing pad.
2880 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2881 assert(CE->getOpcode() == Instruction::BitCast &&
2882 isa<Function>(CE->getOperand(0)) &&
2883 "Personality should be a function");
2884 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2885
2886 // Gather all the type infos for this landing pad and pass them along to
2887 // MachineModuleInfo.
2888 std::vector<GlobalVariable *> TyInfo;
2889 unsigned N = I.getNumOperands();
2890
2891 for (unsigned i = N - 1; i > 2; --i) {
2892 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2893 unsigned FilterLength = CI->getZExtValue();
2894 unsigned FirstCatch = i + FilterLength + !FilterLength;
2895 assert (FirstCatch <= N && "Invalid filter length");
2896
2897 if (FirstCatch < N) {
2898 TyInfo.reserve(N - FirstCatch);
2899 for (unsigned j = FirstCatch; j < N; ++j)
2900 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2901 MMI->addCatchTypeInfo(MBB, TyInfo);
2902 TyInfo.clear();
2903 }
2904
2905 if (!FilterLength) {
2906 // Cleanup.
2907 MMI->addCleanup(MBB);
2908 } else {
2909 // Filter.
2910 TyInfo.reserve(FilterLength - 1);
2911 for (unsigned j = i + 1; j < FirstCatch; ++j)
2912 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2913 MMI->addFilterTypeInfo(MBB, TyInfo);
2914 TyInfo.clear();
2915 }
2916
2917 N = i;
2918 }
2919 }
2920
2921 if (N > 3) {
2922 TyInfo.reserve(N - 3);
2923 for (unsigned j = 3; j < N; ++j)
2924 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2925 MMI->addCatchTypeInfo(MBB, TyInfo);
2926 }
2927}
2928
2929}
2930
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002931/// GetSignificand - Get the significand and build it into a floating-point
2932/// number with exponent of 1:
2933///
2934/// Op = (Op & 0x007fffff) | 0x3f800000;
2935///
2936/// where Op is the hexidecimal representation of floating point value.
Bill Wendling39150252008-09-09 20:39:27 +00002937static SDValue
2938GetSignificand(SelectionDAG &DAG, SDValue Op) {
2939 SDValue t1 = DAG.getNode(ISD::AND, MVT::i32, Op,
2940 DAG.getConstant(0x007fffff, MVT::i32));
2941 SDValue t2 = DAG.getNode(ISD::OR, MVT::i32, t1,
2942 DAG.getConstant(0x3f800000, MVT::i32));
2943 return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t2);
2944}
2945
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002946/// GetExponent - Get the exponent:
2947///
2948/// (float)((Op1 >> 23) - 127);
2949///
2950/// where Op is the hexidecimal representation of floating point value.
Bill Wendling39150252008-09-09 20:39:27 +00002951static SDValue
2952GetExponent(SelectionDAG &DAG, SDValue Op) {
Bill Wendlingfc2508e2008-09-10 06:26:10 +00002953 SDValue t1 = DAG.getNode(ISD::SRL, MVT::i32, Op,
Bill Wendling39150252008-09-09 20:39:27 +00002954 DAG.getConstant(23, MVT::i32));
Bill Wendlingfc2508e2008-09-10 06:26:10 +00002955 SDValue t2 = DAG.getNode(ISD::SUB, MVT::i32, t1,
Bill Wendling39150252008-09-09 20:39:27 +00002956 DAG.getConstant(127, MVT::i32));
Bill Wendlingfc2508e2008-09-10 06:26:10 +00002957 return DAG.getNode(ISD::UINT_TO_FP, MVT::f32, t2);
Bill Wendling39150252008-09-09 20:39:27 +00002958}
2959
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002960/// getF32Constant - Get 32-bit floating point constant.
2961static SDValue
2962getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2963 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2964}
2965
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002966/// Inlined utility function to implement binary input atomic intrinsics for
2967/// visitIntrinsicCall: I is a call instruction
2968/// Op is the associated NodeType for I
2969const char *
2970SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
2971 SDValue Root = getRoot();
Dan Gohman0b1d4a72008-12-23 21:37:04 +00002972 SDValue L =
2973 DAG.getAtomic(Op, getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2974 Root,
2975 getValue(I.getOperand(1)),
2976 getValue(I.getOperand(2)),
2977 I.getOperand(1));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002978 setValue(&I, L);
2979 DAG.setRoot(L.getValue(1));
2980 return 0;
2981}
2982
Bill Wendling2ce4e5c2008-12-10 00:28:22 +00002983// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
Bill Wendling74c37652008-12-09 22:08:41 +00002984const char *
2985SelectionDAGLowering::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
Bill Wendling2ce4e5c2008-12-10 00:28:22 +00002986 SDValue Op1 = getValue(I.getOperand(1));
2987 SDValue Op2 = getValue(I.getOperand(2));
Bill Wendling74c37652008-12-09 22:08:41 +00002988
Bill Wendling2ce4e5c2008-12-10 00:28:22 +00002989 MVT ValueVTs[] = { Op1.getValueType(), MVT::i1 };
2990 SDValue Ops[] = { Op1, Op2 };
Bill Wendling74c37652008-12-09 22:08:41 +00002991
Bill Wendling2ce4e5c2008-12-10 00:28:22 +00002992 SDValue Result = DAG.getNode(Op, DAG.getVTList(&ValueVTs[0], 2), &Ops[0], 2);
Bill Wendling74c37652008-12-09 22:08:41 +00002993
Bill Wendling2ce4e5c2008-12-10 00:28:22 +00002994 setValue(&I, Result);
2995 return 0;
2996}
Bill Wendling74c37652008-12-09 22:08:41 +00002997
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002998/// visitExp - Lower an exp intrinsic. Handles the special sequences for
2999/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003000void
3001SelectionDAGLowering::visitExp(CallInst &I) {
3002 SDValue result;
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003003
3004 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3005 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3006 SDValue Op = getValue(I.getOperand(1));
3007
3008 // Put the exponent in the right bit position for later addition to the
3009 // final result:
3010 //
3011 // #define LOG2OFe 1.4426950f
3012 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3013 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, Op,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003014 getF32Constant(DAG, 0x3fb8aa3b));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003015 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, t0);
3016
3017 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3018 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX);
3019 SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, t0, t1);
3020
3021 // IntegerPartOfX <<= 23;
3022 IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX,
3023 DAG.getConstant(23, MVT::i32));
3024
3025 if (LimitFloatPrecision <= 6) {
3026 // For floating-point precision of 6:
3027 //
3028 // TwoToFractionalPartOfX =
3029 // 0.997535578f +
3030 // (0.735607626f + 0.252464424f * x) * x;
3031 //
3032 // error 0.0144103317, which is 6 bits
3033 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003034 getF32Constant(DAG, 0x3e814304));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003035 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003036 getF32Constant(DAG, 0x3f3c50c8));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003037 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3038 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003039 getF32Constant(DAG, 0x3f7f5e7e));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003040 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5);
3041
3042 // Add the exponent into the result in integer domain.
3043 SDValue t6 = DAG.getNode(ISD::ADD, MVT::i32,
3044 TwoToFracPartOfX, IntegerPartOfX);
3045
3046 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t6);
3047 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3048 // For floating-point precision of 12:
3049 //
3050 // TwoToFractionalPartOfX =
3051 // 0.999892986f +
3052 // (0.696457318f +
3053 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3054 //
3055 // 0.000107046256 error, which is 13 to 14 bits
3056 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003057 getF32Constant(DAG, 0x3da235e3));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003058 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003059 getF32Constant(DAG, 0x3e65b8f3));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003060 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3061 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003062 getF32Constant(DAG, 0x3f324b07));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003063 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3064 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003065 getF32Constant(DAG, 0x3f7ff8fd));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003066 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7);
3067
3068 // Add the exponent into the result in integer domain.
3069 SDValue t8 = DAG.getNode(ISD::ADD, MVT::i32,
3070 TwoToFracPartOfX, IntegerPartOfX);
3071
3072 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t8);
3073 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3074 // For floating-point precision of 18:
3075 //
3076 // TwoToFractionalPartOfX =
3077 // 0.999999982f +
3078 // (0.693148872f +
3079 // (0.240227044f +
3080 // (0.554906021e-1f +
3081 // (0.961591928e-2f +
3082 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3083 //
3084 // error 2.47208000*10^(-7), which is better than 18 bits
3085 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003086 getF32Constant(DAG, 0x3924b03e));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003087 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003088 getF32Constant(DAG, 0x3ab24b87));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003089 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3090 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003091 getF32Constant(DAG, 0x3c1d8c17));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003092 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3093 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003094 getF32Constant(DAG, 0x3d634a1d));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003095 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3096 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003097 getF32Constant(DAG, 0x3e75fe14));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003098 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3099 SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003100 getF32Constant(DAG, 0x3f317234));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003101 SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X);
3102 SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003103 getF32Constant(DAG, 0x3f800000));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003104 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13);
3105
3106 // Add the exponent into the result in integer domain.
3107 SDValue t14 = DAG.getNode(ISD::ADD, MVT::i32,
3108 TwoToFracPartOfX, IntegerPartOfX);
3109
3110 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t14);
3111 }
3112 } else {
3113 // No special expansion.
3114 result = DAG.getNode(ISD::FEXP,
3115 getValue(I.getOperand(1)).getValueType(),
3116 getValue(I.getOperand(1)));
3117 }
3118
Dale Johannesen59e577f2008-09-05 18:38:42 +00003119 setValue(&I, result);
3120}
3121
Bill Wendling39150252008-09-09 20:39:27 +00003122/// visitLog - Lower a log intrinsic. Handles the special sequences for
3123/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003124void
3125SelectionDAGLowering::visitLog(CallInst &I) {
3126 SDValue result;
Bill Wendling39150252008-09-09 20:39:27 +00003127
3128 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3129 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3130 SDValue Op = getValue(I.getOperand(1));
3131 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
3132
3133 // Scale the exponent by log(2) [0.69314718f].
3134 SDValue Exp = GetExponent(DAG, Op1);
3135 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, MVT::f32, Exp,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003136 getF32Constant(DAG, 0x3f317218));
Bill Wendling39150252008-09-09 20:39:27 +00003137
3138 // Get the significand and build it into a floating-point number with
3139 // exponent of 1.
3140 SDValue X = GetSignificand(DAG, Op1);
3141
3142 if (LimitFloatPrecision <= 6) {
3143 // For floating-point precision of 6:
3144 //
3145 // LogofMantissa =
3146 // -1.1609546f +
3147 // (1.4034025f - 0.23903021f * x) * x;
3148 //
3149 // error 0.0034276066, which is better than 8 bits
3150 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003151 getF32Constant(DAG, 0xbe74c456));
Bill Wendling39150252008-09-09 20:39:27 +00003152 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003153 getF32Constant(DAG, 0x3fb3a2b1));
Bill Wendling39150252008-09-09 20:39:27 +00003154 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3155 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003156 getF32Constant(DAG, 0x3f949a29));
Bill Wendling39150252008-09-09 20:39:27 +00003157
3158 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa);
3159 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3160 // For floating-point precision of 12:
3161 //
3162 // LogOfMantissa =
3163 // -1.7417939f +
3164 // (2.8212026f +
3165 // (-1.4699568f +
3166 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3167 //
3168 // error 0.000061011436, which is 14 bits
3169 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003170 getF32Constant(DAG, 0xbd67b6d6));
Bill Wendling39150252008-09-09 20:39:27 +00003171 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003172 getF32Constant(DAG, 0x3ee4f4b8));
Bill Wendling39150252008-09-09 20:39:27 +00003173 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3174 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003175 getF32Constant(DAG, 0x3fbc278b));
Bill Wendling39150252008-09-09 20:39:27 +00003176 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3177 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003178 getF32Constant(DAG, 0x40348e95));
Bill Wendling39150252008-09-09 20:39:27 +00003179 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3180 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003181 getF32Constant(DAG, 0x3fdef31a));
Bill Wendling39150252008-09-09 20:39:27 +00003182
3183 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa);
3184 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3185 // For floating-point precision of 18:
3186 //
3187 // LogOfMantissa =
3188 // -2.1072184f +
3189 // (4.2372794f +
3190 // (-3.7029485f +
3191 // (2.2781945f +
3192 // (-0.87823314f +
3193 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3194 //
3195 // error 0.0000023660568, which is better than 18 bits
3196 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003197 getF32Constant(DAG, 0xbc91e5ac));
Bill Wendling39150252008-09-09 20:39:27 +00003198 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003199 getF32Constant(DAG, 0x3e4350aa));
Bill Wendling39150252008-09-09 20:39:27 +00003200 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3201 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003202 getF32Constant(DAG, 0x3f60d3e3));
Bill Wendling39150252008-09-09 20:39:27 +00003203 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3204 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003205 getF32Constant(DAG, 0x4011cdf0));
Bill Wendling39150252008-09-09 20:39:27 +00003206 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3207 SDValue t7 = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003208 getF32Constant(DAG, 0x406cfd1c));
Bill Wendling39150252008-09-09 20:39:27 +00003209 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3210 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003211 getF32Constant(DAG, 0x408797cb));
Bill Wendling39150252008-09-09 20:39:27 +00003212 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3213 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003214 getF32Constant(DAG, 0x4006dcab));
Bill Wendling39150252008-09-09 20:39:27 +00003215
3216 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa);
3217 }
3218 } else {
3219 // No special expansion.
3220 result = DAG.getNode(ISD::FLOG,
3221 getValue(I.getOperand(1)).getValueType(),
3222 getValue(I.getOperand(1)));
3223 }
3224
Dale Johannesen59e577f2008-09-05 18:38:42 +00003225 setValue(&I, result);
3226}
3227
Bill Wendling3eb59402008-09-09 00:28:24 +00003228/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3229/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003230void
3231SelectionDAGLowering::visitLog2(CallInst &I) {
3232 SDValue result;
Bill Wendling3eb59402008-09-09 00:28:24 +00003233
Dale Johannesen853244f2008-09-05 23:49:37 +00003234 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
Bill Wendling3eb59402008-09-09 00:28:24 +00003235 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3236 SDValue Op = getValue(I.getOperand(1));
3237 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
3238
Bill Wendling39150252008-09-09 20:39:27 +00003239 // Get the exponent.
3240 SDValue LogOfExponent = GetExponent(DAG, Op1);
Bill Wendling3eb59402008-09-09 00:28:24 +00003241
3242 // Get the significand and build it into a floating-point number with
Bill Wendling39150252008-09-09 20:39:27 +00003243 // exponent of 1.
3244 SDValue X = GetSignificand(DAG, Op1);
Bill Wendling3eb59402008-09-09 00:28:24 +00003245
3246 // Different possible minimax approximations of significand in
3247 // floating-point for various degrees of accuracy over [1,2].
3248 if (LimitFloatPrecision <= 6) {
3249 // For floating-point precision of 6:
3250 //
3251 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3252 //
3253 // error 0.0049451742, which is more than 7 bits
Bill Wendling39150252008-09-09 20:39:27 +00003254 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003255 getF32Constant(DAG, 0xbeb08fe0));
Bill Wendling39150252008-09-09 20:39:27 +00003256 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003257 getF32Constant(DAG, 0x40019463));
Bill Wendling39150252008-09-09 20:39:27 +00003258 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3259 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003260 getF32Constant(DAG, 0x3fd6633d));
Bill Wendling3eb59402008-09-09 00:28:24 +00003261
3262 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa);
3263 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3264 // For floating-point precision of 12:
3265 //
3266 // Log2ofMantissa =
3267 // -2.51285454f +
3268 // (4.07009056f +
3269 // (-2.12067489f +
3270 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3271 //
3272 // error 0.0000876136000, which is better than 13 bits
Bill Wendling39150252008-09-09 20:39:27 +00003273 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003274 getF32Constant(DAG, 0xbda7262e));
Bill Wendling39150252008-09-09 20:39:27 +00003275 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003276 getF32Constant(DAG, 0x3f25280b));
Bill Wendling39150252008-09-09 20:39:27 +00003277 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3278 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003279 getF32Constant(DAG, 0x4007b923));
Bill Wendling39150252008-09-09 20:39:27 +00003280 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3281 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003282 getF32Constant(DAG, 0x40823e2f));
Bill Wendling39150252008-09-09 20:39:27 +00003283 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3284 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003285 getF32Constant(DAG, 0x4020d29c));
Bill Wendling3eb59402008-09-09 00:28:24 +00003286
3287 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa);
3288 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3289 // For floating-point precision of 18:
3290 //
3291 // Log2ofMantissa =
3292 // -3.0400495f +
3293 // (6.1129976f +
3294 // (-5.3420409f +
3295 // (3.2865683f +
3296 // (-1.2669343f +
3297 // (0.27515199f -
3298 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3299 //
3300 // error 0.0000018516, which is better than 18 bits
Bill Wendling39150252008-09-09 20:39:27 +00003301 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003302 getF32Constant(DAG, 0xbcd2769e));
Bill Wendling39150252008-09-09 20:39:27 +00003303 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003304 getF32Constant(DAG, 0x3e8ce0b9));
Bill Wendling39150252008-09-09 20:39:27 +00003305 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3306 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003307 getF32Constant(DAG, 0x3fa22ae7));
Bill Wendling39150252008-09-09 20:39:27 +00003308 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3309 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003310 getF32Constant(DAG, 0x40525723));
Bill Wendling39150252008-09-09 20:39:27 +00003311 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3312 SDValue t7 = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003313 getF32Constant(DAG, 0x40aaf200));
Bill Wendling39150252008-09-09 20:39:27 +00003314 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3315 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003316 getF32Constant(DAG, 0x40c39dad));
Bill Wendling3eb59402008-09-09 00:28:24 +00003317 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
Bill Wendling39150252008-09-09 20:39:27 +00003318 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003319 getF32Constant(DAG, 0x4042902c));
Bill Wendling3eb59402008-09-09 00:28:24 +00003320
3321 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa);
3322 }
Dale Johannesen853244f2008-09-05 23:49:37 +00003323 } else {
Bill Wendling3eb59402008-09-09 00:28:24 +00003324 // No special expansion.
Dale Johannesen853244f2008-09-05 23:49:37 +00003325 result = DAG.getNode(ISD::FLOG2,
3326 getValue(I.getOperand(1)).getValueType(),
3327 getValue(I.getOperand(1)));
3328 }
Bill Wendling3eb59402008-09-09 00:28:24 +00003329
Dale Johannesen59e577f2008-09-05 18:38:42 +00003330 setValue(&I, result);
3331}
3332
Bill Wendling3eb59402008-09-09 00:28:24 +00003333/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3334/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003335void
3336SelectionDAGLowering::visitLog10(CallInst &I) {
3337 SDValue result;
Bill Wendling181b6272008-10-19 20:34:04 +00003338
Dale Johannesen852680a2008-09-05 21:27:19 +00003339 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
Bill Wendling3eb59402008-09-09 00:28:24 +00003340 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3341 SDValue Op = getValue(I.getOperand(1));
3342 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
3343
Bill Wendling39150252008-09-09 20:39:27 +00003344 // Scale the exponent by log10(2) [0.30102999f].
3345 SDValue Exp = GetExponent(DAG, Op1);
3346 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, MVT::f32, Exp,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003347 getF32Constant(DAG, 0x3e9a209a));
Bill Wendling3eb59402008-09-09 00:28:24 +00003348
3349 // Get the significand and build it into a floating-point number with
Bill Wendling39150252008-09-09 20:39:27 +00003350 // exponent of 1.
3351 SDValue X = GetSignificand(DAG, Op1);
Bill Wendling3eb59402008-09-09 00:28:24 +00003352
3353 if (LimitFloatPrecision <= 6) {
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003354 // For floating-point precision of 6:
3355 //
3356 // Log10ofMantissa =
3357 // -0.50419619f +
3358 // (0.60948995f - 0.10380950f * x) * x;
3359 //
3360 // error 0.0014886165, which is 6 bits
Bill Wendling39150252008-09-09 20:39:27 +00003361 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003362 getF32Constant(DAG, 0xbdd49a13));
Bill Wendling39150252008-09-09 20:39:27 +00003363 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003364 getF32Constant(DAG, 0x3f1c0789));
Bill Wendling39150252008-09-09 20:39:27 +00003365 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3366 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003367 getF32Constant(DAG, 0x3f011300));
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003368
3369 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa);
Bill Wendling3eb59402008-09-09 00:28:24 +00003370 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3371 // For floating-point precision of 12:
3372 //
3373 // Log10ofMantissa =
3374 // -0.64831180f +
3375 // (0.91751397f +
3376 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3377 //
3378 // error 0.00019228036, which is better than 12 bits
Bill Wendling39150252008-09-09 20:39:27 +00003379 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003380 getF32Constant(DAG, 0x3d431f31));
Bill Wendling39150252008-09-09 20:39:27 +00003381 SDValue t1 = DAG.getNode(ISD::FSUB, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003382 getF32Constant(DAG, 0x3ea21fb2));
Bill Wendling39150252008-09-09 20:39:27 +00003383 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3384 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003385 getF32Constant(DAG, 0x3f6ae232));
Bill Wendling39150252008-09-09 20:39:27 +00003386 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3387 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003388 getF32Constant(DAG, 0x3f25f7c3));
Bill Wendling3eb59402008-09-09 00:28:24 +00003389
3390 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa);
3391 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003392 // For floating-point precision of 18:
3393 //
3394 // Log10ofMantissa =
3395 // -0.84299375f +
3396 // (1.5327582f +
3397 // (-1.0688956f +
3398 // (0.49102474f +
3399 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3400 //
3401 // error 0.0000037995730, which is better than 18 bits
Bill Wendling39150252008-09-09 20:39:27 +00003402 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003403 getF32Constant(DAG, 0x3c5d51ce));
Bill Wendling39150252008-09-09 20:39:27 +00003404 SDValue t1 = DAG.getNode(ISD::FSUB, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003405 getF32Constant(DAG, 0x3e00685a));
Bill Wendling39150252008-09-09 20:39:27 +00003406 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3407 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003408 getF32Constant(DAG, 0x3efb6798));
Bill Wendling39150252008-09-09 20:39:27 +00003409 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3410 SDValue t5 = DAG.getNode(ISD::FSUB, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003411 getF32Constant(DAG, 0x3f88d192));
Bill Wendling39150252008-09-09 20:39:27 +00003412 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3413 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003414 getF32Constant(DAG, 0x3fc4316c));
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003415 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
Bill Wendling39150252008-09-09 20:39:27 +00003416 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003417 getF32Constant(DAG, 0x3f57ce70));
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003418
3419 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa);
Bill Wendling3eb59402008-09-09 00:28:24 +00003420 }
Dale Johannesen852680a2008-09-05 21:27:19 +00003421 } else {
Bill Wendling3eb59402008-09-09 00:28:24 +00003422 // No special expansion.
Dale Johannesen852680a2008-09-05 21:27:19 +00003423 result = DAG.getNode(ISD::FLOG10,
3424 getValue(I.getOperand(1)).getValueType(),
3425 getValue(I.getOperand(1)));
3426 }
Bill Wendling3eb59402008-09-09 00:28:24 +00003427
Dale Johannesen59e577f2008-09-05 18:38:42 +00003428 setValue(&I, result);
3429}
3430
Bill Wendlinge10c8142008-09-09 22:39:21 +00003431/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3432/// limited-precision mode.
Dale Johannesen601d3c02008-09-05 01:48:15 +00003433void
3434SelectionDAGLowering::visitExp2(CallInst &I) {
3435 SDValue result;
Bill Wendlinge10c8142008-09-09 22:39:21 +00003436
Dale Johannesen601d3c02008-09-05 01:48:15 +00003437 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
Bill Wendlinge10c8142008-09-09 22:39:21 +00003438 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3439 SDValue Op = getValue(I.getOperand(1));
3440
3441 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, Op);
3442
3443 // FractionalPartOfX = x - (float)IntegerPartOfX;
3444 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX);
3445 SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, Op, t1);
3446
3447 // IntegerPartOfX <<= 23;
3448 IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX,
3449 DAG.getConstant(23, MVT::i32));
3450
3451 if (LimitFloatPrecision <= 6) {
3452 // For floating-point precision of 6:
3453 //
3454 // TwoToFractionalPartOfX =
3455 // 0.997535578f +
3456 // (0.735607626f + 0.252464424f * x) * x;
3457 //
3458 // error 0.0144103317, which is 6 bits
3459 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003460 getF32Constant(DAG, 0x3e814304));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003461 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003462 getF32Constant(DAG, 0x3f3c50c8));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003463 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3464 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003465 getF32Constant(DAG, 0x3f7f5e7e));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003466 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5);
3467 SDValue TwoToFractionalPartOfX =
3468 DAG.getNode(ISD::ADD, MVT::i32, t6, IntegerPartOfX);
3469
3470 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3471 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3472 // For floating-point precision of 12:
3473 //
3474 // TwoToFractionalPartOfX =
3475 // 0.999892986f +
3476 // (0.696457318f +
3477 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3478 //
3479 // error 0.000107046256, which is 13 to 14 bits
3480 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003481 getF32Constant(DAG, 0x3da235e3));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003482 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003483 getF32Constant(DAG, 0x3e65b8f3));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003484 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3485 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003486 getF32Constant(DAG, 0x3f324b07));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003487 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3488 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003489 getF32Constant(DAG, 0x3f7ff8fd));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003490 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7);
3491 SDValue TwoToFractionalPartOfX =
3492 DAG.getNode(ISD::ADD, MVT::i32, t8, IntegerPartOfX);
3493
3494 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3495 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3496 // For floating-point precision of 18:
3497 //
3498 // TwoToFractionalPartOfX =
3499 // 0.999999982f +
3500 // (0.693148872f +
3501 // (0.240227044f +
3502 // (0.554906021e-1f +
3503 // (0.961591928e-2f +
3504 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3505 // error 2.47208000*10^(-7), which is better than 18 bits
3506 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003507 getF32Constant(DAG, 0x3924b03e));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003508 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003509 getF32Constant(DAG, 0x3ab24b87));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003510 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3511 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003512 getF32Constant(DAG, 0x3c1d8c17));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003513 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3514 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003515 getF32Constant(DAG, 0x3d634a1d));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003516 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3517 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003518 getF32Constant(DAG, 0x3e75fe14));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003519 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3520 SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003521 getF32Constant(DAG, 0x3f317234));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003522 SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X);
3523 SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003524 getF32Constant(DAG, 0x3f800000));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003525 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13);
3526 SDValue TwoToFractionalPartOfX =
3527 DAG.getNode(ISD::ADD, MVT::i32, t14, IntegerPartOfX);
3528
3529 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3530 }
Dale Johannesen601d3c02008-09-05 01:48:15 +00003531 } else {
Bill Wendling3eb59402008-09-09 00:28:24 +00003532 // No special expansion.
Dale Johannesen601d3c02008-09-05 01:48:15 +00003533 result = DAG.getNode(ISD::FEXP2,
3534 getValue(I.getOperand(1)).getValueType(),
3535 getValue(I.getOperand(1)));
3536 }
Bill Wendlinge10c8142008-09-09 22:39:21 +00003537
Dale Johannesen601d3c02008-09-05 01:48:15 +00003538 setValue(&I, result);
3539}
3540
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003541/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3542/// limited-precision mode with x == 10.0f.
3543void
3544SelectionDAGLowering::visitPow(CallInst &I) {
3545 SDValue result;
3546 Value *Val = I.getOperand(1);
3547 bool IsExp10 = false;
3548
3549 if (getValue(Val).getValueType() == MVT::f32 &&
Bill Wendling277fc242008-09-10 00:24:59 +00003550 getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003551 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3552 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3553 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3554 APFloat Ten(10.0f);
3555 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3556 }
3557 }
3558 }
3559
3560 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3561 SDValue Op = getValue(I.getOperand(2));
3562
3563 // Put the exponent in the right bit position for later addition to the
3564 // final result:
3565 //
3566 // #define LOG2OF10 3.3219281f
3567 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
3568 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, Op,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003569 getF32Constant(DAG, 0x40549a78));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003570 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, t0);
3571
3572 // FractionalPartOfX = x - (float)IntegerPartOfX;
3573 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX);
3574 SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, t0, t1);
3575
3576 // IntegerPartOfX <<= 23;
3577 IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX,
3578 DAG.getConstant(23, MVT::i32));
3579
3580 if (LimitFloatPrecision <= 6) {
3581 // For floating-point precision of 6:
3582 //
3583 // twoToFractionalPartOfX =
3584 // 0.997535578f +
3585 // (0.735607626f + 0.252464424f * x) * x;
3586 //
3587 // error 0.0144103317, which is 6 bits
3588 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003589 getF32Constant(DAG, 0x3e814304));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003590 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003591 getF32Constant(DAG, 0x3f3c50c8));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003592 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3593 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003594 getF32Constant(DAG, 0x3f7f5e7e));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003595 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5);
3596 SDValue TwoToFractionalPartOfX =
3597 DAG.getNode(ISD::ADD, MVT::i32, t6, IntegerPartOfX);
3598
3599 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3600 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3601 // For floating-point precision of 12:
3602 //
3603 // TwoToFractionalPartOfX =
3604 // 0.999892986f +
3605 // (0.696457318f +
3606 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3607 //
3608 // error 0.000107046256, which is 13 to 14 bits
3609 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003610 getF32Constant(DAG, 0x3da235e3));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003611 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003612 getF32Constant(DAG, 0x3e65b8f3));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003613 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3614 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003615 getF32Constant(DAG, 0x3f324b07));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003616 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3617 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003618 getF32Constant(DAG, 0x3f7ff8fd));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003619 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7);
3620 SDValue TwoToFractionalPartOfX =
3621 DAG.getNode(ISD::ADD, MVT::i32, t8, IntegerPartOfX);
3622
3623 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3624 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3625 // For floating-point precision of 18:
3626 //
3627 // TwoToFractionalPartOfX =
3628 // 0.999999982f +
3629 // (0.693148872f +
3630 // (0.240227044f +
3631 // (0.554906021e-1f +
3632 // (0.961591928e-2f +
3633 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3634 // error 2.47208000*10^(-7), which is better than 18 bits
3635 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003636 getF32Constant(DAG, 0x3924b03e));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003637 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003638 getF32Constant(DAG, 0x3ab24b87));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003639 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3640 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003641 getF32Constant(DAG, 0x3c1d8c17));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003642 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3643 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003644 getF32Constant(DAG, 0x3d634a1d));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003645 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3646 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003647 getF32Constant(DAG, 0x3e75fe14));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003648 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3649 SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003650 getF32Constant(DAG, 0x3f317234));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003651 SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X);
3652 SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003653 getF32Constant(DAG, 0x3f800000));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003654 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13);
3655 SDValue TwoToFractionalPartOfX =
3656 DAG.getNode(ISD::ADD, MVT::i32, t14, IntegerPartOfX);
3657
3658 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3659 }
3660 } else {
3661 // No special expansion.
3662 result = DAG.getNode(ISD::FPOW,
3663 getValue(I.getOperand(1)).getValueType(),
3664 getValue(I.getOperand(1)),
3665 getValue(I.getOperand(2)));
3666 }
3667
3668 setValue(&I, result);
3669}
3670
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003671/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
3672/// we want to emit this as a call to a named external function, return the name
3673/// otherwise lower it and return null.
3674const char *
3675SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3676 switch (Intrinsic) {
3677 default:
3678 // By default, turn this into a target intrinsic node.
3679 visitTargetIntrinsic(I, Intrinsic);
3680 return 0;
3681 case Intrinsic::vastart: visitVAStart(I); return 0;
3682 case Intrinsic::vaend: visitVAEnd(I); return 0;
3683 case Intrinsic::vacopy: visitVACopy(I); return 0;
3684 case Intrinsic::returnaddress:
3685 setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3686 getValue(I.getOperand(1))));
3687 return 0;
Bill Wendlingd5d81912008-09-26 22:10:44 +00003688 case Intrinsic::frameaddress:
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003689 setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3690 getValue(I.getOperand(1))));
3691 return 0;
3692 case Intrinsic::setjmp:
3693 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3694 break;
3695 case Intrinsic::longjmp:
3696 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3697 break;
Chris Lattner824b9582008-11-21 16:42:48 +00003698 case Intrinsic::memcpy: {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003699 SDValue Op1 = getValue(I.getOperand(1));
3700 SDValue Op2 = getValue(I.getOperand(2));
3701 SDValue Op3 = getValue(I.getOperand(3));
3702 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3703 DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3704 I.getOperand(1), 0, I.getOperand(2), 0));
3705 return 0;
3706 }
Chris Lattner824b9582008-11-21 16:42:48 +00003707 case Intrinsic::memset: {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003708 SDValue Op1 = getValue(I.getOperand(1));
3709 SDValue Op2 = getValue(I.getOperand(2));
3710 SDValue Op3 = getValue(I.getOperand(3));
3711 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3712 DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3713 I.getOperand(1), 0));
3714 return 0;
3715 }
Chris Lattner824b9582008-11-21 16:42:48 +00003716 case Intrinsic::memmove: {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003717 SDValue Op1 = getValue(I.getOperand(1));
3718 SDValue Op2 = getValue(I.getOperand(2));
3719 SDValue Op3 = getValue(I.getOperand(3));
3720 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3721
3722 // If the source and destination are known to not be aliases, we can
3723 // lower memmove as memcpy.
3724 uint64_t Size = -1ULL;
3725 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
Dan Gohmanf5aeb1a2008-09-12 16:56:44 +00003726 Size = C->getZExtValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003727 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3728 AliasAnalysis::NoAlias) {
3729 DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3730 I.getOperand(1), 0, I.getOperand(2), 0));
3731 return 0;
3732 }
3733
3734 DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3735 I.getOperand(1), 0, I.getOperand(2), 0));
3736 return 0;
3737 }
3738 case Intrinsic::dbg_stoppoint: {
3739 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3740 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3741 if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3742 DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3743 assert(DD && "Not a debug information descriptor");
3744 DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3745 SPI.getLine(),
3746 SPI.getColumn(),
3747 cast<CompileUnitDesc>(DD)));
3748 }
3749
3750 return 0;
3751 }
3752 case Intrinsic::dbg_region_start: {
3753 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3754 DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3755 if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3756 unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3757 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3758 }
3759
3760 return 0;
3761 }
3762 case Intrinsic::dbg_region_end: {
3763 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3764 DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3765 if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3766 unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3767 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3768 }
3769
3770 return 0;
3771 }
3772 case Intrinsic::dbg_func_start: {
3773 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3774 if (!MMI) return 0;
3775 DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3776 Value *SP = FSI.getSubprogram();
3777 if (SP && MMI->Verify(SP)) {
3778 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3779 // what (most?) gdb expects.
3780 DebugInfoDesc *DD = MMI->getDescFor(SP);
3781 assert(DD && "Not a debug information descriptor");
3782 SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3783 const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3784 unsigned SrcFile = MMI->RecordSource(CompileUnit);
Devang Patel20dd0462008-11-06 00:30:09 +00003785 // Record the source line but does not create a label for the normal
3786 // function start. It will be emitted at asm emission time. However,
3787 // create a label if this is a beginning of inlined function.
3788 unsigned LabelID = MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3789 if (MMI->getSourceLines().size() != 1)
3790 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003791 }
3792
3793 return 0;
3794 }
3795 case Intrinsic::dbg_declare: {
3796 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3797 DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3798 Value *Variable = DI.getVariable();
3799 if (MMI && Variable && MMI->Verify(Variable))
3800 DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3801 getValue(DI.getAddress()), getValue(Variable)));
3802 return 0;
3803 }
3804
3805 case Intrinsic::eh_exception: {
3806 if (!CurMBB->isLandingPad()) {
3807 // FIXME: Mark exception register as live in. Hack for PR1508.
3808 unsigned Reg = TLI.getExceptionAddressRegister();
3809 if (Reg) CurMBB->addLiveIn(Reg);
3810 }
3811 // Insert the EXCEPTIONADDR instruction.
3812 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3813 SDValue Ops[1];
3814 Ops[0] = DAG.getRoot();
3815 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3816 setValue(&I, Op);
3817 DAG.setRoot(Op.getValue(1));
3818 return 0;
3819 }
3820
3821 case Intrinsic::eh_selector_i32:
3822 case Intrinsic::eh_selector_i64: {
3823 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3824 MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3825 MVT::i32 : MVT::i64);
3826
3827 if (MMI) {
3828 if (CurMBB->isLandingPad())
3829 AddCatchInfo(I, MMI, CurMBB);
3830 else {
3831#ifndef NDEBUG
3832 FuncInfo.CatchInfoLost.insert(&I);
3833#endif
3834 // FIXME: Mark exception selector register as live in. Hack for PR1508.
3835 unsigned Reg = TLI.getExceptionSelectorRegister();
3836 if (Reg) CurMBB->addLiveIn(Reg);
3837 }
3838
3839 // Insert the EHSELECTION instruction.
3840 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3841 SDValue Ops[2];
3842 Ops[0] = getValue(I.getOperand(1));
3843 Ops[1] = getRoot();
3844 SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3845 setValue(&I, Op);
3846 DAG.setRoot(Op.getValue(1));
3847 } else {
3848 setValue(&I, DAG.getConstant(0, VT));
3849 }
3850
3851 return 0;
3852 }
3853
3854 case Intrinsic::eh_typeid_for_i32:
3855 case Intrinsic::eh_typeid_for_i64: {
3856 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3857 MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3858 MVT::i32 : MVT::i64);
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003859
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003860 if (MMI) {
3861 // Find the type id for the given typeinfo.
3862 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3863
3864 unsigned TypeID = MMI->getTypeIDFor(GV);
3865 setValue(&I, DAG.getConstant(TypeID, VT));
3866 } else {
3867 // Return something different to eh_selector.
3868 setValue(&I, DAG.getConstant(1, VT));
3869 }
3870
3871 return 0;
3872 }
3873
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003874 case Intrinsic::eh_return_i32:
3875 case Intrinsic::eh_return_i64:
3876 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003877 MMI->setCallsEHReturn(true);
3878 DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3879 MVT::Other,
3880 getControlRoot(),
3881 getValue(I.getOperand(1)),
3882 getValue(I.getOperand(2))));
3883 } else {
3884 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3885 }
3886
3887 return 0;
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003888 case Intrinsic::eh_unwind_init:
3889 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3890 MMI->setCallsUnwindInit(true);
3891 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003892
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003893 return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003894
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003895 case Intrinsic::eh_dwarf_cfa: {
3896 MVT VT = getValue(I.getOperand(1)).getValueType();
3897 SDValue CfaArg;
3898 if (VT.bitsGT(TLI.getPointerTy()))
3899 CfaArg = DAG.getNode(ISD::TRUNCATE,
3900 TLI.getPointerTy(), getValue(I.getOperand(1)));
3901 else
3902 CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3903 TLI.getPointerTy(), getValue(I.getOperand(1)));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003904
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003905 SDValue Offset = DAG.getNode(ISD::ADD,
3906 TLI.getPointerTy(),
3907 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3908 TLI.getPointerTy()),
3909 CfaArg);
3910 setValue(&I, DAG.getNode(ISD::ADD,
3911 TLI.getPointerTy(),
3912 DAG.getNode(ISD::FRAMEADDR,
3913 TLI.getPointerTy(),
3914 DAG.getConstant(0,
3915 TLI.getPointerTy())),
3916 Offset));
3917 return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003918 }
3919
Mon P Wang77cdf302008-11-10 20:54:11 +00003920 case Intrinsic::convertff:
3921 case Intrinsic::convertfsi:
3922 case Intrinsic::convertfui:
3923 case Intrinsic::convertsif:
3924 case Intrinsic::convertuif:
3925 case Intrinsic::convertss:
3926 case Intrinsic::convertsu:
3927 case Intrinsic::convertus:
3928 case Intrinsic::convertuu: {
3929 ISD::CvtCode Code = ISD::CVT_INVALID;
3930 switch (Intrinsic) {
3931 case Intrinsic::convertff: Code = ISD::CVT_FF; break;
3932 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
3933 case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
3934 case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
3935 case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
3936 case Intrinsic::convertss: Code = ISD::CVT_SS; break;
3937 case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
3938 case Intrinsic::convertus: Code = ISD::CVT_US; break;
3939 case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
3940 }
3941 MVT DestVT = TLI.getValueType(I.getType());
3942 Value* Op1 = I.getOperand(1);
3943 setValue(&I, DAG.getConvertRndSat(DestVT, getValue(Op1),
3944 DAG.getValueType(DestVT),
3945 DAG.getValueType(getValue(Op1).getValueType()),
3946 getValue(I.getOperand(2)),
3947 getValue(I.getOperand(3)),
3948 Code));
3949 return 0;
3950 }
3951
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003952 case Intrinsic::sqrt:
3953 setValue(&I, DAG.getNode(ISD::FSQRT,
3954 getValue(I.getOperand(1)).getValueType(),
3955 getValue(I.getOperand(1))));
3956 return 0;
3957 case Intrinsic::powi:
3958 setValue(&I, DAG.getNode(ISD::FPOWI,
3959 getValue(I.getOperand(1)).getValueType(),
3960 getValue(I.getOperand(1)),
3961 getValue(I.getOperand(2))));
3962 return 0;
3963 case Intrinsic::sin:
3964 setValue(&I, DAG.getNode(ISD::FSIN,
3965 getValue(I.getOperand(1)).getValueType(),
3966 getValue(I.getOperand(1))));
3967 return 0;
3968 case Intrinsic::cos:
3969 setValue(&I, DAG.getNode(ISD::FCOS,
3970 getValue(I.getOperand(1)).getValueType(),
3971 getValue(I.getOperand(1))));
3972 return 0;
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003973 case Intrinsic::log:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003974 visitLog(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003975 return 0;
3976 case Intrinsic::log2:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003977 visitLog2(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003978 return 0;
3979 case Intrinsic::log10:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003980 visitLog10(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003981 return 0;
3982 case Intrinsic::exp:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003983 visitExp(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003984 return 0;
3985 case Intrinsic::exp2:
Dale Johannesen601d3c02008-09-05 01:48:15 +00003986 visitExp2(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003987 return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003988 case Intrinsic::pow:
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003989 visitPow(I);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003990 return 0;
3991 case Intrinsic::pcmarker: {
3992 SDValue Tmp = getValue(I.getOperand(1));
3993 DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3994 return 0;
3995 }
3996 case Intrinsic::readcyclecounter: {
3997 SDValue Op = getRoot();
3998 SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3999 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
4000 &Op, 1);
4001 setValue(&I, Tmp);
4002 DAG.setRoot(Tmp.getValue(1));
4003 return 0;
4004 }
4005 case Intrinsic::part_select: {
4006 // Currently not implemented: just abort
4007 assert(0 && "part_select intrinsic not implemented");
4008 abort();
4009 }
4010 case Intrinsic::part_set: {
4011 // Currently not implemented: just abort
4012 assert(0 && "part_set intrinsic not implemented");
4013 abort();
4014 }
4015 case Intrinsic::bswap:
4016 setValue(&I, DAG.getNode(ISD::BSWAP,
4017 getValue(I.getOperand(1)).getValueType(),
4018 getValue(I.getOperand(1))));
4019 return 0;
4020 case Intrinsic::cttz: {
4021 SDValue Arg = getValue(I.getOperand(1));
4022 MVT Ty = Arg.getValueType();
4023 SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg);
4024 setValue(&I, result);
4025 return 0;
4026 }
4027 case Intrinsic::ctlz: {
4028 SDValue Arg = getValue(I.getOperand(1));
4029 MVT Ty = Arg.getValueType();
4030 SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg);
4031 setValue(&I, result);
4032 return 0;
4033 }
4034 case Intrinsic::ctpop: {
4035 SDValue Arg = getValue(I.getOperand(1));
4036 MVT Ty = Arg.getValueType();
4037 SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg);
4038 setValue(&I, result);
4039 return 0;
4040 }
4041 case Intrinsic::stacksave: {
4042 SDValue Op = getRoot();
4043 SDValue Tmp = DAG.getNode(ISD::STACKSAVE,
4044 DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
4045 setValue(&I, Tmp);
4046 DAG.setRoot(Tmp.getValue(1));
4047 return 0;
4048 }
4049 case Intrinsic::stackrestore: {
4050 SDValue Tmp = getValue(I.getOperand(1));
4051 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
4052 return 0;
4053 }
Bill Wendling57344502008-11-18 11:01:33 +00004054 case Intrinsic::stackprotector: {
Bill Wendlingb2a42982008-11-06 02:29:10 +00004055 // Emit code into the DAG to store the stack guard onto the stack.
4056 MachineFunction &MF = DAG.getMachineFunction();
4057 MachineFrameInfo *MFI = MF.getFrameInfo();
4058 MVT PtrTy = TLI.getPointerTy();
4059
Bill Wendlingb7c6ebc2008-11-07 01:23:58 +00004060 SDValue Src = getValue(I.getOperand(1)); // The guard's value.
4061 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
Bill Wendlingb2a42982008-11-06 02:29:10 +00004062
Bill Wendlingb7c6ebc2008-11-07 01:23:58 +00004063 int FI = FuncInfo.StaticAllocaMap[Slot];
Bill Wendlingb2a42982008-11-06 02:29:10 +00004064 MFI->setStackProtectorIndex(FI);
4065
4066 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4067
4068 // Store the stack protector onto the stack.
4069 SDValue Result = DAG.getStore(getRoot(), Src, FIN,
4070 PseudoSourceValue::getFixedStack(FI),
4071 0, true);
4072 setValue(&I, Result);
4073 DAG.setRoot(Result);
4074 return 0;
4075 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004076 case Intrinsic::var_annotation:
4077 // Discard annotate attributes
4078 return 0;
4079
4080 case Intrinsic::init_trampoline: {
4081 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4082
4083 SDValue Ops[6];
4084 Ops[0] = getRoot();
4085 Ops[1] = getValue(I.getOperand(1));
4086 Ops[2] = getValue(I.getOperand(2));
4087 Ops[3] = getValue(I.getOperand(3));
4088 Ops[4] = DAG.getSrcValue(I.getOperand(1));
4089 Ops[5] = DAG.getSrcValue(F);
4090
4091 SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE,
4092 DAG.getNodeValueTypes(TLI.getPointerTy(),
4093 MVT::Other), 2,
4094 Ops, 6);
4095
4096 setValue(&I, Tmp);
4097 DAG.setRoot(Tmp.getValue(1));
4098 return 0;
4099 }
4100
4101 case Intrinsic::gcroot:
4102 if (GFI) {
4103 Value *Alloca = I.getOperand(1);
4104 Constant *TypeMap = cast<Constant>(I.getOperand(2));
4105
4106 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4107 GFI->addStackRoot(FI->getIndex(), TypeMap);
4108 }
4109 return 0;
4110
4111 case Intrinsic::gcread:
4112 case Intrinsic::gcwrite:
4113 assert(0 && "GC failed to lower gcread/gcwrite intrinsics!");
4114 return 0;
4115
4116 case Intrinsic::flt_rounds: {
4117 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
4118 return 0;
4119 }
4120
4121 case Intrinsic::trap: {
4122 DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
4123 return 0;
4124 }
Bill Wendling7cdc3c82008-11-21 02:03:52 +00004125
Bill Wendlingef375462008-11-21 02:38:44 +00004126 case Intrinsic::uadd_with_overflow:
Bill Wendling74c37652008-12-09 22:08:41 +00004127 return implVisitAluOverflow(I, ISD::UADDO);
4128 case Intrinsic::sadd_with_overflow:
4129 return implVisitAluOverflow(I, ISD::SADDO);
4130 case Intrinsic::usub_with_overflow:
4131 return implVisitAluOverflow(I, ISD::USUBO);
4132 case Intrinsic::ssub_with_overflow:
4133 return implVisitAluOverflow(I, ISD::SSUBO);
4134 case Intrinsic::umul_with_overflow:
4135 return implVisitAluOverflow(I, ISD::UMULO);
4136 case Intrinsic::smul_with_overflow:
4137 return implVisitAluOverflow(I, ISD::SMULO);
Bill Wendling7cdc3c82008-11-21 02:03:52 +00004138
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004139 case Intrinsic::prefetch: {
4140 SDValue Ops[4];
4141 Ops[0] = getRoot();
4142 Ops[1] = getValue(I.getOperand(1));
4143 Ops[2] = getValue(I.getOperand(2));
4144 Ops[3] = getValue(I.getOperand(3));
4145 DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
4146 return 0;
4147 }
4148
4149 case Intrinsic::memory_barrier: {
4150 SDValue Ops[6];
4151 Ops[0] = getRoot();
4152 for (int x = 1; x < 6; ++x)
4153 Ops[x] = getValue(I.getOperand(x));
4154
4155 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
4156 return 0;
4157 }
4158 case Intrinsic::atomic_cmp_swap: {
4159 SDValue Root = getRoot();
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004160 SDValue L =
4161 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP,
4162 getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4163 Root,
4164 getValue(I.getOperand(1)),
4165 getValue(I.getOperand(2)),
4166 getValue(I.getOperand(3)),
4167 I.getOperand(1));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004168 setValue(&I, L);
4169 DAG.setRoot(L.getValue(1));
4170 return 0;
4171 }
4172 case Intrinsic::atomic_load_add:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004173 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004174 case Intrinsic::atomic_load_sub:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004175 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004176 case Intrinsic::atomic_load_or:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004177 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004178 case Intrinsic::atomic_load_xor:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004179 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004180 case Intrinsic::atomic_load_and:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004181 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004182 case Intrinsic::atomic_load_nand:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004183 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004184 case Intrinsic::atomic_load_max:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004185 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004186 case Intrinsic::atomic_load_min:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004187 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004188 case Intrinsic::atomic_load_umin:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004189 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004190 case Intrinsic::atomic_load_umax:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004191 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004192 case Intrinsic::atomic_swap:
Dan Gohman0b1d4a72008-12-23 21:37:04 +00004193 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004194 }
4195}
4196
4197
4198void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
4199 bool IsTailCall,
4200 MachineBasicBlock *LandingPad) {
4201 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4202 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4203 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4204 unsigned BeginLabel = 0, EndLabel = 0;
4205
4206 TargetLowering::ArgListTy Args;
4207 TargetLowering::ArgListEntry Entry;
4208 Args.reserve(CS.arg_size());
4209 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4210 i != e; ++i) {
4211 SDValue ArgNode = getValue(*i);
4212 Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4213
4214 unsigned attrInd = i - CS.arg_begin() + 1;
Devang Patel05988662008-09-25 21:00:45 +00004215 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
4216 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
4217 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4218 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
4219 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
4220 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004221 Entry.Alignment = CS.getParamAlignment(attrInd);
4222 Args.push_back(Entry);
4223 }
4224
4225 if (LandingPad && MMI) {
4226 // Insert a label before the invoke call to mark the try range. This can be
4227 // used to detect deletion of the invoke via the MachineModuleInfo.
4228 BeginLabel = MMI->NextLabelID();
4229 // Both PendingLoads and PendingExports must be flushed here;
4230 // this call might not return.
4231 (void)getRoot();
4232 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
4233 }
4234
4235 std::pair<SDValue,SDValue> Result =
4236 TLI.LowerCallTo(getRoot(), CS.getType(),
Devang Patel05988662008-09-25 21:00:45 +00004237 CS.paramHasAttr(0, Attribute::SExt),
Dale Johannesen86098bd2008-09-26 19:31:26 +00004238 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4239 CS.paramHasAttr(0, Attribute::InReg),
4240 CS.getCallingConv(),
Dan Gohman1937e2f2008-09-16 01:42:28 +00004241 IsTailCall && PerformTailCallOpt,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004242 Callee, Args, DAG);
4243 if (CS.getType() != Type::VoidTy)
4244 setValue(CS.getInstruction(), Result.first);
4245 DAG.setRoot(Result.second);
4246
4247 if (LandingPad && MMI) {
4248 // Insert a label at the end of the invoke call to mark the try range. This
4249 // can be used to detect deletion of the invoke via the MachineModuleInfo.
4250 EndLabel = MMI->NextLabelID();
4251 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
4252
4253 // Inform MachineModuleInfo of range.
4254 MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
4255 }
4256}
4257
4258
4259void SelectionDAGLowering::visitCall(CallInst &I) {
4260 const char *RenameFn = 0;
4261 if (Function *F = I.getCalledFunction()) {
4262 if (F->isDeclaration()) {
4263 if (unsigned IID = F->getIntrinsicID()) {
4264 RenameFn = visitIntrinsicCall(I, IID);
4265 if (!RenameFn)
4266 return;
4267 }
4268 }
4269
4270 // Check for well-known libc/libm calls. If the function is internal, it
4271 // can't be a library call.
4272 unsigned NameLen = F->getNameLen();
4273 if (!F->hasInternalLinkage() && NameLen) {
4274 const char *NameStr = F->getNameStart();
4275 if (NameStr[0] == 'c' &&
4276 ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
4277 (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
4278 if (I.getNumOperands() == 3 && // Basic sanity checks.
4279 I.getOperand(1)->getType()->isFloatingPoint() &&
4280 I.getType() == I.getOperand(1)->getType() &&
4281 I.getType() == I.getOperand(2)->getType()) {
4282 SDValue LHS = getValue(I.getOperand(1));
4283 SDValue RHS = getValue(I.getOperand(2));
4284 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
4285 LHS, RHS));
4286 return;
4287 }
4288 } else if (NameStr[0] == 'f' &&
4289 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
4290 (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
4291 (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
4292 if (I.getNumOperands() == 2 && // Basic sanity checks.
4293 I.getOperand(1)->getType()->isFloatingPoint() &&
4294 I.getType() == I.getOperand(1)->getType()) {
4295 SDValue Tmp = getValue(I.getOperand(1));
4296 setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
4297 return;
4298 }
4299 } else if (NameStr[0] == 's' &&
4300 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
4301 (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
4302 (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
4303 if (I.getNumOperands() == 2 && // Basic sanity checks.
4304 I.getOperand(1)->getType()->isFloatingPoint() &&
4305 I.getType() == I.getOperand(1)->getType()) {
4306 SDValue Tmp = getValue(I.getOperand(1));
4307 setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
4308 return;
4309 }
4310 } else if (NameStr[0] == 'c' &&
4311 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
4312 (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
4313 (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
4314 if (I.getNumOperands() == 2 && // Basic sanity checks.
4315 I.getOperand(1)->getType()->isFloatingPoint() &&
4316 I.getType() == I.getOperand(1)->getType()) {
4317 SDValue Tmp = getValue(I.getOperand(1));
4318 setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
4319 return;
4320 }
4321 }
4322 }
4323 } else if (isa<InlineAsm>(I.getOperand(0))) {
4324 visitInlineAsm(&I);
4325 return;
4326 }
4327
4328 SDValue Callee;
4329 if (!RenameFn)
4330 Callee = getValue(I.getOperand(0));
4331 else
Bill Wendling056292f2008-09-16 21:48:12 +00004332 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004333
4334 LowerCallTo(&I, Callee, I.isTailCall());
4335}
4336
4337
4338/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4339/// this value and returns the result as a ValueVT value. This uses
4340/// Chain/Flag as the input and updates them for the output Chain/Flag.
4341/// If the Flag pointer is NULL, no flag is used.
4342SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
4343 SDValue &Chain,
4344 SDValue *Flag) const {
4345 // Assemble the legal parts into the final values.
4346 SmallVector<SDValue, 4> Values(ValueVTs.size());
4347 SmallVector<SDValue, 8> Parts;
4348 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4349 // Copy the legal parts from the registers.
4350 MVT ValueVT = ValueVTs[Value];
4351 unsigned NumRegs = TLI->getNumRegisters(ValueVT);
4352 MVT RegisterVT = RegVTs[Value];
4353
4354 Parts.resize(NumRegs);
4355 for (unsigned i = 0; i != NumRegs; ++i) {
4356 SDValue P;
4357 if (Flag == 0)
4358 P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
4359 else {
4360 P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
4361 *Flag = P.getValue(2);
4362 }
4363 Chain = P.getValue(1);
4364
4365 // If the source register was virtual and if we know something about it,
4366 // add an assert node.
4367 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4368 RegisterVT.isInteger() && !RegisterVT.isVector()) {
4369 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4370 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4371 if (FLI.LiveOutRegInfo.size() > SlotNo) {
4372 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4373
4374 unsigned RegSize = RegisterVT.getSizeInBits();
4375 unsigned NumSignBits = LOI.NumSignBits;
4376 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4377
4378 // FIXME: We capture more information than the dag can represent. For
4379 // now, just use the tightest assertzext/assertsext possible.
4380 bool isSExt = true;
4381 MVT FromVT(MVT::Other);
4382 if (NumSignBits == RegSize)
4383 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
4384 else if (NumZeroBits >= RegSize-1)
4385 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
4386 else if (NumSignBits > RegSize-8)
4387 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
4388 else if (NumZeroBits >= RegSize-9)
4389 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
4390 else if (NumSignBits > RegSize-16)
Bill Wendling181b6272008-10-19 20:34:04 +00004391 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004392 else if (NumZeroBits >= RegSize-17)
Bill Wendling181b6272008-10-19 20:34:04 +00004393 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004394 else if (NumSignBits > RegSize-32)
Bill Wendling181b6272008-10-19 20:34:04 +00004395 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004396 else if (NumZeroBits >= RegSize-33)
Bill Wendling181b6272008-10-19 20:34:04 +00004397 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004398
4399 if (FromVT != MVT::Other) {
4400 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
4401 RegisterVT, P, DAG.getValueType(FromVT));
4402
4403 }
4404 }
4405 }
4406
4407 Parts[i] = P;
4408 }
4409
4410 Values[Value] = getCopyFromParts(DAG, Parts.begin(), NumRegs, RegisterVT,
4411 ValueVT);
4412 Part += NumRegs;
4413 Parts.clear();
4414 }
4415
Duncan Sandsaaffa052008-12-01 11:41:29 +00004416 return DAG.getNode(ISD::MERGE_VALUES,
4417 DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4418 &Values[0], ValueVTs.size());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004419}
4420
4421/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4422/// specified value into the registers specified by this object. This uses
4423/// Chain/Flag as the input and updates them for the output Chain/Flag.
4424/// If the Flag pointer is NULL, no flag is used.
4425void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
4426 SDValue &Chain, SDValue *Flag) const {
4427 // Get the list of the values's legal parts.
4428 unsigned NumRegs = Regs.size();
4429 SmallVector<SDValue, 8> Parts(NumRegs);
4430 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4431 MVT ValueVT = ValueVTs[Value];
4432 unsigned NumParts = TLI->getNumRegisters(ValueVT);
4433 MVT RegisterVT = RegVTs[Value];
4434
4435 getCopyToParts(DAG, Val.getValue(Val.getResNo() + Value),
4436 &Parts[Part], NumParts, RegisterVT);
4437 Part += NumParts;
4438 }
4439
4440 // Copy the parts into the registers.
4441 SmallVector<SDValue, 8> Chains(NumRegs);
4442 for (unsigned i = 0; i != NumRegs; ++i) {
4443 SDValue Part;
4444 if (Flag == 0)
4445 Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
4446 else {
4447 Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
4448 *Flag = Part.getValue(1);
4449 }
4450 Chains[i] = Part.getValue(0);
4451 }
4452
4453 if (NumRegs == 1 || Flag)
4454 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4455 // flagged to it. That is the CopyToReg nodes and the user are considered
4456 // a single scheduling unit. If we create a TokenFactor and return it as
4457 // chain, then the TokenFactor is both a predecessor (operand) of the
4458 // user as well as a successor (the TF operands are flagged to the user).
4459 // c1, f1 = CopyToReg
4460 // c2, f2 = CopyToReg
4461 // c3 = TokenFactor c1, c2
4462 // ...
4463 // = op c3, ..., f2
4464 Chain = Chains[NumRegs-1];
4465 else
4466 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4467}
4468
4469/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4470/// operand list. This adds the code marker and includes the number of
4471/// values added into it.
4472void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
4473 std::vector<SDValue> &Ops) const {
4474 MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4475 Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
4476 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4477 unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
4478 MVT RegisterVT = RegVTs[Value];
Chris Lattner58f15c42008-10-17 16:21:11 +00004479 for (unsigned i = 0; i != NumRegs; ++i) {
4480 assert(Reg < Regs.size() && "Mismatch in # registers expected");
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004481 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
Chris Lattner58f15c42008-10-17 16:21:11 +00004482 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004483 }
4484}
4485
4486/// isAllocatableRegister - If the specified register is safe to allocate,
4487/// i.e. it isn't a stack pointer or some other special register, return the
4488/// register class for the register. Otherwise, return null.
4489static const TargetRegisterClass *
4490isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4491 const TargetLowering &TLI,
4492 const TargetRegisterInfo *TRI) {
4493 MVT FoundVT = MVT::Other;
4494 const TargetRegisterClass *FoundRC = 0;
4495 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4496 E = TRI->regclass_end(); RCI != E; ++RCI) {
4497 MVT ThisVT = MVT::Other;
4498
4499 const TargetRegisterClass *RC = *RCI;
4500 // If none of the the value types for this register class are valid, we
4501 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4502 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4503 I != E; ++I) {
4504 if (TLI.isTypeLegal(*I)) {
4505 // If we have already found this register in a different register class,
4506 // choose the one with the largest VT specified. For example, on
4507 // PowerPC, we favor f64 register classes over f32.
4508 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4509 ThisVT = *I;
4510 break;
4511 }
4512 }
4513 }
4514
4515 if (ThisVT == MVT::Other) continue;
4516
4517 // NOTE: This isn't ideal. In particular, this might allocate the
4518 // frame pointer in functions that need it (due to them not being taken
4519 // out of allocation, because a variable sized allocation hasn't been seen
4520 // yet). This is a slight code pessimization, but should still work.
4521 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4522 E = RC->allocation_order_end(MF); I != E; ++I)
4523 if (*I == Reg) {
4524 // We found a matching register class. Keep looking at others in case
4525 // we find one with larger registers that this physreg is also in.
4526 FoundRC = RC;
4527 FoundVT = ThisVT;
4528 break;
4529 }
4530 }
4531 return FoundRC;
4532}
4533
4534
4535namespace llvm {
4536/// AsmOperandInfo - This contains information for each constraint that we are
4537/// lowering.
Daniel Dunbarc0c3b9a2008-09-10 04:16:29 +00004538struct VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4539 public TargetLowering::AsmOperandInfo {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004540 /// CallOperand - If this is the result output operand or a clobber
4541 /// this is null, otherwise it is the incoming operand to the CallInst.
4542 /// This gets modified as the asm is processed.
4543 SDValue CallOperand;
4544
4545 /// AssignedRegs - If this is a register or register class operand, this
4546 /// contains the set of register corresponding to the operand.
4547 RegsForValue AssignedRegs;
4548
4549 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4550 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4551 }
4552
4553 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4554 /// busy in OutputRegs/InputRegs.
4555 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4556 std::set<unsigned> &OutputRegs,
4557 std::set<unsigned> &InputRegs,
4558 const TargetRegisterInfo &TRI) const {
4559 if (isOutReg) {
4560 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4561 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4562 }
4563 if (isInReg) {
4564 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4565 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4566 }
4567 }
Chris Lattner81249c92008-10-17 17:05:25 +00004568
4569 /// getCallOperandValMVT - Return the MVT of the Value* that this operand
4570 /// corresponds to. If there is no Value* for this operand, it returns
4571 /// MVT::Other.
4572 MVT getCallOperandValMVT(const TargetLowering &TLI,
4573 const TargetData *TD) const {
4574 if (CallOperandVal == 0) return MVT::Other;
4575
4576 if (isa<BasicBlock>(CallOperandVal))
4577 return TLI.getPointerTy();
4578
4579 const llvm::Type *OpTy = CallOperandVal->getType();
4580
4581 // If this is an indirect operand, the operand is a pointer to the
4582 // accessed type.
4583 if (isIndirect)
4584 OpTy = cast<PointerType>(OpTy)->getElementType();
4585
4586 // If OpTy is not a single value, it may be a struct/union that we
4587 // can tile with integers.
4588 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4589 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4590 switch (BitSize) {
4591 default: break;
4592 case 1:
4593 case 8:
4594 case 16:
4595 case 32:
4596 case 64:
Chris Lattnercfc14c12008-10-17 19:59:51 +00004597 case 128:
Chris Lattner81249c92008-10-17 17:05:25 +00004598 OpTy = IntegerType::get(BitSize);
4599 break;
4600 }
4601 }
4602
4603 return TLI.getValueType(OpTy, true);
4604 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004605
4606private:
4607 /// MarkRegAndAliases - Mark the specified register and all aliases in the
4608 /// specified set.
4609 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4610 const TargetRegisterInfo &TRI) {
4611 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4612 Regs.insert(Reg);
4613 if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4614 for (; *Aliases; ++Aliases)
4615 Regs.insert(*Aliases);
4616 }
4617};
4618} // end llvm namespace.
4619
4620
4621/// GetRegistersForValue - Assign registers (virtual or physical) for the
4622/// specified operand. We prefer to assign virtual registers, to allow the
4623/// register allocator handle the assignment process. However, if the asm uses
4624/// features that we can't model on machineinstrs, we have SDISel do the
4625/// allocation. This produces generally horrible, but correct, code.
4626///
4627/// OpInfo describes the operand.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004628/// Input and OutputRegs are the set of already allocated physical registers.
4629///
4630void SelectionDAGLowering::
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004631GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004632 std::set<unsigned> &OutputRegs,
4633 std::set<unsigned> &InputRegs) {
4634 // Compute whether this value requires an input register, an output register,
4635 // or both.
4636 bool isOutReg = false;
4637 bool isInReg = false;
4638 switch (OpInfo.Type) {
4639 case InlineAsm::isOutput:
4640 isOutReg = true;
4641
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004642 // If there is an input constraint that matches this, we need to reserve
4643 // the input register so no other inputs allocate to it.
Chris Lattner6bdcda32008-10-17 16:47:46 +00004644 isInReg = OpInfo.hasMatchingInput();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004645 break;
4646 case InlineAsm::isInput:
4647 isInReg = true;
4648 isOutReg = false;
4649 break;
4650 case InlineAsm::isClobber:
4651 isOutReg = true;
4652 isInReg = true;
4653 break;
4654 }
4655
4656
4657 MachineFunction &MF = DAG.getMachineFunction();
4658 SmallVector<unsigned, 4> Regs;
4659
4660 // If this is a constraint for a single physreg, or a constraint for a
4661 // register class, find it.
4662 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4663 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4664 OpInfo.ConstraintVT);
4665
4666 unsigned NumRegs = 1;
Chris Lattner01426e12008-10-21 00:45:36 +00004667 if (OpInfo.ConstraintVT != MVT::Other) {
4668 // If this is a FP input in an integer register (or visa versa) insert a bit
4669 // cast of the input value. More generally, handle any case where the input
4670 // value disagrees with the register class we plan to stick this in.
4671 if (OpInfo.Type == InlineAsm::isInput &&
4672 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
4673 // Try to convert to the first MVT that the reg class contains. If the
4674 // types are identical size, use a bitcast to convert (e.g. two differing
4675 // vector types).
4676 MVT RegVT = *PhysReg.second->vt_begin();
4677 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
4678 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, RegVT,
4679 OpInfo.CallOperand);
4680 OpInfo.ConstraintVT = RegVT;
4681 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
4682 // If the input is a FP value and we want it in FP registers, do a
4683 // bitcast to the corresponding integer type. This turns an f64 value
4684 // into i64, which can be passed with two i32 values on a 32-bit
4685 // machine.
4686 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
4687 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, RegVT,
4688 OpInfo.CallOperand);
4689 OpInfo.ConstraintVT = RegVT;
4690 }
4691 }
4692
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004693 NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
Chris Lattner01426e12008-10-21 00:45:36 +00004694 }
4695
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004696 MVT RegVT;
4697 MVT ValueVT = OpInfo.ConstraintVT;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004698
4699 // If this is a constraint for a specific physical register, like {r17},
4700 // assign it now.
4701 if (PhysReg.first) {
4702 if (OpInfo.ConstraintVT == MVT::Other)
4703 ValueVT = *PhysReg.second->vt_begin();
4704
4705 // Get the actual register value type. This is important, because the user
4706 // may have asked for (e.g.) the AX register in i32 type. We need to
4707 // remember that AX is actually i16 to get the right extension.
4708 RegVT = *PhysReg.second->vt_begin();
4709
4710 // This is a explicit reference to a physical register.
4711 Regs.push_back(PhysReg.first);
4712
4713 // If this is an expanded reference, add the rest of the regs to Regs.
4714 if (NumRegs != 1) {
4715 TargetRegisterClass::iterator I = PhysReg.second->begin();
4716 for (; *I != PhysReg.first; ++I)
4717 assert(I != PhysReg.second->end() && "Didn't find reg!");
4718
4719 // Already added the first reg.
4720 --NumRegs; ++I;
4721 for (; NumRegs; --NumRegs, ++I) {
4722 assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4723 Regs.push_back(*I);
4724 }
4725 }
4726 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4727 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4728 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4729 return;
4730 }
4731
4732 // Otherwise, if this was a reference to an LLVM register class, create vregs
4733 // for this reference.
4734 std::vector<unsigned> RegClassRegs;
4735 const TargetRegisterClass *RC = PhysReg.second;
4736 if (RC) {
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004737 // If this is a tied register, our regalloc doesn't know how to maintain
Chris Lattner58f15c42008-10-17 16:21:11 +00004738 // the constraint, so we have to pick a register to pin the input/output to.
4739 // If it isn't a matched constraint, go ahead and create vreg and let the
4740 // regalloc do its thing.
Chris Lattner6bdcda32008-10-17 16:47:46 +00004741 if (!OpInfo.hasMatchingInput()) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004742 RegVT = *PhysReg.second->vt_begin();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004743 if (OpInfo.ConstraintVT == MVT::Other)
4744 ValueVT = RegVT;
4745
4746 // Create the appropriate number of virtual registers.
4747 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4748 for (; NumRegs; --NumRegs)
4749 Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4750
4751 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4752 return;
4753 }
4754
4755 // Otherwise, we can't allocate it. Let the code below figure out how to
4756 // maintain these constraints.
4757 RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4758
4759 } else {
4760 // This is a reference to a register class that doesn't directly correspond
4761 // to an LLVM register class. Allocate NumRegs consecutive, available,
4762 // registers from the class.
4763 RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4764 OpInfo.ConstraintVT);
4765 }
4766
4767 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4768 unsigned NumAllocated = 0;
4769 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4770 unsigned Reg = RegClassRegs[i];
4771 // See if this register is available.
4772 if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
4773 (isInReg && InputRegs.count(Reg))) { // Already used.
4774 // Make sure we find consecutive registers.
4775 NumAllocated = 0;
4776 continue;
4777 }
4778
4779 // Check to see if this register is allocatable (i.e. don't give out the
4780 // stack pointer).
4781 if (RC == 0) {
4782 RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4783 if (!RC) { // Couldn't allocate this register.
4784 // Reset NumAllocated to make sure we return consecutive registers.
4785 NumAllocated = 0;
4786 continue;
4787 }
4788 }
4789
4790 // Okay, this register is good, we can use it.
4791 ++NumAllocated;
4792
4793 // If we allocated enough consecutive registers, succeed.
4794 if (NumAllocated == NumRegs) {
4795 unsigned RegStart = (i-NumAllocated)+1;
4796 unsigned RegEnd = i+1;
4797 // Mark all of the allocated registers used.
4798 for (unsigned i = RegStart; i != RegEnd; ++i)
4799 Regs.push_back(RegClassRegs[i]);
4800
4801 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4802 OpInfo.ConstraintVT);
4803 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4804 return;
4805 }
4806 }
4807
4808 // Otherwise, we couldn't allocate enough registers for this.
4809}
4810
Evan Chengda43bcf2008-09-24 00:05:32 +00004811/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
4812/// processed uses a memory 'm' constraint.
4813static bool
4814hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
4815 TargetLowering &TLI) {
4816 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
4817 InlineAsm::ConstraintInfo &CI = CInfos[i];
4818 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
4819 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
4820 if (CType == TargetLowering::C_Memory)
4821 return true;
4822 }
4823 }
4824
4825 return false;
4826}
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004827
4828/// visitInlineAsm - Handle a call to an InlineAsm object.
4829///
4830void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4831 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4832
4833 /// ConstraintOperands - Information about all of the constraints.
4834 std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4835
4836 SDValue Chain = getRoot();
4837 SDValue Flag;
4838
4839 std::set<unsigned> OutputRegs, InputRegs;
4840
4841 // Do a prepass over the constraints, canonicalizing them, and building up the
4842 // ConstraintOperands list.
4843 std::vector<InlineAsm::ConstraintInfo>
4844 ConstraintInfos = IA->ParseConstraints();
4845
Evan Chengda43bcf2008-09-24 00:05:32 +00004846 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004847
4848 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4849 unsigned ResNo = 0; // ResNo - The result number of the next output.
4850 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4851 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4852 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4853
4854 MVT OpVT = MVT::Other;
4855
4856 // Compute the value type for each operand.
4857 switch (OpInfo.Type) {
4858 case InlineAsm::isOutput:
4859 // Indirect outputs just consume an argument.
4860 if (OpInfo.isIndirect) {
4861 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4862 break;
4863 }
Chris Lattner2a0b96c2008-10-18 18:49:30 +00004864
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004865 // The return value of the call is this value. As such, there is no
4866 // corresponding argument.
4867 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4868 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4869 OpVT = TLI.getValueType(STy->getElementType(ResNo));
4870 } else {
4871 assert(ResNo == 0 && "Asm only has one result!");
4872 OpVT = TLI.getValueType(CS.getType());
4873 }
4874 ++ResNo;
4875 break;
4876 case InlineAsm::isInput:
4877 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4878 break;
4879 case InlineAsm::isClobber:
4880 // Nothing to do.
4881 break;
4882 }
4883
4884 // If this is an input or an indirect output, process the call argument.
4885 // BasicBlocks are labels, currently appearing only in asm's.
4886 if (OpInfo.CallOperandVal) {
Chris Lattner81249c92008-10-17 17:05:25 +00004887 if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004888 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
Chris Lattner81249c92008-10-17 17:05:25 +00004889 } else {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004890 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004891 }
Chris Lattner81249c92008-10-17 17:05:25 +00004892
4893 OpVT = OpInfo.getCallOperandValMVT(TLI, TD);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004894 }
4895
4896 OpInfo.ConstraintVT = OpVT;
Chris Lattner2a0b96c2008-10-18 18:49:30 +00004897 }
4898
4899 // Second pass over the constraints: compute which constraint option to use
4900 // and assign registers to constraints that want a specific physreg.
4901 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4902 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4903
4904 // If this is an output operand with a matching input operand, look up the
Evan Cheng09dc9c02008-12-16 18:21:39 +00004905 // matching input. If their types mismatch, e.g. one is an integer, the
4906 // other is floating point, or their sizes are different, flag it as an
4907 // error.
Chris Lattner2a0b96c2008-10-18 18:49:30 +00004908 if (OpInfo.hasMatchingInput()) {
4909 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4910 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
Evan Cheng09dc9c02008-12-16 18:21:39 +00004911 if ((OpInfo.ConstraintVT.isInteger() !=
4912 Input.ConstraintVT.isInteger()) ||
4913 (OpInfo.ConstraintVT.getSizeInBits() !=
4914 Input.ConstraintVT.getSizeInBits())) {
4915 cerr << "Unsupported asm: input constraint with a matching output "
4916 << "constraint of incompatible type!\n";
4917 exit(1);
4918 }
4919 Input.ConstraintVT = OpInfo.ConstraintVT;
Chris Lattner2a0b96c2008-10-18 18:49:30 +00004920 }
4921 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004922
4923 // Compute the constraint code and ConstraintType to use.
Evan Chengda43bcf2008-09-24 00:05:32 +00004924 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004925
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004926 // If this is a memory input, and if the operand is not indirect, do what we
4927 // need to to provide an address for the memory input.
4928 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4929 !OpInfo.isIndirect) {
4930 assert(OpInfo.Type == InlineAsm::isInput &&
4931 "Can only indirectify direct input operands!");
4932
4933 // Memory operands really want the address of the value. If we don't have
4934 // an indirect input, put it in the constpool if we can, otherwise spill
4935 // it to a stack slot.
4936
4937 // If the operand is a float, integer, or vector constant, spill to a
4938 // constant pool entry to get its address.
4939 Value *OpVal = OpInfo.CallOperandVal;
4940 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4941 isa<ConstantVector>(OpVal)) {
4942 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4943 TLI.getPointerTy());
4944 } else {
4945 // Otherwise, create a stack slot and emit a store to it before the
4946 // asm.
4947 const Type *Ty = OpVal->getType();
4948 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4949 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4950 MachineFunction &MF = DAG.getMachineFunction();
4951 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4952 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4953 Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4954 OpInfo.CallOperand = StackSlot;
4955 }
4956
4957 // There is no longer a Value* corresponding to this operand.
4958 OpInfo.CallOperandVal = 0;
4959 // It is now an indirect operand.
4960 OpInfo.isIndirect = true;
4961 }
4962
4963 // If this constraint is for a specific register, allocate it before
4964 // anything else.
4965 if (OpInfo.ConstraintType == TargetLowering::C_Register)
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004966 GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004967 }
4968 ConstraintInfos.clear();
4969
4970
4971 // Second pass - Loop over all of the operands, assigning virtual or physregs
Chris Lattner58f15c42008-10-17 16:21:11 +00004972 // to register class operands.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004973 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4974 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4975
4976 // C_Register operands have already been allocated, Other/Memory don't need
4977 // to be.
4978 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004979 GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004980 }
4981
4982 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4983 std::vector<SDValue> AsmNodeOperands;
4984 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
4985 AsmNodeOperands.push_back(
Bill Wendling056292f2008-09-16 21:48:12 +00004986 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004987
4988
4989 // Loop over all of the inputs, copying the operand values into the
4990 // appropriate registers and processing the output regs.
4991 RegsForValue RetValRegs;
4992
4993 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4994 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4995
4996 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4997 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4998
4999 switch (OpInfo.Type) {
5000 case InlineAsm::isOutput: {
5001 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5002 OpInfo.ConstraintType != TargetLowering::C_Register) {
5003 // Memory output, or 'other' output (e.g. 'X' constraint).
5004 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5005
5006 // Add information to the INLINEASM node to know about this output.
Dale Johannesen86b49f82008-09-24 01:07:17 +00005007 unsigned ResOpType = 4/*MEM*/ | (1<<3);
5008 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005009 TLI.getPointerTy()));
5010 AsmNodeOperands.push_back(OpInfo.CallOperand);
5011 break;
5012 }
5013
5014 // Otherwise, this is a register or register class output.
5015
5016 // Copy the output from the appropriate register. Find a register that
5017 // we can use.
5018 if (OpInfo.AssignedRegs.Regs.empty()) {
5019 cerr << "Couldn't allocate output reg for constraint '"
5020 << OpInfo.ConstraintCode << "'!\n";
5021 exit(1);
5022 }
5023
5024 // If this is an indirect operand, store through the pointer after the
5025 // asm.
5026 if (OpInfo.isIndirect) {
5027 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5028 OpInfo.CallOperandVal));
5029 } else {
5030 // This is the result value of the call.
5031 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
5032 // Concatenate this output onto the outputs list.
5033 RetValRegs.append(OpInfo.AssignedRegs);
5034 }
5035
5036 // Add information to the INLINEASM node to know that this register is
5037 // set.
Dale Johannesen913d3df2008-09-12 17:49:03 +00005038 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5039 6 /* EARLYCLOBBER REGDEF */ :
5040 2 /* REGDEF */ ,
5041 DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005042 break;
5043 }
5044 case InlineAsm::isInput: {
5045 SDValue InOperandVal = OpInfo.CallOperand;
5046
Chris Lattner6bdcda32008-10-17 16:47:46 +00005047 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005048 // If this is required to match an output register we have already set,
5049 // just use its register.
Chris Lattner58f15c42008-10-17 16:21:11 +00005050 unsigned OperandNo = OpInfo.getMatchedOperand();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005051
5052 // Scan until we find the definition we already emitted of this operand.
5053 // When we find it, create a RegsForValue operand.
5054 unsigned CurOp = 2; // The first operand.
5055 for (; OperandNo; --OperandNo) {
5056 // Advance to the next operand.
5057 unsigned NumOps =
Dan Gohmanf5aeb1a2008-09-12 16:56:44 +00005058 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005059 assert(((NumOps & 7) == 2 /*REGDEF*/ ||
Dale Johannesen913d3df2008-09-12 17:49:03 +00005060 (NumOps & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
Dale Johannesen86b49f82008-09-24 01:07:17 +00005061 (NumOps & 7) == 4 /*MEM*/) &&
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005062 "Skipped past definitions?");
5063 CurOp += (NumOps>>3)+1;
5064 }
5065
5066 unsigned NumOps =
Dan Gohmanf5aeb1a2008-09-12 16:56:44 +00005067 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
Dale Johannesen913d3df2008-09-12 17:49:03 +00005068 if ((NumOps & 7) == 2 /*REGDEF*/
5069 || (NumOps & 7) == 6 /* EARLYCLOBBER REGDEF */) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005070 // Add NumOps>>3 registers to MatchedRegs.
5071 RegsForValue MatchedRegs;
5072 MatchedRegs.TLI = &TLI;
5073 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5074 MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
5075 for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
5076 unsigned Reg =
5077 cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
5078 MatchedRegs.Regs.push_back(Reg);
5079 }
5080
5081 // Use the produced MatchedRegs object to
5082 MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
Dale Johannesen86b49f82008-09-24 01:07:17 +00005083 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005084 break;
5085 } else {
Dale Johannesen86b49f82008-09-24 01:07:17 +00005086 assert(((NumOps & 7) == 4) && "Unknown matching constraint!");
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005087 assert((NumOps >> 3) == 1 && "Unexpected number of operands");
5088 // Add information to the INLINEASM node to know about this input.
Dale Johannesen91aac102008-09-17 21:13:11 +00005089 AsmNodeOperands.push_back(DAG.getTargetConstant(NumOps,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005090 TLI.getPointerTy()));
5091 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5092 break;
5093 }
5094 }
5095
5096 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5097 assert(!OpInfo.isIndirect &&
5098 "Don't know how to handle indirect other inputs yet!");
5099
5100 std::vector<SDValue> Ops;
5101 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
Evan Chengda43bcf2008-09-24 00:05:32 +00005102 hasMemory, Ops, DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005103 if (Ops.empty()) {
5104 cerr << "Invalid operand for inline asm constraint '"
5105 << OpInfo.ConstraintCode << "'!\n";
5106 exit(1);
5107 }
5108
5109 // Add information to the INLINEASM node to know about this input.
5110 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
5111 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5112 TLI.getPointerTy()));
5113 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5114 break;
5115 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5116 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5117 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5118 "Memory operands expect pointer values");
5119
5120 // Add information to the INLINEASM node to know about this input.
Dale Johannesen86b49f82008-09-24 01:07:17 +00005121 unsigned ResOpType = 4/*MEM*/ | (1<<3);
5122 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005123 TLI.getPointerTy()));
5124 AsmNodeOperands.push_back(InOperandVal);
5125 break;
5126 }
5127
5128 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5129 OpInfo.ConstraintType == TargetLowering::C_Register) &&
5130 "Unknown constraint type!");
5131 assert(!OpInfo.isIndirect &&
5132 "Don't know how to handle indirect register inputs yet!");
5133
5134 // Copy the input into the appropriate registers.
Evan Chengaa765b82008-09-25 00:14:04 +00005135 if (OpInfo.AssignedRegs.Regs.empty()) {
5136 cerr << "Couldn't allocate output reg for constraint '"
5137 << OpInfo.ConstraintCode << "'!\n";
5138 exit(1);
5139 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005140
5141 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
5142
Dale Johannesen86b49f82008-09-24 01:07:17 +00005143 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/,
5144 DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005145 break;
5146 }
5147 case InlineAsm::isClobber: {
5148 // Add the clobbered value to the operand list, so that the register
5149 // allocator is aware that the physreg got clobbered.
5150 if (!OpInfo.AssignedRegs.Regs.empty())
Dale Johannesen91aac102008-09-17 21:13:11 +00005151 OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5152 DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005153 break;
5154 }
5155 }
5156 }
5157
5158 // Finish up input operands.
5159 AsmNodeOperands[0] = Chain;
5160 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5161
5162 Chain = DAG.getNode(ISD::INLINEASM,
5163 DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
5164 &AsmNodeOperands[0], AsmNodeOperands.size());
5165 Flag = Chain.getValue(1);
5166
5167 // If this asm returns a register value, copy the result from that register
5168 // and set it as the value of the call.
5169 if (!RetValRegs.Regs.empty()) {
5170 SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005171
5172 // FIXME: Why don't we do this for inline asms with MRVs?
5173 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5174 MVT ResultType = TLI.getValueType(CS.getType());
5175
5176 // If any of the results of the inline asm is a vector, it may have the
5177 // wrong width/num elts. This can happen for register classes that can
5178 // contain multiple different value types. The preg or vreg allocated may
5179 // not have the same VT as was expected. Convert it to the right type
5180 // with bit_convert.
5181 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5182 Val = DAG.getNode(ISD::BIT_CONVERT, ResultType, Val);
Dan Gohman95915732008-10-18 01:03:45 +00005183
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005184 } else if (ResultType != Val.getValueType() &&
5185 ResultType.isInteger() && Val.getValueType().isInteger()) {
5186 // If a result value was tied to an input value, the computed result may
5187 // have a wider width than the expected result. Extract the relevant
5188 // portion.
5189 Val = DAG.getNode(ISD::TRUNCATE, ResultType, Val);
Dan Gohman95915732008-10-18 01:03:45 +00005190 }
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005191
5192 assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
Chris Lattner0c526442008-10-17 17:52:49 +00005193 }
Dan Gohman95915732008-10-18 01:03:45 +00005194
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005195 setValue(CS.getInstruction(), Val);
5196 }
5197
5198 std::vector<std::pair<SDValue, Value*> > StoresToEmit;
5199
5200 // Process indirect outputs, first output all of the flagged copies out of
5201 // physregs.
5202 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5203 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5204 Value *Ptr = IndirectStoresToEmit[i].second;
5205 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
5206 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5207 }
5208
5209 // Emit the non-flagged stores from the physregs.
5210 SmallVector<SDValue, 8> OutChains;
5211 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
5212 OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
5213 getValue(StoresToEmit[i].second),
5214 StoresToEmit[i].second, 0));
5215 if (!OutChains.empty())
5216 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5217 &OutChains[0], OutChains.size());
5218 DAG.setRoot(Chain);
5219}
5220
5221
5222void SelectionDAGLowering::visitMalloc(MallocInst &I) {
5223 SDValue Src = getValue(I.getOperand(0));
5224
5225 MVT IntPtr = TLI.getPointerTy();
5226
5227 if (IntPtr.bitsLT(Src.getValueType()))
5228 Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
5229 else if (IntPtr.bitsGT(Src.getValueType()))
5230 Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
5231
5232 // Scale the source by the type size.
5233 uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
5234 Src = DAG.getNode(ISD::MUL, Src.getValueType(),
5235 Src, DAG.getIntPtrConstant(ElementSize));
5236
5237 TargetLowering::ArgListTy Args;
5238 TargetLowering::ArgListEntry Entry;
5239 Entry.Node = Src;
5240 Entry.Ty = TLI.getTargetData()->getIntPtrType();
5241 Args.push_back(Entry);
5242
5243 std::pair<SDValue,SDValue> Result =
Dale Johannesen86098bd2008-09-26 19:31:26 +00005244 TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, false,
5245 CallingConv::C, PerformTailCallOpt,
5246 DAG.getExternalSymbol("malloc", IntPtr),
Dan Gohman1937e2f2008-09-16 01:42:28 +00005247 Args, DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005248 setValue(&I, Result.first); // Pointers always fit in registers
5249 DAG.setRoot(Result.second);
5250}
5251
5252void SelectionDAGLowering::visitFree(FreeInst &I) {
5253 TargetLowering::ArgListTy Args;
5254 TargetLowering::ArgListEntry Entry;
5255 Entry.Node = getValue(I.getOperand(0));
5256 Entry.Ty = TLI.getTargetData()->getIntPtrType();
5257 Args.push_back(Entry);
5258 MVT IntPtr = TLI.getPointerTy();
5259 std::pair<SDValue,SDValue> Result =
Dale Johannesen86098bd2008-09-26 19:31:26 +00005260 TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false, false,
Dan Gohman1937e2f2008-09-16 01:42:28 +00005261 CallingConv::C, PerformTailCallOpt,
Bill Wendling056292f2008-09-16 21:48:12 +00005262 DAG.getExternalSymbol("free", IntPtr), Args, DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005263 DAG.setRoot(Result.second);
5264}
5265
5266void SelectionDAGLowering::visitVAStart(CallInst &I) {
5267 DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
5268 getValue(I.getOperand(1)),
5269 DAG.getSrcValue(I.getOperand(1))));
5270}
5271
5272void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
5273 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
5274 getValue(I.getOperand(0)),
5275 DAG.getSrcValue(I.getOperand(0)));
5276 setValue(&I, V);
5277 DAG.setRoot(V.getValue(1));
5278}
5279
5280void SelectionDAGLowering::visitVAEnd(CallInst &I) {
5281 DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
5282 getValue(I.getOperand(1)),
5283 DAG.getSrcValue(I.getOperand(1))));
5284}
5285
5286void SelectionDAGLowering::visitVACopy(CallInst &I) {
5287 DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
5288 getValue(I.getOperand(1)),
5289 getValue(I.getOperand(2)),
5290 DAG.getSrcValue(I.getOperand(1)),
5291 DAG.getSrcValue(I.getOperand(2))));
5292}
5293
5294/// TargetLowering::LowerArguments - This is the default LowerArguments
5295/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
5296/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
5297/// integrated into SDISel.
5298void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
5299 SmallVectorImpl<SDValue> &ArgValues) {
5300 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
5301 SmallVector<SDValue, 3+16> Ops;
5302 Ops.push_back(DAG.getRoot());
5303 Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
5304 Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
5305
5306 // Add one result value for each formal argument.
5307 SmallVector<MVT, 16> RetVals;
5308 unsigned j = 1;
5309 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
5310 I != E; ++I, ++j) {
5311 SmallVector<MVT, 4> ValueVTs;
5312 ComputeValueVTs(*this, I->getType(), ValueVTs);
5313 for (unsigned Value = 0, NumValues = ValueVTs.size();
5314 Value != NumValues; ++Value) {
5315 MVT VT = ValueVTs[Value];
5316 const Type *ArgTy = VT.getTypeForMVT();
5317 ISD::ArgFlagsTy Flags;
5318 unsigned OriginalAlignment =
5319 getTargetData()->getABITypeAlignment(ArgTy);
5320
Devang Patel05988662008-09-25 21:00:45 +00005321 if (F.paramHasAttr(j, Attribute::ZExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005322 Flags.setZExt();
Devang Patel05988662008-09-25 21:00:45 +00005323 if (F.paramHasAttr(j, Attribute::SExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005324 Flags.setSExt();
Devang Patel05988662008-09-25 21:00:45 +00005325 if (F.paramHasAttr(j, Attribute::InReg))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005326 Flags.setInReg();
Devang Patel05988662008-09-25 21:00:45 +00005327 if (F.paramHasAttr(j, Attribute::StructRet))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005328 Flags.setSRet();
Devang Patel05988662008-09-25 21:00:45 +00005329 if (F.paramHasAttr(j, Attribute::ByVal)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005330 Flags.setByVal();
5331 const PointerType *Ty = cast<PointerType>(I->getType());
5332 const Type *ElementTy = Ty->getElementType();
5333 unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5334 unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
5335 // For ByVal, alignment should be passed from FE. BE will guess if
5336 // this info is not there but there are cases it cannot get right.
5337 if (F.getParamAlignment(j))
5338 FrameAlign = F.getParamAlignment(j);
5339 Flags.setByValAlign(FrameAlign);
5340 Flags.setByValSize(FrameSize);
5341 }
Devang Patel05988662008-09-25 21:00:45 +00005342 if (F.paramHasAttr(j, Attribute::Nest))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005343 Flags.setNest();
5344 Flags.setOrigAlign(OriginalAlignment);
5345
5346 MVT RegisterVT = getRegisterType(VT);
5347 unsigned NumRegs = getNumRegisters(VT);
5348 for (unsigned i = 0; i != NumRegs; ++i) {
5349 RetVals.push_back(RegisterVT);
5350 ISD::ArgFlagsTy MyFlags = Flags;
5351 if (NumRegs > 1 && i == 0)
5352 MyFlags.setSplit();
5353 // if it isn't first piece, alignment must be 1
5354 else if (i > 0)
5355 MyFlags.setOrigAlign(1);
5356 Ops.push_back(DAG.getArgFlags(MyFlags));
5357 }
5358 }
5359 }
5360
5361 RetVals.push_back(MVT::Other);
5362
5363 // Create the node.
5364 SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
5365 DAG.getVTList(&RetVals[0], RetVals.size()),
5366 &Ops[0], Ops.size()).getNode();
5367
5368 // Prelower FORMAL_ARGUMENTS. This isn't required for functionality, but
5369 // allows exposing the loads that may be part of the argument access to the
5370 // first DAGCombiner pass.
5371 SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
5372
5373 // The number of results should match up, except that the lowered one may have
5374 // an extra flag result.
5375 assert((Result->getNumValues() == TmpRes.getNode()->getNumValues() ||
5376 (Result->getNumValues()+1 == TmpRes.getNode()->getNumValues() &&
5377 TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
5378 && "Lowering produced unexpected number of results!");
5379
5380 // The FORMAL_ARGUMENTS node itself is likely no longer needed.
5381 if (Result != TmpRes.getNode() && Result->use_empty()) {
5382 HandleSDNode Dummy(DAG.getRoot());
5383 DAG.RemoveDeadNode(Result);
5384 }
5385
5386 Result = TmpRes.getNode();
5387
5388 unsigned NumArgRegs = Result->getNumValues() - 1;
5389 DAG.setRoot(SDValue(Result, NumArgRegs));
5390
5391 // Set up the return result vector.
5392 unsigned i = 0;
5393 unsigned Idx = 1;
5394 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
5395 ++I, ++Idx) {
5396 SmallVector<MVT, 4> ValueVTs;
5397 ComputeValueVTs(*this, I->getType(), ValueVTs);
5398 for (unsigned Value = 0, NumValues = ValueVTs.size();
5399 Value != NumValues; ++Value) {
5400 MVT VT = ValueVTs[Value];
5401 MVT PartVT = getRegisterType(VT);
5402
5403 unsigned NumParts = getNumRegisters(VT);
5404 SmallVector<SDValue, 4> Parts(NumParts);
5405 for (unsigned j = 0; j != NumParts; ++j)
5406 Parts[j] = SDValue(Result, i++);
5407
5408 ISD::NodeType AssertOp = ISD::DELETED_NODE;
Devang Patel05988662008-09-25 21:00:45 +00005409 if (F.paramHasAttr(Idx, Attribute::SExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005410 AssertOp = ISD::AssertSext;
Devang Patel05988662008-09-25 21:00:45 +00005411 else if (F.paramHasAttr(Idx, Attribute::ZExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005412 AssertOp = ISD::AssertZext;
5413
5414 ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
5415 AssertOp));
5416 }
5417 }
5418 assert(i == NumArgRegs && "Argument register count mismatch!");
5419}
5420
5421
5422/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5423/// implementation, which just inserts an ISD::CALL node, which is later custom
5424/// lowered by the target to something concrete. FIXME: When all targets are
5425/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
5426std::pair<SDValue, SDValue>
5427TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5428 bool RetSExt, bool RetZExt, bool isVarArg,
Dale Johannesen86098bd2008-09-26 19:31:26 +00005429 bool isInreg,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005430 unsigned CallingConv, bool isTailCall,
5431 SDValue Callee,
5432 ArgListTy &Args, SelectionDAG &DAG) {
Dan Gohman1937e2f2008-09-16 01:42:28 +00005433 assert((!isTailCall || PerformTailCallOpt) &&
5434 "isTailCall set when tail-call optimizations are disabled!");
5435
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005436 SmallVector<SDValue, 32> Ops;
5437 Ops.push_back(Chain); // Op#0 - Chain
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005438 Ops.push_back(Callee);
5439
5440 // Handle all of the outgoing arguments.
5441 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5442 SmallVector<MVT, 4> ValueVTs;
5443 ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5444 for (unsigned Value = 0, NumValues = ValueVTs.size();
5445 Value != NumValues; ++Value) {
5446 MVT VT = ValueVTs[Value];
5447 const Type *ArgTy = VT.getTypeForMVT();
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005448 SDValue Op = SDValue(Args[i].Node.getNode(),
5449 Args[i].Node.getResNo() + Value);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005450 ISD::ArgFlagsTy Flags;
5451 unsigned OriginalAlignment =
5452 getTargetData()->getABITypeAlignment(ArgTy);
5453
5454 if (Args[i].isZExt)
5455 Flags.setZExt();
5456 if (Args[i].isSExt)
5457 Flags.setSExt();
5458 if (Args[i].isInReg)
5459 Flags.setInReg();
5460 if (Args[i].isSRet)
5461 Flags.setSRet();
5462 if (Args[i].isByVal) {
5463 Flags.setByVal();
5464 const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5465 const Type *ElementTy = Ty->getElementType();
5466 unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5467 unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
5468 // For ByVal, alignment should come from FE. BE will guess if this
5469 // info is not there but there are cases it cannot get right.
5470 if (Args[i].Alignment)
5471 FrameAlign = Args[i].Alignment;
5472 Flags.setByValAlign(FrameAlign);
5473 Flags.setByValSize(FrameSize);
5474 }
5475 if (Args[i].isNest)
5476 Flags.setNest();
5477 Flags.setOrigAlign(OriginalAlignment);
5478
5479 MVT PartVT = getRegisterType(VT);
5480 unsigned NumParts = getNumRegisters(VT);
5481 SmallVector<SDValue, 4> Parts(NumParts);
5482 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5483
5484 if (Args[i].isSExt)
5485 ExtendKind = ISD::SIGN_EXTEND;
5486 else if (Args[i].isZExt)
5487 ExtendKind = ISD::ZERO_EXTEND;
5488
5489 getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
5490
5491 for (unsigned i = 0; i != NumParts; ++i) {
5492 // if it isn't first piece, alignment must be 1
5493 ISD::ArgFlagsTy MyFlags = Flags;
5494 if (NumParts > 1 && i == 0)
5495 MyFlags.setSplit();
5496 else if (i != 0)
5497 MyFlags.setOrigAlign(1);
5498
5499 Ops.push_back(Parts[i]);
5500 Ops.push_back(DAG.getArgFlags(MyFlags));
5501 }
5502 }
5503 }
5504
5505 // Figure out the result value types. We start by making a list of
5506 // the potentially illegal return value types.
5507 SmallVector<MVT, 4> LoweredRetTys;
5508 SmallVector<MVT, 4> RetTys;
5509 ComputeValueVTs(*this, RetTy, RetTys);
5510
5511 // Then we translate that to a list of legal types.
5512 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5513 MVT VT = RetTys[I];
5514 MVT RegisterVT = getRegisterType(VT);
5515 unsigned NumRegs = getNumRegisters(VT);
5516 for (unsigned i = 0; i != NumRegs; ++i)
5517 LoweredRetTys.push_back(RegisterVT);
5518 }
5519
5520 LoweredRetTys.push_back(MVT::Other); // Always has a chain.
5521
5522 // Create the CALL node.
Dale Johannesen86098bd2008-09-26 19:31:26 +00005523 SDValue Res = DAG.getCall(CallingConv, isVarArg, isTailCall, isInreg,
Dan Gohman095cc292008-09-13 01:54:27 +00005524 DAG.getVTList(&LoweredRetTys[0],
5525 LoweredRetTys.size()),
Dale Johannesen86098bd2008-09-26 19:31:26 +00005526 &Ops[0], Ops.size()
5527 );
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005528 Chain = Res.getValue(LoweredRetTys.size() - 1);
5529
5530 // Gather up the call result into a single value.
Dan Gohmanb5cc34d2008-10-07 00:12:37 +00005531 if (RetTy != Type::VoidTy && !RetTys.empty()) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005532 ISD::NodeType AssertOp = ISD::DELETED_NODE;
5533
5534 if (RetSExt)
5535 AssertOp = ISD::AssertSext;
5536 else if (RetZExt)
5537 AssertOp = ISD::AssertZext;
5538
5539 SmallVector<SDValue, 4> ReturnValues;
5540 unsigned RegNo = 0;
5541 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5542 MVT VT = RetTys[I];
5543 MVT RegisterVT = getRegisterType(VT);
5544 unsigned NumRegs = getNumRegisters(VT);
5545 unsigned RegNoEnd = NumRegs + RegNo;
5546 SmallVector<SDValue, 4> Results;
5547 for (; RegNo != RegNoEnd; ++RegNo)
5548 Results.push_back(Res.getValue(RegNo));
5549 SDValue ReturnValue =
5550 getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
5551 AssertOp);
5552 ReturnValues.push_back(ReturnValue);
5553 }
Duncan Sandsaaffa052008-12-01 11:41:29 +00005554 Res = DAG.getNode(ISD::MERGE_VALUES,
5555 DAG.getVTList(&RetTys[0], RetTys.size()),
5556 &ReturnValues[0], ReturnValues.size());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005557 }
5558
5559 return std::make_pair(Res, Chain);
5560}
5561
5562SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5563 assert(0 && "LowerOperation not implemented for this target!");
5564 abort();
5565 return SDValue();
5566}
5567
5568
5569void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5570 SDValue Op = getValue(V);
5571 assert((Op.getOpcode() != ISD::CopyFromReg ||
5572 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5573 "Copy from a reg to the same reg!");
5574 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5575
5576 RegsForValue RFV(TLI, Reg, V->getType());
5577 SDValue Chain = DAG.getEntryNode();
5578 RFV.getCopyToRegs(Op, DAG, Chain, 0);
5579 PendingExports.push_back(Chain);
5580}
5581
5582#include "llvm/CodeGen/SelectionDAGISel.h"
5583
5584void SelectionDAGISel::
5585LowerArguments(BasicBlock *LLVMBB) {
5586 // If this is the entry block, emit arguments.
5587 Function &F = *LLVMBB->getParent();
5588 SDValue OldRoot = SDL->DAG.getRoot();
5589 SmallVector<SDValue, 16> Args;
5590 TLI.LowerArguments(F, SDL->DAG, Args);
5591
5592 unsigned a = 0;
5593 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
5594 AI != E; ++AI) {
5595 SmallVector<MVT, 4> ValueVTs;
5596 ComputeValueVTs(TLI, AI->getType(), ValueVTs);
5597 unsigned NumValues = ValueVTs.size();
5598 if (!AI->use_empty()) {
5599 SDL->setValue(AI, SDL->DAG.getMergeValues(&Args[a], NumValues));
5600 // If this argument is live outside of the entry block, insert a copy from
5601 // whereever we got it to the vreg that other BB's will reference it as.
5602 DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo->ValueMap.find(AI);
5603 if (VMI != FuncInfo->ValueMap.end()) {
5604 SDL->CopyValueToVirtualRegister(AI, VMI->second);
5605 }
5606 }
5607 a += NumValues;
5608 }
5609
5610 // Finally, if the target has anything special to do, allow it to do so.
5611 // FIXME: this should insert code into the DAG!
5612 EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction());
5613}
5614
5615/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
5616/// ensure constants are generated when needed. Remember the virtual registers
5617/// that need to be added to the Machine PHI nodes as input. We cannot just
5618/// directly add them, because expansion might result in multiple MBB's for one
5619/// BB. As such, the start of the BB might correspond to a different MBB than
5620/// the end.
5621///
5622void
5623SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
5624 TerminatorInst *TI = LLVMBB->getTerminator();
5625
5626 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5627
5628 // Check successor nodes' PHI nodes that expect a constant to be available
5629 // from this block.
5630 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5631 BasicBlock *SuccBB = TI->getSuccessor(succ);
5632 if (!isa<PHINode>(SuccBB->begin())) continue;
5633 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
5634
5635 // If this terminator has multiple identical successors (common for
5636 // switches), only handle each succ once.
5637 if (!SuccsHandled.insert(SuccMBB)) continue;
5638
5639 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5640 PHINode *PN;
5641
5642 // At this point we know that there is a 1-1 correspondence between LLVM PHI
5643 // nodes and Machine PHI nodes, but the incoming operands have not been
5644 // emitted yet.
5645 for (BasicBlock::iterator I = SuccBB->begin();
5646 (PN = dyn_cast<PHINode>(I)); ++I) {
5647 // Ignore dead phi's.
5648 if (PN->use_empty()) continue;
5649
5650 unsigned Reg;
5651 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5652
5653 if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5654 unsigned &RegOut = SDL->ConstantsOut[C];
5655 if (RegOut == 0) {
5656 RegOut = FuncInfo->CreateRegForValue(C);
5657 SDL->CopyValueToVirtualRegister(C, RegOut);
5658 }
5659 Reg = RegOut;
5660 } else {
5661 Reg = FuncInfo->ValueMap[PHIOp];
5662 if (Reg == 0) {
5663 assert(isa<AllocaInst>(PHIOp) &&
5664 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5665 "Didn't codegen value into a register!??");
5666 Reg = FuncInfo->CreateRegForValue(PHIOp);
5667 SDL->CopyValueToVirtualRegister(PHIOp, Reg);
5668 }
5669 }
5670
5671 // Remember that this register needs to added to the machine PHI node as
5672 // the input for this MBB.
5673 SmallVector<MVT, 4> ValueVTs;
5674 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
5675 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
5676 MVT VT = ValueVTs[vti];
5677 unsigned NumRegisters = TLI.getNumRegisters(VT);
5678 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5679 SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5680 Reg += NumRegisters;
5681 }
5682 }
5683 }
5684 SDL->ConstantsOut.clear();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005685}
5686
Dan Gohman3df24e62008-09-03 23:12:08 +00005687/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
5688/// supports legal types, and it emits MachineInstrs directly instead of
5689/// creating SelectionDAG nodes.
5690///
5691bool
5692SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
5693 FastISel *F) {
5694 TerminatorInst *TI = LLVMBB->getTerminator();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005695
Dan Gohman3df24e62008-09-03 23:12:08 +00005696 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5697 unsigned OrigNumPHINodesToUpdate = SDL->PHINodesToUpdate.size();
5698
5699 // Check successor nodes' PHI nodes that expect a constant to be available
5700 // from this block.
5701 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5702 BasicBlock *SuccBB = TI->getSuccessor(succ);
5703 if (!isa<PHINode>(SuccBB->begin())) continue;
5704 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
5705
5706 // If this terminator has multiple identical successors (common for
5707 // switches), only handle each succ once.
5708 if (!SuccsHandled.insert(SuccMBB)) continue;
5709
5710 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5711 PHINode *PN;
5712
5713 // At this point we know that there is a 1-1 correspondence between LLVM PHI
5714 // nodes and Machine PHI nodes, but the incoming operands have not been
5715 // emitted yet.
5716 for (BasicBlock::iterator I = SuccBB->begin();
5717 (PN = dyn_cast<PHINode>(I)); ++I) {
5718 // Ignore dead phi's.
5719 if (PN->use_empty()) continue;
5720
5721 // Only handle legal types. Two interesting things to note here. First,
5722 // by bailing out early, we may leave behind some dead instructions,
5723 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
5724 // own moves. Second, this check is necessary becuase FastISel doesn't
5725 // use CreateRegForValue to create registers, so it always creates
5726 // exactly one register for each non-void instruction.
5727 MVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
5728 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
Dan Gohman74321ab2008-09-10 21:01:31 +00005729 // Promote MVT::i1.
5730 if (VT == MVT::i1)
5731 VT = TLI.getTypeToTransformTo(VT);
5732 else {
5733 SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
5734 return false;
5735 }
Dan Gohman3df24e62008-09-03 23:12:08 +00005736 }
5737
5738 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5739
5740 unsigned Reg = F->getRegForValue(PHIOp);
5741 if (Reg == 0) {
5742 SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
5743 return false;
5744 }
5745 SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
5746 }
5747 }
5748
5749 return true;
5750}