blob: 365c9f795829001b426b62505dd77975508168db [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnere96fda32003-05-02 19:26:34 +000011// to promote better constant propagation, GCSE, LICM, PRE...
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000030#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000031#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000032#include "llvm/Support/CFG.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000035#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000036#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
Chris Lattnerec531232009-12-31 07:33:14 +000038#include "llvm/ADT/DenseMap.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000039#include <algorithm>
Dan Gohmanc9235d22008-03-21 23:51:57 +000040#include <map>
Chris Lattnerd7456022004-01-09 06:02:20 +000041using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000042
Chris Lattner0e5f4992006-12-19 21:40:18 +000043STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000047
Chris Lattner0e5f4992006-12-19 21:40:18 +000048namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000049 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000050 unsigned Rank;
51 Value *Op;
52 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53 };
54 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
56 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000057}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000058
Devang Patel50cacb22008-11-21 21:00:20 +000059#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000060/// PrintOps - Print out the expression identified in the Ops list.
61///
Chris Lattner9f7b7082009-12-31 18:40:32 +000062static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000063 Module *M = I->getParent()->getParent()->getParent();
Chris Lattner79c5d3f2009-08-23 04:52:46 +000064 errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000065 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000066 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner1befe642009-12-31 07:17:37 +000067 errs() << "[ ";
68 WriteAsOperand(errs(), Ops[i].Op, false, M);
69 errs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000070 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000071}
Devang Patel59500c82008-11-21 20:00:59 +000072#endif
Chris Lattnere5022fe2006-03-04 09:31:13 +000073
Dan Gohman844731a2008-05-13 00:00:25 +000074namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000075 class Reassociate : public FunctionPass {
Chris Lattner0c0edf82002-07-25 06:17:51 +000076 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattnerd3c7b732009-03-31 22:13:29 +000077 std::map<AssertingVH<>, unsigned> ValueRankMap;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000078 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000079 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000080 static char ID; // Pass identification, replacement for typeid
Dan Gohmanae73dc12008-09-04 17:05:41 +000081 Reassociate() : FunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000082
Chris Lattner7e708292002-06-25 16:13:24 +000083 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000084
85 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000086 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000087 }
88 private:
Chris Lattner7e708292002-06-25 16:13:24 +000089 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000090 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +000091 Value *ReassociateExpression(BinaryOperator *I);
Chris Lattner9f7b7082009-12-31 18:40:32 +000092 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +000093 unsigned Idx = 0);
Chris Lattner9f7b7082009-12-31 18:40:32 +000094 Value *OptimizeExpression(BinaryOperator *I,
95 SmallVectorImpl<ValueEntry> &Ops);
96 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
97 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000098 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +000099 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000100 void ReassociateBB(BasicBlock *BB);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000101
102 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +0000103 };
104}
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106char Reassociate::ID = 0;
107static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
108
Brian Gaeked0fde302003-11-11 22:41:34 +0000109// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000110FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000111
Chris Lattnere5022fe2006-03-04 09:31:13 +0000112void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000113 Instruction *Op = dyn_cast<Instruction>(V);
Chris Lattner69e98e22009-12-31 19:24:52 +0000114 if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
Reid Spencere4d87aa2006-12-23 06:05:41 +0000115 return;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000116
Reid Spencere4d87aa2006-12-23 06:05:41 +0000117 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattner69e98e22009-12-31 19:24:52 +0000118
119 ValueRankMap.erase(Op);
120 Op->eraseFromParent();
Chris Lattnere5022fe2006-03-04 09:31:13 +0000121 RemoveDeadBinaryOp(LHS);
122 RemoveDeadBinaryOp(RHS);
123}
124
Chris Lattner9c723192005-05-08 20:57:04 +0000125
126static bool isUnmovableInstruction(Instruction *I) {
127 if (I->getOpcode() == Instruction::PHI ||
128 I->getOpcode() == Instruction::Alloca ||
129 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000130 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000131 (I->getOpcode() == Instruction::Call &&
132 !isa<DbgInfoIntrinsic>(I)) ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000133 I->getOpcode() == Instruction::UDiv ||
134 I->getOpcode() == Instruction::SDiv ||
135 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000136 I->getOpcode() == Instruction::URem ||
137 I->getOpcode() == Instruction::SRem ||
138 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000139 return true;
140 return false;
141}
142
Chris Lattner7e708292002-06-25 16:13:24 +0000143void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000144 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000145
146 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000147 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000148 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000149
Chris Lattner7e708292002-06-25 16:13:24 +0000150 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000151 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000152 E = RPOT.end(); I != E; ++I) {
153 BasicBlock *BB = *I;
154 unsigned BBRank = RankMap[BB] = ++i << 16;
155
156 // Walk the basic block, adding precomputed ranks for any instructions that
157 // we cannot move. This ensures that the ranks for these instructions are
158 // all different in the block.
159 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
160 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000161 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000162 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000163}
164
165unsigned Reassociate::getRank(Value *V) {
Chris Lattnerfb5be092003-08-13 16:16:26 +0000166 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
167
Chris Lattner08b43922005-05-07 04:08:02 +0000168 Instruction *I = dyn_cast<Instruction>(V);
169 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
Chris Lattner4fd56002002-05-08 22:19:27 +0000170
Chris Lattner08b43922005-05-07 04:08:02 +0000171 unsigned &CachedRank = ValueRankMap[I];
172 if (CachedRank) return CachedRank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000173
Chris Lattner08b43922005-05-07 04:08:02 +0000174 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
175 // we can reassociate expressions for code motion! Since we do not recurse
176 // for PHI nodes, we cannot have infinite recursion here, because there
177 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000178 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
179 for (unsigned i = 0, e = I->getNumOperands();
180 i != e && Rank != MaxRank; ++i)
181 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000182
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000183 // If this is a not or neg instruction, do not count it for rank. This
184 // assures us that X and ~X will have the same rank.
Chris Lattner42a75512007-01-15 02:27:26 +0000185 if (!I->getType()->isInteger() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000186 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000187 ++Rank;
188
Chris Lattnerbdff5482009-08-23 04:37:46 +0000189 //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
190 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000191
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000192 return CachedRank = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000193}
194
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000195/// isReassociableOp - Return true if V is an instruction of the specified
196/// opcode and if it only has one use.
197static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000198 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000199 cast<Instruction>(V)->getOpcode() == Opcode)
200 return cast<BinaryOperator>(V);
201 return 0;
202}
Chris Lattner4fd56002002-05-08 22:19:27 +0000203
Chris Lattnerf33151a2005-05-08 21:28:52 +0000204/// LowerNegateToMultiply - Replace 0-X with X*-1.
205///
Dale Johannesenf4978e22009-03-19 17:22:53 +0000206static Instruction *LowerNegateToMultiply(Instruction *Neg,
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000207 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000208 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000209
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000210 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000211 ValueRankMap.erase(Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000212 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000213 Neg->replaceAllUsesWith(Res);
214 Neg->eraseFromParent();
215 return Res;
216}
217
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000218// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
219// Note that if D is also part of the expression tree that we recurse to
220// linearize it as well. Besides that case, this does not recurse into A,B, or
221// C.
222void Reassociate::LinearizeExpr(BinaryOperator *I) {
223 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
224 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000225 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000226 isReassociableOp(RHS, I->getOpcode()) &&
227 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000228
Chris Lattnerbdff5482009-08-23 04:37:46 +0000229 DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Chris Lattner4fd56002002-05-08 22:19:27 +0000230
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000231 // Move the RHS instruction to live immediately before I, avoiding breaking
232 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000233 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000234
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000235 // Move operands around to do the linearization.
236 I->setOperand(1, RHS->getOperand(0));
237 RHS->setOperand(0, LHS);
238 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000239
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000240 ++NumLinear;
241 MadeChange = true;
Chris Lattnerbdff5482009-08-23 04:37:46 +0000242 DEBUG(errs() << "Linearized: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000243
244 // If D is part of this expression tree, tail recurse.
245 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
246 LinearizeExpr(I);
247}
248
249
250/// LinearizeExprTree - Given an associative binary expression tree, traverse
251/// all of the uses putting it into canonical form. This forces a left-linear
252/// form of the the expression (((a+b)+c)+d), and collects information about the
253/// rank of the non-tree operands.
254///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000255/// NOTE: These intentionally destroys the expression tree operands (turning
256/// them into undef values) to reduce #uses of the values. This means that the
257/// caller MUST use something like RewriteExprTree to put the values back in.
258///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000259void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000260 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000261 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
262 unsigned Opcode = I->getOpcode();
263
264 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
265 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
266 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
267
Chris Lattnerf33151a2005-05-08 21:28:52 +0000268 // If this is a multiply expression tree and it contains internal negations,
269 // transform them into multiplies by -1 so they can be reassociated.
270 if (I->getOpcode() == Instruction::Mul) {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000271 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000272 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000273 LHSBO = isReassociableOp(LHS, Opcode);
274 }
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000275 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000276 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000277 RHSBO = isReassociableOp(RHS, Opcode);
278 }
279 }
280
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000281 if (!LHSBO) {
282 if (!RHSBO) {
283 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
284 // such, just remember these operands and their rank.
285 Ops.push_back(ValueEntry(getRank(LHS), LHS));
286 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000287
288 // Clear the leaves out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000289 I->setOperand(0, UndefValue::get(I->getType()));
290 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000291 return;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000292 }
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000293
294 // Turn X+(Y+Z) -> (Y+Z)+X
295 std::swap(LHSBO, RHSBO);
296 std::swap(LHS, RHS);
297 bool Success = !I->swapOperands();
298 assert(Success && "swapOperands failed");
299 Success = false;
300 MadeChange = true;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000301 } else if (RHSBO) {
302 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
303 // part of the expression tree.
304 LinearizeExpr(I);
305 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
306 RHS = I->getOperand(1);
307 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000308 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000309
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000310 // Okay, now we know that the LHS is a nested expression and that the RHS is
311 // not. Perform reassociation.
312 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000313
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000314 // Move LHS right before I to make sure that the tree expression dominates all
315 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000316 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000317
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000318 // Linearize the expression tree on the LHS.
319 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000320
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000321 // Remember the RHS operand and its rank.
322 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000323
324 // Clear the RHS leaf out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000325 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000326}
327
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000328// RewriteExprTree - Now that the operands for this expression tree are
329// linearized and optimized, emit them in-order. This function is written to be
330// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000331void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000332 SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +0000333 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000334 if (i+2 == Ops.size()) {
335 if (I->getOperand(0) != Ops[i].Op ||
336 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000337 Value *OldLHS = I->getOperand(0);
Chris Lattnerbdff5482009-08-23 04:37:46 +0000338 DEBUG(errs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000339 I->setOperand(0, Ops[i].Op);
340 I->setOperand(1, Ops[i+1].Op);
Chris Lattnerbdff5482009-08-23 04:37:46 +0000341 DEBUG(errs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000342 MadeChange = true;
343 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000344
345 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
346 // delete the extra, now dead, nodes.
347 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000348 }
349 return;
350 }
351 assert(i+2 < Ops.size() && "Ops index out of range!");
352
353 if (I->getOperand(1) != Ops[i].Op) {
Chris Lattnerbdff5482009-08-23 04:37:46 +0000354 DEBUG(errs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000355 I->setOperand(1, Ops[i].Op);
Chris Lattnerbdff5482009-08-23 04:37:46 +0000356 DEBUG(errs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000357 MadeChange = true;
358 ++NumChanged;
359 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000360
361 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
362 assert(LHS->getOpcode() == I->getOpcode() &&
363 "Improper expression tree!");
364
365 // Compactify the tree instructions together with each other to guarantee
366 // that the expression tree is dominated by all of Ops.
367 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000368 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000369}
370
371
Chris Lattner4fd56002002-05-08 22:19:27 +0000372
Chris Lattnera36e6c82002-05-16 04:37:07 +0000373// NegateValue - Insert instructions before the instruction pointed to by BI,
374// that computes the negative version of the value specified. The negative
375// version of the value is returned, and BI is left pointing at the instruction
376// that should be processed next by the reassociation pass.
377//
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000378static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattnera36e6c82002-05-16 04:37:07 +0000379 // We are trying to expose opportunity for reassociation. One of the things
380 // that we want to do to achieve this is to push a negation as deep into an
381 // expression chain as possible, to expose the add instructions. In practice,
382 // this means that we turn this:
383 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
384 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
385 // the constants. We assume that instcombine will clean up the mess later if
Misha Brukman5560c9d2003-08-18 14:43:39 +0000386 // we introduce tons of unnecessary negation instructions...
Chris Lattnera36e6c82002-05-16 04:37:07 +0000387 //
388 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000389 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000390 // Push the negates through the add.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000391 I->setOperand(0, NegateValue(I->getOperand(0), BI));
392 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000393
Chris Lattner2cd85da2005-09-02 06:38:04 +0000394 // We must move the add instruction here, because the neg instructions do
395 // not dominate the old add instruction in general. By moving it, we are
396 // assured that the neg instructions we just inserted dominate the
397 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000398 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000399 I->moveBefore(BI);
400 I->setName(I->getName()+".neg");
401 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000402 }
403
404 // Insert a 'neg' instruction that subtracts the value from zero to get the
405 // negation.
406 //
Dan Gohman4ae51262009-08-12 16:23:25 +0000407 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000408}
409
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000410/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
411/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000412static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000413 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000414 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000415 return false;
416
417 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000418 // subtract or if this is only used by one.
419 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
420 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000421 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000422 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000423 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000424 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000425 if (Sub->hasOneUse() &&
426 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
427 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000428 return true;
429
430 return false;
431}
432
Chris Lattner08b43922005-05-07 04:08:02 +0000433/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
434/// only used by an add, transform this into (X+(0-Y)) to promote better
435/// reassociation.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000436static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000437 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner08b43922005-05-07 04:08:02 +0000438 // Convert a subtract into an add and a neg instruction... so that sub
439 // instructions can be commuted with other add instructions...
440 //
441 // Calculate the negative value of Operand 1 of the sub instruction...
442 // and set it as the RHS of the add instruction we just made...
443 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000444 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000445 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000446 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000447 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000448
449 // Everyone now refers to the add instruction.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000450 ValueRankMap.erase(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000451 Sub->replaceAllUsesWith(New);
452 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000453
Chris Lattnerbdff5482009-08-23 04:37:46 +0000454 DEBUG(errs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000455 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000456}
457
Chris Lattner0975ed52005-05-07 04:24:13 +0000458/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
459/// by one, change this into a multiply by a constant to assist with further
460/// reassociation.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000461static Instruction *ConvertShiftToMul(Instruction *Shl,
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000462 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000463 // If an operand of this shift is a reassociable multiply, or if the shift
464 // is used by a reassociable multiply or add, turn into a multiply.
465 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
466 (Shl->hasOneUse() &&
467 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
468 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000469 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000470 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Chris Lattner22a66c42006-03-14 06:55:18 +0000471
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000472 Instruction *Mul =
473 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000474 ValueRankMap.erase(Shl);
Chris Lattner6934a042007-02-11 01:23:03 +0000475 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000476 Shl->replaceAllUsesWith(Mul);
477 Shl->eraseFromParent();
478 return Mul;
479 }
480 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000481}
482
Chris Lattner109d34d2005-05-08 18:59:37 +0000483// Scan backwards and forwards among values with the same rank as element i to
484// see if X exists. If X does not exist, return i.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000485static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000486 Value *X) {
487 unsigned XRank = Ops[i].Rank;
488 unsigned e = Ops.size();
489 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
490 if (Ops[j].Op == X)
491 return j;
492 // Scan backwards
493 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
494 if (Ops[j].Op == X)
495 return j;
496 return i;
497}
498
Chris Lattnere5022fe2006-03-04 09:31:13 +0000499/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
500/// and returning the result. Insert the tree before I.
Chris Lattner8d93b252009-12-31 07:48:51 +0000501static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000502 if (Ops.size() == 1) return Ops.back();
503
504 Value *V1 = Ops.back();
505 Ops.pop_back();
506 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000507 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000508}
509
510/// RemoveFactorFromExpression - If V is an expression tree that is a
511/// multiplication sequence, and if this sequence contains a multiply by Factor,
512/// remove Factor from the tree and return the new tree.
513Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
514 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
515 if (!BO) return 0;
516
Chris Lattner9f7b7082009-12-31 18:40:32 +0000517 SmallVector<ValueEntry, 8> Factors;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000518 LinearizeExprTree(BO, Factors);
519
520 bool FoundFactor = false;
521 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
522 if (Factors[i].Op == Factor) {
523 FoundFactor = true;
524 Factors.erase(Factors.begin()+i);
525 break;
526 }
Chris Lattnere9efecb2006-03-14 16:04:29 +0000527 if (!FoundFactor) {
528 // Make sure to restore the operands to the expression tree.
529 RewriteExprTree(BO, Factors);
530 return 0;
531 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000532
Chris Lattner1e7558b2009-12-31 19:34:45 +0000533 // If this was just a single multiply, remove the multiply and return the only
534 // remaining operand.
535 if (Factors.size() == 1) {
536 ValueRankMap.erase(BO);
537 BO->eraseFromParent();
538 return Factors[0].Op;
539 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000540
Chris Lattnere9efecb2006-03-14 16:04:29 +0000541 RewriteExprTree(BO, Factors);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000542 return BO;
543}
544
Chris Lattnere9efecb2006-03-14 16:04:29 +0000545/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
546/// add its operands as factors, otherwise add V to the list of factors.
547static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner8d93b252009-12-31 07:48:51 +0000548 SmallVectorImpl<Value*> &Factors) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000549 BinaryOperator *BO;
550 if ((!V->hasOneUse() && !V->use_empty()) ||
551 !(BO = dyn_cast<BinaryOperator>(V)) ||
552 BO->getOpcode() != Instruction::Mul) {
553 Factors.push_back(V);
554 return;
555 }
556
557 // Otherwise, add the LHS and RHS to the list of factors.
558 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
559 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
560}
561
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000562/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
563/// instruction. This optimizes based on identities. If it can be reduced to
564/// a single Value, it is returned, otherwise the Ops list is mutated as
565/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000566static Value *OptimizeAndOrXor(unsigned Opcode,
567 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000568 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
569 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
570 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
571 // First, check for X and ~X in the operand list.
572 assert(i < Ops.size());
573 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
574 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
575 unsigned FoundX = FindInOperandList(Ops, i, X);
576 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000577 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000578 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000579
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000580 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000581 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000582 }
583 }
584
585 // Next, check for duplicate pairs of values, which we assume are next to
586 // each other, due to our sorting criteria.
587 assert(i < Ops.size());
588 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
589 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
590 // Drop duplicate values.
591 Ops.erase(Ops.begin()+i);
592 --i; --e;
593 ++NumAnnihil;
594 } else {
595 assert(Opcode == Instruction::Xor);
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000596 if (e == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000597 return Constant::getNullValue(Ops[0].Op->getType());
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000598
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000599 // ... X^X -> ...
600 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
601 i -= 1; e -= 2;
602 ++NumAnnihil;
603 }
604 }
605 }
606 return 0;
607}
Chris Lattnere9efecb2006-03-14 16:04:29 +0000608
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000609/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
610/// optimizes based on identities. If it can be reduced to a single Value, it
611/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000612Value *Reassociate::OptimizeAdd(Instruction *I,
613 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000614 SmallPtrSet<Value*, 8> OperandsSeen;
615
616Restart:
617 OperandsSeen.clear();
618
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000619 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +0000620 // can simplify the expression. X+-X == 0. While we're at it, scan for any
621 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000622 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000623 Value *TheOp = Ops[i].Op;
624 // Check to see if we've seen this operand before. If so, we factor all
625 // instances of the operand together.
626 if (!OperandsSeen.insert(TheOp)) {
627 // Rescan the list, removing all instances of this operand from the expr.
628 unsigned NumFound = 0;
629 for (unsigned j = 0, je = Ops.size(); j != je; ++j) {
630 if (Ops[j].Op != TheOp) continue;
631 ++NumFound;
632 Ops.erase(Ops.begin()+j);
633 --j; --je;
634 }
635
Chris Lattnerf8a447d2009-12-31 19:25:19 +0000636 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +0000637 ++NumFactor;
638
639
640 // Insert a new multiply.
641 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
642 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
643
644 // Now that we have inserted a multiply, optimize it. This allows us to
645 // handle cases that require multiple factoring steps, such as this:
646 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
647 Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
648
649 // If every add operand was a duplicate, return the multiply.
650 if (Ops.empty())
651 return Mul;
652
653 // Otherwise, we had some input that didn't have the dupe, such as
654 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
655 // things being added by this operation.
656 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
657 goto Restart;
658 }
659
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000660 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +0000661 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000662 continue;
663
Chris Lattner69e98e22009-12-31 19:24:52 +0000664 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000665 unsigned FoundX = FindInOperandList(Ops, i, X);
666 if (FoundX == i)
667 continue;
668
669 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000670 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000671 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000672
673 Ops.erase(Ops.begin()+i);
674 if (i < FoundX)
675 --FoundX;
676 else
677 --i; // Need to back up an extra one.
678 Ops.erase(Ops.begin()+FoundX);
679 ++NumAnnihil;
680 --i; // Revisit element.
681 e -= 2; // Removed two elements.
682 }
Chris Lattner94285e62009-12-31 18:17:13 +0000683
684 // Scan the operand list, checking to see if there are any common factors
685 // between operands. Consider something like A*A+A*B*C+D. We would like to
686 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
687 // To efficiently find this, we count the number of times a factor occurs
688 // for any ADD operands that are MULs.
689 DenseMap<Value*, unsigned> FactorOccurrences;
690
691 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
692 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +0000693 unsigned MaxOcc = 0;
694 Value *MaxOccVal = 0;
695 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
696 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
697 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
698 continue;
699
Chris Lattner94285e62009-12-31 18:17:13 +0000700 // Compute all of the factors of this added value.
701 SmallVector<Value*, 8> Factors;
702 FindSingleUseMultiplyFactors(BOp, Factors);
703 assert(Factors.size() > 1 && "Bad linearize!");
704
705 // Add one to FactorOccurrences for each unique factor in this op.
706 if (Factors.size() == 2) {
707 unsigned Occ = ++FactorOccurrences[Factors[0]];
708 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
709 if (Factors[0] != Factors[1]) { // Don't double count A*A.
710 Occ = ++FactorOccurrences[Factors[1]];
711 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
712 }
713 } else {
714 SmallPtrSet<Value*, 4> Duplicates;
715 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
716 if (!Duplicates.insert(Factors[i])) continue;
717
718 unsigned Occ = ++FactorOccurrences[Factors[i]];
719 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
720 }
721 }
722 }
723
724 // If any factor occurred more than one time, we can pull it out.
725 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000726 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +0000727 ++NumFactor;
728
729 // Create a new instruction that uses the MaxOccVal twice. If we don't do
730 // this, we could otherwise run into situations where removing a factor
731 // from an expression will drop a use of maxocc, and this can cause
732 // RemoveFactorFromExpression on successive values to behave differently.
733 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
734 SmallVector<Value*, 4> NewMulOps;
735 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
736 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
737 NewMulOps.push_back(V);
738 Ops.erase(Ops.begin()+i);
739 --i; --e;
740 }
741 }
742
743 // No need for extra uses anymore.
744 delete DummyInst;
745
746 unsigned NumAddedValues = NewMulOps.size();
747 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Chris Lattner94285e62009-12-31 18:17:13 +0000748
Chris Lattner69e98e22009-12-31 19:24:52 +0000749 // Now that we have inserted the add tree, optimize it. This allows us to
750 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +0000751 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000752 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Chris Lattner69e98e22009-12-31 19:24:52 +0000753 V = ReassociateExpression(cast<BinaryOperator>(V));
754
755 // Create the multiply.
756 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
757
758 // FIXME: Should rerun 'ReassociateExpression' on the mul too??
Chris Lattner94285e62009-12-31 18:17:13 +0000759
760 // If every add operand included the factor (e.g. "A*B + A*C"), then the
761 // entire result expression is just the multiply "A*(B+C)".
762 if (Ops.empty())
763 return V2;
764
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000765 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +0000766 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000767 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +0000768 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
769 }
770
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000771 return 0;
772}
Chris Lattnere5022fe2006-03-04 09:31:13 +0000773
774Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000775 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000776 // Now that we have the linearized expression tree, try to optimize it.
777 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000778 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000779 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000780
Chris Lattnere5022fe2006-03-04 09:31:13 +0000781 unsigned Opcode = I->getOpcode();
782
Chris Lattner46900102005-05-08 00:19:31 +0000783 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
784 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
785 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +0000786 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000787 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000788 }
789
790 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000791 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +0000792 switch (Opcode) {
793 default: break;
794 case Instruction::And:
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000795 if (CstVal->isZero()) // ... & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +0000796 return CstVal;
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000797 if (CstVal->isAllOnesValue()) // ... & -1 -> ...
Chris Lattner8d93b252009-12-31 07:48:51 +0000798 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +0000799 break;
800 case Instruction::Mul:
Reid Spencercae57542007-03-02 00:28:52 +0000801 if (CstVal->isZero()) { // ... * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000802 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000803 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000804 }
Chris Lattner8d93b252009-12-31 07:48:51 +0000805
806 if (cast<ConstantInt>(CstVal)->isOne())
807 Ops.pop_back(); // ... * 1 -> ...
Chris Lattner46900102005-05-08 00:19:31 +0000808 break;
809 case Instruction::Or:
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000810 if (CstVal->isAllOnesValue()) // ... | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +0000811 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000812 // FALLTHROUGH!
813 case Instruction::Add:
814 case Instruction::Xor:
Reid Spencercae57542007-03-02 00:28:52 +0000815 if (CstVal->isZero()) // ... [|^+] 0 -> ...
Chris Lattner46900102005-05-08 00:19:31 +0000816 Ops.pop_back();
817 break;
818 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000819 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000820
Chris Lattnerec531232009-12-31 07:33:14 +0000821 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +0000822 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000823 switch (Opcode) {
824 default: break;
825 case Instruction::And:
826 case Instruction::Or:
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000827 case Instruction::Xor: {
828 unsigned NumOps = Ops.size();
829 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
830 return Result;
831 IterateOptimization |= Ops.size() != NumOps;
Chris Lattner109d34d2005-05-08 18:59:37 +0000832 break;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000833 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000834
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000835 case Instruction::Add: {
836 unsigned NumOps = Ops.size();
Chris Lattner94285e62009-12-31 18:17:13 +0000837 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000838 return Result;
839 IterateOptimization |= Ops.size() != NumOps;
840 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000841
Chris Lattner109d34d2005-05-08 18:59:37 +0000842 break;
843 //case Instruction::Mul:
844 }
845
Jeff Cohen00b168892005-07-27 06:12:32 +0000846 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000847 return OptimizeExpression(I, Ops);
848 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000849}
850
Chris Lattnera36e6c82002-05-16 04:37:07 +0000851
Chris Lattner08b43922005-05-07 04:08:02 +0000852/// ReassociateBB - Inspect all of the instructions in this basic block,
853/// reassociating them as we go.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000854void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000855 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
856 Instruction *BI = BBI++;
Chris Lattner641f02f2005-05-10 03:39:25 +0000857 if (BI->getOpcode() == Instruction::Shl &&
858 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000859 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Chris Lattner641f02f2005-05-10 03:39:25 +0000860 MadeChange = true;
861 BI = NI;
862 }
863
Chris Lattner6f156852005-05-08 21:33:47 +0000864 // Reject cases where it is pointless to do this.
Reid Spencere4d87aa2006-12-23 06:05:41 +0000865 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
Reid Spencer9d6565a2007-02-15 02:26:10 +0000866 isa<VectorType>(BI->getType()))
Chris Lattner6f156852005-05-08 21:33:47 +0000867 continue; // Floating point ops are not associative.
868
Chris Lattner08b43922005-05-07 04:08:02 +0000869 // If this is a subtract instruction which is not already in negate form,
870 // see if we can convert it to X+-Y.
Chris Lattnerf33151a2005-05-08 21:28:52 +0000871 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000872 if (ShouldBreakUpSubtract(BI)) {
873 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattnerd5b8d922008-02-18 02:18:25 +0000874 MadeChange = true;
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000875 } else if (BinaryOperator::isNeg(BI)) {
Chris Lattnerf33151a2005-05-08 21:28:52 +0000876 // Otherwise, this is a negation. See if the operand is a multiply tree
877 // and if this is not an inner node of a multiply tree.
878 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
879 (!BI->hasOneUse() ||
880 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000881 BI = LowerNegateToMultiply(BI, ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000882 MadeChange = true;
883 }
Chris Lattner08b43922005-05-07 04:08:02 +0000884 }
Chris Lattnerf33151a2005-05-08 21:28:52 +0000885 }
Chris Lattnere4b73042002-10-31 17:12:59 +0000886
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000887 // If this instruction is a commutative binary operator, process it.
888 if (!BI->isAssociative()) continue;
889 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen00b168892005-07-27 06:12:32 +0000890
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000891 // If this is an interior node of a reassociable tree, ignore it until we
892 // get to the root of the tree, to avoid N^2 analysis.
893 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
894 continue;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000895
Chris Lattner7b4ad942005-09-02 07:07:58 +0000896 // If this is an add tree that is used by a sub instruction, ignore it
897 // until we process the subtract.
898 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
899 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
900 continue;
901
Chris Lattner895b3922006-03-14 07:11:11 +0000902 ReassociateExpression(I);
903 }
904}
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000905
Chris Lattner69e98e22009-12-31 19:24:52 +0000906Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner895b3922006-03-14 07:11:11 +0000907
Chris Lattner69e98e22009-12-31 19:24:52 +0000908 // First, walk the expression tree, linearizing the tree, collecting the
909 // operand information.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000910 SmallVector<ValueEntry, 8> Ops;
Chris Lattner895b3922006-03-14 07:11:11 +0000911 LinearizeExprTree(I, Ops);
912
Chris Lattner94285e62009-12-31 18:17:13 +0000913 DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +0000914
915 // Now that we have linearized the tree to a list and have gathered all of
916 // the operands and their ranks, sort the operands by their rank. Use a
917 // stable_sort so that values with equal ranks will have their relative
918 // positions maintained (and so the compiler is deterministic). Note that
919 // this sorts so that the highest ranking values end up at the beginning of
920 // the vector.
921 std::stable_sort(Ops.begin(), Ops.end());
922
923 // OptimizeExpression - Now that we have the expression tree in a convenient
924 // sorted form, optimize it globally if possible.
925 if (Value *V = OptimizeExpression(I, Ops)) {
926 // This expression tree simplified to something that isn't a tree,
927 // eliminate it.
Chris Lattner94285e62009-12-31 18:17:13 +0000928 DEBUG(errs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +0000929 I->replaceAllUsesWith(V);
930 RemoveDeadBinaryOp(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000931 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +0000932 return V;
Chris Lattner895b3922006-03-14 07:11:11 +0000933 }
934
935 // We want to sink immediates as deeply as possible except in the case where
936 // this is a multiply tree used only by an add, and the immediate is a -1.
937 // In this case we reassociate to put the negation on the outside so that we
938 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
939 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
940 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
941 isa<ConstantInt>(Ops.back().Op) &&
942 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +0000943 ValueEntry Tmp = Ops.pop_back_val();
944 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +0000945 }
946
Chris Lattner94285e62009-12-31 18:17:13 +0000947 DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +0000948
949 if (Ops.size() == 1) {
950 // This expression tree simplified to something that isn't a tree,
951 // eliminate it.
952 I->replaceAllUsesWith(Ops[0].Op);
953 RemoveDeadBinaryOp(I);
Chris Lattner69e98e22009-12-31 19:24:52 +0000954 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +0000955 }
Chris Lattner69e98e22009-12-31 19:24:52 +0000956
957 // Now that we ordered and optimized the expressions, splat them back into
958 // the expression tree, removing any unneeded nodes.
959 RewriteExprTree(I, Ops);
960 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +0000961}
962
963
Chris Lattner7e708292002-06-25 16:13:24 +0000964bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +0000965 // Recalculate the rank map for F
966 BuildRankMap(F);
967
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000968 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +0000969 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000970 ReassociateBB(FI);
Chris Lattner4fd56002002-05-08 22:19:27 +0000971
972 // We are done with the rank map...
973 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +0000974 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000975 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000976}
Brian Gaeked0fde302003-11-11 22:41:34 +0000977