Guido van Rossum | e7b146f | 2000-02-04 15:28:42 +0000 | [diff] [blame] | 1 | """Random variable generators. |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 2 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 3 | integers |
| 4 | -------- |
| 5 | uniform within range |
| 6 | |
| 7 | sequences |
| 8 | --------- |
| 9 | pick random element |
| 10 | generate random permutation |
| 11 | |
Guido van Rossum | e7b146f | 2000-02-04 15:28:42 +0000 | [diff] [blame] | 12 | distributions on the real line: |
| 13 | ------------------------------ |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 14 | uniform |
Guido van Rossum | e7b146f | 2000-02-04 15:28:42 +0000 | [diff] [blame] | 15 | normal (Gaussian) |
| 16 | lognormal |
| 17 | negative exponential |
| 18 | gamma |
| 19 | beta |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 20 | |
Guido van Rossum | e7b146f | 2000-02-04 15:28:42 +0000 | [diff] [blame] | 21 | distributions on the circle (angles 0 to 2pi) |
| 22 | --------------------------------------------- |
| 23 | circular uniform |
| 24 | von Mises |
| 25 | |
| 26 | Translated from anonymously contributed C/C++ source. |
| 27 | |
Tim Peters | e360d95 | 2001-01-26 10:00:39 +0000 | [diff] [blame] | 28 | Multi-threading note: the random number generator used here is not thread- |
| 29 | safe; it is possible that two calls return the same random value. However, |
| 30 | you can instantiate a different instance of Random() in each thread to get |
| 31 | generators that don't share state, then use .setstate() and .jumpahead() to |
| 32 | move the generators to disjoint segments of the full period. For example, |
| 33 | |
| 34 | def create_generators(num, delta, firstseed=None): |
| 35 | ""\"Return list of num distinct generators. |
| 36 | Each generator has its own unique segment of delta elements from |
| 37 | Random.random()'s full period. |
| 38 | Seed the first generator with optional arg firstseed (default is |
| 39 | None, to seed from current time). |
| 40 | ""\" |
| 41 | |
| 42 | from random import Random |
| 43 | g = Random(firstseed) |
| 44 | result = [g] |
| 45 | for i in range(num - 1): |
| 46 | laststate = g.getstate() |
| 47 | g = Random() |
| 48 | g.setstate(laststate) |
| 49 | g.jumpahead(delta) |
| 50 | result.append(g) |
| 51 | return result |
| 52 | |
| 53 | gens = create_generators(10, 1000000) |
| 54 | |
| 55 | That creates 10 distinct generators, which can be passed out to 10 distinct |
| 56 | threads. The generators don't share state so can be called safely in |
| 57 | parallel. So long as no thread calls its g.random() more than a million |
| 58 | times (the second argument to create_generators), the sequences seen by |
| 59 | each thread will not overlap. |
| 60 | |
| 61 | The period of the underlying Wichmann-Hill generator is 6,953,607,871,644, |
| 62 | and that limits how far this technique can be pushed. |
| 63 | |
| 64 | Just for fun, note that since we know the period, .jumpahead() can also be |
| 65 | used to "move backward in time": |
| 66 | |
| 67 | >>> g = Random(42) # arbitrary |
| 68 | >>> g.random() |
Tim Peters | 0de88fc | 2001-02-01 04:59:18 +0000 | [diff] [blame] | 69 | 0.25420336316883324 |
Tim Peters | e360d95 | 2001-01-26 10:00:39 +0000 | [diff] [blame] | 70 | >>> g.jumpahead(6953607871644L - 1) # move *back* one |
| 71 | >>> g.random() |
Tim Peters | 0de88fc | 2001-02-01 04:59:18 +0000 | [diff] [blame] | 72 | 0.25420336316883324 |
Guido van Rossum | e7b146f | 2000-02-04 15:28:42 +0000 | [diff] [blame] | 73 | """ |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 74 | # XXX The docstring sucks. |
Guido van Rossum | d03e119 | 1998-05-29 17:51:31 +0000 | [diff] [blame] | 75 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 76 | from math import log as _log, exp as _exp, pi as _pi, e as _e |
| 77 | from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 78 | |
Skip Montanaro | 0de6580 | 2001-02-15 22:15:14 +0000 | [diff] [blame] | 79 | __all__ = ["Random","seed","random","uniform","randint","choice", |
| 80 | "randrange","shuffle","normalvariate","lognormvariate", |
| 81 | "cunifvariate","expovariate","vonmisesvariate","gammavariate", |
| 82 | "stdgamma","gauss","betavariate","paretovariate","weibullvariate", |
| 83 | "getstate","setstate","jumpahead","whseed"] |
Tim Peters | 0e6d213 | 2001-02-15 23:56:39 +0000 | [diff] [blame] | 84 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 85 | def _verify(name, expected): |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 86 | computed = eval(name) |
| 87 | if abs(computed - expected) > 1e-7: |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 88 | raise ValueError( |
| 89 | "computed value for %s deviates too much " |
| 90 | "(computed %g, expected %g)" % (name, computed, expected)) |
| 91 | |
| 92 | NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0) |
| 93 | _verify('NV_MAGICCONST', 1.71552776992141) |
| 94 | |
| 95 | TWOPI = 2.0*_pi |
| 96 | _verify('TWOPI', 6.28318530718) |
| 97 | |
| 98 | LOG4 = _log(4.0) |
| 99 | _verify('LOG4', 1.38629436111989) |
| 100 | |
| 101 | SG_MAGICCONST = 1.0 + _log(4.5) |
| 102 | _verify('SG_MAGICCONST', 2.50407739677627) |
| 103 | |
| 104 | del _verify |
| 105 | |
| 106 | # Translated by Guido van Rossum from C source provided by |
| 107 | # Adrian Baddeley. |
| 108 | |
| 109 | class Random: |
| 110 | |
| 111 | VERSION = 1 # used by getstate/setstate |
| 112 | |
| 113 | def __init__(self, x=None): |
| 114 | """Initialize an instance. |
| 115 | |
| 116 | Optional argument x controls seeding, as for Random.seed(). |
| 117 | """ |
| 118 | |
| 119 | self.seed(x) |
| 120 | self.gauss_next = None |
| 121 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 122 | ## -------------------- core generator ------------------- |
| 123 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 124 | # Specific to Wichmann-Hill generator. Subclasses wishing to use a |
Tim Peters | d52269b | 2001-01-25 06:23:18 +0000 | [diff] [blame] | 125 | # different core generator should override the seed(), random(), |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 126 | # getstate(), setstate() and jumpahead() methods. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 127 | |
Tim Peters | 0de88fc | 2001-02-01 04:59:18 +0000 | [diff] [blame] | 128 | def seed(self, a=None): |
| 129 | """Initialize internal state from hashable object. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 130 | |
Tim Peters | 0de88fc | 2001-02-01 04:59:18 +0000 | [diff] [blame] | 131 | None or no argument seeds from current time. |
| 132 | |
Tim Peters | bcd725f | 2001-02-01 10:06:53 +0000 | [diff] [blame] | 133 | If a is not None or an int or long, hash(a) is used instead. |
Tim Peters | 0de88fc | 2001-02-01 04:59:18 +0000 | [diff] [blame] | 134 | |
| 135 | If a is an int or long, a is used directly. Distinct values between |
| 136 | 0 and 27814431486575L inclusive are guaranteed to yield distinct |
| 137 | internal states (this guarantee is specific to the default |
| 138 | Wichmann-Hill generator). |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 139 | """ |
| 140 | |
Tim Peters | 0de88fc | 2001-02-01 04:59:18 +0000 | [diff] [blame] | 141 | if a is None: |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 142 | # Initialize from current time |
| 143 | import time |
Tim Peters | 0de88fc | 2001-02-01 04:59:18 +0000 | [diff] [blame] | 144 | a = long(time.time() * 256) |
| 145 | |
| 146 | if type(a) not in (type(3), type(3L)): |
| 147 | a = hash(a) |
| 148 | |
| 149 | a, x = divmod(a, 30268) |
| 150 | a, y = divmod(a, 30306) |
| 151 | a, z = divmod(a, 30322) |
| 152 | self._seed = int(x)+1, int(y)+1, int(z)+1 |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 153 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 154 | def random(self): |
| 155 | """Get the next random number in the range [0.0, 1.0).""" |
| 156 | |
| 157 | # Wichman-Hill random number generator. |
| 158 | # |
| 159 | # Wichmann, B. A. & Hill, I. D. (1982) |
| 160 | # Algorithm AS 183: |
| 161 | # An efficient and portable pseudo-random number generator |
| 162 | # Applied Statistics 31 (1982) 188-190 |
| 163 | # |
| 164 | # see also: |
| 165 | # Correction to Algorithm AS 183 |
| 166 | # Applied Statistics 33 (1984) 123 |
| 167 | # |
| 168 | # McLeod, A. I. (1985) |
| 169 | # A remark on Algorithm AS 183 |
| 170 | # Applied Statistics 34 (1985),198-200 |
| 171 | |
| 172 | # This part is thread-unsafe: |
| 173 | # BEGIN CRITICAL SECTION |
| 174 | x, y, z = self._seed |
| 175 | x = (171 * x) % 30269 |
| 176 | y = (172 * y) % 30307 |
| 177 | z = (170 * z) % 30323 |
| 178 | self._seed = x, y, z |
| 179 | # END CRITICAL SECTION |
| 180 | |
| 181 | # Note: on a platform using IEEE-754 double arithmetic, this can |
| 182 | # never return 0.0 (asserted by Tim; proof too long for a comment). |
| 183 | return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0 |
| 184 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 185 | def getstate(self): |
| 186 | """Return internal state; can be passed to setstate() later.""" |
| 187 | return self.VERSION, self._seed, self.gauss_next |
| 188 | |
| 189 | def setstate(self, state): |
| 190 | """Restore internal state from object returned by getstate().""" |
| 191 | version = state[0] |
| 192 | if version == 1: |
| 193 | version, self._seed, self.gauss_next = state |
| 194 | else: |
| 195 | raise ValueError("state with version %s passed to " |
| 196 | "Random.setstate() of version %s" % |
| 197 | (version, self.VERSION)) |
| 198 | |
| 199 | def jumpahead(self, n): |
| 200 | """Act as if n calls to random() were made, but quickly. |
| 201 | |
| 202 | n is an int, greater than or equal to 0. |
| 203 | |
| 204 | Example use: If you have 2 threads and know that each will |
| 205 | consume no more than a million random numbers, create two Random |
| 206 | objects r1 and r2, then do |
| 207 | r2.setstate(r1.getstate()) |
| 208 | r2.jumpahead(1000000) |
| 209 | Then r1 and r2 will use guaranteed-disjoint segments of the full |
| 210 | period. |
| 211 | """ |
| 212 | |
| 213 | if not n >= 0: |
| 214 | raise ValueError("n must be >= 0") |
| 215 | x, y, z = self._seed |
| 216 | x = int(x * pow(171, n, 30269)) % 30269 |
| 217 | y = int(y * pow(172, n, 30307)) % 30307 |
| 218 | z = int(z * pow(170, n, 30323)) % 30323 |
| 219 | self._seed = x, y, z |
| 220 | |
Tim Peters | 0de88fc | 2001-02-01 04:59:18 +0000 | [diff] [blame] | 221 | def __whseed(self, x=0, y=0, z=0): |
| 222 | """Set the Wichmann-Hill seed from (x, y, z). |
| 223 | |
| 224 | These must be integers in the range [0, 256). |
| 225 | """ |
| 226 | |
| 227 | if not type(x) == type(y) == type(z) == type(0): |
| 228 | raise TypeError('seeds must be integers') |
| 229 | if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256): |
| 230 | raise ValueError('seeds must be in range(0, 256)') |
| 231 | if 0 == x == y == z: |
| 232 | # Initialize from current time |
| 233 | import time |
| 234 | t = long(time.time() * 256) |
| 235 | t = int((t&0xffffff) ^ (t>>24)) |
| 236 | t, x = divmod(t, 256) |
| 237 | t, y = divmod(t, 256) |
| 238 | t, z = divmod(t, 256) |
| 239 | # Zero is a poor seed, so substitute 1 |
| 240 | self._seed = (x or 1, y or 1, z or 1) |
| 241 | |
| 242 | def whseed(self, a=None): |
| 243 | """Seed from hashable object's hash code. |
| 244 | |
| 245 | None or no argument seeds from current time. It is not guaranteed |
| 246 | that objects with distinct hash codes lead to distinct internal |
| 247 | states. |
| 248 | |
| 249 | This is obsolete, provided for compatibility with the seed routine |
| 250 | used prior to Python 2.1. Use the .seed() method instead. |
| 251 | """ |
| 252 | |
| 253 | if a is None: |
| 254 | self.__whseed() |
| 255 | return |
| 256 | a = hash(a) |
| 257 | a, x = divmod(a, 256) |
| 258 | a, y = divmod(a, 256) |
| 259 | a, z = divmod(a, 256) |
| 260 | x = (x + a) % 256 or 1 |
| 261 | y = (y + a) % 256 or 1 |
| 262 | z = (z + a) % 256 or 1 |
| 263 | self.__whseed(x, y, z) |
| 264 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 265 | ## ---- Methods below this point do not need to be overridden when |
| 266 | ## ---- subclassing for the purpose of using a different core generator. |
| 267 | |
| 268 | ## -------------------- pickle support ------------------- |
| 269 | |
| 270 | def __getstate__(self): # for pickle |
| 271 | return self.getstate() |
| 272 | |
| 273 | def __setstate__(self, state): # for pickle |
| 274 | self.setstate(state) |
| 275 | |
| 276 | ## -------------------- integer methods ------------------- |
| 277 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 278 | def randrange(self, start, stop=None, step=1, int=int, default=None): |
| 279 | """Choose a random item from range(start, stop[, step]). |
| 280 | |
| 281 | This fixes the problem with randint() which includes the |
| 282 | endpoint; in Python this is usually not what you want. |
| 283 | Do not supply the 'int' and 'default' arguments. |
| 284 | """ |
| 285 | |
| 286 | # This code is a bit messy to make it fast for the |
| 287 | # common case while still doing adequate error checking |
| 288 | istart = int(start) |
| 289 | if istart != start: |
| 290 | raise ValueError, "non-integer arg 1 for randrange()" |
| 291 | if stop is default: |
| 292 | if istart > 0: |
| 293 | return int(self.random() * istart) |
| 294 | raise ValueError, "empty range for randrange()" |
| 295 | istop = int(stop) |
| 296 | if istop != stop: |
| 297 | raise ValueError, "non-integer stop for randrange()" |
| 298 | if step == 1: |
| 299 | if istart < istop: |
| 300 | return istart + int(self.random() * |
| 301 | (istop - istart)) |
| 302 | raise ValueError, "empty range for randrange()" |
| 303 | istep = int(step) |
| 304 | if istep != step: |
| 305 | raise ValueError, "non-integer step for randrange()" |
| 306 | if istep > 0: |
| 307 | n = (istop - istart + istep - 1) / istep |
| 308 | elif istep < 0: |
| 309 | n = (istop - istart + istep + 1) / istep |
| 310 | else: |
| 311 | raise ValueError, "zero step for randrange()" |
| 312 | |
| 313 | if n <= 0: |
| 314 | raise ValueError, "empty range for randrange()" |
| 315 | return istart + istep*int(self.random() * n) |
| 316 | |
| 317 | def randint(self, a, b): |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 318 | """Return random integer in range [a, b], including both end points. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 319 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 320 | (Deprecated; use randrange(a, b+1).) |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 321 | """ |
| 322 | |
| 323 | return self.randrange(a, b+1) |
| 324 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 325 | ## -------------------- sequence methods ------------------- |
| 326 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 327 | def choice(self, seq): |
| 328 | """Choose a random element from a non-empty sequence.""" |
| 329 | return seq[int(self.random() * len(seq))] |
| 330 | |
| 331 | def shuffle(self, x, random=None, int=int): |
| 332 | """x, random=random.random -> shuffle list x in place; return None. |
| 333 | |
| 334 | Optional arg random is a 0-argument function returning a random |
| 335 | float in [0.0, 1.0); by default, the standard random.random. |
| 336 | |
| 337 | Note that for even rather small len(x), the total number of |
| 338 | permutations of x is larger than the period of most random number |
| 339 | generators; this implies that "most" permutations of a long |
| 340 | sequence can never be generated. |
| 341 | """ |
| 342 | |
| 343 | if random is None: |
| 344 | random = self.random |
| 345 | for i in xrange(len(x)-1, 0, -1): |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 346 | # pick an element in x[:i+1] with which to exchange x[i] |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 347 | j = int(random() * (i+1)) |
| 348 | x[i], x[j] = x[j], x[i] |
| 349 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 350 | ## -------------------- real-valued distributions ------------------- |
| 351 | |
| 352 | ## -------------------- uniform distribution ------------------- |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 353 | |
| 354 | def uniform(self, a, b): |
| 355 | """Get a random number in the range [a, b).""" |
| 356 | return a + (b-a) * self.random() |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 357 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 358 | ## -------------------- normal distribution -------------------- |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 359 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 360 | def normalvariate(self, mu, sigma): |
| 361 | # mu = mean, sigma = standard deviation |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 362 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 363 | # Uses Kinderman and Monahan method. Reference: Kinderman, |
| 364 | # A.J. and Monahan, J.F., "Computer generation of random |
| 365 | # variables using the ratio of uniform deviates", ACM Trans |
| 366 | # Math Software, 3, (1977), pp257-260. |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 367 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 368 | random = self.random |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 369 | while 1: |
| 370 | u1 = random() |
| 371 | u2 = random() |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 372 | z = NV_MAGICCONST*(u1-0.5)/u2 |
| 373 | zz = z*z/4.0 |
| 374 | if zz <= -_log(u2): |
| 375 | break |
| 376 | return mu + z*sigma |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 377 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 378 | ## -------------------- lognormal distribution -------------------- |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 379 | |
| 380 | def lognormvariate(self, mu, sigma): |
| 381 | return _exp(self.normalvariate(mu, sigma)) |
| 382 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 383 | ## -------------------- circular uniform -------------------- |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 384 | |
| 385 | def cunifvariate(self, mean, arc): |
| 386 | # mean: mean angle (in radians between 0 and pi) |
| 387 | # arc: range of distribution (in radians between 0 and pi) |
| 388 | |
| 389 | return (mean + arc * (self.random() - 0.5)) % _pi |
| 390 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 391 | ## -------------------- exponential distribution -------------------- |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 392 | |
| 393 | def expovariate(self, lambd): |
| 394 | # lambd: rate lambd = 1/mean |
| 395 | # ('lambda' is a Python reserved word) |
| 396 | |
| 397 | random = self.random |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 398 | u = random() |
| 399 | while u <= 1e-7: |
| 400 | u = random() |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 401 | return -_log(u)/lambd |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 402 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 403 | ## -------------------- von Mises distribution -------------------- |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 404 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 405 | def vonmisesvariate(self, mu, kappa): |
| 406 | # mu: mean angle (in radians between 0 and 2*pi) |
| 407 | # kappa: concentration parameter kappa (>= 0) |
| 408 | # if kappa = 0 generate uniform random angle |
| 409 | |
| 410 | # Based upon an algorithm published in: Fisher, N.I., |
| 411 | # "Statistical Analysis of Circular Data", Cambridge |
| 412 | # University Press, 1993. |
| 413 | |
| 414 | # Thanks to Magnus Kessler for a correction to the |
| 415 | # implementation of step 4. |
| 416 | |
| 417 | random = self.random |
| 418 | if kappa <= 1e-6: |
| 419 | return TWOPI * random() |
| 420 | |
| 421 | a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa) |
| 422 | b = (a - _sqrt(2.0 * a))/(2.0 * kappa) |
| 423 | r = (1.0 + b * b)/(2.0 * b) |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 424 | |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 425 | while 1: |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 426 | u1 = random() |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 427 | |
| 428 | z = _cos(_pi * u1) |
| 429 | f = (1.0 + r * z)/(r + z) |
| 430 | c = kappa * (r - f) |
| 431 | |
| 432 | u2 = random() |
| 433 | |
| 434 | if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)): |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 435 | break |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 436 | |
| 437 | u3 = random() |
| 438 | if u3 > 0.5: |
| 439 | theta = (mu % TWOPI) + _acos(f) |
| 440 | else: |
| 441 | theta = (mu % TWOPI) - _acos(f) |
| 442 | |
| 443 | return theta |
| 444 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 445 | ## -------------------- gamma distribution -------------------- |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 446 | |
| 447 | def gammavariate(self, alpha, beta): |
| 448 | # beta times standard gamma |
| 449 | ainv = _sqrt(2.0 * alpha - 1.0) |
| 450 | return beta * self.stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv) |
| 451 | |
| 452 | def stdgamma(self, alpha, ainv, bbb, ccc): |
| 453 | # ainv = sqrt(2 * alpha - 1) |
| 454 | # bbb = alpha - log(4) |
| 455 | # ccc = alpha + ainv |
| 456 | |
| 457 | random = self.random |
| 458 | if alpha <= 0.0: |
| 459 | raise ValueError, 'stdgamma: alpha must be > 0.0' |
| 460 | |
| 461 | if alpha > 1.0: |
| 462 | |
| 463 | # Uses R.C.H. Cheng, "The generation of Gamma |
| 464 | # variables with non-integral shape parameters", |
| 465 | # Applied Statistics, (1977), 26, No. 1, p71-74 |
| 466 | |
| 467 | while 1: |
| 468 | u1 = random() |
| 469 | u2 = random() |
| 470 | v = _log(u1/(1.0-u1))/ainv |
| 471 | x = alpha*_exp(v) |
| 472 | z = u1*u1*u2 |
| 473 | r = bbb+ccc*v-x |
| 474 | if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z): |
| 475 | return x |
| 476 | |
| 477 | elif alpha == 1.0: |
| 478 | # expovariate(1) |
| 479 | u = random() |
| 480 | while u <= 1e-7: |
| 481 | u = random() |
| 482 | return -_log(u) |
| 483 | |
| 484 | else: # alpha is between 0 and 1 (exclusive) |
| 485 | |
| 486 | # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle |
| 487 | |
| 488 | while 1: |
| 489 | u = random() |
| 490 | b = (_e + alpha)/_e |
| 491 | p = b*u |
| 492 | if p <= 1.0: |
| 493 | x = pow(p, 1.0/alpha) |
| 494 | else: |
| 495 | # p > 1 |
| 496 | x = -_log((b-p)/alpha) |
| 497 | u1 = random() |
| 498 | if not (((p <= 1.0) and (u1 > _exp(-x))) or |
| 499 | ((p > 1) and (u1 > pow(x, alpha - 1.0)))): |
| 500 | break |
| 501 | return x |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 502 | |
Guido van Rossum | 95bfcda | 1994-03-09 14:21:05 +0000 | [diff] [blame] | 503 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 504 | ## -------------------- Gauss (faster alternative) -------------------- |
Guido van Rossum | 95bfcda | 1994-03-09 14:21:05 +0000 | [diff] [blame] | 505 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 506 | def gauss(self, mu, sigma): |
Guido van Rossum | cc32ac9 | 1994-03-15 16:10:24 +0000 | [diff] [blame] | 507 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 508 | # When x and y are two variables from [0, 1), uniformly |
| 509 | # distributed, then |
| 510 | # |
| 511 | # cos(2*pi*x)*sqrt(-2*log(1-y)) |
| 512 | # sin(2*pi*x)*sqrt(-2*log(1-y)) |
| 513 | # |
| 514 | # are two *independent* variables with normal distribution |
| 515 | # (mu = 0, sigma = 1). |
| 516 | # (Lambert Meertens) |
| 517 | # (corrected version; bug discovered by Mike Miller, fixed by LM) |
Guido van Rossum | cc32ac9 | 1994-03-15 16:10:24 +0000 | [diff] [blame] | 518 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 519 | # Multithreading note: When two threads call this function |
| 520 | # simultaneously, it is possible that they will receive the |
| 521 | # same return value. The window is very small though. To |
| 522 | # avoid this, you have to use a lock around all calls. (I |
| 523 | # didn't want to slow this down in the serial case by using a |
| 524 | # lock here.) |
Guido van Rossum | d03e119 | 1998-05-29 17:51:31 +0000 | [diff] [blame] | 525 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 526 | random = self.random |
| 527 | z = self.gauss_next |
| 528 | self.gauss_next = None |
| 529 | if z is None: |
| 530 | x2pi = random() * TWOPI |
| 531 | g2rad = _sqrt(-2.0 * _log(1.0 - random())) |
| 532 | z = _cos(x2pi) * g2rad |
| 533 | self.gauss_next = _sin(x2pi) * g2rad |
Guido van Rossum | cc32ac9 | 1994-03-15 16:10:24 +0000 | [diff] [blame] | 534 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 535 | return mu + z*sigma |
Guido van Rossum | 95bfcda | 1994-03-09 14:21:05 +0000 | [diff] [blame] | 536 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 537 | ## -------------------- beta -------------------- |
Tim Peters | 85e2e47 | 2001-01-26 06:49:56 +0000 | [diff] [blame] | 538 | ## See |
| 539 | ## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470 |
| 540 | ## for Ivan Frohne's insightful analysis of why the original implementation: |
| 541 | ## |
| 542 | ## def betavariate(self, alpha, beta): |
| 543 | ## # Discrete Event Simulation in C, pp 87-88. |
| 544 | ## |
| 545 | ## y = self.expovariate(alpha) |
| 546 | ## z = self.expovariate(1.0/beta) |
| 547 | ## return z/(y+z) |
| 548 | ## |
| 549 | ## was dead wrong, and how it probably got that way. |
Guido van Rossum | 95bfcda | 1994-03-09 14:21:05 +0000 | [diff] [blame] | 550 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 551 | def betavariate(self, alpha, beta): |
Tim Peters | 85e2e47 | 2001-01-26 06:49:56 +0000 | [diff] [blame] | 552 | # This version due to Janne Sinkkonen, and matches all the std |
| 553 | # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution"). |
| 554 | y = self.gammavariate(alpha, 1.) |
| 555 | if y == 0: |
| 556 | return 0.0 |
| 557 | else: |
| 558 | return y / (y + self.gammavariate(beta, 1.)) |
Guido van Rossum | 95bfcda | 1994-03-09 14:21:05 +0000 | [diff] [blame] | 559 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 560 | ## -------------------- Pareto -------------------- |
Guido van Rossum | cf4559a | 1997-12-02 02:47:39 +0000 | [diff] [blame] | 561 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 562 | def paretovariate(self, alpha): |
| 563 | # Jain, pg. 495 |
Guido van Rossum | cf4559a | 1997-12-02 02:47:39 +0000 | [diff] [blame] | 564 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 565 | u = self.random() |
| 566 | return 1.0 / pow(u, 1.0/alpha) |
Guido van Rossum | cf4559a | 1997-12-02 02:47:39 +0000 | [diff] [blame] | 567 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 568 | ## -------------------- Weibull -------------------- |
Guido van Rossum | cf4559a | 1997-12-02 02:47:39 +0000 | [diff] [blame] | 569 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 570 | def weibullvariate(self, alpha, beta): |
| 571 | # Jain, pg. 499; bug fix courtesy Bill Arms |
Guido van Rossum | cf4559a | 1997-12-02 02:47:39 +0000 | [diff] [blame] | 572 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 573 | u = self.random() |
| 574 | return alpha * pow(-_log(u), 1.0/beta) |
Guido van Rossum | 6c395ba | 1999-08-18 13:53:28 +0000 | [diff] [blame] | 575 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 576 | ## -------------------- test program -------------------- |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 577 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 578 | def _test_generator(n, funccall): |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 579 | import time |
| 580 | print n, 'times', funccall |
| 581 | code = compile(funccall, funccall, 'eval') |
| 582 | sum = 0.0 |
| 583 | sqsum = 0.0 |
| 584 | smallest = 1e10 |
| 585 | largest = -1e10 |
| 586 | t0 = time.time() |
| 587 | for i in range(n): |
| 588 | x = eval(code) |
| 589 | sum = sum + x |
| 590 | sqsum = sqsum + x*x |
| 591 | smallest = min(x, smallest) |
| 592 | largest = max(x, largest) |
| 593 | t1 = time.time() |
| 594 | print round(t1-t0, 3), 'sec,', |
| 595 | avg = sum/n |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 596 | stddev = _sqrt(sqsum/n - avg*avg) |
Tim Peters | 0c9886d | 2001-01-15 01:18:21 +0000 | [diff] [blame] | 597 | print 'avg %g, stddev %g, min %g, max %g' % \ |
| 598 | (avg, stddev, smallest, largest) |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 599 | |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 600 | def _test(N=200): |
| 601 | print 'TWOPI =', TWOPI |
| 602 | print 'LOG4 =', LOG4 |
| 603 | print 'NV_MAGICCONST =', NV_MAGICCONST |
| 604 | print 'SG_MAGICCONST =', SG_MAGICCONST |
| 605 | _test_generator(N, 'random()') |
| 606 | _test_generator(N, 'normalvariate(0.0, 1.0)') |
| 607 | _test_generator(N, 'lognormvariate(0.0, 1.0)') |
| 608 | _test_generator(N, 'cunifvariate(0.0, 1.0)') |
| 609 | _test_generator(N, 'expovariate(1.0)') |
| 610 | _test_generator(N, 'vonmisesvariate(0.0, 1.0)') |
| 611 | _test_generator(N, 'gammavariate(0.5, 1.0)') |
| 612 | _test_generator(N, 'gammavariate(0.9, 1.0)') |
| 613 | _test_generator(N, 'gammavariate(1.0, 1.0)') |
| 614 | _test_generator(N, 'gammavariate(2.0, 1.0)') |
| 615 | _test_generator(N, 'gammavariate(20.0, 1.0)') |
| 616 | _test_generator(N, 'gammavariate(200.0, 1.0)') |
| 617 | _test_generator(N, 'gauss(0.0, 1.0)') |
| 618 | _test_generator(N, 'betavariate(3.0, 3.0)') |
| 619 | _test_generator(N, 'paretovariate(1.0)') |
| 620 | _test_generator(N, 'weibullvariate(1.0, 1.0)') |
| 621 | |
Tim Peters | cd80410 | 2001-01-25 20:25:57 +0000 | [diff] [blame] | 622 | # Test jumpahead. |
| 623 | s = getstate() |
| 624 | jumpahead(N) |
| 625 | r1 = random() |
| 626 | # now do it the slow way |
| 627 | setstate(s) |
| 628 | for i in range(N): |
| 629 | random() |
| 630 | r2 = random() |
| 631 | if r1 != r2: |
| 632 | raise ValueError("jumpahead test failed " + `(N, r1, r2)`) |
| 633 | |
Tim Peters | 715c4c4 | 2001-01-26 22:56:56 +0000 | [diff] [blame] | 634 | # Create one instance, seeded from current time, and export its methods |
| 635 | # as module-level functions. The functions are not threadsafe, and state |
| 636 | # is shared across all uses (both in the user's code and in the Python |
| 637 | # libraries), but that's fine for most programs and is easier for the |
| 638 | # casual user than making them instantiate their own Random() instance. |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 639 | _inst = Random() |
| 640 | seed = _inst.seed |
| 641 | random = _inst.random |
| 642 | uniform = _inst.uniform |
| 643 | randint = _inst.randint |
| 644 | choice = _inst.choice |
| 645 | randrange = _inst.randrange |
| 646 | shuffle = _inst.shuffle |
| 647 | normalvariate = _inst.normalvariate |
| 648 | lognormvariate = _inst.lognormvariate |
| 649 | cunifvariate = _inst.cunifvariate |
| 650 | expovariate = _inst.expovariate |
| 651 | vonmisesvariate = _inst.vonmisesvariate |
| 652 | gammavariate = _inst.gammavariate |
| 653 | stdgamma = _inst.stdgamma |
| 654 | gauss = _inst.gauss |
| 655 | betavariate = _inst.betavariate |
| 656 | paretovariate = _inst.paretovariate |
| 657 | weibullvariate = _inst.weibullvariate |
| 658 | getstate = _inst.getstate |
| 659 | setstate = _inst.setstate |
Tim Peters | d52269b | 2001-01-25 06:23:18 +0000 | [diff] [blame] | 660 | jumpahead = _inst.jumpahead |
Tim Peters | 0de88fc | 2001-02-01 04:59:18 +0000 | [diff] [blame] | 661 | whseed = _inst.whseed |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 662 | |
Guido van Rossum | ff03b1a | 1994-03-09 12:55:02 +0000 | [diff] [blame] | 663 | if __name__ == '__main__': |
Tim Peters | d7b5e88 | 2001-01-25 03:36:26 +0000 | [diff] [blame] | 664 | _test() |