blob: 83f01945ea21ba9c698af67791baf427a49629f9 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000018#include "X86.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86RegisterInfo.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000020#include "llvm/ADT/DenseMap.h"
Dan Gohman1e57df32008-02-10 18:45:23 +000021#include "llvm/Target/TargetRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022
23namespace llvm {
24 class X86RegisterInfo;
25 class X86TargetMachine;
26
27namespace X86 {
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
30 enum CondCode {
31 COND_A = 0,
32 COND_AE = 1,
33 COND_B = 2,
34 COND_BE = 3,
35 COND_E = 4,
36 COND_G = 5,
37 COND_GE = 6,
38 COND_L = 7,
39 COND_LE = 8,
40 COND_NE = 9,
41 COND_NO = 10,
42 COND_NP = 11,
43 COND_NS = 12,
Dan Gohman0fc9ed62009-01-07 00:15:08 +000044 COND_O = 13,
45 COND_P = 14,
46 COND_S = 15,
Dan Gohman6a00fcb2008-10-21 03:29:32 +000047
48 // Artificial condition codes. These are used by AnalyzeBranch
49 // to indicate a block terminated with two conditional branches to
50 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51 // which can't be represented on x86 with a single condition. These
52 // are never used in MachineInstrs.
53 COND_NE_OR_P,
54 COND_NP_OR_E,
55
Dan Gohmanf17a25c2007-07-18 16:29:46 +000056 COND_INVALID
57 };
Christopher Lambb371e032008-03-13 05:47:01 +000058
Dan Gohmanf17a25c2007-07-18 16:29:46 +000059 // Turn condition code into conditional branch opcode.
60 unsigned GetCondBranchFromCond(CondCode CC);
61
62 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63 /// e.g. turning COND_E to COND_NE.
64 CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
66}
67
68/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
72 enum {
73 //===------------------------------------------------------------------===//
Chris Lattner13d6c2d2009-06-25 17:38:33 +000074 // X86 Specific MachineOperand flags.
75
76 MO_NO_FLAG = 0,
77
78 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
79 /// relocation of:
Chris Lattner7ae15ea2009-06-26 00:43:52 +000080 /// SYMBOL_LABEL + [. - PICBASELABEL]
Chris Lattner13d6c2d2009-06-25 17:38:33 +000081 MO_GOT_ABSOLUTE_ADDRESS = 1,
82
Chris Lattner7ae15ea2009-06-26 00:43:52 +000083 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
84 /// immediate should get the value of the symbol minus the PIC base label:
85 /// SYMBOL_LABEL - PICBASELABEL
86 MO_PIC_BASE_OFFSET = 2,
87
Chris Lattnerec7cfd42009-06-26 21:20:29 +000088 /// MO_GOT - On a symbol operand this indicates that the immediate is the
89 /// offset to the GOT entry for the symbol name from the base of the GOT.
90 ///
91 /// See the X86-64 ELF ABI supplement for more details.
92 /// SYMBOL_LABEL @GOT
93 MO_GOT = 3,
Chris Lattner7ae15ea2009-06-26 00:43:52 +000094
Chris Lattnerec7cfd42009-06-26 21:20:29 +000095 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
96 /// the offset to the location of the symbol name from the base of the GOT.
97 ///
98 /// See the X86-64 ELF ABI supplement for more details.
99 /// SYMBOL_LABEL @GOTOFF
100 MO_GOTOFF = 4,
101
102 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
103 /// offset to the GOT entry for the symbol name from the current code
104 /// location.
105 ///
106 /// See the X86-64 ELF ABI supplement for more details.
107 /// SYMBOL_LABEL @GOTPCREL
108 MO_GOTPCREL = 5,
109
110 /// MO_PLT - On a symbol operand this indicates that the immediate is
111 /// offset to the PLT entry of symbol name from the current code location.
112 ///
113 /// See the X86-64 ELF ABI supplement for more details.
114 /// SYMBOL_LABEL @PLT
115 MO_PLT = 6,
116
117 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
118 /// some TLS offset.
119 ///
120 /// See 'ELF Handling for Thread-Local Storage' for more details.
121 /// SYMBOL_LABEL @TLSGD
122 MO_TLSGD = 7,
123
124 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
125 /// some TLS offset.
126 ///
127 /// See 'ELF Handling for Thread-Local Storage' for more details.
128 /// SYMBOL_LABEL @GOTTPOFF
129 MO_GOTTPOFF = 8,
130
131 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
132 /// some TLS offset.
133 ///
134 /// See 'ELF Handling for Thread-Local Storage' for more details.
135 /// SYMBOL_LABEL @INDNTPOFF
136 MO_INDNTPOFF = 9,
137
138 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
139 /// some TLS offset.
140 ///
141 /// See 'ELF Handling for Thread-Local Storage' for more details.
142 /// SYMBOL_LABEL @TPOFF
143 MO_TPOFF = 10,
144
145 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
146 /// some TLS offset.
147 ///
148 /// See 'ELF Handling for Thread-Local Storage' for more details.
149 /// SYMBOL_LABEL @NTPOFF
150 MO_NTPOFF = 11,
Chris Lattner13d6c2d2009-06-25 17:38:33 +0000151
152 //===------------------------------------------------------------------===//
153 // Instruction encodings. These are the standard/most common forms for X86
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000154 // instructions.
155 //
156
157 // PseudoFrm - This represents an instruction that is a pseudo instruction
158 // or one that has not been implemented yet. It is illegal to code generate
159 // it, but tolerated for intermediate implementation stages.
160 Pseudo = 0,
161
162 /// Raw - This form is for instructions that don't have any operands, so
163 /// they are just a fixed opcode value, like 'leave'.
164 RawFrm = 1,
165
166 /// AddRegFrm - This form is used for instructions like 'push r32' that have
167 /// their one register operand added to their opcode.
168 AddRegFrm = 2,
169
170 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
171 /// to specify a destination, which in this case is a register.
172 ///
173 MRMDestReg = 3,
174
175 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
176 /// to specify a destination, which in this case is memory.
177 ///
178 MRMDestMem = 4,
179
180 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
181 /// to specify a source, which in this case is a register.
182 ///
183 MRMSrcReg = 5,
184
185 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
186 /// to specify a source, which in this case is memory.
187 ///
188 MRMSrcMem = 6,
189
190 /// MRM[0-7][rm] - These forms are used to represent instructions that use
191 /// a Mod/RM byte, and use the middle field to hold extended opcode
192 /// information. In the intel manual these are represented as /0, /1, ...
193 ///
194
195 // First, instructions that operate on a register r/m operand...
196 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
197 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
198
199 // Next, instructions that operate on a memory r/m operand...
200 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
201 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
202
203 // MRMInitReg - This form is used for instructions whose source and
204 // destinations are the same register.
205 MRMInitReg = 32,
206
207 FormMask = 63,
208
209 //===------------------------------------------------------------------===//
210 // Actual flags...
211
212 // OpSize - Set if this instruction requires an operand size prefix (0x66),
213 // which most often indicates that the instruction operates on 16 bit data
214 // instead of 32 bit data.
215 OpSize = 1 << 6,
216
217 // AsSize - Set if this instruction requires an operand size prefix (0x67),
218 // which most often indicates that the instruction address 16 bit address
219 // instead of 32 bit address (or 32 bit address in 64 bit mode).
220 AdSize = 1 << 7,
221
222 //===------------------------------------------------------------------===//
223 // Op0Mask - There are several prefix bytes that are used to form two byte
224 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
225 // used to obtain the setting of this field. If no bits in this field is
226 // set, there is no prefix byte for obtaining a multibyte opcode.
227 //
228 Op0Shift = 8,
229 Op0Mask = 0xF << Op0Shift,
230
231 // TB - TwoByte - Set if this instruction has a two byte opcode, which
232 // starts with a 0x0F byte before the real opcode.
233 TB = 1 << Op0Shift,
234
235 // REP - The 0xF3 prefix byte indicating repetition of the following
236 // instruction.
237 REP = 2 << Op0Shift,
238
239 // D8-DF - These escape opcodes are used by the floating point unit. These
240 // values must remain sequential.
241 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
242 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
243 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
244 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
245
246 // XS, XD - These prefix codes are for single and double precision scalar
247 // floating point operations performed in the SSE registers.
248 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
249
250 // T8, TA - Prefix after the 0x0F prefix.
251 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
252
253 //===------------------------------------------------------------------===//
254 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
255 // They are used to specify GPRs and SSE registers, 64-bit operand size,
256 // etc. We only cares about REX.W and REX.R bits and only the former is
257 // statically determined.
258 //
259 REXShift = 12,
260 REX_W = 1 << REXShift,
261
262 //===------------------------------------------------------------------===//
263 // This three-bit field describes the size of an immediate operand. Zero is
264 // unused so that we can tell if we forgot to set a value.
265 ImmShift = 13,
266 ImmMask = 7 << ImmShift,
267 Imm8 = 1 << ImmShift,
268 Imm16 = 2 << ImmShift,
269 Imm32 = 3 << ImmShift,
270 Imm64 = 4 << ImmShift,
271
272 //===------------------------------------------------------------------===//
273 // FP Instruction Classification... Zero is non-fp instruction.
274
275 // FPTypeMask - Mask for all of the FP types...
276 FPTypeShift = 16,
277 FPTypeMask = 7 << FPTypeShift,
278
279 // NotFP - The default, set for instructions that do not use FP registers.
280 NotFP = 0 << FPTypeShift,
281
282 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
283 ZeroArgFP = 1 << FPTypeShift,
284
285 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
286 OneArgFP = 2 << FPTypeShift,
287
288 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
289 // result back to ST(0). For example, fcos, fsqrt, etc.
290 //
291 OneArgFPRW = 3 << FPTypeShift,
292
293 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
294 // explicit argument, storing the result to either ST(0) or the implicit
295 // argument. For example: fadd, fsub, fmul, etc...
296 TwoArgFP = 4 << FPTypeShift,
297
298 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
299 // explicit argument, but have no destination. Example: fucom, fucomi, ...
300 CompareFP = 5 << FPTypeShift,
301
302 // CondMovFP - "2 operand" floating point conditional move instructions.
303 CondMovFP = 6 << FPTypeShift,
304
305 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
306 SpecialFP = 7 << FPTypeShift,
307
Andrew Lenharth7a5a4b22008-03-01 13:37:02 +0000308 // Lock prefix
309 LOCKShift = 19,
310 LOCK = 1 << LOCKShift,
311
Anton Korobeynikov975e1472008-10-11 19:09:15 +0000312 // Segment override prefixes. Currently we just need ability to address
313 // stuff in gs and fs segments.
314 SegOvrShift = 20,
315 SegOvrMask = 3 << SegOvrShift,
316 FS = 1 << SegOvrShift,
317 GS = 2 << SegOvrShift,
318
319 // Bits 22 -> 23 are unused
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000320 OpcodeShift = 24,
321 OpcodeMask = 0xFF << OpcodeShift
322 };
323}
324
Rafael Espindolabca99f72009-04-08 21:14:34 +0000325const int X86AddrNumOperands = 5;
Rafael Espindola3ef73652009-03-28 18:55:31 +0000326
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000327inline static bool isScale(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000328 return MO.isImm() &&
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000329 (MO.getImm() == 1 || MO.getImm() == 2 ||
330 MO.getImm() == 4 || MO.getImm() == 8);
331}
332
Rafael Espindolabca99f72009-04-08 21:14:34 +0000333inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000334 if (MI->getOperand(Op).isFI()) return true;
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000335 return Op+4 <= MI->getNumOperands() &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000336 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
337 MI->getOperand(Op+2).isReg() &&
338 (MI->getOperand(Op+3).isImm() ||
339 MI->getOperand(Op+3).isGlobal() ||
340 MI->getOperand(Op+3).isCPI() ||
341 MI->getOperand(Op+3).isJTI());
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000342}
343
Rafael Espindolabca99f72009-04-08 21:14:34 +0000344inline static bool isMem(const MachineInstr *MI, unsigned Op) {
345 if (MI->getOperand(Op).isFI()) return true;
346 return Op+5 <= MI->getNumOperands() &&
347 MI->getOperand(Op+4).isReg() &&
348 isLeaMem(MI, Op);
349}
350
Chris Lattnerd2fd6db2008-01-01 01:03:04 +0000351class X86InstrInfo : public TargetInstrInfoImpl {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000352 X86TargetMachine &TM;
353 const X86RegisterInfo RI;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000354
355 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
356 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
357 ///
358 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
359 DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
360 DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
361 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
362
363 /// MemOp2RegOpTable - Load / store unfolding opcode map.
364 ///
365 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
366
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000367public:
Dan Gohman40bd38e2008-03-25 22:06:05 +0000368 explicit X86InstrInfo(X86TargetMachine &tm);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000369
370 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
371 /// such, whenever a client has an instance of instruction info, it should
372 /// always be able to get register info as well (through this method).
373 ///
Dan Gohmanb41dfba2008-05-14 01:58:56 +0000374 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000375
Evan Chengf97496a2009-01-20 19:12:24 +0000376 /// Return true if the instruction is a register to register move and return
377 /// the source and dest operands and their sub-register indices by reference.
378 virtual bool isMoveInstr(const MachineInstr &MI,
379 unsigned &SrcReg, unsigned &DstReg,
380 unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
381
Dan Gohman90feee22008-11-18 19:49:32 +0000382 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
383 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000384
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000385 bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000386 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
387 unsigned DestReg, const MachineInstr *Orig) const;
388
Dan Gohman90feee22008-11-18 19:49:32 +0000389 bool isInvariantLoad(const MachineInstr *MI) const;
Bill Wendling57e31d62007-12-17 23:07:56 +0000390
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000391 /// convertToThreeAddress - This method must be implemented by targets that
392 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
393 /// may be able to convert a two-address instruction into a true
394 /// three-address instruction on demand. This allows the X86 target (for
395 /// example) to convert ADD and SHL instructions into LEA instructions if they
396 /// would require register copies due to two-addressness.
397 ///
398 /// This method returns a null pointer if the transformation cannot be
399 /// performed, otherwise it returns the new instruction.
400 ///
401 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
402 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000403 LiveVariables *LV) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404
405 /// commuteInstruction - We have a few instructions that must be hacked on to
406 /// commute them.
407 ///
Evan Cheng5de1aaf2008-06-16 07:33:11 +0000408 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409
410 // Branch analysis.
411 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
412 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
413 MachineBasicBlock *&FBB,
Evan Chengeac31642009-02-09 07:14:22 +0000414 SmallVectorImpl<MachineOperand> &Cond,
415 bool AllowModify) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000416 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
417 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
418 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +0000419 const SmallVectorImpl<MachineOperand> &Cond) const;
Owen Anderson9fa72d92008-08-26 18:03:31 +0000420 virtual bool copyRegToReg(MachineBasicBlock &MBB,
Owen Anderson8f2c8932007-12-31 06:32:00 +0000421 MachineBasicBlock::iterator MI,
422 unsigned DestReg, unsigned SrcReg,
423 const TargetRegisterClass *DestRC,
424 const TargetRegisterClass *SrcRC) const;
Owen Anderson81875432008-01-01 21:11:32 +0000425 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
426 MachineBasicBlock::iterator MI,
427 unsigned SrcReg, bool isKill, int FrameIndex,
428 const TargetRegisterClass *RC) const;
429
430 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
431 SmallVectorImpl<MachineOperand> &Addr,
432 const TargetRegisterClass *RC,
433 SmallVectorImpl<MachineInstr*> &NewMIs) const;
434
435 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
436 MachineBasicBlock::iterator MI,
437 unsigned DestReg, int FrameIndex,
438 const TargetRegisterClass *RC) const;
439
440 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
441 SmallVectorImpl<MachineOperand> &Addr,
442 const TargetRegisterClass *RC,
443 SmallVectorImpl<MachineInstr*> &NewMIs) const;
Owen Anderson6690c7f2008-01-04 23:57:37 +0000444
445 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
446 MachineBasicBlock::iterator MI,
447 const std::vector<CalleeSavedInfo> &CSI) const;
448
449 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
450 MachineBasicBlock::iterator MI,
451 const std::vector<CalleeSavedInfo> &CSI) const;
452
Owen Anderson9a184ef2008-01-07 01:35:02 +0000453 /// foldMemoryOperand - If this target supports it, fold a load or store of
454 /// the specified stack slot into the specified machine instruction for the
455 /// specified operand(s). If this is possible, the target should perform the
456 /// folding and return true, otherwise it should return false. If it folds
457 /// the instruction, it is likely that the MachineInstruction the iterator
458 /// references has been changed.
Dan Gohmanedc83d62008-12-03 18:43:12 +0000459 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
460 MachineInstr* MI,
461 const SmallVectorImpl<unsigned> &Ops,
462 int FrameIndex) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000463
464 /// foldMemoryOperand - Same as the previous version except it allows folding
465 /// of any load and store from / to any address, not just from a specific
466 /// stack slot.
Dan Gohmanedc83d62008-12-03 18:43:12 +0000467 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
468 MachineInstr* MI,
469 const SmallVectorImpl<unsigned> &Ops,
470 MachineInstr* LoadMI) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000471
472 /// canFoldMemoryOperand - Returns true if the specified load / store is
473 /// folding is possible.
Dan Gohman46b948e2008-10-16 01:49:15 +0000474 virtual bool canFoldMemoryOperand(const MachineInstr*,
475 const SmallVectorImpl<unsigned> &) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000476
477 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
478 /// a store or a load and a store into two or more instruction. If this is
479 /// possible, returns true as well as the new instructions by reference.
480 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
481 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
482 SmallVectorImpl<MachineInstr*> &NewMIs) const;
483
484 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
485 SmallVectorImpl<SDNode*> &NewNodes) const;
486
487 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
488 /// instruction after load / store are unfolded from an instruction of the
489 /// specified opcode. It returns zero if the specified unfolding is not
490 /// possible.
491 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
492 bool UnfoldLoad, bool UnfoldStore) const;
493
Dan Gohman46b948e2008-10-16 01:49:15 +0000494 virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
Owen Andersond131b5b2008-08-14 22:49:33 +0000495 virtual
496 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000497
Evan Chengf5a8a362009-02-06 17:17:30 +0000498 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
499 /// instruction that defines the specified register class.
500 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
Evan Cheng0e4a5a92008-10-27 07:14:50 +0000501
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000502 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
Duncan Sands466eadd2007-08-29 19:01:20 +0000503 // specified machine instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 //
Chris Lattner5b930372008-01-07 07:27:27 +0000505 unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000506 return TID->TSFlags >> X86II::OpcodeShift;
507 }
Chris Lattner99aa3372008-01-07 02:48:55 +0000508 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
Duncan Sands466eadd2007-08-29 19:01:20 +0000509 return getBaseOpcodeFor(&get(Opcode));
510 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +0000511
512 static bool isX86_64NonExtLowByteReg(unsigned reg) {
513 return (reg == X86::SPL || reg == X86::BPL ||
514 reg == X86::SIL || reg == X86::DIL);
515 }
516
517 static unsigned sizeOfImm(const TargetInstrDesc *Desc);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +0000518 static bool isX86_64ExtendedReg(const MachineOperand &MO);
519 static unsigned determineREX(const MachineInstr &MI);
520
521 /// GetInstSize - Returns the size of the specified MachineInstr.
522 ///
523 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000524
Dan Gohman882ab732008-09-30 00:58:23 +0000525 /// getGlobalBaseReg - Return a virtual register initialized with the
526 /// the global base register value. Output instructions required to
527 /// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +0000528 ///
Dan Gohman882ab732008-09-30 00:58:23 +0000529 unsigned getGlobalBaseReg(MachineFunction *MF) const;
Dan Gohmanb60482f2008-09-23 18:22:58 +0000530
Owen Anderson9a184ef2008-01-07 01:35:02 +0000531private:
Dan Gohmanedc83d62008-12-03 18:43:12 +0000532 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
533 MachineInstr* MI,
534 unsigned OpNum,
Dan Gohmanc24a3f82009-01-05 17:59:02 +0000535 const SmallVectorImpl<MachineOperand> &MOs) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000536};
537
538} // End llvm namespace
539
540#endif