blob: de4c359ab08257c50d505cb1ac5964b6ff61fd2d [file] [log] [blame]
Chandler Carruth713aa942012-09-14 09:22:59 +00001//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000028#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/Loads.h"
34#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000035#include "llvm/Constants.h"
36#include "llvm/DIBuilder.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000037#include "llvm/DataLayout.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000038#include "llvm/DebugInfo.h"
39#include "llvm/DerivedTypes.h"
40#include "llvm/Function.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000041#include "llvm/IRBuilder.h"
Chandler Carruth84bcf932012-11-30 03:08:41 +000042#include "llvm/InstVisitor.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000043#include "llvm/Instructions.h"
44#include "llvm/IntrinsicInst.h"
45#include "llvm/LLVMContext.h"
46#include "llvm/Module.h"
47#include "llvm/Operator.h"
48#include "llvm/Pass.h"
Chandler Carruth1c8db502012-09-15 11:43:14 +000049#include "llvm/Support/CommandLine.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000050#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/GetElementPtrTypeIterator.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000053#include "llvm/Support/MathExtras.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000054#include "llvm/Support/raw_ostream.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000055#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58using namespace llvm;
59
60STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
61STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
62STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
63STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
64STATISTIC(NumDeleted, "Number of instructions deleted");
65STATISTIC(NumVectorized, "Number of vectorized aggregates");
66
Chandler Carruth1c8db502012-09-15 11:43:14 +000067/// Hidden option to force the pass to not use DomTree and mem2reg, instead
68/// forming SSA values through the SSAUpdater infrastructure.
69static cl::opt<bool>
70ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
71
Chandler Carruth713aa942012-09-14 09:22:59 +000072namespace {
73/// \brief Alloca partitioning representation.
74///
75/// This class represents a partitioning of an alloca into slices, and
76/// information about the nature of uses of each slice of the alloca. The goal
77/// is that this information is sufficient to decide if and how to split the
78/// alloca apart and replace slices with scalars. It is also intended that this
Chandler Carruth7f5bede2012-09-14 10:18:49 +000079/// structure can capture the relevant information needed both to decide about
Chandler Carruth713aa942012-09-14 09:22:59 +000080/// and to enact these transformations.
81class AllocaPartitioning {
82public:
83 /// \brief A common base class for representing a half-open byte range.
84 struct ByteRange {
85 /// \brief The beginning offset of the range.
86 uint64_t BeginOffset;
87
88 /// \brief The ending offset, not included in the range.
89 uint64_t EndOffset;
90
91 ByteRange() : BeginOffset(), EndOffset() {}
92 ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
93 : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
94
95 /// \brief Support for ordering ranges.
96 ///
97 /// This provides an ordering over ranges such that start offsets are
98 /// always increasing, and within equal start offsets, the end offsets are
Chandler Carruth7f5bede2012-09-14 10:18:49 +000099 /// decreasing. Thus the spanning range comes first in a cluster with the
Chandler Carruth713aa942012-09-14 09:22:59 +0000100 /// same start position.
101 bool operator<(const ByteRange &RHS) const {
102 if (BeginOffset < RHS.BeginOffset) return true;
103 if (BeginOffset > RHS.BeginOffset) return false;
104 if (EndOffset > RHS.EndOffset) return true;
105 return false;
106 }
107
108 /// \brief Support comparison with a single offset to allow binary searches.
Benjamin Kramer2d1c2a22012-09-17 16:42:36 +0000109 friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
110 return LHS.BeginOffset < RHSOffset;
111 }
112
113 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
114 const ByteRange &RHS) {
115 return LHSOffset < RHS.BeginOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000116 }
117
118 bool operator==(const ByteRange &RHS) const {
119 return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
120 }
121 bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
122 };
123
124 /// \brief A partition of an alloca.
125 ///
126 /// This structure represents a contiguous partition of the alloca. These are
127 /// formed by examining the uses of the alloca. During formation, they may
128 /// overlap but once an AllocaPartitioning is built, the Partitions within it
129 /// are all disjoint.
130 struct Partition : public ByteRange {
131 /// \brief Whether this partition is splittable into smaller partitions.
132 ///
133 /// We flag partitions as splittable when they are formed entirely due to
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000134 /// accesses by trivially splittable operations such as memset and memcpy.
Chandler Carruth713aa942012-09-14 09:22:59 +0000135 bool IsSplittable;
136
Chandler Carruthfca3f402012-10-05 01:29:09 +0000137 /// \brief Test whether a partition has been marked as dead.
138 bool isDead() const {
139 if (BeginOffset == UINT64_MAX) {
140 assert(EndOffset == UINT64_MAX);
141 return true;
142 }
143 return false;
144 }
145
146 /// \brief Kill a partition.
147 /// This is accomplished by setting both its beginning and end offset to
148 /// the maximum possible value.
149 void kill() {
150 assert(!isDead() && "He's Dead, Jim!");
151 BeginOffset = EndOffset = UINT64_MAX;
152 }
153
Chandler Carruth713aa942012-09-14 09:22:59 +0000154 Partition() : ByteRange(), IsSplittable() {}
155 Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
156 : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
157 };
158
159 /// \brief A particular use of a partition of the alloca.
160 ///
161 /// This structure is used to associate uses of a partition with it. They
162 /// mark the range of bytes which are referenced by a particular instruction,
163 /// and includes a handle to the user itself and the pointer value in use.
164 /// The bounds of these uses are determined by intersecting the bounds of the
165 /// memory use itself with a particular partition. As a consequence there is
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000166 /// intentionally overlap between various uses of the same partition.
Chandler Carruth713aa942012-09-14 09:22:59 +0000167 struct PartitionUse : public ByteRange {
Chandler Carruth77c12702012-10-01 01:49:22 +0000168 /// \brief The use in question. Provides access to both user and used value.
Chandler Carruthfdb15852012-10-02 18:57:13 +0000169 ///
170 /// Note that this may be null if the partition use is *dead*, that is, it
171 /// should be ignored.
172 Use *U;
Chandler Carruth713aa942012-09-14 09:22:59 +0000173
Chandler Carruth77c12702012-10-01 01:49:22 +0000174 PartitionUse() : ByteRange(), U() {}
175 PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
176 : ByteRange(BeginOffset, EndOffset), U(U) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000177 };
178
179 /// \brief Construct a partitioning of a particular alloca.
180 ///
181 /// Construction does most of the work for partitioning the alloca. This
182 /// performs the necessary walks of users and builds a partitioning from it.
Micah Villmow3574eca2012-10-08 16:38:25 +0000183 AllocaPartitioning(const DataLayout &TD, AllocaInst &AI);
Chandler Carruth713aa942012-09-14 09:22:59 +0000184
185 /// \brief Test whether a pointer to the allocation escapes our analysis.
186 ///
187 /// If this is true, the partitioning is never fully built and should be
188 /// ignored.
189 bool isEscaped() const { return PointerEscapingInstr; }
190
191 /// \brief Support for iterating over the partitions.
192 /// @{
193 typedef SmallVectorImpl<Partition>::iterator iterator;
194 iterator begin() { return Partitions.begin(); }
195 iterator end() { return Partitions.end(); }
196
197 typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
198 const_iterator begin() const { return Partitions.begin(); }
199 const_iterator end() const { return Partitions.end(); }
200 /// @}
201
202 /// \brief Support for iterating over and manipulating a particular
203 /// partition's uses.
204 ///
205 /// The iteration support provided for uses is more limited, but also
206 /// includes some manipulation routines to support rewriting the uses of
207 /// partitions during SROA.
208 /// @{
209 typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
210 use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
211 use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
212 use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
213 use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
Chandler Carruth713aa942012-09-14 09:22:59 +0000214
215 typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
216 const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
217 const_use_iterator use_begin(const_iterator I) const {
218 return Uses[I - begin()].begin();
219 }
220 const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
221 const_use_iterator use_end(const_iterator I) const {
222 return Uses[I - begin()].end();
223 }
Chandler Carrutha346f462012-10-02 17:49:47 +0000224
225 unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
226 unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
227 const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
228 return Uses[PIdx][UIdx];
229 }
230 const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
231 return Uses[I - begin()][UIdx];
232 }
233
234 void use_push_back(unsigned Idx, const PartitionUse &PU) {
235 Uses[Idx].push_back(PU);
236 }
237 void use_push_back(const_iterator I, const PartitionUse &PU) {
238 Uses[I - begin()].push_back(PU);
239 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000240 /// @}
241
242 /// \brief Allow iterating the dead users for this alloca.
243 ///
244 /// These are instructions which will never actually use the alloca as they
245 /// are outside the allocated range. They are safe to replace with undef and
246 /// delete.
247 /// @{
248 typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
249 dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
250 dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
251 /// @}
252
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000253 /// \brief Allow iterating the dead expressions referring to this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000254 ///
255 /// These are operands which have cannot actually be used to refer to the
256 /// alloca as they are outside its range and the user doesn't correct for
257 /// that. These mostly consist of PHI node inputs and the like which we just
258 /// need to replace with undef.
259 /// @{
260 typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
261 dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
262 dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
263 /// @}
264
265 /// \brief MemTransferInst auxiliary data.
266 /// This struct provides some auxiliary data about memory transfer
267 /// intrinsics such as memcpy and memmove. These intrinsics can use two
268 /// different ranges within the same alloca, and provide other challenges to
269 /// correctly represent. We stash extra data to help us untangle this
270 /// after the partitioning is complete.
271 struct MemTransferOffsets {
Chandler Carruthfca3f402012-10-05 01:29:09 +0000272 /// The destination begin and end offsets when the destination is within
273 /// this alloca. If the end offset is zero the destination is not within
274 /// this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000275 uint64_t DestBegin, DestEnd;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000276
277 /// The source begin and end offsets when the source is within this alloca.
278 /// If the end offset is zero, the source is not within this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000279 uint64_t SourceBegin, SourceEnd;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000280
281 /// Flag for whether an alloca is splittable.
Chandler Carruth713aa942012-09-14 09:22:59 +0000282 bool IsSplittable;
283 };
284 MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
285 return MemTransferInstData.lookup(&II);
286 }
287
288 /// \brief Map from a PHI or select operand back to a partition.
289 ///
290 /// When manipulating PHI nodes or selects, they can use more than one
291 /// partition of an alloca. We store a special mapping to allow finding the
292 /// partition referenced by each of these operands, if any.
Chandler Carruth77c12702012-10-01 01:49:22 +0000293 iterator findPartitionForPHIOrSelectOperand(Use *U) {
294 SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
295 = PHIOrSelectOpMap.find(U);
Chandler Carruth713aa942012-09-14 09:22:59 +0000296 if (MapIt == PHIOrSelectOpMap.end())
297 return end();
298
299 return begin() + MapIt->second.first;
300 }
301
302 /// \brief Map from a PHI or select operand back to the specific use of
303 /// a partition.
304 ///
305 /// Similar to mapping these operands back to the partitions, this maps
306 /// directly to the use structure of that partition.
Chandler Carruth77c12702012-10-01 01:49:22 +0000307 use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
308 SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
309 = PHIOrSelectOpMap.find(U);
Chandler Carruth713aa942012-09-14 09:22:59 +0000310 assert(MapIt != PHIOrSelectOpMap.end());
311 return Uses[MapIt->second.first].begin() + MapIt->second.second;
312 }
313
314 /// \brief Compute a common type among the uses of a particular partition.
315 ///
316 /// This routines walks all of the uses of a particular partition and tries
317 /// to find a common type between them. Untyped operations such as memset and
318 /// memcpy are ignored.
319 Type *getCommonType(iterator I) const;
320
Chandler Carruthba13d2e2012-09-14 10:18:51 +0000321#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chandler Carruth713aa942012-09-14 09:22:59 +0000322 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
323 void printUsers(raw_ostream &OS, const_iterator I,
324 StringRef Indent = " ") const;
325 void print(raw_ostream &OS) const;
NAKAMURA Takumiad9f5b82012-09-14 10:06:10 +0000326 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
327 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
Chandler Carruthba13d2e2012-09-14 10:18:51 +0000328#endif
Chandler Carruth713aa942012-09-14 09:22:59 +0000329
330private:
331 template <typename DerivedT, typename RetT = void> class BuilderBase;
332 class PartitionBuilder;
333 friend class AllocaPartitioning::PartitionBuilder;
334 class UseBuilder;
335 friend class AllocaPartitioning::UseBuilder;
336
Chandler Carruth3a902d02012-11-20 10:23:07 +0000337#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chandler Carruth713aa942012-09-14 09:22:59 +0000338 /// \brief Handle to alloca instruction to simplify method interfaces.
339 AllocaInst &AI;
Benjamin Kramerd0807692012-09-14 13:08:09 +0000340#endif
Chandler Carruth713aa942012-09-14 09:22:59 +0000341
342 /// \brief The instruction responsible for this alloca having no partitioning.
343 ///
344 /// When an instruction (potentially) escapes the pointer to the alloca, we
345 /// store a pointer to that here and abort trying to partition the alloca.
346 /// This will be null if the alloca is partitioned successfully.
347 Instruction *PointerEscapingInstr;
348
349 /// \brief The partitions of the alloca.
350 ///
351 /// We store a vector of the partitions over the alloca here. This vector is
352 /// sorted by increasing begin offset, and then by decreasing end offset. See
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000353 /// the Partition inner class for more details. Initially (during
354 /// construction) there are overlaps, but we form a disjoint sequence of
355 /// partitions while finishing construction and a fully constructed object is
356 /// expected to always have this as a disjoint space.
Chandler Carruth713aa942012-09-14 09:22:59 +0000357 SmallVector<Partition, 8> Partitions;
358
359 /// \brief The uses of the partitions.
360 ///
361 /// This is essentially a mapping from each partition to a list of uses of
362 /// that partition. The mapping is done with a Uses vector that has the exact
363 /// same number of entries as the partition vector. Each entry is itself
364 /// a vector of the uses.
365 SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
366
367 /// \brief Instructions which will become dead if we rewrite the alloca.
368 ///
369 /// Note that these are not separated by partition. This is because we expect
370 /// a partitioned alloca to be completely rewritten or not rewritten at all.
371 /// If rewritten, all these instructions can simply be removed and replaced
372 /// with undef as they come from outside of the allocated space.
373 SmallVector<Instruction *, 8> DeadUsers;
374
375 /// \brief Operands which will become dead if we rewrite the alloca.
376 ///
377 /// These are operands that in their particular use can be replaced with
378 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
379 /// to PHI nodes and the like. They aren't entirely dead (there might be
380 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
381 /// want to swap this particular input for undef to simplify the use lists of
382 /// the alloca.
383 SmallVector<Use *, 8> DeadOperands;
384
385 /// \brief The underlying storage for auxiliary memcpy and memset info.
386 SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
387
388 /// \brief A side datastructure used when building up the partitions and uses.
389 ///
390 /// This mapping is only really used during the initial building of the
391 /// partitioning so that we can retain information about PHI and select nodes
392 /// processed.
393 SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
394
395 /// \brief Auxiliary information for particular PHI or select operands.
Chandler Carruth77c12702012-10-01 01:49:22 +0000396 SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
Chandler Carruth713aa942012-09-14 09:22:59 +0000397
398 /// \brief A utility routine called from the constructor.
399 ///
400 /// This does what it says on the tin. It is the key of the alloca partition
401 /// splitting and merging. After it is called we have the desired disjoint
402 /// collection of partitions.
403 void splitAndMergePartitions();
404};
405}
406
407template <typename DerivedT, typename RetT>
408class AllocaPartitioning::BuilderBase
409 : public InstVisitor<DerivedT, RetT> {
410public:
Micah Villmow3574eca2012-10-08 16:38:25 +0000411 BuilderBase(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth713aa942012-09-14 09:22:59 +0000412 : TD(TD),
413 AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
414 P(P) {
415 enqueueUsers(AI, 0);
416 }
417
418protected:
Micah Villmow3574eca2012-10-08 16:38:25 +0000419 const DataLayout &TD;
Chandler Carruth713aa942012-09-14 09:22:59 +0000420 const uint64_t AllocSize;
421 AllocaPartitioning &P;
422
Chandler Carruth77c12702012-10-01 01:49:22 +0000423 SmallPtrSet<Use *, 8> VisitedUses;
424
Chandler Carruth713aa942012-09-14 09:22:59 +0000425 struct OffsetUse {
426 Use *U;
Chandler Carruth02e92a02012-09-23 11:43:14 +0000427 int64_t Offset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000428 };
429 SmallVector<OffsetUse, 8> Queue;
430
431 // The active offset and use while visiting.
432 Use *U;
Chandler Carruth02e92a02012-09-23 11:43:14 +0000433 int64_t Offset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000434
Chandler Carruth02e92a02012-09-23 11:43:14 +0000435 void enqueueUsers(Instruction &I, int64_t UserOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000436 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
437 UI != UE; ++UI) {
Chandler Carruth77c12702012-10-01 01:49:22 +0000438 if (VisitedUses.insert(&UI.getUse())) {
439 OffsetUse OU = { &UI.getUse(), UserOffset };
440 Queue.push_back(OU);
441 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000442 }
443 }
444
Chandler Carruth02e92a02012-09-23 11:43:14 +0000445 bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000446 GEPOffset = Offset;
447 for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI);
448 GTI != GTE; ++GTI) {
449 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
450 if (!OpC)
451 return false;
452 if (OpC->isZero())
453 continue;
454
455 // Handle a struct index, which adds its field offset to the pointer.
456 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
457 unsigned ElementIdx = OpC->getZExtValue();
458 const StructLayout *SL = TD.getStructLayout(STy);
Chandler Carruth02e92a02012-09-23 11:43:14 +0000459 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
460 // Check that we can continue to model this GEP in a signed 64-bit offset.
461 if (ElementOffset > INT64_MAX ||
462 (GEPOffset >= 0 &&
463 ((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) {
464 DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
465 << "what can be represented in an int64_t!\n"
466 << " alloca: " << P.AI << "\n");
467 return false;
468 }
469 if (GEPOffset < 0)
470 GEPOffset = ElementOffset + (uint64_t)-GEPOffset;
471 else
472 GEPOffset += ElementOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000473 continue;
474 }
475
Chandler Carruth426c2bf2012-11-01 09:14:31 +0000476 APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits());
Chandler Carruth02e92a02012-09-23 11:43:14 +0000477 Index *= APInt(Index.getBitWidth(),
478 TD.getTypeAllocSize(GTI.getIndexedType()));
479 Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset,
480 /*isSigned*/true);
481 // Check if the result can be stored in our int64_t offset.
482 if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) {
483 DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
484 << "what can be represented in an int64_t!\n"
485 << " alloca: " << P.AI << "\n");
486 return false;
487 }
488
489 GEPOffset = Index.getSExtValue();
Chandler Carruth713aa942012-09-14 09:22:59 +0000490 }
491 return true;
492 }
493
494 Value *foldSelectInst(SelectInst &SI) {
495 // If the condition being selected on is a constant or the same value is
496 // being selected between, fold the select. Yes this does (rarely) happen
497 // early on.
498 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
499 return SI.getOperand(1+CI->isZero());
500 if (SI.getOperand(1) == SI.getOperand(2)) {
501 assert(*U == SI.getOperand(1));
502 return SI.getOperand(1);
503 }
504 return 0;
505 }
506};
507
508/// \brief Builder for the alloca partitioning.
509///
510/// This class builds an alloca partitioning by recursively visiting the uses
511/// of an alloca and splitting the partitions for each load and store at each
512/// offset.
513class AllocaPartitioning::PartitionBuilder
514 : public BuilderBase<PartitionBuilder, bool> {
515 friend class InstVisitor<PartitionBuilder, bool>;
516
517 SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
518
519public:
Micah Villmow3574eca2012-10-08 16:38:25 +0000520 PartitionBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth2a9bf252012-09-14 09:30:33 +0000521 : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000522
523 /// \brief Run the builder over the allocation.
524 bool operator()() {
Chandler Carruth0da91752012-12-09 11:56:01 +0000525 while (!Queue.empty()) {
526 U = Queue.back().U;
527 Offset = Queue.back().Offset;
528 Queue.pop_back();
Chandler Carruth713aa942012-09-14 09:22:59 +0000529 if (!visit(cast<Instruction>(U->getUser())))
530 return false;
531 }
532 return true;
533 }
534
535private:
536 bool markAsEscaping(Instruction &I) {
537 P.PointerEscapingInstr = &I;
538 return false;
539 }
540
Chandler Carruth02e92a02012-09-23 11:43:14 +0000541 void insertUse(Instruction &I, int64_t Offset, uint64_t Size,
Chandler Carruth63392ea2012-09-16 19:39:50 +0000542 bool IsSplittable = false) {
Chandler Carruthe74a4a72012-12-03 10:59:55 +0000543 // Completely skip uses which have a zero size or start either before or
544 // past the end of the allocation.
545 if (Size == 0 || Offset < 0 || (uint64_t)Offset >= AllocSize) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000546 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
Chandler Carruthe74a4a72012-12-03 10:59:55 +0000547 << " which has zero size or starts outside of the "
548 << AllocSize << " byte alloca:\n"
Chandler Carruth713aa942012-09-14 09:22:59 +0000549 << " alloca: " << P.AI << "\n"
550 << " use: " << I << "\n");
551 return;
552 }
553
Chandler Carruth02e92a02012-09-23 11:43:14 +0000554 uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
555
556 // Clamp the end offset to the end of the allocation. Note that this is
557 // formulated to handle even the case where "BeginOffset + Size" overflows.
Chandler Carruth17679292012-11-20 10:02:19 +0000558 // NOTE! This may appear superficially to be something we could ignore
559 // entirely, but that is not so! There may be PHI-node uses where some
560 // instructions are dead but not others. We can't completely ignore the
561 // PHI node, and so have to record at least the information here.
Chandler Carruth02e92a02012-09-23 11:43:14 +0000562 assert(AllocSize >= BeginOffset); // Established above.
563 if (Size > AllocSize - BeginOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000564 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
565 << " to remain within the " << AllocSize << " byte alloca:\n"
566 << " alloca: " << P.AI << "\n"
567 << " use: " << I << "\n");
568 EndOffset = AllocSize;
569 }
570
Chandler Carruth713aa942012-09-14 09:22:59 +0000571 Partition New(BeginOffset, EndOffset, IsSplittable);
572 P.Partitions.push_back(New);
573 }
574
Chandler Carrutha2b88162012-10-25 04:37:07 +0000575 bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset,
576 bool IsVolatile) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000577 uint64_t Size = TD.getTypeStoreSize(Ty);
578
579 // If this memory access can be shown to *statically* extend outside the
580 // bounds of of the allocation, it's behavior is undefined, so simply
581 // ignore it. Note that this is more strict than the generic clamping
582 // behavior of insertUse. We also try to handle cases which might run the
583 // risk of overflow.
584 // FIXME: We should instead consider the pointer to have escaped if this
585 // function is being instrumented for addressing bugs or race conditions.
Chandler Carruth02e92a02012-09-23 11:43:14 +0000586 if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
587 Size > (AllocSize - (uint64_t)Offset)) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000588 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
589 << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
590 << " which extends past the end of the " << AllocSize
591 << " byte alloca:\n"
592 << " alloca: " << P.AI << "\n"
593 << " use: " << I << "\n");
594 return true;
595 }
596
Chandler Carrutha2b88162012-10-25 04:37:07 +0000597 // We allow splitting of loads and stores where the type is an integer type
598 // and which cover the entire alloca. Such integer loads and stores
599 // often require decomposition into fine grained loads and stores.
600 bool IsSplittable = false;
601 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
602 IsSplittable = !IsVolatile && ITy->getBitWidth() == AllocSize*8;
603
604 insertUse(I, Offset, Size, IsSplittable);
Chandler Carruth713aa942012-09-14 09:22:59 +0000605 return true;
606 }
607
608 bool visitBitCastInst(BitCastInst &BC) {
609 enqueueUsers(BC, Offset);
610 return true;
611 }
612
613 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
Chandler Carruth02e92a02012-09-23 11:43:14 +0000614 int64_t GEPOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000615 if (!computeConstantGEPOffset(GEPI, GEPOffset))
616 return markAsEscaping(GEPI);
617
618 enqueueUsers(GEPI, GEPOffset);
619 return true;
620 }
621
622 bool visitLoadInst(LoadInst &LI) {
Chandler Carruthc370acd2012-09-18 12:57:43 +0000623 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
624 "All simple FCA loads should have been pre-split");
Chandler Carrutha2b88162012-10-25 04:37:07 +0000625 return handleLoadOrStore(LI.getType(), LI, Offset, LI.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +0000626 }
627
628 bool visitStoreInst(StoreInst &SI) {
Chandler Carruthc370acd2012-09-18 12:57:43 +0000629 Value *ValOp = SI.getValueOperand();
630 if (ValOp == *U)
Chandler Carruth713aa942012-09-14 09:22:59 +0000631 return markAsEscaping(SI);
632
Chandler Carruthc370acd2012-09-18 12:57:43 +0000633 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
634 "All simple FCA stores should have been pre-split");
Chandler Carrutha2b88162012-10-25 04:37:07 +0000635 return handleLoadOrStore(ValOp->getType(), SI, Offset, SI.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +0000636 }
637
638
639 bool visitMemSetInst(MemSetInst &II) {
Chandler Carruthb3dd9a12012-09-14 10:26:34 +0000640 assert(II.getRawDest() == *U && "Pointer use is not the destination?");
Chandler Carruth713aa942012-09-14 09:22:59 +0000641 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000642 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
643 insertUse(II, Offset, Size, Length);
Chandler Carruth713aa942012-09-14 09:22:59 +0000644 return true;
645 }
646
647 bool visitMemTransferInst(MemTransferInst &II) {
648 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
649 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
650 if (!Size)
651 // Zero-length mem transfer intrinsics can be ignored entirely.
652 return true;
653
654 MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
655
656 // Only intrinsics with a constant length can be split.
657 Offsets.IsSplittable = Length;
658
Chandler Carruthfca3f402012-10-05 01:29:09 +0000659 if (*U == II.getRawDest()) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000660 Offsets.DestBegin = Offset;
661 Offsets.DestEnd = Offset + Size;
662 }
Chandler Carruthfca3f402012-10-05 01:29:09 +0000663 if (*U == II.getRawSource()) {
664 Offsets.SourceBegin = Offset;
665 Offsets.SourceEnd = Offset + Size;
666 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000667
Chandler Carruthfca3f402012-10-05 01:29:09 +0000668 // If we have set up end offsets for both the source and the destination,
669 // we have found both sides of this transfer pointing at the same alloca.
670 bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd;
671 if (SeenBothEnds && II.getRawDest() != II.getRawSource()) {
672 unsigned PrevIdx = MemTransferPartitionMap[&II];
Chandler Carruth713aa942012-09-14 09:22:59 +0000673
Chandler Carruthfca3f402012-10-05 01:29:09 +0000674 // Check if the begin offsets match and this is a non-volatile transfer.
675 // In that case, we can completely elide the transfer.
676 if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
677 P.Partitions[PrevIdx].kill();
678 return true;
679 }
680
681 // Otherwise we have an offset transfer within the same alloca. We can't
682 // split those.
683 P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false;
684 } else if (SeenBothEnds) {
685 // Handle the case where this exact use provides both ends of the
686 // operation.
687 assert(II.getRawDest() == II.getRawSource());
688
689 // For non-volatile transfers this is a no-op.
690 if (!II.isVolatile())
691 return true;
692
693 // Otherwise just suppress splitting.
Chandler Carruth713aa942012-09-14 09:22:59 +0000694 Offsets.IsSplittable = false;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000695 }
696
697
698 // Insert the use now that we've fixed up the splittable nature.
699 insertUse(II, Offset, Size, Offsets.IsSplittable);
700
701 // Setup the mapping from intrinsic to partition of we've not seen both
702 // ends of this transfer.
703 if (!SeenBothEnds) {
704 unsigned NewIdx = P.Partitions.size() - 1;
705 bool Inserted
706 = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second;
707 assert(Inserted &&
708 "Already have intrinsic in map but haven't seen both ends");
NAKAMURA Takumi0559d312012-10-05 13:56:23 +0000709 (void)Inserted;
Chandler Carruth713aa942012-09-14 09:22:59 +0000710 }
711
712 return true;
713 }
714
715 // Disable SRoA for any intrinsics except for lifetime invariants.
Chandler Carruth50754f02012-09-14 10:26:36 +0000716 // FIXME: What about debug instrinsics? This matches old behavior, but
717 // doesn't make sense.
Chandler Carruth713aa942012-09-14 09:22:59 +0000718 bool visitIntrinsicInst(IntrinsicInst &II) {
719 if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
720 II.getIntrinsicID() == Intrinsic::lifetime_end) {
721 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
722 uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000723 insertUse(II, Offset, Size, true);
Chandler Carruth713aa942012-09-14 09:22:59 +0000724 return true;
725 }
726
727 return markAsEscaping(II);
728 }
729
730 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
731 // We consider any PHI or select that results in a direct load or store of
732 // the same offset to be a viable use for partitioning purposes. These uses
733 // are considered unsplittable and the size is the maximum loaded or stored
734 // size.
735 SmallPtrSet<Instruction *, 4> Visited;
736 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
737 Visited.insert(Root);
738 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
Chandler Carruthc3034632012-09-25 10:03:40 +0000739 // If there are no loads or stores, the access is dead. We mark that as
740 // a size zero access.
741 Size = 0;
Chandler Carruth713aa942012-09-14 09:22:59 +0000742 do {
743 Instruction *I, *UsedI;
744 llvm::tie(UsedI, I) = Uses.pop_back_val();
745
746 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
747 Size = std::max(Size, TD.getTypeStoreSize(LI->getType()));
748 continue;
749 }
750 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
751 Value *Op = SI->getOperand(0);
752 if (Op == UsedI)
753 return SI;
754 Size = std::max(Size, TD.getTypeStoreSize(Op->getType()));
755 continue;
756 }
757
758 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
759 if (!GEP->hasAllZeroIndices())
760 return GEP;
761 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
762 !isa<SelectInst>(I)) {
763 return I;
764 }
765
766 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
767 ++UI)
768 if (Visited.insert(cast<Instruction>(*UI)))
769 Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
770 } while (!Uses.empty());
771
772 return 0;
773 }
774
775 bool visitPHINode(PHINode &PN) {
776 // See if we already have computed info on this node.
777 std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
778 if (PHIInfo.first) {
779 PHIInfo.second = true;
Chandler Carruth63392ea2012-09-16 19:39:50 +0000780 insertUse(PN, Offset, PHIInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000781 return true;
782 }
783
784 // Check for an unsafe use of the PHI node.
785 if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
786 return markAsEscaping(*EscapingI);
787
Chandler Carruth63392ea2012-09-16 19:39:50 +0000788 insertUse(PN, Offset, PHIInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000789 return true;
790 }
791
792 bool visitSelectInst(SelectInst &SI) {
793 if (Value *Result = foldSelectInst(SI)) {
794 if (Result == *U)
795 // If the result of the constant fold will be the pointer, recurse
796 // through the select as if we had RAUW'ed it.
797 enqueueUsers(SI, Offset);
798
799 return true;
800 }
801
802 // See if we already have computed info on this node.
803 std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
804 if (SelectInfo.first) {
805 SelectInfo.second = true;
Chandler Carruth63392ea2012-09-16 19:39:50 +0000806 insertUse(SI, Offset, SelectInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000807 return true;
808 }
809
810 // Check for an unsafe use of the PHI node.
811 if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
812 return markAsEscaping(*EscapingI);
813
Chandler Carruth63392ea2012-09-16 19:39:50 +0000814 insertUse(SI, Offset, SelectInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000815 return true;
816 }
817
818 /// \brief Disable SROA entirely if there are unhandled users of the alloca.
819 bool visitInstruction(Instruction &I) { return markAsEscaping(I); }
820};
821
822
823/// \brief Use adder for the alloca partitioning.
824///
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000825/// This class adds the uses of an alloca to all of the partitions which they
826/// use. For splittable partitions, this can end up doing essentially a linear
Chandler Carruth713aa942012-09-14 09:22:59 +0000827/// walk of the partitions, but the number of steps remains bounded by the
828/// total result instruction size:
829/// - The number of partitions is a result of the number unsplittable
830/// instructions using the alloca.
831/// - The number of users of each partition is at worst the total number of
832/// splittable instructions using the alloca.
833/// Thus we will produce N * M instructions in the end, where N are the number
834/// of unsplittable uses and M are the number of splittable. This visitor does
835/// the exact same number of updates to the partitioning.
836///
837/// In the more common case, this visitor will leverage the fact that the
838/// partition space is pre-sorted, and do a logarithmic search for the
839/// partition needed, making the total visit a classical ((N + M) * log(N))
840/// complexity operation.
841class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> {
842 friend class InstVisitor<UseBuilder>;
843
844 /// \brief Set to de-duplicate dead instructions found in the use walk.
845 SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
846
847public:
Micah Villmow3574eca2012-10-08 16:38:25 +0000848 UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth2a9bf252012-09-14 09:30:33 +0000849 : BuilderBase<UseBuilder>(TD, AI, P) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000850
851 /// \brief Run the builder over the allocation.
852 void operator()() {
Chandler Carruth0da91752012-12-09 11:56:01 +0000853 while (!Queue.empty()) {
854 U = Queue.back().U;
855 Offset = Queue.back().Offset;
856 Queue.pop_back();
Chandler Carruth713aa942012-09-14 09:22:59 +0000857 this->visit(cast<Instruction>(U->getUser()));
858 }
859 }
860
861private:
862 void markAsDead(Instruction &I) {
863 if (VisitedDeadInsts.insert(&I))
864 P.DeadUsers.push_back(&I);
865 }
866
Chandler Carruth02e92a02012-09-23 11:43:14 +0000867 void insertUse(Instruction &User, int64_t Offset, uint64_t Size) {
Chandler Carruthc3034632012-09-25 10:03:40 +0000868 // If the use has a zero size or extends outside of the allocation, record
869 // it as a dead use for elimination later.
Chandler Carruthe74a4a72012-12-03 10:59:55 +0000870 if (Size == 0 || Offset < 0 || (uint64_t)Offset >= AllocSize)
Chandler Carruth713aa942012-09-14 09:22:59 +0000871 return markAsDead(User);
872
Chandler Carruth02e92a02012-09-23 11:43:14 +0000873 uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
874
875 // Clamp the end offset to the end of the allocation. Note that this is
876 // formulated to handle even the case where "BeginOffset + Size" overflows.
877 assert(AllocSize >= BeginOffset); // Established above.
878 if (Size > AllocSize - BeginOffset)
Chandler Carruth713aa942012-09-14 09:22:59 +0000879 EndOffset = AllocSize;
880
881 // NB: This only works if we have zero overlapping partitions.
882 iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
883 if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
884 B = llvm::prior(B);
885 for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
886 ++I) {
Chandler Carruth77c12702012-10-01 01:49:22 +0000887 PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
888 std::min(I->EndOffset, EndOffset), U);
889 P.use_push_back(I, NewPU);
Chandler Carruth713aa942012-09-14 09:22:59 +0000890 if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
Chandler Carruth77c12702012-10-01 01:49:22 +0000891 P.PHIOrSelectOpMap[U]
Chandler Carruth713aa942012-09-14 09:22:59 +0000892 = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
893 }
894 }
895
Chandler Carruth02e92a02012-09-23 11:43:14 +0000896 void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000897 uint64_t Size = TD.getTypeStoreSize(Ty);
898
899 // If this memory access can be shown to *statically* extend outside the
900 // bounds of of the allocation, it's behavior is undefined, so simply
901 // ignore it. Note that this is more strict than the generic clamping
902 // behavior of insertUse.
Chandler Carruth02e92a02012-09-23 11:43:14 +0000903 if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
904 Size > (AllocSize - (uint64_t)Offset))
Chandler Carruth713aa942012-09-14 09:22:59 +0000905 return markAsDead(I);
906
Chandler Carruth63392ea2012-09-16 19:39:50 +0000907 insertUse(I, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000908 }
909
910 void visitBitCastInst(BitCastInst &BC) {
911 if (BC.use_empty())
912 return markAsDead(BC);
913
914 enqueueUsers(BC, Offset);
915 }
916
917 void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
918 if (GEPI.use_empty())
919 return markAsDead(GEPI);
920
Chandler Carruth02e92a02012-09-23 11:43:14 +0000921 int64_t GEPOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000922 if (!computeConstantGEPOffset(GEPI, GEPOffset))
923 llvm_unreachable("Unable to compute constant offset for use");
924
925 enqueueUsers(GEPI, GEPOffset);
926 }
927
928 void visitLoadInst(LoadInst &LI) {
Chandler Carruth63392ea2012-09-16 19:39:50 +0000929 handleLoadOrStore(LI.getType(), LI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000930 }
931
932 void visitStoreInst(StoreInst &SI) {
Chandler Carruth63392ea2012-09-16 19:39:50 +0000933 handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000934 }
935
936 void visitMemSetInst(MemSetInst &II) {
937 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000938 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
939 insertUse(II, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000940 }
941
942 void visitMemTransferInst(MemTransferInst &II) {
943 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000944 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
Chandler Carruthfca3f402012-10-05 01:29:09 +0000945 if (!Size)
946 return markAsDead(II);
947
948 MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
949 if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
950 Offsets.DestBegin == Offsets.SourceBegin)
951 return markAsDead(II); // Skip identity transfers without side-effects.
952
Chandler Carruth63392ea2012-09-16 19:39:50 +0000953 insertUse(II, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000954 }
955
956 void visitIntrinsicInst(IntrinsicInst &II) {
957 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
958 II.getIntrinsicID() == Intrinsic::lifetime_end);
959
960 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
Chandler Carruth63392ea2012-09-16 19:39:50 +0000961 insertUse(II, Offset,
962 std::min(AllocSize - Offset, Length->getLimitedValue()));
Chandler Carruth713aa942012-09-14 09:22:59 +0000963 }
964
Chandler Carruth63392ea2012-09-16 19:39:50 +0000965 void insertPHIOrSelect(Instruction &User, uint64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000966 uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
967
968 // For PHI and select operands outside the alloca, we can't nuke the entire
969 // phi or select -- the other side might still be relevant, so we special
970 // case them here and use a separate structure to track the operands
971 // themselves which should be replaced with undef.
972 if (Offset >= AllocSize) {
973 P.DeadOperands.push_back(U);
974 return;
975 }
976
Chandler Carruth63392ea2012-09-16 19:39:50 +0000977 insertUse(User, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000978 }
979 void visitPHINode(PHINode &PN) {
980 if (PN.use_empty())
981 return markAsDead(PN);
982
Chandler Carruth63392ea2012-09-16 19:39:50 +0000983 insertPHIOrSelect(PN, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000984 }
985 void visitSelectInst(SelectInst &SI) {
986 if (SI.use_empty())
987 return markAsDead(SI);
988
989 if (Value *Result = foldSelectInst(SI)) {
990 if (Result == *U)
991 // If the result of the constant fold will be the pointer, recurse
992 // through the select as if we had RAUW'ed it.
993 enqueueUsers(SI, Offset);
Chandler Carruthd54a6b52012-09-21 23:36:40 +0000994 else
995 // Otherwise the operand to the select is dead, and we can replace it
996 // with undef.
997 P.DeadOperands.push_back(U);
Chandler Carruth713aa942012-09-14 09:22:59 +0000998
999 return;
1000 }
1001
Chandler Carruth63392ea2012-09-16 19:39:50 +00001002 insertPHIOrSelect(SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +00001003 }
1004
1005 /// \brief Unreachable, we've already visited the alloca once.
1006 void visitInstruction(Instruction &I) {
1007 llvm_unreachable("Unhandled instruction in use builder.");
1008 }
1009};
1010
1011void AllocaPartitioning::splitAndMergePartitions() {
1012 size_t NumDeadPartitions = 0;
1013
1014 // Track the range of splittable partitions that we pass when accumulating
1015 // overlapping unsplittable partitions.
1016 uint64_t SplitEndOffset = 0ull;
1017
1018 Partition New(0ull, 0ull, false);
1019
1020 for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
1021 ++j;
1022
1023 if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
1024 assert(New.BeginOffset == New.EndOffset);
1025 New = Partitions[i];
1026 } else {
1027 assert(New.IsSplittable);
1028 New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
1029 }
1030 assert(New.BeginOffset != New.EndOffset);
1031
1032 // Scan the overlapping partitions.
1033 while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
1034 // If the new partition we are forming is splittable, stop at the first
1035 // unsplittable partition.
1036 if (New.IsSplittable && !Partitions[j].IsSplittable)
1037 break;
1038
1039 // Grow the new partition to include any equally splittable range. 'j' is
1040 // always equally splittable when New is splittable, but when New is not
1041 // splittable, we may subsume some (or part of some) splitable partition
1042 // without growing the new one.
1043 if (New.IsSplittable == Partitions[j].IsSplittable) {
1044 New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
1045 } else {
1046 assert(!New.IsSplittable);
1047 assert(Partitions[j].IsSplittable);
1048 SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
1049 }
1050
Chandler Carruthfca3f402012-10-05 01:29:09 +00001051 Partitions[j].kill();
Chandler Carruth713aa942012-09-14 09:22:59 +00001052 ++NumDeadPartitions;
1053 ++j;
1054 }
1055
1056 // If the new partition is splittable, chop off the end as soon as the
1057 // unsplittable subsequent partition starts and ensure we eventually cover
1058 // the splittable area.
1059 if (j != e && New.IsSplittable) {
1060 SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
1061 New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1062 }
1063
1064 // Add the new partition if it differs from the original one and is
1065 // non-empty. We can end up with an empty partition here if it was
1066 // splittable but there is an unsplittable one that starts at the same
1067 // offset.
1068 if (New != Partitions[i]) {
1069 if (New.BeginOffset != New.EndOffset)
1070 Partitions.push_back(New);
1071 // Mark the old one for removal.
Chandler Carruthfca3f402012-10-05 01:29:09 +00001072 Partitions[i].kill();
Chandler Carruth713aa942012-09-14 09:22:59 +00001073 ++NumDeadPartitions;
1074 }
1075
1076 New.BeginOffset = New.EndOffset;
1077 if (!New.IsSplittable) {
1078 New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
1079 if (j != e && !Partitions[j].IsSplittable)
1080 New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1081 New.IsSplittable = true;
1082 // If there is a trailing splittable partition which won't be fused into
1083 // the next splittable partition go ahead and add it onto the partitions
1084 // list.
1085 if (New.BeginOffset < New.EndOffset &&
1086 (j == e || !Partitions[j].IsSplittable ||
1087 New.EndOffset < Partitions[j].BeginOffset)) {
1088 Partitions.push_back(New);
1089 New.BeginOffset = New.EndOffset = 0ull;
1090 }
1091 }
1092 }
1093
1094 // Re-sort the partitions now that they have been split and merged into
1095 // disjoint set of partitions. Also remove any of the dead partitions we've
1096 // replaced in the process.
1097 std::sort(Partitions.begin(), Partitions.end());
1098 if (NumDeadPartitions) {
Chandler Carruthfca3f402012-10-05 01:29:09 +00001099 assert(Partitions.back().isDead());
Chandler Carruth713aa942012-09-14 09:22:59 +00001100 assert((ptrdiff_t)NumDeadPartitions ==
1101 std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
1102 }
1103 Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
1104}
1105
Micah Villmow3574eca2012-10-08 16:38:25 +00001106AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
Benjamin Kramerd0807692012-09-14 13:08:09 +00001107 :
Chandler Carruth3a902d02012-11-20 10:23:07 +00001108#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Benjamin Kramerd0807692012-09-14 13:08:09 +00001109 AI(AI),
1110#endif
1111 PointerEscapingInstr(0) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001112 PartitionBuilder PB(TD, AI, *this);
1113 if (!PB())
1114 return;
1115
Chandler Carruthfca3f402012-10-05 01:29:09 +00001116 // Sort the uses. This arranges for the offsets to be in ascending order,
1117 // and the sizes to be in descending order.
1118 std::sort(Partitions.begin(), Partitions.end());
Chandler Carruth713aa942012-09-14 09:22:59 +00001119
Chandler Carruthfca3f402012-10-05 01:29:09 +00001120 // Remove any partitions from the back which are marked as dead.
1121 while (!Partitions.empty() && Partitions.back().isDead())
1122 Partitions.pop_back();
1123
1124 if (Partitions.size() > 1) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001125 // Intersect splittability for all partitions with equal offsets and sizes.
1126 // Then remove all but the first so that we have a sequence of non-equal but
1127 // potentially overlapping partitions.
1128 for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
1129 I = J) {
1130 ++J;
1131 while (J != E && *I == *J) {
1132 I->IsSplittable &= J->IsSplittable;
1133 ++J;
1134 }
1135 }
1136 Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
1137 Partitions.end());
1138
1139 // Split splittable and merge unsplittable partitions into a disjoint set
1140 // of partitions over the used space of the allocation.
1141 splitAndMergePartitions();
1142 }
1143
1144 // Now build up the user lists for each of these disjoint partitions by
1145 // re-walking the recursive users of the alloca.
1146 Uses.resize(Partitions.size());
1147 UseBuilder UB(TD, AI, *this);
1148 UB();
Chandler Carruth713aa942012-09-14 09:22:59 +00001149}
1150
1151Type *AllocaPartitioning::getCommonType(iterator I) const {
1152 Type *Ty = 0;
1153 for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00001154 if (!UI->U)
1155 continue; // Skip dead uses.
Chandler Carruth77c12702012-10-01 01:49:22 +00001156 if (isa<IntrinsicInst>(*UI->U->getUser()))
Chandler Carruth713aa942012-09-14 09:22:59 +00001157 continue;
1158 if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
Chandler Carruth7c8df7a2012-09-18 17:49:37 +00001159 continue;
Chandler Carruth713aa942012-09-14 09:22:59 +00001160
1161 Type *UserTy = 0;
Chandler Carruth77c12702012-10-01 01:49:22 +00001162 if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001163 UserTy = LI->getType();
Chandler Carruth77c12702012-10-01 01:49:22 +00001164 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001165 UserTy = SI->getValueOperand()->getType();
Chandler Carrutha2b88162012-10-25 04:37:07 +00001166 } else {
1167 return 0; // Bail if we have weird uses.
1168 }
1169
1170 if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
1171 // If the type is larger than the partition, skip it. We only encounter
1172 // this for split integer operations where we want to use the type of the
1173 // entity causing the split.
1174 if (ITy->getBitWidth() > (I->EndOffset - I->BeginOffset)*8)
1175 continue;
1176
1177 // If we have found an integer type use covering the alloca, use that
1178 // regardless of the other types, as integers are often used for a "bucket
1179 // of bits" type.
1180 return ITy;
Chandler Carruth713aa942012-09-14 09:22:59 +00001181 }
1182
1183 if (Ty && Ty != UserTy)
1184 return 0;
1185
1186 Ty = UserTy;
1187 }
1188 return Ty;
1189}
1190
Chandler Carruthba13d2e2012-09-14 10:18:51 +00001191#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1192
Chandler Carruth713aa942012-09-14 09:22:59 +00001193void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
1194 StringRef Indent) const {
1195 OS << Indent << "partition #" << (I - begin())
1196 << " [" << I->BeginOffset << "," << I->EndOffset << ")"
1197 << (I->IsSplittable ? " (splittable)" : "")
1198 << (Uses[I - begin()].empty() ? " (zero uses)" : "")
1199 << "\n";
1200}
1201
1202void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
1203 StringRef Indent) const {
1204 for (const_use_iterator UI = use_begin(I), UE = use_end(I);
1205 UI != UE; ++UI) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00001206 if (!UI->U)
1207 continue; // Skip dead uses.
Chandler Carruth713aa942012-09-14 09:22:59 +00001208 OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") "
Chandler Carruth77c12702012-10-01 01:49:22 +00001209 << "used by: " << *UI->U->getUser() << "\n";
1210 if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001211 const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
1212 bool IsDest;
1213 if (!MTO.IsSplittable)
1214 IsDest = UI->BeginOffset == MTO.DestBegin;
1215 else
1216 IsDest = MTO.DestBegin != 0u;
1217 OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": "
1218 << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
1219 << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
1220 }
1221 }
1222}
1223
1224void AllocaPartitioning::print(raw_ostream &OS) const {
1225 if (PointerEscapingInstr) {
1226 OS << "No partitioning for alloca: " << AI << "\n"
1227 << " A pointer to this alloca escaped by:\n"
1228 << " " << *PointerEscapingInstr << "\n";
1229 return;
1230 }
1231
1232 OS << "Partitioning of alloca: " << AI << "\n";
1233 unsigned Num = 0;
1234 for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
1235 print(OS, I);
1236 printUsers(OS, I);
1237 }
1238}
1239
1240void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
1241void AllocaPartitioning::dump() const { print(dbgs()); }
1242
Chandler Carruthba13d2e2012-09-14 10:18:51 +00001243#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1244
Chandler Carruth713aa942012-09-14 09:22:59 +00001245
1246namespace {
Chandler Carruth1c8db502012-09-15 11:43:14 +00001247/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
1248///
1249/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
1250/// the loads and stores of an alloca instruction, as well as updating its
1251/// debug information. This is used when a domtree is unavailable and thus
1252/// mem2reg in its full form can't be used to handle promotion of allocas to
1253/// scalar values.
1254class AllocaPromoter : public LoadAndStorePromoter {
1255 AllocaInst &AI;
1256 DIBuilder &DIB;
1257
1258 SmallVector<DbgDeclareInst *, 4> DDIs;
1259 SmallVector<DbgValueInst *, 4> DVIs;
1260
1261public:
1262 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1263 AllocaInst &AI, DIBuilder &DIB)
1264 : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
1265
1266 void run(const SmallVectorImpl<Instruction*> &Insts) {
1267 // Remember which alloca we're promoting (for isInstInList).
1268 if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
1269 for (Value::use_iterator UI = DebugNode->use_begin(),
1270 UE = DebugNode->use_end();
1271 UI != UE; ++UI)
1272 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1273 DDIs.push_back(DDI);
1274 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1275 DVIs.push_back(DVI);
1276 }
1277
1278 LoadAndStorePromoter::run(Insts);
1279 AI.eraseFromParent();
1280 while (!DDIs.empty())
1281 DDIs.pop_back_val()->eraseFromParent();
1282 while (!DVIs.empty())
1283 DVIs.pop_back_val()->eraseFromParent();
1284 }
1285
1286 virtual bool isInstInList(Instruction *I,
1287 const SmallVectorImpl<Instruction*> &Insts) const {
1288 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1289 return LI->getOperand(0) == &AI;
1290 return cast<StoreInst>(I)->getPointerOperand() == &AI;
1291 }
1292
1293 virtual void updateDebugInfo(Instruction *Inst) const {
1294 for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1295 E = DDIs.end(); I != E; ++I) {
1296 DbgDeclareInst *DDI = *I;
1297 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1298 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1299 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1300 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1301 }
1302 for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1303 E = DVIs.end(); I != E; ++I) {
1304 DbgValueInst *DVI = *I;
1305 Value *Arg = NULL;
1306 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1307 // If an argument is zero extended then use argument directly. The ZExt
1308 // may be zapped by an optimization pass in future.
1309 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1310 Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1311 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1312 Arg = dyn_cast<Argument>(SExt->getOperand(0));
1313 if (!Arg)
1314 Arg = SI->getOperand(0);
1315 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1316 Arg = LI->getOperand(0);
1317 } else {
1318 continue;
1319 }
1320 Instruction *DbgVal =
1321 DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1322 Inst);
1323 DbgVal->setDebugLoc(DVI->getDebugLoc());
1324 }
1325 }
1326};
1327} // end anon namespace
1328
1329
1330namespace {
Chandler Carruth713aa942012-09-14 09:22:59 +00001331/// \brief An optimization pass providing Scalar Replacement of Aggregates.
1332///
1333/// This pass takes allocations which can be completely analyzed (that is, they
1334/// don't escape) and tries to turn them into scalar SSA values. There are
1335/// a few steps to this process.
1336///
1337/// 1) It takes allocations of aggregates and analyzes the ways in which they
1338/// are used to try to split them into smaller allocations, ideally of
1339/// a single scalar data type. It will split up memcpy and memset accesses
1340/// as necessary and try to isolate invidual scalar accesses.
1341/// 2) It will transform accesses into forms which are suitable for SSA value
1342/// promotion. This can be replacing a memset with a scalar store of an
1343/// integer value, or it can involve speculating operations on a PHI or
1344/// select to be a PHI or select of the results.
1345/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
1346/// onto insert and extract operations on a vector value, and convert them to
1347/// this form. By doing so, it will enable promotion of vector aggregates to
1348/// SSA vector values.
1349class SROA : public FunctionPass {
Chandler Carruth1c8db502012-09-15 11:43:14 +00001350 const bool RequiresDomTree;
1351
Chandler Carruth713aa942012-09-14 09:22:59 +00001352 LLVMContext *C;
Micah Villmow3574eca2012-10-08 16:38:25 +00001353 const DataLayout *TD;
Chandler Carruth713aa942012-09-14 09:22:59 +00001354 DominatorTree *DT;
1355
1356 /// \brief Worklist of alloca instructions to simplify.
1357 ///
1358 /// Each alloca in the function is added to this. Each new alloca formed gets
1359 /// added to it as well to recursively simplify unless that alloca can be
1360 /// directly promoted. Finally, each time we rewrite a use of an alloca other
1361 /// the one being actively rewritten, we add it back onto the list if not
1362 /// already present to ensure it is re-visited.
1363 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
1364
1365 /// \brief A collection of instructions to delete.
1366 /// We try to batch deletions to simplify code and make things a bit more
1367 /// efficient.
Chandler Carruthf5837aa2012-11-20 01:12:50 +00001368 SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
Chandler Carruth713aa942012-09-14 09:22:59 +00001369
Chandler Carruthb2d98c22012-10-04 12:33:50 +00001370 /// \brief Post-promotion worklist.
1371 ///
1372 /// Sometimes we discover an alloca which has a high probability of becoming
1373 /// viable for SROA after a round of promotion takes place. In those cases,
1374 /// the alloca is enqueued here for re-processing.
1375 ///
1376 /// Note that we have to be very careful to clear allocas out of this list in
1377 /// the event they are deleted.
1378 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
1379
Chandler Carruth713aa942012-09-14 09:22:59 +00001380 /// \brief A collection of alloca instructions we can directly promote.
1381 std::vector<AllocaInst *> PromotableAllocas;
1382
1383public:
Chandler Carruth1c8db502012-09-15 11:43:14 +00001384 SROA(bool RequiresDomTree = true)
1385 : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
1386 C(0), TD(0), DT(0) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001387 initializeSROAPass(*PassRegistry::getPassRegistry());
1388 }
1389 bool runOnFunction(Function &F);
1390 void getAnalysisUsage(AnalysisUsage &AU) const;
1391
1392 const char *getPassName() const { return "SROA"; }
1393 static char ID;
1394
1395private:
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00001396 friend class PHIOrSelectSpeculator;
Chandler Carruth713aa942012-09-14 09:22:59 +00001397 friend class AllocaPartitionRewriter;
1398 friend class AllocaPartitionVectorRewriter;
1399
1400 bool rewriteAllocaPartition(AllocaInst &AI,
1401 AllocaPartitioning &P,
1402 AllocaPartitioning::iterator PI);
1403 bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
1404 bool runOnAlloca(AllocaInst &AI);
Chandler Carruth8615cd22012-09-14 10:26:38 +00001405 void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
Chandler Carruth1c8db502012-09-15 11:43:14 +00001406 bool promoteAllocas(Function &F);
Chandler Carruth713aa942012-09-14 09:22:59 +00001407};
1408}
1409
1410char SROA::ID = 0;
1411
Chandler Carruth1c8db502012-09-15 11:43:14 +00001412FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1413 return new SROA(RequiresDomTree);
Chandler Carruth713aa942012-09-14 09:22:59 +00001414}
1415
1416INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1417 false, false)
1418INITIALIZE_PASS_DEPENDENCY(DominatorTree)
1419INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1420 false, false)
1421
Chandler Carruth0e9da582012-10-05 01:29:06 +00001422namespace {
1423/// \brief Visitor to speculate PHIs and Selects where possible.
1424class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
1425 // Befriend the base class so it can delegate to private visit methods.
1426 friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
1427
Micah Villmow3574eca2012-10-08 16:38:25 +00001428 const DataLayout &TD;
Chandler Carruth0e9da582012-10-05 01:29:06 +00001429 AllocaPartitioning &P;
1430 SROA &Pass;
1431
1432public:
Micah Villmow3574eca2012-10-08 16:38:25 +00001433 PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass)
Chandler Carruth0e9da582012-10-05 01:29:06 +00001434 : TD(TD), P(P), Pass(Pass) {}
1435
1436 /// \brief Visit the users of an alloca partition and rewrite them.
1437 void visitUsers(AllocaPartitioning::const_iterator PI) {
1438 // Note that we need to use an index here as the underlying vector of uses
1439 // may be grown during speculation. However, we never need to re-visit the
1440 // new uses, and so we can use the initial size bound.
1441 for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
1442 const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx);
1443 if (!PU.U)
1444 continue; // Skip dead use.
1445
1446 visit(cast<Instruction>(PU.U->getUser()));
1447 }
1448 }
1449
1450private:
1451 // By default, skip this instruction.
1452 void visitInstruction(Instruction &I) {}
1453
1454 /// PHI instructions that use an alloca and are subsequently loaded can be
1455 /// rewritten to load both input pointers in the pred blocks and then PHI the
1456 /// results, allowing the load of the alloca to be promoted.
1457 /// From this:
1458 /// %P2 = phi [i32* %Alloca, i32* %Other]
1459 /// %V = load i32* %P2
1460 /// to:
1461 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1462 /// ...
1463 /// %V2 = load i32* %Other
1464 /// ...
1465 /// %V = phi [i32 %V1, i32 %V2]
1466 ///
1467 /// We can do this to a select if its only uses are loads and if the operands
1468 /// to the select can be loaded unconditionally.
1469 ///
1470 /// FIXME: This should be hoisted into a generic utility, likely in
1471 /// Transforms/Util/Local.h
1472 bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
1473 // For now, we can only do this promotion if the load is in the same block
1474 // as the PHI, and if there are no stores between the phi and load.
1475 // TODO: Allow recursive phi users.
1476 // TODO: Allow stores.
1477 BasicBlock *BB = PN.getParent();
1478 unsigned MaxAlign = 0;
1479 for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
1480 UI != UE; ++UI) {
1481 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1482 if (LI == 0 || !LI->isSimple()) return false;
1483
1484 // For now we only allow loads in the same block as the PHI. This is
1485 // a common case that happens when instcombine merges two loads through
1486 // a PHI.
1487 if (LI->getParent() != BB) return false;
1488
1489 // Ensure that there are no instructions between the PHI and the load that
1490 // could store.
1491 for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1492 if (BBI->mayWriteToMemory())
1493 return false;
1494
1495 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1496 Loads.push_back(LI);
1497 }
1498
1499 // We can only transform this if it is safe to push the loads into the
1500 // predecessor blocks. The only thing to watch out for is that we can't put
1501 // a possibly trapping load in the predecessor if it is a critical edge.
1502 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
1503 ++Idx) {
1504 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1505 Value *InVal = PN.getIncomingValue(Idx);
1506
1507 // If the value is produced by the terminator of the predecessor (an
1508 // invoke) or it has side-effects, there is no valid place to put a load
1509 // in the predecessor.
1510 if (TI == InVal || TI->mayHaveSideEffects())
1511 return false;
1512
1513 // If the predecessor has a single successor, then the edge isn't
1514 // critical.
1515 if (TI->getNumSuccessors() == 1)
1516 continue;
1517
1518 // If this pointer is always safe to load, or if we can prove that there
1519 // is already a load in the block, then we can move the load to the pred
1520 // block.
1521 if (InVal->isDereferenceablePointer() ||
1522 isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
1523 continue;
1524
1525 return false;
1526 }
1527
1528 return true;
1529 }
1530
1531 void visitPHINode(PHINode &PN) {
1532 DEBUG(dbgs() << " original: " << PN << "\n");
1533
1534 SmallVector<LoadInst *, 4> Loads;
1535 if (!isSafePHIToSpeculate(PN, Loads))
1536 return;
1537
1538 assert(!Loads.empty());
1539
1540 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1541 IRBuilder<> PHIBuilder(&PN);
1542 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1543 PN.getName() + ".sroa.speculated");
1544
1545 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1546 // matter which one we get and if any differ, it doesn't matter.
1547 LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
1548 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1549 unsigned Align = SomeLoad->getAlignment();
1550
1551 // Rewrite all loads of the PN to use the new PHI.
1552 do {
1553 LoadInst *LI = Loads.pop_back_val();
1554 LI->replaceAllUsesWith(NewPN);
Chandler Carruthf5837aa2012-11-20 01:12:50 +00001555 Pass.DeadInsts.insert(LI);
Chandler Carruth0e9da582012-10-05 01:29:06 +00001556 } while (!Loads.empty());
1557
1558 // Inject loads into all of the pred blocks.
1559 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1560 BasicBlock *Pred = PN.getIncomingBlock(Idx);
1561 TerminatorInst *TI = Pred->getTerminator();
1562 Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
1563 Value *InVal = PN.getIncomingValue(Idx);
1564 IRBuilder<> PredBuilder(TI);
1565
1566 LoadInst *Load
1567 = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
1568 Pred->getName()));
1569 ++NumLoadsSpeculated;
1570 Load->setAlignment(Align);
1571 if (TBAATag)
1572 Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1573 NewPN->addIncoming(Load, Pred);
1574
1575 Instruction *Ptr = dyn_cast<Instruction>(InVal);
1576 if (!Ptr)
1577 // No uses to rewrite.
1578 continue;
1579
1580 // Try to lookup and rewrite any partition uses corresponding to this phi
1581 // input.
1582 AllocaPartitioning::iterator PI
1583 = P.findPartitionForPHIOrSelectOperand(InUse);
1584 if (PI == P.end())
1585 continue;
1586
1587 // Replace the Use in the PartitionUse for this operand with the Use
1588 // inside the load.
1589 AllocaPartitioning::use_iterator UI
1590 = P.findPartitionUseForPHIOrSelectOperand(InUse);
1591 assert(isa<PHINode>(*UI->U->getUser()));
1592 UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
1593 }
1594 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
1595 }
1596
1597 /// Select instructions that use an alloca and are subsequently loaded can be
1598 /// rewritten to load both input pointers and then select between the result,
1599 /// allowing the load of the alloca to be promoted.
1600 /// From this:
1601 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1602 /// %V = load i32* %P2
1603 /// to:
1604 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1605 /// %V2 = load i32* %Other
1606 /// %V = select i1 %cond, i32 %V1, i32 %V2
1607 ///
1608 /// We can do this to a select if its only uses are loads and if the operand
1609 /// to the select can be loaded unconditionally.
1610 bool isSafeSelectToSpeculate(SelectInst &SI,
1611 SmallVectorImpl<LoadInst *> &Loads) {
1612 Value *TValue = SI.getTrueValue();
1613 Value *FValue = SI.getFalseValue();
1614 bool TDerefable = TValue->isDereferenceablePointer();
1615 bool FDerefable = FValue->isDereferenceablePointer();
1616
1617 for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
1618 UI != UE; ++UI) {
1619 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1620 if (LI == 0 || !LI->isSimple()) return false;
1621
1622 // Both operands to the select need to be dereferencable, either
1623 // absolutely (e.g. allocas) or at this point because we can see other
1624 // accesses to it.
1625 if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
1626 LI->getAlignment(), &TD))
1627 return false;
1628 if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
1629 LI->getAlignment(), &TD))
1630 return false;
1631 Loads.push_back(LI);
1632 }
1633
1634 return true;
1635 }
1636
1637 void visitSelectInst(SelectInst &SI) {
1638 DEBUG(dbgs() << " original: " << SI << "\n");
1639 IRBuilder<> IRB(&SI);
1640
1641 // If the select isn't safe to speculate, just use simple logic to emit it.
1642 SmallVector<LoadInst *, 4> Loads;
1643 if (!isSafeSelectToSpeculate(SI, Loads))
1644 return;
1645
1646 Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
1647 AllocaPartitioning::iterator PIs[2];
1648 AllocaPartitioning::PartitionUse PUs[2];
1649 for (unsigned i = 0, e = 2; i != e; ++i) {
1650 PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
1651 if (PIs[i] != P.end()) {
1652 // If the pointer is within the partitioning, remove the select from
1653 // its uses. We'll add in the new loads below.
1654 AllocaPartitioning::use_iterator UI
1655 = P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
1656 PUs[i] = *UI;
1657 // Clear out the use here so that the offsets into the use list remain
1658 // stable but this use is ignored when rewriting.
1659 UI->U = 0;
1660 }
1661 }
1662
1663 Value *TV = SI.getTrueValue();
1664 Value *FV = SI.getFalseValue();
1665 // Replace the loads of the select with a select of two loads.
1666 while (!Loads.empty()) {
1667 LoadInst *LI = Loads.pop_back_val();
1668
1669 IRB.SetInsertPoint(LI);
1670 LoadInst *TL =
1671 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1672 LoadInst *FL =
1673 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1674 NumLoadsSpeculated += 2;
1675
1676 // Transfer alignment and TBAA info if present.
1677 TL->setAlignment(LI->getAlignment());
1678 FL->setAlignment(LI->getAlignment());
1679 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1680 TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1681 FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1682 }
1683
1684 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1685 LI->getName() + ".sroa.speculated");
1686
1687 LoadInst *Loads[2] = { TL, FL };
1688 for (unsigned i = 0, e = 2; i != e; ++i) {
1689 if (PIs[i] != P.end()) {
1690 Use *LoadUse = &Loads[i]->getOperandUse(0);
1691 assert(PUs[i].U->get() == LoadUse->get());
1692 PUs[i].U = LoadUse;
1693 P.use_push_back(PIs[i], PUs[i]);
1694 }
1695 }
1696
1697 DEBUG(dbgs() << " speculated to: " << *V << "\n");
1698 LI->replaceAllUsesWith(V);
Chandler Carruthf5837aa2012-11-20 01:12:50 +00001699 Pass.DeadInsts.insert(LI);
Chandler Carruth0e9da582012-10-05 01:29:06 +00001700 }
1701 }
1702};
1703}
1704
Chandler Carruth713aa942012-09-14 09:22:59 +00001705/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
1706///
1707/// If the provided GEP is all-constant, the total byte offset formed by the
1708/// GEP is computed and Offset is set to it. If the GEP has any non-constant
1709/// operands, the function returns false and the value of Offset is unmodified.
Micah Villmow3574eca2012-10-08 16:38:25 +00001710static bool accumulateGEPOffsets(const DataLayout &TD, GEPOperator &GEP,
Chandler Carruth713aa942012-09-14 09:22:59 +00001711 APInt &Offset) {
1712 APInt GEPOffset(Offset.getBitWidth(), 0);
1713 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1714 GTI != GTE; ++GTI) {
1715 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1716 if (!OpC)
1717 return false;
1718 if (OpC->isZero()) continue;
1719
1720 // Handle a struct index, which adds its field offset to the pointer.
1721 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1722 unsigned ElementIdx = OpC->getZExtValue();
1723 const StructLayout *SL = TD.getStructLayout(STy);
1724 GEPOffset += APInt(Offset.getBitWidth(),
1725 SL->getElementOffset(ElementIdx));
1726 continue;
1727 }
1728
1729 APInt TypeSize(Offset.getBitWidth(),
1730 TD.getTypeAllocSize(GTI.getIndexedType()));
1731 if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
1732 assert((VTy->getScalarSizeInBits() % 8) == 0 &&
1733 "vector element size is not a multiple of 8, cannot GEP over it");
1734 TypeSize = VTy->getScalarSizeInBits() / 8;
1735 }
1736
1737 GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
1738 }
1739 Offset = GEPOffset;
1740 return true;
1741}
1742
1743/// \brief Build a GEP out of a base pointer and indices.
1744///
1745/// This will return the BasePtr if that is valid, or build a new GEP
1746/// instruction using the IRBuilder if GEP-ing is needed.
1747static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
1748 SmallVectorImpl<Value *> &Indices,
1749 const Twine &Prefix) {
1750 if (Indices.empty())
1751 return BasePtr;
1752
1753 // A single zero index is a no-op, so check for this and avoid building a GEP
1754 // in that case.
1755 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1756 return BasePtr;
1757
1758 return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
1759}
1760
1761/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1762/// TargetTy without changing the offset of the pointer.
1763///
1764/// This routine assumes we've already established a properly offset GEP with
1765/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1766/// zero-indices down through type layers until we find one the same as
1767/// TargetTy. If we can't find one with the same type, we at least try to use
1768/// one with the same size. If none of that works, we just produce the GEP as
1769/// indicated by Indices to have the correct offset.
Micah Villmow3574eca2012-10-08 16:38:25 +00001770static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001771 Value *BasePtr, Type *Ty, Type *TargetTy,
1772 SmallVectorImpl<Value *> &Indices,
1773 const Twine &Prefix) {
1774 if (Ty == TargetTy)
1775 return buildGEP(IRB, BasePtr, Indices, Prefix);
1776
1777 // See if we can descend into a struct and locate a field with the correct
1778 // type.
1779 unsigned NumLayers = 0;
1780 Type *ElementTy = Ty;
1781 do {
1782 if (ElementTy->isPointerTy())
1783 break;
1784 if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1785 ElementTy = SeqTy->getElementType();
Chandler Carruth020d9d52012-10-17 07:22:16 +00001786 // Note that we use the default address space as this index is over an
1787 // array or a vector, not a pointer.
1788 Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(0), 0)));
Chandler Carruth713aa942012-09-14 09:22:59 +00001789 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
Chandler Carruth2fdb25b2012-10-09 01:58:35 +00001790 if (STy->element_begin() == STy->element_end())
1791 break; // Nothing left to descend into.
Chandler Carruth713aa942012-09-14 09:22:59 +00001792 ElementTy = *STy->element_begin();
1793 Indices.push_back(IRB.getInt32(0));
1794 } else {
1795 break;
1796 }
1797 ++NumLayers;
1798 } while (ElementTy != TargetTy);
1799 if (ElementTy != TargetTy)
1800 Indices.erase(Indices.end() - NumLayers, Indices.end());
1801
1802 return buildGEP(IRB, BasePtr, Indices, Prefix);
1803}
1804
1805/// \brief Recursively compute indices for a natural GEP.
1806///
1807/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1808/// element types adding appropriate indices for the GEP.
Micah Villmow3574eca2012-10-08 16:38:25 +00001809static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001810 Value *Ptr, Type *Ty, APInt &Offset,
1811 Type *TargetTy,
1812 SmallVectorImpl<Value *> &Indices,
1813 const Twine &Prefix) {
1814 if (Offset == 0)
1815 return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
1816
1817 // We can't recurse through pointer types.
1818 if (Ty->isPointerTy())
1819 return 0;
1820
Chandler Carruth8ed1ed82012-09-14 10:30:40 +00001821 // We try to analyze GEPs over vectors here, but note that these GEPs are
1822 // extremely poorly defined currently. The long-term goal is to remove GEPing
1823 // over a vector from the IR completely.
Chandler Carruth713aa942012-09-14 09:22:59 +00001824 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1825 unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
1826 if (ElementSizeInBits % 8)
Chandler Carruth8ed1ed82012-09-14 10:30:40 +00001827 return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
Chandler Carruth713aa942012-09-14 09:22:59 +00001828 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
Chandler Carruth02bf98a2012-10-17 09:23:48 +00001829 APInt NumSkippedElements = Offset.sdiv(ElementSize);
Chandler Carruth713aa942012-09-14 09:22:59 +00001830 if (NumSkippedElements.ugt(VecTy->getNumElements()))
1831 return 0;
1832 Offset -= NumSkippedElements * ElementSize;
1833 Indices.push_back(IRB.getInt(NumSkippedElements));
1834 return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
1835 Offset, TargetTy, Indices, Prefix);
1836 }
1837
1838 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1839 Type *ElementTy = ArrTy->getElementType();
1840 APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
Chandler Carruth02bf98a2012-10-17 09:23:48 +00001841 APInt NumSkippedElements = Offset.sdiv(ElementSize);
Chandler Carruth713aa942012-09-14 09:22:59 +00001842 if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1843 return 0;
1844
1845 Offset -= NumSkippedElements * ElementSize;
1846 Indices.push_back(IRB.getInt(NumSkippedElements));
1847 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1848 Indices, Prefix);
1849 }
1850
1851 StructType *STy = dyn_cast<StructType>(Ty);
1852 if (!STy)
1853 return 0;
1854
1855 const StructLayout *SL = TD.getStructLayout(STy);
1856 uint64_t StructOffset = Offset.getZExtValue();
Chandler Carruthad41dcf2012-09-14 10:30:42 +00001857 if (StructOffset >= SL->getSizeInBytes())
Chandler Carruth713aa942012-09-14 09:22:59 +00001858 return 0;
1859 unsigned Index = SL->getElementContainingOffset(StructOffset);
1860 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1861 Type *ElementTy = STy->getElementType(Index);
1862 if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
1863 return 0; // The offset points into alignment padding.
1864
1865 Indices.push_back(IRB.getInt32(Index));
1866 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1867 Indices, Prefix);
1868}
1869
1870/// \brief Get a natural GEP from a base pointer to a particular offset and
1871/// resulting in a particular type.
1872///
1873/// The goal is to produce a "natural" looking GEP that works with the existing
1874/// composite types to arrive at the appropriate offset and element type for
1875/// a pointer. TargetTy is the element type the returned GEP should point-to if
1876/// possible. We recurse by decreasing Offset, adding the appropriate index to
1877/// Indices, and setting Ty to the result subtype.
1878///
Chandler Carruth7f5bede2012-09-14 10:18:49 +00001879/// If no natural GEP can be constructed, this function returns null.
Micah Villmow3574eca2012-10-08 16:38:25 +00001880static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001881 Value *Ptr, APInt Offset, Type *TargetTy,
1882 SmallVectorImpl<Value *> &Indices,
1883 const Twine &Prefix) {
1884 PointerType *Ty = cast<PointerType>(Ptr->getType());
1885
1886 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1887 // an i8.
1888 if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1889 return 0;
1890
1891 Type *ElementTy = Ty->getElementType();
Chandler Carruth38f35fd2012-09-18 22:37:19 +00001892 if (!ElementTy->isSized())
1893 return 0; // We can't GEP through an unsized element.
Chandler Carruth713aa942012-09-14 09:22:59 +00001894 APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1895 if (ElementSize == 0)
1896 return 0; // Zero-length arrays can't help us build a natural GEP.
Chandler Carruth02bf98a2012-10-17 09:23:48 +00001897 APInt NumSkippedElements = Offset.sdiv(ElementSize);
Chandler Carruth713aa942012-09-14 09:22:59 +00001898
1899 Offset -= NumSkippedElements * ElementSize;
1900 Indices.push_back(IRB.getInt(NumSkippedElements));
1901 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1902 Indices, Prefix);
1903}
1904
1905/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1906/// resulting pointer has PointerTy.
1907///
1908/// This tries very hard to compute a "natural" GEP which arrives at the offset
1909/// and produces the pointer type desired. Where it cannot, it will try to use
1910/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1911/// fails, it will try to use an existing i8* and GEP to the byte offset and
1912/// bitcast to the type.
1913///
1914/// The strategy for finding the more natural GEPs is to peel off layers of the
1915/// pointer, walking back through bit casts and GEPs, searching for a base
1916/// pointer from which we can compute a natural GEP with the desired
1917/// properities. The algorithm tries to fold as many constant indices into
1918/// a single GEP as possible, thus making each GEP more independent of the
1919/// surrounding code.
Micah Villmow3574eca2012-10-08 16:38:25 +00001920static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00001921 Value *Ptr, APInt Offset, Type *PointerTy,
1922 const Twine &Prefix) {
1923 // Even though we don't look through PHI nodes, we could be called on an
1924 // instruction in an unreachable block, which may be on a cycle.
1925 SmallPtrSet<Value *, 4> Visited;
1926 Visited.insert(Ptr);
1927 SmallVector<Value *, 4> Indices;
1928
1929 // We may end up computing an offset pointer that has the wrong type. If we
1930 // never are able to compute one directly that has the correct type, we'll
1931 // fall back to it, so keep it around here.
1932 Value *OffsetPtr = 0;
1933
1934 // Remember any i8 pointer we come across to re-use if we need to do a raw
1935 // byte offset.
1936 Value *Int8Ptr = 0;
1937 APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1938
1939 Type *TargetTy = PointerTy->getPointerElementType();
1940
1941 do {
1942 // First fold any existing GEPs into the offset.
1943 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1944 APInt GEPOffset(Offset.getBitWidth(), 0);
1945 if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
1946 break;
1947 Offset += GEPOffset;
1948 Ptr = GEP->getPointerOperand();
1949 if (!Visited.insert(Ptr))
1950 break;
1951 }
1952
1953 // See if we can perform a natural GEP here.
1954 Indices.clear();
1955 if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
1956 Indices, Prefix)) {
1957 if (P->getType() == PointerTy) {
1958 // Zap any offset pointer that we ended up computing in previous rounds.
1959 if (OffsetPtr && OffsetPtr->use_empty())
1960 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1961 I->eraseFromParent();
1962 return P;
1963 }
1964 if (!OffsetPtr) {
1965 OffsetPtr = P;
1966 }
1967 }
1968
1969 // Stash this pointer if we've found an i8*.
1970 if (Ptr->getType()->isIntegerTy(8)) {
1971 Int8Ptr = Ptr;
1972 Int8PtrOffset = Offset;
1973 }
1974
1975 // Peel off a layer of the pointer and update the offset appropriately.
1976 if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1977 Ptr = cast<Operator>(Ptr)->getOperand(0);
1978 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1979 if (GA->mayBeOverridden())
1980 break;
1981 Ptr = GA->getAliasee();
1982 } else {
1983 break;
1984 }
1985 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1986 } while (Visited.insert(Ptr));
1987
1988 if (!OffsetPtr) {
1989 if (!Int8Ptr) {
1990 Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1991 Prefix + ".raw_cast");
1992 Int8PtrOffset = Offset;
1993 }
1994
1995 OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1996 IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1997 Prefix + ".raw_idx");
1998 }
1999 Ptr = OffsetPtr;
2000
2001 // On the off chance we were targeting i8*, guard the bitcast here.
2002 if (Ptr->getType() != PointerTy)
2003 Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
2004
2005 return Ptr;
2006}
2007
Chandler Carruth11cb6ba2012-10-15 08:40:22 +00002008/// \brief Test whether we can convert a value from the old to the new type.
2009///
2010/// This predicate should be used to guard calls to convertValue in order to
2011/// ensure that we only try to convert viable values. The strategy is that we
2012/// will peel off single element struct and array wrappings to get to an
2013/// underlying value, and convert that value.
2014static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
2015 if (OldTy == NewTy)
2016 return true;
2017 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
2018 return false;
2019 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
2020 return false;
2021
2022 if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
2023 if (NewTy->isPointerTy() && OldTy->isPointerTy())
2024 return true;
2025 if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
2026 return true;
2027 return false;
2028 }
2029
2030 return true;
2031}
2032
2033/// \brief Generic routine to convert an SSA value to a value of a different
2034/// type.
2035///
2036/// This will try various different casting techniques, such as bitcasts,
2037/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
2038/// two types for viability with this routine.
2039static Value *convertValue(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
2040 Type *Ty) {
2041 assert(canConvertValue(DL, V->getType(), Ty) &&
2042 "Value not convertable to type");
2043 if (V->getType() == Ty)
2044 return V;
2045 if (V->getType()->isIntegerTy() && Ty->isPointerTy())
2046 return IRB.CreateIntToPtr(V, Ty);
2047 if (V->getType()->isPointerTy() && Ty->isIntegerTy())
2048 return IRB.CreatePtrToInt(V, Ty);
2049
2050 return IRB.CreateBitCast(V, Ty);
2051}
2052
Chandler Carruth713aa942012-09-14 09:22:59 +00002053/// \brief Test whether the given alloca partition can be promoted to a vector.
2054///
2055/// This is a quick test to check whether we can rewrite a particular alloca
2056/// partition (and its newly formed alloca) into a vector alloca with only
2057/// whole-vector loads and stores such that it could be promoted to a vector
2058/// SSA value. We only can ensure this for a limited set of operations, and we
2059/// don't want to do the rewrites unless we are confident that the result will
2060/// be promotable, so we have an early test here.
Micah Villmow3574eca2012-10-08 16:38:25 +00002061static bool isVectorPromotionViable(const DataLayout &TD,
Chandler Carruth713aa942012-09-14 09:22:59 +00002062 Type *AllocaTy,
2063 AllocaPartitioning &P,
2064 uint64_t PartitionBeginOffset,
2065 uint64_t PartitionEndOffset,
2066 AllocaPartitioning::const_use_iterator I,
2067 AllocaPartitioning::const_use_iterator E) {
2068 VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
2069 if (!Ty)
2070 return false;
2071
2072 uint64_t VecSize = TD.getTypeSizeInBits(Ty);
2073 uint64_t ElementSize = Ty->getScalarSizeInBits();
2074
2075 // While the definition of LLVM vectors is bitpacked, we don't support sizes
2076 // that aren't byte sized.
2077 if (ElementSize % 8)
2078 return false;
2079 assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
2080 VecSize /= 8;
2081 ElementSize /= 8;
2082
2083 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002084 if (!I->U)
2085 continue; // Skip dead use.
2086
Chandler Carruth713aa942012-09-14 09:22:59 +00002087 uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
2088 uint64_t BeginIndex = BeginOffset / ElementSize;
2089 if (BeginIndex * ElementSize != BeginOffset ||
2090 BeginIndex >= Ty->getNumElements())
2091 return false;
2092 uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
2093 uint64_t EndIndex = EndOffset / ElementSize;
2094 if (EndIndex * ElementSize != EndOffset ||
2095 EndIndex > Ty->getNumElements())
2096 return false;
2097
Chandler Carruth07df7652012-11-21 08:16:30 +00002098 assert(EndIndex > BeginIndex && "Empty vector!");
2099 uint64_t NumElements = EndIndex - BeginIndex;
2100 Type *PartitionTy
2101 = (NumElements == 1) ? Ty->getElementType()
2102 : VectorType::get(Ty->getElementType(), NumElements);
Chandler Carruth713aa942012-09-14 09:22:59 +00002103
Chandler Carruth77c12702012-10-01 01:49:22 +00002104 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002105 if (MI->isVolatile())
2106 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002107 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002108 const AllocaPartitioning::MemTransferOffsets &MTO
2109 = P.getMemTransferOffsets(*MTI);
2110 if (!MTO.IsSplittable)
2111 return false;
2112 }
Chandler Carruth77c12702012-10-01 01:49:22 +00002113 } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002114 // Disable vector promotion when there are loads or stores of an FCA.
2115 return false;
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002116 } else if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
2117 if (LI->isVolatile())
2118 return false;
Chandler Carruth07df7652012-11-21 08:16:30 +00002119 if (!canConvertValue(TD, PartitionTy, LI->getType()))
2120 return false;
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002121 } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
2122 if (SI->isVolatile())
2123 return false;
Chandler Carruth07df7652012-11-21 08:16:30 +00002124 if (!canConvertValue(TD, SI->getValueOperand()->getType(), PartitionTy))
2125 return false;
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002126 } else {
Chandler Carruth713aa942012-09-14 09:22:59 +00002127 return false;
2128 }
2129 }
2130 return true;
2131}
2132
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002133/// \brief Test whether the given alloca partition's integer operations can be
2134/// widened to promotable ones.
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002135///
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002136/// This is a quick test to check whether we can rewrite the integer loads and
2137/// stores to a particular alloca into wider loads and stores and be able to
2138/// promote the resulting alloca.
2139static bool isIntegerWideningViable(const DataLayout &TD,
2140 Type *AllocaTy,
2141 uint64_t AllocBeginOffset,
2142 AllocaPartitioning &P,
2143 AllocaPartitioning::const_use_iterator I,
2144 AllocaPartitioning::const_use_iterator E) {
2145 uint64_t SizeInBits = TD.getTypeSizeInBits(AllocaTy);
Benjamin Kramer5bded752012-12-01 11:53:32 +00002146 // Don't create integer types larger than the maximum bitwidth.
2147 if (SizeInBits > IntegerType::MAX_INT_BITS)
2148 return false;
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002149
2150 // Don't try to handle allocas with bit-padding.
2151 if (SizeInBits != TD.getTypeStoreSizeInBits(AllocaTy))
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002152 return false;
2153
Chandler Carrutha2b88162012-10-25 04:37:07 +00002154 // We need to ensure that an integer type with the appropriate bitwidth can
2155 // be converted to the alloca type, whatever that is. We don't want to force
2156 // the alloca itself to have an integer type if there is a more suitable one.
2157 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2158 if (!canConvertValue(TD, AllocaTy, IntTy) ||
2159 !canConvertValue(TD, IntTy, AllocaTy))
2160 return false;
2161
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002162 uint64_t Size = TD.getTypeStoreSize(AllocaTy);
2163
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002164 // Check the uses to ensure the uses are (likely) promoteable integer uses.
2165 // Also ensure that the alloca has a covering load or store. We don't want
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002166 // to widen the integer operotains only to fail to promote due to some other
2167 // unsplittable entry (which we may make splittable later).
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002168 bool WholeAllocaOp = false;
2169 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002170 if (!I->U)
2171 continue; // Skip dead use.
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002172
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002173 uint64_t RelBegin = I->BeginOffset - AllocBeginOffset;
2174 uint64_t RelEnd = I->EndOffset - AllocBeginOffset;
2175
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002176 // We can't reasonably handle cases where the load or store extends past
2177 // the end of the aloca's type and into its padding.
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002178 if (RelEnd > Size)
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002179 return false;
2180
Chandler Carruth77c12702012-10-01 01:49:22 +00002181 if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002182 if (LI->isVolatile())
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002183 return false;
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002184 if (RelBegin == 0 && RelEnd == Size)
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002185 WholeAllocaOp = true;
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002186 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
Chandler Carruth3d9afa82012-12-10 00:54:45 +00002187 if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002188 return false;
2189 continue;
2190 }
2191 // Non-integer loads need to be convertible from the alloca type so that
2192 // they are promotable.
2193 if (RelBegin != 0 || RelEnd != Size ||
2194 !canConvertValue(TD, AllocaTy, LI->getType()))
2195 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002196 } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002197 Type *ValueTy = SI->getValueOperand()->getType();
2198 if (SI->isVolatile())
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002199 return false;
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002200 if (RelBegin == 0 && RelEnd == Size)
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002201 WholeAllocaOp = true;
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002202 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
Chandler Carruth3d9afa82012-12-10 00:54:45 +00002203 if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002204 return false;
2205 continue;
2206 }
2207 // Non-integer stores need to be convertible to the alloca type so that
2208 // they are promotable.
2209 if (RelBegin != 0 || RelEnd != Size ||
2210 !canConvertValue(TD, ValueTy, AllocaTy))
2211 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002212 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002213 if (MI->isVolatile())
2214 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002215 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002216 const AllocaPartitioning::MemTransferOffsets &MTO
2217 = P.getMemTransferOffsets(*MTI);
2218 if (!MTO.IsSplittable)
2219 return false;
2220 }
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002221 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->U->getUser())) {
2222 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2223 II->getIntrinsicID() != Intrinsic::lifetime_end)
2224 return false;
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002225 } else {
2226 return false;
2227 }
2228 }
2229 return WholeAllocaOp;
2230}
2231
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002232static Value *extractInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *V,
2233 IntegerType *Ty, uint64_t Offset,
2234 const Twine &Name) {
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002235 DEBUG(dbgs() << " start: " << *V << "\n");
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002236 IntegerType *IntTy = cast<IntegerType>(V->getType());
2237 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2238 "Element extends past full value");
2239 uint64_t ShAmt = 8*Offset;
2240 if (DL.isBigEndian())
2241 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002242 if (ShAmt) {
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002243 V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002244 DEBUG(dbgs() << " shifted: " << *V << "\n");
2245 }
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002246 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2247 "Cannot extract to a larger integer!");
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002248 if (Ty != IntTy) {
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002249 V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002250 DEBUG(dbgs() << " trunced: " << *V << "\n");
2251 }
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002252 return V;
2253}
2254
2255static Value *insertInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *Old,
2256 Value *V, uint64_t Offset, const Twine &Name) {
2257 IntegerType *IntTy = cast<IntegerType>(Old->getType());
2258 IntegerType *Ty = cast<IntegerType>(V->getType());
2259 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2260 "Cannot insert a larger integer!");
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002261 DEBUG(dbgs() << " start: " << *V << "\n");
2262 if (Ty != IntTy) {
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002263 V = IRB.CreateZExt(V, IntTy, Name + ".ext");
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002264 DEBUG(dbgs() << " extended: " << *V << "\n");
2265 }
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002266 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2267 "Element store outside of alloca store");
2268 uint64_t ShAmt = 8*Offset;
2269 if (DL.isBigEndian())
2270 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002271 if (ShAmt) {
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002272 V = IRB.CreateShl(V, ShAmt, Name + ".shift");
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002273 DEBUG(dbgs() << " shifted: " << *V << "\n");
2274 }
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002275
2276 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2277 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2278 Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002279 DEBUG(dbgs() << " masked: " << *Old << "\n");
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002280 V = IRB.CreateOr(Old, V, Name + ".insert");
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002281 DEBUG(dbgs() << " inserted: " << *V << "\n");
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002282 }
2283 return V;
2284}
2285
Chandler Carruth713aa942012-09-14 09:22:59 +00002286namespace {
2287/// \brief Visitor to rewrite instructions using a partition of an alloca to
2288/// use a new alloca.
2289///
2290/// Also implements the rewriting to vector-based accesses when the partition
2291/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2292/// lives here.
2293class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
2294 bool> {
2295 // Befriend the base class so it can delegate to private visit methods.
2296 friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
2297
Micah Villmow3574eca2012-10-08 16:38:25 +00002298 const DataLayout &TD;
Chandler Carruth713aa942012-09-14 09:22:59 +00002299 AllocaPartitioning &P;
2300 SROA &Pass;
2301 AllocaInst &OldAI, &NewAI;
2302 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
Chandler Carruth520eeae2012-10-13 02:41:05 +00002303 Type *NewAllocaTy;
Chandler Carruth713aa942012-09-14 09:22:59 +00002304
2305 // If we are rewriting an alloca partition which can be written as pure
2306 // vector operations, we stash extra information here. When VecTy is
2307 // non-null, we have some strict guarantees about the rewriten alloca:
2308 // - The new alloca is exactly the size of the vector type here.
2309 // - The accesses all either map to the entire vector or to a single
2310 // element.
2311 // - The set of accessing instructions is only one of those handled above
2312 // in isVectorPromotionViable. Generally these are the same access kinds
2313 // which are promotable via mem2reg.
2314 VectorType *VecTy;
2315 Type *ElementTy;
2316 uint64_t ElementSize;
2317
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002318 // This is a convenience and flag variable that will be null unless the new
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002319 // alloca's integer operations should be widened to this integer type due to
2320 // passing isIntegerWideningViable above. If it is non-null, the desired
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002321 // integer type will be stored here for easy access during rewriting.
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002322 IntegerType *IntTy;
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002323
Chandler Carruth713aa942012-09-14 09:22:59 +00002324 // The offset of the partition user currently being rewritten.
2325 uint64_t BeginOffset, EndOffset;
Chandler Carruth77c12702012-10-01 01:49:22 +00002326 Use *OldUse;
Chandler Carruth713aa942012-09-14 09:22:59 +00002327 Instruction *OldPtr;
2328
2329 // The name prefix to use when rewriting instructions for this alloca.
2330 std::string NamePrefix;
2331
2332public:
Micah Villmow3574eca2012-10-08 16:38:25 +00002333 AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
Chandler Carruth713aa942012-09-14 09:22:59 +00002334 AllocaPartitioning::iterator PI,
2335 SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
2336 uint64_t NewBeginOffset, uint64_t NewEndOffset)
2337 : TD(TD), P(P), Pass(Pass),
2338 OldAI(OldAI), NewAI(NewAI),
2339 NewAllocaBeginOffset(NewBeginOffset),
2340 NewAllocaEndOffset(NewEndOffset),
Chandler Carruth520eeae2012-10-13 02:41:05 +00002341 NewAllocaTy(NewAI.getAllocatedType()),
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002342 VecTy(), ElementTy(), ElementSize(), IntTy(),
Chandler Carruth713aa942012-09-14 09:22:59 +00002343 BeginOffset(), EndOffset() {
2344 }
2345
2346 /// \brief Visit the users of the alloca partition and rewrite them.
2347 bool visitUsers(AllocaPartitioning::const_use_iterator I,
2348 AllocaPartitioning::const_use_iterator E) {
2349 if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
2350 NewAllocaBeginOffset, NewAllocaEndOffset,
2351 I, E)) {
2352 ++NumVectorized;
2353 VecTy = cast<VectorType>(NewAI.getAllocatedType());
2354 ElementTy = VecTy->getElementType();
2355 assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
2356 "Only multiple-of-8 sized vector elements are viable");
2357 ElementSize = VecTy->getScalarSizeInBits() / 8;
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002358 } else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
2359 NewAllocaBeginOffset, P, I, E)) {
2360 IntTy = Type::getIntNTy(NewAI.getContext(),
2361 TD.getTypeSizeInBits(NewAI.getAllocatedType()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002362 }
2363 bool CanSROA = true;
2364 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002365 if (!I->U)
2366 continue; // Skip dead uses.
Chandler Carruth713aa942012-09-14 09:22:59 +00002367 BeginOffset = I->BeginOffset;
2368 EndOffset = I->EndOffset;
Chandler Carruth77c12702012-10-01 01:49:22 +00002369 OldUse = I->U;
2370 OldPtr = cast<Instruction>(I->U->get());
Chandler Carruth713aa942012-09-14 09:22:59 +00002371 NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
Chandler Carruth77c12702012-10-01 01:49:22 +00002372 CanSROA &= visit(cast<Instruction>(I->U->getUser()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002373 }
2374 if (VecTy) {
2375 assert(CanSROA);
2376 VecTy = 0;
2377 ElementTy = 0;
2378 ElementSize = 0;
2379 }
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002380 if (IntTy) {
2381 assert(CanSROA);
2382 IntTy = 0;
2383 }
Chandler Carruth713aa942012-09-14 09:22:59 +00002384 return CanSROA;
2385 }
2386
2387private:
2388 // Every instruction which can end up as a user must have a rewrite rule.
2389 bool visitInstruction(Instruction &I) {
2390 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
2391 llvm_unreachable("No rewrite rule for this instruction!");
2392 }
2393
2394 Twine getName(const Twine &Suffix) {
2395 return NamePrefix + Suffix;
2396 }
2397
2398 Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
2399 assert(BeginOffset >= NewAllocaBeginOffset);
Chandler Carruth426c2bf2012-11-01 09:14:31 +00002400 APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
Chandler Carruth713aa942012-09-14 09:22:59 +00002401 return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
2402 }
2403
Chandler Carruthf710fb12012-10-03 08:14:02 +00002404 /// \brief Compute suitable alignment to access an offset into the new alloca.
2405 unsigned getOffsetAlign(uint64_t Offset) {
Chandler Carruth673850a2012-10-01 12:16:54 +00002406 unsigned NewAIAlign = NewAI.getAlignment();
2407 if (!NewAIAlign)
2408 NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
2409 return MinAlign(NewAIAlign, Offset);
2410 }
Chandler Carruthf710fb12012-10-03 08:14:02 +00002411
2412 /// \brief Compute suitable alignment to access this partition of the new
2413 /// alloca.
2414 unsigned getPartitionAlign() {
2415 return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
Chandler Carruth673850a2012-10-01 12:16:54 +00002416 }
2417
Chandler Carruthf710fb12012-10-03 08:14:02 +00002418 /// \brief Compute suitable alignment to access a type at an offset of the
2419 /// new alloca.
2420 ///
2421 /// \returns zero if the type's ABI alignment is a suitable alignment,
2422 /// otherwise returns the maximal suitable alignment.
2423 unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
2424 unsigned Align = getOffsetAlign(Offset);
2425 return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
2426 }
2427
2428 /// \brief Compute suitable alignment to access a type at the beginning of
2429 /// this partition of the new alloca.
2430 ///
2431 /// See \c getOffsetTypeAlign for details; this routine delegates to it.
2432 unsigned getPartitionTypeAlign(Type *Ty) {
2433 return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
Chandler Carruth673850a2012-10-01 12:16:54 +00002434 }
2435
Chandler Carruth07df7652012-11-21 08:16:30 +00002436 unsigned getIndex(uint64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002437 assert(VecTy && "Can only call getIndex when rewriting a vector");
2438 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2439 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2440 uint32_t Index = RelOffset / ElementSize;
2441 assert(Index * ElementSize == RelOffset);
Chandler Carruth07df7652012-11-21 08:16:30 +00002442 return Index;
Chandler Carruth713aa942012-09-14 09:22:59 +00002443 }
2444
2445 void deleteIfTriviallyDead(Value *V) {
2446 Instruction *I = cast<Instruction>(V);
2447 if (isInstructionTriviallyDead(I))
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002448 Pass.DeadInsts.insert(I);
Chandler Carruth713aa942012-09-14 09:22:59 +00002449 }
2450
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002451 Value *rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
2452 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2453 getName(".load"));
Chandler Carruth07df7652012-11-21 08:16:30 +00002454 unsigned BeginIndex = getIndex(BeginOffset);
2455 unsigned EndIndex = getIndex(EndOffset);
2456 assert(EndIndex > BeginIndex && "Empty vector!");
2457 unsigned NumElements = EndIndex - BeginIndex;
2458 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2459 if (NumElements == 1) {
2460 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002461 getName(".extract"));
Chandler Carruth07df7652012-11-21 08:16:30 +00002462 DEBUG(dbgs() << " extract: " << *V << "\n");
2463 } else if (NumElements < VecTy->getNumElements()) {
2464 SmallVector<Constant*, 8> Mask;
2465 Mask.reserve(NumElements);
2466 for (unsigned i = BeginIndex; i != EndIndex; ++i)
2467 Mask.push_back(IRB.getInt32(i));
2468 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2469 ConstantVector::get(Mask),
2470 getName(".extract"));
2471 DEBUG(dbgs() << " shuffle: " << *V << "\n");
Chandler Carruth713aa942012-09-14 09:22:59 +00002472 }
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002473 return V;
Chandler Carruth713aa942012-09-14 09:22:59 +00002474 }
2475
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002476 Value *rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002477 assert(IntTy && "We cannot insert an integer to the alloca");
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002478 assert(!LI.isVolatile());
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002479 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2480 getName(".load"));
2481 V = convertValue(TD, IRB, V, IntTy);
2482 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2483 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002484 if (Offset > 0 || EndOffset < NewAllocaEndOffset)
2485 V = extractInteger(TD, IRB, V, cast<IntegerType>(LI.getType()), Offset,
2486 getName(".extract"));
2487 return V;
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002488 }
2489
Chandler Carruth713aa942012-09-14 09:22:59 +00002490 bool visitLoadInst(LoadInst &LI) {
2491 DEBUG(dbgs() << " original: " << LI << "\n");
2492 Value *OldOp = LI.getOperand(0);
2493 assert(OldOp == OldPtr);
2494 IRBuilder<> IRB(&LI);
2495
Chandler Carrutha2b88162012-10-25 04:37:07 +00002496 uint64_t Size = EndOffset - BeginOffset;
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002497 bool IsSplitIntLoad = Size < TD.getTypeStoreSize(LI.getType());
Chandler Carruth17679292012-11-20 10:02:19 +00002498
2499 // If this memory access can be shown to *statically* extend outside the
2500 // bounds of the original allocation it's behavior is undefined. Rather
2501 // than trying to transform it, just replace it with undef.
2502 // FIXME: We should do something more clever for functions being
2503 // instrumented by asan.
2504 // FIXME: Eventually, once ASan and friends can flush out bugs here, this
2505 // should be transformed to a load of null making it unreachable.
2506 uint64_t OldAllocSize = TD.getTypeAllocSize(OldAI.getAllocatedType());
2507 if (TD.getTypeStoreSize(LI.getType()) > OldAllocSize) {
2508 LI.replaceAllUsesWith(UndefValue::get(LI.getType()));
2509 Pass.DeadInsts.insert(&LI);
2510 deleteIfTriviallyDead(OldOp);
2511 DEBUG(dbgs() << " to: undef!!\n");
2512 return true;
2513 }
2514
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002515 Type *TargetTy = IsSplitIntLoad ? Type::getIntNTy(LI.getContext(), Size * 8)
2516 : LI.getType();
2517 bool IsPtrAdjusted = false;
2518 Value *V;
2519 if (VecTy) {
2520 V = rewriteVectorizedLoadInst(IRB, LI, OldOp);
2521 } else if (IntTy && LI.getType()->isIntegerTy()) {
2522 V = rewriteIntegerLoad(IRB, LI);
2523 } else if (BeginOffset == NewAllocaBeginOffset &&
2524 canConvertValue(TD, NewAllocaTy, LI.getType())) {
2525 V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2526 LI.isVolatile(), getName(".load"));
2527 } else {
2528 Type *LTy = TargetTy->getPointerTo();
2529 V = IRB.CreateAlignedLoad(getAdjustedAllocaPtr(IRB, LTy),
2530 getPartitionTypeAlign(TargetTy),
2531 LI.isVolatile(), getName(".load"));
2532 IsPtrAdjusted = true;
2533 }
2534 V = convertValue(TD, IRB, V, TargetTy);
2535
2536 if (IsSplitIntLoad) {
Chandler Carrutha2b88162012-10-25 04:37:07 +00002537 assert(!LI.isVolatile());
2538 assert(LI.getType()->isIntegerTy() &&
2539 "Only integer type loads and stores are split");
2540 assert(LI.getType()->getIntegerBitWidth() ==
2541 TD.getTypeStoreSizeInBits(LI.getType()) &&
2542 "Non-byte-multiple bit width");
2543 assert(LI.getType()->getIntegerBitWidth() ==
Chandler Carruth70dace32012-10-30 20:52:40 +00002544 TD.getTypeAllocSizeInBits(OldAI.getAllocatedType()) &&
Chandler Carrutha2b88162012-10-25 04:37:07 +00002545 "Only alloca-wide loads can be split and recomposed");
Chandler Carrutha2b88162012-10-25 04:37:07 +00002546 // Move the insertion point just past the load so that we can refer to it.
2547 IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
Chandler Carrutha2b88162012-10-25 04:37:07 +00002548 // Create a placeholder value with the same type as LI to use as the
2549 // basis for the new value. This allows us to replace the uses of LI with
2550 // the computed value, and then replace the placeholder with LI, leaving
2551 // LI only used for this computation.
2552 Value *Placeholder
Jakub Staszak5801ff92012-11-01 01:10:43 +00002553 = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
Chandler Carrutha2b88162012-10-25 04:37:07 +00002554 V = insertInteger(TD, IRB, Placeholder, V, BeginOffset,
2555 getName(".insert"));
2556 LI.replaceAllUsesWith(V);
2557 Placeholder->replaceAllUsesWith(&LI);
Jakub Staszak5801ff92012-11-01 01:10:43 +00002558 delete Placeholder;
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002559 } else {
2560 LI.replaceAllUsesWith(V);
Chandler Carrutha2b88162012-10-25 04:37:07 +00002561 }
2562
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002563 Pass.DeadInsts.insert(&LI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002564 deleteIfTriviallyDead(OldOp);
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002565 DEBUG(dbgs() << " to: " << *V << "\n");
2566 return !LI.isVolatile() && !IsPtrAdjusted;
Chandler Carruth713aa942012-09-14 09:22:59 +00002567 }
2568
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002569 bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, Value *V,
2570 StoreInst &SI, Value *OldOp) {
Chandler Carruth07df7652012-11-21 08:16:30 +00002571 unsigned BeginIndex = getIndex(BeginOffset);
2572 unsigned EndIndex = getIndex(EndOffset);
2573 assert(EndIndex > BeginIndex && "Empty vector!");
2574 unsigned NumElements = EndIndex - BeginIndex;
2575 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2576 Type *PartitionTy
2577 = (NumElements == 1) ? ElementTy
2578 : VectorType::get(ElementTy, NumElements);
2579 if (V->getType() != PartitionTy)
2580 V = convertValue(TD, IRB, V, PartitionTy);
2581 if (NumElements < VecTy->getNumElements()) {
2582 // We need to mix in the existing elements.
Chandler Carruth81b001a2012-09-26 10:27:46 +00002583 LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2584 getName(".load"));
Chandler Carruth07df7652012-11-21 08:16:30 +00002585 if (NumElements == 1) {
2586 V = IRB.CreateInsertElement(LI, V, IRB.getInt32(BeginIndex),
2587 getName(".insert"));
2588 DEBUG(dbgs() << " insert: " << *V << "\n");
2589 } else {
2590 // When inserting a smaller vector into the larger to store, we first
2591 // use a shuffle vector to widen it with undef elements, and then
2592 // a second shuffle vector to select between the loaded vector and the
2593 // incoming vector.
2594 SmallVector<Constant*, 8> Mask;
2595 Mask.reserve(VecTy->getNumElements());
2596 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2597 if (i >= BeginIndex && i < EndIndex)
2598 Mask.push_back(IRB.getInt32(i - BeginIndex));
2599 else
2600 Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2601 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2602 ConstantVector::get(Mask),
2603 getName(".expand"));
2604 DEBUG(dbgs() << " shuffle1: " << *V << "\n");
2605
2606 Mask.clear();
2607 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2608 if (i >= BeginIndex && i < EndIndex)
2609 Mask.push_back(IRB.getInt32(i));
2610 else
2611 Mask.push_back(IRB.getInt32(i + VecTy->getNumElements()));
2612 V = IRB.CreateShuffleVector(V, LI, ConstantVector::get(Mask),
2613 getName("insert"));
2614 DEBUG(dbgs() << " shuffle2: " << *V << "\n");
2615 }
2616 } else {
Chandler Carruth11cb6ba2012-10-15 08:40:22 +00002617 V = convertValue(TD, IRB, V, VecTy);
Chandler Carruth713aa942012-09-14 09:22:59 +00002618 }
Chandler Carruth81b001a2012-09-26 10:27:46 +00002619 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002620 Pass.DeadInsts.insert(&SI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002621
2622 (void)Store;
2623 DEBUG(dbgs() << " to: " << *Store << "\n");
2624 return true;
2625 }
2626
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002627 bool rewriteIntegerStore(IRBuilder<> &IRB, Value *V, StoreInst &SI) {
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002628 assert(IntTy && "We cannot extract an integer from the alloca");
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002629 assert(!SI.isVolatile());
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002630 if (TD.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2631 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2632 getName(".oldload"));
2633 Old = convertValue(TD, IRB, Old, IntTy);
2634 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2635 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2636 V = insertInteger(TD, IRB, Old, SI.getValueOperand(), Offset,
2637 getName(".insert"));
2638 }
2639 V = convertValue(TD, IRB, V, NewAllocaTy);
2640 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002641 Pass.DeadInsts.insert(&SI);
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002642 (void)Store;
2643 DEBUG(dbgs() << " to: " << *Store << "\n");
2644 return true;
2645 }
2646
Chandler Carruth713aa942012-09-14 09:22:59 +00002647 bool visitStoreInst(StoreInst &SI) {
2648 DEBUG(dbgs() << " original: " << SI << "\n");
2649 Value *OldOp = SI.getOperand(1);
2650 assert(OldOp == OldPtr);
2651 IRBuilder<> IRB(&SI);
2652
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002653 Value *V = SI.getValueOperand();
Chandler Carruth520eeae2012-10-13 02:41:05 +00002654
Chandler Carruthb2d98c22012-10-04 12:33:50 +00002655 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2656 // alloca that should be re-examined after promoting this alloca.
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002657 if (V->getType()->isPointerTy())
2658 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
Chandler Carruthb2d98c22012-10-04 12:33:50 +00002659 Pass.PostPromotionWorklist.insert(AI);
2660
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002661 uint64_t Size = EndOffset - BeginOffset;
2662 if (Size < TD.getTypeStoreSize(V->getType())) {
2663 assert(!SI.isVolatile());
2664 assert(V->getType()->isIntegerTy() &&
2665 "Only integer type loads and stores are split");
2666 assert(V->getType()->getIntegerBitWidth() ==
2667 TD.getTypeStoreSizeInBits(V->getType()) &&
2668 "Non-byte-multiple bit width");
2669 assert(V->getType()->getIntegerBitWidth() ==
2670 TD.getTypeSizeInBits(OldAI.getAllocatedType()) &&
2671 "Only alloca-wide stores can be split and recomposed");
2672 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
2673 V = extractInteger(TD, IRB, V, NarrowTy, BeginOffset,
2674 getName(".extract"));
Chandler Carruth520eeae2012-10-13 02:41:05 +00002675 }
2676
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002677 if (VecTy)
2678 return rewriteVectorizedStoreInst(IRB, V, SI, OldOp);
2679 if (IntTy && V->getType()->isIntegerTy())
2680 return rewriteIntegerStore(IRB, V, SI);
Chandler Carruth81ff90d2012-10-15 08:40:30 +00002681
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002682 StoreInst *NewSI;
2683 if (BeginOffset == NewAllocaBeginOffset &&
2684 canConvertValue(TD, V->getType(), NewAllocaTy)) {
2685 V = convertValue(TD, IRB, V, NewAllocaTy);
2686 NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2687 SI.isVolatile());
2688 } else {
2689 Value *NewPtr = getAdjustedAllocaPtr(IRB, V->getType()->getPointerTo());
2690 NewSI = IRB.CreateAlignedStore(V, NewPtr,
2691 getPartitionTypeAlign(V->getType()),
2692 SI.isVolatile());
2693 }
2694 (void)NewSI;
2695 Pass.DeadInsts.insert(&SI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002696 deleteIfTriviallyDead(OldOp);
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002697
2698 DEBUG(dbgs() << " to: " << *NewSI << "\n");
2699 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
Chandler Carruth713aa942012-09-14 09:22:59 +00002700 }
2701
2702 bool visitMemSetInst(MemSetInst &II) {
2703 DEBUG(dbgs() << " original: " << II << "\n");
2704 IRBuilder<> IRB(&II);
2705 assert(II.getRawDest() == OldPtr);
2706
2707 // If the memset has a variable size, it cannot be split, just adjust the
2708 // pointer to the new alloca.
2709 if (!isa<Constant>(II.getLength())) {
2710 II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002711 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruthf710fb12012-10-03 08:14:02 +00002712 II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002713
Chandler Carruth713aa942012-09-14 09:22:59 +00002714 deleteIfTriviallyDead(OldPtr);
2715 return false;
2716 }
2717
2718 // Record this instruction for deletion.
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002719 Pass.DeadInsts.insert(&II);
Chandler Carruth713aa942012-09-14 09:22:59 +00002720
2721 Type *AllocaTy = NewAI.getAllocatedType();
2722 Type *ScalarTy = AllocaTy->getScalarType();
2723
2724 // If this doesn't map cleanly onto the alloca type, and that type isn't
2725 // a single value type, just emit a memset.
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002726 if (!VecTy && !IntTy &&
2727 (BeginOffset != NewAllocaBeginOffset ||
2728 EndOffset != NewAllocaEndOffset ||
2729 !AllocaTy->isSingleValueType() ||
2730 !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002731 Type *SizeTy = II.getLength()->getType();
2732 Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
Chandler Carruth713aa942012-09-14 09:22:59 +00002733 CallInst *New
2734 = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
2735 II.getRawDest()->getType()),
Chandler Carruthf710fb12012-10-03 08:14:02 +00002736 II.getValue(), Size, getPartitionAlign(),
Chandler Carruth713aa942012-09-14 09:22:59 +00002737 II.isVolatile());
2738 (void)New;
2739 DEBUG(dbgs() << " to: " << *New << "\n");
2740 return false;
2741 }
2742
2743 // If we can represent this as a simple value, we have to build the actual
2744 // value to store, which requires expanding the byte present in memset to
2745 // a sensible representation for the alloca type. This is essentially
2746 // splatting the byte to a sufficiently wide integer, bitcasting to the
2747 // desired scalar type, and splatting it across any desired vector type.
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002748 uint64_t Size = EndOffset - BeginOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +00002749 Value *V = II.getValue();
2750 IntegerType *VTy = cast<IntegerType>(V->getType());
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002751 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
2752 if (Size*8 > VTy->getBitWidth())
2753 V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")),
Chandler Carruth713aa942012-09-14 09:22:59 +00002754 ConstantExpr::getUDiv(
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002755 Constant::getAllOnesValue(SplatIntTy),
Chandler Carruth713aa942012-09-14 09:22:59 +00002756 ConstantExpr::getZExt(
2757 Constant::getAllOnesValue(V->getType()),
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002758 SplatIntTy)),
Chandler Carruth713aa942012-09-14 09:22:59 +00002759 getName(".isplat"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002760
2761 // If this is an element-wide memset of a vectorizable alloca, insert it.
2762 if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
2763 EndOffset < NewAllocaEndOffset)) {
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002764 if (V->getType() != ScalarTy)
2765 V = convertValue(TD, IRB, V, ScalarTy);
Chandler Carruth81b001a2012-09-26 10:27:46 +00002766 StoreInst *Store = IRB.CreateAlignedStore(
2767 IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
2768 NewAI.getAlignment(),
2769 getName(".load")),
Chandler Carruth07df7652012-11-21 08:16:30 +00002770 V, IRB.getInt32(getIndex(BeginOffset)),
Chandler Carruth713aa942012-09-14 09:22:59 +00002771 getName(".insert")),
Chandler Carruth81b001a2012-09-26 10:27:46 +00002772 &NewAI, NewAI.getAlignment());
Chandler Carruth713aa942012-09-14 09:22:59 +00002773 (void)Store;
2774 DEBUG(dbgs() << " to: " << *Store << "\n");
2775 return true;
2776 }
2777
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002778 // If this is a memset on an alloca where we can widen stores, insert the
2779 // set integer.
2780 if (IntTy && (BeginOffset > NewAllocaBeginOffset ||
2781 EndOffset < NewAllocaEndOffset)) {
2782 assert(!II.isVolatile());
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002783 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2784 getName(".oldload"));
2785 Old = convertValue(TD, IRB, Old, IntTy);
2786 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2787 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2788 V = insertInteger(TD, IRB, Old, V, Offset, getName(".insert"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002789 }
2790
Chandler Carruth94fc64c2012-10-15 10:24:40 +00002791 if (V->getType() != AllocaTy)
2792 V = convertValue(TD, IRB, V, AllocaTy);
2793
Chandler Carruth81b001a2012-09-26 10:27:46 +00002794 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2795 II.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +00002796 (void)New;
2797 DEBUG(dbgs() << " to: " << *New << "\n");
2798 return !II.isVolatile();
2799 }
2800
2801 bool visitMemTransferInst(MemTransferInst &II) {
2802 // Rewriting of memory transfer instructions can be a bit tricky. We break
2803 // them into two categories: split intrinsics and unsplit intrinsics.
2804
2805 DEBUG(dbgs() << " original: " << II << "\n");
2806 IRBuilder<> IRB(&II);
2807
2808 assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2809 bool IsDest = II.getRawDest() == OldPtr;
2810
2811 const AllocaPartitioning::MemTransferOffsets &MTO
2812 = P.getMemTransferOffsets(II);
2813
Chandler Carruth673850a2012-10-01 12:16:54 +00002814 // Compute the relative offset within the transfer.
Chandler Carruth426c2bf2012-11-01 09:14:31 +00002815 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Chandler Carruth673850a2012-10-01 12:16:54 +00002816 APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
2817 : MTO.SourceBegin));
2818
2819 unsigned Align = II.getAlignment();
2820 if (Align > 1)
2821 Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
Chandler Carruthf710fb12012-10-03 08:14:02 +00002822 MinAlign(II.getAlignment(), getPartitionAlign()));
Chandler Carruth673850a2012-10-01 12:16:54 +00002823
Chandler Carruth713aa942012-09-14 09:22:59 +00002824 // For unsplit intrinsics, we simply modify the source and destination
2825 // pointers in place. This isn't just an optimization, it is a matter of
2826 // correctness. With unsplit intrinsics we may be dealing with transfers
2827 // within a single alloca before SROA ran, or with transfers that have
2828 // a variable length. We may also be dealing with memmove instead of
2829 // memcpy, and so simply updating the pointers is the necessary for us to
2830 // update both source and dest of a single call.
2831 if (!MTO.IsSplittable) {
2832 Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2833 if (IsDest)
2834 II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2835 else
2836 II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
2837
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002838 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruth673850a2012-10-01 12:16:54 +00002839 II.setAlignment(ConstantInt::get(CstTy, Align));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002840
Chandler Carruth713aa942012-09-14 09:22:59 +00002841 DEBUG(dbgs() << " to: " << II << "\n");
2842 deleteIfTriviallyDead(OldOp);
2843 return false;
2844 }
2845 // For split transfer intrinsics we have an incredibly useful assurance:
2846 // the source and destination do not reside within the same alloca, and at
2847 // least one of them does not escape. This means that we can replace
2848 // memmove with memcpy, and we don't need to worry about all manner of
2849 // downsides to splitting and transforming the operations.
2850
Chandler Carruth713aa942012-09-14 09:22:59 +00002851 // If this doesn't map cleanly onto the alloca type, and that type isn't
2852 // a single value type, just emit a memcpy.
2853 bool EmitMemCpy
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002854 = !VecTy && !IntTy && (BeginOffset != NewAllocaBeginOffset ||
2855 EndOffset != NewAllocaEndOffset ||
2856 !NewAI.getAllocatedType()->isSingleValueType());
Chandler Carruth713aa942012-09-14 09:22:59 +00002857
2858 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2859 // size hasn't been shrunk based on analysis of the viable range, this is
2860 // a no-op.
2861 if (EmitMemCpy && &OldAI == &NewAI) {
2862 uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
2863 uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
2864 // Ensure the start lines up.
2865 assert(BeginOffset == OrigBegin);
Benjamin Kramerd0807692012-09-14 13:08:09 +00002866 (void)OrigBegin;
Chandler Carruth713aa942012-09-14 09:22:59 +00002867
2868 // Rewrite the size as needed.
2869 if (EndOffset != OrigEnd)
2870 II.setLength(ConstantInt::get(II.getLength()->getType(),
2871 EndOffset - BeginOffset));
2872 return false;
2873 }
2874 // Record this instruction for deletion.
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002875 Pass.DeadInsts.insert(&II);
Chandler Carruth713aa942012-09-14 09:22:59 +00002876
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002877 bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
2878 EndOffset == NewAllocaEndOffset;
2879 bool IsVectorElement = VecTy && !IsWholeAlloca;
2880 uint64_t Size = EndOffset - BeginOffset;
2881 IntegerType *SubIntTy
2882 = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
Chandler Carruth713aa942012-09-14 09:22:59 +00002883
2884 Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2885 : II.getRawDest()->getType();
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002886 if (!EmitMemCpy) {
2887 if (IsVectorElement)
Micah Villmowb8bce922012-10-24 17:25:11 +00002888 OtherPtrTy = VecTy->getElementType()->getPointerTo();
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002889 else if (IntTy && !IsWholeAlloca)
Micah Villmowb8bce922012-10-24 17:25:11 +00002890 OtherPtrTy = SubIntTy->getPointerTo();
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002891 else
2892 OtherPtrTy = NewAI.getType();
2893 }
Chandler Carruth713aa942012-09-14 09:22:59 +00002894
2895 // Compute the other pointer, folding as much as possible to produce
2896 // a single, simple GEP in most cases.
2897 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2898 OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2899 getName("." + OtherPtr->getName()));
2900
2901 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2902 // alloca that should be re-examined after rewriting this instruction.
2903 if (AllocaInst *AI
2904 = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
Chandler Carruthb3dca3f2012-09-26 07:41:40 +00002905 Pass.Worklist.insert(AI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002906
2907 if (EmitMemCpy) {
2908 Value *OurPtr
2909 = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
2910 : II.getRawSource()->getType());
2911 Type *SizeTy = II.getLength()->getType();
2912 Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2913
2914 CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2915 IsDest ? OtherPtr : OurPtr,
Chandler Carruth81b001a2012-09-26 10:27:46 +00002916 Size, Align, II.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +00002917 (void)New;
2918 DEBUG(dbgs() << " to: " << *New << "\n");
2919 return false;
2920 }
2921
Chandler Carruth322e9ba2012-10-03 08:26:28 +00002922 // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2923 // is equivalent to 1, but that isn't true if we end up rewriting this as
2924 // a load or store.
2925 if (!Align)
2926 Align = 1;
2927
Chandler Carruth713aa942012-09-14 09:22:59 +00002928 Value *SrcPtr = OtherPtr;
2929 Value *DstPtr = &NewAI;
2930 if (!IsDest)
2931 std::swap(SrcPtr, DstPtr);
2932
2933 Value *Src;
2934 if (IsVectorElement && !IsDest) {
2935 // We have to extract rather than load.
Chandler Carruth81b001a2012-09-26 10:27:46 +00002936 Src = IRB.CreateExtractElement(
2937 IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
Chandler Carruth07df7652012-11-21 08:16:30 +00002938 IRB.getInt32(getIndex(BeginOffset)),
Chandler Carruth81b001a2012-09-26 10:27:46 +00002939 getName(".copyextract"));
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002940 } else if (IntTy && !IsWholeAlloca && !IsDest) {
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002941 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2942 getName(".load"));
2943 Src = convertValue(TD, IRB, Src, IntTy);
2944 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2945 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2946 Src = extractInteger(TD, IRB, Src, SubIntTy, Offset, getName(".extract"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002947 } else {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002948 Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2949 getName(".copyload"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002950 }
2951
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002952 if (IntTy && !IsWholeAlloca && IsDest) {
Chandler Carruth2360b7a2012-10-18 09:56:08 +00002953 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2954 getName(".oldload"));
2955 Old = convertValue(TD, IRB, Old, IntTy);
2956 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2957 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2958 Src = insertInteger(TD, IRB, Old, Src, Offset, getName(".insert"));
2959 Src = convertValue(TD, IRB, Src, NewAllocaTy);
Chandler Carruthd2cd73f2012-10-15 10:24:43 +00002960 }
2961
Chandler Carruth713aa942012-09-14 09:22:59 +00002962 if (IsVectorElement && IsDest) {
2963 // We have to insert into a loaded copy before storing.
Chandler Carruth81b001a2012-09-26 10:27:46 +00002964 Src = IRB.CreateInsertElement(
2965 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
Chandler Carruth07df7652012-11-21 08:16:30 +00002966 Src, IRB.getInt32(getIndex(BeginOffset)),
Chandler Carruth81b001a2012-09-26 10:27:46 +00002967 getName(".insert"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002968 }
2969
Chandler Carruth81b001a2012-09-26 10:27:46 +00002970 StoreInst *Store = cast<StoreInst>(
2971 IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2972 (void)Store;
Chandler Carruth713aa942012-09-14 09:22:59 +00002973 DEBUG(dbgs() << " to: " << *Store << "\n");
2974 return !II.isVolatile();
2975 }
2976
2977 bool visitIntrinsicInst(IntrinsicInst &II) {
2978 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2979 II.getIntrinsicID() == Intrinsic::lifetime_end);
2980 DEBUG(dbgs() << " original: " << II << "\n");
2981 IRBuilder<> IRB(&II);
2982 assert(II.getArgOperand(1) == OldPtr);
2983
2984 // Record this instruction for deletion.
Chandler Carruthf5837aa2012-11-20 01:12:50 +00002985 Pass.DeadInsts.insert(&II);
Chandler Carruth713aa942012-09-14 09:22:59 +00002986
2987 ConstantInt *Size
2988 = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2989 EndOffset - BeginOffset);
2990 Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
2991 Value *New;
2992 if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2993 New = IRB.CreateLifetimeStart(Ptr, Size);
2994 else
2995 New = IRB.CreateLifetimeEnd(Ptr, Size);
2996
2997 DEBUG(dbgs() << " to: " << *New << "\n");
2998 return true;
2999 }
3000
Chandler Carruth713aa942012-09-14 09:22:59 +00003001 bool visitPHINode(PHINode &PN) {
3002 DEBUG(dbgs() << " original: " << PN << "\n");
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003003
Chandler Carruth713aa942012-09-14 09:22:59 +00003004 // We would like to compute a new pointer in only one place, but have it be
3005 // as local as possible to the PHI. To do that, we re-use the location of
3006 // the old pointer, which necessarily must be in the right position to
3007 // dominate the PHI.
3008 IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
3009
Chandler Carruth713aa942012-09-14 09:22:59 +00003010 Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003011 // Replace the operands which were using the old pointer.
Benjamin Kramer2a132422012-10-20 12:04:57 +00003012 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
Chandler Carruth713aa942012-09-14 09:22:59 +00003013
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003014 DEBUG(dbgs() << " to: " << PN << "\n");
3015 deleteIfTriviallyDead(OldPtr);
3016 return false;
Chandler Carruth713aa942012-09-14 09:22:59 +00003017 }
3018
3019 bool visitSelectInst(SelectInst &SI) {
3020 DEBUG(dbgs() << " original: " << SI << "\n");
3021 IRBuilder<> IRB(&SI);
3022
3023 // Find the operand we need to rewrite here.
3024 bool IsTrueVal = SI.getTrueValue() == OldPtr;
3025 if (IsTrueVal)
3026 assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
3027 else
3028 assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003029
Chandler Carruth713aa942012-09-14 09:22:59 +00003030 Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003031 SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
3032 DEBUG(dbgs() << " to: " << SI << "\n");
Chandler Carruth713aa942012-09-14 09:22:59 +00003033 deleteIfTriviallyDead(OldPtr);
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003034 return false;
Chandler Carruth713aa942012-09-14 09:22:59 +00003035 }
3036
3037};
3038}
3039
Chandler Carruthc370acd2012-09-18 12:57:43 +00003040namespace {
3041/// \brief Visitor to rewrite aggregate loads and stores as scalar.
3042///
3043/// This pass aggressively rewrites all aggregate loads and stores on
3044/// a particular pointer (or any pointer derived from it which we can identify)
3045/// with scalar loads and stores.
3046class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3047 // Befriend the base class so it can delegate to private visit methods.
3048 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
3049
Micah Villmow3574eca2012-10-08 16:38:25 +00003050 const DataLayout &TD;
Chandler Carruthc370acd2012-09-18 12:57:43 +00003051
3052 /// Queue of pointer uses to analyze and potentially rewrite.
3053 SmallVector<Use *, 8> Queue;
3054
3055 /// Set to prevent us from cycling with phi nodes and loops.
3056 SmallPtrSet<User *, 8> Visited;
3057
3058 /// The current pointer use being rewritten. This is used to dig up the used
3059 /// value (as opposed to the user).
3060 Use *U;
3061
3062public:
Micah Villmow3574eca2012-10-08 16:38:25 +00003063 AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {}
Chandler Carruthc370acd2012-09-18 12:57:43 +00003064
3065 /// Rewrite loads and stores through a pointer and all pointers derived from
3066 /// it.
3067 bool rewrite(Instruction &I) {
3068 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
3069 enqueueUsers(I);
3070 bool Changed = false;
3071 while (!Queue.empty()) {
3072 U = Queue.pop_back_val();
3073 Changed |= visit(cast<Instruction>(U->getUser()));
3074 }
3075 return Changed;
3076 }
3077
3078private:
3079 /// Enqueue all the users of the given instruction for further processing.
3080 /// This uses a set to de-duplicate users.
3081 void enqueueUsers(Instruction &I) {
3082 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
3083 ++UI)
3084 if (Visited.insert(*UI))
3085 Queue.push_back(&UI.getUse());
3086 }
3087
3088 // Conservative default is to not rewrite anything.
3089 bool visitInstruction(Instruction &I) { return false; }
3090
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003091 /// \brief Generic recursive split emission class.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003092 template <typename Derived>
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003093 class OpSplitter {
3094 protected:
3095 /// The builder used to form new instructions.
3096 IRBuilder<> IRB;
3097 /// The indices which to be used with insert- or extractvalue to select the
3098 /// appropriate value within the aggregate.
3099 SmallVector<unsigned, 4> Indices;
3100 /// The indices to a GEP instruction which will move Ptr to the correct slot
3101 /// within the aggregate.
3102 SmallVector<Value *, 4> GEPIndices;
3103 /// The base pointer of the original op, used as a base for GEPing the
3104 /// split operations.
3105 Value *Ptr;
Chandler Carruthc370acd2012-09-18 12:57:43 +00003106
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003107 /// Initialize the splitter with an insertion point, Ptr and start with a
3108 /// single zero GEP index.
3109 OpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003110 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003111
3112 public:
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003113 /// \brief Generic recursive split emission routine.
3114 ///
3115 /// This method recursively splits an aggregate op (load or store) into
3116 /// scalar or vector ops. It splits recursively until it hits a single value
3117 /// and emits that single value operation via the template argument.
3118 ///
3119 /// The logic of this routine relies on GEPs and insertvalue and
3120 /// extractvalue all operating with the same fundamental index list, merely
3121 /// formatted differently (GEPs need actual values).
3122 ///
3123 /// \param Ty The type being split recursively into smaller ops.
3124 /// \param Agg The aggregate value being built up or stored, depending on
3125 /// whether this is splitting a load or a store respectively.
3126 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3127 if (Ty->isSingleValueType())
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003128 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003129
3130 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3131 unsigned OldSize = Indices.size();
3132 (void)OldSize;
3133 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3134 ++Idx) {
3135 assert(Indices.size() == OldSize && "Did not return to the old size");
3136 Indices.push_back(Idx);
3137 GEPIndices.push_back(IRB.getInt32(Idx));
3138 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3139 GEPIndices.pop_back();
3140 Indices.pop_back();
3141 }
3142 return;
Chandler Carruthc370acd2012-09-18 12:57:43 +00003143 }
Chandler Carruthc370acd2012-09-18 12:57:43 +00003144
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003145 if (StructType *STy = dyn_cast<StructType>(Ty)) {
3146 unsigned OldSize = Indices.size();
3147 (void)OldSize;
3148 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3149 ++Idx) {
3150 assert(Indices.size() == OldSize && "Did not return to the old size");
3151 Indices.push_back(Idx);
3152 GEPIndices.push_back(IRB.getInt32(Idx));
3153 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3154 GEPIndices.pop_back();
3155 Indices.pop_back();
3156 }
3157 return;
Chandler Carruthc370acd2012-09-18 12:57:43 +00003158 }
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003159
3160 llvm_unreachable("Only arrays and structs are aggregate loadable types");
Chandler Carruthc370acd2012-09-18 12:57:43 +00003161 }
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003162 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00003163
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003164 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003165 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer3b682bd2012-09-18 17:11:47 +00003166 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
Chandler Carruthc370acd2012-09-18 12:57:43 +00003167
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003168 /// Emit a leaf load of a single value. This is called at the leaves of the
3169 /// recursive emission to actually load values.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003170 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003171 assert(Ty->isSingleValueType());
3172 // Load the single value and insert it using the indices.
3173 Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
3174 Name + ".gep"),
3175 Name + ".load");
3176 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3177 DEBUG(dbgs() << " to: " << *Load << "\n");
3178 }
3179 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00003180
3181 bool visitLoadInst(LoadInst &LI) {
3182 assert(LI.getPointerOperand() == *U);
3183 if (!LI.isSimple() || LI.getType()->isSingleValueType())
3184 return false;
3185
3186 // We have an aggregate being loaded, split it apart.
3187 DEBUG(dbgs() << " original: " << LI << "\n");
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003188 LoadOpSplitter Splitter(&LI, *U);
Chandler Carruthc370acd2012-09-18 12:57:43 +00003189 Value *V = UndefValue::get(LI.getType());
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003190 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
Chandler Carruthc370acd2012-09-18 12:57:43 +00003191 LI.replaceAllUsesWith(V);
3192 LI.eraseFromParent();
3193 return true;
3194 }
3195
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003196 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003197 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer3b682bd2012-09-18 17:11:47 +00003198 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003199
3200 /// Emit a leaf store of a single value. This is called at the leaves of the
3201 /// recursive emission to actually produce stores.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00003202 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003203 assert(Ty->isSingleValueType());
3204 // Extract the single value and store it using the indices.
3205 Value *Store = IRB.CreateStore(
3206 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
3207 IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
3208 (void)Store;
3209 DEBUG(dbgs() << " to: " << *Store << "\n");
3210 }
3211 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00003212
3213 bool visitStoreInst(StoreInst &SI) {
3214 if (!SI.isSimple() || SI.getPointerOperand() != *U)
3215 return false;
3216 Value *V = SI.getValueOperand();
3217 if (V->getType()->isSingleValueType())
3218 return false;
3219
3220 // We have an aggregate being stored, split it apart.
3221 DEBUG(dbgs() << " original: " << SI << "\n");
Benjamin Kramer6e67b252012-09-18 16:20:46 +00003222 StoreOpSplitter Splitter(&SI, *U);
3223 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
Chandler Carruthc370acd2012-09-18 12:57:43 +00003224 SI.eraseFromParent();
3225 return true;
3226 }
3227
3228 bool visitBitCastInst(BitCastInst &BC) {
3229 enqueueUsers(BC);
3230 return false;
3231 }
3232
3233 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3234 enqueueUsers(GEPI);
3235 return false;
3236 }
3237
3238 bool visitPHINode(PHINode &PN) {
3239 enqueueUsers(PN);
3240 return false;
3241 }
3242
3243 bool visitSelectInst(SelectInst &SI) {
3244 enqueueUsers(SI);
3245 return false;
3246 }
3247};
3248}
3249
Chandler Carruth07525a62012-10-13 10:49:33 +00003250/// \brief Strip aggregate type wrapping.
3251///
3252/// This removes no-op aggregate types wrapping an underlying type. It will
3253/// strip as many layers of types as it can without changing either the type
3254/// size or the allocated size.
3255static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3256 if (Ty->isSingleValueType())
3257 return Ty;
3258
3259 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3260 uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3261
3262 Type *InnerTy;
3263 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3264 InnerTy = ArrTy->getElementType();
3265 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3266 const StructLayout *SL = DL.getStructLayout(STy);
3267 unsigned Index = SL->getElementContainingOffset(0);
3268 InnerTy = STy->getElementType(Index);
3269 } else {
3270 return Ty;
3271 }
3272
3273 if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3274 TypeSize > DL.getTypeSizeInBits(InnerTy))
3275 return Ty;
3276
3277 return stripAggregateTypeWrapping(DL, InnerTy);
3278}
3279
Chandler Carruth713aa942012-09-14 09:22:59 +00003280/// \brief Try to find a partition of the aggregate type passed in for a given
3281/// offset and size.
3282///
3283/// This recurses through the aggregate type and tries to compute a subtype
3284/// based on the offset and size. When the offset and size span a sub-section
Chandler Carruth6b547a22012-09-14 11:08:31 +00003285/// of an array, it will even compute a new array type for that sub-section,
3286/// and the same for structs.
3287///
3288/// Note that this routine is very strict and tries to find a partition of the
3289/// type which produces the *exact* right offset and size. It is not forgiving
3290/// when the size or offset cause either end of type-based partition to be off.
3291/// Also, this is a best-effort routine. It is reasonable to give up and not
3292/// return a type if necessary.
Micah Villmow3574eca2012-10-08 16:38:25 +00003293static Type *getTypePartition(const DataLayout &TD, Type *Ty,
Chandler Carruth713aa942012-09-14 09:22:59 +00003294 uint64_t Offset, uint64_t Size) {
3295 if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
Chandler Carruth07525a62012-10-13 10:49:33 +00003296 return stripAggregateTypeWrapping(TD, Ty);
Chandler Carrutha2b88162012-10-25 04:37:07 +00003297 if (Offset > TD.getTypeAllocSize(Ty) ||
3298 (TD.getTypeAllocSize(Ty) - Offset) < Size)
3299 return 0;
Chandler Carruth713aa942012-09-14 09:22:59 +00003300
3301 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3302 // We can't partition pointers...
3303 if (SeqTy->isPointerTy())
3304 return 0;
3305
3306 Type *ElementTy = SeqTy->getElementType();
3307 uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3308 uint64_t NumSkippedElements = Offset / ElementSize;
3309 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
3310 if (NumSkippedElements >= ArrTy->getNumElements())
3311 return 0;
3312 if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
3313 if (NumSkippedElements >= VecTy->getNumElements())
3314 return 0;
3315 Offset -= NumSkippedElements * ElementSize;
3316
3317 // First check if we need to recurse.
3318 if (Offset > 0 || Size < ElementSize) {
3319 // Bail if the partition ends in a different array element.
3320 if ((Offset + Size) > ElementSize)
3321 return 0;
3322 // Recurse through the element type trying to peel off offset bytes.
3323 return getTypePartition(TD, ElementTy, Offset, Size);
3324 }
3325 assert(Offset == 0);
3326
3327 if (Size == ElementSize)
Chandler Carruth07525a62012-10-13 10:49:33 +00003328 return stripAggregateTypeWrapping(TD, ElementTy);
Chandler Carruth713aa942012-09-14 09:22:59 +00003329 assert(Size > ElementSize);
3330 uint64_t NumElements = Size / ElementSize;
3331 if (NumElements * ElementSize != Size)
3332 return 0;
3333 return ArrayType::get(ElementTy, NumElements);
3334 }
3335
3336 StructType *STy = dyn_cast<StructType>(Ty);
3337 if (!STy)
3338 return 0;
3339
3340 const StructLayout *SL = TD.getStructLayout(STy);
Chandler Carruth6b547a22012-09-14 11:08:31 +00003341 if (Offset >= SL->getSizeInBytes())
Chandler Carruth713aa942012-09-14 09:22:59 +00003342 return 0;
3343 uint64_t EndOffset = Offset + Size;
3344 if (EndOffset > SL->getSizeInBytes())
3345 return 0;
3346
3347 unsigned Index = SL->getElementContainingOffset(Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +00003348 Offset -= SL->getElementOffset(Index);
3349
3350 Type *ElementTy = STy->getElementType(Index);
3351 uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3352 if (Offset >= ElementSize)
3353 return 0; // The offset points into alignment padding.
3354
3355 // See if any partition must be contained by the element.
3356 if (Offset > 0 || Size < ElementSize) {
3357 if ((Offset + Size) > ElementSize)
3358 return 0;
Chandler Carruth713aa942012-09-14 09:22:59 +00003359 return getTypePartition(TD, ElementTy, Offset, Size);
3360 }
3361 assert(Offset == 0);
3362
3363 if (Size == ElementSize)
Chandler Carruth07525a62012-10-13 10:49:33 +00003364 return stripAggregateTypeWrapping(TD, ElementTy);
Chandler Carruth713aa942012-09-14 09:22:59 +00003365
3366 StructType::element_iterator EI = STy->element_begin() + Index,
3367 EE = STy->element_end();
3368 if (EndOffset < SL->getSizeInBytes()) {
3369 unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3370 if (Index == EndIndex)
3371 return 0; // Within a single element and its padding.
Chandler Carruth6b547a22012-09-14 11:08:31 +00003372
3373 // Don't try to form "natural" types if the elements don't line up with the
3374 // expected size.
3375 // FIXME: We could potentially recurse down through the last element in the
3376 // sub-struct to find a natural end point.
3377 if (SL->getElementOffset(EndIndex) != EndOffset)
3378 return 0;
3379
Chandler Carruth713aa942012-09-14 09:22:59 +00003380 assert(Index < EndIndex);
Chandler Carruth713aa942012-09-14 09:22:59 +00003381 EE = STy->element_begin() + EndIndex;
3382 }
3383
3384 // Try to build up a sub-structure.
Benjamin Kramer2a132422012-10-20 12:04:57 +00003385 StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
Chandler Carruth713aa942012-09-14 09:22:59 +00003386 STy->isPacked());
3387 const StructLayout *SubSL = TD.getStructLayout(SubTy);
Chandler Carruth6b547a22012-09-14 11:08:31 +00003388 if (Size != SubSL->getSizeInBytes())
3389 return 0; // The sub-struct doesn't have quite the size needed.
Chandler Carruth713aa942012-09-14 09:22:59 +00003390
Chandler Carruth6b547a22012-09-14 11:08:31 +00003391 return SubTy;
Chandler Carruth713aa942012-09-14 09:22:59 +00003392}
3393
3394/// \brief Rewrite an alloca partition's users.
3395///
3396/// This routine drives both of the rewriting goals of the SROA pass. It tries
3397/// to rewrite uses of an alloca partition to be conducive for SSA value
3398/// promotion. If the partition needs a new, more refined alloca, this will
3399/// build that new alloca, preserving as much type information as possible, and
3400/// rewrite the uses of the old alloca to point at the new one and have the
3401/// appropriate new offsets. It also evaluates how successful the rewrite was
3402/// at enabling promotion and if it was successful queues the alloca to be
3403/// promoted.
3404bool SROA::rewriteAllocaPartition(AllocaInst &AI,
3405 AllocaPartitioning &P,
3406 AllocaPartitioning::iterator PI) {
3407 uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
Chandler Carruthfdb15852012-10-02 18:57:13 +00003408 bool IsLive = false;
3409 for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
3410 UE = P.use_end(PI);
3411 UI != UE && !IsLive; ++UI)
3412 if (UI->U)
3413 IsLive = true;
3414 if (!IsLive)
Chandler Carruth713aa942012-09-14 09:22:59 +00003415 return false; // No live uses left of this partition.
3416
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003417 DEBUG(dbgs() << "Speculating PHIs and selects in partition "
3418 << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
3419
3420 PHIOrSelectSpeculator Speculator(*TD, P, *this);
3421 DEBUG(dbgs() << " speculating ");
3422 DEBUG(P.print(dbgs(), PI, ""));
Chandler Carrutha346f462012-10-02 17:49:47 +00003423 Speculator.visitUsers(PI);
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003424
Chandler Carruth713aa942012-09-14 09:22:59 +00003425 // Try to compute a friendly type for this partition of the alloca. This
3426 // won't always succeed, in which case we fall back to a legal integer type
3427 // or an i8 array of an appropriate size.
3428 Type *AllocaTy = 0;
3429 if (Type *PartitionTy = P.getCommonType(PI))
3430 if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
3431 AllocaTy = PartitionTy;
3432 if (!AllocaTy)
3433 if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
3434 PI->BeginOffset, AllocaSize))
3435 AllocaTy = PartitionTy;
3436 if ((!AllocaTy ||
3437 (AllocaTy->isArrayTy() &&
3438 AllocaTy->getArrayElementType()->isIntegerTy())) &&
3439 TD->isLegalInteger(AllocaSize * 8))
3440 AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
3441 if (!AllocaTy)
3442 AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
Chandler Carruthb3dd9a12012-09-14 10:26:34 +00003443 assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
Chandler Carruth713aa942012-09-14 09:22:59 +00003444
3445 // Check for the case where we're going to rewrite to a new alloca of the
3446 // exact same type as the original, and with the same access offsets. In that
3447 // case, re-use the existing alloca, but still run through the rewriter to
3448 // performe phi and select speculation.
3449 AllocaInst *NewAI;
3450 if (AllocaTy == AI.getAllocatedType()) {
3451 assert(PI->BeginOffset == 0 &&
3452 "Non-zero begin offset but same alloca type");
3453 assert(PI == P.begin() && "Begin offset is zero on later partition");
3454 NewAI = &AI;
3455 } else {
Chandler Carruthb67c9a52012-09-29 10:41:21 +00003456 unsigned Alignment = AI.getAlignment();
3457 if (!Alignment) {
3458 // The minimum alignment which users can rely on when the explicit
3459 // alignment is omitted or zero is that required by the ABI for this
3460 // type.
3461 Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
3462 }
3463 Alignment = MinAlign(Alignment, PI->BeginOffset);
3464 // If we will get at least this much alignment from the type alone, leave
3465 // the alloca's alignment unconstrained.
3466 if (Alignment <= TD->getABITypeAlignment(AllocaTy))
3467 Alignment = 0;
3468 NewAI = new AllocaInst(AllocaTy, 0, Alignment,
Chandler Carruth713aa942012-09-14 09:22:59 +00003469 AI.getName() + ".sroa." + Twine(PI - P.begin()),
3470 &AI);
3471 ++NumNewAllocas;
3472 }
3473
3474 DEBUG(dbgs() << "Rewriting alloca partition "
3475 << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
3476 << *NewAI << "\n");
3477
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003478 // Track the high watermark of the post-promotion worklist. We will reset it
3479 // to this point if the alloca is not in fact scheduled for promotion.
3480 unsigned PPWOldSize = PostPromotionWorklist.size();
3481
Chandler Carruth713aa942012-09-14 09:22:59 +00003482 AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
3483 PI->BeginOffset, PI->EndOffset);
3484 DEBUG(dbgs() << " rewriting ");
3485 DEBUG(P.print(dbgs(), PI, ""));
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003486 bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
3487 if (Promotable) {
Chandler Carruth713aa942012-09-14 09:22:59 +00003488 DEBUG(dbgs() << " and queuing for promotion\n");
3489 PromotableAllocas.push_back(NewAI);
3490 } else if (NewAI != &AI) {
3491 // If we can't promote the alloca, iterate on it to check for new
3492 // refinements exposed by splitting the current alloca. Don't iterate on an
3493 // alloca which didn't actually change and didn't get promoted.
3494 Worklist.insert(NewAI);
3495 }
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003496
3497 // Drop any post-promotion work items if promotion didn't happen.
3498 if (!Promotable)
3499 while (PostPromotionWorklist.size() > PPWOldSize)
3500 PostPromotionWorklist.pop_back();
3501
Chandler Carruth713aa942012-09-14 09:22:59 +00003502 return true;
3503}
3504
3505/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
3506bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
3507 bool Changed = false;
3508 for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
3509 ++PI)
3510 Changed |= rewriteAllocaPartition(AI, P, PI);
3511
3512 return Changed;
3513}
3514
3515/// \brief Analyze an alloca for SROA.
3516///
3517/// This analyzes the alloca to ensure we can reason about it, builds
3518/// a partitioning of the alloca, and then hands it off to be split and
3519/// rewritten as needed.
3520bool SROA::runOnAlloca(AllocaInst &AI) {
3521 DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3522 ++NumAllocasAnalyzed;
3523
3524 // Special case dead allocas, as they're trivial.
3525 if (AI.use_empty()) {
3526 AI.eraseFromParent();
3527 return true;
3528 }
3529
3530 // Skip alloca forms that this analysis can't handle.
3531 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3532 TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
3533 return false;
3534
Chandler Carruthc370acd2012-09-18 12:57:43 +00003535 bool Changed = false;
3536
3537 // First, split any FCA loads and stores touching this alloca to promote
3538 // better splitting and promotion opportunities.
3539 AggLoadStoreRewriter AggRewriter(*TD);
3540 Changed |= AggRewriter.rewrite(AI);
3541
Chandler Carruth713aa942012-09-14 09:22:59 +00003542 // Build the partition set using a recursive instruction-visiting builder.
3543 AllocaPartitioning P(*TD, AI);
3544 DEBUG(P.print(dbgs()));
3545 if (P.isEscaped())
Chandler Carruthc370acd2012-09-18 12:57:43 +00003546 return Changed;
Chandler Carruth713aa942012-09-14 09:22:59 +00003547
Chandler Carruth713aa942012-09-14 09:22:59 +00003548 // Delete all the dead users of this alloca before splitting and rewriting it.
Chandler Carruth713aa942012-09-14 09:22:59 +00003549 for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
3550 DE = P.dead_user_end();
3551 DI != DE; ++DI) {
3552 Changed = true;
3553 (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
Chandler Carruthf5837aa2012-11-20 01:12:50 +00003554 DeadInsts.insert(*DI);
Chandler Carruth713aa942012-09-14 09:22:59 +00003555 }
3556 for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
3557 DE = P.dead_op_end();
3558 DO != DE; ++DO) {
3559 Value *OldV = **DO;
3560 // Clobber the use with an undef value.
3561 **DO = UndefValue::get(OldV->getType());
3562 if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3563 if (isInstructionTriviallyDead(OldI)) {
3564 Changed = true;
Chandler Carruthf5837aa2012-11-20 01:12:50 +00003565 DeadInsts.insert(OldI);
Chandler Carruth713aa942012-09-14 09:22:59 +00003566 }
3567 }
3568
Chandler Carruthfca3f402012-10-05 01:29:09 +00003569 // No partitions to split. Leave the dead alloca for a later pass to clean up.
3570 if (P.begin() == P.end())
3571 return Changed;
3572
Chandler Carruth713aa942012-09-14 09:22:59 +00003573 return splitAlloca(AI, P) || Changed;
3574}
3575
Chandler Carruth8615cd22012-09-14 10:26:38 +00003576/// \brief Delete the dead instructions accumulated in this run.
3577///
3578/// Recursively deletes the dead instructions we've accumulated. This is done
3579/// at the very end to maximize locality of the recursive delete and to
3580/// minimize the problems of invalidated instruction pointers as such pointers
3581/// are used heavily in the intermediate stages of the algorithm.
3582///
3583/// We also record the alloca instructions deleted here so that they aren't
3584/// subsequently handed to mem2reg to promote.
3585void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
Chandler Carruth713aa942012-09-14 09:22:59 +00003586 while (!DeadInsts.empty()) {
3587 Instruction *I = DeadInsts.pop_back_val();
3588 DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3589
Chandler Carrutha2b88162012-10-25 04:37:07 +00003590 I->replaceAllUsesWith(UndefValue::get(I->getType()));
3591
Chandler Carruth713aa942012-09-14 09:22:59 +00003592 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3593 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3594 // Zero out the operand and see if it becomes trivially dead.
3595 *OI = 0;
3596 if (isInstructionTriviallyDead(U))
Chandler Carruthf5837aa2012-11-20 01:12:50 +00003597 DeadInsts.insert(U);
Chandler Carruth713aa942012-09-14 09:22:59 +00003598 }
3599
3600 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3601 DeletedAllocas.insert(AI);
3602
3603 ++NumDeleted;
3604 I->eraseFromParent();
3605 }
3606}
3607
Chandler Carruth1c8db502012-09-15 11:43:14 +00003608/// \brief Promote the allocas, using the best available technique.
3609///
3610/// This attempts to promote whatever allocas have been identified as viable in
3611/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3612/// If there is a domtree available, we attempt to promote using the full power
3613/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3614/// based on the SSAUpdater utilities. This function returns whether any
3615/// promotion occured.
3616bool SROA::promoteAllocas(Function &F) {
3617 if (PromotableAllocas.empty())
3618 return false;
3619
3620 NumPromoted += PromotableAllocas.size();
3621
3622 if (DT && !ForceSSAUpdater) {
3623 DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3624 PromoteMemToReg(PromotableAllocas, *DT);
3625 PromotableAllocas.clear();
3626 return true;
3627 }
3628
3629 DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3630 SSAUpdater SSA;
3631 DIBuilder DIB(*F.getParent());
3632 SmallVector<Instruction*, 64> Insts;
3633
3634 for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3635 AllocaInst *AI = PromotableAllocas[Idx];
3636 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
3637 UI != UE;) {
3638 Instruction *I = cast<Instruction>(*UI++);
3639 // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3640 // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3641 // leading to them) here. Eventually it should use them to optimize the
3642 // scalar values produced.
3643 if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
3644 assert(onlyUsedByLifetimeMarkers(I) &&
3645 "Found a bitcast used outside of a lifetime marker.");
3646 while (!I->use_empty())
3647 cast<Instruction>(*I->use_begin())->eraseFromParent();
3648 I->eraseFromParent();
3649 continue;
3650 }
3651 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3652 assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3653 II->getIntrinsicID() == Intrinsic::lifetime_end);
3654 II->eraseFromParent();
3655 continue;
3656 }
3657
3658 Insts.push_back(I);
3659 }
3660 AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3661 Insts.clear();
3662 }
3663
3664 PromotableAllocas.clear();
3665 return true;
3666}
3667
Chandler Carruth713aa942012-09-14 09:22:59 +00003668namespace {
3669 /// \brief A predicate to test whether an alloca belongs to a set.
3670 class IsAllocaInSet {
3671 typedef SmallPtrSet<AllocaInst *, 4> SetType;
3672 const SetType &Set;
3673
3674 public:
Chandler Carruth75eac5f2012-10-03 00:03:00 +00003675 typedef AllocaInst *argument_type;
3676
Chandler Carruth713aa942012-09-14 09:22:59 +00003677 IsAllocaInSet(const SetType &Set) : Set(Set) {}
Chandler Carruth75eac5f2012-10-03 00:03:00 +00003678 bool operator()(AllocaInst *AI) const { return Set.count(AI); }
Chandler Carruth713aa942012-09-14 09:22:59 +00003679 };
3680}
3681
3682bool SROA::runOnFunction(Function &F) {
3683 DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3684 C = &F.getContext();
Micah Villmow3574eca2012-10-08 16:38:25 +00003685 TD = getAnalysisIfAvailable<DataLayout>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003686 if (!TD) {
3687 DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
3688 return false;
3689 }
Chandler Carruth1c8db502012-09-15 11:43:14 +00003690 DT = getAnalysisIfAvailable<DominatorTree>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003691
3692 BasicBlock &EntryBB = F.getEntryBlock();
3693 for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3694 I != E; ++I)
3695 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3696 Worklist.insert(AI);
3697
3698 bool Changed = false;
Chandler Carruth8615cd22012-09-14 10:26:38 +00003699 // A set of deleted alloca instruction pointers which should be removed from
3700 // the list of promotable allocas.
3701 SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3702
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003703 do {
3704 while (!Worklist.empty()) {
3705 Changed |= runOnAlloca(*Worklist.pop_back_val());
3706 deleteDeadInstructions(DeletedAllocas);
Chandler Carruth5c5b3cf2012-10-02 22:46:45 +00003707
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003708 // Remove the deleted allocas from various lists so that we don't try to
3709 // continue processing them.
3710 if (!DeletedAllocas.empty()) {
3711 Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3712 PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3713 PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3714 PromotableAllocas.end(),
3715 IsAllocaInSet(DeletedAllocas)),
3716 PromotableAllocas.end());
3717 DeletedAllocas.clear();
3718 }
Chandler Carruth713aa942012-09-14 09:22:59 +00003719 }
Chandler Carruth713aa942012-09-14 09:22:59 +00003720
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003721 Changed |= promoteAllocas(F);
3722
3723 Worklist = PostPromotionWorklist;
3724 PostPromotionWorklist.clear();
3725 } while (!Worklist.empty());
Chandler Carruth713aa942012-09-14 09:22:59 +00003726
3727 return Changed;
3728}
3729
3730void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth1c8db502012-09-15 11:43:14 +00003731 if (RequiresDomTree)
3732 AU.addRequired<DominatorTree>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003733 AU.setPreservesCFG();
3734}