blob: 6ea915fdb0b7690cbb8efdc07aececde3e5efe42 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000062#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
John Criswella1156432005-10-27 15:54:34 +000066#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000067#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000071#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Assembly/Writer.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000073#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
76#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
78#include "llvm/IR/Instructions.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Operator.h"
Chris Lattner95255282006-06-28 23:17:24 +000081#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000083#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000084#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000086#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000087#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000088#include "llvm/Support/raw_ostream.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000089#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000090#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000091using namespace llvm;
92
Chris Lattner3b27d682006-12-19 22:30:33 +000093STATISTIC(NumArrayLenItCounts,
94 "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96 "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98 "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100 "Number of loops with trip counts computed by force");
101
Dan Gohman844731a2008-05-13 00:00:25 +0000102static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000105 "symbolically execute a constant "
106 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000107 cl::init(100));
108
Benjamin Kramerff183102012-10-26 17:31:32 +0000109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
Owen Anderson2ab36d32010-10-12 19:48:12 +0000114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115 "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
117INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000120 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000121char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000122
123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000130
Manman Ren286c4dc2012-09-12 05:06:18 +0000131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattner53e677a2004-04-02 20:23:17 +0000132void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000133 print(dbgs());
134 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000135}
Manman Rencc77eec2012-09-06 19:55:56 +0000136#endif
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000137
Dan Gohman4ce32db2010-11-17 22:27:42 +0000138void SCEV::print(raw_ostream &OS) const {
139 switch (getSCEVType()) {
140 case scConstant:
141 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
142 return;
143 case scTruncate: {
144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145 const SCEV *Op = Trunc->getOperand();
146 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147 << *Trunc->getType() << ")";
148 return;
149 }
150 case scZeroExtend: {
151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152 const SCEV *Op = ZExt->getOperand();
153 OS << "(zext " << *Op->getType() << " " << *Op << " to "
154 << *ZExt->getType() << ")";
155 return;
156 }
157 case scSignExtend: {
158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159 const SCEV *Op = SExt->getOperand();
160 OS << "(sext " << *Op->getType() << " " << *Op << " to "
161 << *SExt->getType() << ")";
162 return;
163 }
164 case scAddRecExpr: {
165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166 OS << "{" << *AR->getOperand(0);
167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168 OS << ",+," << *AR->getOperand(i);
169 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000170 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000171 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000172 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000173 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNW) &&
175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000177 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
178 OS << ">";
179 return;
180 }
181 case scAddExpr:
182 case scMulExpr:
183 case scUMaxExpr:
184 case scSMaxExpr: {
185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000186 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000187 switch (NAry->getSCEVType()) {
188 case scAddExpr: OpStr = " + "; break;
189 case scMulExpr: OpStr = " * "; break;
190 case scUMaxExpr: OpStr = " umax "; break;
191 case scSMaxExpr: OpStr = " smax "; break;
192 }
193 OS << "(";
194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195 I != E; ++I) {
196 OS << **I;
197 if (llvm::next(I) != E)
198 OS << OpStr;
199 }
200 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000201 switch (NAry->getSCEVType()) {
202 case scAddExpr:
203 case scMulExpr:
204 if (NAry->getNoWrapFlags(FlagNUW))
205 OS << "<nuw>";
206 if (NAry->getNoWrapFlags(FlagNSW))
207 OS << "<nsw>";
208 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000209 return;
210 }
211 case scUDivExpr: {
212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214 return;
215 }
216 case scUnknown: {
217 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000218 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000219 if (U->isSizeOf(AllocTy)) {
220 OS << "sizeof(" << *AllocTy << ")";
221 return;
222 }
223 if (U->isAlignOf(AllocTy)) {
224 OS << "alignof(" << *AllocTy << ")";
225 return;
226 }
Andrew Trick635f7182011-03-09 17:23:39 +0000227
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000228 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000229 Constant *FieldNo;
230 if (U->isOffsetOf(CTy, FieldNo)) {
231 OS << "offsetof(" << *CTy << ", ";
232 WriteAsOperand(OS, FieldNo, false);
233 OS << ")";
234 return;
235 }
Andrew Trick635f7182011-03-09 17:23:39 +0000236
Dan Gohman4ce32db2010-11-17 22:27:42 +0000237 // Otherwise just print it normally.
238 WriteAsOperand(OS, U->getValue(), false);
239 return;
240 }
241 case scCouldNotCompute:
242 OS << "***COULDNOTCOMPUTE***";
243 return;
244 default: break;
245 }
246 llvm_unreachable("Unknown SCEV kind!");
247}
248
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000249Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000250 switch (getSCEVType()) {
251 case scConstant:
252 return cast<SCEVConstant>(this)->getType();
253 case scTruncate:
254 case scZeroExtend:
255 case scSignExtend:
256 return cast<SCEVCastExpr>(this)->getType();
257 case scAddRecExpr:
258 case scMulExpr:
259 case scUMaxExpr:
260 case scSMaxExpr:
261 return cast<SCEVNAryExpr>(this)->getType();
262 case scAddExpr:
263 return cast<SCEVAddExpr>(this)->getType();
264 case scUDivExpr:
265 return cast<SCEVUDivExpr>(this)->getType();
266 case scUnknown:
267 return cast<SCEVUnknown>(this)->getType();
268 case scCouldNotCompute:
269 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000270 default:
271 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000272 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000273}
274
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000275bool SCEV::isZero() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isZero();
278 return false;
279}
280
Dan Gohman70a1fe72009-05-18 15:22:39 +0000281bool SCEV::isOne() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isOne();
284 return false;
285}
Chris Lattner53e677a2004-04-02 20:23:17 +0000286
Dan Gohman4d289bf2009-06-24 00:30:26 +0000287bool SCEV::isAllOnesValue() const {
288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
289 return SC->getValue()->isAllOnesValue();
290 return false;
291}
292
Andrew Trickf8fd8412012-01-07 00:27:31 +0000293/// isNonConstantNegative - Return true if the specified scev is negated, but
294/// not a constant.
295bool SCEV::isNonConstantNegative() const {
296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
297 if (!Mul) return false;
298
299 // If there is a constant factor, it will be first.
300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
301 if (!SC) return false;
302
303 // Return true if the value is negative, this matches things like (-42 * V).
304 return SC->getValue()->getValue().isNegative();
305}
306
Owen Anderson753ad612009-06-22 21:57:23 +0000307SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000309
Chris Lattner53e677a2004-04-02 20:23:17 +0000310bool SCEVCouldNotCompute::classof(const SCEV *S) {
311 return S->getSCEVType() == scCouldNotCompute;
312}
313
Dan Gohman0bba49c2009-07-07 17:06:11 +0000314const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000315 FoldingSetNodeID ID;
316 ID.AddInteger(scConstant);
317 ID.AddPointer(V);
318 void *IP = 0;
319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000320 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000321 UniqueSCEVs.InsertNode(S, IP);
322 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
Chris Lattner53e677a2004-04-02 20:23:17 +0000324
Dan Gohman0bba49c2009-07-07 17:06:11 +0000325const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000326 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000327}
328
Dan Gohman0bba49c2009-07-07 17:06:11 +0000329const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000330ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
331 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000332 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000333}
334
Dan Gohman3bf63762010-06-18 19:54:20 +0000335SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000336 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000337 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000338
Dan Gohman3bf63762010-06-18 19:54:20 +0000339SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000344 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345}
Chris Lattner53e677a2004-04-02 20:23:17 +0000346
Dan Gohman3bf63762010-06-18 19:54:20 +0000347SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000352 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000353}
354
Dan Gohman3bf63762010-06-18 19:54:20 +0000355SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000356 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000357 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
359 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000360 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000361}
362
Dan Gohmanab37f502010-08-02 23:49:30 +0000363void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000364 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000365 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000366
367 // Remove this SCEVUnknown from the uniquing map.
368 SE->UniqueSCEVs.RemoveNode(this);
369
370 // Release the value.
371 setValPtr(0);
372}
373
374void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000375 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000376 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000377
378 // Remove this SCEVUnknown from the uniquing map.
379 SE->UniqueSCEVs.RemoveNode(this);
380
381 // Update this SCEVUnknown to point to the new value. This is needed
382 // because there may still be outstanding SCEVs which still point to
383 // this SCEVUnknown.
384 setValPtr(New);
385}
386
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000387bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000388 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000389 if (VCE->getOpcode() == Instruction::PtrToInt)
390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000391 if (CE->getOpcode() == Instruction::GetElementPtr &&
392 CE->getOperand(0)->isNullValue() &&
393 CE->getNumOperands() == 2)
394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
395 if (CI->isOne()) {
396 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
397 ->getElementType();
398 return true;
399 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000400
401 return false;
402}
403
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000406 if (VCE->getOpcode() == Instruction::PtrToInt)
407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000408 if (CE->getOpcode() == Instruction::GetElementPtr &&
409 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000410 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000411 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000412 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000413 if (!STy->isPacked() &&
414 CE->getNumOperands() == 3 &&
415 CE->getOperand(1)->isNullValue()) {
416 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
417 if (CI->isOne() &&
418 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000419 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000420 AllocTy = STy->getElementType(1);
421 return true;
422 }
423 }
424 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000425
426 return false;
427}
428
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000429bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000431 if (VCE->getOpcode() == Instruction::PtrToInt)
432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433 if (CE->getOpcode() == Instruction::GetElementPtr &&
434 CE->getNumOperands() == 3 &&
435 CE->getOperand(0)->isNullValue() &&
436 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000437 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
439 // Ignore vector types here so that ScalarEvolutionExpander doesn't
440 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000441 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000442 CTy = Ty;
443 FieldNo = CE->getOperand(2);
444 return true;
445 }
446 }
447
448 return false;
449}
450
Chris Lattner8d741b82004-06-20 06:23:15 +0000451//===----------------------------------------------------------------------===//
452// SCEV Utilities
453//===----------------------------------------------------------------------===//
454
455namespace {
456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457 /// than the complexity of the RHS. This comparator is used to canonicalize
458 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000459 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000460 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000461 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000462 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000463
Dan Gohman67ef74e2010-08-27 15:26:01 +0000464 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000465 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return compare(LHS, RHS) < 0;
467 }
468
469 // Return negative, zero, or positive, if LHS is less than, equal to, or
470 // greater than RHS, respectively. A three-way result allows recursive
471 // comparisons to be more efficient.
472 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000473 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
474 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000475 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000476
Dan Gohman72861302009-05-07 14:39:04 +0000477 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000478 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
479 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000480 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000481
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 // Aside from the getSCEVType() ordering, the particular ordering
483 // isn't very important except that it's beneficial to be consistent,
484 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000485 switch (LType) {
486 case scUnknown: {
487 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000488 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000489
490 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
491 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000492 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000493
494 // Order pointer values after integer values. This helps SCEVExpander
495 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000496 bool LIsPointer = LV->getType()->isPointerTy(),
497 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000498 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500
501 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000502 unsigned LID = LV->getValueID(),
503 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000504 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506
507 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000508 if (const Argument *LA = dyn_cast<Argument>(LV)) {
509 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000510 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
511 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000512 }
513
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 // For instructions, compare their loop depth, and their operand
515 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000516 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
517 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000518
519 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000520 const BasicBlock *LParent = LInst->getParent(),
521 *RParent = RInst->getParent();
522 if (LParent != RParent) {
523 unsigned LDepth = LI->getLoopDepth(LParent),
524 RDepth = LI->getLoopDepth(RParent);
525 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000527 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000528
529 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000530 unsigned LNumOps = LInst->getNumOperands(),
531 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000532 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000533 }
534
Dan Gohman67ef74e2010-08-27 15:26:01 +0000535 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000536 }
537
Dan Gohman67ef74e2010-08-27 15:26:01 +0000538 case scConstant: {
539 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000540 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000541
542 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000543 const APInt &LA = LC->getValue()->getValue();
544 const APInt &RA = RC->getValue()->getValue();
545 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000546 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000547 return (int)LBitWidth - (int)RBitWidth;
548 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000549 }
550
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551 case scAddRecExpr: {
552 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000554
555 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000556 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
557 if (LLoop != RLoop) {
558 unsigned LDepth = LLoop->getLoopDepth(),
559 RDepth = RLoop->getLoopDepth();
560 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000561 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000562 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000563
564 // Addrec complexity grows with operand count.
565 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
566 if (LNumOps != RNumOps)
567 return (int)LNumOps - (int)RNumOps;
568
569 // Lexicographically compare.
570 for (unsigned i = 0; i != LNumOps; ++i) {
571 long X = compare(LA->getOperand(i), RA->getOperand(i));
572 if (X != 0)
573 return X;
574 }
575
576 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000577 }
578
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579 case scAddExpr:
580 case scMulExpr:
581 case scSMaxExpr:
582 case scUMaxExpr: {
583 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000585
586 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000587 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
588 for (unsigned i = 0; i != LNumOps; ++i) {
589 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000590 return 1;
591 long X = compare(LC->getOperand(i), RC->getOperand(i));
592 if (X != 0)
593 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000594 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000595 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000596 }
597
Dan Gohman67ef74e2010-08-27 15:26:01 +0000598 case scUDivExpr: {
599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000601
602 // Lexicographically compare udiv expressions.
603 long X = compare(LC->getLHS(), RC->getLHS());
604 if (X != 0)
605 return X;
606 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000607 }
608
Dan Gohman67ef74e2010-08-27 15:26:01 +0000609 case scTruncate:
610 case scZeroExtend:
611 case scSignExtend: {
612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000614
615 // Compare cast expressions by operand.
616 return compare(LC->getOperand(), RC->getOperand());
617 }
618
619 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000620 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000621 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000622 }
623 };
624}
625
626/// GroupByComplexity - Given a list of SCEV objects, order them by their
627/// complexity, and group objects of the same complexity together by value.
628/// When this routine is finished, we know that any duplicates in the vector are
629/// consecutive and that complexity is monotonically increasing.
630///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000631/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000632/// results from this routine. In other words, we don't want the results of
633/// this to depend on where the addresses of various SCEV objects happened to
634/// land in memory.
635///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000636static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000637 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000638 if (Ops.size() < 2) return; // Noop
639 if (Ops.size() == 2) {
640 // This is the common case, which also happens to be trivially simple.
641 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000642 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
643 if (SCEVComplexityCompare(LI)(RHS, LHS))
644 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000645 return;
646 }
647
Dan Gohman3bf63762010-06-18 19:54:20 +0000648 // Do the rough sort by complexity.
649 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
650
651 // Now that we are sorted by complexity, group elements of the same
652 // complexity. Note that this is, at worst, N^2, but the vector is likely to
653 // be extremely short in practice. Note that we take this approach because we
654 // do not want to depend on the addresses of the objects we are grouping.
655 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
656 const SCEV *S = Ops[i];
657 unsigned Complexity = S->getSCEVType();
658
659 // If there are any objects of the same complexity and same value as this
660 // one, group them.
661 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
662 if (Ops[j] == S) { // Found a duplicate.
663 // Move it to immediately after i'th element.
664 std::swap(Ops[i+1], Ops[j]);
665 ++i; // no need to rescan it.
666 if (i == e-2) return; // Done!
667 }
668 }
669 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000670}
671
Chris Lattner53e677a2004-04-02 20:23:17 +0000672
Chris Lattner53e677a2004-04-02 20:23:17 +0000673
674//===----------------------------------------------------------------------===//
675// Simple SCEV method implementations
676//===----------------------------------------------------------------------===//
677
Eli Friedmanb42a6262008-08-04 23:49:06 +0000678/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000679/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000680static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000681 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000682 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683 // Handle the simplest case efficiently.
684 if (K == 1)
685 return SE.getTruncateOrZeroExtend(It, ResultTy);
686
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000687 // We are using the following formula for BC(It, K):
688 //
689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
690 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000691 // Suppose, W is the bitwidth of the return value. We must be prepared for
692 // overflow. Hence, we must assure that the result of our computation is
693 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
694 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000695 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000696 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000697 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000698 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
699 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000700 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000701 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000702 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000703 // This formula is trivially equivalent to the previous formula. However,
704 // this formula can be implemented much more efficiently. The trick is that
705 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
706 // arithmetic. To do exact division in modular arithmetic, all we have
707 // to do is multiply by the inverse. Therefore, this step can be done at
708 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000709 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000710 // The next issue is how to safely do the division by 2^T. The way this
711 // is done is by doing the multiplication step at a width of at least W + T
712 // bits. This way, the bottom W+T bits of the product are accurate. Then,
713 // when we perform the division by 2^T (which is equivalent to a right shift
714 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
715 // truncated out after the division by 2^T.
716 //
717 // In comparison to just directly using the first formula, this technique
718 // is much more efficient; using the first formula requires W * K bits,
719 // but this formula less than W + K bits. Also, the first formula requires
720 // a division step, whereas this formula only requires multiplies and shifts.
721 //
722 // It doesn't matter whether the subtraction step is done in the calculation
723 // width or the input iteration count's width; if the subtraction overflows,
724 // the result must be zero anyway. We prefer here to do it in the width of
725 // the induction variable because it helps a lot for certain cases; CodeGen
726 // isn't smart enough to ignore the overflow, which leads to much less
727 // efficient code if the width of the subtraction is wider than the native
728 // register width.
729 //
730 // (It's possible to not widen at all by pulling out factors of 2 before
731 // the multiplication; for example, K=2 can be calculated as
732 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
733 // extra arithmetic, so it's not an obvious win, and it gets
734 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000735
Eli Friedmanb42a6262008-08-04 23:49:06 +0000736 // Protection from insane SCEVs; this bound is conservative,
737 // but it probably doesn't matter.
738 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000739 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000740
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000741 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000742
Eli Friedmanb42a6262008-08-04 23:49:06 +0000743 // Calculate K! / 2^T and T; we divide out the factors of two before
744 // multiplying for calculating K! / 2^T to avoid overflow.
745 // Other overflow doesn't matter because we only care about the bottom
746 // W bits of the result.
747 APInt OddFactorial(W, 1);
748 unsigned T = 1;
749 for (unsigned i = 3; i <= K; ++i) {
750 APInt Mult(W, i);
751 unsigned TwoFactors = Mult.countTrailingZeros();
752 T += TwoFactors;
753 Mult = Mult.lshr(TwoFactors);
754 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000755 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000756
Eli Friedmanb42a6262008-08-04 23:49:06 +0000757 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000758 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000759
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000760 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000761 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
762
763 // Calculate the multiplicative inverse of K! / 2^T;
764 // this multiplication factor will perform the exact division by
765 // K! / 2^T.
766 APInt Mod = APInt::getSignedMinValue(W+1);
767 APInt MultiplyFactor = OddFactorial.zext(W+1);
768 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
769 MultiplyFactor = MultiplyFactor.trunc(W);
770
771 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000772 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000773 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000774 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000775 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000776 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000777 Dividend = SE.getMulExpr(Dividend,
778 SE.getTruncateOrZeroExtend(S, CalculationTy));
779 }
780
781 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000782 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000783
784 // Truncate the result, and divide by K! / 2^T.
785
786 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
787 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000788}
789
Chris Lattner53e677a2004-04-02 20:23:17 +0000790/// evaluateAtIteration - Return the value of this chain of recurrences at
791/// the specified iteration number. We can evaluate this recurrence by
792/// multiplying each element in the chain by the binomial coefficient
793/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
794///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000795/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000796///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000797/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000798///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000799const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000800 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000801 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000802 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000803 // The computation is correct in the face of overflow provided that the
804 // multiplication is performed _after_ the evaluation of the binomial
805 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000806 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000807 if (isa<SCEVCouldNotCompute>(Coeff))
808 return Coeff;
809
810 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000811 }
812 return Result;
813}
814
Chris Lattner53e677a2004-04-02 20:23:17 +0000815//===----------------------------------------------------------------------===//
816// SCEV Expression folder implementations
817//===----------------------------------------------------------------------===//
818
Dan Gohman0bba49c2009-07-07 17:06:11 +0000819const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000820 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000821 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000822 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000823 assert(isSCEVable(Ty) &&
824 "This is not a conversion to a SCEVable type!");
825 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000826
Dan Gohmanc050fd92009-07-13 20:50:19 +0000827 FoldingSetNodeID ID;
828 ID.AddInteger(scTruncate);
829 ID.AddPointer(Op);
830 ID.AddPointer(Ty);
831 void *IP = 0;
832 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
833
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000834 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000835 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000836 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000837 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000838
Dan Gohman20900ca2009-04-22 16:20:48 +0000839 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000840 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000841 return getTruncateExpr(ST->getOperand(), Ty);
842
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000843 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000844 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000845 return getTruncateOrSignExtend(SS->getOperand(), Ty);
846
847 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000848 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000849 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
850
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000851 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
852 // eliminate all the truncates.
853 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
854 SmallVector<const SCEV *, 4> Operands;
855 bool hasTrunc = false;
856 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
857 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
858 hasTrunc = isa<SCEVTruncateExpr>(S);
859 Operands.push_back(S);
860 }
861 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000862 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000863 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000864 }
865
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000866 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
867 // eliminate all the truncates.
868 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
869 SmallVector<const SCEV *, 4> Operands;
870 bool hasTrunc = false;
871 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
872 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
873 hasTrunc = isa<SCEVTruncateExpr>(S);
874 Operands.push_back(S);
875 }
876 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000877 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000878 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000879 }
880
Dan Gohman6864db62009-06-18 16:24:47 +0000881 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000882 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000883 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000884 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000885 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000886 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000887 }
888
Dan Gohman420ab912010-06-25 18:47:08 +0000889 // The cast wasn't folded; create an explicit cast node. We can reuse
890 // the existing insert position since if we get here, we won't have
891 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000892 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
893 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000894 UniqueSCEVs.InsertNode(S, IP);
895 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000896}
897
Dan Gohman0bba49c2009-07-07 17:06:11 +0000898const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000899 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000900 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000901 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000902 assert(isSCEVable(Ty) &&
903 "This is not a conversion to a SCEVable type!");
904 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000905
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000906 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000907 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
908 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000909 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000910
Dan Gohman20900ca2009-04-22 16:20:48 +0000911 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000912 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000913 return getZeroExtendExpr(SZ->getOperand(), Ty);
914
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000915 // Before doing any expensive analysis, check to see if we've already
916 // computed a SCEV for this Op and Ty.
917 FoldingSetNodeID ID;
918 ID.AddInteger(scZeroExtend);
919 ID.AddPointer(Op);
920 ID.AddPointer(Ty);
921 void *IP = 0;
922 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
923
Nick Lewycky630d85a2011-01-23 06:20:19 +0000924 // zext(trunc(x)) --> zext(x) or x or trunc(x)
925 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
926 // It's possible the bits taken off by the truncate were all zero bits. If
927 // so, we should be able to simplify this further.
928 const SCEV *X = ST->getOperand();
929 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000930 unsigned TruncBits = getTypeSizeInBits(ST->getType());
931 unsigned NewBits = getTypeSizeInBits(Ty);
932 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000933 CR.zextOrTrunc(NewBits)))
934 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000935 }
936
Dan Gohman01ecca22009-04-27 20:16:15 +0000937 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000938 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000939 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000940 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000941 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000942 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000943 const SCEV *Start = AR->getStart();
944 const SCEV *Step = AR->getStepRecurrence(*this);
945 unsigned BitWidth = getTypeSizeInBits(AR->getType());
946 const Loop *L = AR->getLoop();
947
Dan Gohmaneb490a72009-07-25 01:22:26 +0000948 // If we have special knowledge that this addrec won't overflow,
949 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000950 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000951 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
952 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000953 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000954
Dan Gohman01ecca22009-04-27 20:16:15 +0000955 // Check whether the backedge-taken count is SCEVCouldNotCompute.
956 // Note that this serves two purposes: It filters out loops that are
957 // simply not analyzable, and it covers the case where this code is
958 // being called from within backedge-taken count analysis, such that
959 // attempting to ask for the backedge-taken count would likely result
960 // in infinite recursion. In the later case, the analysis code will
961 // cope with a conservative value, and it will take care to purge
962 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000963 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000964 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000965 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000966 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000967
968 // Check whether the backedge-taken count can be losslessly casted to
969 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000970 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000971 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000972 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000973 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
974 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000975 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000976 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000977 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +0000978 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
979 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
980 const SCEV *WideMaxBECount =
981 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000982 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000983 getAddExpr(WideStart,
984 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000985 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000986 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000987 // Cache knowledge of AR NUW, which is propagated to this AddRec.
988 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000989 // Return the expression with the addrec on the outside.
990 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
991 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000992 L, AR->getNoWrapFlags());
993 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000994 // Similar to above, only this time treat the step value as signed.
995 // This covers loops that count down.
Dan Gohman5183cae2009-05-18 15:58:39 +0000996 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000997 getAddExpr(WideStart,
998 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000999 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001000 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001001 // Cache knowledge of AR NW, which is propagated to this AddRec.
1002 // Negative step causes unsigned wrap, but it still can't self-wrap.
1003 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001004 // Return the expression with the addrec on the outside.
1005 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1006 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001007 L, AR->getNoWrapFlags());
1008 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001009 }
1010
1011 // If the backedge is guarded by a comparison with the pre-inc value
1012 // the addrec is safe. Also, if the entry is guarded by a comparison
1013 // with the start value and the backedge is guarded by a comparison
1014 // with the post-inc value, the addrec is safe.
1015 if (isKnownPositive(Step)) {
1016 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1017 getUnsignedRange(Step).getUnsignedMax());
1018 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001019 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001020 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001021 AR->getPostIncExpr(*this), N))) {
1022 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1023 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001024 // Return the expression with the addrec on the outside.
1025 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1026 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001027 L, AR->getNoWrapFlags());
1028 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001029 } else if (isKnownNegative(Step)) {
1030 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1031 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001032 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1033 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001034 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001035 AR->getPostIncExpr(*this), N))) {
1036 // Cache knowledge of AR NW, which is propagated to this AddRec.
1037 // Negative step causes unsigned wrap, but it still can't self-wrap.
1038 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1039 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001040 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1041 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001042 L, AR->getNoWrapFlags());
1043 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001044 }
1045 }
1046 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001047
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001048 // The cast wasn't folded; create an explicit cast node.
1049 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001050 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001051 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1052 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001053 UniqueSCEVs.InsertNode(S, IP);
1054 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001055}
1056
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001057// Get the limit of a recurrence such that incrementing by Step cannot cause
1058// signed overflow as long as the value of the recurrence within the loop does
1059// not exceed this limit before incrementing.
1060static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1061 ICmpInst::Predicate *Pred,
1062 ScalarEvolution *SE) {
1063 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1064 if (SE->isKnownPositive(Step)) {
1065 *Pred = ICmpInst::ICMP_SLT;
1066 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1067 SE->getSignedRange(Step).getSignedMax());
1068 }
1069 if (SE->isKnownNegative(Step)) {
1070 *Pred = ICmpInst::ICMP_SGT;
1071 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1072 SE->getSignedRange(Step).getSignedMin());
1073 }
1074 return 0;
1075}
1076
1077// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1078// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1079// or postincrement sibling. This allows normalizing a sign extended AddRec as
1080// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1081// result, the expression "Step + sext(PreIncAR)" is congruent with
1082// "sext(PostIncAR)"
1083static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001084 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001085 ScalarEvolution *SE) {
1086 const Loop *L = AR->getLoop();
1087 const SCEV *Start = AR->getStart();
1088 const SCEV *Step = AR->getStepRecurrence(*SE);
1089
1090 // Check for a simple looking step prior to loop entry.
1091 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001092 if (!SA)
1093 return 0;
1094
1095 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1096 // subtraction is expensive. For this purpose, perform a quick and dirty
1097 // difference, by checking for Step in the operand list.
1098 SmallVector<const SCEV *, 4> DiffOps;
1099 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1100 I != E; ++I) {
1101 if (*I != Step)
1102 DiffOps.push_back(*I);
1103 }
1104 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001105 return 0;
1106
1107 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1108 // same three conditions that getSignExtendedExpr checks.
1109
1110 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001111 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001112 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1113 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1114
Andrew Trickcf31f912011-06-01 19:14:56 +00001115 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001116 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001117
1118 // 2. Direct overflow check on the step operation's expression.
1119 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001120 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001121 const SCEV *OperandExtendedStart =
1122 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1123 SE->getSignExtendExpr(Step, WideTy));
1124 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1125 // Cache knowledge of PreAR NSW.
1126 if (PreAR)
1127 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1128 // FIXME: this optimization needs a unit test
1129 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1130 return PreStart;
1131 }
1132
1133 // 3. Loop precondition.
1134 ICmpInst::Predicate Pred;
1135 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1136
Andrew Trickcf31f912011-06-01 19:14:56 +00001137 if (OverflowLimit &&
1138 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001139 return PreStart;
1140 }
1141 return 0;
1142}
1143
1144// Get the normalized sign-extended expression for this AddRec's Start.
1145static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001146 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001147 ScalarEvolution *SE) {
1148 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1149 if (!PreStart)
1150 return SE->getSignExtendExpr(AR->getStart(), Ty);
1151
1152 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1153 SE->getSignExtendExpr(PreStart, Ty));
1154}
1155
Dan Gohman0bba49c2009-07-07 17:06:11 +00001156const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001157 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001158 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001159 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001160 assert(isSCEVable(Ty) &&
1161 "This is not a conversion to a SCEVable type!");
1162 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001163
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001164 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001165 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1166 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +00001167 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmand19534a2007-06-15 14:38:12 +00001168
Dan Gohman20900ca2009-04-22 16:20:48 +00001169 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001170 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001171 return getSignExtendExpr(SS->getOperand(), Ty);
1172
Nick Lewycky73f565e2011-01-19 15:56:12 +00001173 // sext(zext(x)) --> zext(x)
1174 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1175 return getZeroExtendExpr(SZ->getOperand(), Ty);
1176
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001177 // Before doing any expensive analysis, check to see if we've already
1178 // computed a SCEV for this Op and Ty.
1179 FoldingSetNodeID ID;
1180 ID.AddInteger(scSignExtend);
1181 ID.AddPointer(Op);
1182 ID.AddPointer(Ty);
1183 void *IP = 0;
1184 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1185
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001186 // If the input value is provably positive, build a zext instead.
1187 if (isKnownNonNegative(Op))
1188 return getZeroExtendExpr(Op, Ty);
1189
Nick Lewycky630d85a2011-01-23 06:20:19 +00001190 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1191 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1192 // It's possible the bits taken off by the truncate were all sign bits. If
1193 // so, we should be able to simplify this further.
1194 const SCEV *X = ST->getOperand();
1195 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001196 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1197 unsigned NewBits = getTypeSizeInBits(Ty);
1198 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001199 CR.sextOrTrunc(NewBits)))
1200 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001201 }
1202
Dan Gohman01ecca22009-04-27 20:16:15 +00001203 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001204 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001205 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001206 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001207 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001208 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001209 const SCEV *Start = AR->getStart();
1210 const SCEV *Step = AR->getStepRecurrence(*this);
1211 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1212 const Loop *L = AR->getLoop();
1213
Dan Gohmaneb490a72009-07-25 01:22:26 +00001214 // If we have special knowledge that this addrec won't overflow,
1215 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001216 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001217 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001218 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001219 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001220
Dan Gohman01ecca22009-04-27 20:16:15 +00001221 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1222 // Note that this serves two purposes: It filters out loops that are
1223 // simply not analyzable, and it covers the case where this code is
1224 // being called from within backedge-taken count analysis, such that
1225 // attempting to ask for the backedge-taken count would likely result
1226 // in infinite recursion. In the later case, the analysis code will
1227 // cope with a conservative value, and it will take care to purge
1228 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001229 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001230 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001231 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001232 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001233
1234 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001235 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001236 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001237 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001238 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001239 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1240 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001241 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001242 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001243 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +00001244 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1245 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1246 const SCEV *WideMaxBECount =
1247 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001248 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001249 getAddExpr(WideStart,
1250 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001251 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001252 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001253 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1254 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001255 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001256 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001257 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001258 L, AR->getNoWrapFlags());
1259 }
Dan Gohman850f7912009-07-16 17:34:36 +00001260 // Similar to above, only this time treat the step value as unsigned.
1261 // This covers loops that count up with an unsigned step.
Dan Gohman850f7912009-07-16 17:34:36 +00001262 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001263 getAddExpr(WideStart,
1264 getMulExpr(WideMaxBECount,
Dan Gohman850f7912009-07-16 17:34:36 +00001265 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001266 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001267 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1268 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001269 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001270 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001271 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001272 L, AR->getNoWrapFlags());
1273 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001274 }
1275
1276 // If the backedge is guarded by a comparison with the pre-inc value
1277 // the addrec is safe. Also, if the entry is guarded by a comparison
1278 // with the start value and the backedge is guarded by a comparison
1279 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001280 ICmpInst::Predicate Pred;
1281 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1282 if (OverflowLimit &&
1283 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1284 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1285 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1286 OverflowLimit)))) {
1287 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1288 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1289 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1290 getSignExtendExpr(Step, Ty),
1291 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001292 }
1293 }
1294 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001295
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001296 // The cast wasn't folded; create an explicit cast node.
1297 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001298 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001299 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1300 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001301 UniqueSCEVs.InsertNode(S, IP);
1302 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001303}
1304
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001305/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1306/// unspecified bits out to the given type.
1307///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001308const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001309 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001310 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1311 "This is not an extending conversion!");
1312 assert(isSCEVable(Ty) &&
1313 "This is not a conversion to a SCEVable type!");
1314 Ty = getEffectiveSCEVType(Ty);
1315
1316 // Sign-extend negative constants.
1317 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1318 if (SC->getValue()->getValue().isNegative())
1319 return getSignExtendExpr(Op, Ty);
1320
1321 // Peel off a truncate cast.
1322 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001323 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001324 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1325 return getAnyExtendExpr(NewOp, Ty);
1326 return getTruncateOrNoop(NewOp, Ty);
1327 }
1328
1329 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001330 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001331 if (!isa<SCEVZeroExtendExpr>(ZExt))
1332 return ZExt;
1333
1334 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001335 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001336 if (!isa<SCEVSignExtendExpr>(SExt))
1337 return SExt;
1338
Dan Gohmana10756e2010-01-21 02:09:26 +00001339 // Force the cast to be folded into the operands of an addrec.
1340 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1341 SmallVector<const SCEV *, 4> Ops;
1342 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1343 I != E; ++I)
1344 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001345 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001346 }
1347
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001348 // If the expression is obviously signed, use the sext cast value.
1349 if (isa<SCEVSMaxExpr>(Op))
1350 return SExt;
1351
1352 // Absent any other information, use the zext cast value.
1353 return ZExt;
1354}
1355
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001356/// CollectAddOperandsWithScales - Process the given Ops list, which is
1357/// a list of operands to be added under the given scale, update the given
1358/// map. This is a helper function for getAddRecExpr. As an example of
1359/// what it does, given a sequence of operands that would form an add
1360/// expression like this:
1361///
1362/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1363///
1364/// where A and B are constants, update the map with these values:
1365///
1366/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1367///
1368/// and add 13 + A*B*29 to AccumulatedConstant.
1369/// This will allow getAddRecExpr to produce this:
1370///
1371/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1372///
1373/// This form often exposes folding opportunities that are hidden in
1374/// the original operand list.
1375///
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001376/// Return true iff it appears that any interesting folding opportunities
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001377/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1378/// the common case where no interesting opportunities are present, and
1379/// is also used as a check to avoid infinite recursion.
1380///
1381static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001382CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1383 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001384 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001385 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001386 const APInt &Scale,
1387 ScalarEvolution &SE) {
1388 bool Interesting = false;
1389
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001390 // Iterate over the add operands. They are sorted, with constants first.
1391 unsigned i = 0;
1392 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1393 ++i;
1394 // Pull a buried constant out to the outside.
1395 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1396 Interesting = true;
1397 AccumulatedConstant += Scale * C->getValue()->getValue();
1398 }
1399
1400 // Next comes everything else. We're especially interested in multiplies
1401 // here, but they're in the middle, so just visit the rest with one loop.
1402 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001403 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1404 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1405 APInt NewScale =
1406 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1407 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1408 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001409 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001410 Interesting |=
1411 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001412 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001413 NewScale, SE);
1414 } else {
1415 // A multiplication of a constant with some other value. Update
1416 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001417 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1418 const SCEV *Key = SE.getMulExpr(MulOps);
1419 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001420 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001421 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001422 NewOps.push_back(Pair.first->first);
1423 } else {
1424 Pair.first->second += NewScale;
1425 // The map already had an entry for this value, which may indicate
1426 // a folding opportunity.
1427 Interesting = true;
1428 }
1429 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001430 } else {
1431 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001432 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001433 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001434 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001435 NewOps.push_back(Pair.first->first);
1436 } else {
1437 Pair.first->second += Scale;
1438 // The map already had an entry for this value, which may indicate
1439 // a folding opportunity.
1440 Interesting = true;
1441 }
1442 }
1443 }
1444
1445 return Interesting;
1446}
1447
1448namespace {
1449 struct APIntCompare {
1450 bool operator()(const APInt &LHS, const APInt &RHS) const {
1451 return LHS.ult(RHS);
1452 }
1453 };
1454}
1455
Dan Gohman6c0866c2009-05-24 23:45:28 +00001456/// getAddExpr - Get a canonical add expression, or something simpler if
1457/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001458const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001459 SCEV::NoWrapFlags Flags) {
1460 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1461 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001463 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001464#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001465 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001466 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001467 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001468 "SCEVAddExpr operand types don't match!");
1469#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001470
Andrew Trick3228cc22011-03-14 16:50:06 +00001471 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001472 // And vice-versa.
1473 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1474 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1475 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001476 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001477 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1478 E = Ops.end(); I != E; ++I)
1479 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001480 All = false;
1481 break;
1482 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001483 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001484 }
1485
Chris Lattner53e677a2004-04-02 20:23:17 +00001486 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001487 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001488
1489 // If there are any constants, fold them together.
1490 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001491 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001492 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001493 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001494 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001495 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001496 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1497 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001498 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001499 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001500 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 }
1502
1503 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001504 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 Ops.erase(Ops.begin());
1506 --Idx;
1507 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001508
Dan Gohmanbca091d2010-04-12 23:08:18 +00001509 if (Ops.size() == 1) return Ops[0];
1510 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001511
Dan Gohman68ff7762010-08-27 21:39:59 +00001512 // Okay, check to see if the same value occurs in the operand list more than
1513 // once. If so, merge them together into an multiply expression. Since we
1514 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001515 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001516 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001517 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001518 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001519 // Scan ahead to count how many equal operands there are.
1520 unsigned Count = 2;
1521 while (i+Count != e && Ops[i+Count] == Ops[i])
1522 ++Count;
1523 // Merge the values into a multiply.
1524 const SCEV *Scale = getConstant(Ty, Count);
1525 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1526 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001527 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001528 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001529 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001530 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001531 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001532 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001533 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001534 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001535
Dan Gohman728c7f32009-05-08 21:03:19 +00001536 // Check for truncates. If all the operands are truncated from the same
1537 // type, see if factoring out the truncate would permit the result to be
1538 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1539 // if the contents of the resulting outer trunc fold to something simple.
1540 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1541 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001542 Type *DstType = Trunc->getType();
1543 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001544 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001545 bool Ok = true;
1546 // Check all the operands to see if they can be represented in the
1547 // source type of the truncate.
1548 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1549 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1550 if (T->getOperand()->getType() != SrcType) {
1551 Ok = false;
1552 break;
1553 }
1554 LargeOps.push_back(T->getOperand());
1555 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001556 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001557 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001558 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001559 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1560 if (const SCEVTruncateExpr *T =
1561 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1562 if (T->getOperand()->getType() != SrcType) {
1563 Ok = false;
1564 break;
1565 }
1566 LargeMulOps.push_back(T->getOperand());
1567 } else if (const SCEVConstant *C =
1568 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001569 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001570 } else {
1571 Ok = false;
1572 break;
1573 }
1574 }
1575 if (Ok)
1576 LargeOps.push_back(getMulExpr(LargeMulOps));
1577 } else {
1578 Ok = false;
1579 break;
1580 }
1581 }
1582 if (Ok) {
1583 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001584 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001585 // If it folds to something simple, use it. Otherwise, don't.
1586 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1587 return getTruncateExpr(Fold, DstType);
1588 }
1589 }
1590
1591 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001592 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1593 ++Idx;
1594
1595 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001596 if (Idx < Ops.size()) {
1597 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001598 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001599 // If we have an add, expand the add operands onto the end of the operands
1600 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001601 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001602 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001603 DeletedAdd = true;
1604 }
1605
1606 // If we deleted at least one add, we added operands to the end of the list,
1607 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001608 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001609 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001610 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001611 }
1612
1613 // Skip over the add expression until we get to a multiply.
1614 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1615 ++Idx;
1616
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001617 // Check to see if there are any folding opportunities present with
1618 // operands multiplied by constant values.
1619 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1620 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001621 DenseMap<const SCEV *, APInt> M;
1622 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001623 APInt AccumulatedConstant(BitWidth, 0);
1624 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001625 Ops.data(), Ops.size(),
1626 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001627 // Some interesting folding opportunity is present, so its worthwhile to
1628 // re-generate the operands list. Group the operands by constant scale,
1629 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001630 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001631 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001632 E = NewOps.end(); I != E; ++I)
1633 MulOpLists[M.find(*I)->second].push_back(*I);
1634 // Re-generate the operands list.
1635 Ops.clear();
1636 if (AccumulatedConstant != 0)
1637 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001638 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1639 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001640 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001641 Ops.push_back(getMulExpr(getConstant(I->first),
1642 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001643 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001644 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001645 if (Ops.size() == 1)
1646 return Ops[0];
1647 return getAddExpr(Ops);
1648 }
1649 }
1650
Chris Lattner53e677a2004-04-02 20:23:17 +00001651 // If we are adding something to a multiply expression, make sure the
1652 // something is not already an operand of the multiply. If so, merge it into
1653 // the multiply.
1654 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001655 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001656 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001657 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001658 if (isa<SCEVConstant>(MulOpSCEV))
1659 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001660 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001661 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001662 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001663 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001664 if (Mul->getNumOperands() != 2) {
1665 // If the multiply has more than two operands, we must get the
1666 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001667 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1668 Mul->op_begin()+MulOp);
1669 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001670 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001671 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001672 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001673 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001674 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 if (Ops.size() == 2) return OuterMul;
1676 if (AddOp < Idx) {
1677 Ops.erase(Ops.begin()+AddOp);
1678 Ops.erase(Ops.begin()+Idx-1);
1679 } else {
1680 Ops.erase(Ops.begin()+Idx);
1681 Ops.erase(Ops.begin()+AddOp-1);
1682 }
1683 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001684 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001685 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001686
Chris Lattner53e677a2004-04-02 20:23:17 +00001687 // Check this multiply against other multiplies being added together.
1688 for (unsigned OtherMulIdx = Idx+1;
1689 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1690 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001691 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001692 // If MulOp occurs in OtherMul, we can fold the two multiplies
1693 // together.
1694 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1695 OMulOp != e; ++OMulOp)
1696 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1697 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001698 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001699 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001700 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001701 Mul->op_begin()+MulOp);
1702 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001703 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001704 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001705 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001706 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001707 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001708 OtherMul->op_begin()+OMulOp);
1709 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001710 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001711 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001712 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1713 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001714 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001715 Ops.erase(Ops.begin()+Idx);
1716 Ops.erase(Ops.begin()+OtherMulIdx-1);
1717 Ops.push_back(OuterMul);
1718 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001719 }
1720 }
1721 }
1722 }
1723
1724 // If there are any add recurrences in the operands list, see if any other
1725 // added values are loop invariant. If so, we can fold them into the
1726 // recurrence.
1727 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1728 ++Idx;
1729
1730 // Scan over all recurrences, trying to fold loop invariants into them.
1731 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1732 // Scan all of the other operands to this add and add them to the vector if
1733 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001734 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001735 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001736 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001737 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001738 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 LIOps.push_back(Ops[i]);
1740 Ops.erase(Ops.begin()+i);
1741 --i; --e;
1742 }
1743
1744 // If we found some loop invariants, fold them into the recurrence.
1745 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001746 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001747 LIOps.push_back(AddRec->getStart());
1748
Dan Gohman0bba49c2009-07-07 17:06:11 +00001749 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001750 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001751 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001752
Dan Gohmanb9f96512010-06-30 07:16:37 +00001753 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001754 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001755 // Always propagate NW.
1756 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001757 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001758
Chris Lattner53e677a2004-04-02 20:23:17 +00001759 // If all of the other operands were loop invariant, we are done.
1760 if (Ops.size() == 1) return NewRec;
1761
Nick Lewycky980e9f32011-09-06 05:08:09 +00001762 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001763 for (unsigned i = 0;; ++i)
1764 if (Ops[i] == AddRec) {
1765 Ops[i] = NewRec;
1766 break;
1767 }
Dan Gohman246b2562007-10-22 18:31:58 +00001768 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001769 }
1770
1771 // Okay, if there weren't any loop invariants to be folded, check to see if
1772 // there are multiple AddRec's with the same loop induction variable being
1773 // added together. If so, we can fold them.
1774 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001775 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1776 ++OtherIdx)
1777 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1778 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1779 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1780 AddRec->op_end());
1781 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1782 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001783 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001784 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001785 if (OtherAddRec->getLoop() == AddRecLoop) {
1786 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1787 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001788 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001789 AddRecOps.append(OtherAddRec->op_begin()+i,
1790 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001791 break;
1792 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001793 AddRecOps[i] = getAddExpr(AddRecOps[i],
1794 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001795 }
1796 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001797 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001798 // Step size has changed, so we cannot guarantee no self-wraparound.
1799 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001800 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001801 }
1802
1803 // Otherwise couldn't fold anything into this recurrence. Move onto the
1804 // next one.
1805 }
1806
1807 // Okay, it looks like we really DO need an add expr. Check to see if we
1808 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001809 FoldingSetNodeID ID;
1810 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001811 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1812 ID.AddPointer(Ops[i]);
1813 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001814 SCEVAddExpr *S =
1815 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1816 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001817 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1818 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001819 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1820 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001821 UniqueSCEVs.InsertNode(S, IP);
1822 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001823 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001824 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001825}
1826
Nick Lewyckye97728e2011-10-04 06:51:26 +00001827static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1828 uint64_t k = i*j;
1829 if (j > 1 && k / j != i) Overflow = true;
1830 return k;
1831}
1832
1833/// Compute the result of "n choose k", the binomial coefficient. If an
1834/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001835/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewyckye97728e2011-10-04 06:51:26 +00001836static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1837 // We use the multiplicative formula:
1838 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1839 // At each iteration, we take the n-th term of the numeral and divide by the
1840 // (k-n)th term of the denominator. This division will always produce an
1841 // integral result, and helps reduce the chance of overflow in the
1842 // intermediate computations. However, we can still overflow even when the
1843 // final result would fit.
1844
1845 if (n == 0 || n == k) return 1;
1846 if (k > n) return 0;
1847
1848 if (k > n/2)
1849 k = n-k;
1850
1851 uint64_t r = 1;
1852 for (uint64_t i = 1; i <= k; ++i) {
1853 r = umul_ov(r, n-(i-1), Overflow);
1854 r /= i;
1855 }
1856 return r;
1857}
1858
Dan Gohman6c0866c2009-05-24 23:45:28 +00001859/// getMulExpr - Get a canonical multiply expression, or something simpler if
1860/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001861const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001862 SCEV::NoWrapFlags Flags) {
1863 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1864 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001865 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001866 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001867#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001868 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001869 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001870 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001871 "SCEVMulExpr operand types don't match!");
1872#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001873
Andrew Trick3228cc22011-03-14 16:50:06 +00001874 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001875 // And vice-versa.
1876 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1877 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1878 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001879 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001880 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1881 E = Ops.end(); I != E; ++I)
1882 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001883 All = false;
1884 break;
1885 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001886 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001887 }
1888
Chris Lattner53e677a2004-04-02 20:23:17 +00001889 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001890 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001891
1892 // If there are any constants, fold them together.
1893 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001894 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001895
1896 // C1*(C2+V) -> C1*C2 + C1*V
1897 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001898 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001899 if (Add->getNumOperands() == 2 &&
1900 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001901 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1902 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001903
Chris Lattner53e677a2004-04-02 20:23:17 +00001904 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001905 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001906 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001907 ConstantInt *Fold = ConstantInt::get(getContext(),
1908 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001909 RHSC->getValue()->getValue());
1910 Ops[0] = getConstant(Fold);
1911 Ops.erase(Ops.begin()+1); // Erase the folded element
1912 if (Ops.size() == 1) return Ops[0];
1913 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001914 }
1915
1916 // If we are left with a constant one being multiplied, strip it off.
1917 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1918 Ops.erase(Ops.begin());
1919 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001920 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001921 // If we have a multiply of zero, it will always be zero.
1922 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001923 } else if (Ops[0]->isAllOnesValue()) {
1924 // If we have a mul by -1 of an add, try distributing the -1 among the
1925 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001926 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001927 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1928 SmallVector<const SCEV *, 4> NewOps;
1929 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001930 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1931 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001932 const SCEV *Mul = getMulExpr(Ops[0], *I);
1933 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1934 NewOps.push_back(Mul);
1935 }
1936 if (AnyFolded)
1937 return getAddExpr(NewOps);
1938 }
Andrew Tricka053b212011-03-14 17:38:54 +00001939 else if (const SCEVAddRecExpr *
1940 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1941 // Negation preserves a recurrence's no self-wrap property.
1942 SmallVector<const SCEV *, 4> Operands;
1943 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1944 E = AddRec->op_end(); I != E; ++I) {
1945 Operands.push_back(getMulExpr(Ops[0], *I));
1946 }
1947 return getAddRecExpr(Operands, AddRec->getLoop(),
1948 AddRec->getNoWrapFlags(SCEV::FlagNW));
1949 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001950 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001951 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001952
1953 if (Ops.size() == 1)
1954 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001955 }
1956
1957 // Skip over the add expression until we get to a multiply.
1958 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1959 ++Idx;
1960
Chris Lattner53e677a2004-04-02 20:23:17 +00001961 // If there are mul operands inline them all into this expression.
1962 if (Idx < Ops.size()) {
1963 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001964 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001965 // If we have an mul, expand the mul operands onto the end of the operands
1966 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001967 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001968 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001969 DeletedMul = true;
1970 }
1971
1972 // If we deleted at least one mul, we added operands to the end of the list,
1973 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001974 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001975 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001976 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001977 }
1978
1979 // If there are any add recurrences in the operands list, see if any other
1980 // added values are loop invariant. If so, we can fold them into the
1981 // recurrence.
1982 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1983 ++Idx;
1984
1985 // Scan over all recurrences, trying to fold loop invariants into them.
1986 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1987 // Scan all of the other operands to this mul and add them to the vector if
1988 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001989 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001990 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001991 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001992 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001993 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001994 LIOps.push_back(Ops[i]);
1995 Ops.erase(Ops.begin()+i);
1996 --i; --e;
1997 }
1998
1999 // If we found some loop invariants, fold them into the recurrence.
2000 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00002001 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00002002 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00002003 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002004 const SCEV *Scale = getMulExpr(LIOps);
2005 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2006 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002007
Dan Gohmanb9f96512010-06-30 07:16:37 +00002008 // Build the new addrec. Propagate the NUW and NSW flags if both the
2009 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002010 //
2011 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002012 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002013 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2014 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002015
2016 // If all of the other operands were loop invariant, we are done.
2017 if (Ops.size() == 1) return NewRec;
2018
Nick Lewycky980e9f32011-09-06 05:08:09 +00002019 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002020 for (unsigned i = 0;; ++i)
2021 if (Ops[i] == AddRec) {
2022 Ops[i] = NewRec;
2023 break;
2024 }
Dan Gohman246b2562007-10-22 18:31:58 +00002025 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002026 }
2027
2028 // Okay, if there weren't any loop invariants to be folded, check to see if
2029 // there are multiple AddRec's with the same loop induction variable being
2030 // multiplied together. If so, we can fold them.
2031 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002032 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002033 ++OtherIdx) {
Andrew Trick97178ae2012-05-30 03:35:17 +00002034 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2035 continue;
2036
2037 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2038 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2039 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2040 // ]]],+,...up to x=2n}.
2041 // Note that the arguments to choose() are always integers with values
2042 // known at compile time, never SCEV objects.
2043 //
2044 // The implementation avoids pointless extra computations when the two
2045 // addrec's are of different length (mathematically, it's equivalent to
2046 // an infinite stream of zeros on the right).
2047 bool OpsModified = false;
2048 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2049 ++OtherIdx) {
2050 const SCEVAddRecExpr *OtherAddRec =
2051 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2052 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2053 continue;
2054
2055 bool Overflow = false;
2056 Type *Ty = AddRec->getType();
2057 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2058 SmallVector<const SCEV*, 7> AddRecOps;
2059 for (int x = 0, xe = AddRec->getNumOperands() +
2060 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2061 const SCEV *Term = getConstant(Ty, 0);
2062 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2063 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2064 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2065 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2066 z < ze && !Overflow; ++z) {
2067 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2068 uint64_t Coeff;
2069 if (LargerThan64Bits)
2070 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2071 else
2072 Coeff = Coeff1*Coeff2;
2073 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2074 const SCEV *Term1 = AddRec->getOperand(y-z);
2075 const SCEV *Term2 = OtherAddRec->getOperand(z);
2076 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohman6a0c1252010-08-31 22:52:12 +00002077 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002078 }
2079 AddRecOps.push_back(Term);
2080 }
2081 if (!Overflow) {
2082 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2083 SCEV::FlagAnyWrap);
2084 if (Ops.size() == 2) return NewAddRec;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002085 Ops[Idx] = NewAddRec;
Andrew Trick97178ae2012-05-30 03:35:17 +00002086 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2087 OpsModified = true;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002088 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2089 if (!AddRec)
2090 break;
Andrew Trick97178ae2012-05-30 03:35:17 +00002091 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002092 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002093 if (OpsModified)
2094 return getMulExpr(Ops);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002095 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002096
2097 // Otherwise couldn't fold anything into this recurrence. Move onto the
2098 // next one.
2099 }
2100
2101 // Okay, it looks like we really DO need an mul expr. Check to see if we
2102 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002103 FoldingSetNodeID ID;
2104 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002105 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2106 ID.AddPointer(Ops[i]);
2107 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002108 SCEVMulExpr *S =
2109 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2110 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002111 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2112 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002113 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2114 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002115 UniqueSCEVs.InsertNode(S, IP);
2116 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002117 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002118 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002119}
2120
Andreas Bolka8a11c982009-08-07 22:55:26 +00002121/// getUDivExpr - Get a canonical unsigned division expression, or something
2122/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002123const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2124 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002125 assert(getEffectiveSCEVType(LHS->getType()) ==
2126 getEffectiveSCEVType(RHS->getType()) &&
2127 "SCEVUDivExpr operand types don't match!");
2128
Dan Gohman622ed672009-05-04 22:02:23 +00002129 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002130 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002131 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002132 // If the denominator is zero, the result of the udiv is undefined. Don't
2133 // try to analyze it, because the resolution chosen here may differ from
2134 // the resolution chosen in other parts of the compiler.
2135 if (!RHSC->getValue()->isZero()) {
2136 // Determine if the division can be folded into the operands of
2137 // its operands.
2138 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002139 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002140 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002141 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002142 // For non-power-of-two values, effectively round the value up to the
2143 // nearest power of two.
2144 if (!RHSC->getValue()->getValue().isPowerOf2())
2145 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002146 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002147 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002148 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2149 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002150 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2151 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2152 const APInt &StepInt = Step->getValue()->getValue();
2153 const APInt &DivInt = RHSC->getValue()->getValue();
2154 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002155 getZeroExtendExpr(AR, ExtTy) ==
2156 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2157 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002158 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002159 SmallVector<const SCEV *, 4> Operands;
2160 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2161 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002162 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002163 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002164 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002165 /// Get a canonical UDivExpr for a recurrence.
2166 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2167 // We can currently only fold X%N if X is constant.
2168 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2169 if (StartC && !DivInt.urem(StepInt) &&
2170 getZeroExtendExpr(AR, ExtTy) ==
2171 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2172 getZeroExtendExpr(Step, ExtTy),
2173 AR->getLoop(), SCEV::FlagAnyWrap)) {
2174 const APInt &StartInt = StartC->getValue()->getValue();
2175 const APInt &StartRem = StartInt.urem(StepInt);
2176 if (StartRem != 0)
2177 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2178 AR->getLoop(), SCEV::FlagNW);
2179 }
2180 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002181 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2182 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2183 SmallVector<const SCEV *, 4> Operands;
2184 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2185 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2186 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2187 // Find an operand that's safely divisible.
2188 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2189 const SCEV *Op = M->getOperand(i);
2190 const SCEV *Div = getUDivExpr(Op, RHSC);
2191 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2192 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2193 M->op_end());
2194 Operands[i] = Div;
2195 return getMulExpr(Operands);
2196 }
2197 }
Dan Gohman185cf032009-05-08 20:18:49 +00002198 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002199 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002200 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002201 SmallVector<const SCEV *, 4> Operands;
2202 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2203 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2204 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2205 Operands.clear();
2206 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2207 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2208 if (isa<SCEVUDivExpr>(Op) ||
2209 getMulExpr(Op, RHS) != A->getOperand(i))
2210 break;
2211 Operands.push_back(Op);
2212 }
2213 if (Operands.size() == A->getNumOperands())
2214 return getAddExpr(Operands);
2215 }
2216 }
Dan Gohman185cf032009-05-08 20:18:49 +00002217
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002218 // Fold if both operands are constant.
2219 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2220 Constant *LHSCV = LHSC->getValue();
2221 Constant *RHSCV = RHSC->getValue();
2222 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2223 RHSCV)));
2224 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002225 }
2226 }
2227
Dan Gohman1c343752009-06-27 21:21:31 +00002228 FoldingSetNodeID ID;
2229 ID.AddInteger(scUDivExpr);
2230 ID.AddPointer(LHS);
2231 ID.AddPointer(RHS);
2232 void *IP = 0;
2233 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002234 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2235 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002236 UniqueSCEVs.InsertNode(S, IP);
2237 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002238}
2239
2240
Dan Gohman6c0866c2009-05-24 23:45:28 +00002241/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2242/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002243const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2244 const Loop *L,
2245 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002246 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002247 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002248 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002249 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002250 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002251 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002252 }
2253
2254 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002255 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002256}
2257
Dan Gohman6c0866c2009-05-24 23:45:28 +00002258/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2259/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002260const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002261ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002262 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002263 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002264#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002265 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002266 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002267 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002268 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002269 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002270 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002271 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002272#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002273
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002274 if (Operands.back()->isZero()) {
2275 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002276 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002277 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002278
Dan Gohmanbc028532010-02-19 18:49:22 +00002279 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2280 // use that information to infer NUW and NSW flags. However, computing a
2281 // BE count requires calling getAddRecExpr, so we may not yet have a
2282 // meaningful BE count at this point (and if we don't, we'd be stuck
2283 // with a SCEVCouldNotCompute as the cached BE count).
2284
Andrew Trick3228cc22011-03-14 16:50:06 +00002285 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002286 // And vice-versa.
2287 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2288 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2289 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002290 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002291 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2292 E = Operands.end(); I != E; ++I)
2293 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002294 All = false;
2295 break;
2296 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002297 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002298 }
2299
Dan Gohmand9cc7492008-08-08 18:33:12 +00002300 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002301 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002302 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002303 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002304 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002305 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002306 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002307 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002308 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002309 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002310 // AddRecs require their operands be loop-invariant with respect to their
2311 // loops. Don't perform this transformation if it would break this
2312 // requirement.
2313 bool AllInvariant = true;
2314 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002315 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002316 AllInvariant = false;
2317 break;
2318 }
2319 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002320 // Create a recurrence for the outer loop with the same step size.
2321 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002322 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2323 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002324 SCEV::NoWrapFlags OuterFlags =
2325 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002326
2327 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002328 AllInvariant = true;
2329 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002330 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002331 AllInvariant = false;
2332 break;
2333 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002334 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002335 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002336 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002337 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2338 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002339 SCEV::NoWrapFlags InnerFlags =
2340 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002341 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2342 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002343 }
2344 // Reset Operands to its original state.
2345 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002346 }
2347 }
2348
Dan Gohman67847532010-01-19 22:27:22 +00002349 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2350 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002351 FoldingSetNodeID ID;
2352 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002353 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2354 ID.AddPointer(Operands[i]);
2355 ID.AddPointer(L);
2356 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002357 SCEVAddRecExpr *S =
2358 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2359 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002360 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2361 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002362 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2363 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002364 UniqueSCEVs.InsertNode(S, IP);
2365 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002366 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002367 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002368}
2369
Dan Gohman9311ef62009-06-24 14:49:00 +00002370const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2371 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002372 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002373 Ops.push_back(LHS);
2374 Ops.push_back(RHS);
2375 return getSMaxExpr(Ops);
2376}
2377
Dan Gohman0bba49c2009-07-07 17:06:11 +00002378const SCEV *
2379ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002380 assert(!Ops.empty() && "Cannot get empty smax!");
2381 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002382#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002383 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002384 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002385 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002386 "SCEVSMaxExpr operand types don't match!");
2387#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002388
2389 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002390 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002391
2392 // If there are any constants, fold them together.
2393 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002394 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002395 ++Idx;
2396 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002397 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002398 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002399 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002400 APIntOps::smax(LHSC->getValue()->getValue(),
2401 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002402 Ops[0] = getConstant(Fold);
2403 Ops.erase(Ops.begin()+1); // Erase the folded element
2404 if (Ops.size() == 1) return Ops[0];
2405 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002406 }
2407
Dan Gohmane5aceed2009-06-24 14:46:22 +00002408 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002409 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2410 Ops.erase(Ops.begin());
2411 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002412 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2413 // If we have an smax with a constant maximum-int, it will always be
2414 // maximum-int.
2415 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002416 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002417
Dan Gohman3ab13122010-04-13 16:49:23 +00002418 if (Ops.size() == 1) return Ops[0];
2419 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002420
2421 // Find the first SMax
2422 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2423 ++Idx;
2424
2425 // Check to see if one of the operands is an SMax. If so, expand its operands
2426 // onto our operand list, and recurse to simplify.
2427 if (Idx < Ops.size()) {
2428 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002429 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002430 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002431 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002432 DeletedSMax = true;
2433 }
2434
2435 if (DeletedSMax)
2436 return getSMaxExpr(Ops);
2437 }
2438
2439 // Okay, check to see if the same value occurs in the operand list twice. If
2440 // so, delete one. Since we sorted the list, these values are required to
2441 // be adjacent.
2442 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002443 // X smax Y smax Y --> X smax Y
2444 // X smax Y --> X, if X is always greater than Y
2445 if (Ops[i] == Ops[i+1] ||
2446 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2447 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2448 --i; --e;
2449 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002450 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2451 --i; --e;
2452 }
2453
2454 if (Ops.size() == 1) return Ops[0];
2455
2456 assert(!Ops.empty() && "Reduced smax down to nothing!");
2457
Nick Lewycky3e630762008-02-20 06:48:22 +00002458 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002459 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002460 FoldingSetNodeID ID;
2461 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002462 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2463 ID.AddPointer(Ops[i]);
2464 void *IP = 0;
2465 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002466 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2467 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002468 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2469 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002470 UniqueSCEVs.InsertNode(S, IP);
2471 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002472}
2473
Dan Gohman9311ef62009-06-24 14:49:00 +00002474const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2475 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002476 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002477 Ops.push_back(LHS);
2478 Ops.push_back(RHS);
2479 return getUMaxExpr(Ops);
2480}
2481
Dan Gohman0bba49c2009-07-07 17:06:11 +00002482const SCEV *
2483ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002484 assert(!Ops.empty() && "Cannot get empty umax!");
2485 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002486#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002487 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002488 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002489 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002490 "SCEVUMaxExpr operand types don't match!");
2491#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002492
2493 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002494 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002495
2496 // If there are any constants, fold them together.
2497 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002498 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002499 ++Idx;
2500 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002501 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002502 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002503 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002504 APIntOps::umax(LHSC->getValue()->getValue(),
2505 RHSC->getValue()->getValue()));
2506 Ops[0] = getConstant(Fold);
2507 Ops.erase(Ops.begin()+1); // Erase the folded element
2508 if (Ops.size() == 1) return Ops[0];
2509 LHSC = cast<SCEVConstant>(Ops[0]);
2510 }
2511
Dan Gohmane5aceed2009-06-24 14:46:22 +00002512 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002513 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2514 Ops.erase(Ops.begin());
2515 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002516 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2517 // If we have an umax with a constant maximum-int, it will always be
2518 // maximum-int.
2519 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002520 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002521
Dan Gohman3ab13122010-04-13 16:49:23 +00002522 if (Ops.size() == 1) return Ops[0];
2523 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002524
2525 // Find the first UMax
2526 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2527 ++Idx;
2528
2529 // Check to see if one of the operands is a UMax. If so, expand its operands
2530 // onto our operand list, and recurse to simplify.
2531 if (Idx < Ops.size()) {
2532 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002533 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002534 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002535 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002536 DeletedUMax = true;
2537 }
2538
2539 if (DeletedUMax)
2540 return getUMaxExpr(Ops);
2541 }
2542
2543 // Okay, check to see if the same value occurs in the operand list twice. If
2544 // so, delete one. Since we sorted the list, these values are required to
2545 // be adjacent.
2546 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002547 // X umax Y umax Y --> X umax Y
2548 // X umax Y --> X, if X is always greater than Y
2549 if (Ops[i] == Ops[i+1] ||
2550 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2551 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2552 --i; --e;
2553 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002554 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2555 --i; --e;
2556 }
2557
2558 if (Ops.size() == 1) return Ops[0];
2559
2560 assert(!Ops.empty() && "Reduced umax down to nothing!");
2561
2562 // Okay, it looks like we really DO need a umax expr. Check to see if we
2563 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002564 FoldingSetNodeID ID;
2565 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002566 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2567 ID.AddPointer(Ops[i]);
2568 void *IP = 0;
2569 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002570 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2571 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002572 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2573 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002574 UniqueSCEVs.InsertNode(S, IP);
2575 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002576}
2577
Dan Gohman9311ef62009-06-24 14:49:00 +00002578const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2579 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002580 // ~smax(~x, ~y) == smin(x, y).
2581 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2582}
2583
Dan Gohman9311ef62009-06-24 14:49:00 +00002584const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2585 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002586 // ~umax(~x, ~y) == umin(x, y)
2587 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2588}
2589
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002590const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002591 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002592 // constant expression and then folding it back into a ConstantInt.
2593 // This is just a compile-time optimization.
2594 if (TD)
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002595 return getConstant(TD->getIntPtrType(getContext()),
2596 TD->getTypeAllocSize(AllocTy));
Dan Gohman6ab10f62010-04-12 23:03:26 +00002597
Dan Gohman4f8eea82010-02-01 18:27:38 +00002598 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2599 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002600 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002601 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002602 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002603 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2604}
2605
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002606const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002607 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2608 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002609 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002610 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002611 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002612 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2613}
2614
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002615const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002616 unsigned FieldNo) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002617 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002618 // constant expression and then folding it back into a ConstantInt.
2619 // This is just a compile-time optimization.
2620 if (TD)
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002621 return getConstant(TD->getIntPtrType(getContext()),
Dan Gohman6ab10f62010-04-12 23:03:26 +00002622 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2623
Dan Gohman0f5efe52010-01-28 02:15:55 +00002624 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2625 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002626 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002627 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002628 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002629 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002630}
2631
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002632const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002633 Constant *FieldNo) {
2634 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002635 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002636 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002637 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002638 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002639 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002640}
2641
Dan Gohman0bba49c2009-07-07 17:06:11 +00002642const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002643 // Don't attempt to do anything other than create a SCEVUnknown object
2644 // here. createSCEV only calls getUnknown after checking for all other
2645 // interesting possibilities, and any other code that calls getUnknown
2646 // is doing so in order to hide a value from SCEV canonicalization.
2647
Dan Gohman1c343752009-06-27 21:21:31 +00002648 FoldingSetNodeID ID;
2649 ID.AddInteger(scUnknown);
2650 ID.AddPointer(V);
2651 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002652 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2653 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2654 "Stale SCEVUnknown in uniquing map!");
2655 return S;
2656 }
2657 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2658 FirstUnknown);
2659 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002660 UniqueSCEVs.InsertNode(S, IP);
2661 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002662}
2663
Chris Lattner53e677a2004-04-02 20:23:17 +00002664//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002665// Basic SCEV Analysis and PHI Idiom Recognition Code
2666//
2667
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002668/// isSCEVable - Test if values of the given type are analyzable within
2669/// the SCEV framework. This primarily includes integer types, and it
2670/// can optionally include pointer types if the ScalarEvolution class
2671/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002672bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002673 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002674 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002675}
2676
2677/// getTypeSizeInBits - Return the size in bits of the specified type,
2678/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002679uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002680 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2681
Micah Villmow3574eca2012-10-08 16:38:25 +00002682 // If we have a DataLayout, use it!
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002683 if (TD)
2684 return TD->getTypeSizeInBits(Ty);
2685
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002686 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002687 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002688 return Ty->getPrimitiveSizeInBits();
2689
Micah Villmow3574eca2012-10-08 16:38:25 +00002690 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002691 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002692 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002693 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002694}
2695
2696/// getEffectiveSCEVType - Return a type with the same bitwidth as
2697/// the given type and which represents how SCEV will treat the given
2698/// type, for which isSCEVable must return true. For pointer types,
2699/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002700Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002701 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2702
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002703 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002704 return Ty;
2705
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002706 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002707 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002708 if (TD) return TD->getIntPtrType(getContext());
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002709
Micah Villmow3574eca2012-10-08 16:38:25 +00002710 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002711 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002712}
Chris Lattner53e677a2004-04-02 20:23:17 +00002713
Dan Gohman0bba49c2009-07-07 17:06:11 +00002714const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002715 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002716}
2717
Chris Lattner53e677a2004-04-02 20:23:17 +00002718/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2719/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002720const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002721 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002722
Benjamin Kramer992c25a2012-06-30 22:37:15 +00002723 ValueExprMapType::const_iterator I = ValueExprMap.find_as(V);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002724 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002725 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002726
2727 // The process of creating a SCEV for V may have caused other SCEVs
2728 // to have been created, so it's necessary to insert the new entry
2729 // from scratch, rather than trying to remember the insert position
2730 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002731 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002732 return S;
2733}
2734
Dan Gohman2d1be872009-04-16 03:18:22 +00002735/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2736///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002737const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002738 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002739 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002740 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002741
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002742 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002743 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002744 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002745 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002746}
2747
2748/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002749const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002750 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002751 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002752 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002753
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002754 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002755 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002756 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002757 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002758 return getMinusSCEV(AllOnes, V);
2759}
2760
Andrew Trick3228cc22011-03-14 16:50:06 +00002761/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002762const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002763 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002764 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2765
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002766 // Fast path: X - X --> 0.
2767 if (LHS == RHS)
2768 return getConstant(LHS->getType(), 0);
2769
Dan Gohman2d1be872009-04-16 03:18:22 +00002770 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002771 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002772}
2773
2774/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2775/// input value to the specified type. If the type must be extended, it is zero
2776/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002777const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002778ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2779 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002780 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2781 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002782 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002783 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002784 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002785 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002786 return getTruncateExpr(V, Ty);
2787 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002788}
2789
2790/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2791/// input value to the specified type. If the type must be extended, it is sign
2792/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002793const SCEV *
2794ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002795 Type *Ty) {
2796 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002797 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2798 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002799 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002800 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002801 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002802 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002803 return getTruncateExpr(V, Ty);
2804 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002805}
2806
Dan Gohman467c4302009-05-13 03:46:30 +00002807/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2808/// input value to the specified type. If the type must be extended, it is zero
2809/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002810const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002811ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2812 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002813 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2814 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002815 "Cannot noop or zero extend with non-integer arguments!");
2816 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2817 "getNoopOrZeroExtend cannot truncate!");
2818 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2819 return V; // No conversion
2820 return getZeroExtendExpr(V, Ty);
2821}
2822
2823/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2824/// input value to the specified type. If the type must be extended, it is sign
2825/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002826const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002827ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2828 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002829 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2830 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002831 "Cannot noop or sign extend with non-integer arguments!");
2832 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2833 "getNoopOrSignExtend cannot truncate!");
2834 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2835 return V; // No conversion
2836 return getSignExtendExpr(V, Ty);
2837}
2838
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002839/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2840/// the input value to the specified type. If the type must be extended,
2841/// it is extended with unspecified bits. The conversion must not be
2842/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002843const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002844ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2845 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002846 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2847 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002848 "Cannot noop or any extend with non-integer arguments!");
2849 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2850 "getNoopOrAnyExtend cannot truncate!");
2851 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2852 return V; // No conversion
2853 return getAnyExtendExpr(V, Ty);
2854}
2855
Dan Gohman467c4302009-05-13 03:46:30 +00002856/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2857/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002858const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002859ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2860 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002861 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2862 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002863 "Cannot truncate or noop with non-integer arguments!");
2864 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2865 "getTruncateOrNoop cannot extend!");
2866 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2867 return V; // No conversion
2868 return getTruncateExpr(V, Ty);
2869}
2870
Dan Gohmana334aa72009-06-22 00:31:57 +00002871/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2872/// the types using zero-extension, and then perform a umax operation
2873/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002874const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2875 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002876 const SCEV *PromotedLHS = LHS;
2877 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002878
2879 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2880 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2881 else
2882 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2883
2884 return getUMaxExpr(PromotedLHS, PromotedRHS);
2885}
2886
Dan Gohmanc9759e82009-06-22 15:03:27 +00002887/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2888/// the types using zero-extension, and then perform a umin operation
2889/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002890const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2891 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002892 const SCEV *PromotedLHS = LHS;
2893 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002894
2895 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2896 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2897 else
2898 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2899
2900 return getUMinExpr(PromotedLHS, PromotedRHS);
2901}
2902
Andrew Trickb12a7542011-03-17 23:51:11 +00002903/// getPointerBase - Transitively follow the chain of pointer-type operands
2904/// until reaching a SCEV that does not have a single pointer operand. This
2905/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2906/// but corner cases do exist.
2907const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2908 // A pointer operand may evaluate to a nonpointer expression, such as null.
2909 if (!V->getType()->isPointerTy())
2910 return V;
2911
2912 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2913 return getPointerBase(Cast->getOperand());
2914 }
2915 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2916 const SCEV *PtrOp = 0;
2917 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2918 I != E; ++I) {
2919 if ((*I)->getType()->isPointerTy()) {
2920 // Cannot find the base of an expression with multiple pointer operands.
2921 if (PtrOp)
2922 return V;
2923 PtrOp = *I;
2924 }
2925 }
2926 if (!PtrOp)
2927 return V;
2928 return getPointerBase(PtrOp);
2929 }
2930 return V;
2931}
2932
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002933/// PushDefUseChildren - Push users of the given Instruction
2934/// onto the given Worklist.
2935static void
2936PushDefUseChildren(Instruction *I,
2937 SmallVectorImpl<Instruction *> &Worklist) {
2938 // Push the def-use children onto the Worklist stack.
2939 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2940 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002941 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002942}
2943
2944/// ForgetSymbolicValue - This looks up computed SCEV values for all
2945/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002946/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002947/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002948void
Dan Gohman85669632010-02-25 06:57:05 +00002949ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002950 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002951 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002952
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002953 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002954 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002955 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002956 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002957 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002958
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002959 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00002960 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002961 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002962 const SCEV *Old = It->second;
2963
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002964 // Short-circuit the def-use traversal if the symbolic name
2965 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002966 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002967 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002968
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002969 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002970 // structure, it's a PHI that's in the progress of being computed
2971 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2972 // additional loop trip count information isn't going to change anything.
2973 // In the second case, createNodeForPHI will perform the necessary
2974 // updates on its own when it gets to that point. In the third, we do
2975 // want to forget the SCEVUnknown.
2976 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002977 !isa<SCEVUnknown>(Old) ||
2978 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002979 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002980 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002981 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002982 }
2983
2984 PushDefUseChildren(I, Worklist);
2985 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002986}
Chris Lattner53e677a2004-04-02 20:23:17 +00002987
2988/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2989/// a loop header, making it a potential recurrence, or it doesn't.
2990///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002991const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002992 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2993 if (L->getHeader() == PN->getParent()) {
2994 // The loop may have multiple entrances or multiple exits; we can analyze
2995 // this phi as an addrec if it has a unique entry value and a unique
2996 // backedge value.
2997 Value *BEValueV = 0, *StartValueV = 0;
2998 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2999 Value *V = PN->getIncomingValue(i);
3000 if (L->contains(PN->getIncomingBlock(i))) {
3001 if (!BEValueV) {
3002 BEValueV = V;
3003 } else if (BEValueV != V) {
3004 BEValueV = 0;
3005 break;
3006 }
3007 } else if (!StartValueV) {
3008 StartValueV = V;
3009 } else if (StartValueV != V) {
3010 StartValueV = 0;
3011 break;
3012 }
3013 }
3014 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003015 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003016 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramer992c25a2012-06-30 22:37:15 +00003017 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003018 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003019 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003020
3021 // Using this symbolic name for the PHI, analyze the value coming around
3022 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003023 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003024
3025 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3026 // has a special value for the first iteration of the loop.
3027
3028 // If the value coming around the backedge is an add with the symbolic
3029 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003030 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003031 // If there is a single occurrence of the symbolic value, replace it
3032 // with a recurrence.
3033 unsigned FoundIndex = Add->getNumOperands();
3034 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3035 if (Add->getOperand(i) == SymbolicName)
3036 if (FoundIndex == e) {
3037 FoundIndex = i;
3038 break;
3039 }
3040
3041 if (FoundIndex != Add->getNumOperands()) {
3042 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003043 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003044 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3045 if (i != FoundIndex)
3046 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003047 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003048
3049 // This is not a valid addrec if the step amount is varying each
3050 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003051 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003052 (isa<SCEVAddRecExpr>(Accum) &&
3053 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003054 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003055
3056 // If the increment doesn't overflow, then neither the addrec nor
3057 // the post-increment will overflow.
3058 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3059 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003060 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003061 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003062 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003063 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003064 dyn_cast<GEPOperator>(BEValueV)) {
3065 // If the increment is an inbounds GEP, then we know the address
3066 // space cannot be wrapped around. We cannot make any guarantee
3067 // about signed or unsigned overflow because pointers are
3068 // unsigned but we may have a negative index from the base
3069 // pointer.
3070 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003071 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003072 }
3073
Dan Gohman27dead42010-04-12 07:49:36 +00003074 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003075 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003076
Dan Gohmana10756e2010-01-21 02:09:26 +00003077 // Since the no-wrap flags are on the increment, they apply to the
3078 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003079 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003080 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003081 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003082
3083 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003084 // to be symbolic. We now need to go back and purge all of the
3085 // entries for the scalars that use the symbolic expression.
3086 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003087 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003088 return PHISCEV;
3089 }
3090 }
Dan Gohman622ed672009-05-04 22:02:23 +00003091 } else if (const SCEVAddRecExpr *AddRec =
3092 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003093 // Otherwise, this could be a loop like this:
3094 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3095 // In this case, j = {1,+,1} and BEValue is j.
3096 // Because the other in-value of i (0) fits the evolution of BEValue
3097 // i really is an addrec evolution.
3098 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003099 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003100
3101 // If StartVal = j.start - j.stride, we can use StartVal as the
3102 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003103 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003104 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003105 // FIXME: For constant StartVal, we should be able to infer
3106 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003107 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003108 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3109 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003110
3111 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003112 // to be symbolic. We now need to go back and purge all of the
3113 // entries for the scalars that use the symbolic expression.
3114 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003115 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003116 return PHISCEV;
3117 }
3118 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003119 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003120 }
Dan Gohman27dead42010-04-12 07:49:36 +00003121 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003122
Dan Gohman85669632010-02-25 06:57:05 +00003123 // If the PHI has a single incoming value, follow that value, unless the
3124 // PHI's incoming blocks are in a different loop, in which case doing so
3125 // risks breaking LCSSA form. Instcombine would normally zap these, but
3126 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003127 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003128 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003129 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003130
Chris Lattner53e677a2004-04-02 20:23:17 +00003131 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003132 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003133}
3134
Dan Gohman26466c02009-05-08 20:26:55 +00003135/// createNodeForGEP - Expand GEP instructions into add and multiply
3136/// operations. This allows them to be analyzed by regular SCEV code.
3137///
Dan Gohmand281ed22009-12-18 02:09:29 +00003138const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003139
Dan Gohmanb9f96512010-06-30 07:16:37 +00003140 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3141 // Add expression, because the Instruction may be guarded by control flow
3142 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003143 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003144 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003145
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003146 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003147 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003148 // Don't attempt to analyze GEPs over unsized objects.
3149 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3150 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003151 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003152 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003153 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003154 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003155 I != E; ++I) {
3156 Value *Index = *I;
3157 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003158 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003159 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003160 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Chandler Carruthece6c6b2012-11-01 08:07:29 +00003161 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003162
Dan Gohmanb9f96512010-06-30 07:16:37 +00003163 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003164 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003165 } else {
3166 // For an array, add the element offset, explicitly scaled.
Chandler Carruthece6c6b2012-11-01 08:07:29 +00003167 const SCEV *ElementSize = getSizeOfExpr(*GTI);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003168 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003169 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003170 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3171
Dan Gohmanb9f96512010-06-30 07:16:37 +00003172 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003173 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3174 isInBounds ? SCEV::FlagNSW :
3175 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003176
3177 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003178 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003179 }
3180 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003181
3182 // Get the SCEV for the GEP base.
3183 const SCEV *BaseS = getSCEV(Base);
3184
Dan Gohmanb9f96512010-06-30 07:16:37 +00003185 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003186 return getAddExpr(BaseS, TotalOffset,
Benjamin Kramer86df0622012-04-17 06:33:57 +00003187 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003188}
3189
Nick Lewycky83bb0052007-11-22 07:59:40 +00003190/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3191/// guaranteed to end in (at every loop iteration). It is, at the same time,
3192/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3193/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003194uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003195ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003196 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003197 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003198
Dan Gohman622ed672009-05-04 22:02:23 +00003199 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003200 return std::min(GetMinTrailingZeros(T->getOperand()),
3201 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003202
Dan Gohman622ed672009-05-04 22:02:23 +00003203 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003204 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3205 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3206 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003207 }
3208
Dan Gohman622ed672009-05-04 22:02:23 +00003209 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003210 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3211 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3212 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003213 }
3214
Dan Gohman622ed672009-05-04 22:02:23 +00003215 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003216 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003217 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003218 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003219 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003220 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003221 }
3222
Dan Gohman622ed672009-05-04 22:02:23 +00003223 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003224 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003225 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3226 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003227 for (unsigned i = 1, e = M->getNumOperands();
3228 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003229 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003230 BitWidth);
3231 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003232 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003233
Dan Gohman622ed672009-05-04 22:02:23 +00003234 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003235 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003236 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003237 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003238 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003239 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003240 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003241
Dan Gohman622ed672009-05-04 22:02:23 +00003242 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003243 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003244 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003245 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003246 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003247 return MinOpRes;
3248 }
3249
Dan Gohman622ed672009-05-04 22:02:23 +00003250 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003251 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003252 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003253 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003254 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003255 return MinOpRes;
3256 }
3257
Dan Gohman2c364ad2009-06-19 23:29:04 +00003258 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3259 // For a SCEVUnknown, ask ValueTracking.
3260 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003261 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003262 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003263 return Zeros.countTrailingOnes();
3264 }
3265
3266 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003267 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003268}
Chris Lattner53e677a2004-04-02 20:23:17 +00003269
Dan Gohman85b05a22009-07-13 21:35:55 +00003270/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3271///
3272ConstantRange
3273ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003274 // See if we've computed this range already.
3275 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3276 if (I != UnsignedRanges.end())
3277 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003278
3279 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003280 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003281
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003282 unsigned BitWidth = getTypeSizeInBits(S->getType());
3283 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3284
3285 // If the value has known zeros, the maximum unsigned value will have those
3286 // known zeros as well.
3287 uint32_t TZ = GetMinTrailingZeros(S);
3288 if (TZ != 0)
3289 ConservativeResult =
3290 ConstantRange(APInt::getMinValue(BitWidth),
3291 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3292
Dan Gohman85b05a22009-07-13 21:35:55 +00003293 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3294 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3295 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3296 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003297 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003298 }
3299
3300 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3301 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3302 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3303 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003304 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003305 }
3306
3307 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3308 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3309 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3310 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003311 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003312 }
3313
3314 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3315 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3316 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3317 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003318 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003319 }
3320
3321 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3322 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3323 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003324 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003325 }
3326
3327 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3328 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003329 return setUnsignedRange(ZExt,
3330 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003331 }
3332
3333 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3334 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003335 return setUnsignedRange(SExt,
3336 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003337 }
3338
3339 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3340 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003341 return setUnsignedRange(Trunc,
3342 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003343 }
3344
Dan Gohman85b05a22009-07-13 21:35:55 +00003345 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003346 // If there's no unsigned wrap, the value will never be less than its
3347 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003348 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003349 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003350 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003351 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003352 ConservativeResult.intersectWith(
3353 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003354
3355 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003356 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003357 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003358 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003359 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3360 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003361 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3362
3363 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003364 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003365
3366 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003367 ConstantRange StepRange = getSignedRange(Step);
3368 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3369 ConstantRange EndRange =
3370 StartRange.add(MaxBECountRange.multiply(StepRange));
3371
3372 // Check for overflow. This must be done with ConstantRange arithmetic
3373 // because we could be called from within the ScalarEvolution overflow
3374 // checking code.
3375 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3376 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3377 ConstantRange ExtMaxBECountRange =
3378 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3379 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3380 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3381 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003382 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003383
Dan Gohman85b05a22009-07-13 21:35:55 +00003384 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3385 EndRange.getUnsignedMin());
3386 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3387 EndRange.getUnsignedMax());
3388 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003389 return setUnsignedRange(AddRec, ConservativeResult);
3390 return setUnsignedRange(AddRec,
3391 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003392 }
3393 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003394
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003395 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003396 }
3397
3398 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3399 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003400 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003401 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003402 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003403 return setUnsignedRange(U, ConservativeResult);
3404 return setUnsignedRange(U,
3405 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003406 }
3407
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003408 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003409}
3410
Dan Gohman85b05a22009-07-13 21:35:55 +00003411/// getSignedRange - Determine the signed range for a particular SCEV.
3412///
3413ConstantRange
3414ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003415 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003416 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3417 if (I != SignedRanges.end())
3418 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003419
Dan Gohman85b05a22009-07-13 21:35:55 +00003420 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003421 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003422
Dan Gohman52fddd32010-01-26 04:40:18 +00003423 unsigned BitWidth = getTypeSizeInBits(S->getType());
3424 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3425
3426 // If the value has known zeros, the maximum signed value will have those
3427 // known zeros as well.
3428 uint32_t TZ = GetMinTrailingZeros(S);
3429 if (TZ != 0)
3430 ConservativeResult =
3431 ConstantRange(APInt::getSignedMinValue(BitWidth),
3432 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3433
Dan Gohman85b05a22009-07-13 21:35:55 +00003434 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3435 ConstantRange X = getSignedRange(Add->getOperand(0));
3436 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3437 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003438 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003439 }
3440
Dan Gohman85b05a22009-07-13 21:35:55 +00003441 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3442 ConstantRange X = getSignedRange(Mul->getOperand(0));
3443 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3444 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003445 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003446 }
3447
Dan Gohman85b05a22009-07-13 21:35:55 +00003448 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3449 ConstantRange X = getSignedRange(SMax->getOperand(0));
3450 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3451 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003452 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003453 }
Dan Gohman62849c02009-06-24 01:05:09 +00003454
Dan Gohman85b05a22009-07-13 21:35:55 +00003455 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3456 ConstantRange X = getSignedRange(UMax->getOperand(0));
3457 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3458 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003459 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003460 }
Dan Gohman62849c02009-06-24 01:05:09 +00003461
Dan Gohman85b05a22009-07-13 21:35:55 +00003462 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3463 ConstantRange X = getSignedRange(UDiv->getLHS());
3464 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003465 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003466 }
Dan Gohman62849c02009-06-24 01:05:09 +00003467
Dan Gohman85b05a22009-07-13 21:35:55 +00003468 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3469 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003470 return setSignedRange(ZExt,
3471 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003472 }
3473
3474 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3475 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003476 return setSignedRange(SExt,
3477 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003478 }
3479
3480 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3481 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003482 return setSignedRange(Trunc,
3483 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003484 }
3485
Dan Gohman85b05a22009-07-13 21:35:55 +00003486 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003487 // If there's no signed wrap, and all the operands have the same sign or
3488 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003489 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003490 bool AllNonNeg = true;
3491 bool AllNonPos = true;
3492 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3493 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3494 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3495 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003496 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003497 ConservativeResult = ConservativeResult.intersectWith(
3498 ConstantRange(APInt(BitWidth, 0),
3499 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003500 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003501 ConservativeResult = ConservativeResult.intersectWith(
3502 ConstantRange(APInt::getSignedMinValue(BitWidth),
3503 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003504 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003505
3506 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003507 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003508 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003509 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003510 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3511 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003512 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3513
3514 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003515 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003516
3517 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003518 ConstantRange StepRange = getSignedRange(Step);
3519 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3520 ConstantRange EndRange =
3521 StartRange.add(MaxBECountRange.multiply(StepRange));
3522
3523 // Check for overflow. This must be done with ConstantRange arithmetic
3524 // because we could be called from within the ScalarEvolution overflow
3525 // checking code.
3526 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3527 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3528 ConstantRange ExtMaxBECountRange =
3529 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3530 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3531 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3532 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003533 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003534
Dan Gohman85b05a22009-07-13 21:35:55 +00003535 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3536 EndRange.getSignedMin());
3537 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3538 EndRange.getSignedMax());
3539 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003540 return setSignedRange(AddRec, ConservativeResult);
3541 return setSignedRange(AddRec,
3542 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003543 }
Dan Gohman62849c02009-06-24 01:05:09 +00003544 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003545
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003546 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003547 }
3548
Dan Gohman2c364ad2009-06-19 23:29:04 +00003549 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3550 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003551 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003552 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003553 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3554 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003555 return setSignedRange(U, ConservativeResult);
3556 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003557 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003558 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003559 }
3560
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003561 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003562}
3563
Chris Lattner53e677a2004-04-02 20:23:17 +00003564/// createSCEV - We know that there is no SCEV for the specified value.
3565/// Analyze the expression.
3566///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003567const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003568 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003569 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003570
Dan Gohman6c459a22008-06-22 19:56:46 +00003571 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003572 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003573 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003574
3575 // Don't attempt to analyze instructions in blocks that aren't
3576 // reachable. Such instructions don't matter, and they aren't required
3577 // to obey basic rules for definitions dominating uses which this
3578 // analysis depends on.
3579 if (!DT->isReachableFromEntry(I->getParent()))
3580 return getUnknown(V);
3581 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003582 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003583 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3584 return getConstant(CI);
3585 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003586 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003587 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3588 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003589 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003590 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003591
Dan Gohmanca178902009-07-17 20:47:02 +00003592 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003593 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003594 case Instruction::Add: {
3595 // The simple thing to do would be to just call getSCEV on both operands
3596 // and call getAddExpr with the result. However if we're looking at a
3597 // bunch of things all added together, this can be quite inefficient,
3598 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3599 // Instead, gather up all the operands and make a single getAddExpr call.
3600 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003601 //
3602 // Don't apply this instruction's NSW or NUW flags to the new
3603 // expression. The instruction may be guarded by control flow that the
3604 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3605 // mapped to the same SCEV expression, and it would be incorrect to transfer
3606 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003607 SmallVector<const SCEV *, 4> AddOps;
3608 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003609 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3610 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3611 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3612 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003613 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003614 const SCEV *Op1 = getSCEV(U->getOperand(1));
3615 if (Opcode == Instruction::Sub)
3616 AddOps.push_back(getNegativeSCEV(Op1));
3617 else
3618 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003619 }
3620 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003621 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003622 }
3623 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003624 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003625 SmallVector<const SCEV *, 4> MulOps;
3626 MulOps.push_back(getSCEV(U->getOperand(1)));
3627 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003628 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003629 Op = U->getOperand(0)) {
3630 U = cast<Operator>(Op);
3631 MulOps.push_back(getSCEV(U->getOperand(1)));
3632 }
3633 MulOps.push_back(getSCEV(U->getOperand(0)));
3634 return getMulExpr(MulOps);
3635 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003636 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003637 return getUDivExpr(getSCEV(U->getOperand(0)),
3638 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003639 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003640 return getMinusSCEV(getSCEV(U->getOperand(0)),
3641 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003642 case Instruction::And:
3643 // For an expression like x&255 that merely masks off the high bits,
3644 // use zext(trunc(x)) as the SCEV expression.
3645 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003646 if (CI->isNullValue())
3647 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003648 if (CI->isAllOnesValue())
3649 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003650 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003651
3652 // Instcombine's ShrinkDemandedConstant may strip bits out of
3653 // constants, obscuring what would otherwise be a low-bits mask.
3654 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3655 // knew about to reconstruct a low-bits mask value.
3656 unsigned LZ = A.countLeadingZeros();
3657 unsigned BitWidth = A.getBitWidth();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003658 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003659 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003660
3661 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3662
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003663 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003664 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003665 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003666 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003667 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003668 }
3669 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003670
Dan Gohman6c459a22008-06-22 19:56:46 +00003671 case Instruction::Or:
3672 // If the RHS of the Or is a constant, we may have something like:
3673 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3674 // optimizations will transparently handle this case.
3675 //
3676 // In order for this transformation to be safe, the LHS must be of the
3677 // form X*(2^n) and the Or constant must be less than 2^n.
3678 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003679 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003680 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003681 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003682 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3683 // Build a plain add SCEV.
3684 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3685 // If the LHS of the add was an addrec and it has no-wrap flags,
3686 // transfer the no-wrap flags, since an or won't introduce a wrap.
3687 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3688 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003689 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3690 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003691 }
3692 return S;
3693 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003694 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003695 break;
3696 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003697 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003698 // If the RHS of the xor is a signbit, then this is just an add.
3699 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003700 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003701 return getAddExpr(getSCEV(U->getOperand(0)),
3702 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003703
3704 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003705 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003706 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003707
3708 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3709 // This is a variant of the check for xor with -1, and it handles
3710 // the case where instcombine has trimmed non-demanded bits out
3711 // of an xor with -1.
3712 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3713 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3714 if (BO->getOpcode() == Instruction::And &&
3715 LCI->getValue() == CI->getValue())
3716 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003717 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003718 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003719 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003720 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003721 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3722
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003723 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003724 // mask off the high bits. Complement the operand and
3725 // re-apply the zext.
3726 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3727 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3728
3729 // If C is a single bit, it may be in the sign-bit position
3730 // before the zero-extend. In this case, represent the xor
3731 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003732 APInt Trunc = CI->getValue().trunc(Z0TySize);
3733 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003734 Trunc.isSignBit())
3735 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3736 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003737 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003738 }
3739 break;
3740
3741 case Instruction::Shl:
3742 // Turn shift left of a constant amount into a multiply.
3743 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003744 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003745
3746 // If the shift count is not less than the bitwidth, the result of
3747 // the shift is undefined. Don't try to analyze it, because the
3748 // resolution chosen here may differ from the resolution chosen in
3749 // other parts of the compiler.
3750 if (SA->getValue().uge(BitWidth))
3751 break;
3752
Owen Andersoneed707b2009-07-24 23:12:02 +00003753 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003754 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003755 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003756 }
3757 break;
3758
Nick Lewycky01eaf802008-07-07 06:15:49 +00003759 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003760 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003761 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003762 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003763
3764 // If the shift count is not less than the bitwidth, the result of
3765 // the shift is undefined. Don't try to analyze it, because the
3766 // resolution chosen here may differ from the resolution chosen in
3767 // other parts of the compiler.
3768 if (SA->getValue().uge(BitWidth))
3769 break;
3770
Owen Andersoneed707b2009-07-24 23:12:02 +00003771 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003772 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003773 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003774 }
3775 break;
3776
Dan Gohman4ee29af2009-04-21 02:26:00 +00003777 case Instruction::AShr:
3778 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3779 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003780 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003781 if (L->getOpcode() == Instruction::Shl &&
3782 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003783 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3784
3785 // If the shift count is not less than the bitwidth, the result of
3786 // the shift is undefined. Don't try to analyze it, because the
3787 // resolution chosen here may differ from the resolution chosen in
3788 // other parts of the compiler.
3789 if (CI->getValue().uge(BitWidth))
3790 break;
3791
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003792 uint64_t Amt = BitWidth - CI->getZExtValue();
3793 if (Amt == BitWidth)
3794 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003795 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003796 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003797 IntegerType::get(getContext(),
3798 Amt)),
3799 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003800 }
3801 break;
3802
Dan Gohman6c459a22008-06-22 19:56:46 +00003803 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003804 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003805
3806 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003807 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003808
3809 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003810 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003811
3812 case Instruction::BitCast:
3813 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003814 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003815 return getSCEV(U->getOperand(0));
3816 break;
3817
Dan Gohman4f8eea82010-02-01 18:27:38 +00003818 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3819 // lead to pointer expressions which cannot safely be expanded to GEPs,
3820 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3821 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003822
Dan Gohman26466c02009-05-08 20:26:55 +00003823 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003824 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003825
Dan Gohman6c459a22008-06-22 19:56:46 +00003826 case Instruction::PHI:
3827 return createNodeForPHI(cast<PHINode>(U));
3828
3829 case Instruction::Select:
3830 // This could be a smax or umax that was lowered earlier.
3831 // Try to recover it.
3832 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3833 Value *LHS = ICI->getOperand(0);
3834 Value *RHS = ICI->getOperand(1);
3835 switch (ICI->getPredicate()) {
3836 case ICmpInst::ICMP_SLT:
3837 case ICmpInst::ICMP_SLE:
3838 std::swap(LHS, RHS);
3839 // fall through
3840 case ICmpInst::ICMP_SGT:
3841 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003842 // a >s b ? a+x : b+x -> smax(a, b)+x
3843 // a >s b ? b+x : a+x -> smin(a, b)+x
3844 if (LHS->getType() == U->getType()) {
3845 const SCEV *LS = getSCEV(LHS);
3846 const SCEV *RS = getSCEV(RHS);
3847 const SCEV *LA = getSCEV(U->getOperand(1));
3848 const SCEV *RA = getSCEV(U->getOperand(2));
3849 const SCEV *LDiff = getMinusSCEV(LA, LS);
3850 const SCEV *RDiff = getMinusSCEV(RA, RS);
3851 if (LDiff == RDiff)
3852 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3853 LDiff = getMinusSCEV(LA, RS);
3854 RDiff = getMinusSCEV(RA, LS);
3855 if (LDiff == RDiff)
3856 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3857 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003858 break;
3859 case ICmpInst::ICMP_ULT:
3860 case ICmpInst::ICMP_ULE:
3861 std::swap(LHS, RHS);
3862 // fall through
3863 case ICmpInst::ICMP_UGT:
3864 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003865 // a >u b ? a+x : b+x -> umax(a, b)+x
3866 // a >u b ? b+x : a+x -> umin(a, b)+x
3867 if (LHS->getType() == U->getType()) {
3868 const SCEV *LS = getSCEV(LHS);
3869 const SCEV *RS = getSCEV(RHS);
3870 const SCEV *LA = getSCEV(U->getOperand(1));
3871 const SCEV *RA = getSCEV(U->getOperand(2));
3872 const SCEV *LDiff = getMinusSCEV(LA, LS);
3873 const SCEV *RDiff = getMinusSCEV(RA, RS);
3874 if (LDiff == RDiff)
3875 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3876 LDiff = getMinusSCEV(LA, RS);
3877 RDiff = getMinusSCEV(RA, LS);
3878 if (LDiff == RDiff)
3879 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3880 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003881 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003882 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003883 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3884 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003885 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003886 cast<ConstantInt>(RHS)->isZero()) {
3887 const SCEV *One = getConstant(LHS->getType(), 1);
3888 const SCEV *LS = getSCEV(LHS);
3889 const SCEV *LA = getSCEV(U->getOperand(1));
3890 const SCEV *RA = getSCEV(U->getOperand(2));
3891 const SCEV *LDiff = getMinusSCEV(LA, LS);
3892 const SCEV *RDiff = getMinusSCEV(RA, One);
3893 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003894 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003895 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003896 break;
3897 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003898 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3899 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003900 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003901 cast<ConstantInt>(RHS)->isZero()) {
3902 const SCEV *One = getConstant(LHS->getType(), 1);
3903 const SCEV *LS = getSCEV(LHS);
3904 const SCEV *LA = getSCEV(U->getOperand(1));
3905 const SCEV *RA = getSCEV(U->getOperand(2));
3906 const SCEV *LDiff = getMinusSCEV(LA, One);
3907 const SCEV *RDiff = getMinusSCEV(RA, LS);
3908 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003909 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003910 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003911 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003912 default:
3913 break;
3914 }
3915 }
3916
3917 default: // We cannot analyze this expression.
3918 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003919 }
3920
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003921 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003922}
3923
3924
3925
3926//===----------------------------------------------------------------------===//
3927// Iteration Count Computation Code
3928//
3929
Andrew Trickb1831c62011-08-11 23:36:16 +00003930/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003931/// normal unsigned value. Returns 0 if the trip count is unknown or not
3932/// constant. Will also return 0 if the maximum trip count is very large (>=
3933/// 2^32).
3934///
3935/// This "trip count" assumes that control exits via ExitingBlock. More
3936/// precisely, it is the number of times that control may reach ExitingBlock
3937/// before taking the branch. For loops with multiple exits, it may not be the
3938/// number times that the loop header executes because the loop may exit
3939/// prematurely via another branch.
3940unsigned ScalarEvolution::
3941getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003942 const SCEVConstant *ExitCount =
Andrew Trick3eada312012-01-11 06:52:55 +00003943 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trickb1831c62011-08-11 23:36:16 +00003944 if (!ExitCount)
3945 return 0;
3946
3947 ConstantInt *ExitConst = ExitCount->getValue();
3948
3949 // Guard against huge trip counts.
3950 if (ExitConst->getValue().getActiveBits() > 32)
3951 return 0;
3952
3953 // In case of integer overflow, this returns 0, which is correct.
3954 return ((unsigned)ExitConst->getZExtValue()) + 1;
3955}
3956
3957/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3958/// trip count of this loop as a normal unsigned value, if possible. This
3959/// means that the actual trip count is always a multiple of the returned
3960/// value (don't forget the trip count could very well be zero as well!).
3961///
3962/// Returns 1 if the trip count is unknown or not guaranteed to be the
3963/// multiple of a constant (which is also the case if the trip count is simply
3964/// constant, use getSmallConstantTripCount for that case), Will also return 1
3965/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00003966///
3967/// As explained in the comments for getSmallConstantTripCount, this assumes
3968/// that control exits the loop via ExitingBlock.
3969unsigned ScalarEvolution::
3970getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
3971 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trickb1831c62011-08-11 23:36:16 +00003972 if (ExitCount == getCouldNotCompute())
3973 return 1;
3974
3975 // Get the trip count from the BE count by adding 1.
3976 const SCEV *TCMul = getAddExpr(ExitCount,
3977 getConstant(ExitCount->getType(), 1));
3978 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3979 // to factor simple cases.
3980 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3981 TCMul = Mul->getOperand(0);
3982
3983 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3984 if (!MulC)
3985 return 1;
3986
3987 ConstantInt *Result = MulC->getValue();
3988
Hal Finkel8c655492012-10-24 19:46:44 +00003989 // Guard against huge trip counts (this requires checking
3990 // for zero to handle the case where the trip count == -1 and the
3991 // addition wraps).
3992 if (!Result || Result->getValue().getActiveBits() > 32 ||
3993 Result->getValue().getActiveBits() == 0)
Andrew Trickb1831c62011-08-11 23:36:16 +00003994 return 1;
3995
3996 return (unsigned)Result->getZExtValue();
3997}
3998
Andrew Trick5116ff62011-07-26 17:19:55 +00003999// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00004000// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00004001// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00004002const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4003 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00004004}
4005
Dan Gohman46bdfb02009-02-24 18:55:53 +00004006/// getBackedgeTakenCount - If the specified loop has a predictable
4007/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4008/// object. The backedge-taken count is the number of times the loop header
4009/// will be branched to from within the loop. This is one less than the
4010/// trip count of the loop, since it doesn't count the first iteration,
4011/// when the header is branched to from outside the loop.
4012///
4013/// Note that it is not valid to call this method on a loop without a
4014/// loop-invariant backedge-taken count (see
4015/// hasLoopInvariantBackedgeTakenCount).
4016///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004017const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004018 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004019}
4020
4021/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4022/// return the least SCEV value that is known never to be less than the
4023/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004024const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004025 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004026}
4027
Dan Gohman59ae6b92009-07-08 19:23:34 +00004028/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4029/// onto the given Worklist.
4030static void
4031PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4032 BasicBlock *Header = L->getHeader();
4033
4034 // Push all Loop-header PHIs onto the Worklist stack.
4035 for (BasicBlock::iterator I = Header->begin();
4036 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4037 Worklist.push_back(PN);
4038}
4039
Dan Gohmana1af7572009-04-30 20:47:05 +00004040const ScalarEvolution::BackedgeTakenInfo &
4041ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004042 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004043 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004044 // update the value. The temporary CouldNotCompute value tells SCEV
4045 // code elsewhere that it shouldn't attempt to request a new
4046 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004047 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004048 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004049 if (!Pair.second)
4050 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004051
Andrew Trick5116ff62011-07-26 17:19:55 +00004052 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4053 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4054 // must be cleared in this scope.
4055 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4056
4057 if (Result.getExact(this) != getCouldNotCompute()) {
4058 assert(isLoopInvariant(Result.getExact(this), L) &&
4059 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004060 "Computed backedge-taken count isn't loop invariant for loop!");
4061 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004062 }
4063 else if (Result.getMax(this) == getCouldNotCompute() &&
4064 isa<PHINode>(L->getHeader()->begin())) {
4065 // Only count loops that have phi nodes as not being computable.
4066 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004067 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004068
Chris Lattnerf1859892011-01-09 02:16:18 +00004069 // Now that we know more about the trip count for this loop, forget any
4070 // existing SCEV values for PHI nodes in this loop since they are only
4071 // conservative estimates made without the benefit of trip count
4072 // information. This is similar to the code in forgetLoop, except that
4073 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004074 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004075 SmallVector<Instruction *, 16> Worklist;
4076 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004077
Chris Lattnerf1859892011-01-09 02:16:18 +00004078 SmallPtrSet<Instruction *, 8> Visited;
4079 while (!Worklist.empty()) {
4080 Instruction *I = Worklist.pop_back_val();
4081 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004082
Chris Lattnerf1859892011-01-09 02:16:18 +00004083 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004084 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnerf1859892011-01-09 02:16:18 +00004085 if (It != ValueExprMap.end()) {
4086 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004087
Chris Lattnerf1859892011-01-09 02:16:18 +00004088 // SCEVUnknown for a PHI either means that it has an unrecognized
4089 // structure, or it's a PHI that's in the progress of being computed
4090 // by createNodeForPHI. In the former case, additional loop trip
4091 // count information isn't going to change anything. In the later
4092 // case, createNodeForPHI will perform the necessary updates on its
4093 // own when it gets to that point.
4094 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4095 forgetMemoizedResults(Old);
4096 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004097 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004098 if (PHINode *PN = dyn_cast<PHINode>(I))
4099 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004100 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004101
4102 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004103 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004104 }
Dan Gohman308bec32011-04-25 22:48:29 +00004105
4106 // Re-lookup the insert position, since the call to
4107 // ComputeBackedgeTakenCount above could result in a
4108 // recusive call to getBackedgeTakenInfo (on a different
4109 // loop), which would invalidate the iterator computed
4110 // earlier.
4111 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004112}
4113
Dan Gohman4c7279a2009-10-31 15:04:55 +00004114/// forgetLoop - This method should be called by the client when it has
4115/// changed a loop in a way that may effect ScalarEvolution's ability to
4116/// compute a trip count, or if the loop is deleted.
4117void ScalarEvolution::forgetLoop(const Loop *L) {
4118 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004119 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4120 BackedgeTakenCounts.find(L);
4121 if (BTCPos != BackedgeTakenCounts.end()) {
4122 BTCPos->second.clear();
4123 BackedgeTakenCounts.erase(BTCPos);
4124 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004125
Dan Gohman4c7279a2009-10-31 15:04:55 +00004126 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004127 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004128 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004129
Dan Gohman59ae6b92009-07-08 19:23:34 +00004130 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004131 while (!Worklist.empty()) {
4132 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004133 if (!Visited.insert(I)) continue;
4134
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004135 ValueExprMapType::iterator It =
4136 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004137 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004138 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004139 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004140 if (PHINode *PN = dyn_cast<PHINode>(I))
4141 ConstantEvolutionLoopExitValue.erase(PN);
4142 }
4143
4144 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004145 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004146
4147 // Forget all contained loops too, to avoid dangling entries in the
4148 // ValuesAtScopes map.
4149 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4150 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004151}
4152
Eric Christophere6cbfa62010-07-29 01:25:38 +00004153/// forgetValue - This method should be called by the client when it has
4154/// changed a value in a way that may effect its value, or which may
4155/// disconnect it from a def-use chain linking it to a loop.
4156void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004157 Instruction *I = dyn_cast<Instruction>(V);
4158 if (!I) return;
4159
4160 // Drop information about expressions based on loop-header PHIs.
4161 SmallVector<Instruction *, 16> Worklist;
4162 Worklist.push_back(I);
4163
4164 SmallPtrSet<Instruction *, 8> Visited;
4165 while (!Worklist.empty()) {
4166 I = Worklist.pop_back_val();
4167 if (!Visited.insert(I)) continue;
4168
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004169 ValueExprMapType::iterator It =
4170 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004171 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004172 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004173 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004174 if (PHINode *PN = dyn_cast<PHINode>(I))
4175 ConstantEvolutionLoopExitValue.erase(PN);
4176 }
4177
4178 PushDefUseChildren(I, Worklist);
4179 }
4180}
4181
Andrew Trick5116ff62011-07-26 17:19:55 +00004182/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004183/// exits. A computable result can only be return for loops with a single exit.
4184/// Returning the minimum taken count among all exits is incorrect because one
4185/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4186/// the limit of each loop test is never skipped. This is a valid assumption as
4187/// long as the loop exits via that test. For precise results, it is the
4188/// caller's responsibility to specify the relevant loop exit using
4189/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004190const SCEV *
4191ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4192 // If any exits were not computable, the loop is not computable.
4193 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4194
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004195 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004196 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004197 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4198
4199 const SCEV *BECount = 0;
4200 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4201 ENT != 0; ENT = ENT->getNextExit()) {
4202
4203 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4204
4205 if (!BECount)
4206 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004207 else if (BECount != ENT->ExactNotTaken)
4208 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004209 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004210 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004211 return BECount;
4212}
4213
4214/// getExact - Get the exact not taken count for this loop exit.
4215const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004216ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004217 ScalarEvolution *SE) const {
4218 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4219 ENT != 0; ENT = ENT->getNextExit()) {
4220
Andrew Trickfcb43562011-08-02 04:23:35 +00004221 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004222 return ENT->ExactNotTaken;
4223 }
4224 return SE->getCouldNotCompute();
4225}
4226
4227/// getMax - Get the max backedge taken count for the loop.
4228const SCEV *
4229ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4230 return Max ? Max : SE->getCouldNotCompute();
4231}
4232
Andrew Tricke74c2e82013-03-26 03:14:53 +00004233bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4234 ScalarEvolution *SE) const {
4235 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4236 return true;
4237
4238 if (!ExitNotTaken.ExitingBlock)
4239 return false;
4240
4241 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4242 ENT != 0; ENT = ENT->getNextExit()) {
4243
4244 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4245 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4246 return true;
4247 }
4248 }
4249 return false;
4250}
4251
Andrew Trick5116ff62011-07-26 17:19:55 +00004252/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4253/// computable exit into a persistent ExitNotTakenInfo array.
4254ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4255 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4256 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4257
4258 if (!Complete)
4259 ExitNotTaken.setIncomplete();
4260
4261 unsigned NumExits = ExitCounts.size();
4262 if (NumExits == 0) return;
4263
Andrew Trickfcb43562011-08-02 04:23:35 +00004264 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004265 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4266 if (NumExits == 1) return;
4267
4268 // Handle the rare case of multiple computable exits.
4269 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4270
4271 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4272 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4273 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004274 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004275 ENT->ExactNotTaken = ExitCounts[i].second;
4276 }
4277}
4278
4279/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4280void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004281 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004282 ExitNotTaken.ExactNotTaken = 0;
4283 delete[] ExitNotTaken.getNextExit();
4284}
4285
Dan Gohman46bdfb02009-02-24 18:55:53 +00004286/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4287/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004288ScalarEvolution::BackedgeTakenInfo
4289ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004290 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004291 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004292
Dan Gohmana334aa72009-06-22 00:31:57 +00004293 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004294 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004295 bool CouldComputeBECount = true;
4296 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004297 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004298 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4299 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004300 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004301 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004302 CouldComputeBECount = false;
4303 else
4304 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4305
Dan Gohman1c343752009-06-27 21:21:31 +00004306 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004307 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004308 else if (EL.Max != getCouldNotCompute()) {
4309 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4310 // skip some loop tests. Taking the max over the exits is sufficiently
4311 // conservative. TODO: We could do better taking into consideration
4312 // that (1) the loop has unit stride (2) the last loop test is
4313 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4314 // falls-through some constant times less then the other tests.
4315 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4316 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004317 }
4318
Andrew Trick5116ff62011-07-26 17:19:55 +00004319 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004320}
4321
Andrew Trick5116ff62011-07-26 17:19:55 +00004322/// ComputeExitLimit - Compute the number of times the backedge of the specified
4323/// loop will execute if it exits via the specified block.
4324ScalarEvolution::ExitLimit
4325ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004326
4327 // Okay, we've chosen an exiting block. See what condition causes us to
4328 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004329 //
4330 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004331 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004332 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004333 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004334
Chris Lattner8b0e3602007-01-07 02:24:26 +00004335 // At this point, we know we have a conditional branch that determines whether
4336 // the loop is exited. However, we don't know if the branch is executed each
4337 // time through the loop. If not, then the execution count of the branch will
4338 // not be equal to the trip count of the loop.
4339 //
4340 // Currently we check for this by checking to see if the Exit branch goes to
4341 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004342 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004343 // loop header. This is common for un-rotated loops.
4344 //
4345 // If both of those tests fail, walk up the unique predecessor chain to the
4346 // header, stopping if there is an edge that doesn't exit the loop. If the
4347 // header is reached, the execution count of the branch will be equal to the
4348 // trip count of the loop.
4349 //
4350 // More extensive analysis could be done to handle more cases here.
4351 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004352 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004353 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004354 ExitBr->getParent() != L->getHeader()) {
4355 // The simple checks failed, try climbing the unique predecessor chain
4356 // up to the header.
4357 bool Ok = false;
4358 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4359 BasicBlock *Pred = BB->getUniquePredecessor();
4360 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004361 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004362 TerminatorInst *PredTerm = Pred->getTerminator();
4363 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4364 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4365 if (PredSucc == BB)
4366 continue;
4367 // If the predecessor has a successor that isn't BB and isn't
4368 // outside the loop, assume the worst.
4369 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004370 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004371 }
4372 if (Pred == L->getHeader()) {
4373 Ok = true;
4374 break;
4375 }
4376 BB = Pred;
4377 }
4378 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004379 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004380 }
4381
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004382 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004383 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4384 ExitBr->getSuccessor(0),
4385 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004386}
4387
Andrew Trick5116ff62011-07-26 17:19:55 +00004388/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004389/// backedge of the specified loop will execute if its exit condition
4390/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004391ScalarEvolution::ExitLimit
4392ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4393 Value *ExitCond,
4394 BasicBlock *TBB,
4395 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004396 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004397 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4398 if (BO->getOpcode() == Instruction::And) {
4399 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004400 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4401 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004402 const SCEV *BECount = getCouldNotCompute();
4403 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004404 if (L->contains(TBB)) {
4405 // Both conditions must be true for the loop to continue executing.
4406 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004407 if (EL0.Exact == getCouldNotCompute() ||
4408 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004409 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004410 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004411 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4412 if (EL0.Max == getCouldNotCompute())
4413 MaxBECount = EL1.Max;
4414 else if (EL1.Max == getCouldNotCompute())
4415 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004416 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004417 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004418 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004419 // Both conditions must be true at the same time for the loop to exit.
4420 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004421 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004422 if (EL0.Max == EL1.Max)
4423 MaxBECount = EL0.Max;
4424 if (EL0.Exact == EL1.Exact)
4425 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004426 }
4427
Andrew Trick5116ff62011-07-26 17:19:55 +00004428 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004429 }
4430 if (BO->getOpcode() == Instruction::Or) {
4431 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004432 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4433 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004434 const SCEV *BECount = getCouldNotCompute();
4435 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004436 if (L->contains(FBB)) {
4437 // Both conditions must be false for the loop to continue executing.
4438 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004439 if (EL0.Exact == getCouldNotCompute() ||
4440 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004441 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004442 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004443 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4444 if (EL0.Max == getCouldNotCompute())
4445 MaxBECount = EL1.Max;
4446 else if (EL1.Max == getCouldNotCompute())
4447 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004448 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004449 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004450 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004451 // Both conditions must be false at the same time for the loop to exit.
4452 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004453 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004454 if (EL0.Max == EL1.Max)
4455 MaxBECount = EL0.Max;
4456 if (EL0.Exact == EL1.Exact)
4457 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004458 }
4459
Andrew Trick5116ff62011-07-26 17:19:55 +00004460 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004461 }
4462 }
4463
4464 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004465 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004466 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004467 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004468
Dan Gohman00cb5b72010-02-19 18:12:07 +00004469 // Check for a constant condition. These are normally stripped out by
4470 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4471 // preserve the CFG and is temporarily leaving constant conditions
4472 // in place.
4473 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4474 if (L->contains(FBB) == !CI->getZExtValue())
4475 // The backedge is always taken.
4476 return getCouldNotCompute();
4477 else
4478 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004479 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004480 }
4481
Eli Friedman361e54d2009-05-09 12:32:42 +00004482 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004483 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004484}
4485
Andrew Trick5116ff62011-07-26 17:19:55 +00004486/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004487/// backedge of the specified loop will execute if its exit condition
4488/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004489ScalarEvolution::ExitLimit
4490ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4491 ICmpInst *ExitCond,
4492 BasicBlock *TBB,
4493 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004494
Reid Spencere4d87aa2006-12-23 06:05:41 +00004495 // If the condition was exit on true, convert the condition to exit on false
4496 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004497 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004498 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004499 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004500 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004501
4502 // Handle common loops like: for (X = "string"; *X; ++X)
4503 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4504 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004505 ExitLimit ItCnt =
4506 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004507 if (ItCnt.hasAnyInfo())
4508 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004509 }
4510
Dan Gohman0bba49c2009-07-07 17:06:11 +00004511 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4512 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004513
4514 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004515 LHS = getSCEVAtScope(LHS, L);
4516 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004517
Dan Gohman64a845e2009-06-24 04:48:43 +00004518 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004519 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004520 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004521 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004522 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004523 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004524 }
4525
Dan Gohman03557dc2010-05-03 16:35:17 +00004526 // Simplify the operands before analyzing them.
4527 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4528
Chris Lattner53e677a2004-04-02 20:23:17 +00004529 // If we have a comparison of a chrec against a constant, try to use value
4530 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004531 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4532 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004533 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004534 // Form the constant range.
4535 ConstantRange CompRange(
4536 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004537
Dan Gohman0bba49c2009-07-07 17:06:11 +00004538 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004539 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004540 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004541
Chris Lattner53e677a2004-04-02 20:23:17 +00004542 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004543 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004544 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004545 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4546 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004547 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004548 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004549 case ICmpInst::ICMP_EQ: { // while (X == Y)
4550 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004551 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4552 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004553 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004554 }
4555 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004556 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4557 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004558 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004559 }
4560 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004561 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004562 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004563 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004564 break;
4565 }
4566 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004567 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4568 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004569 break;
4570 }
4571 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004572 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004573 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004574 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004575 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004576 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004577 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004578#if 0
David Greene25e0e872009-12-23 22:18:14 +00004579 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004580 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004581 dbgs() << "[unsigned] ";
4582 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004583 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004584 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004585#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004586 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004587 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004588 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004589}
4590
Chris Lattner673e02b2004-10-12 01:49:27 +00004591static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004592EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4593 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004594 const SCEV *InVal = SE.getConstant(C);
4595 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004596 assert(isa<SCEVConstant>(Val) &&
4597 "Evaluation of SCEV at constant didn't fold correctly?");
4598 return cast<SCEVConstant>(Val)->getValue();
4599}
4600
Andrew Trick5116ff62011-07-26 17:19:55 +00004601/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004602/// 'icmp op load X, cst', try to see if we can compute the backedge
4603/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004604ScalarEvolution::ExitLimit
4605ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4606 LoadInst *LI,
4607 Constant *RHS,
4608 const Loop *L,
4609 ICmpInst::Predicate predicate) {
4610
Dan Gohman1c343752009-06-27 21:21:31 +00004611 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004612
4613 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004614 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004615 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004616 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004617
4618 // Make sure that it is really a constant global we are gepping, with an
4619 // initializer, and make sure the first IDX is really 0.
4620 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004621 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004622 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4623 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004624 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004625
4626 // Okay, we allow one non-constant index into the GEP instruction.
4627 Value *VarIdx = 0;
Chris Lattnerdada5862012-01-24 05:49:24 +00004628 std::vector<Constant*> Indexes;
Chris Lattner673e02b2004-10-12 01:49:27 +00004629 unsigned VarIdxNum = 0;
4630 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4631 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4632 Indexes.push_back(CI);
4633 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004634 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004635 VarIdx = GEP->getOperand(i);
4636 VarIdxNum = i-2;
4637 Indexes.push_back(0);
4638 }
4639
Andrew Trickeb6dd232012-03-26 22:33:59 +00004640 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4641 if (!VarIdx)
4642 return getCouldNotCompute();
4643
Chris Lattner673e02b2004-10-12 01:49:27 +00004644 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4645 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004646 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004647 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004648
4649 // We can only recognize very limited forms of loop index expressions, in
4650 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004651 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004652 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004653 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4654 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004655 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004656
4657 unsigned MaxSteps = MaxBruteForceIterations;
4658 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004659 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004660 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004661 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004662
4663 // Form the GEP offset.
4664 Indexes[VarIdxNum] = Val;
4665
Chris Lattnerdada5862012-01-24 05:49:24 +00004666 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4667 Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004668 if (Result == 0) break; // Cannot compute!
4669
4670 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004671 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004672 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004673 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004674#if 0
David Greene25e0e872009-12-23 22:18:14 +00004675 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004676 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4677 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004678#endif
4679 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004680 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004681 }
4682 }
Dan Gohman1c343752009-06-27 21:21:31 +00004683 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004684}
4685
4686
Chris Lattner3221ad02004-04-17 22:58:41 +00004687/// CanConstantFold - Return true if we can constant fold an instruction of the
4688/// specified type, assuming that all operands were constants.
4689static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004690 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004691 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4692 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004693 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004694
Chris Lattner3221ad02004-04-17 22:58:41 +00004695 if (const CallInst *CI = dyn_cast<CallInst>(I))
4696 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004697 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004698 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004699}
4700
Andrew Trick13d31e02011-10-05 03:25:31 +00004701/// Determine whether this instruction can constant evolve within this loop
4702/// assuming its operands can all constant evolve.
4703static bool canConstantEvolve(Instruction *I, const Loop *L) {
4704 // An instruction outside of the loop can't be derived from a loop PHI.
4705 if (!L->contains(I)) return false;
4706
4707 if (isa<PHINode>(I)) {
4708 if (L->getHeader() == I->getParent())
4709 return true;
4710 else
4711 // We don't currently keep track of the control flow needed to evaluate
4712 // PHIs, so we cannot handle PHIs inside of loops.
4713 return false;
4714 }
4715
4716 // If we won't be able to constant fold this expression even if the operands
4717 // are constants, bail early.
4718 return CanConstantFold(I);
4719}
4720
4721/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4722/// recursing through each instruction operand until reaching a loop header phi.
4723static PHINode *
4724getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004725 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004726
4727 // Otherwise, we can evaluate this instruction if all of its operands are
4728 // constant or derived from a PHI node themselves.
4729 PHINode *PHI = 0;
4730 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4731 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4732
4733 if (isa<Constant>(*OpI)) continue;
4734
4735 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4736 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4737
4738 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004739 if (!P)
4740 // If this operand is already visited, reuse the prior result.
4741 // We may have P != PHI if this is the deepest point at which the
4742 // inconsistent paths meet.
4743 P = PHIMap.lookup(OpInst);
4744 if (!P) {
4745 // Recurse and memoize the results, whether a phi is found or not.
4746 // This recursive call invalidates pointers into PHIMap.
4747 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4748 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004749 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004750 if (P == 0) return 0; // Not evolving from PHI
4751 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4752 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004753 }
4754 // This is a expression evolving from a constant PHI!
4755 return PHI;
4756}
4757
Chris Lattner3221ad02004-04-17 22:58:41 +00004758/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4759/// in the loop that V is derived from. We allow arbitrary operations along the
4760/// way, but the operands of an operation must either be constants or a value
4761/// derived from a constant PHI. If this expression does not fit with these
4762/// constraints, return null.
4763static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004764 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004765 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004766
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004767 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004768 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004769 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004770
Andrew Trick13d31e02011-10-05 03:25:31 +00004771 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004772 DenseMap<Instruction *, PHINode *> PHIMap;
4773 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004774}
4775
4776/// EvaluateExpression - Given an expression that passes the
4777/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4778/// in the loop has the value PHIVal. If we can't fold this expression for some
4779/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004780static Constant *EvaluateExpression(Value *V, const Loop *L,
4781 DenseMap<Instruction *, Constant *> &Vals,
Micah Villmow3574eca2012-10-08 16:38:25 +00004782 const DataLayout *TD,
Chad Rosier00737bd2011-12-01 21:29:16 +00004783 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004784 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004785 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004786 Instruction *I = dyn_cast<Instruction>(V);
4787 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004788
Andrew Trick13d31e02011-10-05 03:25:31 +00004789 if (Constant *C = Vals.lookup(I)) return C;
4790
Nick Lewycky614fef62011-10-22 19:58:20 +00004791 // An instruction inside the loop depends on a value outside the loop that we
4792 // weren't given a mapping for, or a value such as a call inside the loop.
4793 if (!canConstantEvolve(I, L)) return 0;
4794
4795 // An unmapped PHI can be due to a branch or another loop inside this loop,
4796 // or due to this not being the initial iteration through a loop where we
4797 // couldn't compute the evolution of this particular PHI last time.
4798 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004799
Dan Gohman9d4588f2010-06-22 13:15:46 +00004800 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004801
4802 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004803 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4804 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004805 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4806 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004807 continue;
4808 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004809 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004810 Vals[Operand] = C;
4811 if (!C) return 0;
4812 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004813 }
4814
Nick Lewycky614fef62011-10-22 19:58:20 +00004815 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004816 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004817 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004818 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4819 if (!LI->isVolatile())
4820 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4821 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004822 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4823 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004824}
4825
4826/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4827/// in the header of its containing loop, we know the loop executes a
4828/// constant number of times, and the PHI node is just a recurrence
4829/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004830Constant *
4831ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004832 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004833 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004834 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004835 ConstantEvolutionLoopExitValue.find(PN);
4836 if (I != ConstantEvolutionLoopExitValue.end())
4837 return I->second;
4838
Dan Gohmane0567812010-04-08 23:03:40 +00004839 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004840 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4841
4842 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4843
Andrew Trick13d31e02011-10-05 03:25:31 +00004844 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004845 BasicBlock *Header = L->getHeader();
4846 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004847
Chris Lattner3221ad02004-04-17 22:58:41 +00004848 // Since the loop is canonicalized, the PHI node must have two entries. One
4849 // entry must be a constant (coming in from outside of the loop), and the
4850 // second must be derived from the same PHI.
4851 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004852 PHINode *PHI = 0;
4853 for (BasicBlock::iterator I = Header->begin();
4854 (PHI = dyn_cast<PHINode>(I)); ++I) {
4855 Constant *StartCST =
4856 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4857 if (StartCST == 0) continue;
4858 CurrentIterVals[PHI] = StartCST;
4859 }
4860 if (!CurrentIterVals.count(PN))
4861 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004862
4863 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004864
4865 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004866 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004867 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004868
Dan Gohman46bdfb02009-02-24 18:55:53 +00004869 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004870 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004871 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004872 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004873 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004874
Nick Lewycky614fef62011-10-22 19:58:20 +00004875 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004876 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004877 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004878 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4879 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004880 if (NextPHI == 0)
4881 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004882 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004883
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004884 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4885
Nick Lewycky614fef62011-10-22 19:58:20 +00004886 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4887 // cease to be able to evaluate one of them or if they stop evolving,
4888 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004889 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004890 for (DenseMap<Instruction *, Constant *>::const_iterator
4891 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4892 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004893 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004894 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4895 }
4896 // We use two distinct loops because EvaluateExpression may invalidate any
4897 // iterators into CurrentIterVals.
4898 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4899 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4900 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004901 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004902 if (!NextPHI) { // Not already computed.
4903 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004904 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004905 }
4906 if (NextPHI != I->second)
4907 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004908 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004909
4910 // If all entries in CurrentIterVals == NextIterVals then we can stop
4911 // iterating, the loop can't continue to change.
4912 if (StoppedEvolving)
4913 return RetVal = CurrentIterVals[PN];
4914
Andrew Trick13d31e02011-10-05 03:25:31 +00004915 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004916 }
4917}
4918
Andrew Trick5116ff62011-07-26 17:19:55 +00004919/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004920/// constant number of times (the condition evolves only from constants),
4921/// try to evaluate a few iterations of the loop until we get the exit
4922/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004923/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004924const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4925 Value *Cond,
4926 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004927 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004928 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004929
Dan Gohmanb92654d2010-06-19 14:17:24 +00004930 // If the loop is canonicalized, the PHI will have exactly two entries.
4931 // That's the only form we support here.
4932 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4933
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004934 DenseMap<Instruction *, Constant *> CurrentIterVals;
4935 BasicBlock *Header = L->getHeader();
4936 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4937
Dan Gohmanb92654d2010-06-19 14:17:24 +00004938 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004939 // second must be derived from the same PHI.
4940 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004941 PHINode *PHI = 0;
4942 for (BasicBlock::iterator I = Header->begin();
4943 (PHI = dyn_cast<PHINode>(I)); ++I) {
4944 Constant *StartCST =
4945 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4946 if (StartCST == 0) continue;
4947 CurrentIterVals[PHI] = StartCST;
4948 }
4949 if (!CurrentIterVals.count(PN))
4950 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004951
4952 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4953 // the loop symbolically to determine when the condition gets a value of
4954 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004955
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004956 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004957 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004958 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00004959 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4960 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00004961
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004962 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004963 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004964
Reid Spencere8019bb2007-03-01 07:25:48 +00004965 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004966 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004967 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004968 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004969
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004970 // Update all the PHI nodes for the next iteration.
4971 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004972
4973 // Create a list of which PHIs we need to compute. We want to do this before
4974 // calling EvaluateExpression on them because that may invalidate iterators
4975 // into CurrentIterVals.
4976 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004977 for (DenseMap<Instruction *, Constant *>::const_iterator
4978 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4979 PHINode *PHI = dyn_cast<PHINode>(I->first);
4980 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004981 PHIsToCompute.push_back(PHI);
4982 }
4983 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4984 E = PHIsToCompute.end(); I != E; ++I) {
4985 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004986 Constant *&NextPHI = NextIterVals[PHI];
4987 if (NextPHI) continue; // Already computed!
4988
4989 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004990 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004991 }
4992 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00004993 }
4994
4995 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004996 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004997}
4998
Dan Gohmane7125f42009-09-03 15:00:26 +00004999/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00005000/// at the specified scope in the program. The L value specifies a loop
5001/// nest to evaluate the expression at, where null is the top-level or a
5002/// specified loop is immediately inside of the loop.
5003///
5004/// This method can be used to compute the exit value for a variable defined
5005/// in a loop by querying what the value will hold in the parent loop.
5006///
Dan Gohmand594e6f2009-05-24 23:25:42 +00005007/// In the case that a relevant loop exit value cannot be computed, the
5008/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005009const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00005010 // Check to see if we've folded this expression at this loop before.
5011 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
5012 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
5013 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
5014 if (!Pair.second)
5015 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00005016
Dan Gohman42214892009-08-31 21:15:23 +00005017 // Otherwise compute it.
5018 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00005019 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00005020 return C;
5021}
5022
Nick Lewycky614fef62011-10-22 19:58:20 +00005023/// This builds up a Constant using the ConstantExpr interface. That way, we
5024/// will return Constants for objects which aren't represented by a
5025/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5026/// Returns NULL if the SCEV isn't representable as a Constant.
5027static Constant *BuildConstantFromSCEV(const SCEV *V) {
5028 switch (V->getSCEVType()) {
5029 default: // TODO: smax, umax.
5030 case scCouldNotCompute:
5031 case scAddRecExpr:
5032 break;
5033 case scConstant:
5034 return cast<SCEVConstant>(V)->getValue();
5035 case scUnknown:
5036 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5037 case scSignExtend: {
5038 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5039 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5040 return ConstantExpr::getSExt(CastOp, SS->getType());
5041 break;
5042 }
5043 case scZeroExtend: {
5044 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5045 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5046 return ConstantExpr::getZExt(CastOp, SZ->getType());
5047 break;
5048 }
5049 case scTruncate: {
5050 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5051 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5052 return ConstantExpr::getTrunc(CastOp, ST->getType());
5053 break;
5054 }
5055 case scAddExpr: {
5056 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5057 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5058 if (C->getType()->isPointerTy())
5059 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5060 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5061 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5062 if (!C2) return 0;
5063
5064 // First pointer!
5065 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5066 std::swap(C, C2);
5067 // The offsets have been converted to bytes. We can add bytes to an
5068 // i8* by GEP with the byte count in the first index.
5069 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5070 }
5071
5072 // Don't bother trying to sum two pointers. We probably can't
5073 // statically compute a load that results from it anyway.
5074 if (C2->getType()->isPointerTy())
5075 return 0;
5076
5077 if (C->getType()->isPointerTy()) {
5078 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5079 C2 = ConstantExpr::getIntegerCast(
5080 C2, Type::getInt32Ty(C->getContext()), true);
5081 C = ConstantExpr::getGetElementPtr(C, C2);
5082 } else
5083 C = ConstantExpr::getAdd(C, C2);
5084 }
5085 return C;
5086 }
5087 break;
5088 }
5089 case scMulExpr: {
5090 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5091 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5092 // Don't bother with pointers at all.
5093 if (C->getType()->isPointerTy()) return 0;
5094 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5095 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5096 if (!C2 || C2->getType()->isPointerTy()) return 0;
5097 C = ConstantExpr::getMul(C, C2);
5098 }
5099 return C;
5100 }
5101 break;
5102 }
5103 case scUDivExpr: {
5104 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5105 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5106 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5107 if (LHS->getType() == RHS->getType())
5108 return ConstantExpr::getUDiv(LHS, RHS);
5109 break;
5110 }
5111 }
5112 return 0;
5113}
5114
Dan Gohman42214892009-08-31 21:15:23 +00005115const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005116 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005117
Nick Lewycky3e630762008-02-20 06:48:22 +00005118 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005119 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005120 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005121 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005122 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005123 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5124 if (PHINode *PN = dyn_cast<PHINode>(I))
5125 if (PN->getParent() == LI->getHeader()) {
5126 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005127 // to see if the loop that contains it has a known backedge-taken
5128 // count. If so, we may be able to force computation of the exit
5129 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005130 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005131 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005132 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005133 // Okay, we know how many times the containing loop executes. If
5134 // this is a constant evolving PHI node, get the final value at
5135 // the specified iteration number.
5136 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005137 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005138 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005139 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005140 }
5141 }
5142
Reid Spencer09906f32006-12-04 21:33:23 +00005143 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005144 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005145 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005146 // result. This is particularly useful for computing loop exit values.
5147 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005148 SmallVector<Constant *, 4> Operands;
5149 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005150 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5151 Value *Op = I->getOperand(i);
5152 if (Constant *C = dyn_cast<Constant>(Op)) {
5153 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005154 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005155 }
Dan Gohman11046452010-06-29 23:43:06 +00005156
5157 // If any of the operands is non-constant and if they are
5158 // non-integer and non-pointer, don't even try to analyze them
5159 // with scev techniques.
5160 if (!isSCEVable(Op->getType()))
5161 return V;
5162
5163 const SCEV *OrigV = getSCEV(Op);
5164 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5165 MadeImprovement |= OrigV != OpV;
5166
Nick Lewycky614fef62011-10-22 19:58:20 +00005167 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005168 if (!C) return V;
5169 if (C->getType() != Op->getType())
5170 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5171 Op->getType(),
5172 false),
5173 C, Op->getType());
5174 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005175 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005176
Dan Gohman11046452010-06-29 23:43:06 +00005177 // Check to see if getSCEVAtScope actually made an improvement.
5178 if (MadeImprovement) {
5179 Constant *C = 0;
5180 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5181 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005182 Operands[0], Operands[1], TD,
5183 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005184 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5185 if (!LI->isVolatile())
5186 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5187 } else
Dan Gohman11046452010-06-29 23:43:06 +00005188 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005189 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005190 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005191 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005192 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005193 }
5194 }
5195
5196 // This is some other type of SCEVUnknown, just return it.
5197 return V;
5198 }
5199
Dan Gohman622ed672009-05-04 22:02:23 +00005200 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005201 // Avoid performing the look-up in the common case where the specified
5202 // expression has no loop-variant portions.
5203 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005204 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005205 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005206 // Okay, at least one of these operands is loop variant but might be
5207 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005208 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5209 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005210 NewOps.push_back(OpAtScope);
5211
5212 for (++i; i != e; ++i) {
5213 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005214 NewOps.push_back(OpAtScope);
5215 }
5216 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005217 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005218 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005219 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005220 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005221 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005222 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005223 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005224 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005225 }
5226 }
5227 // If we got here, all operands are loop invariant.
5228 return Comm;
5229 }
5230
Dan Gohman622ed672009-05-04 22:02:23 +00005231 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005232 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5233 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005234 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5235 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005236 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005237 }
5238
5239 // If this is a loop recurrence for a loop that does not contain L, then we
5240 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005241 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005242 // First, attempt to evaluate each operand.
5243 // Avoid performing the look-up in the common case where the specified
5244 // expression has no loop-variant portions.
5245 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5246 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5247 if (OpAtScope == AddRec->getOperand(i))
5248 continue;
5249
5250 // Okay, at least one of these operands is loop variant but might be
5251 // foldable. Build a new instance of the folded commutative expression.
5252 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5253 AddRec->op_begin()+i);
5254 NewOps.push_back(OpAtScope);
5255 for (++i; i != e; ++i)
5256 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5257
Andrew Trick3f95c882011-04-27 01:21:25 +00005258 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005259 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005260 AddRec->getNoWrapFlags(SCEV::FlagNW));
5261 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005262 // The addrec may be folded to a nonrecurrence, for example, if the
5263 // induction variable is multiplied by zero after constant folding. Go
5264 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005265 if (!AddRec)
5266 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005267 break;
5268 }
5269
5270 // If the scope is outside the addrec's loop, evaluate it by using the
5271 // loop exit value of the addrec.
5272 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005273 // To evaluate this recurrence, we need to know how many times the AddRec
5274 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005275 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005276 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005277
Eli Friedmanb42a6262008-08-04 23:49:06 +00005278 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005279 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005280 }
Dan Gohman11046452010-06-29 23:43:06 +00005281
Dan Gohmand594e6f2009-05-24 23:25:42 +00005282 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005283 }
5284
Dan Gohman622ed672009-05-04 22:02:23 +00005285 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005286 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005287 if (Op == Cast->getOperand())
5288 return Cast; // must be loop invariant
5289 return getZeroExtendExpr(Op, Cast->getType());
5290 }
5291
Dan Gohman622ed672009-05-04 22:02:23 +00005292 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005293 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005294 if (Op == Cast->getOperand())
5295 return Cast; // must be loop invariant
5296 return getSignExtendExpr(Op, Cast->getType());
5297 }
5298
Dan Gohman622ed672009-05-04 22:02:23 +00005299 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005300 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005301 if (Op == Cast->getOperand())
5302 return Cast; // must be loop invariant
5303 return getTruncateExpr(Op, Cast->getType());
5304 }
5305
Torok Edwinc23197a2009-07-14 16:55:14 +00005306 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005307}
5308
Dan Gohman66a7e852009-05-08 20:38:54 +00005309/// getSCEVAtScope - This is a convenience function which does
5310/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005311const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005312 return getSCEVAtScope(getSCEV(V), L);
5313}
5314
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005315/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5316/// following equation:
5317///
5318/// A * X = B (mod N)
5319///
5320/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5321/// A and B isn't important.
5322///
5323/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005324static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005325 ScalarEvolution &SE) {
5326 uint32_t BW = A.getBitWidth();
5327 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5328 assert(A != 0 && "A must be non-zero.");
5329
5330 // 1. D = gcd(A, N)
5331 //
5332 // The gcd of A and N may have only one prime factor: 2. The number of
5333 // trailing zeros in A is its multiplicity
5334 uint32_t Mult2 = A.countTrailingZeros();
5335 // D = 2^Mult2
5336
5337 // 2. Check if B is divisible by D.
5338 //
5339 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5340 // is not less than multiplicity of this prime factor for D.
5341 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005342 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005343
5344 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5345 // modulo (N / D).
5346 //
5347 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5348 // bit width during computations.
5349 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5350 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005351 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005352 APInt I = AD.multiplicativeInverse(Mod);
5353
5354 // 4. Compute the minimum unsigned root of the equation:
5355 // I * (B / D) mod (N / D)
5356 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5357
5358 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5359 // bits.
5360 return SE.getConstant(Result.trunc(BW));
5361}
Chris Lattner53e677a2004-04-02 20:23:17 +00005362
5363/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5364/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5365/// might be the same) or two SCEVCouldNotCompute objects.
5366///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005367static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005368SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005369 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005370 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5371 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5372 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005373
Chris Lattner53e677a2004-04-02 20:23:17 +00005374 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005375 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005376 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005377 return std::make_pair(CNC, CNC);
5378 }
5379
Reid Spencere8019bb2007-03-01 07:25:48 +00005380 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005381 const APInt &L = LC->getValue()->getValue();
5382 const APInt &M = MC->getValue()->getValue();
5383 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005384 APInt Two(BitWidth, 2);
5385 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005386
Dan Gohman64a845e2009-06-24 04:48:43 +00005387 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005388 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005389 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005390 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5391 // The B coefficient is M-N/2
5392 APInt B(M);
5393 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005394
Reid Spencere8019bb2007-03-01 07:25:48 +00005395 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005396 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005397
Reid Spencere8019bb2007-03-01 07:25:48 +00005398 // Compute the B^2-4ac term.
5399 APInt SqrtTerm(B);
5400 SqrtTerm *= B;
5401 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005402
Nick Lewycky6ce24712012-08-01 09:14:36 +00005403 if (SqrtTerm.isNegative()) {
5404 // The loop is provably infinite.
5405 const SCEV *CNC = SE.getCouldNotCompute();
5406 return std::make_pair(CNC, CNC);
5407 }
5408
Reid Spencere8019bb2007-03-01 07:25:48 +00005409 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5410 // integer value or else APInt::sqrt() will assert.
5411 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005412
Dan Gohman64a845e2009-06-24 04:48:43 +00005413 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005414 // The divisions must be performed as signed divisions.
5415 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005416 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005417 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005418 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005419 return std::make_pair(CNC, CNC);
5420 }
5421
Owen Andersone922c022009-07-22 00:24:57 +00005422 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005423
5424 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005425 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005426 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005427 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005428
Dan Gohman64a845e2009-06-24 04:48:43 +00005429 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005430 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005431 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005432}
5433
5434/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005435/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005436///
5437/// This is only used for loops with a "x != y" exit test. The exit condition is
5438/// now expressed as a single expression, V = x-y. So the exit test is
5439/// effectively V != 0. We know and take advantage of the fact that this
5440/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005441ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005442ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005443 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005444 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005445 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005446 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005447 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005448 }
5449
Dan Gohman35738ac2009-05-04 22:30:44 +00005450 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005451 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005452 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005453
Chris Lattner7975e3e2011-01-09 22:39:48 +00005454 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5455 // the quadratic equation to solve it.
5456 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5457 std::pair<const SCEV *,const SCEV *> Roots =
5458 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005459 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5460 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005461 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005462#if 0
David Greene25e0e872009-12-23 22:18:14 +00005463 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005464 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005465#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005466 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005467 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005468 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5469 R1->getValue(),
5470 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005471 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005472 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005473
Chris Lattner53e677a2004-04-02 20:23:17 +00005474 // We can only use this value if the chrec ends up with an exact zero
5475 // value at this index. When solving for "X*X != 5", for example, we
5476 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005477 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005478 if (Val->isZero())
5479 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005480 }
5481 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005482 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005483 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005484
Chris Lattner7975e3e2011-01-09 22:39:48 +00005485 // Otherwise we can only handle this if it is affine.
5486 if (!AddRec->isAffine())
5487 return getCouldNotCompute();
5488
5489 // If this is an affine expression, the execution count of this branch is
5490 // the minimum unsigned root of the following equation:
5491 //
5492 // Start + Step*N = 0 (mod 2^BW)
5493 //
5494 // equivalent to:
5495 //
5496 // Step*N = -Start (mod 2^BW)
5497 //
5498 // where BW is the common bit width of Start and Step.
5499
5500 // Get the initial value for the loop.
5501 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5502 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5503
5504 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005505 //
5506 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5507 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5508 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5509 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005510 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Nick Lewycky4d3bba52012-06-28 23:44:57 +00005511 if (StepC == 0 || StepC->getValue()->equalsInt(0))
Chris Lattner7975e3e2011-01-09 22:39:48 +00005512 return getCouldNotCompute();
5513
Andrew Trick3228cc22011-03-14 16:50:06 +00005514 // For positive steps (counting up until unsigned overflow):
5515 // N = -Start/Step (as unsigned)
5516 // For negative steps (counting down to zero):
5517 // N = Start/-Step
5518 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005519 bool CountDown = StepC->getValue()->getValue().isNegative();
5520 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005521
5522 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005523 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5524 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005525 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5526 ConstantRange CR = getUnsignedRange(Start);
5527 const SCEV *MaxBECount;
5528 if (!CountDown && CR.getUnsignedMin().isMinValue())
5529 // When counting up, the worst starting value is 1, not 0.
5530 MaxBECount = CR.getUnsignedMax().isMinValue()
5531 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5532 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5533 else
5534 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5535 : -CR.getUnsignedMin());
5536 return ExitLimit(Distance, MaxBECount);
5537 }
Andrew Trick635f7182011-03-09 17:23:39 +00005538
Andrew Trickdcfd4042011-03-14 17:28:02 +00005539 // If the recurrence is known not to wraparound, unsigned divide computes the
5540 // back edge count. We know that the value will either become zero (and thus
5541 // the loop terminates), that the loop will terminate through some other exit
5542 // condition first, or that the loop has undefined behavior. This means
5543 // we can't "miss" the exit value, even with nonunit stride.
5544 //
5545 // FIXME: Prove that loops always exhibits *acceptable* undefined
5546 // behavior. Loops must exhibit defined behavior until a wrapped value is
5547 // actually used. So the trip count computed by udiv could be smaller than the
5548 // number of well-defined iterations.
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005549 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
Andrew Trickdcfd4042011-03-14 17:28:02 +00005550 // FIXME: We really want an "isexact" bit for udiv.
5551 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005552 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005553 // Then, try to solve the above equation provided that Start is constant.
5554 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5555 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5556 -StartC->getValue()->getValue(),
5557 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005558 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005559}
5560
5561/// HowFarToNonZero - Return the number of times a backedge checking the
5562/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005563/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005564ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005565ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005566 // Loops that look like: while (X == 0) are very strange indeed. We don't
5567 // handle them yet except for the trivial case. This could be expanded in the
5568 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005569
Chris Lattner53e677a2004-04-02 20:23:17 +00005570 // If the value is a constant, check to see if it is known to be non-zero
5571 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005572 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005573 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005574 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005575 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005576 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005577
Chris Lattner53e677a2004-04-02 20:23:17 +00005578 // We could implement others, but I really doubt anyone writes loops like
5579 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005580 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005581}
5582
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005583/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5584/// (which may not be an immediate predecessor) which has exactly one
5585/// successor from which BB is reachable, or null if no such block is
5586/// found.
5587///
Dan Gohman005752b2010-04-15 16:19:08 +00005588std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005589ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005590 // If the block has a unique predecessor, then there is no path from the
5591 // predecessor to the block that does not go through the direct edge
5592 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005593 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005594 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005595
5596 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005597 // If the header has a unique predecessor outside the loop, it must be
5598 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005599 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005600 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005601
Dan Gohman005752b2010-04-15 16:19:08 +00005602 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005603}
5604
Dan Gohman763bad12009-06-20 00:35:32 +00005605/// HasSameValue - SCEV structural equivalence is usually sufficient for
5606/// testing whether two expressions are equal, however for the purposes of
5607/// looking for a condition guarding a loop, it can be useful to be a little
5608/// more general, since a front-end may have replicated the controlling
5609/// expression.
5610///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005611static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005612 // Quick check to see if they are the same SCEV.
5613 if (A == B) return true;
5614
5615 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5616 // two different instructions with the same value. Check for this case.
5617 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5618 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5619 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5620 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005621 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005622 return true;
5623
5624 // Otherwise assume they may have a different value.
5625 return false;
5626}
5627
Dan Gohmane9796502010-04-24 01:28:42 +00005628/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru94c22712012-09-27 10:14:43 +00005629/// predicate Pred. Return true iff any changes were made.
Dan Gohmane9796502010-04-24 01:28:42 +00005630///
5631bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005632 const SCEV *&LHS, const SCEV *&RHS,
5633 unsigned Depth) {
Dan Gohmane9796502010-04-24 01:28:42 +00005634 bool Changed = false;
5635
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005636 // If we hit the max recursion limit bail out.
5637 if (Depth >= 3)
5638 return false;
5639
Dan Gohmane9796502010-04-24 01:28:42 +00005640 // Canonicalize a constant to the right side.
5641 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5642 // Check for both operands constant.
5643 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5644 if (ConstantExpr::getICmp(Pred,
5645 LHSC->getValue(),
5646 RHSC->getValue())->isNullValue())
5647 goto trivially_false;
5648 else
5649 goto trivially_true;
5650 }
5651 // Otherwise swap the operands to put the constant on the right.
5652 std::swap(LHS, RHS);
5653 Pred = ICmpInst::getSwappedPredicate(Pred);
5654 Changed = true;
5655 }
5656
5657 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005658 // addrec's loop, put the addrec on the left. Also make a dominance check,
5659 // as both operands could be addrecs loop-invariant in each other's loop.
5660 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5661 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005662 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005663 std::swap(LHS, RHS);
5664 Pred = ICmpInst::getSwappedPredicate(Pred);
5665 Changed = true;
5666 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005667 }
Dan Gohmane9796502010-04-24 01:28:42 +00005668
5669 // If there's a constant operand, canonicalize comparisons with boundary
5670 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5671 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5672 const APInt &RA = RC->getValue()->getValue();
5673 switch (Pred) {
5674 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5675 case ICmpInst::ICMP_EQ:
5676 case ICmpInst::ICMP_NE:
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005677 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5678 if (!RA)
5679 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5680 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer127563b2012-05-30 18:42:43 +00005681 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5682 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005683 RHS = AE->getOperand(1);
5684 LHS = ME->getOperand(1);
5685 Changed = true;
5686 }
Dan Gohmane9796502010-04-24 01:28:42 +00005687 break;
5688 case ICmpInst::ICMP_UGE:
5689 if ((RA - 1).isMinValue()) {
5690 Pred = ICmpInst::ICMP_NE;
5691 RHS = getConstant(RA - 1);
5692 Changed = true;
5693 break;
5694 }
5695 if (RA.isMaxValue()) {
5696 Pred = ICmpInst::ICMP_EQ;
5697 Changed = true;
5698 break;
5699 }
5700 if (RA.isMinValue()) goto trivially_true;
5701
5702 Pred = ICmpInst::ICMP_UGT;
5703 RHS = getConstant(RA - 1);
5704 Changed = true;
5705 break;
5706 case ICmpInst::ICMP_ULE:
5707 if ((RA + 1).isMaxValue()) {
5708 Pred = ICmpInst::ICMP_NE;
5709 RHS = getConstant(RA + 1);
5710 Changed = true;
5711 break;
5712 }
5713 if (RA.isMinValue()) {
5714 Pred = ICmpInst::ICMP_EQ;
5715 Changed = true;
5716 break;
5717 }
5718 if (RA.isMaxValue()) goto trivially_true;
5719
5720 Pred = ICmpInst::ICMP_ULT;
5721 RHS = getConstant(RA + 1);
5722 Changed = true;
5723 break;
5724 case ICmpInst::ICMP_SGE:
5725 if ((RA - 1).isMinSignedValue()) {
5726 Pred = ICmpInst::ICMP_NE;
5727 RHS = getConstant(RA - 1);
5728 Changed = true;
5729 break;
5730 }
5731 if (RA.isMaxSignedValue()) {
5732 Pred = ICmpInst::ICMP_EQ;
5733 Changed = true;
5734 break;
5735 }
5736 if (RA.isMinSignedValue()) goto trivially_true;
5737
5738 Pred = ICmpInst::ICMP_SGT;
5739 RHS = getConstant(RA - 1);
5740 Changed = true;
5741 break;
5742 case ICmpInst::ICMP_SLE:
5743 if ((RA + 1).isMaxSignedValue()) {
5744 Pred = ICmpInst::ICMP_NE;
5745 RHS = getConstant(RA + 1);
5746 Changed = true;
5747 break;
5748 }
5749 if (RA.isMinSignedValue()) {
5750 Pred = ICmpInst::ICMP_EQ;
5751 Changed = true;
5752 break;
5753 }
5754 if (RA.isMaxSignedValue()) goto trivially_true;
5755
5756 Pred = ICmpInst::ICMP_SLT;
5757 RHS = getConstant(RA + 1);
5758 Changed = true;
5759 break;
5760 case ICmpInst::ICMP_UGT:
5761 if (RA.isMinValue()) {
5762 Pred = ICmpInst::ICMP_NE;
5763 Changed = true;
5764 break;
5765 }
5766 if ((RA + 1).isMaxValue()) {
5767 Pred = ICmpInst::ICMP_EQ;
5768 RHS = getConstant(RA + 1);
5769 Changed = true;
5770 break;
5771 }
5772 if (RA.isMaxValue()) goto trivially_false;
5773 break;
5774 case ICmpInst::ICMP_ULT:
5775 if (RA.isMaxValue()) {
5776 Pred = ICmpInst::ICMP_NE;
5777 Changed = true;
5778 break;
5779 }
5780 if ((RA - 1).isMinValue()) {
5781 Pred = ICmpInst::ICMP_EQ;
5782 RHS = getConstant(RA - 1);
5783 Changed = true;
5784 break;
5785 }
5786 if (RA.isMinValue()) goto trivially_false;
5787 break;
5788 case ICmpInst::ICMP_SGT:
5789 if (RA.isMinSignedValue()) {
5790 Pred = ICmpInst::ICMP_NE;
5791 Changed = true;
5792 break;
5793 }
5794 if ((RA + 1).isMaxSignedValue()) {
5795 Pred = ICmpInst::ICMP_EQ;
5796 RHS = getConstant(RA + 1);
5797 Changed = true;
5798 break;
5799 }
5800 if (RA.isMaxSignedValue()) goto trivially_false;
5801 break;
5802 case ICmpInst::ICMP_SLT:
5803 if (RA.isMaxSignedValue()) {
5804 Pred = ICmpInst::ICMP_NE;
5805 Changed = true;
5806 break;
5807 }
5808 if ((RA - 1).isMinSignedValue()) {
5809 Pred = ICmpInst::ICMP_EQ;
5810 RHS = getConstant(RA - 1);
5811 Changed = true;
5812 break;
5813 }
5814 if (RA.isMinSignedValue()) goto trivially_false;
5815 break;
5816 }
5817 }
5818
5819 // Check for obvious equality.
5820 if (HasSameValue(LHS, RHS)) {
5821 if (ICmpInst::isTrueWhenEqual(Pred))
5822 goto trivially_true;
5823 if (ICmpInst::isFalseWhenEqual(Pred))
5824 goto trivially_false;
5825 }
5826
Dan Gohman03557dc2010-05-03 16:35:17 +00005827 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5828 // adding or subtracting 1 from one of the operands.
5829 switch (Pred) {
5830 case ICmpInst::ICMP_SLE:
5831 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5832 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005833 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005834 Pred = ICmpInst::ICMP_SLT;
5835 Changed = true;
5836 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005837 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005838 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005839 Pred = ICmpInst::ICMP_SLT;
5840 Changed = true;
5841 }
5842 break;
5843 case ICmpInst::ICMP_SGE:
5844 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005845 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005846 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005847 Pred = ICmpInst::ICMP_SGT;
5848 Changed = true;
5849 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5850 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005851 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005852 Pred = ICmpInst::ICMP_SGT;
5853 Changed = true;
5854 }
5855 break;
5856 case ICmpInst::ICMP_ULE:
5857 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005858 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005859 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005860 Pred = ICmpInst::ICMP_ULT;
5861 Changed = true;
5862 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005863 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005864 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005865 Pred = ICmpInst::ICMP_ULT;
5866 Changed = true;
5867 }
5868 break;
5869 case ICmpInst::ICMP_UGE:
5870 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005871 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005872 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005873 Pred = ICmpInst::ICMP_UGT;
5874 Changed = true;
5875 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005876 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005877 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005878 Pred = ICmpInst::ICMP_UGT;
5879 Changed = true;
5880 }
5881 break;
5882 default:
5883 break;
5884 }
5885
Dan Gohmane9796502010-04-24 01:28:42 +00005886 // TODO: More simplifications are possible here.
5887
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005888 // Recursively simplify until we either hit a recursion limit or nothing
5889 // changes.
5890 if (Changed)
5891 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5892
Dan Gohmane9796502010-04-24 01:28:42 +00005893 return Changed;
5894
5895trivially_true:
5896 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005897 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005898 Pred = ICmpInst::ICMP_EQ;
5899 return true;
5900
5901trivially_false:
5902 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005903 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005904 Pred = ICmpInst::ICMP_NE;
5905 return true;
5906}
5907
Dan Gohman85b05a22009-07-13 21:35:55 +00005908bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5909 return getSignedRange(S).getSignedMax().isNegative();
5910}
5911
5912bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5913 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5914}
5915
5916bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5917 return !getSignedRange(S).getSignedMin().isNegative();
5918}
5919
5920bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5921 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5922}
5923
5924bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5925 return isKnownNegative(S) || isKnownPositive(S);
5926}
5927
5928bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5929 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005930 // Canonicalize the inputs first.
5931 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5932
Dan Gohman53c66ea2010-04-11 22:16:48 +00005933 // If LHS or RHS is an addrec, check to see if the condition is true in
5934 // every iteration of the loop.
5935 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5936 if (isLoopEntryGuardedByCond(
5937 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5938 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005939 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005940 return true;
5941 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5942 if (isLoopEntryGuardedByCond(
5943 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5944 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005945 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005946 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005947
Dan Gohman53c66ea2010-04-11 22:16:48 +00005948 // Otherwise see what can be done with known constant ranges.
5949 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5950}
5951
5952bool
5953ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5954 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005955 if (HasSameValue(LHS, RHS))
5956 return ICmpInst::isTrueWhenEqual(Pred);
5957
Dan Gohman53c66ea2010-04-11 22:16:48 +00005958 // This code is split out from isKnownPredicate because it is called from
5959 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005960 switch (Pred) {
5961 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005962 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005963 case ICmpInst::ICMP_SGT:
5964 Pred = ICmpInst::ICMP_SLT;
5965 std::swap(LHS, RHS);
5966 case ICmpInst::ICMP_SLT: {
5967 ConstantRange LHSRange = getSignedRange(LHS);
5968 ConstantRange RHSRange = getSignedRange(RHS);
5969 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5970 return true;
5971 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5972 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005973 break;
5974 }
5975 case ICmpInst::ICMP_SGE:
5976 Pred = ICmpInst::ICMP_SLE;
5977 std::swap(LHS, RHS);
5978 case ICmpInst::ICMP_SLE: {
5979 ConstantRange LHSRange = getSignedRange(LHS);
5980 ConstantRange RHSRange = getSignedRange(RHS);
5981 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5982 return true;
5983 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5984 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005985 break;
5986 }
5987 case ICmpInst::ICMP_UGT:
5988 Pred = ICmpInst::ICMP_ULT;
5989 std::swap(LHS, RHS);
5990 case ICmpInst::ICMP_ULT: {
5991 ConstantRange LHSRange = getUnsignedRange(LHS);
5992 ConstantRange RHSRange = getUnsignedRange(RHS);
5993 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5994 return true;
5995 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5996 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005997 break;
5998 }
5999 case ICmpInst::ICMP_UGE:
6000 Pred = ICmpInst::ICMP_ULE;
6001 std::swap(LHS, RHS);
6002 case ICmpInst::ICMP_ULE: {
6003 ConstantRange LHSRange = getUnsignedRange(LHS);
6004 ConstantRange RHSRange = getUnsignedRange(RHS);
6005 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6006 return true;
6007 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6008 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006009 break;
6010 }
6011 case ICmpInst::ICMP_NE: {
6012 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6013 return true;
6014 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6015 return true;
6016
6017 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6018 if (isKnownNonZero(Diff))
6019 return true;
6020 break;
6021 }
6022 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00006023 // The check at the top of the function catches the case where
6024 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00006025 break;
6026 }
6027 return false;
6028}
6029
6030/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6031/// protected by a conditional between LHS and RHS. This is used to
6032/// to eliminate casts.
6033bool
6034ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6035 ICmpInst::Predicate Pred,
6036 const SCEV *LHS, const SCEV *RHS) {
6037 // Interpret a null as meaning no loop, where there is obviously no guard
6038 // (interprocedural conditions notwithstanding).
6039 if (!L) return true;
6040
6041 BasicBlock *Latch = L->getLoopLatch();
6042 if (!Latch)
6043 return false;
6044
6045 BranchInst *LoopContinuePredicate =
6046 dyn_cast<BranchInst>(Latch->getTerminator());
6047 if (!LoopContinuePredicate ||
6048 LoopContinuePredicate->isUnconditional())
6049 return false;
6050
Dan Gohmanaf08a362010-08-10 23:46:30 +00006051 return isImpliedCond(Pred, LHS, RHS,
6052 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006053 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006054}
6055
Dan Gohman3948d0b2010-04-11 19:27:13 +00006056/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006057/// by a conditional between LHS and RHS. This is used to help avoid max
6058/// expressions in loop trip counts, and to eliminate casts.
6059bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006060ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6061 ICmpInst::Predicate Pred,
6062 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006063 // Interpret a null as meaning no loop, where there is obviously no guard
6064 // (interprocedural conditions notwithstanding).
6065 if (!L) return false;
6066
Dan Gohman859b4822009-05-18 15:36:09 +00006067 // Starting at the loop predecessor, climb up the predecessor chain, as long
6068 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006069 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006070 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006071 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006072 Pair.first;
6073 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006074
6075 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006076 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006077 if (!LoopEntryPredicate ||
6078 LoopEntryPredicate->isUnconditional())
6079 continue;
6080
Dan Gohmanaf08a362010-08-10 23:46:30 +00006081 if (isImpliedCond(Pred, LHS, RHS,
6082 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006083 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006084 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006085 }
6086
Dan Gohman38372182008-08-12 20:17:31 +00006087 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006088}
6089
Andrew Trick8aa22012012-05-19 00:48:25 +00006090/// RAII wrapper to prevent recursive application of isImpliedCond.
6091/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6092/// currently evaluating isImpliedCond.
6093struct MarkPendingLoopPredicate {
6094 Value *Cond;
6095 DenseSet<Value*> &LoopPreds;
6096 bool Pending;
6097
6098 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6099 : Cond(C), LoopPreds(LP) {
6100 Pending = !LoopPreds.insert(Cond).second;
6101 }
6102 ~MarkPendingLoopPredicate() {
6103 if (!Pending)
6104 LoopPreds.erase(Cond);
6105 }
6106};
6107
Dan Gohman0f4b2852009-07-21 23:03:19 +00006108/// isImpliedCond - Test whether the condition described by Pred, LHS,
6109/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006110bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006111 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006112 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006113 bool Inverse) {
Andrew Trick8aa22012012-05-19 00:48:25 +00006114 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6115 if (Mark.Pending)
6116 return false;
6117
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006118 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006119 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006120 if (BO->getOpcode() == Instruction::And) {
6121 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006122 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6123 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006124 } else if (BO->getOpcode() == Instruction::Or) {
6125 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006126 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6127 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006128 }
6129 }
6130
Dan Gohmanaf08a362010-08-10 23:46:30 +00006131 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006132 if (!ICI) return false;
6133
Dan Gohman85b05a22009-07-13 21:35:55 +00006134 // Bail if the ICmp's operands' types are wider than the needed type
6135 // before attempting to call getSCEV on them. This avoids infinite
6136 // recursion, since the analysis of widening casts can require loop
6137 // exit condition information for overflow checking, which would
6138 // lead back here.
6139 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006140 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006141 return false;
6142
Andrew Trickffc9ee42012-11-29 18:35:13 +00006143 // Now that we found a conditional branch that dominates the loop or controls
6144 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman0f4b2852009-07-21 23:03:19 +00006145 ICmpInst::Predicate FoundPred;
6146 if (Inverse)
6147 FoundPred = ICI->getInversePredicate();
6148 else
6149 FoundPred = ICI->getPredicate();
6150
6151 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6152 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006153
6154 // Balance the types. The case where FoundLHS' type is wider than
6155 // LHS' type is checked for above.
6156 if (getTypeSizeInBits(LHS->getType()) >
6157 getTypeSizeInBits(FoundLHS->getType())) {
6158 if (CmpInst::isSigned(Pred)) {
6159 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6160 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6161 } else {
6162 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6163 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6164 }
6165 }
6166
Dan Gohman0f4b2852009-07-21 23:03:19 +00006167 // Canonicalize the query to match the way instcombine will have
6168 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006169 if (SimplifyICmpOperands(Pred, LHS, RHS))
6170 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006171 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramer7d4253a2012-11-29 19:07:57 +00006172 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6173 if (FoundLHS == FoundRHS)
6174 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006175
6176 // Check to see if we can make the LHS or RHS match.
6177 if (LHS == FoundRHS || RHS == FoundLHS) {
6178 if (isa<SCEVConstant>(RHS)) {
6179 std::swap(FoundLHS, FoundRHS);
6180 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6181 } else {
6182 std::swap(LHS, RHS);
6183 Pred = ICmpInst::getSwappedPredicate(Pred);
6184 }
6185 }
6186
6187 // Check whether the found predicate is the same as the desired predicate.
6188 if (FoundPred == Pred)
6189 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6190
6191 // Check whether swapping the found predicate makes it the same as the
6192 // desired predicate.
6193 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6194 if (isa<SCEVConstant>(RHS))
6195 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6196 else
6197 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6198 RHS, LHS, FoundLHS, FoundRHS);
6199 }
6200
6201 // Check whether the actual condition is beyond sufficient.
6202 if (FoundPred == ICmpInst::ICMP_EQ)
6203 if (ICmpInst::isTrueWhenEqual(Pred))
6204 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6205 return true;
6206 if (Pred == ICmpInst::ICMP_NE)
6207 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6208 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6209 return true;
6210
6211 // Otherwise assume the worst.
6212 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006213}
6214
Dan Gohman0f4b2852009-07-21 23:03:19 +00006215/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006216/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006217/// and FoundRHS is true.
6218bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6219 const SCEV *LHS, const SCEV *RHS,
6220 const SCEV *FoundLHS,
6221 const SCEV *FoundRHS) {
6222 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6223 FoundLHS, FoundRHS) ||
6224 // ~x < ~y --> x > y
6225 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6226 getNotSCEV(FoundRHS),
6227 getNotSCEV(FoundLHS));
6228}
6229
6230/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006231/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006232/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006233bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006234ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6235 const SCEV *LHS, const SCEV *RHS,
6236 const SCEV *FoundLHS,
6237 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006238 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006239 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6240 case ICmpInst::ICMP_EQ:
6241 case ICmpInst::ICMP_NE:
6242 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6243 return true;
6244 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006245 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006246 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006247 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6248 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006249 return true;
6250 break;
6251 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006252 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006253 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6254 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006255 return true;
6256 break;
6257 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006258 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006259 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6260 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006261 return true;
6262 break;
6263 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006264 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006265 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6266 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006267 return true;
6268 break;
6269 }
6270
6271 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006272}
6273
Dan Gohman51f53b72009-06-21 23:46:38 +00006274/// getBECount - Subtract the end and start values and divide by the step,
6275/// rounding up, to get the number of times the backedge is executed. Return
6276/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006277const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006278 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006279 const SCEV *Step,
6280 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006281 assert(!isKnownNegative(Step) &&
6282 "This code doesn't handle negative strides yet!");
6283
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006284 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006285
6286 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6287 // here because SCEV may not be able to determine that the unsigned division
6288 // after rounding is zero.
6289 if (Start == End)
6290 return getConstant(Ty, 0);
6291
Dan Gohmandeff6212010-05-03 22:09:21 +00006292 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006293 const SCEV *Diff = getMinusSCEV(End, Start);
6294 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006295
6296 // Add an adjustment to the difference between End and Start so that
6297 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006298 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006299
Dan Gohman1f96e672009-09-17 18:05:20 +00006300 if (!NoWrap) {
6301 // Check Add for unsigned overflow.
6302 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006303 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006304 getTypeSizeInBits(Ty) + 1);
6305 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6306 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6307 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6308 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6309 return getCouldNotCompute();
6310 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006311
6312 return getUDivExpr(Add, Step);
6313}
6314
Chris Lattnerdb25de42005-08-15 23:33:51 +00006315/// HowManyLessThans - Return the number of times a backedge containing the
6316/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006317/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00006318ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006319ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6320 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006321 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006322 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006323
Dan Gohman35738ac2009-05-04 22:30:44 +00006324 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006325 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006326 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006327
Dan Gohman1f96e672009-09-17 18:05:20 +00006328 // Check to see if we have a flag which makes analysis easy.
Nick Lewycky89d093d2011-11-09 07:11:37 +00006329 bool NoWrap = isSigned ?
6330 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6331 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
Dan Gohman1f96e672009-09-17 18:05:20 +00006332
Chris Lattnerdb25de42005-08-15 23:33:51 +00006333 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006334 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006335 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006336
Dan Gohman52fddd32010-01-26 04:40:18 +00006337 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006338 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006339 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006340 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006341 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006342 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006343 // value and past the maximum value for its type in a single step.
6344 // Note that it's not sufficient to check NoWrap here, because even
6345 // though the value after a wrap is undefined, it's not undefined
6346 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006347 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006348 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006349 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006350 if (isSigned) {
6351 APInt Max = APInt::getSignedMaxValue(BitWidth);
6352 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6353 .slt(getSignedRange(RHS).getSignedMax()))
6354 return getCouldNotCompute();
6355 } else {
6356 APInt Max = APInt::getMaxValue(BitWidth);
6357 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6358 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6359 return getCouldNotCompute();
6360 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006361 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006362 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006363 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006364
Dan Gohmana1af7572009-04-30 20:47:05 +00006365 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6366 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6367 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006368 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006369
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006370 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006371 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006372
Dan Gohmana1af7572009-04-30 20:47:05 +00006373 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006374 const SCEV *MinStart = getConstant(isSigned ?
6375 getSignedRange(Start).getSignedMin() :
6376 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006377
Dan Gohmana1af7572009-04-30 20:47:05 +00006378 // If we know that the condition is true in order to enter the loop,
6379 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006380 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6381 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006382 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006383 if (!isLoopEntryGuardedByCond(L,
6384 isSigned ? ICmpInst::ICMP_SLT :
6385 ICmpInst::ICMP_ULT,
6386 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006387 End = isSigned ? getSMaxExpr(RHS, Start)
6388 : getUMaxExpr(RHS, Start);
6389
6390 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006391 const SCEV *MaxEnd = getConstant(isSigned ?
6392 getSignedRange(End).getSignedMax() :
6393 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006394
Dan Gohman52fddd32010-01-26 04:40:18 +00006395 // If MaxEnd is within a step of the maximum integer value in its type,
6396 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006397 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006398 // compute the correct value.
6399 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006400 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006401 MaxEnd = isSigned ?
6402 getSMinExpr(MaxEnd,
6403 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6404 StepMinusOne)) :
6405 getUMinExpr(MaxEnd,
6406 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6407 StepMinusOne));
6408
Dan Gohmana1af7572009-04-30 20:47:05 +00006409 // Finally, we subtract these two values and divide, rounding up, to get
6410 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006411 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006412
6413 // The maximum backedge count is similar, except using the minimum start
6414 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006415 // If we already have an exact constant BECount, use it instead.
6416 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6417 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6418
6419 // If the stride is nonconstant, and NoWrap == true, then
6420 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6421 // exact BECount and invalid MaxBECount, which should be avoided to catch
6422 // more optimization opportunities.
6423 if (isa<SCEVCouldNotCompute>(MaxBECount))
6424 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006425
Andrew Trick5116ff62011-07-26 17:19:55 +00006426 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006427 }
6428
Dan Gohman1c343752009-06-27 21:21:31 +00006429 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006430}
6431
Chris Lattner53e677a2004-04-02 20:23:17 +00006432/// getNumIterationsInRange - Return the number of iterations of this loop that
6433/// produce values in the specified constant range. Another way of looking at
6434/// this is that it returns the first iteration number where the value is not in
6435/// the condition, thus computing the exit count. If the iteration count can't
6436/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006437const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006438 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006439 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006440 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006441
6442 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006443 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006444 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006445 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006446 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006447 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006448 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006449 if (const SCEVAddRecExpr *ShiftedAddRec =
6450 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006451 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006452 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006453 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006454 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006455 }
6456
6457 // The only time we can solve this is when we have all constant indices.
6458 // Otherwise, we cannot determine the overflow conditions.
6459 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6460 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006461 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006462
6463
6464 // Okay at this point we know that all elements of the chrec are constants and
6465 // that the start element is zero.
6466
6467 // First check to see if the range contains zero. If not, the first
6468 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006469 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006470 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006471 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006472
Chris Lattner53e677a2004-04-02 20:23:17 +00006473 if (isAffine()) {
6474 // If this is an affine expression then we have this situation:
6475 // Solve {0,+,A} in Range === Ax in Range
6476
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006477 // We know that zero is in the range. If A is positive then we know that
6478 // the upper value of the range must be the first possible exit value.
6479 // If A is negative then the lower of the range is the last possible loop
6480 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006481 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006482 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6483 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006484
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006485 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006486 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006487 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006488
6489 // Evaluate at the exit value. If we really did fall out of the valid
6490 // range, then we computed our trip count, otherwise wrap around or other
6491 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006492 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006493 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006494 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006495
6496 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006497 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006498 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006499 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006500 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006501 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006502 } else if (isQuadratic()) {
6503 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6504 // quadratic equation to solve it. To do this, we must frame our problem in
6505 // terms of figuring out when zero is crossed, instead of when
6506 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006507 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006508 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006509 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6510 // getNoWrapFlags(FlagNW)
6511 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006512
6513 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006514 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006515 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006516 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6517 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006518 if (R1) {
6519 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006520 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006521 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006522 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006523 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006524 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006525
Chris Lattner53e677a2004-04-02 20:23:17 +00006526 // Make sure the root is not off by one. The returned iteration should
6527 // not be in the range, but the previous one should be. When solving
6528 // for "X*X < 5", for example, we should not return a root of 2.
6529 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006530 R1->getValue(),
6531 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006532 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006533 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006534 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006535 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006536
Dan Gohman246b2562007-10-22 18:31:58 +00006537 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006538 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006539 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006540 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006541 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006542
Chris Lattner53e677a2004-04-02 20:23:17 +00006543 // If R1 was not in the range, then it is a good return value. Make
6544 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006545 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006546 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006547 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006548 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006549 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006550 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006551 }
6552 }
6553 }
6554
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006555 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006556}
6557
6558
6559
6560//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006561// SCEVCallbackVH Class Implementation
6562//===----------------------------------------------------------------------===//
6563
Dan Gohman1959b752009-05-19 19:22:47 +00006564void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006565 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006566 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6567 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006568 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006569 // this now dangles!
6570}
6571
Dan Gohman81f91212010-07-28 01:09:07 +00006572void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006573 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006574
Dan Gohman35738ac2009-05-04 22:30:44 +00006575 // Forget all the expressions associated with users of the old value,
6576 // so that future queries will recompute the expressions using the new
6577 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006578 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006579 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006580 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006581 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6582 UI != UE; ++UI)
6583 Worklist.push_back(*UI);
6584 while (!Worklist.empty()) {
6585 User *U = Worklist.pop_back_val();
6586 // Deleting the Old value will cause this to dangle. Postpone
6587 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006588 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006589 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006590 if (!Visited.insert(U))
6591 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006592 if (PHINode *PN = dyn_cast<PHINode>(U))
6593 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006594 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006595 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6596 UI != UE; ++UI)
6597 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006598 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006599 // Delete the Old value.
6600 if (PHINode *PN = dyn_cast<PHINode>(Old))
6601 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006602 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006603 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006604}
6605
Dan Gohman1959b752009-05-19 19:22:47 +00006606ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006607 : CallbackVH(V), SE(se) {}
6608
6609//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006610// ScalarEvolution Class Implementation
6611//===----------------------------------------------------------------------===//
6612
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006613ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006614 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006615 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006616}
6617
Chris Lattner53e677a2004-04-02 20:23:17 +00006618bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006619 this->F = &F;
6620 LI = &getAnalysis<LoopInfo>();
Micah Villmow3574eca2012-10-08 16:38:25 +00006621 TD = getAnalysisIfAvailable<DataLayout>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006622 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006623 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006624 return false;
6625}
6626
6627void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006628 // Iterate through all the SCEVUnknown instances and call their
6629 // destructors, so that they release their references to their values.
6630 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6631 U->~SCEVUnknown();
6632 FirstUnknown = 0;
6633
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006634 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006635
6636 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6637 // that a loop had multiple computable exits.
6638 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6639 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6640 I != E; ++I) {
6641 I->second.clear();
6642 }
6643
Andrew Trick8aa22012012-05-19 00:48:25 +00006644 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6645
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006646 BackedgeTakenCounts.clear();
6647 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006648 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006649 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006650 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006651 UnsignedRanges.clear();
6652 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006653 UniqueSCEVs.clear();
6654 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006655}
6656
6657void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6658 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006659 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006660 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006661 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006662}
6663
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006664bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006665 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006666}
6667
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006668static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006669 const Loop *L) {
6670 // Print all inner loops first
6671 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6672 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006673
Dan Gohman30733292010-01-09 18:17:45 +00006674 OS << "Loop ";
6675 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6676 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006677
Dan Gohman5d984912009-12-18 01:14:11 +00006678 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006679 L->getExitBlocks(ExitBlocks);
6680 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006681 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006682
Dan Gohman46bdfb02009-02-24 18:55:53 +00006683 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6684 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006685 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006686 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006687 }
6688
Dan Gohman30733292010-01-09 18:17:45 +00006689 OS << "\n"
6690 "Loop ";
6691 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6692 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006693
6694 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6695 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6696 } else {
6697 OS << "Unpredictable max backedge-taken count. ";
6698 }
6699
6700 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006701}
6702
Dan Gohman5d984912009-12-18 01:14:11 +00006703void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006704 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006705 // out SCEV values of all instructions that are interesting. Doing
6706 // this potentially causes it to create new SCEV objects though,
6707 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006708 // observable from outside the class though, so casting away the
6709 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006710 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006711
Dan Gohman30733292010-01-09 18:17:45 +00006712 OS << "Classifying expressions for: ";
6713 WriteAsOperand(OS, F, /*PrintType=*/false);
6714 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006715 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006716 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006717 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006718 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006719 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006720 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006721
Dan Gohman0c689c52009-06-19 17:49:54 +00006722 const Loop *L = LI->getLoopFor((*I).getParent());
6723
Dan Gohman0bba49c2009-07-07 17:06:11 +00006724 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006725 if (AtUse != SV) {
6726 OS << " --> ";
6727 AtUse->print(OS);
6728 }
6729
6730 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006731 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006732 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006733 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006734 OS << "<<Unknown>>";
6735 } else {
6736 OS << *ExitValue;
6737 }
6738 }
6739
Chris Lattner53e677a2004-04-02 20:23:17 +00006740 OS << "\n";
6741 }
6742
Dan Gohman30733292010-01-09 18:17:45 +00006743 OS << "Determining loop execution counts for: ";
6744 WriteAsOperand(OS, F, /*PrintType=*/false);
6745 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006746 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6747 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006748}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006749
Dan Gohman714b5292010-11-17 23:21:44 +00006750ScalarEvolution::LoopDisposition
6751ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6752 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6753 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6754 Values.insert(std::make_pair(L, LoopVariant));
6755 if (!Pair.second)
6756 return Pair.first->second;
6757
6758 LoopDisposition D = computeLoopDisposition(S, L);
6759 return LoopDispositions[S][L] = D;
6760}
6761
6762ScalarEvolution::LoopDisposition
6763ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006764 switch (S->getSCEVType()) {
6765 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006766 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006767 case scTruncate:
6768 case scZeroExtend:
6769 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006770 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006771 case scAddRecExpr: {
6772 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6773
Dan Gohman714b5292010-11-17 23:21:44 +00006774 // If L is the addrec's loop, it's computable.
6775 if (AR->getLoop() == L)
6776 return LoopComputable;
6777
Dan Gohman17ead4f2010-11-17 21:23:15 +00006778 // Add recurrences are never invariant in the function-body (null loop).
6779 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006780 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006781
6782 // This recurrence is variant w.r.t. L if L contains AR's loop.
6783 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006784 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006785
6786 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6787 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006788 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006789
6790 // This recurrence is variant w.r.t. L if any of its operands
6791 // are variant.
6792 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6793 I != E; ++I)
6794 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006795 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006796
6797 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006798 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006799 }
6800 case scAddExpr:
6801 case scMulExpr:
6802 case scUMaxExpr:
6803 case scSMaxExpr: {
6804 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006805 bool HasVarying = false;
6806 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6807 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006808 LoopDisposition D = getLoopDisposition(*I, L);
6809 if (D == LoopVariant)
6810 return LoopVariant;
6811 if (D == LoopComputable)
6812 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006813 }
Dan Gohman714b5292010-11-17 23:21:44 +00006814 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006815 }
6816 case scUDivExpr: {
6817 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006818 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6819 if (LD == LoopVariant)
6820 return LoopVariant;
6821 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6822 if (RD == LoopVariant)
6823 return LoopVariant;
6824 return (LD == LoopInvariant && RD == LoopInvariant) ?
6825 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006826 }
6827 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006828 // All non-instruction values are loop invariant. All instructions are loop
6829 // invariant if they are not contained in the specified loop.
6830 // Instructions are never considered invariant in the function body
6831 // (null loop) because they are defined within the "loop".
6832 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6833 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6834 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006835 case scCouldNotCompute:
6836 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006837 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006838 }
Dan Gohman714b5292010-11-17 23:21:44 +00006839}
6840
6841bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6842 return getLoopDisposition(S, L) == LoopInvariant;
6843}
6844
6845bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6846 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006847}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006848
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006849ScalarEvolution::BlockDisposition
6850ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6851 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6852 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6853 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6854 if (!Pair.second)
6855 return Pair.first->second;
6856
6857 BlockDisposition D = computeBlockDisposition(S, BB);
6858 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006859}
6860
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006861ScalarEvolution::BlockDisposition
6862ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006863 switch (S->getSCEVType()) {
6864 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006865 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006866 case scTruncate:
6867 case scZeroExtend:
6868 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006869 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006870 case scAddRecExpr: {
6871 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006872 // to test for proper dominance too, because the instruction which
6873 // produces the addrec's value is a PHI, and a PHI effectively properly
6874 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006875 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6876 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006877 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006878 }
6879 // FALL THROUGH into SCEVNAryExpr handling.
6880 case scAddExpr:
6881 case scMulExpr:
6882 case scUMaxExpr:
6883 case scSMaxExpr: {
6884 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006885 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006886 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006887 I != E; ++I) {
6888 BlockDisposition D = getBlockDisposition(*I, BB);
6889 if (D == DoesNotDominateBlock)
6890 return DoesNotDominateBlock;
6891 if (D == DominatesBlock)
6892 Proper = false;
6893 }
6894 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006895 }
6896 case scUDivExpr: {
6897 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006898 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6899 BlockDisposition LD = getBlockDisposition(LHS, BB);
6900 if (LD == DoesNotDominateBlock)
6901 return DoesNotDominateBlock;
6902 BlockDisposition RD = getBlockDisposition(RHS, BB);
6903 if (RD == DoesNotDominateBlock)
6904 return DoesNotDominateBlock;
6905 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6906 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006907 }
6908 case scUnknown:
6909 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006910 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6911 if (I->getParent() == BB)
6912 return DominatesBlock;
6913 if (DT->properlyDominates(I->getParent(), BB))
6914 return ProperlyDominatesBlock;
6915 return DoesNotDominateBlock;
6916 }
6917 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006918 case scCouldNotCompute:
6919 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Andrew Trickeb6dd232012-03-26 22:33:59 +00006920 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +00006921 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006922 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006923}
6924
6925bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6926 return getBlockDisposition(S, BB) >= DominatesBlock;
6927}
6928
6929bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6930 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006931}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006932
Andrew Trick8b7036b2012-07-13 23:33:03 +00006933namespace {
6934// Search for a SCEV expression node within an expression tree.
6935// Implements SCEVTraversal::Visitor.
6936struct SCEVSearch {
6937 const SCEV *Node;
6938 bool IsFound;
6939
6940 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
6941
6942 bool follow(const SCEV *S) {
6943 IsFound |= (S == Node);
6944 return !IsFound;
6945 }
6946 bool isDone() const { return IsFound; }
6947};
6948}
6949
Dan Gohman4ce32db2010-11-17 22:27:42 +00006950bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick8b7036b2012-07-13 23:33:03 +00006951 SCEVSearch Search(Op);
6952 visitAll(S, Search);
6953 return Search.IsFound;
Dan Gohman4ce32db2010-11-17 22:27:42 +00006954}
Dan Gohman56a75682010-11-17 23:28:48 +00006955
6956void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6957 ValuesAtScopes.erase(S);
6958 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006959 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006960 UnsignedRanges.erase(S);
6961 SignedRanges.erase(S);
Andrew Tricke74c2e82013-03-26 03:14:53 +00006962
6963 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6964 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
6965 BackedgeTakenInfo &BEInfo = I->second;
6966 if (BEInfo.hasOperand(S, this)) {
6967 BEInfo.clear();
6968 BackedgeTakenCounts.erase(I++);
6969 }
6970 else
6971 ++I;
6972 }
Dan Gohman56a75682010-11-17 23:28:48 +00006973}
Benjamin Kramerff183102012-10-26 17:31:32 +00006974
6975typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramercb8b8ea2012-10-27 10:45:01 +00006976
6977/// replaceSubString - Replaces all occurences of From in Str with To.
6978static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
6979 size_t Pos = 0;
6980 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
6981 Str.replace(Pos, From.size(), To.data(), To.size());
6982 Pos += To.size();
6983 }
6984}
6985
Benjamin Kramerff183102012-10-26 17:31:32 +00006986/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
6987static void
6988getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
6989 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
6990 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
6991
6992 std::string &S = Map[L];
6993 if (S.empty()) {
6994 raw_string_ostream OS(S);
6995 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramercb8b8ea2012-10-27 10:45:01 +00006996
6997 // false and 0 are semantically equivalent. This can happen in dead loops.
6998 replaceSubString(OS.str(), "false", "0");
6999 // Remove wrap flags, their use in SCEV is highly fragile.
7000 // FIXME: Remove this when SCEV gets smarter about them.
7001 replaceSubString(OS.str(), "<nw>", "");
7002 replaceSubString(OS.str(), "<nsw>", "");
7003 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramerff183102012-10-26 17:31:32 +00007004 }
7005 }
7006}
7007
7008void ScalarEvolution::verifyAnalysis() const {
7009 if (!VerifySCEV)
7010 return;
7011
7012 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7013
7014 // Gather stringified backedge taken counts for all loops using SCEV's caches.
7015 // FIXME: It would be much better to store actual values instead of strings,
7016 // but SCEV pointers will change if we drop the caches.
7017 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
7018 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7019 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
7020
7021 // Gather stringified backedge taken counts for all loops without using
7022 // SCEV's caches.
7023 SE.releaseMemory();
7024 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7025 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
7026
7027 // Now compare whether they're the same with and without caches. This allows
7028 // verifying that no pass changed the cache.
7029 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
7030 "New loops suddenly appeared!");
7031
7032 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7033 OldE = BackedgeDumpsOld.end(),
7034 NewI = BackedgeDumpsNew.begin();
7035 OldI != OldE; ++OldI, ++NewI) {
7036 assert(OldI->first == NewI->first && "Loop order changed!");
7037
7038 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7039 // changes.
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007040 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramerff183102012-10-26 17:31:32 +00007041 // means that a pass is buggy or SCEV has to learn a new pattern but is
7042 // usually not harmful.
7043 if (OldI->second != NewI->second &&
7044 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007045 NewI->second.find("undef") == std::string::npos &&
7046 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramerff183102012-10-26 17:31:32 +00007047 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007048 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramerff183102012-10-26 17:31:32 +00007049 << OldI->first->getHeader()->getName()
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007050 << "' changed from '" << OldI->second
7051 << "' to '" << NewI->second << "'!\n";
Benjamin Kramerff183102012-10-26 17:31:32 +00007052 std::abort();
7053 }
7054 }
7055
7056 // TODO: Verify more things.
7057}